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Nonmeteorological Influences on Severe Thunderstorm Warning Issuance: A
Geographically Weighted Regression-Based Analysis of County Warning Area

Boundaries, Land Cover, and Demographic Variables

MEGAN L. WHITE AND J. ANTHONY STALLINS

University of Kentucky, Lexington, Kentucky

(Manuscript received 25 November 2015, in final form 7 March 2017)

ABSTRACT

Studies have shown that the spatial distribution of severe thunderstorm warnings demonstrates variation

beyond what can be attributed to weather and climate alone. Investigating spatial patterns of these variations

can provide insight into nonmeteorological factors thatmight lead forecasters to issue warnings.Geographically

weighted regression was performed on a set of demographic and land cover descriptors to ascertain their re-

lationships with National Weather Service (NWS) severe thunderstorm warning polygons issued by 36 NWS

forecast offices in the central and southeastern United States from 2008 to 2015. County warning area (CWA)

boundaries and cities were predominant sources of variability in warning counts. Global explained variance in

verified and unverified severe thunderstormwarnings ranged from 67% to 81% for population, median income,

and percent imperviousness across the study area, which supports the spatial influence of these variables on

warning issuance. Local regression coefficients indicated that verified and unverified warning counts increased

disproportionately in larger cities relative to the global trend, particularly for NWS weather forecast office

locations. However, local explained variance tended to be lower in cities, possibly due to greater complexity of

social and economic factors shaping warning issuance. Impacts of thunderstorm type and anthropogenic

modification of existing storms should also be considered when interpreting the results of this study.

1. Introduction

Severe thunderstorm warnings (SVTs) are issued

by the National Weather Service (NWS) when con-

vective outbreaks are capable of producing hail with a

diameter of 1 in. or greater, and/or winds at speeds of

58mph or greater. Accurate warnings are essential for

alerting affected areas that human and property risk

are elevated, and that appropriate precautions should

be taken. Meteorologists at local Weather Forecast

Offices (WFOs) of the NWS rely on Doppler radar and

computer algorithms to delineate regions of severe

thunderstorm risk in their respective county warning

areas (CWAs). Visual observations and data reported

by trained storm spotters, the general public, and

weather station personnel may be used as supplemen-

tal information to determine whether a severe warning

is necessary.

Although institutional standards structure the warn-

ing process, human factors also influence the issuance of

SVTs. The density of spotters is often sparse in rural

areas, so events may go unwarned. Social and behavioral

factors shape the warning process as well (Sander et al.

2013; Allen et al. 2016). For example, knowledge of the

underlying distribution of population across a forecast

area may make a forecaster more or less likely to

release a warning (Davis and LaDue 2004; Barrett

2008). This sensitivity can be associated not only with

forecaster awareness of greater potential for damage but

also with the reality that larger numbers of people imply

greater likelihood of severe weather phenomena being

spotted, reported, and employed to issue or verify a

warning. Forecasters may then become conditioned to

warn one area over another based on their perception of

how likely it is that a field observation will confirm se-

vere status. In addition, high population areas may re-

port greater numbers of warnings for marginally severe

storms than less populated areas. Consequently, fore-

casters may overlook borderline severe storms where

they would be less likely to be reported in the first place

(Dobur 2005). Alongside sensitivities to population in-

creases, an area’s economic status has been shown to

correspond with forecasting outcomes as well. Anbarci

et al. (2011) found ‘‘economic sensitivity’’ in weatherCorresponding author: Megan L.White, megan.white1@uky.edu
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forecasting, in which NWS forecast accuracy improved

with increases in income. In an earlier paper, Anbarci

et al. (2008) noted that both the NWS and private

weather forecasting companies produce forecasts of sig-

nificantly higher accuracy for areas with greater market

extent, which for these purposes can be defined as areas

having more people and more economic resources.

