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ABSTRACT OF DISSERTATION 
 
 
 
 

NOVEL ROLE OF CD47 IN OBESITY-ASSOCIATED METABOLIC 
DYSFUNCTIONS 

 
Obesity and its associated comorbidities are of global concern. These 

complications are largely driven by perturbations in energy homeostasis, 
inflammation, and oxidative stress within metabolic tissues. Although these 
underlying pathways have been established, molecular mechanisms augmenting 
metabolic dysfunction have not been fully defined. CD47, a ubiquitously 
expressed cell membrane receptor, has been previously implicated in the 
development of inflammation and oxidative stress in a number of disease 
conditions. Previous work from our lab and others has confirmed that the most 
potent ligand of CD47, TSP1, plays a critical role in facilitating inflammation and 
metabolic dysfunction in diet-induced obesity. Whether these effects of TSP1 are 
mediated by CD47 has never been explored.  Specifically, the functions of CD47 
in white and brown adipose tissue, skeletal muscle, and the liver have never 
been characterized under obese conditions. Within our studies, we clearly 
defined distinct regulatory functions of CD47 in different metabolic tissues of a 
diet-induced obesity rodent model. We found that CD47 deficiency was 
associated with reduced adiposity and systemic inflammatory markers which 
preserved glucose homeostasis. In white adipose tissue, CD47 deficiency was 
associated with suppressed inflammation and macrophage recruitment which 
may be attributed to smaller adipocyte size driven by enhanced lipid mobilization. 
Further, whole body CD47 deficiency stimulated brown adipose tissue energy 
expenditure through increased FFA-mediated uncoupling and enhanced fatty 
acid oxidation. Interestingly, no significant changes were observed in skeletal 
muscle-dependent energy expenditure. In the liver, both TSP1 and CD47 
deficiency protected mice from diet-induced fatty liver disease. In vitro studies 
demonstrated that TSP1 induces liver oxidative stress comparable to free fatty 
acids and that CD47 blockade partially attenuates this effect. From these studies, 
we concluded that increased lipid turnover fueled the enhanced energy 
requirements of activated brown adipose tissue resulting in a leaner phenotype 
despite high fat diet challenge.  In addition, the increased TSP1-CD47 protein 
expression in the liver may augment ROS in fatty liver disease. Together, these 
studies provide evidence to suggest CD47 may contribute to metabolic 



 
 

dysfunction in a tissue-specific manner and that the pathological roles of CD47 
function should expand to include obesity and its associated comorbidities. 
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Section 1:  BACKGROUND 

1.1 Defining Obesity  

Over the past thirty years, obesity has become a global health concern. 

Obesity, or an excessive accumulation of fat (lipid), is a result of significant 

expansion of adipose tissue depots and the deposition of lipid in other organs. 

The greatest cause of obesity is increased energy consumption paired with a 

lack of energy expenditure. As a consequence, serious systemic metabolic 

dysfunctions occur due to increased lipid deposition. Many obesity-associated 

comorbidities are a result of impaired adaptive mechanisms to manage increased 

lipid burden.  

Evolutionarily, our bodies have become increasingly efficient at storing 

excess energy for times of need. Initially, humans could go long periods of time 

fasting as they hunted and searched for food; relying on the hydrolysis of 

triglycerides (TGs) in adipose tissue stores to release free fatty acids (FFAs), 

glycogenolysis (break down of glycogen), gluconeogenesis (conversion of non-

carbohydrate sources to glucose), and ketogenesis (production of ketone bodies) 

for energy. As our food availability has rapidly progressed in comparison to the 

evolution of biological mechanisms, overweight and obesity have become 

common concerns due to the redundant mechanisms in place that lead to energy 

storage. 

1.1.1 Prevalence of Obesity 

The obesity epidemic is not restricted to a specific population or region of 

the world. In 2014, the World Health Organization reported that approximately 
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39% of the global adult population was overweight and 13% were considered 

obese (290). It is predicted by 2030 that roughly 57% of the global adult 

population will be either overweight or obese (123). Although obesity is a global 

issue, certain populations are at a disproportionate risk of developing obesity and 

its associated complications. Around the world, developing countries adopting 

elements of western culture, such as increased processed food consumption and 

sedentary behaviors, are experiencing dramatic increases in obesity rates. For 

example, it is predicted that over 60% of the world’s obese adult population 

reside in developing or developed nations (182). Within the United States, the 

rates of obesity in Hispanic and African American populations are 42.5% and 

47.8%, respectively (190). What is most concerning about the staggering rates of 

obesity is that significant adiposity typically serves as a predictor for a number of 

serious metabolic dysfunctions including type 2 diabetes, cardiovascular disease, 

and even some cancers.  

The most common measurement used to determine obesity prevalence is 

body mass index (BMI; weight in kilograms divided by height in meters squared). 

In adults, a BMI of 30 or greater is considered obese. Another simple and reliable 

method is waist circumference. Men and women with waist circumferences 

greater than 40 inches (102cm) and 35 inches (88cm), respectively, are 

considered obese and at increased risk for obesity-associated complications 

(111). Some suggest waist circumference or waist-to-hip ratios are more 

accurate metrics for obesity because BMI is unable to distinguish weight as fat or 

lean mass.   
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1.1.2 Characteristics of Adipose Tissue  

Adipocytes (fat cells) are the primary lipid storage cell within the body. 

Although they are responsible for 95% of the volume of adipose tissue depots, 

this cell type only constitutes 25% of the cell population in adipose tissue (140). 

Other cell types include endothelial cells, pericytes, pre-adipocytes, and immune 

cells. As FFAs enter the adipocyte, the enzyme acyl CoA synthase (ACS) 

attaches coenzyme-A (CoA) thioesters to FFAs forming fatty acyl-CoA. Through 

an esterification process, three fatty acyl-CoA residues are esterified to a glycerol 

backbone forming triglyceride (TG; triacylglycerol) (48).  Due to its hydrophobic 

nature, the endoplasmic reticulum (ER) packages lipid (TG and cholesterol 

esters) within the cell into lipid droplets coated with phospholipids and lipid-

droplet associated proteins (159). Several extracellular signals can activate 

hydrolysis of TG within lipid droplets to provide FFAs as an energy substrate for 

ATP production in times of energy deprivation. Lipolysis is mediated by several 

lipases including adipose triglyceride lipase (ATGL), hormone sensitive lipase 

(HSL), and monoglyceride lipase (MGL) (301).   

Recent studies have determined that WAT depots are not just inert energy 

storage depots, but rather dynamic tissues with endocrine and paracrine 

functions.  In addition to their plasticity, adipose tissue can receive both hormonal 

and afferent neuronal signals suggesting dynamic interactions and crosstalk with 

other tissues (223). Adipose tissue can respond by secreting molecules involved 

in regulating a number of pathways including hunger, energy metabolism, and 
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inflammatory responses. These molecules include growth factors, cytokines, 

chemokines, acute phase proteins, and adipokines. 

During obesity-associated adipose tissue expansion, two primary 

processes contribute to tissue growth and remodeling. Adipocytes accommodate 

more lipid by enlarging the storage capacity within a single cell resulting in 

adipocyte hypertrophy (single cell expansion) (45). Second, resident stem cell-

like preadipocytes begin to terminally differentiate resulting in new adipocytes to 

sequester increased lipid burden within the adipose tissue depot. This expansion 

in cell number is called hyperplasia (140). Specific adipogenic transcription 

factors, such as peroxisome proliferator-activated receptor-γ (PPARγ) and 

members of the CCAAT/enhancer-binding protein (C/EBP) family, largely 

mediate the differentiation of new adipocytes (222). As a result, adipocytes are 

now considered one of the most morphologically dynamic cell types capable of 

adjusting cell size and number to accommodate increased energy substrate 

storage.   

Lineage tracing studies suggest that the formation of different adipose 

tissue depots is determined at the level of the stem cell progenitor. Although all 

adipocyte differentiation mechanisms are largely mediated by PPARγ and C/EBP 

family members (222), white adipocytes are derived from different progenitor 

cells than other types of adipocytes. For example, white adipocytes rise from 

Myf5-negative progenitors while brown adipocytes more closely resemble 

skeletal muscle in the Myf5-positive lineage (234). 
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1.1.2.1 White Adipose Tissue (WAT)  

 Over the past decade it has been determined that mammals, including 

humans, have various types of adipose tissue responsible for different functions. 

As previously described, white adipose tissue (WAT) is primarily responsible for 

storing lipid until times of need and sequestering excess lipid to prevent 

lipotoxicity in other tissues. WAT is characterized by adipocytes with large 

singular lipid droplets (unilocular), low basal energy expenditure, and very little 

protein/mitochondrial content which contributes to its white morphology.  

WAT plays a unique role in regulating food intake, energy expenditure, 

and metabolic function in other tissues through the production and secretion of 

several adipokines (secreted from adipocytes). For example, leptin was identified 

in 1994 as an adipokine in which plasma levels positively correlate to adipose 

tissue mass (305). Mice lacking the leptin gene are hyperphagic and morbidly 

obese; however chronic leptin administration drastically reduces body weight, 

suppresses hunger, and induces fatty acid oxidation (91, 201). Leptin elicits 

these effects by signaling to the arcuate nucleus, the hunger center of the brain, 

to suppress food intake and stimulate physical activity. Although leptin seemed 

like a promising anti-obesity therapeutic in the 1990s and early 2000s, it was 

soon discovered that obese individuals exhibit hyperleptinemia and develop a 

form of leptin resistance, which abolishes all anorexigenic effects of the protein 

on the brain (161, 262).  

Another well-characterized adipokine is adiponectin. Unlike leptin, plasma 

adiponectin levels negatively correlate with BMI and adipose tissue mass. The 
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primary function of adiponectin is to improve insulin sensitivity, increase skeletal 

muscle and adipose tissue glucose uptake, and suppress hepatic glucose 

production (82, 161). In addition to adipokines, cytokines and chemokines may 

be secreted from resident adipose tissue macrophages (ATMs) that stimulate 

various effects on other peripheral tissues.  

1.1.2.2 Brown Adipose Tissue (BAT) 

In addition to WAT depots, brown adipose tissue (BAT) is another type of 

adipose tissue that has been recently identified in adult humans. BAT was 

thought to only exist in human infants and other small mammalian species with 

large surface to volume ratios – reason being the need for mechanisms to 

regulate whole body temperature homeostasis. However, in 2009, four 

independent studies confirmed with positron-emission tomography with 

computed tomography (PET-CT) scans the presence of an adipose tissue depot 

in humans located in the paracervical and supraclavicular region with enhanced 

glucose uptake and robust metabolic activity (54, 226, 267, 273).  

Once activated, BAT catabolizes lipid and other energy substrates at an 

accelerated rate to maintain non-shivering thermogenesis (shivering 

thermogenesis is a result of skeletal muscle heat generation). This specific 

mechanism unique to BAT is largely dependent on the mitochondrial protein, 

uncoupling protein 1 (UCP1) (184), which is associated with the inner 

mitochondrial membrane, is activated by FFAs, and dissipates chemical energy 

as heat by uncoupling the electron transport chain (ETC) (30). As a result, BAT 

morphology is different from WAT in that it has high protein content due to 
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increased mitochondrial density, multiple lipid droplets per cell (multilocular) to 

increase surface area and fuel accessibility, and enhanced blood flow for lipid 

oxidation (94).  

The most potent activator of BAT-driven energy expenditure is the 

sympathetic nervous system in response to cold exposure. This mechanism is 

mediated by the release of norepinephrine and activation of β-adrenergic 

receptors on the brown adipocyte cell surface. Other physiological activators of 

BAT activity include fibroblast growth factors, thyroid hormone, bone 

morphogenetic proteins, certain myokines (e.g. irisin), and abundant FFAs (26, 

67, 71, 142, 204, 284). Certain compounds have been identified that activate 

UCP1-driven energy expenditure in humans including common nutraceuticals 

(e.g. capsinoids, capsaicin) and β-adrenergic receptor agonists (55, 227). In 

efforts to pharmacologically stimulate BAT through β-adrenergic stimulation, 

several studies have been deemed unsuccessful due to off-target effects on the 

cardiovascular system.  

Although studies are inconclusive on whether BAT in humans 

phenocopies classical interscapular BAT of rodents, it is clear that activated BAT 

in humans and rodents can regulate whole body lipid homeostasis. In 2011, 

Bartelt et al. clearly demonstrated that BAT, despite low tissue mass/body weight 

ratios, can uptake approximately 50% of dietary TGs in rodents (17). They even 

showed cold-induced BAT activation could protect hyperlipidemic genetic rodent 

models from deleterious cardiovascular events (17). FFAs are an ideal energy 

source because they provide abundant energy to sustain constant UCP1-
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dependent uncoupling within activated BAT. Studies in humans have shown that 

only 50g (~0.1lbs) of BAT could contribute to ≤20% basal caloric requirements 

(224). Over the past few years, exploiting the potential of BAT energy 

expenditure has become a popular target for developing anti-obesity 

therapeutics.  

1.1.2.3 Beige Adipose Tissue  

Beige adipose tissue is primarily located within WAT depots; however, it 

shares several similar characteristics with BAT. These adipocytes are still 

capable of storing large amounts of lipid, yet respond to cold exposure and β-

adrenergic stimulation to drive UCP1-dependent energy expenditure (291). 

Interestingly, these adipocytes are from the same Myf5 negative lineage as white 

adipocytes and express unique beige adipocyte markers (Cd137, Tmem26) (234, 

291), suggesting they are a distinct cell type not related to brown adipocytes. 

Further, there are several anatomically-distinct WAT depots in rodents and 

humans, but beige adipocytes have only been identified in retroperitoneal and 

subcutaneous depots (223). Some suggest future anti-obesity studies should 

target beige adipose tissue or the “browning” of white adipose tissue rather than 

BAT due to the substantial differences in WAT and BAT mass in humans. A 

comparison of the three distinct forms of adipose tissue can be found in Table 

1.1.  

1.2 Pathophysiology of Obesity 

When examining the pathophysiology of obesity, it is important to 

understand how body fat distribution in obesity contributes to metabolic 
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dysfunction. It has been established that visceral or central obesity located in the 

abdominal trunk is more pathological than other depots such as subcutaneous 

adipose tissue. It has been well established through numerous longitudinal 

studies that central adiposity alone is an independent predictor of insulin 

resistance and cardiovascular disease (35, 134, 192). Visceral adipose tissue 

has direct access to portal vein circulation; therefore, dysregulated lipolysis leads 

to increased flux of FFA into circulation reaping deleterious effects on hepatic 

function and cardiovascular health (20, 23).  

It is clear that the development of obesity is multifactorial and negatively 

impacts a number of tissues and organ systems. As a result of adipose tissue 

expansion through hypertrophy, the secretion of adipokines and inflammatory 

molecules become dysregulated. For example, expression of adiponectin, the 

anti-inflammatory and insulin-sensitizing hormone, is significantly reduced in 

adipose tissue and in circulation of obese individuals (161).  

1.2.1 Obesity-associated Inflammation  

It is now widely accepted that obesity is a condition characterized by low-

grade chronic inflammation. Adipose tissue remodeling and expansion in 

response to high fat diet stimulates resident ATMs to secrete several 

proinflammatory cytokines and chemokines (see Figure 1.1) (141, 281). In 1993, 

Hotamisligl et al. determined circulating levels and adipose tissue expression of 

tumor necrosis factor-α (TNFα) were significantly upregulated in obese rodent 

models (96). Several subsequent studies confirmed a direct role of TNFα in 

mediating insulin resistance by impairing glucose disposal in liver, muscle, and 



 
 

10 
 

adipose tissues (225, 248, 265). It has even been shown that TNFα deficiency in 

a diet-induced obese rodent model improved peripheral insulin sensitivity 

compared to controls (265), suggesting a systemic role of TNFα in obesity-

associated insulin resistance. Further, it has been determined that ATMs are 

primarily responsible for recruiting additional immune cells to adipose tissue 

depots by way of chemokines such as monocyte chemoattractant protein 1 

(MCP1) (117). Other cytokines and chemokines implicated in the pathogenesis of 

obesity-associated inflammation include interleukin-6 (IL-6), plasminogen 

activator inhibitor-1 (PAI-1), and IL-1β (70, 196). Together, these mechanisms 

augment systemic and adipose tissue-specific proinflammatory environments, 

which promote other obesity-associated complications.  

1.2.2 Dyslipidemia 

Another characteristic of obesity is the presence of dyslipidemia, or 

pathological levels of lipid in circulation. Increased circulating FFAs are a result of 

rampant lipid turnover in adipose tissue. As a result, metabolic tissues such as 

muscle and liver will utilize FFAs as a preferred energy substrate for ATP 

production and reduce glucose disposal from circulation (208). In addition, 

hepatic uptake of plasma FFAs will induce gluconeogenesis further exacerbating 

hyperglycemic conditions (285). Hypertriglyceridemia and elevated plasma FFA 

levels will also affect lipoprotein metabolism by increasing very-low density 

lipoprotein (VLDL) and low-density lipoprotein (LDL) production and suppressing 

the assembly of protective high density lipoprotein (HDL) particles. To further 

exacerbate the issue, chronically elevated plasma FFAs commonly observed 
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under obese conditions impair insulin secretion from the pancreas in response to 

hyperglycemia blunting glucose disposal by insulin-sensitive tissues (307).   

1.2.3 Insulin Resistance  

Insulin resistance is another contributor to the pathophysiology of obesity. 

Insulin, a hormone secreted from beta cells within the pancreas, stimulates 

glucose uptake and energy storage in muscle, adipose tissue, and the liver in 

order to maintain tight regulation of blood glucose levels. Several mechanisms 

work tightly to control blood glucose concentrations at physiological levels in 

times of fasting (92); however, hepatic insulin resistance perpetuates 

hyperglycemia even in fed conditions. Once the liver no longer responds to 

insulin, it is unable to suppress glucose production via gluconeogenesis and 

glycogenolysis. In addition, insulin resistance in the liver drives deregulated de 

novo lipogenesis and lipid trafficking to peripheral tissues. Adipose tissue is 

another insulin-responsive tissue. In addition to glucose uptake in adipose tissue, 

a critical function of insulin is to inhibit hydrolysis of TGs and promote lipid 

storage. However, in insulin resistant adipose tissue, insulin is unable to blunt 

lipolysis which leads to an increased flux of FFAs out of adipose tissue into 

circulation which further propagates dyslipidemic conditions in obesity. This 

vicious cycle triggers the continued secretion of insulin from the pancreas, 

ultimately resulting in the development of overt type 2 diabetes mellitus (282), 

highlighted in more detail in Section 1.2.1.1. 
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1.2.4 Obesity-associated Brown Adipose Tissue Dysfunction  

Knowing adult humans have functional BAT depots, which require 

increased energy substrates, recent studies have targeted BAT function as an 

anti-obesity therapeutic strategy to help restore global energy balance. In one 

study examining differences in BAT activity between lean and overweight/obese 

adult men, it was determined that BAT activity negatively correlates with BMI and 

body fat percentage (267). It has also been shown in humans that obesity 

significantly blunts cold-induced BAT activation and glucose uptake compared 

with lean controls (197). In addition, rodent models have begun to elucidate the 

effects of obesity on BAT morphology and function. Although lean and obese 

rodents have similar BAT mass (156), BAT function is impaired as demonstrated 

by reduced blood flow and insulin resistance in rodents, as well as suppressed 

metabolic activity in rodents and humans (197, 215, 237). Several genes 

implicated in BAT-mediated energy expenditure, including UCP1, are significantly 

downregulated with HF diet, which augments impaired BAT function in obese 

rodent models (237). Identifying mechanisms that preserve BAT function under 

obese conditions could provide novel anti-obesity therapeutic targets.  

1.2.5 Obesity-associated Comorbities  

It is clearly evident that the pathology of obesity is not restricted to adipose 

tissue, but causes deleterious effects on several organ systems and their 

functions. This is illustrated in Figure 1.2. Obesity increases the risk of 

developing a number of complications including  type 2 diabetes mellitus (T2DM), 

cardiovascular disease (CVD), non-alcoholic fatty liver disease (NAFLD), stroke, 
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sleep apnea, certain cancers, gallbladder disease, and gout (21, 72, 203). 

Further, men and women classified as obese according to BMI are at even 

greater risk for all-cause mortality (283). 

1.2.5.1 Type II Diabetes Mellitus (T2DM) 

T2DM is a metabolic condition characterized by hyperglycemia and 

impaired responses to insulin signaling and reduced glucose disposal. In the 

United States, it is estimated that approximately 15% of individuals are living with 

T2DM, whether diagnosed or undiagnosed (50). As previously mentioned, insulin 

resistance perpetuates a vicious cycle that exacerbates hyperglycemic 

conditions, causing the pancreas to continuously secrete insulin in response to 

elevated plasma glucose. Ultimately, the pancreas is unable to compensate for 

hyperglycemia resulting in impaired insulin release. The presence of T2DM has 

also been shown to be a strong risk factor for micro- and macrovascular 

complications including nephropathy, retinopathy, neuropathy, dementia, and 

cardiovascular disease.  

1.2.5.2 Cardiovascular Disease (CVD) 

Cardiovascular disease (CVD) is a collective term for dysfunctions 

associated with the heart and vasculature, which includes coronary heart 

disease, cerebrovascular disease, and atherosclerosis. Collectively, CVD is the 

number one cause of mortality worldwide (168). A 26-year follow up of the 

Framingham Heart Study established that obesity alone was an independent risk 

factor for the development of CVD in both men and women (99). In combination, 

obesity and insulin resistance associated with T2DM drastically increase the risk 
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of an individual developing CVD. To demonstrate the tight association between 

T2DM and CVD, several studies suggest T2DM is a significant independent risk 

factor for CVD (287, 288) and it has been determined that the cause of mortality 

in over two thirds of all individuals diagnosed with T2DM is CVD (86).  

1.2.5.3 Non-Alcoholic Fatty Liver Disease (NAFLD)  

Due to the dramatic rise in obesity and central adiposity, non-alcoholic 

fatty liver disease (NAFLD) has become the most common liver disease around 

the world. NAFLD is defined as lipid accumulation in ≥5% of hepatocytes not 

attributed to alcohol consumption, medications, or other disease states (37). 

Primarily, diet-induced obesity is the largest known cause for the development of 

NAFLD. Moreover, NAFLD is considered a progressive disease that can range 

from simple steatosis and fibrosis, to the development of non-alcoholic 

steatohepatitis (NASH), cirrhosis, and ultimately hepatocellular carcinoma (HCC) 

(2). Because of the critical role of the liver in whole body glucose and lipid 

homeostasis, patients diagnosed with NAFLD are at an increased risk of 

developing T2DM, CVD, and metabolic syndrome (3, 259). 

1.2.5.4 Metabolic Syndrome  

Metabolic syndrome is a condition in which an individual presents a 

combination of pathological metabolic factors that significantly enhance the 

likelihood of developing CVD and all-cause mortality. Although several definitions 

for metabolic syndrome have been established by different health organizations 

over the past several decades, a consensus was reached in 2009 by the 

International Diabetes Federation, National Institutes of Health, American Heart 
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Association, World Health Federation, International Atherosclerosis Society, and 

International Association for the Study of Obesity. This publication stated that the 

diagnosis of metabolic syndrome would include the presence of three out of five 

specific components (5). These specific components include 1) increased waist 

circumference, 2) hypertriglyceridemia (≥150mg/dL), 3) reduced HDL cholesterol 

(<40mg/dL in males; <50mg/dL in females), 4) hypertension (systolic ≥ 130 

mmHg and/or diastolic ≥85 mmHg), 5) and/or fasting hyperglycemia 

(≥100mg/dL). 

1.3 NAFLD: Impacts on Metabolic Health   

Like obesity, NAFLD has become a global health concern. Because the 

prevalence of NAFLD is so tightly linked to obesity, incidence rates have 

significantly increased over the past few decades. Although the prevalence rates 

of NAFLD vary depending on diagnostic techniques and the population of 

interest, it is estimated that one third of the United States adult population 

present NAFLD (29). Moreover, 20-30% of the adult populations in Europe, the 

Middle East, and Asia are also thought to have NAFLD (12, 66, 209).  

Variability is high in estimating the prevalence of NAFLD around the world 

due to differences in diagnostic criteria, access to medical technology, and 

subjectivity to pathological analysis. Primarily, ultrasonography is the most 

commonly used qualitative measure of hepatic lipid accumulation. Other imaging 

techniques including computerized tomography (CT), magnetic resonance 

spectroscopy (MRS) and magnetic resonance imaging (MRI) are also used (7); 

however, accessibility and cost for more advanced imaging is restricted in some 
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locations around the world. Alanine transaminase (ALT), a serum biochemical 

marker upregulated in the presence of liver injury, has been used as an indicator 

of NAFLD development for a number of years. It has even been shown that 

elevated serum ALT levels in humans correspond with an increased risk of 

developing end-stage liver disease (61). More recently, studies suggest 

monitoring serum ALT levels could grossly underestimate the prevalence of 

NAFLD because some patients with progressive fatty liver can present normal 

serum ALT levels (269). Distinguishing cases of NAFLD from more advanced 

forms of steatosis are very difficult with imaging techniques and serum 

biomarkers. Liver biopsies are preferred for quantitatively determining the 

severity of the steatosis yet is a much more involved diagnostic criteria and is still 

subject to sampling bias and inaccurate interpretation (7).  

