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ARTICLE

Repurposing anti-inflammasome NRTIs for
improving insulin sensitivity and reducing type
2 diabetes development
Jayakrishna Ambati 1,2,3,4✉, Joseph Magagnoli5,6, Hannah Leung1,2, Shao-bin Wang 1,2, Chris A. Andrews7,8,

Dongxu Fu1,2, Akshat Pandey1,2, Srabani Sahu9, Siddharth Narendran1,2, Shuichiro Hirahara1,2,

Shinichi Fukuda 1,2,10, Jian Sun1,2, Lekha Pandya1,2, Meenakshi Ambati1,2, Felipe Pereira1,2, Akhil Varshney1,2,

Tammy Cummings5,6, James W. Hardin 11, Babatunde Edun5,19, Charles L. Bennett5,6,12,

Kameshwari Ambati1,2, Benjamin J. Fowler13, Nagaraj Kerur1,2,3,14, Christian Röver 15, Norbert Leitinger9,

Brian C. Werner 16, Joshua D. Stein6,7,17, S. Scott Sutton 5,6 & Bradley D. Gelfand1,2,18

Innate immune signaling through the NLRP3 inflammasome is activated by multiple diabetes-

related stressors, but whether targeting the inflammasome is beneficial for diabetes is still

unclear. Nucleoside reverse-transcriptase inhibitors (NRTI), drugs approved to treat HIV-1

and hepatitis B infections, also block inflammasome activation. Here, we show, by analyzing

five health insurance databases, that the adjusted risk of incident diabetes is 33% lower in

patients with NRTI exposure among 128,861 patients with HIV-1 or hepatitis B (adjusted

hazard ratio for NRTI exposure, 0.673; 95% confidence interval, 0.638 to 0.710; P < 0.0001;

95% prediction interval, 0.618 to 0.734). Meanwhile, an NRTI, lamivudine, improves insulin

sensitivity and reduces inflammasome activation in diabetic and insulin resistance-induced

human cells, as well as in mice fed with high-fat chow; mechanistically, inflammasome-

activating short interspersed nuclear element (SINE) transcripts are elevated, whereas SINE-

catabolizing DICER1 is reduced, in diabetic cells and mice. These data suggest the possibility

of repurposing an approved class of drugs for prevention of diabetes.

https://doi.org/10.1038/s41467-020-18528-z OPEN

1 Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VA, USA. 2 Department of Ophthalmology, University of
Virginia School of Medicine, Charlottesville, VA, USA. 3 Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA.
4Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA. 5Dorn Research
Institute, Columbia VA Health Care System, Columbia, SC, USA. 6 Department of Clinical Pharmacy & Outcomes Sciences, College of Pharmacy, University
of South Carolina, Columbia, SC, USA. 7Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, MI, USA.
8 Center for Eye Policy and Innovation, University of Michigan, Ann Arbor, MI, USA. 9 Department of Pharmacology, University of Virginia School of Medicine,
Charlottesville, VA, USA. 10 Department of Ophthalmology, University of Tsukuba, Ibaraki, Japan. 11 Department of Epidemiology & Biostatistics, University of
South Carolina, Columbia, SC, USA. 12 Center for Medication Safety and Efficacy, College of Pharmacy, University of South Carolina, Columbia, SC, USA.
13 Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, USA. 14 Department of Neuroscience, University of Virginia
School of Medicine, Charlottesville, VA, USA. 15 Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany. 16 Department
of Orthopaedics, University of Virginia School of Medicine, Charlottesville, VA, USA. 17 Department of Health Management and Policy, University of Michigan
School of Public Health, Ann Arbor, MI, USA. 18 Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA.
19Present address: Department of Medicine, Baystate Medical Center, Springfield, MA, USA. ✉email: ja9qr@virginia.edu

NATURE COMMUNICATIONS |         (2020) 11:4737 | https://doi.org/10.1038/s41467-020-18528-z | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18528-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18528-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18528-z&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-18528-z&domain=pdf
http://orcid.org/0000-0003-1622-6365
http://orcid.org/0000-0003-1622-6365
http://orcid.org/0000-0003-1622-6365
http://orcid.org/0000-0003-1622-6365
http://orcid.org/0000-0003-1622-6365
http://orcid.org/0000-0002-6699-9406
http://orcid.org/0000-0002-6699-9406
http://orcid.org/0000-0002-6699-9406
http://orcid.org/0000-0002-6699-9406
http://orcid.org/0000-0002-6699-9406
http://orcid.org/0000-0002-4160-8229
http://orcid.org/0000-0002-4160-8229
http://orcid.org/0000-0002-4160-8229
http://orcid.org/0000-0002-4160-8229
http://orcid.org/0000-0002-4160-8229
http://orcid.org/0000-0003-0506-5500
http://orcid.org/0000-0003-0506-5500
http://orcid.org/0000-0003-0506-5500
http://orcid.org/0000-0003-0506-5500
http://orcid.org/0000-0003-0506-5500
http://orcid.org/0000-0002-6911-698X
http://orcid.org/0000-0002-6911-698X
http://orcid.org/0000-0002-6911-698X
http://orcid.org/0000-0002-6911-698X
http://orcid.org/0000-0002-6911-698X
http://orcid.org/0000-0002-7956-2123
http://orcid.org/0000-0002-7956-2123
http://orcid.org/0000-0002-7956-2123
http://orcid.org/0000-0002-7956-2123
http://orcid.org/0000-0002-7956-2123
http://orcid.org/0000-0002-3889-6178
http://orcid.org/0000-0002-3889-6178
http://orcid.org/0000-0002-3889-6178
http://orcid.org/0000-0002-3889-6178
http://orcid.org/0000-0002-3889-6178
mailto:ja9qr@virginia.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The number of people with diabetes worldwide is nearly 500
million and is projected to grow dramatically in the
coming decades1. Most of these individuals have type 2

diabetes, a chronic metabolic disease characterized by insulin
resistance and hyperglycemia2.

Chronic inflammation is a critical facet of type 2 diabetes3,4.
The NLRP3 inflammasome, a multimeric protein complex, is
implicated as a key driver of type 2 diabetes5,6. Activation of this
inflammasome occurs in response to multiple danger-associated
molecular patterns including several molecules involved in the
pathogenesis of type 2 diabetes: glucose, islet amyloid polypeptide,
free fatty acids, and mitochondrial reactive oxygen species7,8,
and leads to production of the mature forms of the proin-
flammatory cytokines IL-1β and IL-189. In animal models,
inflammasome inhibition protects against insulin resistance6,10–13.
Importantly, inflammasome activation is observed in circulating
cells and adipose tissue of patients with insulin resistance6,14,15,
and plasma concentrations of IL-1β and IL-18 are elevated in
patients with type 2 diabetes and predict development of this
disease16,17.

One of the activators of this inflammasome is RNA derived
from Alu mobile genetic elements18. Alu RNAs recently are
implicated in Alzheimer’s disease19, macular degeneration18,20,21,
and systemic lupus erythematosus22. Elevated levels of Alu RNA
and inflammasome activation in macular degeneration result
from reduced levels of the enzyme DICER1, one of whose
metabolic functions is to catabolize Alu RNAs20,23,24. Interest-
ingly, DICER1 levels are decreased in circulating cells in patients
with type 2 diabetes25,26, and deletion of DICER1 in adipose or
pancreatic islet beta cells triggers insulin resistance and diabetes
in mice27–30. Given the expanding array of human disorders in
which mobile genetic elements are recognized to play a patho-
genic role31, and because DICER1 and inflammasome activation
are implicated in diabetes, we explore whether Alu RNAs might
be dysregulated in this disease as well.