In general, criteria for establishing damage reports

tend to favor urban criteria versus rural (Guyer and

Moritz 2003).As a phenomenonof severe thunderstorms,

tornado warnings can be skewed toward more populated

areas, where they are more readily verified on the ground

(Brooks et al. 2003; Frisbie 2006). Elsner et al. (2013)

suggested that the weakening population bias in tornado

reports in the central plains of the United States between

2002 and 2011 is attributable to an increase in storm

chaser presence in rural areas. Other influences include

the expanding bull’s-eye of population and built envi-

ronment (Ashley et al. 2014; Rosencrants and Ashley

2015). An increase over time in severe weather reports

can be partly attributed to a greater human population

density (Ray et al. 2003; Paulikas 2013).

There are only a few systematic multicity examinations

of how the underlying population relates to severe

thunderstorm warnings. In the Atlanta metropolitan re-

gion in Georgia (Dobur 2005), severe thunderstorm

warnings were more numerous in counties designated as

urban as opposed to rural. However, for the forecast

areas around Raleigh, North Carolina, neither pop-

ulation density nor per capita income were associated

with counts of severe thunderstorm warnings (Hoium

et al. 1997). Barrett (2008) used linear regression to ex-

amine relationships in central Texas between SVTs,

population, and distance from the WFO. Although the

results were weakly significant, there was evidence for a

population bias for the entire study area, and within al-

most all of the individual CWAs. In a later study (Barrett

2012), the patterns of SVTs over a 14-yr period (1996–

2010) had a strong statistical relationshipwith population,

although this could vary according to whether the warn-

ings were issued for individual storms or at a level that

encompassed an entire county. Barrett also discusses how

some CWAs received awards for excellence in severe

weather-related service, while others were given more

punitive recognition for undesired forecast practices, and

relates these considerations to the outcomes of his study.

The location of forecast offices and radar sites is also

relevant for assessing the human influence on warning

issuance and verification. WFOs and radar sites fre-

quently are situated just west or southwest of densely

populated areas (Fine 2007, p. 24). This arrangement

enhances the likelihood that radar will detect severe

weather before it reaches the populated area due to

prevailing westerly winds. These locations are also filled

with trained staff watching for signs of severe thunder-

storms, using equipment whose specialized purpose is to

detect the weather system. At the very least, these fac-

tors make the more populated areas and the WFO lo-

cations high confidence points in terms of accurate and

verified reports (Ray et al. 2003; Doswell et al. 2005).

WFOs are urged by the NWS to reduce the number of

false alarms they issue for severe weather to avoid a high

false alarm ratio (FAR; Barnes et al. 2007). A warning is

considered a false alarm when wind speed and hail size

criteria are either unmet or unverified following the is-

suance of the warning. The FAR for a WFO is equal to

the fraction of false or unverified warnings to the total

number of warnings issued. Conventional wisdom holds

that repeatedly issuing false alarms is potentially dan-

gerous because of the desensitization it may engender

within the warned population (Barnes et al. 2007).

Overissuing warnings has also been shown to have

negative economic impacts on affected areas (Sutter and

Erikson 2010), which puts additional pressure on WFOs

to produce accurate forecasts and warnings. Given these

operational factors, the influence of the recent track

record of verified-versus-unverified warnings at a WFO

may be reflected in an office’s tendency to issue or not

issue a severe weather warning. This illustrates how, to

some degree, information collection practices and their

communication can differ from one WFO to the next

and make the decision to issue a warning a more con-

textual event (Hales 1993; Lindell and Brooks 2013).

An array of institutional and behavioral factors in-

fluences how forecasters, spotters, and the general public

respond to severe weather events and warnings (Morss

and Ralph 2007; Pennell 2009; Schmidlin et al. 2009;

Lindell and Brooks 2013). Systematic analysis of all of

them and identification of their causal importance are

beyond the scope of this study. However, the potential

influence of local WFO culture and forecaster practices

on SVTs can be explored through an examination of their

spatial association. Geographically weighted regression

(GWR) was employed in this study to illuminate how

local warning issuance varies in relation to WFO juris-

dictions and to three indicators of human presence:

population, income, and percent impervious cover.