1.3.1 Hepatic Lipid Metabolism  

The liver is a dynamic organ responsible for a number of metabolic 

processes. In particular, the liver plays an integral role in whole body lipid 

metabolism and homeostasis. A number of mechanisms are involved in 

regulating the amount of lipid within the hepatocyte, with the goal to maintain 

very low levels of intracellular FFAs. These pathways include fatty acid uptake, 

de novo lipogenesis/TG synthesis, fatty acid oxidation, and TG export to 

peripheral tissues through lipoprotein secretion.  

As FFAs arrive at the liver, they are taken up into hepatocytes by fatty acid 

transport proteins (FATP2, FATP5), fatty acid translocases (FAT/CD36), or they 

diffuse freely across the plasma membrane due to their lipophilic nature. It is 
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unclear whether FFA uptake from circulation into the liver is regulated; however, 

some suggest that the amount of FFA uptake is directly proportional to the FFA 

concentration in circulation (121). Once in the cell, there are a number of fates for 

FFAs. Immediately, FFAs are bound to fatty acid binding protein (FABP) or acyl-

CoA by way of acyl-CoA synthases (ACS) and are transported to various 

locations in the cell. Some FFAs function as signaling molecules and activate a 

number of nuclear receptors and transcription factors implicated in lipid 

metabolism including sterol regulatory element binding proteins (SREBPs) and 

liver X receptors (LXRs) (124, 296).  

As a highly energetic organ, the liver relies on FFAs as a constant and 

efficient fuel supply for the production of adenosine triphosphate (ATP) within 

mitochondria. In hepatic β-oxidation, entry into mitochondria for FFA species 14 

carbons or longer is mediated by the enzyme carnitine palmitoyltransferase-1a 

(CPT1a). This enzyme converts FFA to acyl-carnitine in order to be transported 

across the mitochondrial membrane. FFA species 12 carbons or less are able to 

pass through the mitochondrial membrane without a transport system (232). 

CPT1a serves as the rate-limiting step of β-oxidation, acting as a switch so that 

the synthesis of FFAs as well as the catabolism of FFAs does not occur 

simultaneously. To a lesser extent, very long chain FFAs can be catabolized 

within peroxisomes yielding much less ATP due to their lack of an electron 

transport chain (ETC).  

 A critical function of the liver is to assemble lipids into VLDL particles and 

export them out of the liver to other peripheral tissues either for energy or 
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storage. The enzyme microsomal triglyceride transfer protein (MTTP) is required 

for the packaging and secretion of VLDL from the liver. It has even been 

demonstrated in rodents that genetic and pharmacological interruptions in MTTP 

function significantly blunt VLDL secretion and result in increased hepatic lipid 

accumulation (145). This indicates just how critical hepatic lipoprotein assembly 

is for maintaining hepatic lipid homeostasis. 

 In excess, FFAs are esterified and stored in the form of TG within the 

cytosol of the hepatocyte either for future use or as a mechanism to protect the 

cell from FFA-induced cellular dysfunction. TG synthesis is largely regulated by 

SREBP-1c, LXRs, carbohydrate regulatory element binding protein (ChREBP), 

PPARγ, and the overall energy state within the cell (47, 58). If cellular fuel (ATP) 

is low, acyl-CoA and FFAs are shunted into the β-oxidation pathway and TG 

synthesis is repressed (175).    

1.3.2 Pathophysiology of NAFLD 

Elevated intrahepatic triglyceride associated with NAFLD contributes to an 

imbalance in lipid, glucose, and lipoprotein metabolism. NAFLD is characterized 

by increased lipid deposition in hepatocytes, a result of enhanced TG synthesis 

as well as elevated oxidative stress and inflammation driven by FFA-induced 

lipotoxicity. Together, these two factors are closely linked to insulin resistance; 

however, it has not been fully determined whether NAFLD is the cause or simply 

a result of insulin resistance. Some rodent studies suggest that high fat (HF) diet 

challenge for acute periods of time (few days) can significantly impair insulin 

signaling in the liver prior to systemic effects of diet-induced obesity, suggesting 
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the liver plays a central role in the development of whole body insulin resistance 

(228). 

Oxidative stress and low-grade chronic inflammation are consistently 

observed in NAFLD and cardiometabolic disorders (69, 221). In NAFLD, elevated 

FFAs levels in portal circulation from both dietary consumption and increased 

adipose tissue lipolysis are taken up by hepatocytes, which drive intracellular 

oxidative stress (180). Oxidative stress is a result of impaired cellular capacity to 

maintain a balance between detoxifying mechanisms and the production of 

reactive oxidative species (ROS), molecules with unpaired electrons. Some of 

the most commonly observed forms of ROS include superoxide anions (·O2
-), 

hydrogen peroxide (H2O2), and hydroxyl radicals (·OH).  

In lipotoxic conditions, protective mechanisms triggered by the hepatocyte, 

such as increased mitochondrial respiration and activated antioxidant pathways, 

are compromised further exacerbating oxidative stress within the cell (115, 231). 

Mitochondria will respond to increased lipid burden by activating the fatty acid 

oxidation pathway as a compensatory mechanism to maintain low levels of FFA 

within the cell. However, after chronic burden, the mitochondria begin to produce 

ROS through enhanced electron leakage and subsequently contribute to the poor 

oxidative environment within the cell (230, 243).  In addition, nuclear factor E2-

related factor 2 (Nrf2), a critical transcription factor that regulates the expression 

of several cytoprotective enzymes, is significantly downregulated by NAFLD 

(243). These protective enzymes include glutathione S-transferase (GST) 

enzymes, NADPH quinone oxidoreductase 1 (NQO1), and heme oxygenase 1 
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(HO-1) (183). Reduced expression of these genes contributes to the imbalance 

between detoxification and ROS production classically observed in the presence 

of fatty liver. Several studies have focused on ways to activate and preserve Nrf2 

signaling despite the progression of NAFLD as a potential mechanism to protect 

against hepatic lipid accumulation and insulin resistance (60, 139, 205) 

Many of the deleterious effects of oxidative stress are a consequence of 

damaged intracellular lipids, proteins, and nuclear and mitochondrial DNA which 

are highly susceptible in poor oxidative environments. In the case of fatty liver 

disease where intracellular lipid is elevated, lipid peroxidation is commonly 

observed and can be measured by the levels of reactive aldehyde species 

including malondialdehyde (MDA) and 4-hydroxynonenal (HNE). In addition to 

cellular dysfunction and mutagenic effects, oxidative stress induces the 

production of proinflammatory cytokines and adhesion molecules (69) further 

propagating systemic oxidative stress and inflammation under obese conditions.  

In efforts to determine the initiating causes of hepatic steatosis, some 

research has focused on the development of oxidative stress and mitochondrial 

dysfunction. Not only has oxidative stress been implicated in the progression of 

obesity and cardiometabolic dysfunction (97, 163), some rodent studies suggest 

mitochondrial-dependent oxidative stress precedes the development of insulin 

resistance in early stages of NAFLD pathogenesis (211). Rector et al. 

demonstrated that obese-prone OLETF rats exhibited altered hepatic 

mitochondrial function and a pro-oxidative environment prior to the development 

of NAFLD, suggesting that mitochondrial distress may be a casual mechanism as 
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well as a consequence of hepatic metabolic dysfunction (211). In addition, 

hepatic oxidative stress has been shown to consistently drive the progression of 

diet-induced insulin resistance (163).  

1.3.3 Contribution of Other Cell Types to NAFLD Development 

Although hepatocytes are the primary cell type in the liver affected by lipid 

accumulation, other cell types are present that have been implicated in the 

pathophysiology of NAFLD. Kupffer cells are resident macrophages located in 

the liver sinusoids. They contribute to the detoxifying functions of the liver by 

quickly recognizing foreign or dangerous molecules and containing them for 

degradation (206). Hepatic lipid has been shown to activate Kupffer cells through 

a number of mechanisms. For example, ballooning of hepatocytes due to lipid 

overload creates physical restriction on liver sinusoids reducing blood flow and 

activating Kupffer cell-mediated inflammatory pathways (65). In addition, FFAs in 

circulation can activate various cell membrane receptors, including members of 

the toll like receptor (TLR) family, and induce the release of inflammatory 

markers such as TNFα (125). 

Another cell type that contributes to the progression of NAFLD to more 

serious NASH is the hepatic stellate cells (HSCs). As a result of increased 

proinflammatory cytokine secretion from Kupffer cells, HSCs become activated 

and produce substantial amounts of extracellular matrix (ECM) including collagen 

type I, fibronectin, and proteoglycans resulting in a significant remodeling of 

cellular structure and stiffening of the liver tissue (289). In addition to fibrosis, 

HSCs contribute to the proinflammatory environment by secreting additional 
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cytokines that perpetuate hepatic fibrogenesis.  Last, sinusoidal endothelial cells 

have also been implicated in the pathology of NAFLD. Like other metabolic 

diseases, NAFLD-associated endothelial dysfunction has been linked to impaired 

vasoconstriction and vasodilation, which augments the progression of 

inflammation, oxidative stress, and fibrogenesis.  

1.4 The Canonical NO/cGMP Signaling Pathway  

  The nitric oxide (NO) pathway has been considered a critical signaling 

mechanism for maintaining vascular tone through the induction of vascular 

smooth muscle cell relaxation and vasodilation. Within the past five years, the 

effects of this signaling cascade have been broadened to include cellular 

metabolism and energy homeostasis. NO, a gaseous signaling molecule, is 

produced by a family of enzymes called nitric oxide synthases (NOSs) (181). The 

first in the family, neuronal NOS (nNOS, NOS1), is exclusively expressed within 

the central and peripheral nervous system. Inducible nitric oxide synthase (iNOS, 

NOS2) is expressed largely in the immune cell population and produces 

pathological levels of NO that contribute to a proinflammatory environment. 

Endothelial nitric oxide synthase (eNOS, NOS3) was named for its high 

expression level in endothelial cells and its role in vascular tone; however, other 

studies have identified eNOS as the primary NOS isoform in a number of cell 

types including adipocytes, hepatocytes, and skeletal muscle (166, 171, 244). 

NO binds to the β1 subunit of soluble guanylyl cyclase (sGC), which includes the 

heme prosthetic group and NO-binding domain. Once activated, sGC converts 

guanosine monophosphate (GMP) to the active secondary messenger molecule 
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cyclic GMP (cGMP) (57). In metabolic tissues, the effects of cGMP signaling are 

primarily facilitated through cGMP-dependent protein kinase (PKG), a 

serine/threonine protein kinase responsible for phosphorylating several 

intracellular targets modulating cellular functions (202).  

1.4.1 Impacts of NO/cGMP Signaling on Metabolic Health 

In vitro studies as well as several knockout and transgenic mouse models 

have demonstrated the NO/cGMP signaling pathway is critical for maintaining 

healthy cellular metabolism in insulin-responsive tissues. It has been clearly 

demonstrated that cGMP promotes adipogenesis and mitochondrial biogenesis 

in 3T3-L1 cells (immortalized murine preadipocyte cell line) and primary white 

adipocytes through increased expression of adipogenic markers (171, 235, 304). 

Some studies suggest that increased cGMP/PKG signaling enhances lipid 

turnover (133) and drives UCP1-dependent energy expenditure contributing to a 

browning phenomenon in white adipocytes (24, 171).  

Similarly in brown adipose tissue, cGMP/PKG promotes brown adipocyte 

proliferation and increases PPARγ and UCP1 expression (187). In loss-of-

function studies, brown adipocytes isolated from PKG deficient mice had a 

significant impairment in brown adipogenesis and UCP1-dependent thermogenic 

potential (90). Similarly, newborn mice lacking PKG exhibit a significant reduction 

in BAT mass suggesting PKG regulates BAT differentiation and function in vivo 

(90). On the contrary, gain-of-function studies utilizing PKG transgenic mice 

exhibit a leaner phenotype, increased mitochondrial biogenesis in BAT and 
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skeletal muscle, and increased oxygen consumption driven by enhanced 

mitochondrial respiration (172).  

The effects of PKG overexpression in mice challenged with HF diet are 

less conclusive. Miyashita et al. demonstrated that HF-fed male PKG transgenic 

mice were protected from diet-induced obesity after just eight weeks of feeding 

(172). Interestingly, Nikolic et al. saw female PKG transgenic mice, not males, 

were protected from diet-induced obesity after 16-week diet challenge through 

increased BAT-dependent energy expenditure (185). Although HF diet composed 

of 60% kcal from fat were used for both studies, several factors could have 

contributed to the conflicting reports including differences in mouse strains, 

length of diet challenge, and temperature of housing conditions.  

Numerous rodent studies and in vitro experiments have identified the 

NO/cGMP/PKG signaling pathway as a therapeutic target for obesity and 

obesity-associated diseases. Although support is strong for the role of cGMP 

augmenting healthy metabolic function, the mechanisms contributing to both 

impaired NO/cGMP synthesis and signaling in obese conditions have not been 

fully defined. A handful of studies suggests increased reactive oxidative species 

characteristic of cellular metabolic dysfunction competitively inhibit NO-

dependent activation of sGC (167, 245). Studies examining upstream regulators 

of NO/cGMP signaling have not been explored under obese conditions. Future 

studies are necessary to further elucidate mechanisms responsible for obesity-

induced deregulation of NO/cGMP signaling.  
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1.5 Thrombospondins: Multi-functional Signaling Molecules 

Thrombospondins are a family of secreted matricellular glycoproteins that 

serve no structural purpose, but are typically expressed in response to stress. 

Thrombospondins 1-2 are homotrimers (three identical subunits) while 3-5 are 

homopentamers (1). Each subunit consists of an N-terminal domain, central type 

1 repeats, and a C-terminal domain, which are responsible for interacting with 

various receptors (217). Within the family, thrombospondin 1 (TSP1; also 

abbreviated Thbs1) has been most extensively studied. In 1971, Baenziger et al. 

first isolated TSP1 from platelets treated with thrombin, deeming TSP1 a stress 

response protein (13). Since then, TSP1 has been implicated in inflammatory 

responses (152), apoptosis, and serves as a major regulator of angiogenesis 

(101, 113). Further, TSP1 has been identified as the most potent activator of 

latent transforming growth factor-β (TGF-β) (51). 

Transcription of the TSP1 gene is positively regulated by a number of 

pathways. Interestingly, hyperglycemia and hyperleptinemia, two hallmarks of 

obesity and metabolic dysfunction, have been identified as positive regulators of 

TSP1 transcription in a variety of tissues including tumors, vessel walls, cardiac 

cells, and renal cells (42, 56, 247, 277, 306). Now, the effects of TSP1 are being 

examined in a variety of cardiometabolic disorders including diabetes and obesity 

development.  
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1.5.1 Links Between Thrombospondin 1 (TSP1) and Metabolic 

Dysfunction 

Over the past twenty years, several studies have identified a pathological 

role for TSP1 in the development of obesity and several of its associated 

comorbidities. In 2000, Hida et al. first identified TSP1 as being one of thirteen 

novel genes upregulated in visceral adipose tissue of obese, diabetic rats 

compared to lean, non-diabetic controls (95). At that time, TSP1 was primarily 

identified as a protein released from platelets in response to stress and as an 

inhibitor of angiogenesis that could potentially contribute to cardiovascular 

disease. From this study, evidence suggested adipose tissue was a source of 

TSP1 in circulation. However, the cellular source of TSP1 within adipose tissue 

was yet to be defined.  

Following this study, Varma et al. confirmed TSP1 mRNA levels were 

approximately four-fold higher in adipocyte fractions of human subcutaneous 

adipose tissue compared to the stromal vascular fraction (endothelial cells, 

preadipocytes, mesenchymal stem cells, immune cell population) (268). Further, 

significant positive correlations between human subcutaneous adipose tissue 

mRNA levels of TSP1 and body mass index (BMI), circulating inflammatory 

cytokines, and adipose tissue-specific inflammatory markers were observed 

(268). From these studies, it was concluded that TSP1, a novel adipokine, may 

contribute to systemic effects of obesity and other peripheral metabolic 

complications. Further studies by Matsuo et al. showed that TSP1 expression 

was significantly higher in human visceral adipose tissue compared to 
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subcutaneous adipose tissue depots and that TSP1 levels positively correlated 

with BMI, abdominal obesity, and hyperglycemia (162). These findings further 

supported the idea that robust TSP1 secretion from visceral adipose tissue may 

mediate global metabolic dysfunction through direct access to systemic 

circulation via the portal vein.  

Several diet-induced obesity studies utilizing whole body TSP1 deficient 

mice have been completed to further investigate the role of TSP1 in the 

development of diet-induced body weight gain, inflammation, and insulin 

resistance. From these studies, there have been discrepancies in whether TSP1 

deficiency regulates adiposity in a diet-induced obesity paradigm. Li et al. 

demonstrated that after 16 weeks of HF diet challenge (60%kCal from fat) TSP1 

deficient mice were not protected against diet-induced body weight gain or fat 

mass accumulation compared to HF-fed wildtype controls (144). Similarly, 

another group demonstrated no difference in body weight gain in TSP1 deficient 

and wildtype control mice after 15 week diet challenge (42% kCal from fat) (274). 

On the other hand, two independent studies observed attenuated weight gain 

after 20 weeks of diet challenge (45% and 60% kCal from fat) in TSP1 deficient 

male mice compared to controls (100, 128). Differences in studies have been 

attributed to various lengths of diet challenge, inconsistent fat content in the diet, 

and the multiple interactions TSP1 has with a variety of tissues.  

Although contradictions in body weight gain have been observed in TSP1 

deficient mice, several protective phenotypes have been consistent across 

studies. First, TSP1 is tightly associated with the development of systemic and 
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adipose tissue-specific obesity-associated inflammation. Independent of body fat 

mass, TSP1 deficiency reduces macrophage accumulation within white adipose 

tissue depots demonstrated by reduced positive Mac2 (100, 128) and F4/80 

staining (144). Further, mRNA levels of TNFα, an immunogenic trigger for 

metabolic dysfunction, were significantly reduced in white adipose tissue of HF-

fed TSP1 deficient mice (128, 144). In efforts to further characterize the effects of 

TSP1 on systemic inflammation, Li et al. demonstrated a significant reduction in 

TNFα, interleukin-6 (IL-6), MCP1, and the metabolic syndrome biomarker, 

plasminogen activator inhibitor-1 (PAI-1) in circulation (144).  In addition, bone 

marrow derived macrophages isolated from HF-fed TSP1 deficient mice 

demonstrated reduced macrophage migration upon stimulation with both 

lipopolysaccharide (LPS) and MCP1 compared with macrophages isolated from 

wildtype controls (144). Together, these data strongly suggest TSP1 plays a role 

in macrophage migration and infiltration into white adipose tissue in obesity as 

well as serving as a contributor to the systemic proinflammatory state associated 

with diet-induced obesity.  

In addition to inflammation, TSP1 deficiency improves glucose tolerance 

and insulin sensitivity in diet-induced obese rodent models. Multiple studies have 

determined that TSP1 deficient mice exhibit reduced plasma insulin levels while 

maintaining similar glucose levels, suggesting less insulin is required to stimulate 

glucose disposal (128, 144). Similarly, hyperinsulinemic euglycemic clamp 

studies confirmed HF-fed TSP1 deficient mice required significantly higher levels 

of glucose infusion to maintain the same plasma blood glucose levels as controls 
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supporting the idea TSP1 deficiency enhances glucose tolerance (100). 

Additional studies have confirmed enhanced insulin-dependent glucose disposal 

was specific to skeletal muscle and not adipose tissue (100). Studies are lacking 

in determining the effects of TSP1 deficiency on hepatic glucose tolerance and 

insulin sensitivity.  

Not only has TSP1 been implicated to play a role in inflammation and 

insulin resistance, several studies have examined other obesity-associated 

comorbidities including renal dysfunction, cardiovascular disease, and 

hypertension. Maimaityiming et al. determined renal TSP1 expression contributes 

to fibrosis and obesity-induced hypertension (155). In addition, TSP1 is a critical 

regulator of vascular tone by inhibiting endothelial-dependent vascular smooth 

muscle cell relaxation (18, 106). TSP1 expression also correlates with 

cardiovascular disease risk and promotes inflammation in both atherosclerosis 

and abdominal aortic aneurysm rodent models (150, 154, 239).  

Overall, the role of TSP1 expression in adipose tissue could be attributed 

to paracrine effects necessary for promoting ECM remodeling, adipose tissue 

expansion, and lipid loading. As a consequence, systemic effects on other 

tissues occur because of robust TSP1 secretion in obese conditions. 

Unfortunately, the mechanisms facilitating these actions are still unknown and 

require further investigation. Several interactions have been identified that 

facilitate the actions of TSP1, including extracellular matrix proteins, integrins, 

CD36, and CD47 (177). Of these, TSP1 binds to CD47 most potently – activating 

CD47 at picomolar concentrations (physiological levels) (102, 107).  In addition, 
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TSP1 binding to other receptors, such as CD36, requires the presence of CD47 

(107, 170) suggesting this specific receptor is critical for regulating multiple 

TSP1-dependent intracellular signaling cascades in a variety of tissues.  

1.6 CD47: Potent Receptor to TSP1 

CD47 is an integral glycoprotein cell receptor and is classified in the 

immunoglobulin superfamily (160). CD47 consists of an extracellular IgV domain, 

which may be heavily glycosylated and a variably spliced cytoplasmic sequence 

(118, 242). Because of the post-translational modifications possible, the 

molecular weight of CD47 ranges from 45-55kDa (198). When CD47 was first 

identified, it was laterally associated with integrins in the cellular membrane (27), 

earning it the name integrin-associated protein (IAP), which is still used in some 

literature to date. Over the past several decades, CD47 has been observed in 

several other interactions and therefore is used more widespread than its original 

name, IAP (28, 193).  

1.6.1 Structure and Functions of CD47 

This cellular receptor contains 5 membrane-spanning domains with 

multiple disulfide bonds necessary for signaling as demonstrated in Figure 1.3 – 

one being between the extracellular loop of transmembrane domains 4 and 5 and 

the N-terminus (164) and the extracellular loop of transmembrane domains 1 and 

the IgV domain (210).  The amino acid sequence of CD47 is moderately 

conserved between many species with approximately 60-70% homology shared 

between humans, mice, rats, and bovine (28, 193). More specifically, mice and 

rats have approximately 84% homology in their amino acid sequences (250). The 
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C-terminal cytoplasmic tail can be variably spliced into four common isoforms, 

ranging from 3-36 amino acids (147, 212). The second shortest of the four 

isoforms with a 16-amino acid long cytoplasmic tail is the most dominant form 

(212) No sequence motif on the cytoplasmic tail has been identified that exhibits 

any catalytic activity (28).  

Literature examining the regulation of CD47 expression is severely 

lacking. In tumor cells, CD47 protein expression is significantly upregulated and it 

has been widely accepted that increased expression acts as a pathological, 

inhibitory signal for immune cell phagocytosis (110), which impairs the ability of 

the innate immune system to attack and remove diseased cells. Several 

transcriptional regulators have been recently identified to regulate this 

phenomenon.  MYC, Hypoxia-inducible factor 1 (HIF1), and a-Pal/nuclear 

respiratory factor 1 (NRF1) have all been shown to bind to the promoter region of 

CD47 and induce CD47 gene expression in a number of cancer cell lines (36, 40, 

303). Interestingly, just this year Lo et al. demonstrated that CD47 gene 

expression was tightly upregulated by the proinflammatory nuclear factor κ B 

(NFκB) signaling pathway in vivo and in vitro hepatocellular carcinoma models 

(151). These studies suggest that transcriptional regulation of CD47 expression 

is cell-type and condition specific. To date, no other studies have been 

completed to examine the transcriptional or translational regulation of CD47 

expression in healthy tissues or in any other disease states besides cancer 

models.     
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CD47 expression can be seen in various tissues and cell types throughout 

the body, ranging from microglia to red blood cells (28, 193). Relative mRNA 

levels of CD47 are observed in a variety of tissues. In addition, expression levels 

are not impacted by 4-month high fat diet challenge in mice, as demonstrated in 

Figure 1.4. Ubiquitous expression suggests that CD47 is active or necessary in 

several different cellular pathways, mechanisms, and interactions. Many well-

established functions are associated with immunity, self-recognition, cellular 

adhesion, and vascular tone (242) and are dependent on the ligand or partner 

receptor associated with CD47. Interestingly, literature suggests that all effects of 

CD47 activation on intracellular signaling are dependent on activation by the 

matricellular proteins, thrombospondins – specifically TSP1.   