Alu mobile elements propagate themselves by hijacking the
endogenous reverse-transcriptase LINE-131,32. Notably, nucleo-
side reverse-transcriptase inhibitors (NRTIs), drugs that are used
to treat HIV-1 and hepatitis B infections, inhibit not only viral
reverse-transcriptases but also LINE-1 reverse-transcriptase
activity33,34. NRTIs also block inflammasome activation by Alu
RNAs and other stimuli, independent of their ability to block
reverse-transcriptase35. Therefore, we seek to determine whether,
among patients with HIV-1 or hepatitis B, there is a relation
between exposure to NRTIs and development of type 2 diabetes.

Here we employ a health insurance claims database analyses
approach to examine the link between NRTI use and incident
type 2 diabetes. We also investigate the effect of the NRTI
lamivudine on insulin resistance in diabetic human adipocytes
and myocytes and in a mouse model of type 2 diabetes to obtain
experimental evidence in support of the clinical observations. We
find that NRTI exposure is associated with reduced development
of type 2 diabetes in people and that lamivudine inhibits
inflammasome activation and improves insulin sensitivity in
experimental systems. These data suggest the possibility of either
repurposing this approved class of drugs or exploring less toxic
modified NRTIs for treating prediabetes or diabetes.

Results
NRTIs associated with reduced hazard of developing diabetes.
We examined associations between exposure to NRTIs (a list of
specific medications is in Supplementary Table 1) and subsequent
development of type 2 diabetes in the Veterans Health Admin-
istration, the largest integrated healthcare system in the United
States, that was studied for over a 17-year period. To confirm

these main findings, we then studied four other health insurance
databases comprising diverse populations. In each of the five
cohorts that included a total of 128,861 patients (Supplementary
Fig. 1), we determined the association between NRTI use and the
hazard of developing type 2 diabetes after adjustment for socio-
demographic factors, overall health, comorbidities (a list of spe-
cific disease codes is in Supplementary Table 2), and use of
medications that are known to alter risk of diabetes development.

In our main analysis of the Veterans Health Administration
database, which comprises predominantly men, 79,744 patients
with confirmed diagnoses of HIV or hepatitis B and without a
prior diagnosis of type 2 diabetes were identified (Supplementary
Table 3). Of this group (baseline characteristics in Supplementary
Table 4), 12,311 patients developed incident type 2 diabetes. After
adjustment for potential confounders, users of NRTIs had 34%
reduced hazard of developing type 2 diabetes (hazard ratio, 0.665;
95% CI, 0.625 to 0.708; P < 0.0001) (Fig. 1, Supplementary
Table 5).

In the Truven database, which comprises employer-based
health insurance claims, 23,634 patients with confirmed diag-
noses of HIV or hepatitis B and without a prior diagnosis of type
2 diabetes were identified (Supplementary Table 3). Of this group
(baseline characteristics in Supplementary Table 6), 1630 patients
developed incident type 2 diabetes. After adjustment for potential
confounders, users of NRTIs had 39% reduced hazard of
developing type 2 diabetes (hazard ratio, 0.614; 95% CI,
0.524–0.718; P < 0.0001) (Fig. 1, Supplementary Table 7).

In the PearlDiver database, which comprises predominantly
private health insurance claims, 16,045 patients with confirmed
diagnoses of HIV or hepatitis B and without a prior diagnosis of
type 2 diabetes were identified (Supplementary Table 3). Of this
group (baseline characteristics in Supplementary Table 8), 1068
patients developed incident type 2 diabetes. After adjustment for
potential confounders, users of NRTIs had 26% reduced hazard of
developing type 2 diabetes (hazard ratio, 0.738; 95% CI,
0.600–0.908; P= 0.004) (Fig. 1, Supplementary Table 9).

In the Medicare 20% sample (primarily men and women 65
years or older), 3,097 patients with confirmed diagnoses of HIV
or hepatitis B and without a prior diagnosis of type 2 diabetes
were identified (Supplementary Table 3). Of this group (baseline
characteristics in Supplementary Table 10), 707 patients devel-
oped incident type 2 diabetes. After adjustment for potential
confounders, users of NRTIs had a 17% reduced hazard of
developing type 2 diabetes (hazard ratio, 0.828; 95% CI
0.646–1.062; P= 0.137) (Fig. 1, Supplementary Table 11).

In the Clinformatics dataset, which comprises predominantly
commercial health insurance claims, we identified 6341 patients
with confirmed diagnoses of HIV or hepatitis B and without a
prior diagnosis of type 2 diabetes (Supplementary Table 3). Of
this group (baseline characteristics in Supplementary Table 12),
1067 patients developed incident type 2 diabetes. After
adjustment for potential confounders, users of NRTIs had
27% reduced hazard of developing type 2 diabetes (hazard ratio,
0.727; 95% CI, 0.572–0.924; P= 0.009) (Fig. 1, Supplementary
Table 13).

Given the low proportion of the observed variance among the
five studies that could be attributed to heterogeneity (I2=
0.0012%; 95% CI, 0.0–93.6%; P= 0.26, test of heterogeneity),
summary risks were calculated using both fixed-effect and
random-effects models, which yielded identical estimates and
confidence intervals because of the extremely low estimate of
heterogeneity (τ2 < 0.0001). Collectively, among 128,861 patients
with HIV-1 or hepatitis B, users of NRTIs had 33% reduced
hazard of developing type 2 diabetes (adjusted hazard ratio, 0.673;
95% CI, 0.638–0.710; P < 0.0001, test of overall effect; 95%
prediction interval, 0.618–0.734) (Fig. 1).
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Bayesian meta-analysis. To complement this classical “frequentist”
approach to meta-analysis, we performed a Bayesian meta-analysis
using a random-effects normal-normal hierarchical model, which
accounts for uncertainty in the estimation of the between-study
variance. We used a weakly informative half-Cauchy prior dis-
tribution for between-study variability (τ) with the assumption that
it was unlikely for the between-study hazard ratios to vary by more
than 3-fold (scale= 0.280). In this model, collectively, among the
patients with HIV-1 or hepatitis B in the five databases, users of
NRTIs had a 32% median reduced hazard of developing type 2
diabetes (adjusted hazard ratio, 0.685; 95% credible interval, 0.610
to 0.794; P(HR > 1)= 0.0008, posterior probability of a non-
beneficial effect) (Fig. 2). We performed a sensitivity analysis of
these results to the choice of the prior by assuming that it was
unlikely for the between-study hazard ratios to vary by more than
10-fold (scale= 0.587). The posterior distribution was quite robust
to changes in the scale as the summary effect was remarkably
insensitive to the choice of the prior: applying this model, users of
NRTIs had a 31% median reduced hazard of developing type 2
diabetes (adjusted hazard ratio, 0.686; 95% credible interval, 0.604
to 0.809; P(HR > 1)= 0.0017, posterior probability of a non-
beneficial effect) (Fig. 2). In both models, the estimate of hetero-
geneity (τ2) was low (0.005–0.006). These Bayesian meta-analyses
yielded estimates that were qualitatively similar and directionally
identical to the frequentist meta-analyses.

Sensitivity analyses. Next we performed three types of sensitivity
analyses in the main Veterans cohort. First, a single hazard ratio
averaged over the entire study duration may not necessarily
reflect a robust measure of the exposure effect because the hazard

ratio may change over time36. Therefore, we computed the
average hazard ratios after 1, 2, 5, and 10 years of follow-up. After
adjustment for potential confounders, users of NRTIs had a
reduced hazard of developing type 2 diabetes over each of these
time periods (Supplementary Table 14). In addition, we plotted
survival curves adjusted for baseline confounders (Supplementary
Fig. 2). None of the period-specific hazard ratios crossed 1.0 nor
did the adjusted survival curves for the NRTI-exposed and NRTI-
unexposed groups cross one another, suggesting that the pro-
tective association of NRTI use against the development of type 2
diabetes was maintained throughout the study period.

