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Sorghum mutant RG displays antithetic leaf shoot
lignin accumulation resulting in improved stem
saccharification properties
Carloalberto Petti1, Anne E Harman-Ware2, Mizuki Tateno1, Rekha Kushwaha1, Andrew Shearer1, A Bruce Downie1,
Mark Crocker2 and Seth DeBolt1*

Abstract

Background: Improving saccharification efficiency in bioenergy crop species remains an important challenge. Here,
we report the characterization of a Sorghum (Sorghum bicolor L.) mutant, named REDforGREEN (RG), as a bioenergy
feedstock.

Results: It was found that RG displayed increased accumulation of lignin in leaves and depletion in the stems,
antithetic to the trend observed in wild type. Consistent with these measurements, the RG leaf tissue displayed
reduced saccharification efficiency whereas the stem saccharification efficiency increased relative to wild type.
Reduced lignin was linked to improved saccharification in RG stems, but a chemical shift to greater S:G ratios in RG
stem lignin was also observed. Similarities in cellulose content and structure by XRD-analysis support the correlation
between increased saccharification properties and reduced lignin instead of changes in the cellulose composition
and/or structure.

Conclusion: Antithetic lignin accumulation was observed in the RG mutant leaf-and stem-tissue, which resulted in
greater saccharification efficiency in the RG stem and differential thermochemical product yield in high lignin
leaves. Thus, the red leaf coloration of the RG mutant represents a potential marker for improved conversion of
stem cellulose to fermentable sugars in the C4 grass Sorghum.

Keywords: Phenylpropanoid, Sorghum, Cell wall, Lignocellulose, Biofuel, Lignin

Introduction
Second generation biofuels for fossil fuel replacement
[1,2] will likely involve the grasses becoming a focal crop
[3-5]. For biofuels, an attractive trait among the grasses
has been C4 photosynthesis, which is particular to spe-
cific clades of the Gramineae, most prominently the
Panicoideae. Traits of interest include increased CO2

fixation efficiency, water use efficiency and drought tol-
erance [6,7]. Despite the many beneficial traits of C4-
grasses, the conversion of cellulosic carbohydrate to
liquid transportation biofuel is limited by the recalcitrant
influence upon enzymatic hydrolysis of one the most
abundant component of the plant cell wall, lignin [8-13].

Lignin, a complex heterologous polymer derived primar-
ily from three hydroxycinnamil alcohol monomers with
different extents of methoxylation, namely, p-coumaryl-,
coniferyl- and sinapyl-alcohols, is synthesised through
the phenylpropanoid pathway [14,15]. Many advances
have occurred in elucidating the genes and the genetic
modules involved in this complex pathway [14,16]. Regu-
latory mechanisms are often mediated through metabolic
intermediates [17,18] suggesting a dynamic balancing act
within the phenylpropanoid pathway that could be open
to re-wiring.
A class of low lignin mutants that were discovered in

maize (first identified in 1924 in Minnesota [19]) were
the brown midrib mutants (bm). The bm mutants were
named based on the red – brown coloration of the lam-
ina midrib, which intriguingly accompanied low levels of
lignification in stem tissue [20,21]. General screening
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of chemical mutagenesis populations subsequently ex-
panded the number of allelic and non-allelic brown midrib
lines in maize and sorghum [22]. For instance, allelism
studies established that many of the sorghum bmr mutants
arose from deleterious mutations in caffeic acid O-methyl
transferase (COMT) [22,23], although evidence of sorghum
bmr arising from cinnamyl alcohol dehydrogenase (CAD)
were also discovered [24-26]. Notably, with exception
of the brown midrib phenotype, the bmr mutants dis-
play little alteration in gross morphogenesis compared
with WT, but as a feedstock have lower lignin content
and thus greater cellulose digestibility [23,27]. How-
ever, double bmr mutants have been shown to display
delayed development and infertility, indicating a limita-
tion on the extent to which lignin biosynthesis can be
suppressed [28]. Nonetheless, a clear relationship be-
tween lignin biosynthesis and saccharification efficiency
has been highlighted using the bmr mutants. It remains
unclear whether along with the bmr phenotype, other
phenotypic markers exist for altered phenylpropanoid me-
tabolism and digestibility.
Della is a sweet sorghum [Sorghum bicolor (L.) Moench]

(Reg. no.CV-130, PI566819) developed in the 1980’s by R.L
Harrison (Virginia Tech University) for the Sorghum syrup
production. The cultivar was derived from a cross between
the Dale and ATx622′. The diploid Della variety was
selected from this cross by the pedigree breeding meth-
odology for six generations and determined to be pure
breeding in 1990. The main advantage over Dale, is
that Della flowers a week earlier, maintains excellent
drought tolerance and disease resistance to anthracnose
pathogens. Here, the dominant REDforGREEN (RG) mu-
tant was generated through chemical mutagenesis (ethyl
methanesulfonate EMS) in the Della variety. The RG
mutant was identified through a phenotypic screen for
enhanced red pigmentation in plant tissues. It is dem-
onstrated that the RG mutant displays an antithetic
abundance/reduction of lignin in a tissue specific man-
ner. We report the investigation of physical and chemical
properties of the cell wall in RG and determine the suit-
ability of RG for bioconversion.