1.6.2 Downstream Signaling Effects of TSP1-CD47 Interaction 

Depending on the tissue or cell type, TSP1 activation of CD47 exhibits a 

variety of effects on intracellular signaling. In endothelial cells, it has been clearly 

demonstrated that TSP1 binding to CD47 inhibits intracellular calcium flux and 

subsequently the activation of endothelial nitric oxide synthase (eNOS, NOS3) 

(18), the enzyme responsible for physiological levels of nitric oxide (NO) 

production. Another well-defined effect of the TSP1-CD47 interaction is the 

regulation of cyclic nucleotide synthesis and signaling. Less studied are the 

effects of CD47 activation on cellular levels of cyclic adenosine monophosphate 

(cAMP). It has been shown that CD47 deficiency is associated with elevated 

cAMP levels in vascular, skeletal, and cardiac muscle cells, as well as whole 
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heart tissue, and that these effects involve G-coupled protein receptors to alter 

the activation of adenylyl cyclase (AC) (106, 297).  

Further, CD47 has been shown to redundantly suppress NO/cGMP 

synthesis and signaling in a variety of tissues, as depicted in Figure 1.5. First, as 

previously mentioned, suppression of intracellular calcium reduces the ability of 

eNOS to produce NO from arginine, which is necessary to stimulate activation of 

sGC (18). Second, CD47 inhibits the phosphorylation of sGC necessary to 

convert GMP to cGMP (207). And third, CD47 inhibits the ability of cGMP to 

activate PKG (108). It is well established that NO/cGMP signaling plays a critical 

role in regulating vascular tone, enhancing blood flow, and promoting 

angiogenesis (216). Recent studies have begun to demonstrate that this 

signaling cascade is also critical for functions in metabolic tissues and could have 

broad implications on nutrient homeostasis and mitochondrial function in obese 

conditions.  

1.6.3 Other Characterized Interactions of CD47  

In addition to thrombospondins, integrins and signal regulatory proteins 

(SIRPs) uniquely interact with CD47. It has even been shown that all CD47 

interactions compete for similar binding sites on the extracellular IgV domain of 

CD47 (102). These characterized interactions regulate a diverse host of cellular 

processes including cellular adhesion, stress response, and cell survival. 

1.6.3.1 Integrins 

Integrins serve as a regulatory protein for cell-cell or cell-extracellular 

matrix interactions by interacting with a host of cell membrane receptors, 
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structural proteins or ECM molecules. Integrins are transmembrane receptors 

comprised of heterodimers and are expressed on all cell types including 

erythrocytes and platelets (28). As mentioned previously, CD47 was initially 

identified as integrin-associated protein (IAP). Rather than a cell-cell interaction, 

CD47 has been shown to laterally associate with specific integrins in a cis 

interaction within the same plasma membrane forming a large signaling complex 

(28) and that cholesterol-rich portions of the plasma membrane, also known as 

lipid rafts, are necessary to stabilize the complex (85). Out of the large family of 

integrins, αvβ3 and α2β1 have been consistently copurified with CD47 from a 

variety of cell types including smooth muscle cells, erythrocytes, and platelets 

(77, 278). To demonstrate how CD47 activation induces integrin function, when 

CD47 is activated by ligands, integrin-mediated cell migration and adhesion are 

induced. For example, TSP1 binds CD47 and subsequently modulates αvβ3 

function in human umbilical vein endothelial cells (HUVECs), C32 cells, and 

tumor cells by promoting chemotaxis and cellular migration (15, 38, 39, 77). Both 

CD47 and integrins are widely expressed; therefore, additional studies are 

necessary to fully understand the partnership and functions of this complex in 

specific cell types.  

1.6.3.2 Signal Regulatory Proteins (SIRPs) 

Another highly characterized interaction with CD47 is a member of the 

signal regulatory protein (SIRP) family, SIRPα (commonly identified as SHPS1 

and CD172a). Interestingly, CD47 and SIRPα exhibit very different tissue 

expression profiles. SIRPα expression is restricted to neuronal populations and 
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myeloid-lineage hematopoietic cells including macrophages and immature 

dendritic cells (4, 266), whereas CD47 is ubiquitously expressed throughout the 

body (176). In 2000, Oldenborg et al. determined SIRPα expressed on myeloid-

lineage hematopoietic cells interacts with CD47 as a partner receptor to inhibit 

phagocytosis (195). This receptor-receptor interaction acts as a mechanism to 

establish self-recognition, especially with red blood cells and macrophages. 

Wildtype mice transfused with CD47 deficient red blood cells saw rapid clearance 

by phagocytosis from the bloodstream (194, 195), suggesting CD47 regulates 

the half-life of red blood cells in circulation by providing a “don’t eat me” signal to 

macrophages and dendritic cells.  

CD47 and SIRPα have also shown increased expression in corresponding 

regions of the brain, suggesting their partnership may play a role in the central 

nervous system. Studies suggest CD47 and SIRPα may be involved in memory 

formation, stress response, and autonomic nervous system function (8, 98, 173). 

Limited evidence in rodent models and cell culture systems suggest CD47 and 

SIRPα play specific roles in the brain. No studies have been completed that fully 

elucidate the relationship of these two receptors in neuronal function. Future 

studies are warranted to fully determine the role of CD47 and SIRPα in neuronal 

survival and stress response.  

1.7 Statement of the Problem 

Metabolic dysfunction in obese conditions is incredibly complex; however, 

several central underlying pathways have been identified which include the 

development of proinflammatory and poor oxidative cellular environments. 
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Increased reactive oxidative species and activated stress response signaling 

pathways in tissues with high metabolic activity perpetuates a systemic 

proinflammatory environment, which ultimately results in insulin resistance and 

dyslipidemia. Some suggest identifying mechanisms that augment inflammation, 

oxidative stress, and mitochondrial dysfunction in metabolic tissues could be a 

viable therapeutic target for obesity and its associated complications. It is critical 

that pathways contributing to metabolic abnormalities are identified so that new 

therapeutics for obesity and its associated complications may be developed. 

The receptor, CD47, is ubiquitously expressed throughout the body. Its 

expression has been implicated to serve a pathological role in the progression of 

inflammation and oxidative stress in a number of conditions including 

cardiovascular disease, pulmonary hypertension, ischemia reperfusion, and 

transplantation models. Further, it has been well established that the most potent 

ligand of CD47, TSP1, plays a critical role in facilitating inflammation and 

metabolic dysfunction in diet-induced obesity. Some previous studies have 

alluded to the role of CD47 in regulating mitochondrial function, yet no studies 

have examined the effects of CD47 in diet-induced obesity and its associated 

comorbidities. We believe the studies included in this dissertation identified novel 

regulatory roles for CD47 within metabolic tissues. 

For our studies, we used both global TSP1 deficient mice and global 

CD47 deficient mice in a high fat diet-induced obesity paradigm. The central 

hypothesis of these studies is that CD47 contributes to obesity-associated 
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metabolic dysfunctions through diverse mechanisms including inflammation, 

energy utilization, and TSP1-mediated oxidative stress.  

We know TSP1 expression is upregulated under obese conditions and 

that TSP1 contributes to obesity-associated inflammation and impairments in 

glucose homeostasis, but it is unclear how these actions are facilitated. With 

CD47 being the most potent cell membrane receptor for TSP1, we will explore 

whether TSP1 activity is mediated by CD47 activation. We hypothesized that lack 

of CD47 will protect against obesity-associated inflammation and will preserve 

healthy glucose homeostasis despite high fat diet challenge. 

It is also well established that cGMP/PKG signaling is critical for healthy 

adipocyte function, mitochondrial respiration, and energy homeostasis, yet this 

signaling pathway is significantly impacted by high fat diet-induced obesity. The 

mechanisms contributing to this impaired signaling is unknown. Because CD47 

activation has been shown to redundantly suppress cGMP/PKG signaling, 

studies were conducted to examine whether CD47 regulates energy homeostasis 

in metabolic tissues. We hypothesized that CD47 deficiency would enhance 

mitochondrial function and preserve energy homeostasis. The following aims 

were designed to test our hypotheses: 

 

Specific Aim 1: To characterize the global effects of CD47 deficiency on diet-

induced obesity in a rodent model 

A. To determine whether CD47 augments obesity-associated systemic 

and adipose tissue-specific inflammation 
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B. To define the relative role of CD47 in energy homeostasis within 

metabolic tissues under obese conditions 

 

Increased oxidative stress has been shown to be the molecular link 

between mild steatosis and progression to more severe non-alcoholic 

steatohepatitis through induction of cellular stress signaling pathways, 

inflammation, and fibrogenesis. Unfortunately, the exact mechanisms 

augmenting reactive oxidative species production have not been clearly 

elucidated. The TSP1-CD47 signaling axis has previously been implicated in the 

development of hepatic oxidative stress and inflammation in other diseased 

conditions (hepatic ischemia/reperfusion injury, liver transplantation models), yet 

its contribution to fatty liver-induced ROS has never been explored. In vivo 

studies with two mouse models and in vitro experiments will define the 

contribution of TSP1-CD47 signaling to hepatic oxidative stress in a non-

alcoholic fatty liver rodent model. We hypothesize that TSP1-CD47 activity leads 

to increased hepatic oxidative stress within a fatty liver model. The following aim 

was designed to test our hypothesis: 

 

Specific Aim 2: To define the contribution of the TSP1-CD47 axis in the 

development of non-alcoholic fatty liver disease-associated oxidative stress 
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1.7.1 Impact   

We demonstrate that CD47 deficiency is protective against adiposity, 

insulin resistance and obesity-associated chronic inflammation. Further, lack of 

CD47 corresponds with increased energy expenditure in vivo and in vitro. 

Additional studies show that reduced TSP1-CD47 signaling may be protective 

against hepatic oxidative stress and the pathogenesis of NAFLD. As a cell 

membrane receptor, CD47 may be a viable therapeutic target to reduce obesity-

associated oxidative stress, inflammation, and mitochondrial dysfunction. 

Currently, four clinical trials (NCT02678338, NCT02641002, NCT02367196, 

NCT02663518) are underway using monoclonal functional blocking antibodies 

against CD47 as a cancer immunotherapy. Our studies provide new evidence 

that targeting CD47 could be expanded to include metabolic disorders.  
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Table 1.1 Comparison of white and brown adipose tissues  
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Figure 1.1 Adipose tissue remodeling and inflammation.  

Modified cartoon depiction of the effects of obesity on adipose tissue as 

previously illustrated (223). Adipocytes are dynamic cell types capable of 

dramatically expanding cell size to accumulate excess lipid. As adipocytes 

hypertrophy, stress is placed on the ECM resulting in an inflammatory response. 

Adipocytes and ATMs are capable of secreting proinflammatory proteins, 

cytokines and chemokines, to stimulate an immune response and recruit 

additional macrophages to the adipose tissue depot. This mechanism further 

propagates the inflammatory phenotype commonly observed in obesity and 

contributes to adipocyte cell death and whole body insulin resistance.  

  



 
 

42 
 

 

Figure 1.2 Relationship between obesity and systemic complications.  

Obesity contributes to metabolic dysfunction in peripheral tissues and ultimately 

results in increased risk of type 2 diabetes and cardiovascular disease. Adapted 

schematic diagram of the relationship between obesity and global metabolic 

dysfunction as previously illustrated (261).  
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Figure 1.3 Molecular structure of CD47 

Modified cartoon depiction of the structure of CD47 (200). CD47 is a unique cell 

membrane receptor which exhibits both an IgV immunoglobulin domain and 5 

membrane-spanning domains with multiple disulfide bonds necessary for 

signaling. The C-terminal cytoplasmic tail can be variably spliced into four 

common isoforms, ranging from 3-36 amino acids. Of these four isoforms, the 

second shortest C-terminal cytoplasmic tail (16 amino acids) is the most 

commonly observed form.   
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Figure 1.4 Dietary regulation of CD47 mRNA levels in a variety of tissues  

Tissue expression profile of CD47 mRNA levels after four months of either LF or 

HF diet challenge. Expression levels demonstrate no significant diet regulation of 

CD47 mRNA levels.  
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Figure 1.5 TSP1-mediated activation of CD47 on intracellular signaling 

Cartoon depiction of intracellular signaling as previously illustrated (218, 219).  

First, CD47 activation via TSP1 inhibits the phosphorylation of eNOS (at 

Ser1177) to produce NO from arginine. Second, CD47 inhibits the NO-mediated 

activation of sGC necessary to convert GMP to cGMP. And third, CD47 blunts 

the ability of cGMP to activate PKG. This canonical signaling cascade has been 

implicated in vascular tone and vasodilation; however, recent studies suggest its 

regulation in mitochondrial function, energy homeostasis, and obesity-associated 

inflammation could expand its therapeutic potential to metabolic diseases.   
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Section 2:  METHODS  

2.1 Breeding and Genotyping 

CD47-/- and wildtype (WT/CD47+/+) littermate controls were generated by 

breeding heterozygous CD47+/- mice. At approximately two weeks of age, pups 

were sexed and tail clips were collected for genotyping. DNA was extracted from 

tail clips using the E.Z.N.A. Tissue DNA Kit (Omega Bio-Tek, Norcross, GA, 

USA). For genotyping, two specific polymerase chain reaction (PCR) products 

must be examined per mouse – wildtype (300 base pairs) and mutated (199 base 

pairs). PCR mixes were prepared using the Kapa 2G Fast HotStart PCR Kit with 

dNTPs (Kapa Biosystems, Wilmington, MA, USA), common primer 7714, and 

either wildtype primer 13700 or mutant primer 7297. Primer sequences can be 

found in Table 2.1. Following PCR, samples were loaded with a 6x Blue/Orange 

Loading Dye (Promega, Madison, WI, USA) and run on a 2% agarose gel with 

ethidium bromide with a 100 base pair DNA Ladder (Promega, Madison, WI, 

USA). Gels were imaged using the PXi Multi-Application Gel Imaging system 

(Syngene, Frederick, MD, USA). Wildtype samples demonstrated one band at 

300 base pairs. Mutant (CD47-/-) mice exhibited one band at 199 base pairs. 

Heterozygous mice present bands at both 300 and 199 base pairs. 

2.2 Animal Experimental Protocols 

All experiments involving mice conformed to the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and were approved by 

the University of Kentucky Institutional Animal Care and Use Committee. 
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2.2.1 Aim 1 

All experiments were performed on eight week-old male CD47 deficient 

mice (C57BL6/J background from Jackson Laboratories) and same sex and age-

matched C57BL6/J controls (purchased from Jackson Laboratories). Mice were 

given a high fat (HF) (60% kcal from fat; D12492, Research Diets, Inc., NJ) or 

low fat (LF) diet (10% kcal from fat; D12450B; Research Diets, Inc., NJ) for 16 

weeks with standard laboratory water. Each group contained 7 mice. Body 

weight was measured weekly at the same time. Temperature transponders 

(Implantable Programmable Temperature Transponder 300; BioMedic Data 

Systems, Seaford, DE) were subcutaneously implanted into mice at the week 8 

time point during diet challenge. The wireless reader system was utilized to 

measure core body temperatures in both the light and dark cycles. At the end of 

the study, mice were sacrificed. Blood was collected and adipose tissue depots, 

liver, and muscle were harvested for various analyses.  

2.2.2 Aim 2 

To examine hepatocyte-specific expression of CD47 after HF diet 

challenge, C57BL6/J mice (Jackson Laboratories) were fed either a high fat (HF) 

(60% kcal from fat; D12942, Research Diets, Inc., NJ) or low fat (LF) diet (10% 

kcal from fat; D12450B; Research Diets, Inc., NJ) for the designated time frame 

(3, 7, or 14 days) with standard laboratory water. Each group contained 3 mice. 

Mice were sacrificed and hepatocytes were isolated as described by the two-step 

perfusion method (see details in Section 2.16.2) (112).  

http://www.ncbi.nlm.nih.gov/nuccore/D12492


 
 

48 
 

To examine the effects of TSP1 deficiency on the development of NAFLD, 

eight week old male TSP1 deficient and littermate wildtype controls (WT; on 

C57BL6/J background from Jackson Laboratories) were challenged with high fat 

(HF) (60% kcal from fat; D12942, Research Diets, Inc., NJ) or low fat (LF) diet 

(10% kcal from fat; D12450B; Research Diets, Inc., NJ) for 16 weeks with 

standard laboratory water. For studies, each group contained 10-15 mice. 

To examine the effects of CD47 deficiency on the development of NAFLD, 

eight week-old male CD47 deficient mice and littermate wildtype controls (WT; 

C57BL6/J background from Jackson Laboratories) were utilized for all 

experiments. CD47-/- and wildtype (WT/CD47+/+) littermate controls were 

generated by breeding heterozygous CD47+/- mice.  Mice were fed either a HF 

or LF diet for 16 weeks with standard laboratory water. Each group contained 7-

11 mice. Body weights were measured weekly at the same time. At the end of all 

studies, mice were sacrificed. Blood and liver tissue were collected for various 

analyses.  

2.3 Indirect Calorimetry and Body Composition 

Mice were individually housed in TSE LabMaster chambers (TSE 

Systems, Inc., Midland, MI, USA) for 5 days for measurement of food intake, 

water intake, and indirect calorimetry. Body composition including lean and fat 

mass was measured by EchoMRI (Echo Medical System, Houston, TX, USA) 

basally and two weeks prior to the end of the studies. 
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2.4 In Vivo Lipolysis Assay  

Eight week old CD47 deficient and wildtype littermate control mice were 

fasted for six hours and then treated with either CL 316,243 (β-agonist; 1mg/kg 

BW; i.p. injection) or saline (vehicle) as control. Blood was collected via tail vein 

15 minutes post injection and plasma glycerol was measured with Free Glycerol 

Reagent and appropriate standards (Sigma, St. Louis, MO, USA). Each group 

contained 4-7 mice.  

2.5 Ex Vivo Lipolysis Assay  

Subcutaneous adipose tissue (SAT), epididymal adipose tissue (EAT), 

and brown adipose tissue (BAT) were excised from eight week old CD47 

deficient and wildtype littermate control mice after a six hour fast. Tissue was 

weighed and kept in ice cold PBS until all tissue was collected. Adipose tissue 

(80-180mg) was placed in one well of a 24-well plate (n=3 mice/group; all tissue 

samples from each mouse were triplicated). Tissues were serum starved in 

Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Carlsbad, CA, USA) 

supplemented with 1% fatty acid-free bovine serum albumin (BSA) for 1 hour at 

RT. Tissue was then treated with Krebs Ringer Buffer (125mM NaCl, 5mM KCl, 

1.8mM CaCl2, 2.6mM MgSO4, 5mM HEPES, pH adjusted to 7.2) in the presence 

of vehicle or isoproterenol (10µM, Sigma, St. Louis, MO, USA) as previously 

described (87). After 2 hours, media was collected to measure glycerol release 

with the Free Glycerol Reagent and appropriate standards (Sigma, St. Louis, 

MO, USA). Values were normalized to gram tissue weight.  
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2.6 Plasma Parameters 

Plasma insulin, IL-6, TNFα, IL-10, leptin, and MCP1 (eBioscience, San 

Diego, CA, USA) were measured by ELISA. Plasma and liver TGs, non-esterified 

fatty acids (NEFA) and total cholesterol (Wako Chemicals, Richmond, VA, USA) 

levels were measured enzymatically. Plasma ALT levels were measured by 

colorimetric kit from BioAssay Systems (Hayward, CA, USA). 

2.7 In Vivo Glucose Tolerance/Insulin Sensitivity Assays 

Glucose tolerance and insulin tolerance were analyzed basally and after 

15-weeks of HF or LF feeding. Mice were fasted 6 hours before intraperitoneal 

injections of glucose (1 g/kg body weight) or insulin (0.5 unit/kg body weight; 

Novolin R, Novo Nordisk Inc., Plainsboro, NJ, USA). Blood glucose 

concentrations were measured using a glucometer at 0, 15, 30, 60, and 120 

minutes post injection. 

2.8 Tissue Histology 

Interscapular brown adipose tissues, white adipose tissue depots, and 

liver tissue from all four groups of animals were embedded in paraffin, sectioned 

at 4μm, and stained with hematoxylin and eosin-stain (H&E) or Sirius Red for 

fibrosis by standard method through the University of Kentucky Pathology Core 

services from the Center of Research in Obesity and Cardiovascular Disease 

(COCVD). All images were acquired with a Nikon Eclipse 55i microscope at 20x 

objective. Image threshold features of Nikon NIS Elements BR software (Melville, 

NY, USA) were utilized to quantify percent of total area positively stained with 

Sirius Red. Four sections per mouse and three mice per group were measured.  
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Adipocyte area was quantified using the Object Count feature of Nikon NIS 

Elements BR software (Melville, NY, USA). Forty adipocytes were measured per 

section (n=3 sections/mouse) from mice in all four groups (n=3 mice/group).  

2.9 Immunohistochemistry 

Epididymal adipose tissue and liver was fixed and embedded in paraffin. 

Paraffin-fixed tissues were cut into 4μm sections and placed onto slides. 

Sections were deparaffinized, rehydrated in graded mixtures of ethanol/water, 

pretreated by boiling in citrate buffer (pH 6.0), and endogenous peroxidase 

activity was blocked with 3% H2O2 for 30 min at room temperature (RT). The 

sections were blocked for 1 hour at RT in 3% BSA in phosphate buffered saline 

(PBS) (blocking solution) and immediately incubated with a rat anti-mouse F4/80 

antibody (1:200 dilution; AbD Serotec, Raleigh, NC, USA) in blocking solution for 

1 hour at RT. Then, slides were washed, incubated with biotinylated secondary 

antibody for 30 min, and then washed again with PBS. Finally, peroxidase 

substrate diaminobenzidine (Vector Lab, Burlingame, CA, USA) was applied and 

incubated for 30 min. The slides were rinsed and counterstained with 

hematoxylin. Mounting solution and coverslips were added. Images were 

acquired with a Nikon Eclipse 55i microscope. 

2.10 Liver Oil Red O Staining 

Frozen liver tissues were cryostat sectioned at 6μm and fixed in 4% 

paraformaldehyde in PBS for 10 min at RT. Working Oil Red O solution was 

prepared by mixing 3 volumes of 0.5% Oil Red O in 100% isopropanol with 2 

volumes distilled water and filtering through Whatman 4 filter paper. Slides were 
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blotted in 60% isopropyl alcohol for 5 min, and then stained with working Oil Red 

O solution for 15 min at RT. Slides were rinsed once with distilled water, 

mounted, and cover slipped with warmed glycerol gelatin. Images were acquired 

with a Nikon Eclipse 55i microscope. 

2.11 Liver Triacylglycerol Levels 

For analysis of liver TG content, approximately 50 mg of liver was placed 

into 500μL of chilled Krebs Ringer Phosphate (118mM NaCl, 5mM KCl, 13.8mM 

CaCl2, 1.2mM MgSO4, 0.016% KH2PO4, 0.211% NaHCO2) and each sample was 

sonicated ten times (30 seconds/time). The homogenate was centrifuged at 

2,000 × g for 10 min at 4°C, and 10μL of the supernatant was then removed for 

triglyceride analyses. Triglyceride content was measured using Wako triglyceride 

kit (Richmond, VA, USA). 

2.12 Macrophage Migration Assay 

Bone-marrow derived cells were isolated from femurs and tibias of male 

WT and CD47 deficient mice fed with HF diet. These cells were cultured 7 days 

in RPMI-1640 media containing 20% fetal bovine serum (FBS), 25 ng/ml M-CSF 

(Sigma, St. Louis, MO, USA), and penicillin/streptomycin to allow differentiation 

into mature macrophages. Ability of these macrophages to migrate toward MCP-

1 (50 ng/ml) was determined using modified Boyden Microchemotaxis Chamber. 

Briefly, cells were washed twice with PBS, counted and loaded into the upper 

chambers of a Transwell, while the lower chambers were filled with DMEM media 

with or without MCP-1 (50 ng/ml). Transwell plates were then incubated at 37°C 

for 6 hours. The upper inserts with membrane were removed and fixed in cold 
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methanol and stained with crystal violet (Sigma, St. Louis, MO, USA). Cells were 

counted from five different fields for each well. Results were expressed as a 

migration index under the high magnification field. 

2.13 cGMP Measurements 

cGMP levels in brown fat or skeletal muscles from LF or HF fed WT or 

CD47 deficient mice were measured by using the cGMP Direct Immunoassay Kit 

(Colorimetric) from Biovision (Milpitas, CA, USA). Frozen tissues were 

homogenized and the supernatant was collected. cGMP levels in the supernatant 

were measured and calculated based on the cGMP standard curve following the 

instruction manual. 