Second, in chronic diseases such as type 2 diabetes, the
competing risk of death can preclude the diagnosis of diabetes.
Therefore, we performed a competing risk regression analysis,
which was possible in the Veterans cohort as it contains
comprehensive mortality data37, but not in the other four
databases we studied as they do not provide mortality informa-
tion. The follow-up duration and mortality rates were comparable
between NRTI users and NRTI non-users in the Veterans cohort
(Supplementary Table 15). Among these 79,744 patients (who
account for the majority of the patients in all 5 databases), using a
competing risk of mortality analysis and using the same list of
covariates as the primary analysis, NRTI use was associated with a
27% reduced risk of incident type 2 diabetes (adjusted
subdistribution hazard ratio, 0.727; 95% CI, 0.683–0.775;
P < 0.0001) (Supplementary Table 16). These data, which are
similar to risk reduction observed in the primary analysis, suggest
that the differential mortality rates are not responsible for the
observed risk reduction of incident type 2 diabetes among NRTI
users in the Veterans cohort.

P value
Weight, %

Random-effects†Fixed-effect*

*Influence of studies on meta-analysis using fixed-effect model
†Influence of studies on meta-analysis using random-effects model

Test for heterogeneity: c2=5.28, df=4, P=0.26; t2<0.0001; I2=0.0012%, 95% CI, 0% to 93.6%
‡Test for overall effect: z=14.61, P<0.0001
§Test for overall effect: z=14.61, P<0.0001

0.673 (0.618–0.734)Prediction interval

0.673 (0.638–0.710)‡ <0.0001Pooled (fixed-effect) 100

0.5 1 2

Adjusted hazard ratio 
for NRTI exposure (95% CI)

0.665 (0.625–0.708)
Veterans (N=79,744)

<0.0001
0.711 (0.649–0.778) <0.0001

72.6 72.6

0.614 (0.524–0.718)
Truven (N=23,634)

<0.0001
0.645 (0.536–0.776) <0.0001

11.4 11.4

0.738 (0.600–0.908) 0.004
0.747 (0.609–0.918) 0.005PearlDiver (N=16,045) 6.6 6.6

0.828 (0.646–1.062) 0.137Medicare (N=3097) 4.6 4.6

(0.572–0.924)0.727 0.009

NRTI 
exposure 

Better

NRTI
non-exposure

Better

Clinformatics (N=6341) 4.9 4.9

0.673 (0.638–0.710)§ <0.0001Pooled (random-effects) 100

Fig. 1 Forest plot of incident diabetes. Hazard ratios based on a Cox proportional-hazards model and adjusted for the confounding variables listed in
Supplementary Tables 5, 7, 9, 11, and 13 were estimated separately for each database. The dashed vertical line denotes a hazard ratio of 1.0, which
represents no difference in risk between nucleoside reverse-transcriptase inhibitor (NRTI) exposure and non-exposure. The black horizontal bars represent
95% confidence intervals (CI) for unmatched models. The blue horizontal bars represent 95% CI for propensity score-matched models. P values derived
from z tests for individual databases are reported. Inverse-variance-weighted random-effects and fixed-effect meta-analyses were performed to obtain a
pooled estimate of the adjusted hazard ratio of incident diabetes for NRTI exposure (ever versus never). The prediction interval is reported. The estimate of
heterogeneity (τ2) and the results of the statistical test of heterogeneity using the chi-square (χ2) test statistic and its degrees of freedom (df) are shown
below the plot. The Higgins I2 statistic and its 95% CI are presented. The results of the statistical tests of overall effect, the z test statistics, and
corresponding P values are presented. All tests were two-tailed.
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Third, as the NRTI exposure prevalence was markedly different
between HIV-positive and hepatitis B-positive persons (Supple-
mentary Tables 17–21), we performed another sensitivity analysis
by analyzing these populations separately. The proportions of
HIV-positive patients who did not have a record of NRTI
exposure (VA – 34%; Truven – 1%; PearlDiver – 17%; Medicare –
19%; Clinformatics – 24%) were similar to previously reported
rates38,39. Because this subgroup analysis markedly reduces the
sample sizes, we again studied the largest Veterans cohort.
Among HIV-positive hepatitis B-negative individuals, NRTI use
was associated with a 38% reduced risk of incident type 2 diabetes
(adjusted hazard ratio, 0.621; 95% CI, 0.562–0.685; P < 0.0001).
Among hepatitis B-positive HIV-negative individuals, NRTI use
was associated with a 28% reduced risk of incident type 2 diabetes
(adjusted hazard ratio, 0.717; 95% CI, 0.656–0.783; P < 0.0001).
Collectively, these analyses (Supplementary Tables 22 and 23)
suggest that NRTI exposure is beneficial in reducing incident type

2 diabetes risk among HIV-positive as well as hepatitis B-positive
individuals in the Veterans cohort.

Continuous exposure modeling. Next, we studied NRTI expo-
sure as a continuous rather than categorical covariate by esti-
mating the hazard of developing type 2 diabetes as a function of
per year of NRTI exposure. This approach addresses, in part, the
issue of allocation bias. By focusing inferences on how the out-
come of incident type 2 diabetes depends on cumulative exposure
to NRTIs, this approach also provides insight into potential dose-
response effects. In each of the five databases, there was a reduced
hazard of developing type 2 diabetes with each increasing year of
NRTI exposure (Supplementary Tables 24–28). Summary risks
were calculated by performing meta-analyses using both fixed-
effect and random-effects models. Collectively, among the
patients with HIV-1 or hepatitis B in the five databases, users of
NRTIs had 3–8% reduced hazard of developing type 2 diabetes
with each additional year of use (fixed-effect: adjusted hazard
ratio per year of NRTI exposure, 0.974; 95% CI, 0.967 to 0.980;
P < 0.0001, test of overall effect; random-effects: adjusted hazard
ratio, 0.922; 95% CI, 0.872–0.976; P= 0.005, test of overall effect)
(Supplementary Fig. 3).

In contrast, we did not observe any consistent association
across the five databases between incident development of type 2
diabetes and exposure to three other drug classes used to treat
persons with HIV-1 infection: non-nucleoside reverse transcrip-
tase inhibitors, protease inhibitors, or integrase inhibitors
(Supplementary Tables 24–28).

Falsification testing. To test for residual confounding, we con-
ducted falsification tests using the two outcomes of appendicitis
and hernia, which were not anticipated to be associated with
NRTI exposure, among patients with confirmed diagnoses of HIV
or hepatitis B and without a prior diagnosis of these outcomes.
NRTI use was not associated with reduced hazard of developing
incident appendicitis (Supplementary Fig. 4) or hernia (Supple-
mentary Fig. 5) in any of the five databases individually or in
pooled fixed-effect or random-effects model meta-analyses.

Propensity score matching analysis. As assignment to NRTI
treatment was not randomized, differences in incident diabetes
might result from different characteristics of the treatment groups
rather than NRTI usage itself. Therefore, we used propensity-
score matching to assemble cohorts of patients with similar
baseline characteristics and thereby reduced possible bias in
estimating treatment effects. Because this procedure markedly
reduces the original patient sample size, we confined these ana-
lyses to the three largest databases: Veterans Health Adminis-
tration, Truven Marketscan, and PearlDiver databases. In the
Veterans database, 9057 patients who had NRTI exposure were
matched with 9057 patients who did not have NRTI exposure. In
the Truven database, 4343 patients who had NRTI exposure were
matched with 4343 patients who did not have NRTI exposure. In
the PearlDiver database, 2153 patients who had NRTI exposure
were matched with 2153 patients who did not have NRTI
exposure. To further control for any residual covariate imbalance,
we adjusted for all of the sociodemographic factors, overall health,
comorbidities, and use of medications known to alter risk of
diabetes development that were employed for the original
unmatched group analyses. In all three databases, after adjust-
ment for potential confounders, users of NRTIs had a reduced
hazard of developing type 2 diabetes (Veterans: hazard ratio,
0.711; 95% CI, 0.649–0.778; P < 0.0001; Truven: hazard ratio,
0.645; 95% CI, 0.536–0.776; P < 0.0001; PearlDiver: hazard ratio,
0.747; 95% CI, 0.609–0.918; P= 0.005) (Fig. 1). We also estimated