Results
REDforGREEN (RG) sorghum mutant: trait inheritance
evaluation
In sweet sorghum Della [Sorghum bicolor (L.) Moench]
(Reg. no.CV-130, PI566819), the phenotype of highly
pigmented leaves and low lignin stem arose from the M1

and segregated in subsequent M2 generation in a domin-
ant manner. We found that the RG phenotype displayed
dominant inheritance and was carried through subse-
quent generations. Backcrossing into parental Della over
two backcrossed generations was achieved. From the
segregating F2 populations we recovered 761 plants 567

were phenotypically RG whereas 194 were phenotypic-
ally wild type in a ratio near to 3:1 (χ2 = 0.04892 df = 1,
P > 0.05), illustrating dominant inheritance, consistent
with a single mutant gene. The RG phenotype was found
to be indistinguishable from the homozygote, therefore
fully penetrant in the heterozygous state. Further, when
the RG heterozygote was backcrossed into a wild type
Della plant we obtained a near 1:1 (RG-phenotype to
wild type-phenotype) ratio consistent with a single dom-
inant gene segregating in a mendelian manner. The wild
type, heterozygous and homozygous segregants were fur-
ther analyzed in the selfed F3 generations to ensure seg-
regation and selection of homozygotes for second round
backcrossing. In wild type, no reoccurrence of the RG
phenotype was observed, consistent with dominant in-
heritance of the trait.

RG mutant displays hyper-accumulation of pigments
and reduced plant height
The RG mutant was phenotypically identified by a
marked accumulation of red/purple pigments in the leaf
blades (Figure 1A). This trait was characterized as leaf-
specific and it evolved in a basipetal manner, from the
tip of the leaf to the base and further to the leaf sheath
(Figure 1A). The initial evaluation was completed in a
temperature-controlled glasshouse and all leaves, in a pro-
gressive manner, manifested the phenotype thus resulting
in a notable red/purple plant (Figure 1). To explore the
mature RG plant phenotype outside the greenhouse, a
field performance trial was established over two grow-
ing seasons. RG displayed a reduction in maximum
height, compared with wild type. Results showed an aver-
age decrement of 37% (P < 0.0001, Mann–Whitney) dur-
ing the first year and 40% (P < 0.0001, Mann–Whitney)
for the second year (Figure 1B, C, D). Reduction in
height could arise in association with three phenotypes:
1) reduced internodal length, 2) fewer nodes initiated
during the life cycle or 3) both fewer internodes of a
shorter length. A large internodal length decrease was
calculated for the RG mutant as compared to the wild
type (Figure 2A and E, P < 0.0001). Notably, the
number of nodes was significantly greater in RG versus
wild type (Figure 2D, E; P < 0.0001) but this could not
compensate for the shorter internode length for RG,
resulting in shorter plants. Additionally, the frequency
distributions of internode lengths between the two ge-
notypes indicated that the RG mutant is skewed to-
ward shorter internodes relative to a more normal
distribution of overall longer lengths in WT (Figure 2B
and C). Leaf length and width was also estimated but
was not significantly different (Data not shown). Fur-
ther, it was found that the average seed weight (1000
seeds weight, with replication) was not different between
RG and the wild type (RG, 1.80 ± 0.04; WT, 1.85 ± 0.03),
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which was consistent with no visible change in the RG
inflorescence. Moreover, no changes in the nature and
the extent of bran pigmentation, brown for Della variety,
were observed.

Cell wall composition in the RG mutant reveals modified
lignification
As mentioned above, the RG mutant displays visible red
coloration of leaves that develops basipetally (Figure 1A).
The red/purple accumulation in RG leaves was consist-
ent with an alteration in the phenylpropanoid pathway.
This pathway is also responsible for the production of
lignin therefore we anticipated that the genes respon-
sible for the production of pigments and for lignin
could be altered as well. To test this hypothesis, gene
expression-and chemical compositional-analyses were per-
formed. An increase in transcript abundance was observed
for key genes involved in the lignin biosynthetic branch of
the phenylpropanoid pathway in RG red leaves compared
with wild type (Figure 3A). The converse was true for gene
expression in the stems for all but cinnamyl alcohol de-
hydrogenase (Figure 3B). Consistent with these data, tran-
script abundance extended from those genes whose

products are responsible for the earliest committed
metabolic conversions in the phenylpropoanoid pathway
(Petti et al., cosubmitted). To establish whether lignin bio-
synthesis was increased, we visually observed lignin by
counterstaining with phloroglucinol stain (Maule’s reagent,
[29]). Here, we examined transverse cross sections of RG
and wild type stems and leaves. Results illustrated a more
pronounced lignin staining in the wild type stem section
relative to RG (Figure 4A,C) and vice versa in the leaf
(Figure 4B,D). Therefore, histochemical data suggest that
stems of the RG mutant have reduced lignin biosyn-
thesis whereas the leaves display increased levels. Tran-
scriptional characterization of 4-week old RG and WT
stems demonstrated a down-regulation for key genes in-
volved in the lignin pathway for RG compared to the wild
type, corroborating the histochemical evidence for lignin
reduction (Figure 3B). One exception was CAD, whose ex-
pression was up-regulated, contradictory to reduced lignifi-
cation of this tissue.
The content of lignin (soluble and insoluble) in leaves

and stems of field-grown RG and wild type plants was
determined. Both forms of lignin were increased signifi-
cantly in the leaf tissue of RG compared with wild type

Figure 1 RG phenotype and plant height determination. (A) Left panel, early development of the pigment accumulation phenotype; right
panel a mature leaf. (B) Plant height of RG and wild type for two field seasons (C, D). For each growing season, plant height was determined
based on maximal flag termini (n = 25 replicates). Error bars represent the standard error from the mean. Scale bar, 1 m. Significance (P < 0.05) is
indicated by a star (★).
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(Figure 4E,F). By contrast, acid insoluble lignin content
decreased significantly in the stem of RG compared with
wild type. Acid soluble lignin, which accounts for a small
proportion (2-3%) of the total lignin, was unchanged in
the RG and wild type stems. Results showed that the
acid insoluble lignin content of the RG leaf was similar
to that of the wild type stem (Figure 4E, P > 0.05). Taken
together, these results demonstrate that lignin accumu-
lated in an antithetic pattern in RG.

