In-Situ Recession Measurements by Photogrammetric Ablator Surface Analysis

S. Loehle1 T. Staebler1 T. Reimer2 A. Cefalu3

1Institute of Space Systems, University of Stuttgart
2German Aerospace Center
3Institute of Photogrammetry, University of Stuttgart

loehle@irs.uni-stuttgart.de

Speaker: Megan MacDonald

10/04/2014
Overview

1 Motivation

2 Theoretical Background

3 Experimental Setup

4 Results

5 Summary
Motivation

- Ablative material loss quantification with respect to surface recession.
- In-situ analysis of recession.
- Identification of influence of material defects.
- Analyse differences in ground testing compared to flight scenario.

Surface photography during test.
Theory

- Using the central projection, a 3D object point can be seen in two images.
- The needed information is the orientation of the sensor area (inner orientation) and the orientation of the camera in space (outer orientation).
- Connecting both images allows to derive where the lines overlap. This is the 3D position in space.
- More cameras increase the accuracy, because the overlap becomes more precise.

Central Projection: A 3D point P is found as a P' and P'' in the image data.
Experimental Setup

- Experiments in the plasma wind tunnel PWK1 at IRS.
- Two Canon EOS 60D DSLR cameras.
- Carbon preform material sample (Mersen) with a density of 0.18 g/cm³.
- Surface temperature measurement using Pyrometry and Thermography.
Flow Condition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>\dot{m}_{air}</td>
<td>18 g/s</td>
</tr>
<tr>
<td>p_{∞}</td>
<td>16.6 hPa</td>
</tr>
<tr>
<td>p_{tot}</td>
<td>24.3 hPa</td>
</tr>
<tr>
<td>P_{el}</td>
<td>162 kW</td>
</tr>
<tr>
<td>$\dot{q}_{\text{coldwall}}$</td>
<td>4.1 MW/m2</td>
</tr>
<tr>
<td>h_{local}</td>
<td>68.4 MJ/kg</td>
</tr>
</tbody>
</table>

Camera Parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length</td>
<td>300 mm</td>
</tr>
<tr>
<td>Resolution</td>
<td>17.9 MPix</td>
</tr>
<tr>
<td>Frame rate</td>
<td>3 fps</td>
</tr>
<tr>
<td>Exposure time</td>
<td>1/4000 s</td>
</tr>
<tr>
<td>Aperture</td>
<td>f/25</td>
</tr>
<tr>
<td>Filter</td>
<td>ND1.2</td>
</tr>
</tbody>
</table>

- Heat flux, total pressure, and enthalpy correspond to a hayabusa flight condition at an altitude of 78 km.
- Plasma wind tunnel flow is subsonic.
- The combination of ND filter and short exposure time gives sufficient surface feature resolution for the photogrammetry.
Calibration

- Three-dimensional object is positioned close to the measurement location.
- Pictures are taken for different object inclinations.
- Pictures are arranged by the software to calculate the camera orientation.
- Camera position must not be changed!

Camera Calibration using Agisoft.
Data Reduction

Surface Triangulation of the point cloud.

- The calibrated camera position is loaded in the software SURE.
- Acquired image pairs from plasma wind tunnel tests are analysed by SURE.
- SURE computes point positions from the image pair, so a 3D map is generated.
- The surface change is then identified from image pair to image pair.
Photogrammetric In-Situ Surface Analysis
Recession measurement

- Rate is derived from 3 sec., i.e. mean value of 9 frames.
- Rate is very constant.
- Mean rate (52.5 μm/s) is consistent with published values.
- Asymmetric recession due to sample holder.
Surface Analysis

- At the beginning the scratches are visible in photos and point cloud (upper figure).
- For later times (lower figure) scratch is only visible in point cloud.
- A lower recession has been measured, perhaps due to denser material, i.e. the scratch was probably a dent.
Summary

- Three-dimensional surface determination from stereoscopic image acquisition has been realized.
- Surface is resovled with 300 000 data points, i.e. 25 000 points/cm² (approx. 400 dpi).
- Recession rate has been derived from photogrammetric data sets to 52.5 µm/s for the carbon preform.
- Surface defects (scratches, dents) can be analysed.
Thank you.

Further questions, comments, ideas:

Stefan Loehle
Institute of Space Systems, University of Stuttgart
Pfaffenwaldring 29
70569 Stuttgart, Germany

loehle@irs.uni-stuttgart.de

+49 – 711 – 685 – 62387

...and thank you, Megan!