*Posterior probability of a non-beneficial effect = 0.0008; heterogeneity, τ2 = 0.005

†Posterior probability of a non-beneficial effect = 0.0017; heterogeneity, τ2 = 0.006
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Fig. 2 Bayesian meta-analysis of incident diabetes. Hazard ratios based on
a Cox proportional-hazards model and adjusted for the confounding
variables listed in Supplementary Tables 5, 7, 9, 11, and 13 were estimated
separately for each database and are shown in black along with their 95%
confidence intervals. A Bayesian meta-analysis was performed using a
random-effects model and a weakly informative hierarchical half-Cauchy
prior distribution85,86 for between-study variance with the assumption that
it was unlikely for the between-study hazard ratios to vary by more than
3-fold (scale= 0.280). A sensitivity analysis to the choice of the prior by
assuming that it was unlikely for the between-study hazard ratios to vary by
more than 10-fold was also performed (scale= 0.587). The Bayesian
shrinkage estimates and the summary estimates of the adjusted hazard
ratio of incident diabetes for NRTI exposure (ever versus never), along with
the 95% credible intervals, are shown in red (scale= 0.280) and blue
(scale= 0.587). The dashed vertical line denotes a hazard ratio of 1.0,
which represents no difference in risk between nucleoside reverse-
transcriptase inhibitor (NRTI) exposure and non-exposure. The estimates
of heterogeneity (τ2) and the posterior probabilities of a non-beneficial
effect for each model are shown below the plot.
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hazard ratios as a function of per year of NRTI exposure in the
propensity-score matched groups. In all three databases, after
adjustment for potential confounders, users of NRTIs had a
reduced hazard of developing type 2 diabetes with each additional
year of use (Veterans: hazard ratio, 0.979; 95% CI, 0.959–0.999;
P= 0.042; Truven: hazard ratio, 0.926; 95% CI, 0.857–0.999; P=
0.049; PearlDiver: hazard ratio, 0.830; 95% CI, 0.719–0.958; P=
0.01) (Supplementary Tables 29–31 and Supplementary Figs. 6–
11). The small differences in the hazard estimates between the
unmatched and propensity-score-matched analyses suggests that
the residual bias in the unmatched analyses is likely to be small.

NRTI reduces insulin resistance and inflammasome activation.
Next we investigated one potential activator of the NLRP3
inflammasome: RNA derived from Alu mobile genetic ele-
ments18, which have been implicated in other human diseases
such as Alzheimer’s disease19, macular degeneration18,20,21, and
systemic lupus erythematosus22. In macular degeneration, ele-
vated levels of Alu RNA and inflammasome activation result from
reduced levels of the enzyme DICER1, one of whose metabolic
functions is to catabolize Alu RNAs20,23,24. DICER1 levels are
decreased in circulating cells in patients with type 2 diabetes25,26,
and deletion of DICER1 in adipose or pancreatic islet beta cells
triggers insulin resistance and diabetes in mice27–30. Given that
many human disorders are associated with pathogenic mobile
genetic elements31, and because DICER1 and inflammasome
activation are implicated in diabetes, we explored whether Alu
RNAs might be dysregulated in this disease as well.

Primary cells isolated from the adipose or skeletal muscle
tissues of type 2 diabetes patients expressed lower levels of
DICER1 protein (Fig. 3a, b) and higher levels of Alu RNA
(Fig. 3c, d) compared with the cells of nondiabetic individuals.
Insulin-induced glucose uptake into cells was impaired in diabetic
adipocytes and myocytes; this resistance to insulin was reversed
by lamivudine treatment (Fig. 4a, b). Insulin resistance was
induced in nondiabetic adipocytes and myocytes by either TNF
exposure or treatment with high glucose and high insulin;
lamivudine prevented insulin resistance induced in both these
models (Fig. 4a, b). Phosphorylation of the protein kinase AKT in
response to insulin stimulation, a key signaling event in insulin-
dependent glucose uptake40, was impaired in diabetic adipocytes
and myocytes; this resistance to insulin was reversed by
lamivudine treatment (Supplementary Fig. 12). Lamivudine also
restored AKT phosphorylation in nondiabetic adipocytes and
myocytes rendered insulin resistant by TNF treatment (Supple-
mentary Fig. 12). These data suggest that lamivudine might
ameliorate insulin resistance in part via AKT-dependent
pathways.

Since NRTIs as a class exhibit inflammasome-inhibitory
effects35, we explored whether other members of this drug class
also exerted similar effects. We found that, similar to lamivudine,
both azidothymidine and stavudine exerted beneficial effects on
insulin-induced AKT phosphorylation in diabetic adipocytes and
in nondiabetic adipocytes rendered insulin resistant by TNF
treatment (Supplementary Fig. 13). At the doses tested, all three
NRTI drugs had no deleterious effect on cell viability (Supple-
mentary Fig. 14). Collectively, these data suggest that several
NRTI drugs exhibit class-effects on ameliorating insulin
resistance.

High-fat diet-fed mice are used to model impaired glucose
tolerance and type 2 diabetes41. In mice raised on a high-fat diet
for 8 weeks, we measured higher RNA levels of B2, a rodent Alu-
like mobile genetic element, and lower protein levels of DICER1
in their adipose and muscle tissues compared to regular diet-fed
mice (Fig. 5a, b). Glucose tolerance and insulin sensitivity in

high-fat diet-fed mice, as monitored by glucose tolerance tests
and insulin tolerance tests, respectively, were improved by once-
daily intraperitoneal administration of lamivudine (Fig. 5c, d).
Insulin stimulation of AKT phosphorylation was impaired in the
subcutaneous and visceral adipose tissues and skeletal muscle of
high-fat diet-fed mice; lamivudine-treated mice retained the
activity of this insulin signaling pathway (Supplementary Fig. 15).
Protein levels of IL-1β or IL-18, which are products of
inflammasome activation, were elevated in the subcutaneous
and visceral adipose tissue and skeletal muscle of high-fat diet-fed
mice; lamivudine treatment inhibited the increase in these
cytokine levels (Supplementary Fig. 16). Of note, lamivudine
did not alter high-fat diet-induced gain in body-weight
(Supplementary Fig. 17), indicating that its salutary effects were
not due to weight reduction. Collectively, these data suggest that
lamivudine increased sensitivity to endogenous insulin and
reduced inflammasome activation in the context of a high-fat
diet.

Discussion
We identify an association between exposure to NRTIs and lower
rates of development of type 2 diabetes among persons with HIV-
1 or hepatitis B infection. We also present biochemical evidence
that the NRTI lamivudine restores insulin sensitivity in type 2
diabetic human cells and prevents induction of insulin resistance
in non-diabetic human cells. At doses allometrically scaled to
those used in humans, lamivudine improves glucose tolerance
and insulin sensitivity and reduces inflammasome activation in
high-fat diet-fed mice. These investigations of human cell, mouse,
and population database systems collectively suggest a potential
beneficial effect of NRTIs in forestalling diabetes onset.

In the main analysis of NRTI exposure versus incident type 2
diabetes risk, the pooled summary estimate of the adjusted hazard
ratio across the five databases (0.673) and confidence interval
(0.638–0.710) provide information on how well we have deter-
mined the mean effect. In contrast, the prediction interval
(0.618–0.734) illuminates the range of true effects that can be
expected in future settings by providing an estimate of an interval
in which a future observation, e.g., the result of a future clinical
trial, will fall42. From this prediction interval, we infer that the
probability that a future study, e.g., a clinical trial, observes a
beneficial effect of NRTIs (i.e., hazard ratio <1.0) is 99.99%
(calculations in Methods). Similarly, we calculate that there is a
95% probability that such a future study will observe a hazard
ratio of less than 0.713, i.e., a reduced risk of at least 29%.
Likewise, we estimate a 50% probability that a future study would
observe a hazard ratio of less than of 0.673 (a reduced risk of at
least 33%). However, such inferences are only valid in settings
that are exchangeable, i.e., similar, to those on which our meta-
analysis is based.