Micro-scale saccharification of total biomass reveals RG
mutant influences digestibility
Based on the modified lignin content of the RG mutant,
we sought to determine whether the lignocellulosic bio-
mass displayed a different response to saccharification
compared with wild type. It was anticipated that increased

lignification in the leaves would influence saccharification
efficiency. Indeed, it was found that WT leaves were more
efficiently converted to fermentable sugars than RG leaves
(Figure 5A). These data are consistent with the increased
lignin content of RG leaves reducing digestibility. In the
stems of the RG mutant, where lower insoluble lignin was
quantified (Figure 4E), we observed that the RG mutant
displayed higher saccharification efficiency than WT. This
too supports lignin content having an influence on digest-
ibility. Secondly, these data are consistent with the RG
mutant phenotype being a suitable marker for digestibility
traits in a tissue specific manner. As a general result,
the leaves of both WT and RG were enzymatically
deconstructed more efficiently than stems (Figure 5A).
To examine whether cellulose structure was influen-

cing the saccharification efficiency we examined the

Figure 2 Internode and node assessment. The length of the internode was compared between RG and wild type (n = 25) (A). Histograms
display the distribution of internode lengths for each genotype (B, RG; C, WT). The average number of nodes per stems (D). Error bars in all
figures are standard error from the mean. Significance (P < 0.05) is indicated by a star (★). Visually, the node and internodes are depicted in (E).
Scale bar = 3.5 cm.
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apparent kinetic parameters of this process using semi-
purified cellulose as a substrate. Enzymatic conversion
of semi-purified cellulose revealed similar Vmax for
the RG and WT derived cellulose (Semi-purified from
leaves and stems, Figure 5B). The Km was determined
to be very similar between RG (9.2 ± 1.6 mg) and WT
(8.7 ± 1.2 mg).
Examination of the biomass crystallinity, which exam-

ines the crystalline signature relative to other amorphous
biomass components using X-ray diffraction also showed
no major difference in relative crystallinity index deter-
minations RCI, (see Additional file 1: Figure S1). This
was also supported by the analysis of semi-purified cellu-
lose crystallinity, which also displayed no major differ-
ences (Additional file 2: Figure S2). Thus, data collectively

showed that improved cellulose digestibility in the RG
mutant stem, relative to WT, correlated best with aberrant
lignification as opposed to cellulose abundance or struc-
tural changes.

Hemicelluloses but not cellulose are altered in the
RG mutant
Lignin has been suggested to chemically associate with
hemicellulose in the cell wall [30], particularly xylan side
groups have an important role in the bonding of lignin
to hemicellulose e.g. ester linkages between lignin and
methylglucuronic acid residues and ether bonds from lig-
nin to arabinosyl groups have been reported. Moreover
phenolic lignin components, such as ferulic acid and
p-coumaric acid, are covalently bound to hemicelluloses.

Figure 3 Gene expression analysis for key genes in the lignin biosynthetic pathway. (A) Transcriptional analysis for leaf tissues; (B) Transcriptional
analysis for stem material at 4-week old for RG and wild type. HCT, Hydroxycinnamoyl transferase; CAD, Cinnamyl alcohol dehydrogenase; COMT, Caffeic acid
O-methyltransferase; CCoAOMT, Caffeoyl-CoA O-methyltransferase; CCR, Cinnamoyl-CoA reductase, C3H1, 4-coumaric acid 3′-hydroxylase 1. Significance
(P < 0.05) is indicated by a star (★).
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Therefore, we hypothesized that further rearrangements
in the plant cell wall may exist in the RG plants. To fur-
ther explore, we analysed cellulose and neutral sugar
composition in the leaves and stems of both genotypes.
No significant difference in the percentage of cellulose
was determined between the RG and wild type in either
tissue type (Figure 6A, P > 0.05). Further, when we exam-
ined the distribution and localization of crystalline cellu-
lose by calcofluor white staining in stems of the RG and
wild type, we observed similar fluorescence intensity in
transverse sections (Figure 6B). Neutral sugars, which con-
tribute to the hemicellulosic fraction of the cell wall
displayed variation between the RG mutant and wild type.
Fucose and rhamnose, which in general account for small
portions of the total sugars [31], were unchanged in the
stems. In leaves, rhamnose was significantly greater in RG
(Figure 6C). Also in leaves, arabinose, galactose, and glu-
cose were significantly more abundant in RG than wild
type (Figure 6D, P < 0.05). By contrast, leaf xylose de-
creased in RG from 26% in wild type to 19%. The stem
composition also displayed differences. Here, galactose

was decreased significantly and glucose was increased in
RG (Figure 6D, P < 0.05). Therefore, neutral cell wall poly-
saccharides were aberrant in RG accompanying antithetic
changes in lignification, consistent with association be-
tween the fractions.