2.14 Real-time Quantitative PCR (qPCR) 

Total RNA from frozen adipose tissue, skeletal muscle, liver, and cells 

were extracted using RNeasy Mini Kit (Qiagen, Hilden, Germany). RNA was 

reverse transcribed to cDNA by High Capacity cDNA Reverse Transcription Kit 

(Invitrogen, Carlsbad, CA, USA). Real-time quantitative PCR was performed on a 

MyiQ Real-time PCR Thermal Cycler with iTaq Universal SYBR Green Supermix 

from Bio-Rad (Hercules, CA, USA). Relative mRNA expression was calculated 

using the MyiQ system software as previous reported (144) and normalized to 

18s RNA levels. All primers used to examine gene expression were designed 

and purchased using the PrimerQuest Tool from Integrated DNA Technologies 

(Coralville, IA, USA). All primer sequences utilized in this study are found 

in Table 2.1. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/#s1
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2.15 Mitochondrial DNA (mtDNA) Copy Number 

DNA was extracted from skeletal muscle and brown adipose tissue by 

using QIAamp DNA mini kit (Qiagen, Hilden, Germany). The relative 

mitochondria DNA (mtDNA) copy numbers were determined by real-time PCR as 

described previously (156) and normalized to nuclear DNA (nDNA/28s). Primer 

sequences utilized are shown in Table 2.1. 

2.16 Western Blotting 

Brown fat, skeletal muscle, liver tissue, and cells were homogenized in 

RIPA buffer (Sigma, St. Louis, MO, USA) plus protease and phosphatase 

inhibitors (Pierce, Waltham, MA, USA). After concentrations were measured 

using a BCA Assay (Pierce, Waltham, MA, USA), 30μg protein/well was 

subjected to SDS-PAGE gel under reducing conditions and transferred onto a 

nitrocellulose membrane. After blocking, the membrane was incubated with anti-

GAPDH (1:5000 dilution; Millipore, Billerica, MA, USA), anti-β-actin (1:5000 

dilution; Santa Cruz, Dallas, TX, USA), anti-CD47 (1:1000 dilution; Abcam, 

Cambridge, MA, USA), anti-TSP1 (1:1000 dilution; BD Biosciences, San Jose, 

CA, USA), and anti-PKG-I (1:1000 dilution; BD Biosciences, San Jose, CA, USA) 

antibodies at 4°C overnight. After washing, the membrane was incubated with 

horseradish peroxidase-conjugated secondary antibodies (Jackson Labs, Bar 

Harbor, ME, USA). The reaction was visualized by using an enhanced 

chemiluminescence system (Pierce, Waltham, MA, USA). Immunoblots were 

analyzed by scanning densitometry and quantified by Quantity One gel Analysis 

software (Bio-Rad, Hercules, CA, USA). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/#s1
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2.17 Tissue-level ROS Quantification 

Hepatic oxidative stress was determined by the conversion of 2’7’-

dichlorofluorescein diacetate (H2DCFDA; Life Technologies, Carlsbad, CA, USA) 

to the fluorescent label 2’7’-dichlorofluorescein (DCF) in tissue homogenates. 

Frozen liver tissue was homogenized in 5 volumes of ice cold PBS and 

centrifuged at 10,000 x g for 10 minutes at 4°C. Supernatants were mixed with 

equal volume H2DCFDA (20µM in DMSO) and placed in a flat-bottom microplate. 

Presence of the fluorescent probe DCF was measured after 10 minutes with a 

fluorescent plate reader (BioTek Synergy H1 Hybrid Reader, Winooski, VT, USA) 

at 485nm excitation and 520nm emission. Levels of lipid peroxidation were 

measured in liver tissue homogenates using the Lipid Peroxidation (MDA) Kit 

from Sigma (St. Louis, MO, USA). Approximately 10mg of tissue was used 

according to the manufacturer’s protocol.  

2.18 Cell Culture Models 

2.18.1 HepG2 Cells 

HepG2 cells, a human hepatoma cell line, were obtained from American 

Type Culture Collection (ATCC) and cultured in Minimum Essential Medium 

(MEM, Gibco, Carlsbad, CA, USA) supplemented with 10% FBS, 1% sodium 

pyruvate, and 1% penicillin-streptomycin at 37°C with 5% CO2. For cellular ROS 

quantification, cells were seeded at a density of 2x104 cells/well of a 96-well flat 

bottom culture plate.  
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2.18.2 Primary Murine Hepatocytes 

Murine primary hepatocytes were isolated by the two-step perfusion 

method (85).  First, livers were perfused with Ca2+/Mg2+-free HBSS 

supplemented with 10mM glucose, 10mM HEPES, and 0.3mM EDTA. Second, 

livers were digested with HBSS supplemented with 0.05% collagenase type IV 

(Catalog No. C5138, Sigma, St. Louis, MO, USA), 1.3mM CaCl2, 0.5mM MgCl2, 

10mM glucose, and 10mM HEPES. Hepatocytes were washed three times with 

low speed centrifugation at 50 x g for 2 minutes. Cell viability was determined 

with trypan blue staining (>90% cell viability) and were seeded in 96-well flat 

bottom culture plates pre-coated with rat tail collagen at 2x104 cells/well and 

cultured in Williams’ Medium E (Gibco, Carlsbad, CA, USA) supplemented with 

10% FBS, 2% penicillin-streptomycin, 1% sodium pyruvate, 1% L-glutamine, and 

1% insulin-transferrin-selenium at 37°C with 5% CO2. 

2.18.3 3T3-L1 Cells 

3T3-L1 mouse preadipocytes were obtained from American Type Culture 

Collection (ATCC) and cultured in DMEM (Gibco, Carlsbad, CA, USA) 

supplemented with 10% FBS and 1% penicillin-streptomycin at 37°C with 5% 

CO2. Once cells were 100% confluent (Day -2) they were allowed to grow for an 

additional two days (Day 0). On Day 0, differentiation was induced by treating 

cells with culture media supplemented with 0.1µM insulin, 1µM dexamethasone, 

and 0.5mM 3-isobutyl-1-methylxanthine (IBMX). After 2 days (Day 2), cells were 

treated with culture media supplemented with 0.1µM insulin until Day 8. Media 
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was refreshed every two days. To avoid cell detachment from the plate during 

differentiation, cells were not washed with PBS during media changes. 

2.18.4 Primary Adipocyte Isolation and Differentiation 

White adipose tissue was excised from 8-week old CD47 deficient and 

wildtype littermate controls, minced, and digested in Ca2+/Mg2+-free HBSS 

supplemented with 0.1% collagenase type II (Catalog No. C6885, Sigma, St. 

Louis, MO, USA) for 45 minutes in a 37°C shaking water bath.  After digestion, 

cells were centrifuged at 700 x g for 10 minutes at 4° and the supernatant 

including the adipocyte layer was removed. The pellet was digested a second 

time with collagenase type II digestion buffer and incubated for 10 additional 

minutes in a 37°C shaking water bath. Cells were then filtered through a 100μm 

cell strainer and centrifuged again at 400 x g for 5 minutes at 4°. Cells were 

suspended in culture media Dulbecco’s Modified Eagle Medium (DMEM, Gibco, 

Carlsbad, CA, USA) supplemented with 10% FBS and 1% penicillin-

streptomycin. Cell viability was determined with trypan blue staining (>85% cell 

viability) and were seeded for various experiments.  

For primary white adipocyte differentiation, the following protocol was 

used. Once cells were 100% confluent (day -2), they were allowed to continue 

growing for an additional 2 days (day 0) in culture media. On day 0, 

differentiation was induced by treating the cells with culture media supplemented 

with 1.7µM insulin, 0.5mM 3-isobutyl-1-methylxanthine (IBMX), and 1µM 

dexamethasone (induction media; all reagents obtained from Sigma, St. Louis, 

MO, USA) for three days. On day 3, cells were returned to culture media 
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supplemented with 1.7µM insulin (differentiation media) for the remaining 

duration of differentiation until day 8. Differentiation media was refreshed every 

two days. During media changes, cells were not washed with PBS to avoid cell 

detachment from the plate during differentiation.  

2.19 Cellular-level ROS Quantification 

HepG2 cells and primary hepatocytes were preloaded with 50µM 

H2DCFDA and/or IgG Control or anti-human CD47 antibody clone B6H12 

(2µg/mL; R&D Systems, Minneapolis, MN, USA) where indicated for thirty 

minutes at 37°C. TSP1 was generated through construction plasmids and 

purification of GST-fused proteins. After loading, cells were washed 2x with PBS 

then treated with palmitate (200µM), purified GST-fused TSP1 (2µg/mL), or GST 

as control (2µg/mL) for 6 hours at 37°C. After treatment, DCF fluorescence was 

measured with a fluorescent microplate reader (BioTek Synergy H1 Hybrid 

Reader, Winooski, VT, USA) at 485nm excitation and 528nm emission. In vitro 

experiments were triplicated and results are expressed as relative fluorescence 

units (RFU) normalized by cellular protein/well. Total protein concentrations were 

measured using BCA assay (Pierce, Waltham, MA, USA).   

2.20 Cell Culture Oil Red O Staining 

Primary adipocytes were fixed with 4% paraformaldehyde for 15 minutes 

at RT. Cells were then washed with PBS for 5 minutes, immediately followed by 

a 5 minute wash with freshly prepared 60% isopropanol in water. Working Oil 

Red O solution was prepared by mixing 3 volumes of 0.5% Oil Red O in 100% 

isopropanol with 2 volumes distilled water and filtering through Whatman 4 filter 
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paper. Cells were stained with filtered Oil Red O for 30 minutes and 

subsequently washed an additional 4 times with water. Images were acquired 

with a Nikon Eclipse 55i microscope. To quantify lipid accumulation, Oil Red O 

was extracted by carefully washing cells with 100% isopropanol. Extracted Oil 

Red O samples were loaded in triplicate into a clear, flat-bottom 96-well plate and 

absorbance was read at 500nm with a microplate reader. Absorbance values 

were normalized to protein content per well determined by BCA assay and 

presented as fold change over control. 

2.21 In Vitro Lipolysis Assay 

Lipolysis in fully differentiated 3T3-L1 adipocytes was determined by 

measuring free glycerol released into the media. After 8 days of differentiation, 

3T3-L1 cells were serum starved for 1 hour and pretreated with either IgG control 

or a CD47 functional blocking antibody clone B6H12 (2µg/mL; R&D Systems, 

Minneapolis, MN, USA) for 30 minutes prior to treatment. Cells were then treated 

with or without c-CPT-cGMP (200µM; Sigma, St. Louis, MO, USA) or 

isoproterenol (positive control; 10µM; Sigma, St. Louis, MO, USA). After three 

hours, media was collected and glycerol release was measured and normalized 

to cellular protein content. Free glycerol levels were determined with Free 

Glycerol Reagent and appropriate standards (Sigma, St. Louis, MO, USA). 

2.22 Seahorse Assays 

To examine differences in mitochondrial function between WT and CD47 

deficient primary adipocytes, the XF Mitochondrial Stress Test by Seahorse 

Bioscience (Agilent Technologies, Santa Clara, CA, USA) was completed. The 
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protocol provided by Seahorse Biosciences used for this assay can be found in 

Figure 2.1. On day 8 of differentiation, cells were seeded in an XF96 Seahorse 

cell culture plate (Agilent Technologies, Santa Clara, CA, USA) five hours prior to 

the assay at a density of 1x104 cells/well (n=7 wells/group). Over the course of 

the assay, cells were treated with three different compounds and the oxygen 

consumption rate (OCR) was measured before and after each treatment. First, 

cells were treated with oligomycin (1µM), which blunts ATP synthesis by blocking 

ATP synthase. Second, cells were treated with carbonyl cyanide-4-

(trifluoromethoxy) phenylhydrazone (FCCP, 2µM) which uncouples the electron 

transport chain and induces high oxygen consumption and energy expenditure 

without generating ATP. Finally, cells were treated with a combination of 

rotenone (complex I Inhibitor) and antimycin A (complex III inhibitor) (both 1µM). 

This combination inhibits all mitochondrial respiration and allows the non-

mitochondrial respiration of the cell to be measured. Analysis of data was 

completed with XFe Wave Software (Agilent Technologies, Santa Clara, CA, 

USA). All values were normalized to cellular protein levels which were 

determined by BCA Assay (Pierce, Waltham, MA, USA) following the 

manufacturer’s protocol. 

2.23 Assessment of Isolated Mitochondria Bioenergetics 

Brown adipose tissue mitochondria were isolated using differential 

centrifugation with some modifications to the previously described methods (253, 

254). Briefly, 500-800mg adipose tissues were excised, minced with a blade, and 

placed in isolation buffer with EGTA (215mM mannitol, 75mM sucrose, 0.1% 
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BSA, 20mM HEPES, 1mM EGTA, pH adjusted to 7.2 with KOH). Tissues were 

mechanically homogenized at 300rpm in 4mL ice cold isolation buffer with EGTA. 

The homogenate was centrifuged twice at 1300 x g for 3 min in a 2mL centrifuge 

tube at 4°C. Each supernatant fraction was collected in separate tubes and 

topped off with isolation buffer with EGTA and finally centrifuged at 13,000 x g for 

10min. The mitochondrial pellet was then suspended in 1mL isolation buffer 

without EGTA and centrifuged for 10min at 10,000 x g. Finally, the mitochondrial 

pellet was resuspended in 30-50µL isolation buffer without EGTA and stored on 

ice until the time of assay. The protein concentration was determined using the 

BCA assay kit (Pierce, Waltham, MA, USA) following the manufacturer’s 

protocol. 

Mitochondrial respiration was assessed using a Clark-type oxygen 

electrode (Hansatech Instruments, Norfolk, UK), in a sealed, thermostatically 

controlled (37°C), and continuously stirred chamber as described previously 

(253, 255). Mitochondria were added to the chamber to yield a final protein 

concentration of 50µg/mL respiration buffer (215mM mannitol, 75mM sucrose, 

2mM MgCl2, 2.5mM inorganic phosphates, 0.1% BSA, 20mM HEPES, pH 

adjusted to 7.2). State II respiration was initiated by the addition of oxidative 

substrates, pyruvate and malate (5mM and 2.5mM, respectively). State III 

respiration was initiated by the addition of 120nmol ADP followed by the addition 

of oligomycin (1µM) to induce state IV respiration. UCP-mediated proton 

conductance was measured as increased free fatty acid (60µM linoleic acid) 

induced respiration (253, 255), followed by recoupling of the mitochondria by 
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sequestration of FFA with the addition of BSA to a final concentration of 3%. 

Finally, mitochondria were treated with FCCP to allow for quantification of 

complex I driven, maximal electron transport.  

2.24 Preparation of Purified TSP1  

The TSP1 encoding gene was amplified by ultra-based PCR using 

pGEM2-htsp1 as a template and subcloned into expression plasmid vector 

pGEX-4T-3 after digestion by the restricted endonucleases xho1, Klenow, and 

Sal1. The expression plasmids were inserted into competent DH5α cells and 

expression of proteins were evaluated by 8% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE). The GST-TSP1 fusion protein 

expression was induced by IPTG in competent BL21(DE3) E. coli and was 

purified with a GST column. Endotoxins were removed with a Detoxi-Gel 

Endotoxin removing column (Pierce, Waltham, MA, USA) and quantified with the 

LAL Chromogenic Endotoxin Quantitation Kit (Pierce, Waltham, MA, USA). The 

purified protein was stored in aliquots at −80 °C. 

2.25 Preparation of In Vitro Fatty Acid Treatments 

To represent physiological conditions, palmitic acid (PA; Sigma, St. Louis, 

MO, USA) was conjugated to fatty acid-free BSA prior to all in vitro treatments as 

previously described (114). Stock palmitic acid solution in100% ethanol (100mM) 

was added to 10% BSA solution in serum-free media and incubated at 37°C for 

30 minutes to prepare a 5mM BSA-PA solution.  As indicated, BSA controls were 

treated with stocks of 10% w/w BSA plus equal volumes of 100% ethanol added 

to match concentration of palmitate treatment.   



 
 

63 
 

2.26 Statistical Analysis 

Data are expressed as the mean value ± standard error (SE). Student’s t-

tests were used for measuring differences between two groups. Data from 3 or 

more groups with one experimental variable were analyzed by one-way ANOVA 

(e.g. cell culture treatments).  Data were analyzed by a two-way ANOVA when 2 

groups with 2 or more variable were present (diet and genotype) and Bonferroni 

ad hoc tests were used when appropriate to measure significance between all 

groups, unless otherwise indicated. A p value of <0.05 was considered 

statistically significant. All statistical analyses were completed utilizing GraphPad 

Prism.  
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Table 2.1 Primer sequences used in studies 

Gene Forward (5’-3’) Reverse (5’-3’) 
Accession 
Number 

18s AGTCGGCATCGTTTATGGTC CGAAAGCATTTGCCAAGAAT NR_002170 

ACO GACAGAGGTCCACGAATCTTAC GGCTACTACTGCACCTACAAC NM_015729 

ATPSyn TGTGTCCCGGGCAAGAAAGATACA AAGGCTTGTTCTGGGAGATGGTCA NM_016774 

CCR2 AGAGAGCTGCAGCAAAAAGG GGAAAGAGGCAGTTGCAAAG NM_009915 

CD11c CTGGATAGCCTTTCTTCTGCTG GCACACTGTGTCCGAACTC NM_021334 

CD36 ACTGGTGGATGGTTTCCTAGCCTT TTTCTCGCCAACTCCCAGGTACAA NM_001159555 

CD47 AGAATGCTTCTGGACTTGGCCTCA TCACATGCCATGATGCAGAGACAC HQ585874 

Col IαI TTCTCCTGGCAAAGACGGACTCAA AGGAAGCTGAAGTCATAACCGCCA NM_007742 

Col III TCCTAACCAAGGCTGCAAGATGGA TCCTAACCAAGGCTGCAAGATGGA NM_009930 

Col IV AGGGTTCCCAGGTTCTAA GCCCAACGTCACCTTTAT NM_009932 

COXI ACTTGCAACCCTACACGGAGGTAA TCGTGAAGCACGATGTCAAGGGAT NC_005089.1 

COXIII TCAGCCCTCCTTCTAACATCAGGT AATAGGAGTGTGGTGGCCTTGGTA NC_005089.1 

CPT1a CTCTATGTGGTGTCCAAG CACAGGACACATAGTCAG NM_013495.2 

CPT1b ACCTGAGCTGTGCTGAATAAA  ACAGGAGACGGACACAGATA NM_009948      

F4/80 AGTCGGCATCGTTTATGGTC CGAAAGCATTTGCCAAGAAT X93328 

FATP1 GGAGTCTGGAATGCTGAGAAG ATCAGAACAGAGAGGCCAAAG NM_011977 

FATP2 GACCCAGACAGAGAAGAA TCCACCGGAAAGTATCTC AF072757 

FATP5 CTGCGGTACTTGTGTAAC TGGATCCGTAGAATTCCC AF072760 

G6P CCCAGGTTGAGTTGATCTTC GACTTCTTGTGTGTCTGTCC NM_008061.4 

MCP1 CAGCCAGATGCAGTTAACGC GCCTACTCATTGGGATCATCTTG NM_011333 

mtDNA CCGCAAGGGAAAGATGAAAGA TCGTTTGGTTTCGGGGTTTC AP013030.1 

MTTP TCTGCCTATACTGGCTAC CCGATGTACTGGAAGATG XM_017319475 

nDNA  GCCAGCCTCTCCTGATTTTAGTGT GGGAACACAAAAGACCTCTTCTGG NR_003279.1 

Pepck ACACCATCTTCACCAACG GTCTCCACTCCTTGTTCTTC NM_011044.2 

PGC1α CTGCATGAGTGTGTGCTGTG CAAATATGTTCGCAGGCTCA NM_008904 

PPARα CTCCTTGCTGCCAATCAA CAAACATAGGACCAGCTCTC NM_011144 

PPARγ TGCTGTTATGGGTGAAACTCTG CTGTGTCAACCATGGTAATTTCTT NM_011146 

SREBP1c GGAGCCATGGATTGCACATT ACAAGGGTGCAGGTGTCACC XM_006532717 

TNFα AGCCGATGGGTTGTACCT TGAGTTGGTCCCCCTTCT NM_013693 

UCP1 TACCAAGCTGTGCGATGT AAGCCCAATGATGTTCAGT NM_009463 

UCP3 ACCTGGACTGCATGGTAAGG GAGAGCAGGAGGAAGTGTGG NM_009464 

7714 CAAGCATAAATGAACAGTTGCAG   

7297 CGTTGGCTACCCGTGATATT   

13700 CACCTTACAGCACTCCCACA   
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Figure 2.1 Seahorse Biosciences Mitochondrial Stress Test Protocol 

Detailed protocol for the XF Mito Stress Test as previously described (88). 

Fundamental parameters of mitochondrial function, including basal respiration, 

ATP production, proton leak, maximal respiration, and spare respiratory capacity, 

can be determined by measuring oxygen consumption rates (OCR) before and 

after various drug treatments. Oligomycin inhibits ATP Synthase (Complex V). 

FCCP uncouples the electron transport chain (ETC) by increasing hydrogen ion 

translocation across the inner mitochondrial membrane. Combinational treatment 

with rotenone/antimycin A target and disrupt the function of complexes I and III in 

the ETC. 
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Section 3: SPECIFIC AIM 1 

Portions of this section are reprinted from Macmillan Publishers Ltd: Scientific 

Reports (156), © 2015. Published under a CC-BY 4.0 Creative Commons license 

http://creativecommons.org/licenses/by/4.0 

3.1 Summary  

CD47 is a transmembrane protein with several functions including self-

recognition, immune cell communication, and cell signaling. Although it has been 

extensively studied in cancer and ischemia, CD47 function in obesity has never 

been explored. In this study, we utilized CD47 deficient mice in a high-fat diet 

induced obesity model to study for the first time whether CD47 plays a role in the 

development of obesity and metabolic complications. Age-matched, 

male CD47 deficient and C57BL6/J wild type (WT) control mice were fed with 

either low fat (LF) or high fat (HF) diets for 16 weeks. Interestingly, we found 

that CD47 deficient mice were protected from HF diet-induced obesity displaying 

decreased weight gain and reduced adiposity. This led to decreased 

MCP1/CCR2 dependent macrophage infiltration into adipose tissue and reduced 

inflammation, resulting in improved glucose tolerance and insulin sensitivity. In 

addition, CD47 deficiency stimulated the expression of UCP1 and carnitine 

palmitoyltransferase 1b (CPT1b) levels in brown adipose tissue, leading to 

increased lipid utilization and heat production. Additional studies suggest 

increased lipid mobilization in white adipose tissue may provide energy substrate 

for enhanced brown adipose tissue metabolic function in CD47 deficient mice, 

ultimately contributing to the increased energy utilization and reduced adiposity 
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observed in these mice. Taken together, these data reveal a novel role 

for CD47 in the development of obesity and its related metabolic complications. 

3.2 Introduction 

Obesity and its-associated insulin resistance is rampant within the United 

States and other developed nations. Previous studies from our lab and others 

suggest that thrombospondin 1 (TSP1) plays an important role in obesity-

associated chronic inflammation and insulin resistance (IR) (100, 128, 144, 268). 

We demonstrated that TSP1 deficiency did not affect the development of high-fat 

diet induced adiposity. However, TSP1 deficiency reduced macrophage 

accumulation in adipose tissue and protected against obesity related 

inflammation and insulin resistance (144). These data suggest that TSP1 plays 

an important role in regulating macrophage function and mediating obesity-

induced inflammation and insulin resistance. However, the mechanisms of the 

proinflammatory effect elicited by TSP1 under obese conditions remain to be 

determined. 

TSP1, a 420–450 kDa homotrimer, is a multifunctional matricellular protein 

composed of several domains that can interact with different cell surface 

receptors (25, 33, 38, 75, 78, 84, 113, 138, 169, 178, 258, 276). TSP1 is a highly 

potent ligand for CD47, a trans-membrane glycoprotein cell receptor that belongs 

to the immunoglobulin superfamily (160). CD47 is expressed in various tissues 

and cell types throughout the body, ranging from microglia to endothelial cells 

(28, 193). Wide expression suggests that CD47 is active or necessary in several 

different cellular pathways including immunity and self-recognition, inflammation, 
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cellular adhesion, stress response, cell survival, and vascular function (16, 103, 

106, 109, 219). It has been shown that the TSP1-CD47 interaction inhibits 

NO/cGMP/PKG signaling in vascular smooth muscle cells and plays a role in 

vasoconstriction and inflammation (106, 107, 207, 297). However, it is unknown 

whether the proinflammatory effect elicited by TSP1 under obese conditions is 

mediated by CD47. 

In the current study, we determined whether TSP1 promotes obesity-

associated inflammation and insulin resistance through interaction with its 

receptor-CD47. We utilized CD47 deficient and WT mice in a diet-induced 

obesity paradigm. CD47 deficient mice challenged with a HF diet had several 

protective phenotypes as previously observed in TSP1 deficient mice including 

decreased obesity-associated inflammation and improved glucose tolerance and 

insulin sensitivity (144). However, significant reductions in body weight were 

observed in CD47 deficient mice and not HF-fed TSP1 deficient mice in the 

previous study (144). Current studies have shown that CD47 deficiency protected 

mice from HF diet induced obesity; while TSP1 deficiency had no effect on diet-

induced obesity after 16 weeks of HF feeding (144). Moreover, CD47 deficiency 

resulted in tissue-specific effects on metabolic organs in vivo. First, CD47 

deficient mice exhibited increased energy expenditure, heat production, and core 

body temperature partially relating to brown adipose tissue and/or skeletal 

muscle functional changes. These mice also displayed increased white adipose 

tissue lipolysis which could fuel enhanced brown adipose tissue metabolic 

activity and contribute to a leaner whole body phenotype. Together, data from 
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this study revealed a novel role for CD47 in regulation of energy homeostasis 

and the development of obesity, suggesting that CD47 may serve as a potential 

therapeutic target to combat obesity and metabolic complications. 