Repurposing of existing drugs is an urgent priority for revita-
lizing, accelerating, and optimizing drug development43. Not all
NRTIs are suitable candidates for repurposing. First-generation
NRTIs such as stavudine and didanosine are more toxic than
subsequently deployed NRTIs (lamivudine, emtricitabine, teno-
fovir), induce mitochondrial toxicity and lipodystrophy, and are
associated with induction of insulin resistance and increased risk
of type 2 diabetes in HIV-infected individuals, particularly when
combined with PIs44–47. In the five insurance databases we ana-
lyze, over the time-periods studied (2000–2017), stavudine and
didanosine use ranges from 3–9%, thus limiting the likelihood
that their use significantly influences rates of diabetes develop-
ment in these populations. The association of NRTI use with
reduced incident diabetes in the cohorts we study might also
reflect the much larger populations we study as well as our
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inclusion of multiple comorbidities and concomitant medication
use that are known to affect the development of diabetes.

Limitations to our observational study include limitations
intrinsic to all health insurance claims database analyses, parti-
cularly proper documentation and coding48,49. However, collec-
tively these five databases encompass 150 million patient lives
spanning a multidimensionally diverse array of populations in
terms of age, gender, geography, race, and time-period. A notable
strength of our study is that our clinical findings are replicated in
five independent and geographically dispersed cohorts that col-
lectively represent the majority of adults with health insurance in
the United States. In addition, the Bayesian meta-analysis
approach, which has advantages in terms of accounting for
parameter uncertainty50 and the generation of credible intervals
that account for the prior distribution51, parallel the results of the
frequentist meta-analysis results, thereby increasing confidence in
the main finding that NRTI exposure is associated with a risk in
incident type 2 diabetes.

In addition to the main analysis that analyzes exposure to
NRTIs as a binary covariate (ever versus never), our analysis of
NRTI exposure as a continuous cumulative exposure covariate
(per year of exposure), is also associated with reduced incident
type 2 diabetes. By focusing inferences on how the outcome of
incident type 2 diabetes depends on cumulative exposure to
NRTIs, this approach deals, in part, with fixed between-person

confounding that may result from unmeasured confounders that
result in ever-users and never-users of NRTIs having differential
susceptibility to the outcome of diabetes for reasons independent
of NRTI use. However, analyses of cumulative NRTI exposure
may be affected by time-varying risk factor confounding; thus,
estimates provided by the Cox models for the time-updated
variable of years of NRTI exposure could be biased.

We study an extensive number of demographic variables,
comorbid conditions, concomitant medication use, and labora-
tory tests that are known risk factors for development of diabetes
by including them as fixed risk factor covariates whose values are
considered at baseline (index date). Several of these risk factors
could have changed with time; however, we do not consider their
time-dependent variance for several reasons. First, the availability
of information on many of the variables, e.g., body mass index or
CD4+ counts, is not uniform over the entire follow-up duration.
Second, it is not altogether clear how the time-dependent variance
of several of these variables, e.g., body mass index or concomitant
medication use, impacts ongoing risk of incident type diabetes,
because of complex, non-linear effects and unknowable biological
interactions. Third, certain risk factors have greater short-term
effects whereas others have greater long-term effects on chronic
disease outcomes52, and often these are ill-defined. Use of time-
dependent covariates also runs the risk that the value of a cov-
ariate during follow-up could change as a result of risk factors
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Fig. 3 Expression of DICER1 and Alu in human diabetic adipocytes and skeletal myocytes. The top panels show the results of western blotting of extracts
of proteins from human adipocytes a and human myocytes b isolated from nondiabetic and diabetic persons. Immunoreactive bands corresponding to
DICER1 and beta-actin (β-actin) are shown. The bottom panels show bar graphs of the densitometric analyses of the DICER1 western blots in the top panels
that have been normalized to β-actin abundance and to the nondiabetic group data. *P= 0.04 (diabetic versus nondiabetic adipocytes), *P= 0.046
(diabetic versus nondiabetic myocytes), two-tailed unpaired Student t test. The top panels show the results of northern blotting of total RNA extracts from
human adipocytes c and human myocytes d isolated from nondiabetic and diabetic persons. Hybridization bands corresponding to Alu RNA and 5.8S
ribosomal RNA (5.8S rRNA) are shown. The bottom panels show bar graphs of the densitometric analyses of the Alu northern blots in the top panels that
have been normalized to 5.8S rRNA abundance and to the nondiabetic group data. *P= 0.04 (diabetic versus nondiabetic adipocytes), *P= 0.03 (diabetic
versus nondiabetic myocytes), two-tailed unpaired Student t test. Data are reported as mean ± s.e.m. n= 5 samples per group a–d. Source data are
provided as a Source Data file.
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being studied52. Nevertheless, we acknowledge that our use of risk
factors as covariates fixed at baseline could understate or over-
state their influence on the association of NRTI use with devel-
opment of diabetes.

Another limitation of insurance claims analyses is the non-
availability of information on diet, physical activity, and stress, all
of which influence development of diabetes. We do, however,
control for numerous comorbidities, medications, and laboratory
abnormalities known to influence rates of development of dia-
betes. Despite covariate adjustment for a large number of relevant
confounders and performing robust propensity score matching,
we cannot rule out the possibility of selection bias or residual
confounding. However, the likelihood that unmeasured con-
founding accounts for identification of an association of NRTI
exposure with incident diagnoses of diabetes is diminished by the
observation that exposures to NNRTIs, PIs, or INSTIs, which
serve as negative controls for medication usage53, are not asso-
ciated with reduced incident type 2 diabetes. In addition, the
results of propensity score matching and falsification testing
(which detects confounding, selection bias and measurement
error)53–55 both increase the internal validity of the conclusions
of our main analyses. We also note that the impact of loss of
follow-up due to mortality is assessed only in the Veterans cohort
and not in the other databases. As our analyses are restricted to
patients with HIV-1 or hepatitis B, our results might not be
applicable to other populations. However, the protective effects of
lamivudine are evident in human cells and mice not infected with
these viruses. Therefore, the protective effects of NRTIs, which, as
a class, block inflammasome activation in other models of non-
infectious disease35,56, might extend beyond the setting of viral
infections.

All statistical modeling approaches, including the many we
employ, are subject to inherent assumptions and limitations.
Analyzing nonlinear covariate effects as well as more complex
interactions could potentially provide better model fits in the
individual datasets. Propensity score-based methods such as
propensity score matching, which we employ, are widely used to
draw causal inferences from observational studies57–60.

Alternative causal reasoning frameworks61,62 and introducing
synthetic positive controls63 offer additional approaches to ana-
lyzing observational data, and could be worthwhile exploring in
future studies. Ultimately, prospective randomized trials can
provide the best insights into causality.

In addition to providing clinical evidence supportive of the
inflammasome hypothesis of type 2 diabetes, we introduce the
concept that perturbation in the homeostasis of the DICER1-Alu
RNA regulatory axis could be involved in triggering this aging-
associated disease, as dysregulation of the DICER1-Alu/B2 RNA
pathway is evident in adipose and muscle cells of type 2 diabetic
humans and of high-fat diet-fed mice. Our findings expand the
spectrum of pathologies potentially triggered by Alu, the most
successful of human genomic parasites. Additional mechanistic
and phenotypic studies of NRTI treatment in various animal
models of type 2 diabetes would enhance confidence in a ther-
apeutic effect.