Changes in the RG lignin structure
Increased lignin production in the RG mutant is also
evidenced by its thermochemical deconstruction prod-
ucts. Pyrolysates originating from the lignin fraction
within the biomass include phenol, guaiacol, syringol and
related aromatic hydrocarbons. The relative abundance
of the lignin-based pyrolysates compared to holocellulose-
based pyrolysates is influenced by the relative abundance
of each of these polymers within the biomass. Py-GC/MS
analysis of RG and wild type sorghum leaves and stems
generate pyrograms for qualitative and semi-quantitative
analysis (Additional file 3: Table S1 and Additional file 4:
Table S2, while pyrograms are shown in Additional file 5:
Figure S3 and Additional file 6: Figure S4). As expected,
the total area percentage of pyrolysates originating

Figure 4 Lignin quantification from the leaf and stem of RG and wild type sorghum. (A, B, C, D) Maule’s staining for lignin in cross
sections of sorghum stem (A, C) and leaf tissue (B, D). (E) Total insoluble lignin, (F) total soluble lignin; Each bar comprises the mean of four
biological and four technical replicates. Error bars indicate the standard error from the mean. Significance (P < 0.05) is indicated by a star (★).
Scale bar = 1 mm.
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from the lignin fraction of wild type biomass was higher
in the stems than in the leaves. The wild type stems also
produced more pyrolysates originating from the sinapyl
monomer within the lignin polymer. Hence, the S:G ratio
of the stems was higher than that of the leaves. Addition-
ally, pyrolysis of the stems produced larger amounts of
4-vinylphenol; this is most likely the result of higher
coumaryl-lignin content within the stems. The pyrograms
show how the relative heights and areas of the peaks from
the holocellulose (retention time typically < 24 min) are
lower than those from the lignin (retention time >24 min)
for the stem materials in comparison with the leaves. Com-
pared to wild type, Py-GC/MS analysis of RG leaves and
stems (Additional file 4: Table S2 and Additional file 6:
Figure S4) demonstrated that RG leaves produce a higher
total amount of lignin-based volatile pyrolysates than the
wild type leaves, which was consistent with lignin con-
tent determination. Moreover, RG-leaves produced more

sinapyl-derived pyrolysates relative to coniferyl-derived
pyrolysates than the wild type leaves and hence appear to
have a higher S:G ratio based on the distribution of the
volatile pyrolysates. In addition, the RG stems have
slightly higher S:G ratios than the wild type stems and
show a higher distribution of lignin-based pyrolysates in
comparison to the wild-type stems. While this analysis
contradicts the total lignin content determination, it may
reflect the differences between the RG and wild type
stems in the preferential formation of char from certain
biopolymers. For example, the char production upon
pyrolysis of the sorghum samples may differ and may
incorporate varying degrees of char and nonvolatile com-
pounds from the lignin or holocellulosic fractions. Hence,
Py-GC/MS analysis may not always agree with lignin
content determination. It does, however, provide in-
formation regarding the production of certain renewable
bio-chemicals produced by thermal decomposition. For

Figure 5 Saccharification and kinetic properties of RG and WT biomass. (A) Evaluation of saccharification property of RG and wild type
tissue. Saccharification efficiency is expressed % cellulose converted to free glucose, as measured by YSI glucose analyzer (see Methods). Error
bars are standard error from the mean of three biological and technical replicates. (B) Kinetic assessment of the digestibility of semi-purified
cellulose in vitro. Cellulose from leaf and stem of both RG and wild type were evaluated by pseudo apparent Michaelis-Menten parameters to
establish estimates for Km and Vmax. Error bars represent the standard error from the mean of three replicates.
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example, the mutant stems produced significantly higher
amounts of phenol and 4-vinylphenol (P < 0.05) than the
wild type stems. These pyrolysates are likely the result of
increased coumaryl content within the lignin in the RG
stems. The RG leaves also produced more vanillin upon
pyrolysis. Taken together these data indicate that the
composition and structure of the lignin polymers differed
between RG and wild type, and are partly consistent with
quantitative lignin determination.

Thermochemical analysis of RG
Of interest was how the RG leaves and stems, which
displayed marked changes in cell wall composition, un-
dergo thermal decomposition in comparison with wild
type. On the basis of TG curves, it is evident that the
RG stem pyrolyzed at a higher temperature in comparison
with the wild type feedstock (Figure 7B). Furthermore, it
was found that the RG stem displayed approximately 10%
less weight loss at 450°C relative to the wild type stem

(Figure 7B). Neither stem nor leaf samples showed greater
than 80% weight loss, which might reflect repolyme-
rization of lignin residue forming “hard coke” [32] and it
reflects the ash content present in the biomass. DTG ana-
lysis of leaves showed that RG biomass underwent decom-
position at a higher temperature (about 365°C) compared
to wild type leaves (Figure 7C) and also demonstrated a
prominent shift in the main decomposition peak from 355
to 365°C. It has been reported that hemicellulose and cel-
lulose show DTG peaks at 268°C and 355°C, respectively
[33]. Wild type leaf tissue showed a single decomposition
peak at 355°C, which was consistent with a strong cellu-
lose peak. RG leaf decomposition took place at two differ-
ent temperatures (290–300°C, 365–375°C) corresponding
to two distinct DTG peaks (Figure 7C). This result sug-
gests that modifying cell wall composition in the RG mu-
tant modestly increased the pyrolysis temperature of the
leaf sample. In stem analyses, the DTG curves revealed a
pronounced peak at 355°C for both mutant and wild type

Figure 6 Cellulose and hemicellulose quantification. (A) Cellulose content from leaf and stems of RG and wild type sorghum (n = 4 biological
and technical replicates, error bars are standard error from the mean). B) Histochemical analyses of cellulose deposition by Calcofluor White
(Sigma Aldrich, St Louis. MO) staining of transverse sections from noted genetic background, scale bar = 1 mm. (C) and (D) Neutral sugars
composition for RG and wild type leaf and stem biomass. (n = 4 biological and technical replicates, error bars are standard error from the mean).
Significance (P < 0.05) is indicated by a star sign (★).
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(Figure 7D). The wild type stem also displayed a nominal
pyrolysis peak at 210°C that was absent in all remaining
samples and was uncharacterized. Taken together, the RG
leaves pyrolyzed over a broader temperature regimen than
the stems. It is likely that a masked broad peak of low
weight loss rate occurring in all of the DTG plots from ap-
proximately 200°C to 600°C corresponds to the decom-
position of the lignin in the biomass [34]. The lignin in
each of the samples (leaves and stems) appears to

decompose at similar rates despite differences in the DTG
plots (Figure 7C, D).