3.3 Results 

3.3.1 CD47 deficiency protects mice from diet-induced obesity.  

To assess the metabolic role of CD47 in mice, CD47 deficient mice and 

WT controls were challenged with either a low fat (LF, 10% kcal from fat) or high 

fat (HF, 60% kcal from fat) diet for 16 weeks. Under LF diet conditions, although 

CD47 deficient mice had a trend of decrease in body weight as compared to WT 

mice, no significant changes in body weight gain were observed throughout the 

study (Figure 3.1 A, B). When challenged with HF diet, CD47 deficient mice 

exhibited significantly reduced body weight starting from 7 weeks' feeding until 

the end of the study. These mice gained less weight than HF-fed WT mice 

(Figure 3.1 A, B; P<0.05). At the end of study, body composition was determined 

in mice by using EchoMRI. There was significantly reduced fat mass in HF-fed 

CD47 deficient mice as compared to HF-fed WT mice (Figure 3.1 C; P<0.05), 

which was in agreement with the absolute weight of different adipose tissue 

depots (Figure 3.1 E; P<0.05 for all white adipose tissue depots). Lean mass was 

comparable in HF-fed CD47 deficient mice and WT mice (Figure 3.1 D). 

Consistent with the decreased adiposity, HF-fed CD47 deficient mice had 

reduced leptin levels (ng/ml, WT HF: 14.4 ± 4.9 vs. CD47-/- HF: 6.8 ± 1.1, 

P<0.05). Moreover, plasma total cholesterol (TC) and free fatty acid (FFA) levels 

were significantly reduced in HF-fed CD47 deficient mice (TC (mg/dl), WT HF: 
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115.1 ± 7.3 vs. CD47-/- HF: 80.0 ± 7.9, P<0.01; FFA (mEq/L), WT HF: 0.34 ± 

0.01 vs. CD47-/- HF: 0.28 ± 0.02, P<0.05).  Daily cumulative food consumption 

was measured and there was no significant difference between either genotype 

or diet type (Figure 3.6 A).  Together, these data suggests that CD47 deficiency 

protects mice from diet-induced obesity. 

3.3.2 CD47 deficient mice on HF diet showed reduced systemic and 

adipose tissue inflammation. 

Systemic and adipose tissue inflammation were determined in four groups 

of mice. As shown in Figure 3.2 A and B, HF-fed CD47 deficient mice had a 

significant reduction in plasma TNFα (P<0.01) and IL-6 (P<0.05) levels compared 

with HF controls. In addition to the reduced plasma proinflammatory cytokines, 

plasma anti-inflammatory cytokine-IL-10 levels were significantly increased in 

HF-fed CD47 deficient mice as compared to HF-fed WT mice or to LF-fed CD47 

deficient mice (Figure 3.2 C; P<0.05), suggesting that the interaction between 

diet composition and genotype contributes to the IL-10 secretion. 

In addition to systemic inflammation, adipose tissue inflammation status 

was determined. Visceral adipose tissue has been suggested to be the primary 

source of cytokine and adipokine release within obesity-associated inflammation 

(275). Moreover, increased accumulation of adipose tissue macrophages is a 

significant contributor to obesity-induced chronic inflammation (130, 281, 294). 

Therefore macrophage infiltration into adipose tissue was determined by 

immunohistochemical staining for the macrophage marker F4/80. As shown 

in Figure 3.3 A, HF-fed WT controls had robust positive staining of F4/80 and 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f2/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f3/
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crown-like structures, yet HF-fed CD47 deficient mice had minimal positive 

staining, suggesting a decreased presence of macrophages. We confirmed this 

staining result with qPCR and demonstrated that HF-fed WT controls had a 

significant increase in F4/80 expression in adipose tissue, which was reduced in 

HF-fed CD47 deficient mice (Figure 3.3 B; P<0.01). Moreover, CD11c and TNF-α 

levels were increased in adipose tissue from HF-fed WT mice compared with LF 

controls, but decreased in HF-fed CD47deficient mice (Figure 3.3 B; P<0.01, 

P<0.05, respectively). Together, these data indicate that CD47 deficient mice had 

reduced macrophage infiltration into adipose tissue and decreased systemic and 

adipose tissue inflammation in response to HF diet compared with controls. 

To determine the mechanism of reduced macrophage infiltration in 

adipose tissue from HF-fed CD47 deficient mice, we examined MCP1 and CCR2 

levels. MCP1, an inflammatory chemokine responsible for monocyte migration, 

and its dominant receptor CCR2 are suggested to be responsible for a significant 

amount of monocyte infiltration into inflamed adipose tissue (281). We found that 

HF-fed CD47 deficient mice demonstrated a reduction in MCP1 and CCR2 levels 

in adipose tissue (Figure 3.3 B; P<0.05), which might be due to the reduced 

adiposity in these mice. In addition, this result could explain the significant 

decrease in macrophage infiltration in adipose tissue from CD47 deficient mice, 

which was supported by an in vitro migration studies using isolated macrophages 

from HF fed WT and CD47 deficient mice. We found that WT macrophages had 

increased MCP1 stimulated migration; while macrophages from CD47 deficient 

mice showed reduced migration basally (P<0.05) and in response to MCP1 
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(Figure 3.3 C; P<0.01). Together, these data suggest that CD47 regulates diet-

induced adipose tissue macrophage infiltration and inflammation through a 

MCP1/CCR2 dependent pathway. 

3.3.3 CD47 deficient mice on HF diet showed improved whole body 

glucose homeostasis. 

The liver morphology was determined in the current study. We found that 

CD47 deficiency protected mice from hepatosteatosis when fed with HF diet, 

which was demonstrated by reduced liver weight, Oil Red O staining in liver 

sections and liver triglyceride levels (Figure 3.4 A, C; P<0.05). To determine 

whole body glucose homeostasis, we performed glucose tolerance and insulin 

sensitivity tests in WT and CD47 deficient mice. As shown in Figure 3.5, glucose 

tolerance and insulin sensitivity were significantly improved in HF-fed CD47 

deficient mice as compared to HF-fed WT mice (P<0.05), suggesting that CD47 

deficiency protects mice from diet-induced glucose intolerance and insulin 

resistance. 

3.3.4 Energy metabolism in WT or CD47 deficient mice under either 

LF or HF feeding conditions 

We have shown that CD47 deficiency protects mice from diet-induced 

obesity. To further elucidate its mechanism, we examined energy balance in both 

WT and CD47 deficient mice. CD47 deficient mice displayed elevated energy 

expenditure (normalized to total body mass), heat production, core body 

temperature, and total activity compared to WT mice in either light or dark cycle 

(Figure 3.6 B–E). Together, these data suggest that the protection against HF 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f5/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f6/
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diet induced weight gain and fat gain in CD47 deficient mice might be due to 

increased energy utilization. 

3.3.5 Metabolic gene expression in skeletal muscle from LF or HF fed 

WT and CD47 deficient mice 

To further determine the mechanism of increased energy utilization in HF-

fed CD47 deficient mice, we analyzed the expression of multiple genes in 

skeletal muscle that relate to mitochondria function and fuel utilization. The 

rationale for this analysis was based on the previous report showing that skeletal 

muscle from CD47 deficient mice had greater number of mitochondria and 

improved function (74), which suggested a possible relationship between skeletal 

muscle function and the metabolic phenotype observed in the current study. 

Therefore, mitochondria DNA copy number and expression of a series genes 

relating to mitochondria oxidative function and fatty acid catabolism were 

analyzed. Consistent with previous reports (74), the results showed that 

mitochondria DNA copy number was significantly increased in CD47 deficient 

mice compared to WT mice under both LF and HF feeding conditions (Figure 3.7 

A; P<0.05). However, expression levels of genes related to mitochondria 

oxidative function and fatty acid catabolism were comparable in CD47 deficient 

mice compared to WT mice under both LF and HF feeding conditions (Figure 3.7 

B), suggesting that skeletal muscle functional changes may not be a major 

contributor to the increased energy utilization phenotype in HF-fed CD47 

deficient mice. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f7/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f7/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f7/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f7/
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3.3.6 Morphology and metabolic gene expression in brown adipose 

tissue from LF or HF fed WT and CD47 deficient mice 

Recently, brown adipose tissue (BAT) has emerged as an important 

player in energy metabolism (32). However, whether CD47 regulates BAT 

function and contributes to diet-induced obesity is unknown. First, we found that 

diet-induced obesity significantly up-regulated CD47 protein levels in BAT in wild 

type mice (Figure 3.8 A; P<0.05). Although interscapular BAT weight was not 

different between WT and CD47 deficient mice under either LF or HF feeding 

conditions (Figure 3.1 E), histology showed a decrease in intracellular lipid 

droplet size in BAT of HF-fed CD47 deficient mice compared to HF-fed WT mice, 

reflected by a decrease in relative lipid area (Figure 3.8 B, C; P<0.01). Moreover, 

we analyzed mitochondria DNA copy number and a series of genes relating to 

mitochondria oxidative function and fatty acid catabolism. As shown in Figure 3.8 

D, mitochondria DNA copy number in BAT was increased in HF-fed CD47 

deficient mice compared to HF WT mice, although not significantly. This 

suggests that CD47 may regulate mitochondria biogenesis in BAT. In addition, 

mRNA levels of UCP1 and carnitine palmitoyltransferase 1B (CPT1b) in BAT 

were significantly increased in HF-fed CD47 deficient mice (Figure 3.8 E; P<0.05, 

P<0.01, respectively).  

BAT expends a large amount of energy through mitochondria β-oxidation 

and by uncoupling of the mitochondria proton gradient from ATP production. This 

uncoupling results in heat production or thermogenesis, accomplished by UCP1 

located in the inner mitochondria membrane (31, 213). CPT1b, located on the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f8/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f1/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f8/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f8/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f8/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f8/
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outer mitochondrial membrane, is the first and rate-limiting step for fatty acid 

transport into the mitochondria for utilization (233). Therefore, these data suggest 

that CD47 deficiency-mediated CPT1b expression in BAT may lead to increased 

fatty acid uptake in mitochondria and subsequent activation of UCP1, resulting in 

increased uncoupling and heat production (Figure 3.6 C, D). 

3.3.7 cGMP/PKG signaling in WT and CD47 deficient mice under 

either LF or HF feeding conditions 

Studies have shown that CD47 activation via TSP1 can disrupt 

NO/cGMP/PKG signaling in vascular cells (93, 109, 214). Therefore, we 

determined whether cGMP/PKG signaling in BAT or skeletal muscle was altered 

in CD47 deficient mice under either LF or HF feeding conditions. As shown 

in Figure 3.9 A, under LF feeding conditions, cGMP levels in BAT were higher in 

CD47 deficient mice compared to WT mice (P<0.05). HF diet feeding significantly 

reduced BAT cGMP levels in both WT and CD47 deficient mice compared to 

their LF controls (P<0.05); however, levels in HF-fed CD47 deficient mice were 

comparable to WT mice fed a LF diet. For PKG-I protein levels in BAT, under LF 

feeding conditions, no difference was found between WT and CD47 deficient 

mice. However, under HF feeding conditions, BAT PKG-I protein levels were 

significantly increased in CD47 deficient mice compared to WT mice (Figure 3.9 

B; P<0.01). 

In addition to brown fat, cGMP/PKG signaling in skeletal muscle was 

analyzed. We found that cGMP levels or PKG-I protein levels were higher in LF-

fed CD47 deficient mice compared to LF-fed WT mice (Figure 3.9 C, D; P<0.01). 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f9/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f9/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f9/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f9/
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However, under HF feeding conditions, there was no difference in cGMP or PKG-

I levels between WT and CD47 deficient mice. Together, these data suggest that 

cGMP/PKG signaling was differentially regulated by CD47 in BAT and skeletal 

muscle. 

3.3.8 Characterization of white adipose tissue depots in CD47 

deficient mice challenged with HF diet 

In the current studies, we have shown that CD47 deficient mice are 

protected against the development of diet-induced obesity (Figure 3.1). To further 

understand the role of CD47 in white adipose tissue expansion under HF 

conditions, adipocyte size was measured in both subcutaneous adipose tissue 

(SAT) depots and epididymal adipose tissue (EAT). Similar to the phenotype 

observed in BAT (Figure 3.8 B), CD47 deficiency was associated with a 

significant reduction in lipid droplet size under LF and HF conditions in SAT 

(Figure 3.10 A; P<0.05 between LF groups, P<0.01 between HF groups) and 

EAT (Figure 3.10 B; P<0.05 between LF and HF groups). This phenotype 

suggests a unique effect of CD47 on lipid storage independent of diet.  

3.3.9 White adipocyte function in vitro 

Several mechanisms regulate intracellular lipid levels within adipocytes, 

including the rates of lipogenesis/lipid storage, fatty acid oxidation, and liberation 

of FFAs from intracellular lipid droplets as a fuel source for metabolically active 

peripheral tissues. In order to determine the mechanism(s) contributing to a 

significant reduction in adipocyte size in WAT, in vitro studies utilizing primary 

adipocytes and the immortalized preadipocyte 3T3-L1 cells were completed. 
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First, stromal vascular fraction was isolated from both 8-week old CD47 deficient 

and age-matched control white adipose tissue depots, cultured, and 

differentiated into mature adipocytes as previously described in Section 2.18.4. 

To determine whether CD47 deficiency impairs adipogenesis and lipid storage in 

white adipocytes, CD47 deficient and control primary adipocytes were stained 

with Oil Red O on day 8 of differentiation to assess lipid accumulation. Our 

studies demonstrated no significant difference in lipid accumulation as indicated 

by Oil Red O staining of intracellular lipid (Figure 3.11 A, B). These data suggest 

impaired adipogenesis and lipid storage is not the cause for reduced adipocyte 

size in vivo.  

In addition, mitochondrial function was assessed in CD47 deficient and 

control white adipocytes on day 8 of differentiation using the Seahorse XF96 Flux 

Analyzer (Agilent Technologies, Santa Clara, CA, USA). Basal respiration, ATP 

production, non-mitochondrial respiration, and maximal respiratory capacity were 

determined by measuring oxygen consumption rates (OCR) with the protocol 

detailed in Figure 2.1. CD47 deficient and control white adipocytes exhibited no 

significant difference in any mitochondrial function parameters (Figure 3.11.D, E), 

suggesting increased fatty acid-dependent metabolic activity is not contributing to 

reduce adipocyte size. Because we saw no differences in lipogenesis or 

mitochondrial respiration between genotypes in vitro, we conclude the smaller 

adipocyte phenotype in vivo (Figure 3.10) may be a result of crosstalk with other 

metabolic tissues and enhanced global energy requirements. 
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3.3.10 Regulation of lipid turnover by CD47 

It has been previously determined that cGMP/PKG signaling regulates 

lipolysis by activating lipases critical for the hydrolysis of triglycerides in lipid 

droplets (185). In addition, it has been well established that activation of CD47 

suppresses cGMP/PKG signaling in a number of tissues (93, 109, 214). As a 

potential mechanism for reduced white adipocyte size, the role of CD47 in white 

adipocyte lipolysis was examined in vivo, ex vivo, and in vitro. After a six hour 

fast, eight-week old CD47 deficient and wildtype littermate control mice were 

intraperitoneally injected with vehicle or CL 316,243 (1mg/kg BW), a β-adrenergic 

agonist, to induce lipolysis. Independent of treatment, CD47 deficiency 

significantly increased plasma levels of free glycerol, a common indicator of 

lipolysis (Figure 3.12 A; P<0.05). Ex vivo lipolysis assays determined that lack of 

CD47 expression, independent of β-adrenergic stimulation, enhanced glycerol 

release from white adipose tissue depots but not from BAT (Figure 3.12 B; EAT: 

P<0.05 basally, P<0.01 stimulated; SAT: p=0.06 basally, P<0.001 stimulated).  

Further, fully differentiated 3T3-L1 cells were serum starved and 

pretreated with or without IgG control or a functional blocking antibody targeting 

CD47 for 30 minutes. Cells were then treated with c-CPT-cGMP (200µM), a 

cGMP agonist, or isoproterenol (10µM), a non-specific β-agonist, as a positive 

control. Our studies show that treatment with cGMP and a CD47 functional 

blocking antibody (clone B6H12) significantly increase glycerol levels in the 

media, indicative of lipid mobilization, compared with controls (Figure 3.12 C; 
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P<0.05). These data suggest that reduced CD47 activity contributes to increased 

lipid droplet turnover in white adipose tissue.  

3.3.11 FFA-mediated uncoupling of brown adipose tissue 

mitochondria 

It is well established that FFAs are an efficient fuel source for enhanced 

mitochondrial respiration in BAT and directly stimulate uncoupling by interacting 

with UCP1 (67). In the current studies we have shown that CD47 deficiency is 

associated with increased CPT1b and UCP1 expression in brown adipose tissue 

despite HF diet challenge (Figure 3.8). We propose that increased lipid 

mobilization in CD47 deficient mice drives enhanced FA oxidation and UCP1-

mediated uncoupling in BAT. To measure this, mitochondria were isolated from 

brown adipose tissue of age-matched CD47 deficient and littermate control mice 

and treated with various compounds to examine mitochondrial bioenergetics. It is 

clear that mitochondria from WT BAT are uncoupled, which is indicated by the 

continuous oxygen consumption despite oligomycin treatment, which should 

blunt all ETC-mediated oxygen consumption and ATP generation (Figure 3.13 

A). However, mitochondria isolated from CD47 deficient BAT demonstrated a 

significant increase in the State IV and FFA-mediated UCP activation (Figure 

3.13 B; P<0.05). This indicates that CD47 deficient BAT mitochondria are 

adapted to consume more oxygen and generate more heat compared to WT.  

3.4 Discussion 

CD47 is a transmembrane protein with several functions including self-

recognition, immune cell communication, and cell signaling (28, 193). Although it 
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has been extensively studied in cancer and ischemia (165, 238, 241, 286), CD47 

function in obesity has never been explored. In this study, we utilized CD47 

deficient mice in a high-fat diet induced obesity model to study for the first time 

whether CD47 plays a role in diet-induced obesity and its associated metabolic 

complications. As previously reported (74), CD47 deficiency was associated with 

a leaner phenotype, although not significant, in the LF-fed group through the 

duration of the study compared with LF controls; however, body weight gain was 

consistent and no improvements in other metabolic parameters were identified 

between the two control groups. In our HF-mice, we found that CD47 deficient 

mice were protected from diet-induced obesity displaying decreased weight gain 

and reduced adiposity despite comparable daily food consumption and no 

impairments in intestinal lipid absorption (data not shown). This led to decreased 

MCP1/CCR2 dependent macrophage infiltration into adipose tissue and reduced 

inflammation, resulting in improved glucose tolerance and insulin sensitivity. In 

addition, CD47 deficiency stimulated the expression of UCP1 and CPT1b levels 

in brown adipose tissue, leading to increased lipid utilization and heat production 

and contributing to increased energy utilization and reduced adiposity in these 

mice. To support this, additional studies were completed under basal conditions 

that demonstrate CD47 deficiency is associated with enhanced white adipose 

tissue lipolysis and increased FFA-dependent mitochondrial respiration in brown 

adipose tissue. These data suggest a novel role for CD47 in regulation of 

metabolic function, energy homeostasis, and its contribution to the development 

of obesity and dyslipidemia. 
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CD47 is a receptor for the matricellular protein-thrombospondin 1 (TSP1). 

Previous studies from our lab and others suggest that TSP1 plays a role in 

obesity-associated chronic inflammation and insulin resistance (100, 128, 144, 

268). Both TSP1 and CD47 expression in adipose tissue was up-regulated under 

obese conditions (128, 268), suggesting that CD47 may mediate the effects of 

TSP1 on diet-induced obesity and obesity-associated complications. By feeding 

CD47 deficient mice with the same diet (10% (LF) and 60% fat (HF) diet) for the 

same time period (16 weeks) as we did before with TSP1 deficient mice (144), 

we found that most of the phenotypes observed in the TSP1 deficient mice 

undergoing HF feeding were replicated in CD47 deficient mice including reduced 

macrophage infiltration into adipose tissue, reduced inflammation, and improved 

glucose tolerance and insulin sensitivity. However, one different phenotype was 

observed between CD47 deficient mice and our previous HF-fed TSP1 deficient 

mice (144), which was the significant changes in body weight. Current studies 

showed that CD47 deficiency protected mice from HF diet induced obesity; while 

TSP1 deficiency had no effect on diet-induced obesity after 16 weeks of HF 

feeding. This different phenotype suggests that TSP1-CD47 ligation may not be 

involved in regulation of energy homeostasis under HF feeding conditions. The 

novel CD47 ligands and their interaction on energy balance and the development 

of obesity warrant further investigation. 

It has been shown that CD47 activation via TSP1 can disrupt the NO-

cGMP pathway and that decreased NO/cGMP signaling contributes to vascular 

inflammation as well as adipose tissue inflammation, resulting in insulin 
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resistance (93, 214). In agreement with these observations, HF-fed CD47 

deficient mice showed decreased levels of circulating proinflammatory cytokines 

as well as reduced inflammation in adipose tissue. They also had improved 

glucose tolerance and insulin sensitivity. Moreover, with reduced adiposity in HF-

fed CD47 deficient mice, these mice exhibited reduced expression of MCP1 and 

CCR2 in adipose tissue. This was associated with reduced macrophage 

infiltration into adipose tissue in HF-fed CD47 deficient mice, which may be 

secondary to reduced adiposity. Further in vitro analysis demonstrated that CD47 

deficient macrophages had significantly decreased migration compared to WT 

cells upon stimulation with MCP1. The importance of MCP1 and CCR2 in 

adipose tissue macrophage recruitment and their contribution to insulin 

resistance has been demonstrated by numerous studies (89, 116, 117, 191, 256, 

280). Thus, data from our study suggest that the effect of CD47 on macrophage 

infiltration into adipose tissue and the development of chronic inflammation under 

obese conditions is MCP1/CCR2 dependent. 

In this study, we found that CD47 deficiency protected mice from HF diet 

induced obesity, which was associated with increased energy utilization. To 

determine the mechanisms of increased metabolic rate in HF-fed CD47 deficient 

mice, we analyzed skeletal muscle function since a previous report showed that 

skeletal muscle from CD47 deficient mice had greater number of mitochondria 

and improved skeletal muscle function (74). Although we saw increased 

mitochondrial number in skeletal muscle and increased locomotor activity in HF-

fed CD47 deficient mice compared to HF-fed WT mice, the expression of genes 
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relating to mitochondria oxidative function or fatty acid catabolism in skeletal 

muscle were comparable between WT and CD47 deficient mice (Figure 3.7). 

These data suggest that enhanced skeletal muscle function may not be driving 

the increased energy expenditure phenotype in HF-fed CD47 deficient mice. 

The contribution of brown adipose tissue function to the increased 

metabolic rate in HF-fed CD47 deficient mice was also analyzed. The rationale 

for such studies is based on previous reports showing that increased cGMP/PKG 

signaling pathway stimulates brown adipocyte differentiation (90), promotes 

healthy expansion and browning of white adipose tissue (171), stimulates white 

adipose tissue lipolysis and cold induced brown fat thermogenesis (185). BAT is 

highly vascularized, highly innervated by the sympathetic nervous system, and is 

densely packed with mitochondria. BAT expends a large amount of energy 

through mitochondria β-oxidation and by uncoupling of the mitochondria proton 

gradient from ATP production. This uncoupling results in heat production or 

thermogenesis, accomplished by UCP1 located in the inner mitochondria 

membrane (31, 213).  

It has been well-established that obesity reduces BAT-mediated energy 

expenditure and UCP1-driven thermogenesis (197, 215, 237). Although WT and 

CD47 deficient mice exhibited comparable brown fat mass and mitochondrial 

DNA content, loss of CD47 significantly increased UCP1 mRNA expression in 

brown fat under HF feeding conditions. Consistently, we found that core body 

temperature was elevated in HF-fed CD47 deficient mice, indicating increased 

thermogenesis. We demonstrated that cGMP and/or PKG signaling was up-

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4352923/figure/f7/
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regulated in brown fat from CD47 deficient mice, which could augment healthy 

BAT function despite HF diet challenge. Moreover, the lipid accumulation in 

brown fat was significantly reduced in HF-fed CD47 deficient mice. UCP1 

expression was not found in white fat from either WT or CD47 deficient mice 

under either LF or HF feeding conditions (data not shown), suggesting there was 

no browning of white fat and a BAT-specific effect of CD47 deficiency. 