More recently developed NRTIs are well tolerated and are
associated with lower adverse event rates64. Randomized trials of
lamivudine monotherapy in adults and children with hepatitis
B65–67 and of other current-generation NRTIs in non-HIV-
infected individuals68,69 have safety profiles that are similar to
placebo treatment. However, lamivudine, although less toxic than
its predecessors, is associated with development of rare adverse
events such as lactic acidosis, hepatomegaly and steatosis, parti-
cularly when used in combination with other more toxic anti-
retroviral drugs administered to sicker HIV patients in earlier
eras, and in children70. Regulatory agency labels for NRTIs
contain warnings of lactic acidosis, although it should be noted
that currently-approved anti-diabetic medications such as met-
formin also carry these warnings. Nevertheless, it is prudent to
explore in prospective trials whether modified NRTIs known as
Kamuvudines, which retain the ability to inhibit inflammasome
activation but lack attendant toxicities35, represent better candi-
dates for treating prediabetes or diabetes.

Finally, we stress that despite our “triangulation”71 by inte-
grating interlocking evidence from multiple approaches72 such as
health insurance claims analyses performed on different cohorts
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Fig. 4 Insulin-induced glucose uptake in human adipocytes and skeletal myocytes. The results of glucose uptake assays in human adipocytes a and in
human skeletal myocytes b are shown. Cells from nondiabetic (Non-DM) persons were treated with either tumor necrosis factor (TNF; 2.5 nM) or with
high glucose (25mM) and high insulin (100 nM) (HG) to induce insulin resistance. Cells from diabetic (DM) and nondiabetic persons were treated with
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(TNF versus PBS), P= 0.01 (TNF+ 3TC versus TNF), two-tailed unpaired Student t test. In DM myocytes, P= 0.03 (3TC versus PBS), two-tailed paired
Student t test. n= 6 (nondiabetic) or 5 (diabetic) samples per group (b). Source data are provided as a Source Data file.
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Fig. 5 Expression of DICER1, B2, and insulin sensitivity in high-fat diet-fed mice. a The top three panels show the results of western blotting of extracts of
proteins from subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), and skeletal muscle tissue isolated from mice fed a normal diet (ND) or a
high-fat diet (HFD). Immunoreactive bands corresponding to DICER1 and beta-actin (β-actin) are shown. The bottom three panels show bar graphs of the
densitometric analyses of the DICER1 western blots in the top panels that have been normalized to β-actin abundance and to the ND group data. n= 10 (ND) or
9 (HFD) samples per group. *P=0.01 (ND versus HFD in SAT), P < 0.001 (ND versus HFD in VAT), P=0.01 (ND versus HFD in Skeletal muscle), two-tailed
unpaired Student t test. b The top two panels show the results of northern blotting of total RNA extracts from visceral adipose tissue (VAT) and skeletal muscle
tissue isolated from mice fed a normal diet (ND) or a high-fat diet (HFD). Hybridization bands corresponding to B2 RNA and 5.8S ribosomal RNA (5.8S rRNA)
are shown. The bottom two panels show bar graphs of the densitometric analyses of the B2 northern blots in the top panels that have been normalized to 5.8S
rRNA abundance and to the ND group data. n= 9 (ND) or 10 (HFD) samples per group. *P < 0.001 (ND versus HFD in VAT) and P=0.001 (ND versus HFD in
Skeletal muscle), two-tailed unpaired Student t test. Glucose tolerance test (GTT; c) and insulin tolerance test (ITT; d) measurements, and area under the curve
(AUC) quantification in mice fed a normal diet, a high-fat diet and treated with phosphate-buffered saline vehicle (HFD+Vehicle), or a high-fat diet and treated
with once-daily intraperitoneal administration of lamivudine (70mg/kg of body weight) (HFD+ Lam). Data are reported as mean ± s.e.m. n= 10 (ND), 8 (HFD
+Vehicle), or 10 (HFD+ Lam) samples per group c. n= 10 (ND), 8 (HFD+Vehicle), or 9 (HFD+ Lam) samples per group d. *In GTT, P < 0.001 (HFD+
Vehicle versus Normal Diet) and P=0.002 (HFD+ 3TC versus HFD+Vehicle), two-tailed unpaired Student t test. *In ITT, P < 0.001 (HFD+Vehicle versus
Normal Diet) and P=0.003 (HFD+ 3TC versus HFD+Vehicle), two-tailed unpaired Student t test. Source data are provided as a Source Data file.
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by different investigators, cell culture studies, and animal models,
we caution against advocating use of NRTIs in prediabetes or
diabetes in the absence of prospective randomized clinical trials.
Cost-benefit analyses of the future utilization of NRTIs following
prospective evaluation should include consideration of their
potential for inducing viral resistance as well as how they com-
pare to certain diets and exercise regimens, which can benefit
individuals with prediabetes73–75.

Methods
Data sources. Data were evaluated from five health insurance claims databases:
U.S. Veterans Health Administration database (which includes health care claims
information extracted from the VA Informatics and Computing Infrastructure) for
the years 2000–2017; Truven Marketscan, which includes employer-based health
insurance claims for the years 2006–2017; PearlDiver, which includes health care
claims for persons in the Humana managed care network for the years 2007–2017;
a random 20% sample of Medicare beneficiaries with Parts A, B, and D coverage
for the years 2008–2016; and Clinformatics DataMart database (OptumInsight),
which captures health care claims for persons in a large nationwide managed care
network for the years 2001–2016. Disease-specific diagnoses using codes from the
International Classification of Diseases, 9th Revision, Clinical Modification (ICD-
9-CM) were evaluated. For the VA and Truven databases, codes from the 10th
Revision, Clinical Modification (ICD-10-CM) (Supplementary Methods) were also
evaluated using a cross-walk between ICD-10-CM and ICD-9-CM codes.

Study population. Patients were included in these analyses if they had at least two
medical claims for HIV/AIDS or hepatitis B during study dates, and were excluded
if they had pre-existing diabetes, defined as at least one such ICD-9-CM/ICD-10-
CM diagnosis prior to their ICD-9-CM /ICD-10-CM diagnosis of HIV/AIDS or
hepatitis B. Baseline participant characteristics, described by means and standard
deviations for continuous variables and frequencies and percentages for categorical
variables, are presented in Supplementary Table 3.

Exposure definition. Individuals were classified as receiving NRTI, NNRTI
(nonnucleoside reverse-transcriptase inhibitor), PI (protease inhibitor), or INSTI
(integrase strand transfer inhibitor) medications if at least one outpatient pharmacy
prescription for these medications was filled. American Hospital Formulary Service
drug codes and U.S. National Drug Codes (a list of specific medications is in
Supplementary Table 1) were evaluated. Patients filling prescriptions for combi-
nation anti-viral medications were counted as having received medications from
each class. Medication use was summarized as a time-dependent covariate mea-
suring the cumulative days or months supplied.

Outcomes. The main outcome was incident type 2 diabetes. Time to initial
diagnosis of type 2 diabetes during the follow-up period was the dependent vari-
able. Observations were right-censored at the end of plan enrollment, death, or
diabetes development. Falsification tests were performed using the two prespecified
outcomes of appendicitis and hernia, which were not anticipated to be associated
with NRTI exposure, among patients with at least two medical claims for HIV or
hepatitis B and without a prior diagnosis of these falsification outcomes. Time to
initial diagnosis of appendicitis or hernia during the follow-up period were
dependent variables for these analyses. Observations were right censored at the end
of plan enrollment, death, or development of appendicitis or hernia.