Shifts in the elemental composition of RG
Micronutrient abundance was assessed in RG, as this may
indicate any notable physiological reallocations associated
with the RG mutant and secondly due to their important
for optimizing biorefining strategies. Interestingly, it was
found that the wild type leaf tissue exhibited greater metal

Figure 7 Thermogravimetric analysis. Weight-loss curves for leaf (A) and stem (B). Derivative plots of thermogravimetric analysis
corresponding to leaf (C) and stem (D) biomass.

Table 1 Metal composition of biomass samples

Biomas

As Al B Ca Cu Fe Mg Mn Na5 Zn K Sum

WTL1 2 77 8 8482 13 142 1423 103 53 25 22622 32950

WTS2 2 100 4 1099 3 189 952 27 44 10 12007 14437

RGL3 2 52 28 12459 8 129 3347 170 195 47 13269 29706

RGS4 3 51 6 2668 6 138 1036 213 61 20 22813 27015

Biomass employed: 1 indicates wild type leaves, 2 wild type stems, 3 RG leaves and 4 RG stems. 5 C4 essential nutrient.
Values are reported in ppm.
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abundance than observed in RG. The opposite trend was
observed in RG stems, where total metal composition was
27015 ppm compared to the WT stem total of 14437 ppm,
almost 50% fewer metals in the WT stem (Table 1). Out
of 11 metals examined, four were essential micronutrients
(B, Mn, Zn and Fe; Table 1) and three of those, B, Mn and
Zn, had between 1.5 to 3-fold greater abundance in the RG
leaf than in the wild type. A noticeable anomaly to this
trend was observed for the primary macronutrient K,
which was more abundant in wild type leaves versus the
RG. The opposite K-trend was highlighted in the stem
composition and here RG displayed more than wild type
(Table 1). Calcium (Ca) was the most abundant secondary
macronutrient in all samples the RG leaf and stem
contained around 50% more Ca than wild type. Further,
the secondary macronutrient Mg was also more prevalent
in RG leaves than in wild type. The complete analysis for
C, H, N and O displayed no significant (P > 0.05) differ-
ences between the RG and wild type (Additional file 7:
Table S3).

Discussion
Here we demonstrate that the phenylpropanoid sorghum
mutant RG displayed antithetic leaf shoot lignification,
which results in improved saccharification efficiency in
the RG stem. Specifically, RG leaf samples displayed ap-
proximately 30% lower efficiency and RG stem was ap-
proximately 2.5-fold higher saccharification efficiency
than wild type. These results correlated with an irregular
distribution of insoluble lignin in the abovementioned
tissues and support lignin’s inhibitory role on enzymatic
processes [35]. Indeed, lignin was more abundant in RG
leaves and less abundant in stems, when compared with
wild type. Thus, the sorghum RG phenotype identified
here represents a prominent marker for redistribution of
lignin (and broadly phenylpropanoid metabolism) and
improved stem saccharification efficiency for conversion
of lignocellulosic biomass to fermentable sugars.
Despite evidence that lignin content and composition

were altered, as was the hemicellulose fraction, no data
supported a change in cellulose biosynthesis in the RG
mutant. The proportion of cellulose as expressed per
gram of cell wall was unchanged between the RG and
wild type. Further, XRD as well as pseudo-kinetics of
semi-purified cellulose saccharification failed to sup-
port a structural alteration of the cellulose microfibrils.
Therefore, it seems most plausible that the alterations in
saccharification arose as a consequence of the abundance
and composition of lignin in the cell wall. Ancillary phen-
olic components such as flavonoids were also more
abundant in the RG mutant (unpublished data). It is
therefore foreseeable that lignin, flavonoids and other
phenolic compounds collectively contributed to lower
saccharification efficiency, consistent with prior reports

[36]. Nonetheless, prior evidence supports lignin con-
tent having the most pronounced effect on saccharifica-
tion efficiency [35,37-39].
The RG phenotype included an overaccumulation

of phenolic constituents, including lignin in leaf ma-
terial. The leaf tissue of the plant is less suitable for
saccharification, but has several interesting properties for
exploitation in a bio-based economy. Specifically, thermo-
chemical pyrolysis coupled to GC/MS demonstrated that
the increased lignin and phenolic components of the RG
leaf tissue released a differential spectrum of high value py-
rolysates including vanillin, a structural compound related
to vanillin, namely the 4-hydroxy-3-methoxyacetophenone
(Apocynin) and 4-hydroxybenzaldehyde; these compounds
have been investigated for their pharmaceutical poten-
tials and effect on human health [40,41]. The molecular
makeup of pyrolysate (bio-oil) depends partially on the
composition of the feedstock. In the case of the high lig-
nin leaf material in the RG mutant, oxygenates resulting
from the oxidative deconstruction of lignin could be de-
oxygenated to produce hydrocarbons [32] or separated
to recover high-value chemicals that are present, for ex-
ample upgradable building blocks such as phenols. Tailor-
ing biomass composition as was performed herein needs
to be accompanied by deconstruction chemical engineer-
ing processes to improve the range of fuels and chemicals
derived. In this context, with around 13% of crude fossil oil
used for the production of chemicals [42] that are import-
ant for everyday life, the identification of biomass feed-
stocks with the appropriate composition to replace these
products needs further consideration.
RG leaves produced greater sinapyl-derived pyrolysates