Because of the global effect of CD47 deficiency on lipid accumulation, 

white adipose tissue function was also examined. To elucidate a mechanism for 

reduced white adipocyte size, in vitro studies were completed that determined 

CD47 deficiency does not impair white adipogenesis/lipid storage and does not 

enhance white adipocyte mitochondrial function. Moreover, CD47 deficient mice 

displayed enhanced white adipose tissue lipolysis which could contribute to 

smaller adipocyte and tissue depot size in vivo. Interestingly, CD47 deficient 

mice were not dyslipidemic or insulin resistant, suggesting enhanced lipolysis is 

not a result of impaired adipose tissue insulin signaling or contributing to poor 

cardiovascular health. Rather, enhanced lipid mobilization could be a result of 

increased metabolic activity in other metabolic tissues.  

It is known that fatty acids are an important fuel for thermogenesis. 

Lipolysis releases fatty acids that can be used for mitochondria oxidation and 

thermogenesis. We found that carnitine palmitoyltransferase 1b (CPT1b) was up-

regulated in BAT from HF-fed CD47 deficient mice compared to HF-fed WT mice. 

CPT1b, located on the outer mitochondrial membrane, is the first and rate-

limiting step for fatty acid transport into the mitochondria for utilization (233). 
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Therefore, CD47 deficiency may increase fatty acid translocation into 

mitochondria by fatty acid transporter CPT1b and drive the activation of UCP1 in 

brown fat and increased heat production. Interestingly, when isolated 

mitochondria from CD47 deficient BAT were treated with FFA we saw a robust 

uncoupling effect compared with WT BAT mitochondria supporting our proposal 

that CD47 deficiency enhances FFA-mediated BAT activation. These findings 

indicate that CD47 deficient mice have increased respiratory capacity as well as 

induced uncoupling, which ultimately leads to increased consumption of oxygen 

and energy. Together, our data suggest that CD47 mediated regulation of white 

and brown fat function contributes to the metabolic phenotype observed in the 

current study. However, to demonstrate definitively the effect of brown fat cell 

derived CD47 on energy metabolism in diet-induced obesity, the tissue specific 

CD47 deficient mice are required in future studies.  

In summary, for the first time, our studies demonstrate an important role 

for CD47 in regulating energy balance and the development of obesity and its 

metabolic complications in a tissue-specific manner. CD47 deficiency protects 

mice from HF diet-induced obesity through stimulation of energy expenditure and 

heat production. In addition, CD47 deficiency reduces obesity-associated 

metabolic complications including decreased systemic and adipose tissue 

inflammation and hepatosteatosis, and improved glucose tolerance and insulin 

sensitivity. The results from this study suggest that CD47 may serve as a 

therapeutic target of obesity and its related comorbidities. 
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Figure 3.1 Weight-related measures after LF/HF diet challenge 

CD47 deficient mice were protected from high fat diet-induced obesity. Eight 

week old male CD47 deficient mice and wild type C57BL6 controls were fed with 

low fat (LF) or high fat (HF) diet for 16 weeks. Weekly body weight (A) and body 

weight gain (B) are shown and were analyzed by two-way repeated measures 

ANOVA. Fat (C) and lean mass (D) of mice were measured by EchoMRI. 

Absolute weight of white and brown adipose tissue depots (E) were measured 

immediately following sacrifice. Data are presented as mean ± SE (n=5-7 

mice/group), *P<0.05, **P<0.01. EAT: epididymal adipose tissue; MAT: 

mesenteric adipose tissue; PAT: perirenal adipose tissue; SAT: subcutaneous 

adipose tissue; BAT: brown adipose tissue. 
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Figure 3.2 Obesity-associated systemic inflammation  

HF-fed CD47 deficient mice displayed reduced systemic inflammation compared 

to HF-fed wild type controls. Plasma TNFα (A), IL-6 (B), and IL-10 (C) levels 

were measured by ELISA as described in Methods. Data are presented as mean 

± SE (n=5-7 mice/group), *P<0.05 and **P<0.01. 
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Figure 3.3 Adipose tissue inflammation and macrophage infiltration 

HF-fed CD47 deficient mice had decreased adipose tissue macrophage 

infiltration and inflammation. Macrophage accumulation in epididymal adipose 

tissue (A) was determined by anti-F4/80 staining. The positive staining showed 

brown color indicated by arrow head. Representative images are shown. Scale 

bars represent 100mm. Expression of proinflammatory cytokines in epididymal 

adipose tissue (B) was determined by real-time PCR and normalized to 18S 

RNA. Bone marrow cells from HF-fed WT and CD47 deficient mice were isolated 

and differentiated into macrophages. Migration of these cells were measured 

basally and upon MCP1 (50 ng/ml) stimulation (C) using modified Boyden 

Microchemotaxis Chamber. Data are presented as mean ± SE (n=5-7 

mice/group), *P<0.05 and **P<0.01. 
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Figure 3.4 Liver lipid accumulation 

CD47 deficiency prevents lipid accumulation in liver after HF diet feeding. Lipid 

accumulation in liver from four groups of mice was determined by measuring liver 

weight (A), staining liver sections by Oil-red-O (B), and quantification of 

triglyceride from liver extracts (C). The representative images of Oil Red O 

staining are shown. Scale bars represent 100 mm. Data are presented as mean 

± SE (n=5-7 mice/group), *P<0.05. 
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Figure 3.5 Glucose and insulin tolerance tests 

HF-fed CD47 deficient mice had improved glucose tolerance and insulin 

sensitivity compared with HF-fed controls. Intraperitoneal glucose tolerance test 

(A) and insulin sensitivity test (B) were performed in male CD47 deficient and 

littermate control mice after 15 weeks of HF or LF feeding. Data are presented as 

mean ± SE (n=5-7 mice/group), *P<0.05 vs. HF CD47-/-; #P<0.05; AUC: area 

under the curve. 
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Figure 3.6 Metabolic profiles of WT and CD47 deficient mice under either LF 

or HF feeding conditions 

Eight week old male CD47 deficient mice and wild type littermate controls were 

fed with LF or HF diet for 16 weeks and individually housed in TSE PhenoMaster 

chambers for indirect calorimetric analysis. Daily food intake (A) was measured 

for 6 consecutive days. Energy expenditure (B) was normalized to total body 

mass during both the light and dark cycles. Heat production (C), core body 

temperature (D), and activity (E) were shown during both the light and dark 

cycles. Data are presented as mean ± SE (n=4-5 mice/group), *P<0.05; 

**P<0.01; ***P<0.001. 
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Figure 3.7 Metabolic gene expression in skeletal muscle from LF or HF 

feeding WT or CD47 deficient mice 

After 16 weeks of LF or HF feeding, mitochondria DNA (mtDNA) copy number in 

skeletal mice (A) from four groups of mice and expression of metabolic genes (B)  

including acyl-CoA oxidase (ACO), fatty acid transporter protein (FATP1), 

carnitine palmitoyltransferase 1b (CPT1b), UCP3, PGC-1a, COX I, COX III and 

ATPsyn were measured by real-time PCR. Data are presented as mean ± SE 

(n=5–7 mice/group), *P<0.05. 
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Figure 3.8 Morphology and metabolic gene expression in BAT from LF or 

HF fed WT or CD47 deficient mice  

CD47 protein levels in brown adipose tissue from LF or HF fed WT mice by 

immunoblotting (A) (Cropped blots were used); Representative images of HE 

staining of brown adipose tissue (B) from LF or HF fed CD47 deficient and WT 

mice. Images were obtained at x20. Scale bars represent 100mm; Percentage 

lipid content in brown adipose tissue sections (C), as quantified using image 

analysis software. Mitochondria DNA copy number by PCR (D) and expression of 

metabolic genes (E) by real-time PCR. Data are presented as mean ± SE (n=5–7 

mice/group), *P<0.05 and **P<0.01. 
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Figure 3.9 cGMP or PKG signaling in BAT and skeletal muscle from LF or 

HF fed WT or CD47 deficient mice 

cGMP levels in brown adipose tissue (A) from LF or HF fed WT mice by direct 

immunoassay; PKG-I protein levels in brown adipose tissue (B) from LF or HF 

fed WT mice by immunoblotting (Cropped blots were used); cGMP levels in 

skeletal muscle (C) from LF or HF fed WT mice by direct immunoassay; PKG-I 

protein levels in skeletal muscle (D) from LF or HF fed WT mice by 

immunoblotting (Cropped blots were used). Data are presented as mean ± SE 

(n=5-6 mice/group), *P<0.05 and **P<0.01. 



 
  

 
 

 

 

 

 

1
0

4
 



 
  

105 
 

Figure 3.10 Characterization of white adipose tissue depots in CD47 

deficient mice challenged with HF diet 

CD47 deficiency was associated with a significant reduction in adipocyte size in 

subcutaneous (A) and epididymal (B) adipose tissue depots independent of diet 

challenge as demonstrated by H&E staining. Representative images are shown. 

Scale bars represent 100mm. Adipocyte size was quantified using a Nikon 

Eclipse 55i microscope and Nikon NIS-Elements BR software. Each group 

contained three mice. Three sections with 100 adipocytes each were measured 

per mouse. Data are presented as mean ± SE. *P<0.05; **P<0.01; ***P<0.001. 
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Figure 3.11 Adipogenesis and mitochondrial function of white adipocytes 

Primary preadipocytes were isolated from white adipose tissue of eight week old 

WT and CD47 deficient mice and differentiated into mature adipocytes for 8 

days. WT and CD47 deficient adipocytes accumulated comparable levels of lipid 

demonstrated by Oil Red O staining after 8 days of differentiation (A, B). CD47 

deficient and control white adipocytes demonstrate comparable mitochondrial 

function. A basic mitochondrial stress test using the Seahorse XF96 Flux 

Analyzer demonstrates no significant difference in mitochondrial function 

between CD47 deficient and control white adipocytes in response to assay 

agents at specific time points (C). Basal respiration rates, ATP production, non-

mitochondrial respiration, and maximal respiratory capacity (D) are presented as 

pmol/min of oxygen in assay media. All values are normalized to protein/well.  

Five to seven replicates were used for each group. OCR: oxygen consumption 

rates.   
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Figure 3.12 Regulation of lipid turnover by CD47  

Eight week old CD47 deficient and wildtype littermate control mice were treated 

with either CL 316,243 (β-agonist; 1mg/kg BW; i.p. injection) or saline (vehicle) 

after a six hour fast. CD47 deficiency significantly increased plasma glycerol 

levels basally and with β-agonist stimulation (A) (n=4-7/group). Epididymal 

adipose tissue (EAT), subcutaneous adipose tissue (SAT), and brown adipose 

tissue (BAT) were excised from eight week old CD47 deficient and wildtype 

littermate control mice after a six hour fast (n=3 mice/group; all tissue samples 

from each mouse were triplicated). Tissues were serum starved for 1 hour and 

then treated with vehicle or 10µM isoproterenol for 2 hours. Glycerol release was 

measured in the media by colorimetric kit. Lack of CD47 expression significantly 

increased lipolysis indicated by glycerol content in the media in epididymal and 

subcutaneous adipose tissue depots independent of treatment (B). Fully 

differentiated 3T3-L1 adipocytes were serum starved, pretreated with either IgG 

control or a CD47 functional blocking antibody clone B6H12 (2µg/mL) for 30 

minutes, then stimulated with c-CPT-cGMP (200µM) or isoproterenol (positive 

control; 10µM). After three hours, media was collected and glycerol release was 

measured and normalized to cellular protein content. Treatment with c-CPT-

cGMP and CD47 functional blocking antibody significantly increased glycerol 

release compared to controls in an additive manner (C). All in vitro experiments 

were triplicated. Data are presented as mean ± SE; *P<0.05; **P<0.01; 

****P<0.0001; #P<0.0001 compared to all groups. Ab: antibody; CL: CL 316,243; 

Iso: isoproterenol; ns: no significance. 
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Figure 3.13 FFA-dependent uncoupling in BAT mitochondria  

Mitochondria were isolated from BAT of 8-week old CD47 deficient and WT 

littermate control mice by differential centrifugation. Mitochondrial respiration 

(presented as oxygen consumption) was measured using a Clark-type oxygen 

electrode under sealed and isothermic conditions as previously described (255). 

Over time, mitochondria were treated with various substrates to examine 

individual bioenergetics states. Pyruvate and malate (PM; 5mM and 2.5mM, 

respectively) were used to promote oxidation. ADP (120nmol) was used to 

measure State III respiration and oligomycin (oligo; 1µM) was used to induce 

State IV respiration. FFAs (60µM linoleic acid) were added to induce uncoupling-

mediated respiration and BSA (3%) was subsequently added to blunt FFA-

induced uncoupling by sequestering FFAs. Last, FCCP was added to induce 

maximal uncoupling. Representative oxygraph traces (A) are presented from WT 

and CD47 deficient BAT mitochondria.  Downward trends of the lines within the 

graph indicate oxygen consumption. After the addition of each compound, 

changes in oxygen consumption were quantified (B). Mitochondria isolated from 

CD47 deficient BAT are highly uncoupled in response to FFA treatment, when 

respiration is compared to FCCP-induced uncoupling. Data are presented as 

mean ± SE (n=4 mice/group); ***P<0.001. 
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Section 4: SPECIFIC AIM 2 

4.1 Summary 

Non-alcoholic fatty liver disease (NAFLD), a hepatic manifestation of 

metabolic syndrome, is driven by elevated oxidative stress and impaired 

mitochondrial function in the presence of increased lipid. However, specific 

signaling mechanisms initiating these events are largely unknown. 

Thrombospondin-1 (TSP1) activity through the transmembrane receptor CD47 

has been previously implicated in the development of oxidative stress in rodent 

hepatic ischemia reperfusion and transplantation models. The aim of our study 

was to examine for the first time whether TSP1 and CD47 are involved in the 

pathogenesis of diet-induced fatty liver by mediating oxidative stress. We 

demonstrated that both TSP1 deficient and CD47 deficient mice challenged with 

high fat (HF) diet for 16 weeks were protected against hepatic lipid accumulation, 

inflammation, fibrosis, and oxidative stress typically associated with fatty liver 

disease. Our studies also demonstrated that hepatic protein levels of TSP1 and 

CD47 are both upregulated under HF conditions. In vitro studies show that TSP1 

treatment induces reactive oxidative species (ROS) to levels comparable to free 

fatty acids (FFAs) in human hepatocyte cell line (HepG2 cells); however, 

functional blocking antibodies against CD47 attenuated TSP1-induced ROS. 

Similarly, CD47 deficient primary hepatocytes were protected from FFA and 

TSP1-induced ROS. Collectively, results from our studies suggest that increased 

hepatic TSP1 and CD47 expression under HF conditions may contribute to the 

development of NAFLD by augmenting ROS production.  
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4.2 Introduction 

Nonalcoholic fatty liver disease (NAFLD) is becoming increasingly 

common due to elevated levels of visceral adiposity and obesity. In the western 

world, between 10-15% of lean individuals and approximately 70% of obese 

individuals are affected (73, 270). Unfortunately, increased lipid accumulation 

within the liver is directly linked to whole body insulin resistance and exacerbates 

the risk of developing nonalcoholic steatohepatitis (NASH), a full-blown 

inflammatory and fibrogenic response, which contributes to cirrhosis and 

hepatocellular carcinoma (HCC) (7).  

Recent studies have demonstrated that oxidative stress precedes the 

development of hepatic insulin resistance, lipodystrophy, and inflammation in 

high fat-fed rodent models (97, 163, 180). Further, reactive oxidative species 

(ROS) stimulate inflammatory signaling pathways, reduce mitochondrial 

biogenesis, and impair the adaptive responses of the mitochondria to manage 

increased lipid burden under obese conditions (179, 221, 243). However, the 

specific mechanisms responsible for these initiating events have not been 

determined. It is suggested that identifying mechanisms which protect against 

ROS production and preserve mitochondrial function in the presence of 

increased energy substrate would be a viable therapeutic targets for NAFLD. 

CD47, a ubiquitously expressed transmembrane cell surface receptor, 

regulates several pathways including self-recognition and vascular function (28, 

193). Our group and others have identified TSP1 as a contributor to metabolic 

dysfunction in high fat (HF) diet-induced obesity (53, 100, 128, 144, 162, 268). 
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Similarly, recent studies from our laboratory suggest CD47 deficiency could be 

protective against obesity-associated complications (156). Upon activation by 

picomolar concentrations of thrombospondin-1 (TSP1), CD47 signaling promotes 

ROS production and inflammation in hepatic ischemia reperfusion injury and liver 

transplantation models (105, 293). Although the TSP1-CD47 interaction has 

been implicated in other hepatic conditions and both have been shown to 

contribute to metabolic dysfunction, this signaling mechanism has never been 

explored in the progression of NAFLD. 

The aim of our study is to determine whether TSP1 and CD47 interaction 

contributes to ROS production in the development of NAFLD. We determined 

both TSP1 and CD47 expression is upregulated in the liver under HF conditions. 

Further, we demonstrated that TSP1 deficiency and CD47 deficiency similarly 

protected mice from obesity associated fatty liver disease. Moreover, in vitro 

studies show TSP1-induced ROS is partially facilitated through CD47 and 

contributes to hepatocyte-specific oxidative stress. This study suggests that the 

TSP1-CD47 interaction could potentially be a viable therapeutic target for diet-

induced fatty liver.  

4.3 Results 

4.3.1 TSP1 deficiency protects mice from diet-induced fatty liver 

It has been well established that expression of TSP1, the most potent 

ligand of CD47, is significantly elevated in plasma and adipose tissues under 

obese conditions (268, 277); however TSP1 levels in the liver have not been 

determined. In our studies, TSP1 protein (Figure 4.1 A; P<0.05) and mRNA 
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(Figure 4.1 B; P<0.05) levels were significantly upregulated in whole liver tissue 

from wildtype mice after four month HF feeding compared to LF fed controls. In 

addition, our lab and others have established a pathological role of TSP1 in 

obesity and metabolic dysfunction (128, 144, 268). Yet, the effects of TSP1 on 

obesity-associated fatty liver disease have never been reported. In our studies, 

TSP1 deficient and wildtype controls (WT) were challenged with either LF or HF 

diet for 16 weeks. Although TSP1 deficiency did not reduce final body weights 

(Figure 4.1 C) or liver weights (Figure 4.1 D) after 16-week HF feeding, HF-fed 

TSP1 deficient mice demonstrated a significant reduction in hepatic triglyceride 

content (Figure 4.1 E; P<0.01) represented by H&E staining (Figure 4.1 F). 

Further, TSP1 deficiency was associated with significantly reduced TNFα and 

collagen IαI mRNA levels under HF diet conditions (Figures 4.1 G, H; P<0.05) 

indicating a protective role against hepatic inflammation and fibrosis, 

respectively.  

4.3.2 TSP1 deficiency alters hepatic genes related to lipid 

metabolism 

To examine what mechanisms in the liver may be contributing to reduced 

lipid accumulation in TSP1 deficient mice, several metabolic pathways were 

examined by qPCR. Fatty acid oxidation genes, peroxisome proliferator-activated 

receptor gamma coactivator 1-alpha (PGC1α), the coactivator responsible for 

regulating mitochondrial function, peroxisome proliferator-activated receptor 

alpha (PPARα), the key nuclear receptor driving expression of other fatty acid 

oxidation genes, and carnitine palmitoyltransferase 1A (Cpt1A), an enzyme 
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responsible for the rate limiting step of fatty acid oxidation, were measured and 

no differential gene expression was observed between all four groups. This 

suggests increased lipid oxidation is not contributing to reduced hepatic lipid 

content (Figure 4.2 A).  Key genes associated with gluconeogenesis, 

phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6P), 

were downregulated in HF-fed TSP1 deficient mice (Figure 4.2 B; P<0.05 for 

G6P), suggesting enhanced gluconeogenesis is not driving reduced hepatic lipid.  

Interestingly, expression of peroxisome proliferator-activated receptor 

gamma (PPARγ) and sterol regulatory element-binding protein 1c (SREBP1c), 

two positive regulators of lipogenesis and lipid storage, were significantly 

reduced in the livers of HF-fed TSP1 deficient mice compared with HF-fed 

controls (Figure 4.2 C; P<0.01 and P<0.05, respectively). Moreover, mRNA 

levels of microsomal triglyceride transfer protein (MTTP), a critical regulator of 

lipoprotein assembly and triglyceride secretion, was also measured. HF-fed 

TSP1 deficient mice demonstrated a significant reduction in MTTP (Figure 4.2 D; 

P<0.0001), which would suggest that enhanced lipoprotein/triglyceride secretion 

is not preserving hepatic morphology under HF conditions. Finally, key genes 

implicated in fatty acid uptake in fatty liver disease models were measured. 

Although a slight reduction, no significant differences were observed in CD36 or 

fatty acid transport proteins (FATPs) 2 and 5 mRNA levels (Figure 4.2 E). 

4.3.3 CD47 deficiency protects mice from diet-induced fatty liver 

CD47 is a potent receptor for TSP1.  To explore its role in a fatty liver 

disease phenotype, CD47 deficient and wildtype littermate controls (WT) were 
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randomized into groups and challenged with either a LF or HF diet for 16 weeks. 

Consistent with our previously published reports using age-matched CD47 

deficient and C57BL/6 control mice (156), HF-fed CD47 deficient mice gained 

significantly less body weight (Figure 4.3 A; P<0.01) and had significantly smaller 

livers by absolute weight (Figure 4.3 B; P<0.0001) and as a percentage of body 

weight (Figure 4.3 B; P<0.01) when compared with HF-fed wildtype littermate 

controls after 16 weeks of diet challenge. All groups consumed comparable 

amounts of food daily and no significant differences in plasma lipid parameters 

(free fatty acids, triglyceride, or total cholesterol levels) were observed (data not 

shown). In addition, liver morphology and function was examined. Histological 

H&E and oil red O staining (Figure 4.3 C, D) confirmed the absence of CD47 

significantly reduced hepatic triacylglycerol content (Figure 4.3 E; P<0.05) after 

16 weeks of HF diet challenge. Moreover, plasma alanine aminotransferase 

(ALT) levels, a common indicator of hepatic dysfunction, were significantly 

reduced in HF-fed CD47 deficient mice compared with HF controls (Figure 4.3 F; 

P<0.01). These studies suggest CD47 deficiency protects mice against diet-

induced fatty liver.  

4.3.4 CD47 deficiency reduces obesity-associated hepatic 

inflammation and fibrosis 

It has been well-characterized that diet-induced fatty liver is associated 

with elevated inflammation which drives the development of fibrosis (263). It has 

also been shown that CD47 deficiency protects against adipose tissue and 

systemic inflammation under obese conditions, but effects on the liver have not 
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been explored. To further characterize the liver phenotype observed in our mice, 

immunohistochemistry (IHC), collagen staining, and quantitative PCR (qPCR) 

were completed. It has been suggested that fatty liver-associated inflammation is 

due to an increase in macrophage recruitment rather than resident macrophages 

(Kupffer cells) (174). Although IHC demonstrates macrophage presence by 

staining of F4/80 in all groups (Figure 4.4 A), CD47 deficiency significantly 

reduces the number of macrophages present within the livers of HF-challenged 

mice to levels comparable to the LF groups (Figure 4.4 B; P<0.05). Moreover, 

qPCR confirmed HF-fed controls had elevated levels of inflammatory markers 

TNFα, MCP1, and CD11c, while CD47 deficiency in HF-fed animals completely 

restored inflammatory markers to that of the LF control animals (Figure 4.4 C; 

P<0.05). 

Further, HF-fed controls have two-fold more collagen deposition as 

demonstrated by Sirius Red staining compared with HF-fed CD47 deficient mice 

(Figures 4.5 A, B; P<0.05). We confirmed a reduction in fibrosis with qPCR. 

Consistently, HF-fed controls had elevated levels of collagen IαI, collagen III, and 

collagen IV gene expression (Figure 4.5 C; P<0.05), which have previously been 

identified as fibrotic markers of NAFLD (34, 64, 229). Together, these data show 

HF-fed CD47 deficient mice exhibit reduced diet-induced hepatic inflammation 

and fibrosis.  
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4.3.5 CD47 deficiency regulates lipogenic gene expression in a diet-

induced fatty liver model 

To further elucidate the mechanism for reduced lipid deposition within the 

livers of HF-fed CD47 deficient mice, qPCR was utilized to examine expression 

of fatty acid oxidation, gluconeogenic, triglyceride secretion, lipogenic, and fatty 

acid uptake genes. Expression of fatty acid oxidation genes, PGC1α, PPARα, 

and Cpt1A, were comparable between the four groups (Figure 4.6 A), suggesting 

increased fatty acid oxidation is not contributing to reduced lipid deposition in the 

liver of HF-fed CD47 deficient mice. Second, key genes associated with 

gluconeogenesis, Pepck and G6P, were measured and showed no differential 

regulation between genotypes (Figure 4.6 B). Consistent with HF-fed TSP1 

deficient mice (Figure 4.2 C), HF-fed CD47 deficient mice exhibited a significant 

reduction in both lipogenic genes, PPARγ and SREBP1c (Figure 4.6 C; P<0.01). 