Statistical analyses for data sources. Key predictors were use of the HIV-1 and
hepatitis B drugs NRTI, NNRTI, PI, and INSTI. Cox regression was used to esti-
mate the hazard for developing type 2 diabetes in relation to NRTI, NNRTI, PI, and
INSTI exposure, with adjustment for baseline covariates, which included demo-
graphic variables, comorbidities, use of other medications, and laboratory test
values known to be associated with diabetes including those listed by the National
Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)76, the Centers
for Disease Control and Prevention (CDC)77, and the International Diabetes
Federation (IDF)1, and those identified by supplementary literature research; 95%
confidence intervals for hazard ratios were constructed based on standard errors
derived from the model. Schoenfeld’s global goodness-of-fit test78,79 were used to
test the proportional hazards assumption of the Cox regression. In both the NRTI
ever/never and the NRTI per year of exposure analyses in all 5 databases, all these
P values were >0.05, confirming the validity of the proportional hazards assump-
tion of the fitted models.

We used SAS software, version 9.4 (SAS Institute) and Excel, version 16.35
(Microsoft) to perform statistical analyses. An inverse- variance weighted analysis
of the five databases combined was performed to estimate the combined hazard
ratio and to compute 95% confidence intervals using fixed-effect and random-
effects models. Meta-analyses were performed with the use of the statistical
program R, version 3.6.1 (the R project [http://r-project.org]) and the R packages
metafor and bayesmeta. The restricted maximum-likelihood estimator was used to

estimate the between-study variance. A forest plot was created to depict the HR and
95% confidence intervals or credible intervals of each study and of the summary
results. Statistical tests were two-sided. P values of less than 0.05 were considered to
indicate statistical significance.

Frequentist meta-analysis (primary analysis): Variability among the five
databases was evaluated using Cochran’s Q-test80. A random-effects model was
used in the primary analyses as it assumes that individual databases are samples
of different populations with different underlying true effects. In contrast, fixed-
effect models assume that individual databases are samples from the same
population81–83.

Bayesian meta-analysis (secondary analysis): Bayesian meta-analysis was
performed using a random-effects normal-normal hierarchical model (the same as
the random-effects model above). For the effect parameter μ, we choose a neutral
unit information prior given by a normal prior with mean μp= 0 (centered around
a hazard ratio of 1.0) and a variance of (σp2= 4)84. In a hierarchical model θ ~ N[μ,
τ2], where τ2 is the between-study variance of the logarithmic hazard ratio, the
“range” of hazard ratios, defined as the ratio of the 97.5% and 2.5% quantiles of the
hazard ratio, is equal to (e3.92τ)84. We used a weakly informative half-Cauchy prior
distribution85,86 for between-study variability with the assumption that it was
unlikely for the between-study hazard ratios to vary by more than 3-fold. For this
assumption, range= 3 and τ= 0.280 (scale). We performed a sensitivity analysis to
the choice of the prior by assuming that it was unlikely for the between-study
hazard ratios to vary by more than 10-fold. For this assumption, range= 10 and
τ= 0.587 (scale). Computation of posterior predictive P values were implemented
in bayesmeta via Monte Carlo sampling.

Falsification tests were performed using the two prespecified outcomes of
appendicitis and hernia, which were not anticipated to be associated with NRTI
exposure, among patients with at least two medical claims for HIV or hepatitis B
and without a prior medical claim for these falsification outcomes. Time to initial
diagnosis of appendicitis or hernia during the follow-up period were dependent
variables for these analyses. Observations were right censored at the end of plan
enrollment, death, or development of appendicitis or hernia. Additional
information about the statistical analyses is provided in the Supplementary
Methods.

Propensity score matching. For the Veterans Health Administration, Truven
Marketscan, and PearlDiver databases, we estimated propensity-score models
including use of NRTIs and no use of NRTIs. The individual propensities for
starting NRTI treatment were estimated with the use of logistic regression. As
predictors, the propensity-score models included the set of variables which dis-
played P values < 0.1 in logistic regression analyses. In the Veterans Health
Administration Database, these variables were thus used in the propensity score
model: Labs (CD4 counts, viral load, body mass index), other medications (PI,
NNRTI, lipid lowering agents, antihypertensives), comorbidities (Charlson
comorbidity index, systemic hypertension, depression, ischemic heart disease, other
heart disease, stroke, hepatitis C, osteoarthritis, rheumatoid arthritis), and demo-
graphics (age, race, index year, tobacco use). In the Truven Marketscan Database,
these variables were thus used in the propensity score model: comorbidities
(Charlson comorbidity index, osteoarthritis, rheumatoid arthritis, systemic
hypertension, hyperglyceridemia, stroke, acanthosis nigricans, hepatitis C),
demographics (age, sex, index year). In the PearlDiver Database, these variables
were thus used in the propensity score model: Labs (HDL, triglycerides, CD4
counts, body mass index, ALT, AST), other medications (fluoroquinolones, corti-
costeroids, lipid lowering agents, antihypertensives), comorbidities (Charlson
comorbidity index, osteoarthritis, systemic hypertension, pure hypercholester-
olemia, hyperglyceridemia, ischemic heart disease, other heart disease, gestational
diabetes), demographics (age, race, sex, index year, tobacco use, family history of
diabetes). Matching was performed in a 1:1 ratio using greedy nearest neighbor
matching. In addition, to control for any residual covariate imbalance, we esti-
mated the relative hazard in the propensity score-matched groups using the
multivariable Cox model that included the covariates from the multivariable
regression analysis employed for the original unmatched group analyses. Statistical
tests were two-sided. P values < 0.05 were considered statistically significant.

Prediction interval and threshold probabilities. The prediction interval42 was
computed using the metafor package in R. The probability P that the true effect in a
new study will be below a desired threshold D was calculated with the left-tail
cumulative t-distribution with k–1 degrees of freedom (df) for k studies in the
meta-analysis. The probability that the effect is below D equals P. For HRs, cal-
culations were based on the ln HR, with the summary meta-analysis estimate μ=
0.673, SDPI=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

τ2 þ SE2
p ¼ 0:0272772 (where τ2 is the estimated heterogeneity

and SE is the standard error of μ), and df= 4. For example, to determine the
probability of a null or protective effect, we computed the probability that a true
HR ≤ 1, which corresponds to a true ln (HR) ≤ 0. In general, for any desired
threshold D, we set T= (ln (D) – ln (μ))/SDPI and df= 4, and computed the
following P values using this website [https://www.danielsoper.com/statcalc/
calculator.aspx?id=8]: P (true HR ≤ 1)= 0.99993; P (true HR ≤ 0.7133)= 0.95001;
P (true HR ≤ 0.673)= 0.5.
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Cell culture. Human primary pre-adipocytes isolated from subcutaneous adipose
tissue from nondiabetic or type 2 diabetic donors were purchased from Lonza. Cells at
passage 2–4 were used in this study. Pre-adipocytes were seeded in 96-well or 6-well
plates and cultured in Preadipocyte Growth Medium-2 basic medium (Lonza) sup-
plemented with 10% FBS, L-glutamine, and gentamycin (Lonza, PT-9502) and
maintained in at 37 °C, 5% CO2 for 5–7 days until reaching 70% confluence. Cells
were then exposed to differentiation medium (Preadipocyte Growth Medium-2
supplemented as described by Lonza, including recombinant insulin, dexamethasone,
indomethacin, isobutylmethylxanthine, and indomethacin) for 5–7 days to induce
maturation, which was monitored morphologically. Human primary skeletal myo-
blasts (HSM) isolated from the upper arm muscle tissue were obtained from Zenbio
or Lonza. HSM were obtained from nondiabetic or type 2 diabetic donors. HSM were
utilized at passage 4–5 in this study. HSM were seeded in 96-well or 6-well plates and
cultured in SKM-M (Zenbio) basic medium as described by the manufacturer. Cells
were maintained in at 37 °C, 5% CO2 for 2–3 days until reaching 70% confluence.
HSM were then exposed to differentiation medium (#SKM-D, Zenbio) for another
6–8 days to induce maturation, as assessed morphologically.