relative to coniferyl-derived pyrolysates than did WT
leaves and hence appear to have a higher S:G ratio.
Changes in S:G ratio can influence degradation proper-
ties, in terms of hydrolytic enzymes creating ferment-
able sugars from lignocellulosic feedstocks [43]. Thus,
the metabolic re-writing evident in RG may represent a
strategy to modulate lignin structure. Lignin and other
phenolic plant metabolites have typically been viewed as
a waste stream in a biorefineries, which instead focus on
polysaccharides as feedstock inputs [44]. In the case of
the RG mutant, the leaf biomass would need to be re-
moved and separated from stem material either during
or post-harvest in order to optimize biorefining costs.
Moreover, RG leaf tissues also displayed increased micro-
nutrients. Coupled with increased phenolics such as an-
thocyanins, the RG leaf tissue may provide a feedstock
for the development of nutritional supplements for live-
stock [45]. Indeed, high value by-products of lignocellu-
losic crops developed during bioprocessing has been
under-explored.
The main RG phenotype related to bioenergy was anti-

thetic lignification of leaves versus stems. Reduction in
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stem lignification has remained a goal of biotechnology
efforts to reduce the recalcitrance of lignocellulosic bio-
mass to saccharification. However, the possible genetic
mechanism for control of such a shift in the PPP are not
clear. In RG leaves, lignin, anthocyanin and 3-deoxyantho-
cyanidins were all upregulated. This is consistent with the
entire PPP being co-regulated, not just a sub-branch of the
pathway. Regulation of the PPP is complex, and numerous
levels of feedback inhibition and transcriptional regulation
exist. For example, intermediates of the pathway negatively
regulate gene expression and thus co-regulate the accumu-
lation of precursor or the next metabolite ([17,18] and as
discussed in [46]). In the stems of RG, down-regulation of
the lignin specific PPP genes was generally observed. One
exception was observed for the CAD transcript, whose
expression was up regulated, contradictory to reduced lig-
nification of the young stem tissue. The CAD gene encodes
a cynnamyl alchohol dehydrogenase. In most higher plants,
coniferyl and sinapyl aldehydes are converted to alcohols by
the CAD enzyme, but also by sinapyl alcohol dehydrogen-
ase (SAD) for the respective aldehyde [47]. Despite lignin
formation resulting from a complex network of interacting
genes, we anticipated that CAD would not be upregulated.
It remains unclear why this reversal of gene expression to
end-product metabolite occurs, but we speculate that the
timing of CAD expression may have either be invoked as a
compensatory mechanism to general down-regulation of
the pathway. While possible, it is unlikely that an alternative
aldehyde substrate or concentration of coniferyl aldehyde
increased. Finally, it may be possible that epigenetic modi-
fier influenced PPP elements differentially, as was recently
observed for the dominant Unstable factor for orange1
(Ufo1) allele [48]. Regardless, this differential expression of
CAD remains an obvious irregularity in our dataset. The
genetic mechanism underscoring RG must therefore over-
ride genetic, developmental and physiological regulatory
networks underlying the PPP. It is thus not surprising that
the RG displayed some similarity to previously described
phenotypes associated with PPP regulation, notably the
light dependence of the Lc, B and R loci. RG also shared
similarity with the carbohydrate defective mutants, SXD
and TYE, whereby inability to mobilize sucrose led to a
starch accumulation and early pigmentation and leaf senes-
cence [49-51]. It is possible that the RG phenotype arises as
a result of a block in sucrose remobilization from leaves to
major physiological sinks (stem in RG). Such as scenario is
consistent with reduced biomass and lignin in stems,
sucrose remaining in leaves being deposited as lignin as
alternative carbon sink and anthocyanin accumulation due
to osmotic stress/phloem swelling. Similarities to the
phenotypes such as single gene dominant inheritance and
morphogenic phenotypes are evident between RG and the
maize alleles that condition premature senescence in the
absence of kernel formation [52,53].

Lignin alteration in RG was also qualitative. A change
in the S:G ratio was measured in RG compared with
wild type. Since deposition of lignin types (H, G and S)
is a spatial-temporal process [15,54], the quantitative/
qualitative changes could indicate that the branches of
the lignin pathways are differentially regulated leading to
a differential deposition of say S versus G. It is tempting
to speculate that bypassing the regulatory networks re-
sponsible for physiological and developmental control
may be associated with a dominant negative mutation
[55]. Similarly, a mutation in the promoter region of tran-
scription factors has been associated with the activation of
the PPP. For instance, multiple repeats within a MYB10
transcription factor in apples (Malus domestica L.) have
been coupled with an autoregulation and a dramatic all-
red phenotype [56]. However, evidences of single gene
autoregulation are also available in literature for instance
the case for the sorghum bmr2 mutant and a consistent
down-regulation of lignin in both tissue types [57].
Taken together, the RG mutant leaf biomass has po-

tential to be implemented as a dual use crop, particularly
as the EMS mutation was generated in the S. bicolor
DELLA sweet sorghum background, noted by the abun-
dant sucrose sequestered in the stem during develop-
ment [58]. However, the RG mutant displayed an overall
reduction in the total plant height in the mature plant to
around 60-70% of wild type. Several plausible explana-
tions exist to explain this observation. Firstly, the reduc-
tion in size was consistent with the correlation between
lignin content and biomass highlighted in various studies
[59,60]. Here, reduced lignin results in reduced water
transport capacity and suppressed height potential. None-
theless, in a techno-economic assessment the reduced
height (biomass) may result in a loss of economic profit-
ability for using RG, despite the improved saccharification
efficiency. Depending on the yield of high-value bio-
chemicals derived from any feedstock, the biomass pro-
cessing value chain becomes unsustainable. Therefore,
provided the increased phenolic structures in the RG leaf
tissue combined with the accessible carbohydrate reserves
evident low lignin sweet Sorghum stems providing an in-
triguing feedstock for assessment.
Estimates of the DELLA cultivar yield, linked to the

parental cultivar Dale, are 18.6 tons per acre of stripped
stalks ready for conversion to sweet sorghum syrup
(Blitzer, AGR122). With a 30% reduction in yield around
13 tons per acre would be produced. Given the 2,5-fold
increase in saccharification efficiency in the RG stem,
the resulting glucose yield for biofuel conversion may
compensate for the loss in sucrose yield.