No differential expression of MTTP was observed indicating reduced lipid within 

the liver is not a result of elevated triglyceride secretion to peripheral tissues 

(Figure 4.6 D). Finally, genes involved in fatty acid uptake were measured. CD47 

deficiency was associated with a significant reduction in CD36 mRNA levels in 

HF-fed mice (P<0.0001); however, no differences were observed in fatty acid 

transport proteins (FATPs) 2 and 5 (Figure 4.6 E). 

4.3.6 TSP1 and CD47 deficiency reduces hepatic oxidative stress in a 

diet-induced fatty liver model 

ROS production has been shown to play a causal role in the progression 

of NAFLD which results in inflammation and insulin resistance (19). Our studies 
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demonstrate a significant reduction in oxidative stress in both TSP1 and CD47 

deficient livers in a diet-induced fatty liver model. TSP1 deficiency under HF 

conditions was associated with a reduction in the cleavage of H2DCFDA to DCF, 

a common indicator of oxidative stress, in liver tissue homogenates (Figure 4.7 

A; P<0.001). Lipid peroxidation, the degradation of lipids by free radicals, is 

another cellular source of ROS that has been implicated in the pathogenesis of 

fatty liver disease (271). Malondialdehyde (MDA), a potent byproduct of 

incomplete lipid peroxidation, was measured in whole liver tissue as an indication 

of lipid peroxidation. As expected, HF diet challenge was associated with a 

significant increase in MDA levels (P<0.001); however HF-fed TSP1 deficient 

mice demonstrated a significant reduction in hepatic MDA accumulation 

compared with HF-fed controls (Figure 4.7 B; P<0.05). Together, these results 

suggest that TSP1 deficiency is protective against the development of hepatic 

ROS under obese conditions.  

Similarly, HF-fed CD47 deficient mice exhibited a significant reduction in 

ROS production compared to HF-fed controls demonstrated by the production of 

DCF in whole liver tissue homogenates (Figure 4.7 C; P<0.05). Moreover, HF-fed 

controls exhibited a two-fold increase in lipid peroxidation compared with LF 

controls as indicated by levels of MDA within whole liver tissue (P<0.05). 

However, HF-fed CD47 deficient mice are protected against hepatic lipid 

peroxidation (Figure 4.7 D; P<0.05). Together, these studies suggest CD47 

deficiency is protective against oxidative stress in the liver under HF conditions.   
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4.3.7 CD47 expression is upregulated by high fat diet in the liver 

Diet regulation of CD47 expression in the liver is largely unknown. HepG2 

cells, an immortalized human hepatoma cell line, are commonly utilized as an in 

vitro model for hepatic metabolic function. We were able to demonstrate that 

CD47 expression is significantly elevated in a dose dependent manner after 24-

hour fatty acid treatment (Figure 4.8 A; P<0.01 with 50µM palmitate treatment, 

P<0.0001 with 200µM palmitate treatment). In addition, we isolated primary 

hepatocytes from C57BL6/J mice after 3, 7, and 14 days of LF or HF feeding. 

CD47 protein expression was significantly increased on hepatocytes from HF-fed 

mice after just 14 days of diet challenge (Figure 4.8 B; P<0.05). These data 

suggest CD47 protein expression is upregulated by over-nutrition in the liver.  

4.3.8 CD47 blockade and deficiency are associated with reduced FFA 

and TSP1-induced ROS development in hepatocytes in vitro 

To define the role of CD47 in hepatocyte function, we performed in vitro 

studies utilizing purified full length TSP1 and fatty acid treatments. It has been 

previously reported that acute treatment with FFAs triggers ROS production in 

HepG2 cells (44, 59, 80). Consistent with the literature, we demonstrate an 

increase in ROS production after 6-hour palmitate treatment in HepG2 cells as 

indicated by the fluorescent probe DCF (Figure 4.8 C; P<0.05). Similarly, 6-hour 

TSP1 treatment was sufficient to induce comparable levels of ROS in these cells 

(Figure 4.8 C; P<0.05). GST had no effect on ROS production. However, 

pretreatment with a CD47 functional blocking antibody clone B6H12 (2µg/mL) for 

30 minutes prior to TSP1 treatment attenuated ROS production (Figure 4.8 D; 
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P<0.05), suggesting TSP1-induced ROS is partially facilitated through CD47 

activation. 

To confirm the role of CD47 in ROS production within hepatocytes, 

primary hepatocytes were isolated from age-matched male wildtype, CD47 

deficient, and CD36 deficient mice. CD36 deficient primary hepatocytes were 

also included within this study because some actions of TSP1 in other cell types 

are facilitated through the scavenger receptor/fatty acid transport protein, CD36, 

and hepatocyte expression of CD36 positively correlates with lipid accumulation 

in the liver (104, 129). After 6-hour palmitate treatment, both CD47 deficient and 

CD36 deficient primary hepatocytes demonstrated a significant reduction in ROS 

production compared to wildtype cells (Figure 4.8 E; P<0.05). Interestingly, after 

TSP1 treatment for 6 hours, only CD47 deficient hepatocytes exhibited protection 

from ROS production (Figure 4.8 F; P<0.01). These data support the idea that 

CD47 deficiency is protective against both fatty acid and TSP1-induced ROS 

production within hepatocytes; however, TSP1 activity is dependent on CD47.  

4.4 Discussion 

CD47, a transmembrane receptor, has been extensively studied in 

regards to cancer and immune cell function and migration (28, 193). In addition, 

CD47 activation by thrombospondin 1 (TSP1), a matricellular protein, contributes 

to oxidative stress in a number of tissues (107, 109). Although oxidative stress 

has been implicated as a causal mechanism for the development of non-

alcoholic fatty liver disease (NAFLD) (122, 189, 199), the role of the TSP1-CD47 

axis in hepatic metabolic dysfunction has never been defined. The aim of this 
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study was to examine whether TSP1 and CD47 are involved in the pathogenesis 

of diet-induced fatty liver by mediating ROS production. In the current study, we 

demonstrated for the first time in two separate cohorts of mice that TSP1 and 

CD47 deficiency protected against hepatic lipid accumulation and suppressed 

fatty liver-associated inflammation and fibrosis in a HF diet-induced NAFLD 

model. Moreover, both genotypes were associated with a significant reduction in 

hepatic ROS production despite HF diet challenge. In addition, hepatic TSP1 and 

CD47 protein expression positively correlate with HF diet and in vitro studies 

confirmed that CD47 deficiency or pharmacological blockade significantly 

reduced oxidative stress associated with acute fatty acid or TSP1 treatment. 

Together, our studies suggest that both TSP1 and CD47 deficiency protect 

against hepatic lipid accumulation in a rodent NAFLD model by suppressing ROS 

production. 

In the current studies, TSP1 deficient mice when challenged with HF diet 

did not exhibit reduced body weight or liver size, despite a reduction in liver 

triglyceride content (Figure 4.1). On the other hand, CD47 deficient mice were 

significantly protected against diet-induced obesity and demonstrated 

significantly smaller livers after HF diet challenge (Figure 4.3). Differences in 

body weight and liver size suggest unique mechanisms within TSP1 deficient and 

CD47 deficient animals that account for altered lipid partitioning under HF 

conditions. Although evidence is clear linking the TSP1-CD47 axis to ROS 

production in the liver, independent effects of TSP1 and CD47 on lipid 

homeostasis require further investigation.  
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Hallmarks of NAFLD progression include the accumulation of ectopic fat 

within hepatocytes, activated inflammatory pathways, and fibrogenesis. In our 

current studies, both TSP1 deficient and CD47 deficient animals were 

significantly protected against hepatic lipid deposition. To further characterize the 

potential mechanisms leading to the protective effects of TSP1/CD47 deficiency, 

a number of genes that regulate lipid metabolism were examined in both groups 

of animals. In both in vivo studies, no changes in genes relating to fatty acid 

oxidation or gluconeogenesis were observed, suggesting that reduced lipid 

accumulation in livers from HF-fed TSP1 deficient and CD47 deficient mice was 

not due to increased fuel utilization or enhanced glucose production from fatty 

acid byproducts.  

Hepatic CD36 levels were suppressed in HF-fed TSP1 deficient mice and 

significantly downregulated in HF-fed CD47 deficient mice, suggesting a potential 

reduction in fatty acid uptake; however, no changes were observed in liver 

specific fatty acid transport proteins 2 and 5 (FATP2, FATP5) in either group of 

animals. Because CD36 is a scavenger receptor, the reduction in mRNA levels 

could be a result of reduced immune cell infiltration into the liver tissue instead of 

a reduction in hepatocyte-specific expression. Therefore, reduced fatty acid 

uptake might not be responsible for reduced hepatocyte intracellular lipid 

accumulation. Interestingly, mRNA levels of MTTP were significantly reduced in 

HF-fed TSP1 deficient livers and no change was observed in HF-fed CD47 

deficient livers; nevertheless, enhanced lipoprotein/triglyceride secretion is not 

contributing to reduced hepatic lipid. Further analysis demonstrated that 
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expression of lipogenic genes, SREBP1c and PPARγ, were significantly reduced 

in both HF-fed TSP1 deficient and CD47 deficient animals. Further analysis 

demonstrated that downstream target genes of SREBP1c, including Scd1 and 

Fasn, were not differentially regulated. Together these results suggest that 

reduced de novo lipogenesis might be a contributor to decreased liver fat 

accumulation. Because SREBP1c activation is driven by insulin, these findings 

further support the claim that CD47 deficient mice have increased insulin 

sensitivity due to the reduction in plasma insulin levels after fasting (data not 

shown).  

As expected with a reduction in lipid accumulation, both TSP1 deficient 

and CD47 deficiency were associated with significant protection from hepatic 

inflammation under HF conditions. Both TSP1 and CD47 have previously been 

implicated in obesity-associated inflammation and immune cell recruitment into 

adipose tissue as a result of HF diet challenge (128, 144, 156). However, the 

effects of the TSP1-CD47 interaction in diet-induced hepatic inflammation have 

never been explored.  Similar to NAFLD, other disease states such as hepatic 

ischemia reperfusion injury and liver transplantation models are driven by 

inflammation (131, 279). Previous reports have linked CD47 deficiency to 

reduced inflammation in hepatic ischemia/reperfusion models and liver 

transplantation models (105, 293). Xiao et al. established that CD47 blockade 

with a monoclonal antibody in a rat liver transplantation model reduced TSP1-

mediated expression of several key cytokines (TNFα, IL-1β, and IL-6) that 

correlate with liver injury (293). In addition, targeting CD47 with a functional 
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blocking antibody in steatotic rat livers attenuated ischemia reperfusion injury by 

suppressing inflammatory responses (292). In alignment with these reports, our 

in vivo studies demonstrated that both TSP1 and CD47 deficiency were 

associated with a significant attenuation of inflammation in a diet-induced fatty 

liver model.  

Fibrogenesis, or increased collagen deposition within the liver, is a result 

of activated hepatic stellate cells (HSCs). The presence of fibrosis within the liver 

is indicative of more severe cases of nonalcoholic steatohepatitis (NASH) and is 

associated with increased likelihood of developing full blown cirrhosis. HSCs are 

activated by increased lipid accumulation within hepatocytes and in response to 

proinflammatory cytokines released by resident immune cells (Kupffer cells) and 

hepatocytes (289, 295). In our study, the presence of significant collagen 

deposition in the liver is observed in HF-fed WT mice; however, both TSP1 and 

CD47 deficiency are associated with downregulated collagen mRNA levels. Most 

likely, this reduction is secondary to the reduction of lipid accumulation and 

inflammatory markers observed in the livers of TSP1 and CD47 deficient mice.  

Recent studies propose that oxidative stress precedes the onset of 

NAFLD and drives the development of inflammation, lipid mishandling, and 

insulin resistance (97). Several mechanisms within the liver may contribute to a 

deleterious oxidative environment during the development of NAFLD. Our in vitro 

studies utilizing HepG2 cells and primary hepatocytes confirm our in vivo findings 

that TSP1-CD47 contributes to hepatocyte ROS production, yet the mechanism 

has yet to be determined.  
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The most common contributor to cytotoxic oxidative stress is 

mitochondria-derived ROS from compromised substrate oxidation and inability to 

manage lipid burden (180). In addition, reduced expression and impaired function 

of antioxidant enzymes augment intracellular oxidative damage (76, 272).  Gene 

expression analysis of downstream targets of Nrf2, a master regulator of 

antioxidant enzymes, shows no differential regulation in HO-1, GST, or NQO1 

(data not shown). This suggests that preservation of antioxidant pathways are 

not contributing to our reduction in ROS. Interestingly, previous work by Csanyi 

et al. and Yao et al. demonstrated TSP1 directly activates superoxide production 

via NADPH oxidases (NOXs) in multiple cell culture models (52, 298); however 

these effects were presented independent of CD47 activation. In our model, we 

clearly demonstrated that lack of TSP1 and its receptor, CD47, reduced ROS 

levels and that acute treatment with TSP1 induced ROS production to levels 

similar to FFAs which was partially attenuated by a CD47 functional blocking 

antibody.  Our studies are consistent with previous reports presenting TSP1 as a 

unique, extracellular ligand that may modulate the intracellular oxidative 

environment. These effects may be through multiple mechanisms - direct 

activation of oxidative enzymes, such as the NOX family, and through CD47-

mediated pathways.  

In addition to CD47, CD36 is another receptor for TSP1. It has been 

shown that uptake of myristic acid via the fatty acid translocase activity of CD36 

was inhibited by TSP1 in endothelial cells (104). To further determine whether 

the effects on ROS production in hepatocytes were specific to CD47, CD47 
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deficient primary hepatocytes as well as CD36 deficient primary hepatocytes 

were utilized for in vitro studies.  Interestingly, we found that both CD47 and 

CD36 deficiency reduced palmitate-stimulated ROS production, yet only CD47 

deficiency protected against TSP1-induced ROS production.  Without changes of 

CD36 levels on CD47 deficient hepatocytes (data not shown), the mechanism of 

reduced palmitate-stimulated ROS production in CD47 deficient hepatocytes is 

unknown and warrants further investigation.   

In conclusion, our studies suggest a novel role for the TSP1-CD47 

interaction in the development of fatty liver-associated oxidative stress.  Because 

hepatic levels of TSP1 and CD47 were elevated under high fat conditions (Figure 

4.1, 4.8), we believe TSP1-mediated ROS production through CD47 activation 

could potentially augment the noxious cellular environment commonly observed 

in obesity-induced fatty liver models. These findings expand the pathological 

implications of TSP1-CD47 signaling to include obesity-associated fatty liver 

disease. 
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Figure 4.1 Liver phenotype of TSP1 deficient and control mice after 16 week 

LF/HF diet challenge  

WT mice were fed with LF or HF diet for 16 weeks and whole liver tissue TSP1 

protein levels (A) and mRNA levels (B) were determined. Body weights (C) and 

liver weights (D) are presented from WT and TSP1 deficient mice challenged 

with either LF or HF diet for 16 weeks. Hepatic TG levels were measured by 

commercial kit (E) and lipid accumulation in the liver was visualized with H&E 

staining in all four groups of mice (F). Representative images are shown. Scale 

bars represent 1000µm. Gene expression of the proinflammatory cytokine, 

TNFα, and Collagen 1α1 were determined by real-time PCR and the delta CT 

method (G, H) (n=10-15 mice/group). Data are presented as mean ± SE, 

*P<0.05, **P<0.01, ****P<0.0001. LF: low fat; HF: high fat; WT: wildtype; TG: 

triglyceride  
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Figure 4.2 Metabolic gene expression in the livers of TSP1 deficient and WT 

controls after 16 week LF/HF feeding 

mRNA levels of genes involved in several hepatic metabolic pathways including 

fatty acid oxidation (A), gluconeogenesis (B), lipogenesis (C), TG secretion (D), 

and fatty acid uptake (E) were measured by real-time PCR and the delta Ct 

method (n=10-15 mice/group). Data are presented as mean ± SE, *P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001. FA: fatty acid; TG: triglyceride. 
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Figure 4.3 Liver phenotype of CD47 deficient and control mice after 16 

week LF/HF diet challenge 

Body weights (A) and liver weights (B) are presented from WT and CD47 

deficient mice challenged with either LF or HF diet for 16 weeks. Lipid 

accumulation in liver from four groups of mice was visualized by H&E (C) and oil 

red O staining (D). Representative images are shown. Liver triglyceride levels 

were quantified (E) and plasma ALT levels were measured by commercial kit as 

an indicator of hepatic function (F) (n=7-11 mice/group). Scale bars represent 

1000µm. Data are presented as mean ± SE, *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001. ALT: alanine aminotransferase; BW: body weight; LF: low fat; HF: 

high fat; WT: wildtype; TG: triglyceride. 
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Figure 4.4 Obesity-associated hepatic inflammation  

Hepatic macrophage content was determined by anti-F4/80 staining (A). The 

positive staining is represented by a brown color and indicated by white arrow 

heads. Representative images for all four groups are shown. Scale bars 

represent 1000µm. The percent of total area positively stained (B) was 

determined using threshold features of the NIS Elements software by Nikon 

Instruments. Gene expression for proinflammatory cytokines in the liver (C) was 

determined by real-time PCR and the delta CT method (n=7-11 mice/group). 

Data are presented as mean ± SE, *P<0.05, **P<0.01. 
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Figure 4.5 Obesity-associated hepatic fibrosis  

Collagen deposition in the liver was determined by Sirius red staining (A). The 

positive stain is represented by a pink color and indicated by white arrow heads. 

Representative images for all four groups are shown. Scale bars represent 

1000µm. The percent of total area positively stained (B) was determined using 

features of the NIS Elements software by Nikon Instruments. Gene expression 

for collagen (C) in the liver was determined by real-time PCR and the delta CT 

method (n=7-11 mice/group). Data are presented as mean ± SE, *P<0.05. 
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Figure 4.6 Metabolic gene expression in the livers of CD47 deficient and WT 

controls after 16 week LF/HF feeding  

Expression of metabolic genes involved in (A) fatty acid oxidation, (B) 

gluconeogenesis, (L) lipogenesis, (D) triglyceride secretion, and (E) fatty acid 

uptake were measured by real-time PCR and the delta Ct method (n=7-11 

mice/group). Data are presented as mean + SE, *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001.    
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Figure 4.7 Hepatic oxidative stress  

ROS was determined by the abundance of DCF and the levels of the lipid 

peroxidation byproduct, MDA, in whole liver tissue homogenates from both 

cohorts of mice. HF-fed TSP1 deficient mice (A, B) and CD47 deficient mice (C, 

D) were protected against the production of ROS and MDA accumulation in 

whole liver tissue. (n=7-11 mice/group). Data are presented as mean ± SE, 

*P<0.05, **P<0.01, ***P<0.001. MDA: malondialdehyde; ns: no significance.   
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Figure 4.8 FFA and TSP1-induced ROS development in hepatocytes in vitro 

HepG2 cells were cultured and treated with BSA only, 50µM palmitate, or 200µM 

palmitate for 24 hours. CD47 expression in cell lysates was determined by 

western blotting (A). Wildtype mice were fed with either LF or HF diet for 3, 7, or 

14 days and primary hepatocytes were isolated to examine CD47 levels by 

western blotting (B) (n=3 mice/group). HepG2 cells were seeded at a density of 

1x104/well and primary hepatocytes were seeded at a density of 2x104/well of a 

white, clear-bottom 96-well cell culture plate for ROS quantification. Treatment 

media for HepG2 cells included serum-free MEM + 0.5% BSA + 1% penicillin-

streptomycin to avoid residual TSP1 expression. HepG2 cells were treated with 

purified TSP1 (2µg/mL), BSA, or palmitate (200µM) for 6 hours and then DCF in 

cells was measured by a fluorometric plate reader (C). HepG2 cells were 

pretreated with either IgG control or a CD47 functional blocking antibody clone 

B6H12 (2µg/mL) for 30 minutes and then treated with purified TSP1 (2µg/mL) for 

6 additional hours. DCF was measured (D). Treatment media for primary 

hepatocytes included serum-free Williams Media E + 0.5% BSA + 1% penicillin-

streptomycin. Primary hepatocytes isolated from wildtype, CD47-/-, or CD36-/- 

mice were treated with palmitate (200µM) (E) or purified TSP1 (2µg/mL) (F) for 6 

hours and ROS production indicated by DCF was measured. Data are presented 

as mean ± SE (n= 3 experiments), *P<0.05, **P<0.01, ****P<0.0001. Ab; 

antibody; LF: low fat; HF: high fat; PA: palmitate; BSA: bovine serum albumin; 

RFU: relative fluorescence unit. 
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Section 5:  GENERAL DISCUSSION  

5.1 Summary 

Literature suggests that identifying mechanisms that augment 

inflammation, oxidative stress, and mitochondrial dysfunction in metabolic tissues 

may be a viable therapeutic target for obesity and its associated complications. 

The studies included in this dissertation are the first to provide evidence that 

CD47 may be a novel mechanism contributing to metabolic dysfunction. In 

addition to its well-established functions, we have demonstrated a unique 

functional role of CD47 in metabolic tissues including white and brown adipose 

tissue, skeletal muscle, and the liver, which are exhibited in Figure 5.1. The 

central hypothesis of these studies is that CD47 contributes to obesity-associated 

metabolic dysfunctions through diverse mechanisms including inflammation, 

energy utilization, and TSP1-mediated oxidative stress. Specifically, we 

hypothesized that lack of CD47 would protect against obesity-associated 

inflammation, preserve healthy glucose homeostasis, and preserve energy 

homeostasis despite high fat diet challenge. In addition, we hypothesize that the 

TSP1-CD47 axis would lead to increased hepatic oxidative stress within a fatty 

liver model. 

In our current studies, CD47 deficiency was consistently associated with a 

significantly leaner phenotype. Unlike a previous report which suggested that the 

lean phenotype in CD47 deficient mice under basal conditions was attributed to 

enhanced skeletal muscle function (74), we saw no change in several genes 

critical for enhanced mitochondrial respiration in skeletal muscle within a diet-
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induced obesity paradigm. This led us to examine other metabolically active 

tissues.  

As described in Section 1, adipose tissue will expand through hypertrophy 

and hyperplasia to sequester increased lipid burden under obese conditions. 

Similarly, the liver is highly efficient at storing TG as a mechanism to protect 

against dyslipidemia. Findings in both aims of this dissertation demonstrate that 

CD47 deficiency is associated with smaller white adipocyte/adipose tissue depot 

size, preserved BAT morphology, and reduced hepatic lipid accumulation despite 

HF diet. It is likely that significantly reduced systemic, hepatic, and adipose tissue 

inflammation is a result of reduced lipid accumulation and ultimately contributes 

to the preserved glucose homeostasis and insulin sensitivity demonstrated in 

CD47 deficient mice after 16 weeks of HF diet challenge.   

As demonstrated in Section 3, CD47 deficiency enhanced BAT-dependent 

energy expenditure through increased UCP1-mediated uncoupling. This specific 

phenotype may be a result of preserved cGMP/PKG signaling within BAT. 

Studies with isolated mitochondria confirmed that this increased energy 

expenditure was driven by FFAs. Together, enhanced white adipose tissue 

lipolysis perpetuated BAT activation by providing a constant energy source for 

BAT energy expenditure. From these results, it could be hypothesized that 

reduced hepatic lipid is also a result of increased peripheral energy needs. It has 

not been determined whether increased fuel availability drives mitochondrial 

function in BAT or whether increased energy needs induce rapid lipid turnover in 

CD47 deficient mice.  
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Our focus in Section 4 was the contribution of the TSP1-CD47 axis to 

hepatic oxidative stress under HF conditions. It is difficult to clearly elucidate 

whether suppressed hepatic ROS production in vivo is directly due to TSP1-

CD47 or a secondary effect of reduced hepatic lipid accumulation. However, in 

vitro studies clearly show that TSP1 is capable of inducing ROS production in 

hepatocytes and that blockade of CD47 attenuates this phenomenon. Because 

these studies were completed in hepatocytes under basal conditions, this 

supports the idea that TSP1-CD47 regulates hepatocyte oxidative stress 

independent of obesity. We believe the increased TSP1 and CD47 protein 

expression in the liver under HF conditions augments ROS production and that 

these effects may be in conjunction and/or independent of lipid accumulation. In 

addition, TSP1 deficiency had no effect on body weight/liver weight, whereas 

CD47 deficiency was associated with a significant reduction in both. However, 

both models consistently demonstrated improvements in the oxidative 

environment of the liver, further supporting the idea this mechanism regulates 

ROS production despite changes in global lipid partitioning. This leads us to 

conclude that this signaling axis may be a novel mechanism contributing to fatty 

liver disease-associated oxidative stress. 

5.2 TSP1-independent Effects in CD47 Deficient Mice  

The justification for our studies using CD47 deficient mice in a diet-

induced obesity paradigm was to determine whether this specific cell receptor 

was facilitating TSP1-mediated metabolic dysfunction under obese conditions. 