Mature adipocytes or HSM seeded in 6-well plates were treated with NRTIs
(lamivudine (L1295 from Sigma-Aldrich), azidothymidine (A2169 from Sigma-
Aldrich), stavudine (D1413 from Sigma-Aldrich); optimal dose of 100 μM and
duration of 1 h selected from pilot experiments), 2.5 nM TNF (human
recombinant, #T0157-10UG from Sigma-Aldrich), 25 mM glucose (G5500-500MG
from Sigma-Aldrich), 100 nM insulin (human recombinant, #12585014 from
ThermoFisher Scientific).

Animals. All animal studies were approved by the University of Virginia Animal
Care and Use Committee and performed according to their guidelines. Male 12-
week-old C57BL/6 J mice (The Jackson Laboratory, JAX stock #000664) were
housed in specific pathogen-free conditions and maintained under a 12-h light-
dark cycle and fed ad libitum with a standard laboratory diet or a high-fat diet
paste containing 60% fat plus 0.2% cholesterol (Bioserv) for 8 weeks. Animals were
housed in the same room and their care and housing were in accordance with the
guidelines and rules of the Institutional Animal Care and Use Committee. High-fat
diet-fed mice were administered intraperitoneal injections of lamivudine (70 mg/kg
of body-weight once daily) or of phosphate-buffered saline (vehicle control).
Euthanasia was performed as a two-step process by inhalation of carbon dioxide
gas followed by cervical dislocation.

Western blotting. Human cells and various mouse tissue protein lysates were
homogenized in Complete Lysis Buffer (Roche). Protein concentrations were mea-
sured using Pierce BCA protein Assay Kit® (ThermoFisher Scientific). Proteins were
separated by either 4–20% or 10–20% sodium dodecyl sulfate polyacrylamide gel
electrophoresis and transferred to polyvinylidene difluoride membranes, which were
then probed with specific primary antibodies. The abundance of AKT (phosphory-
lated and total), DICER1, and IL-18 proteins was monitored in human adipocytes,
human myocytes, mouse subcutaneous adipose tissue, mouse visceral adipose tissues,
and mouse skeletal muscle by western blotting using the following primary antibodies:
Mouse anti-human phospho-specific AKT, Ser473 (#12694, Cell Signaling Technol-
ogy; 1:1000); rabbit anti-mouse AKT (pan), 11E7 (#4685, Cell Signaling Technology;
1:1000); rabbit anti-human DICER1 A301-936A (Bethyl Laboratories; 1:1000); rat
anti-mouse IL-18 (Clone 39-3 F, #D046-3, MBL International; 1:1000); anti-mouse β-
actin (8H10D10) (#3700, Cell Signaling Technology; 1:1000; for loading control
assessment). Following incubation with secondary antibodies, protein abundance was
visualized using the Licor Odyssey documentation system and quantitated using
ImageJ Fiji software, version 2.1.0/1.53c.

Northern blotting. Total RNA from primary human adipocytes, primary human
skeletal muscle cells, mouse adipose tissue, and mouse skeletal muscle tissue was
extracted using Trizol (Thermo Fisher Scientific). RNA samples were separated on
10% or 15% TBE-urea gels (Bio-Rad Laboratories) according to the manufacturer’s
instructions. Samples were transferred and cross-linked using ultraviolet light to a
HyBond N+ nylon membrane, and blotted for Alu RNA, B2 RNA or 5.8S rRNA
using biotinylated oligonucleotide probes. Blots were developed with the Thermo
Pierce chemiluminescent nucleic acid detection kit (ThermoFisher Scientific).

IL-1β ELISA. To measure IL-1β levels in mouse adipose and skeletal muscle tissues,
we used a monoclonal antibody-based sandwich ELISA (ThermoFisher Scientific)
according to the manufacturer′s instructions.

In vitro glucose uptake in human adipocytes and myocytes. From type 2 dia-
betic patients and nondiabetic donors, preadipocytes were isolated from sub-
cutaneous adipose tissue and skeletal myoblasts from the upper arm muscle tissue
(Zenbio and Lonza). Glucose uptake assay was performed according to the man-
ufacturer’s instructions (Cayman Chemical). Briefly, pre-adipocytes or human
primary skeletal myoblasts were seeded in 96-well plates and induced to mature
adipocytes or myocytes for 5–8 days. Nondiabetic cells were rendered insulin
resistant by treatment with human tumor necrosis factor (TNF) (2.5 nM) or with
high glucose (25 mM) and high insulin (100 nM) for 24 h87,88. Cells, pre-treated

with lamivudine (100 μM) or vehicle for 1 h, were treated with insulin (20 nM) for
20 min in 100 μl glucose-free culture medium containing 2-NBDG (150–300 μg/ml;
Cayman Chemical), a fluorescent derivative of glucose used to monitor glucose
uptake. At the end of the treatment, the plate was centrifuged for 5 min at 400 g
and washed twice with cell-based assay buffer, and read at 485/535 nm.

Cell viability. Cell viability measurements were performed using the CellTiter 96
AQueous One Solution Cell Proliferation Assay (Promega) according to the
manufacturer’s instructions. Briefly, human adipocytes were seeded on a 96-well
plate and treated with 100 µM NRTI (lamivudine, 3TC; stavudine, D4T; azi-
dothymidine, AZT) or phosphate-buffered saline (PBS; Ctrl) for 24 h. Then, 20 μl
of CellTiter 96 AQueous One solution reagent was added into each well. Then, the
96-well assay plate was incubated at 37 °C for 2 h. Final absorbance reading was
performed by Cytation 5 Cell Imaging Multi-Mode Reader (BioTek) at 490 nm.

Glucose tolerance test and insulin tolerance test in mice. Male 12-week-old
C57BL/6 J mice (The Jackson Laboratory) were fed with a standard laboratory diet
or a high-fat diet paste with 60% fat plus 0.2% cholesterol (Bio-Serv) for 8 weeks.
High-fat diet-fed mice were administered lamivudine (70 mg/kg of body weight) or
phosphate-buffered saline via intraperitoneal injection once daily for 8 weeks. The
glucose tolerance test was performed after a fast for 16–18 h followed by an
injection of glucose (2.5 g/kg body weight; Sigma), and the insulin tolerance test
after a fast for 4 h followed by an injection of insulin (0.75 U/kg body weight;
Sigma). Blood glucose was monitored in tail vein blood by One-Touch Ultra (Life
Scan) Glucometer at 0, 15, 30, 60, 90 and 120 min after glucose or insulin injection.
Areas under the curve (AUCs) were calculated using trapezoidal integration.

Protein and RNA assays in human cells and mouse tissues. Levels of AKT
(phosphorylated and total), DICER1, and IL-18 in human cells or mouse tissues,
were monitored using western blotting. To measure IL-1β levels in tissue samples
obtained from mice, we used a monoclonal antibody-based sandwich ELISA
(ThermoFisher Scientific). To assess the abundance of Alu RNA in human cells and
B2 RNA in mouse tissues, we performed northern blotting20.

Statistical analysis for in vitro and in vivo experiments. Data are expressed as
means ± SEM. Statistical significance was determined by Student t test, using Prism,
version 8.3.0 (Graphpad). P values less than 0.05 were considered significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The experimental data that support this study are available from the corresponding
author upon reasonable request. Analyses of the Veterans Health Administration
Database were performed using data within the US Department of Veterans Affairs
secure research environment, the VA Informatics and Computing Infrastructure
(VINCI). The other health insurance datasets are subject to licensing agreements and
privacy restrictions. All relevant data outputs are within the paper and its supplemental
information. Researchers interested in accessing data are encouraged to make direct
enquiries to the corresponding author and should note they may also need to approach
Truven MarketScan, PearlDiver, Clinformatics, and the Centers for Medicare & Medicaid
Services for access to data from these sources. Source data are provided with this paper.

Code availability
Analyses were conducted using standard procedures without special code development.
Code for meta-analyses is available at https://github.com/macavsma/CodeforNC/.
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