Conclusion
Antithetic lignin accumulation was observed in the RG
mutant leaf and stem tissue, which resulted in greater
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saccharification efficiency in the RG stem and differential
thermochemical product yield in high lignin leaves. Process
tailored biomass feedstocks for bio-alcohols, hydrocarbon-
based renewable fuels or biobased chemicals represent an
underexplored breeding end point. Data for high lignin
leaves in the RG mutant demonstrate the potential for creat-
ing different pyrolytic breakdown products and yields, which
could have important connotations for future studies.

Materials and methods
Plant material
Mutant and wild type (WT) seeds were sown on soil-
less media (MetroMix 360, SunGro Industries Bellevue,
WA). Plants were grown and maintained in a temperature-
controlled glasshouse at 24°C. Soil was maintained at field
water conditions and fertilized with 3 grams of Osmocoat
(The Scotts Company, Marysville, OH) integrated into
the soil-less media before seeding. Plants were trans-
planted into the field and drip irrigated into a maurey silt
loam soil-type, at the University of Kentucky Horticul-
ture Research Farm (Emmitt Road, Lexington, KY) and
maintained under plasticulture. Following establishment,
the plants were grown in full sunlight for 3 months. Leaf
and stem color, total plant height, internode length, total
node number per plant and leaf blade length (from the
ligule to the leaf tip) and width at the widest point were
all acquired from these plants.

Leaf and stem RNA extraction and Q-RT-PCR analysis
Gene expression of candidate genes within the PPP was
done on red leaf as well as to stems of 4-weeks old leafless
sorghum RG and wild type plantlets. Three biological repli-
cations were harvested for each sorghum line, RG and wild
type. RNA extraction was done by a modified hot-phenol
protocol described in [61]. DNAsing, carried out by DNAse
I (Fermentas), and cDNA synthesis (AB Applied Biosystem)
were completed according to the manufacturer indication.
SyBr green semi-quantitative assay was then completed on
the biological samples and on three technical replicates on
a StepOne Real time system (AB Applied Biosystem) and
the ΔΔ method [62] was used for quantifying the relative
expression levels normalised against the actin gene. The
genes tested and primers sequences are listed in
Additional file 8: Table S4.

Lignin content determination
Acid-soluble lignin, acid-insoluble lignin and ash were
measured using the laboratory analytical protocols NREL,
LAP-004 (1996) and lignin distribution was visualized by
phloroglucinol staining. For lignin determination, the first
internodal region of field grown plants was used as well as
leaf material, and 4 biological replicates (each containing 4
technical replicates) of 300 ± 1.0 mg were employed. The
localization of lignin was determined histochemically on

stems of axillary secondary shoots of the main mutant/
WT, stem as well as on 4–6 weeks old plantlets, using
a saturated solution of phloroglucinol in 20% HCl. All
chemicals were reagent grade (Sigma-Aldrich, St. Louis,
MO), unless noted otherwise.

Structural characterization of the mutant biomass
by thermal decomposition
The products formed from thermal decomposition of the
total biomass were analyzed via Pyrolysis-GC/MS
(Py-GC/MS) and thermogravimetric analysis (TGA).
Pyrolysis-GC/MS experiments were performed using a
Pyroprobe Model 5200 (CDS Analytical, Inc.) connected
to an Agilent 7890 GC with an Agilent 5975C MS
detector. The pyroprobe was operated in trap mode
under a He atmosphere. Pyrolysis was conducted at 650°C
(1000°C s-1 heating rate) for 20 s. The valve oven and trans-
fer lines were maintained at 325°C. The column used in the
GC was a DB1701 (60 m × 0.25 mm × 0.25 μm) and the
temperature program was as follows: 45°C for 3 min., ramp
to 280°C at 4°C min-1 and hold for 10 min. The flow rate
was set to 1 ml min-1 using He as the carrier gas. The inlet
and auxiliary lines were both maintained at 300°C and the
MS source was set at 70 eV. The GC-MS was calibrated
for a number of phenolic compounds including
phenol, 2-methoxyphenol, 2-methoxy-4-methylphenol,
2,6-dimethoxyphenol, vanillin, syringaldehyde and 2-
methoxy-4-vinylphenol. Pyrolysis products were analyzed
according to retention time and mass spectra data
obtained from a National Institute of Standards and
Technology (NIST) library. The ratio among syringyl
(S) and guaiacyl (G) lignin components (S:G ratio)
was determined from the distribution of lignin
pyrosylates according to a published method (Harman-
Ware et al. 2013). TGA was performed on a TA Dis-
covery TGA under 25 ml min-1 of N2 at a ramp of
10°C min-1 to 800°C followed by a ramp of 20°C min-1

to 1000°C. The chemical alteration and the lignin ratio
were determined using a function describing the rela-
tive abundance of the determined pyrolysates.