Using the same experimental design for both cohorts of mice, TSP1 deficient and 
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CD47 deficient mice were protected against obesity-associated complications 

after 4-month HF diet challenge (100, 128, 144, 156). Several protective 

phenotypes were shared between the two rodent models; however, some effects 

were specific to each genotype. These effects are highlighted in Figure 5.2. In 

both cohorts, mice were protected against obesity-associated inflammation, 

glucose intolerance, and hepatosteatosis (144, 156). Interestingly, the 

development of diet-induced obesity was not consistent between studies. TSP1 

deficient mice were obese and metabolically healthy, whereas CD47 deficient 

mice were resistant to obesity development which was attributed to enhanced 

BAT-mediated energy expenditure. This suggests TSP1-independent effects in 

CD47 deficient mice  contribute to the observed phenotypes when challenged 

with HF diet. Further studies are warranted to identify novel extracellular ligands 

or lateral associations/cell receptor complexes for CD47 that may regulate the 

development of obesity and energy expenditure.  

5.3 Differential Effects of CD47 Deficiency on Metabolic Tissues 

The effects of CD47 deficiency on metabolic tissues under obese 

conditions is clearly illustrated in Figure 5.1. Although there seems to be a link 

between CD47 deficiency and increased mitochondrial biogenesis in liver, 

muscle, and adipose tissues, metabolic function is altered in a tissue-specific 

manner in the absence of CD47. For example, CD47 deficiency enhances FFA-

mediated uncoupling and energy expenditure in BAT; however, the same effects 

are not observed in WAT. While the studies included in this dissertation do not 

define what mechanisms contribute to tissue-specific CD47 function, several 



 
  

 149   
   

factors have been identified that may contribute to the unique effects of CD47 

deficiency in different tissues.  

CD47 has been shown to undergo post-transcriptional modifications that 

may account for varying functions in different metabolic tissues. As a result of 

alternative splicing, four isoforms (1-4) of CD47 have been established that solely 

differ by the length of their cytoplasmic tail (147, 212). These isoforms are highly 

conserved between rodents and humans and vary in length from 3-36 amino 

acids long. Isoforms 2 and 4 are most commonly observed. Rodent muscle fibers 

have been shown to express isoforms 1, 2, and 3, while isoforms 2 and 3 are 

predominantly expressed in the liver (212). To date, specific isoform expression 

in adipose tissue has not been determined. CD47 may also undergo post-

translational modifications as well. Studies have determined that the extracellular 

N-terminus of CD47 may be highly glycosylated in a tissue-specific manner (28), 

which would affect the affinity of ligand binding and partner receptor interactions. 

Tissue-specific isoform expression and structural changes suggest unique 

functional roles of CD47. 

 In addition, lateral associations and intramembrane cell receptor 

complexes including CD47 may differ between cell types. For example, CD47 

has been shown to physically associate with the CD14/TLR4 complex in rodent 

and human macrophages (246) and laterally associates with vascular endothelial 

growth factor receptor-2 (VEGFR2) in endothelial cells (119). Downstream 

functions of CD47 activation may be different depending on the lateral 

associations in various cell types. Finally, varying expression levels of CD47 in 
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different tissues (Figure 1.4) as well as the concentration of the specific CD47 

ligand/binding partner will determine activity levels and function.  

5.4 Potential Mechanisms Linking CD47 and Energy Expenditure 

5.4.1  cGMP/PKG Signaling and Mitochondrial Function 

In the current studies, efforts were made to identify the mechanism 

contributing to increased mitochondrial number and function in metabolic tissues. 

It is already well-established that CD47 activation has inhibitory effects on 

cGMP/PKG signaling in the vasculature (109, 216, 218). These effects are also 

depicted in Figure 1.4. Now, there are broader implications for cGMP/PKG 

signaling in metabolic tissues and energy homeostasis. In 2004, Nisoli et al. 

determined that the NO/cGMP pathway stimulated mitochondrial biogenesis and 

that reduced eNOS-dependent production of NO in the liver and muscle resulted 

in reduced mitochondrial area and density (188). Later in 2007, it was determined 

that inhibiting the degradation of cGMP pharmacologically with the 

phosphodiesterase-5 inhibitor, sildenafil, enhanced whole body energy 

expenditure in rodents and protected against diet-induced obesity (10). It was at 

this time the NO/cGMP signaling cascade was deemed a critical component 

necessary for systemic regulation of energy and fuel substrate homeostasis 

through the promotion of mitochondrial biogenesis. Subsequent studies 

confirmed elevated cGMP/PKG activity is protective against the development of 

obesity, reduces obesity-associated inflammation, and promotes mitochondrial 

biogenesis in skeletal muscle (9, 93, 185, 214, 260). Consistent with previous 

reports (9, 74, 172), CD47 deficiency was associated with increased cGMP/PKG 
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levels in skeletal muscle basally; however, no differences were observed under 

HF conditions. This indicates cGMP/PKG-mediated skeletal muscle was not 

contributing to the protective effects of CD47 deficiency.    

Recently, a number of publications have highlighted the role of 

cGMP/PKG signaling in healthy BAT expansion and energy metabolism. Similar 

to HF-fed CD47 deficient mice, HF-fed PKG-transgenic mice exhibited 

significantly smaller adipocytes and elevated mtDNA number in brown adipose 

tissue and skeletal muscle (172). Haas et al. clearly showed that PKG deficiency 

blunted brown adipogenesis (90). Further, Balkow et al. demonstrated that 

cGMP/PKG is necessary for BAT mitochondrial-dependent energy expenditure 

(14). In our studies, cGMP/PKG levels were reduced in HF-fed WT BAT as 

expected; however CD47 deficiency was associated with increased levels of 

cGMP/PKG despite HF diet challenge. This preservation of signaling correlated 

with enhanced BAT function in CD47 deficient mice. Combining previous studies 

with our findings, it suggests that impaired cGMP/PKG signaling within BAT 

could play a causal role in obesity-associated metabolic dysfunction.  

5.4.2 Regulation of Mitochondrial Function by c-Myc 

Another potential mechanism linking CD47 to increased mitochondrial 

function is the master regulatory gene, c-Myc. It has been shown that elevated c-

Myc expression positively correlates with enhanced mitochondrial function in 

both hepatocytes and renal cells (143, 302). Interestingly, CD47 deficiency and 

pharmacological blockade of CD47 significantly upregulate c-Myc expression in a 

number of cell types (120, 220). Although the focus of these studies was on cell 
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proliferation and self-renewal, additional studies are necessary to examine 

whether the regulation of c-Myc expression by CD47 has any implications on 

mitochondrial density or function in diet-induced obesity models.  

5.4.3 BNIP3-dependent Mitochondrial Dysfunction 

CD47 has also been shown to modulate intracellular Bcl2/adenovirus E1B 

19-kDa interacting protein (BNIP3) activity within the cell (136). Upon activation 

of CD47 by TSP1, BNIP3 migrates from the cell membrane to the mitochondria 

and induces mitochondrial dysfunction and subsequent cell death in immune 

cells (135, 136). Glick et al. demonstrated that BNIP3 is largely expressed in the 

liver and may be involved in lipid metabolism (83); however, no studies to date 

have examined the contribution of BNIP3-mediated mitochondrial dysfunction in 

the liver under obese conditions. 

5.5 Role of CD47 in Obesity-associated Inflammation 

Although our studies identified a novel role for CD47 in energy 

homeostasis, CD47 has previously been implicated in inflammatory stress 

pathways and immune cell migration. The protective phenotype observed in HF-

fed CD47 deficient mice could suggest a potential dual function of CD47, 

regulating both energy homeostasis as well as the inflammatory response to 

increased lipid burden in obese conditions. Whether these effects on 

inflammation are secondary to adiposity and lipid deposition has yet to be 

determined. 
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5.5.1 TLR4-dependent Mechanisms 

It has been confirmed that CD47 is laterally associated with the CD14/toll-

like receptor 4 (TLR4) complex in macrophages (246). This specific cell 

membrane complex is responsible for recognizing pathogens, activating the 

innate immune system in times of stress through a NFκB-dependent mechanism, 

and promoting the secretion of several proinflammatory cytokines/chemokines 

(153). Recently, reports suggest that in addition to lipopolysaccharide (LPS) 

recognition, TLR4 can be activated by FFAs in macrophages and adipocytes and 

may be a novel mechanism linking obesity and inflammation (236, 240). Other 

groups have shown that TLR4 deficiency and loss-of-function mutations have no 

conclusive effect on the development of adiposity, yet demonstrate an attenuated 

inflammatory response in adipose tissue and reduced hepatic dysfunction (158, 

236, 251). Additional studies have identified a complex role of CD47 in NFκB-

dependent inflammation. Some groups have shown that the lateral association 

between CD47 and the CD14/TLR4 complex is necessary for LPS-mediated 

activation of NFκB through the canonical TLR4 signaling pathway and that these 

effects could be independent of TSP1 signaling. It has also been shown that 

TSP1-mediated activation of CD47 is necessary to stimulate cytokine production 

in macrophages (246), suggesting that the role of CD47 in inflammation may be 

tissue and disease condition-specific. In our studies, we determined that whole 

body CD47 deficiency reduced hepatic, adipose tissue-specific, and circulating 

levels of proinflammatory cytokines, chemokines, and macrophage markers, 

including TNFα, MCP1, and CD11c. Knowing many of these genes are 
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downstream of TLR4 activation, additional studies are necessary to determine 

whether CD47 expression augments inflammation in the presence of increased 

FFA so commonly observed in obesity and fatty liver disease.   

5.5.2 Activation and Migration of Immune Cells 

For several years, it has been widely accepted that CD47 stimulates 

immune cell activation and chemotaxis. Initially, it was determined that CD47 

expression was required for neutrophil transmigration across the endothelial 

layer into injured tissues (43, 49, 149). Subsequent studies have also shown that 

T-cell migration into damaged tissues is also mediated by CD47 (11, 160). Not 

until recently was it shown that CD47 may play a role in stimulating macrophages 

to secrete proinflammatory cytokines, including IL-1β (246). Although these 

studies were not completed in diet-induced obese rodent models, many of these 

mechanisms are similar to the chronic inflammatory pathways commonly 

observed in obesity. In addition to  macrophage infiltration, T-cell and neutrophil 

recruitment into adipose tissue have also been shown to perpetuate systemic 

and adipose tissue-specific inflammation under obese conditions (62, 186).   

Previous work from our lab in addition to the studies included in this 

dissertation show that MCP1/CCR2 dependent recruitment of monocytes to 

adipose tissue depots is significantly reduced in the absence of both TSP1 (144) 

and CD47 (Figure 3.3). These findings are similar to the previously mentioned 

studies that have shown a regulatory function of CD47 in the activation and 

migration of immune cells in response to stress. Our in vitro migration studies 

provide evidence to suggest CD47 may contribute to enhanced immune cell 



 
  

 155   
   

infiltration into adipose tissue and that these effects are independent of the 

changes in adipocyte physiology. Future studies are critical for discerning 

whether CD47 is augmenting adipose tissue dysfunction through dual 

mechanisms – both immune response and alterations in energy storage. 

5.5.3 Adipose Tissue Remodeling 

A well-established source of inflammation in obesity is from adipose tissue 

expansion and cellular stress under hypertrophic conditions (252). As adipocytes 

expand to sequester lipid, stress is placed on the extracellular matrix (ECM). 

Adipose tissue macrophages (ATMs) respond to this stress by secreting 

cytokines and chemokines that recruit additional immune cells to the adipose 

tissue depot (249). Few studies have examined the role of integrins, a molecular 

link between the cell membrane and extracellular matrix proteins, in the 

development of obesity. However, some suggest that integrins play a role in the 

ECM remodeling required for adipocyte hypertrophy (63) and that impaired 

integrin signaling is protective against diet-induced obesity development through 

attenuated monocyte recruitment (68).  

As a cell membrane protein, CD47 laterally associates with various 

integrins in a number of cell types including chondrocytes, lymphocytes, 

microglia, and smooth muscle cells (126, 198, 278, 300). It has even been 

demonstrated that CD47 expression is necessary for integrin function and 

integrin-mediated interactions with several ECM structural proteins including 

fibronectin, vitronectin, and fibrinogen (146).  In this case, lack of CD47 

expression could impair integrin-mediated expansion of adipose tissue resulting 
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in smaller adipocytes and a suppressed proinflammatory profile typically 

associated with obesity. To date, studies examining this interaction under obese 

conditions have not been completed.  

5.6 Study Limitations 

5.6.1 Limitations of the Whole-body CD47 Deficient Mouse Model  

All in vivo studies within Sections 3 and 4 were completed using whole-

body CD47 deficient mice on a C57BL/6 background. As mentioned previously, 

CD47 is ubiquitously expressed throughout the body and regulates a diverse 

range of functions.  When challenged with HF diet, CD47 deficient mice exhibit a 

number of phenotypes. In order to examine the specific role of CD47 in adipose 

tissue, inflammatory responses, or hepatic function, cell-specific knockdown of 

CD47 would be incredibly beneficial to fully elucidate regulatory mechanism. At 

this time, CD47 floxed mice are not available for cell type-specific knockdown of 

CD47 via the Cre/LoxP system. An additional model that could be used to 

examine the translational implications of CD47 in vivo includes antisense 

oligonucleotides (ASOs) targeting highly conserved sequences of CD47 mRNA. 

Although it has been shown that intraperitoneal injections of ASOs are dispersed 

systemically, the highest accumulation is observed in the liver (81), providing an 

alternative to global knockdown of CD47. The use of CD47-targeted oligomers 

has been previously implemented in rodent ischemia/reperfusion, transplantation, 

and radiation models.  

In culture, ASOs and RNA interference mechanisms can also be used for 

cellular knockdown of target genes. In addition, other technologies including the 
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novel CRISPR/Cas system can identify specific DNA sequences and splice 

genetic elements within target genes. In the current studies, primary cells 

isolated from CD47 deficient mice (stromal vascular fraction and primary 

hepatocytes) were used to confirm cell specific functions of CD47 in vitro.  

5.6.2 Limitations in the Exploration of Additional CD47 

Ligands/Interactions   

 To date, studies have primarily focused on CD47 and its interactions with 

TSP1 and SIRPα. Our studies examined the TSP1-CD47 interaction in regards to 

metabolic function; however, evidence suggests our findings related to energy 

expenditure may be TSP1-independent. When challenged with HF diet for 16 

weeks, TSP1 deficient mice exhibit similar adiposity compared with controls 

(144) whereas CD47 deficient mice are protected from obesity development 

through enhanced metabolic activity (156). It has been suggested that additional 

ligands and binding partners could elicit some of the physiological functions 

observed with CD47 activation. It is well established that other members of the 

TSP family, including TSP2 and TSP4, have binding capability with CD47 but 

requires much higher concentrations compared to TSP1 (102). Nevertheless, 

these interactions have been established yet their tissue-specific functions 

require additional exploration. Further, it has been proposed that novel ligands 

could be propagating some of the effects of CD47 activation. Studies examining 

protein-protein interactions through either yeast two-hybrid screening or affinity 

purification could be completed to identify any unique interactions with CD47 

under obese conditions.  
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5.6.3 Limitations of the Diet-induced Fatty Liver Disease Model 

It is critical that rodent models of NAFLD exhibit similar histology and 

pathophysiology as fatty liver disease observed in humans. These models should 

include significant hepatosteatosis, inflammation, and fibrogenesis as well as 

other peripheral metabolic dysfunctions including obesity, insulin resistance, 

hyperglycemia, and dyslipidemia (137). Several genetic, nutritional-based, and 

combinational approaches have been used to study the development and 

progression of NAFLD and more severe NASH (6). In our studies examining the 

effects of CD47 deficiency on the development of NAFLD, we utilized a HF (60% 

kcal from fat) diet-induced fatty liver model. In rodents, HF diet is sufficient to 

induce obesity, insulin resistance, hepatosteatosis, and other severe 

comorbidities of NAFLD including fibrosis and necrosis. However, results are 

highly variable depending on the rodent strain and differing fat compositions 

found in commonly used HF diets. With this model, long-term dietary 

interventions are necessary to elicit severe NASH progression.  

An alternative to HF diet-induced fatty liver is the Amylin (AMLN) liver 

NASH model. This diet is composed of 40% kCal from fat, 22% fructose, and 2% 

cholesterol – most closely resembling the composition of a westernized diet high 

in fat and added sugar. After ≥20 weeks of dietary intervention, severe NAFLD 

and progression to NASH is observed in rodents (46). Although mice on this diet 

gain weight, it is not significant or considered obese as demonstrated by 20 or 

more weeks of HF-diet intervention only. In order to study fibrosis or progression 
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from NASH to cirrhosis, many believe this rodent model serves as the best 

histological and pathological representation of fatty liver disease in humans. 

Another common model of NAFLD/NASH in rodents uses the 

methionine/choline deficient (MCD) diet, which impairs hepatic fatty acid 

oxidation and reduces VLDL secretion resulting in severe steatosis after just 4-10 

weeks of dietary intervention (6, 299). In addition, inflammation, oxidative stress, 

mitochondrial dysfunction, and fibrosis are much more severe in MCD-fed 

rodents compared to HF-fed models (79); however, this intervention does not 

mimic the peripheral metabolic dysfunction observed in HF-fed mice (257). On 

the contrary, mice challenged with MCD diet for greater than 4-6 weeks exhibit 

significant reductions in body weight. Future studies should consider the MCD or 

AMLN diets as a model of NAFLD/NASH development in CD47 deficient mice to 

separate hepatic lipid accumulation from the global effects on lipid deposition and 

energy metabolism in vivo.  

5.7 Future Directions 

5.7.1 Effects of CD47 on cAMP Function in Metabolic Tissues  

Activated cAMP-dependent protein kinase (PKA) via cAMP directly 

regulates the rate-limiting step of lipolysis, hormone sensitive lipase (HSL), in 

both WAT and BAT. This signaling cascade liberates FFAs through hydrolysis of 

intracellular TG stores by phosphorylating HSL and promoting the remodeling of 

lipid droplet proteins (132). It has been previously demonstrated that not only 

cGMP, but also cAMP, levels are elevated in CD47 deficient tissues (106, 297). 

The current studies propose that elevated cGMP/PKG signaling in brown adipose 



 
  

 160   
   

tissue and the liver promotes enhanced energy expenditure and non-shivering 

thermogenesis; however, it is critical to explore the canonical cAMP/PKA 

pathway. Additional studies examining cAMP signaling in CD47 deficient mice 

under HF conditions are necessary to determine whether there is dual regulation 

of secondary messenger signaling in CD47 deficient mice. Further, studies 

inhibiting PKG and/or PKA are necessary to determine what contribution each 

pathway has on lipid mobilization and utilization in CD47 deficient tissues. These 

findings could identify CD47 as a novel regulatory mechanism for secondary 

messenger signaling in metabolic tissues under obese conditions.  

5.7.2 Pharmacological Blockade of CD47 in vivo 

To support the clinical applications of targeting CD47 in obesity and its 

associated metabolic complications, in vivo studies with wildtype mice treated 

with a functional blocking antibody for CD47 or vehicle control should be 

completed. To determine whether impaired CD47 signaling enhances metabolic 

activity, animals could be treated after HF diet challenge to see whether 

enhanced energy expenditure reduces adiposity post diet challenge. In addition, 

mice could be treated simultaneously with HF diet challenge and metabolic 

parameters could be assessed. These studies could potentially shed light on any 

off-target effects of monoclonal antibody treatment targeting CD47 in vivo. 

5.7.3 Determine the Specific Effects of CD47 Expression in 

Hematopoietic Cells in vivo  

It has been well characterized that CD47 is ubiquitously expressed 

throughout the body on insulin-sensitive tissues such as muscle and liver. In HF-
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fed whole body CD47 deficient mice, both white and brown adipocyte 

morphology and function was preserved, suggesting a role for CD47 in regulating 

adipocytes function and contribution to obesity–associated metabolic 

dysfunction. However, as previously highlighted in section 5.3.2, immune cells 

express CD47 and may contribute to inflammatory-specific effects under HF 

conditions. Therefore, it is necessary to determine whether CD47 deficiency in 

non-hematopoietic cells, specifically adipocytes, protects mice from HF diet-

induced obesity and other metabolic dysfunction in vivo by utilizing a bone 

marrow transplantation approach to generate a chimeric mouse model. These 

experiments would separate the effects of CD47 expression on energy 

homeostasis and obesity-associated inflammation in metabolic tissues. 

5.8 Clinical Significance  

CD47 has been highly investigated as an anti-cancer therapeutic target, 

because of its accessibility as a cell membrane receptor. Strong evidence 

suggests that CD47 expression is significantly upregulated on tumor cells 

ranging from non-Hodgkin lymphoma to acute myeloid leukemia as a protective 

mechanism to avoid detection and phagocytosis by innate and adapted immune 

responses (41, 157). Further, CD47 expression has been deemed a prognostic 

marker in determining clinical outcomes for tumorigenesis. In a more recent 

study in mice, the downregulation of phagocytic function by macrophages in 

atherosclerotic lesions was attributed to the upregulation of CD47 expression and 

activity in the vasculature (127). It has been demonstrated clearly in rodents and 

non-human primates that functional blocking antibodies targeting CD47 are 
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capable of triggering a phagocytic response and activating anti-tumor T-cell 

responses in vivo without deleterious off-target effects (41, 148, 157, 264, 286). 

With such promising results, four clinical trials have begun using monoclonal anti-

CD47 antibodies against both solid and hematological malignancies 

(NCT02678338, NCT02641002, NCT02367196, NCT02663518).  

In addition to the promising therapeutic potential of targeting CD47 in 

cancer patients, our findings suggest an additional clinical implication for CD47. 

Antagonizing CD47 with a functional blocking antibody may protect against 

deleterious effects of metabolic dysfunction by preserving mitochondrial health 

and function in states of overnutrition. Looking at preclinical animal models with 

anti-CD47 antibodies, body weight is commonly reported as a measure of drug 

tolerance and off-target effects. In many of these models, no changes in body 

weight or body composition were reported and claimed as a positive indicator of 

drug tolerance. From these data, it is very difficult to discern the effects of 

pharmacological CD47 blockade on body weight and energy expenditure 

because of differences in species, dosages, length of intervention, and varying 

disease states and conditions. Preclinical studies are necessary to examine the 

effects of pharmacological CD47 blockade in a diet-induced obesity model.  

There are challenges to expanding the clinical implications of CD47 to 

metabolic function. First, CD47 is highly expressed in the vasculature including 

red blood cells, leukocytes, platelets, and endothelial cells. There is risk that 

administration of functional blocking antibodies for CD47 would accumulate in the 

circulation and very low levels would reach target tissues requiring highly 
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concentrated doses or frequent administration. Second, it is feared that hemolytic 

anemia or rapid clearance of native cells in circulation by phagocytosis would be 

a result of antagonizing CD47. It has been shown that the SIRPα binding site on 

CD47 is competitively blocked by commonly used functional blocking antibodies 

(102). Impaired SIRPα-CD47 signaling reduces the body’s innate ability to 

recognize foreign from native cell types (22) and ultimately could result in a 

weakened response to infection. Current clinical trials will shed light on these 

concerns.  

5.9 Concluding Remarks 

Together, these studies provide evidence to suggest CD47 may augment 

metabolic dysfunction in a tissue-specific manner and that the pathological roles 

of CD47 function could expand to include obesity and its associated 

comorbidities. More broadly, in vivo studies demonstrate CD47 deficiency is 

protective against diet-induced adiposity, reduces systemic inflammation, and 

preserves glucose homeostasis despite HF diet challenge. Many of these 

protective effects are driven by enhanced brown adipose tissue-dependent 

energy expenditure and increased lipid mobilization from white adipose tissue. 

Subsequent studies also identified a unique role of the TSP1-CD47 axis in non-

alcoholic fatty liver disease. Together, this interaction contributes to the poor 

oxidative environment so commonly observed in fatty liver disease. Future 

studies should examine whether targeting CD47 with a functional blocking 

antibody in vivo protects against cellular metabolic dysfunction and enhances 

energy expenditure despite HF diet challenge. Results from these studies 
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support the clinical application of targeting CD47 in obesity and its associated 

comorbidities.   
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Figure 5.1 Tissue-specific regulatory functions of CD47 in adipose tissues, 

skeletal muscle, and the liver  

Under HF diet conditions, CD47 deficient mice exhibit several protective 

phenotypes in different metabolic tissues. Together, these effects significantly 

reduced obesity-associated complications in CD47 deficient mice.  
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Figure 5.2 Comparison of TSP1 deficient and CD47 deficient mice 

phenotypes after 16-week HF diet challenge  

This Venn diagram compares and contrasts the unique phenotypes between the 

two cohorts of mice when challenged with HF diet (100, 128, 144, 156). It should 

be noted that studies conducted with TSP1 deficient mice used different HF diets 

(45-60% kCal from fat) and diet challenges ranged from 16-20 weeks. With the 

CD47 deficient mice, the diet was composed of 60% kCal from fat and was 

administered for 16 weeks.  
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