Neutral sugar analysis
For neutral sugar analysis, a protocol described in [63]
was followed. Ribose was used as an internal sugar stand-
ard and authentic standards, used for all sugars, identified
ribose and fucose, rhamnose, arabinose, galactose, glu-
cose, mannose, xylose, galacturonic- and glucuronic-acid.
The HPLC profile used was described previously [64].
Measurements comprised four biological replicates as
well as four technical replicates.

Cellulose estimation
Cellulose content was estimated as acid soluble glucose
[65]. A crude cell wall extract was prepared according to

Petti et al. Biotechnology for Biofuels 2013, 6:146 Page 12 of 15
http://www.biotechnologyforbiofuels.com/content/6/1/146



[66]. Cellulose estimation was completed on 5 mg of
field grown plant material and used four biological and
technical replicates.

Micro-scale saccharification of biomass
Saccharification efficiency was measured for leaf and
stem material from the RG mutant and wild type. Briefly,
total biomass was collected from field grown samples.
Samples were dried at 50°C for seven days prior to
homogenization using a grinder (Arthur H Thomas Co
Scientific, Philadelphia, PA, USA) equipped with a 1.0 mm
sieve. A cocktail of Cellulase from Trichoderma reesei
(Sigma) and Cellobiase from Aspergillus niger (Sigma,
USA), equivalent to 2 Filter Paper Activity Units (FPU),
was used to digest 100 mg of raw biomass (ethanol and
acetone washed) in a 50 mM citrate buffer (pH 4.8) in a
final volume of 2 ml at 50°C. A time course deconstruction
assay was performed over a period of 48 hours (at 0, 4, 12,
24 and 48 hours) whereby 3 100 μl aliquots (without re-
placement) were collected for glucose analysis. Quantifica-
tion used the Yellow Springs Instruments (YSI)-glucose
analyzer standardized for glucose determination using
YSI buffer and membranes purchased from YSI (Yellow
Springs, OH, USA). Glucose release was converted into
saccharification efficiency and expressed as a percentage of
cellulose within the biomass convertible to glucose.

Semi-purified cellulose digestion
Cellulase digestion and pseudo apparent kinetic analysis
of semi-purified cellulose from both the RG mutant and
wild type tissue was performed as described previously
[67]. Semi-purified cellulose (2, 5, 7.5, 10, 12.5, 15, 17.5
and 20 mg) obtained from leaf and stem material from
RG and WT was digested in the presence of equal
amounts of Cellulase and Cellobiase, equivalent to 2
FPU, in a 50 mM citrate buffer (pH 4.8) in a final vol-
ume of 2 ml at 50°C for 2 hours. The enzyme mixture
was heat inactivated (100°C, 3 min) prior to glucose
measurement using the YSI-glucose analyzer (Yellow
Springs, OH, USA)(as described above). These data were
generated in triplicate for average ± standard error and
the glucose values converted to mol min-1 unit protein-1

and used to determine the apparent kinetics values using
the program GRAPHPAD PRISM-4 (Graphpad, La Jolla,
CA, USA). The inability to exactly calculate the number
of catalytic ends in the complex mixture of cell wall bio-
mass allowed only for the calculation of a relative estima-
tion, expressed as relative kinetics (relative Vmax and Km).

X-ray diffraction analysis
X-ray diffraction was performed as described previously
[68]. Diffractograms were collected between 5° and 35°
(for samples with little baseline drift), with 0.02° reso-
lution and a 2 s exposure time interval for each step.

Statistics
Statistical analyses employed both Microsoft Excel (Seattle,
WA) and GRAPHPAD PRISM-4 (La Jolla, CA) software.
Significantly deviating means between WT and RG
were determined in both instances using a Student t-test
(α = 0.05). Chi-square test was employed to evaluate the
“goodness of fit” of the inheritance of the trait using
PRISM4.

Additional files

Additional file 1: Figure S1. X-RAY diffraction (XRD) analyses of RG and
wild type biomass. In A, diffractograms generated from RG and wild type
leaf material and corresponding relative cristallinity index (RCI) values. In B,
XRD of stem biomasses and associated RCI values.

Additional file 2: Figure S2. X-RAY diffraction (XRD) analyses of RG and
wild type semi-purified cellulose. In A, diffractograms generated from RG
and wild type semi-purified cellulose from leaf material and corresponding
relative cristallinity index (RCI) values. In B, XRD of semi-purifed cellulose from
stem biomasses and associated RCI values.

Additional file 3: Table S1. Pyro-GC/MS analysis of WT biomass
[Leaf (WTL) and Stem (WTS)].

Additional file 4: Table S2. Pryo-GC/MS analysis of RG biomass
[Leaf (RGL) and Stem (RGS)].

Additional file 5: Figure S3. Representative pyrograms of wild type
stem and leaf biomass. Numbered peaks on the chromatograms
correspond to the peaks reported in Additional file 3: TableS1 and they
are typical products seen from pyrolysis of different biomass types. (9)
Furfural; (19) phenol; (20) 2-methoxyphenol, (31) 4-vinylphenol; (32)
2-methoxy-4-vinylphenol (35) 2,6-dimethoxyphenol and (45) 4-vinylsyringol.

Additional file 6: Figure S4. Representative pyrograms of RG mutant
stem and leaf biomass. Numbered peaks on the chromatograms
correspond to the peaks reported in Additional file 4: Table S2 and they
are typical products seen from pyrolysis of different biomass types. (9)
Furfural; (19) phenol; (20) 2-methoxyphenol, (31) 4-vinylphenol; (32)
2-methoxy-4-vinylphenol (35) 2,6-dimethoxyphenol and (45) 4-.

Additional file 7: Table S3. Ultimate analysis of biomass samples.

Additional file 8: Table S4. List of genes in the phenylpropanoid
pathway investigated by RT-PCR.
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