Population and income as potential drivers of warning

issuance were addressed directly in the preceding par-

agraphs; we feel that percent impervious cover is rel-

evant in this analysis because of its association with

development andmarket extent (seeAnbarci et al. 2008).

GWR facilitated discrimination between locations that

are overwarned and locations that are underwarned in

relation to the general warning trends across a broad area

with a heterogeneous arrangement of urban and rural
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locales.WhileGWRwas used to quantify local deviations

in the relationships between warnings and these three

independent variables, we did not definitively attribute

these deviations as inherently related to human decision-

making processes or to meteorological conditions. GWR

allows us to visualize statistical associations and to begin

hypothesizing about how human factors and meteoro-

logical conditions influence warning records, including

the potential for their interaction in the form of anthro-

pogenic modification of convective processes (Rozoff

et al. 2003; Gero and Pitman 2006; Haberlie et al. 2015).

2. Methods

We posed two questions: 1) How do population, in-

come, and percent impervious surface vary in their

association with the number of verified and unverified

severe thunderstorm warnings? 2) What role do CWA

boundaries and WFO locations play in the response

patterns of verified and unverified warnings to the in-

dependent variables? The geographic extent of our

study spanned 13 states of the central and southeastern

United States in their entirety, and portions of 7 addi-

tional states. The study area spans several National

Climatic Data Center regions (NOAA 2016) and three

NWS regions. This particular area of study was chosen

to achieve a balance between climatic consistency and

the ability to identify contrasts among forecasting cul-

tures, should they be present. It also spans a latitudinal

gradient in type and frequency of thunderstorms. In

general, the number of supercell thunderstorms is

higher in the more central inland regions of the study

area, while sea-breeze and maritime convective pro-

cesses limit large, severe thunderstorm development in

coastal areas.

a. Data

1) SEVERE THUNDERSTORMWARNING POLYGONS

ArcGIS shapefiles for NWS severe weather warning

polygons were obtained from an archive maintained by

Iowa State University’s Iowa Environmental Mesonet

(IEM 2016). These polygons show the bounded areas of

all severe thunderstorm warnings issued by the NWS for

the United States. The polygons include initial warning

polygons, as well as subsequent polygons representing

the movement and modifications of these initial poly-

gons throughwarning expiration. Some of these warning

polygons are storm based and delineate irregular storm

boundaries. Others are countywide warnings and follow

the outlines of individual counties. Multiple severe

thunderstorm warning polygons can be issued for a

single thunderstorm event, some of which will overlap.

Verification status is included in the IEM data, but in

some cases it is still preliminary.

Before being recorded intoNWSStormData, themore

authoritative source of verified events, the validity and

accuracy of warnings are checked, and sometimes upda-

ted. Official verification records from NWS Storm Data

were used to designate each SVT polygon as verified

versus unverified. Initially, a total of 266887 severe

thunderstorm warnings occurred over the 8-yr duration

of our data. However, discrepancies between IEM data

and NWS Storm Data resulted in 1036 polygons with no

verification status. These 1036 polygons were approxi-

mately 0.4% of the total and are not included in the

analysis. Inspection of the polygons indicated that they

were randomly distributed among WFOs and were

sometimes issued as part of the same thunderstorm event.

Of the remaining 265851 warnings, 160544 were verified

and 105307 were unverified. We analyzed counts as

verified and unverified rather than combining them into a

FAR because FAR is a relativized value. Its use would

eliminate variations related to the raw number of thun-

derstorm warnings. The actual number of thunderstorms

experienced by an area may be important to how fore-

casters are conditioned to issue warnings. For example,

rather than equate St. Louis, Missouri, with south Florida

because they have the same FAR, we compared verified

and unverified counts directly.

2) INDEPENDENT VARIABLES

The 2006National Land CoverDataset is derived from

imagery captured by the Enhanced Thematic Mapper

Plus (ETM1) sensor on board Landsat 7. These data are

produced at a 30-m spatial resolution (Fry et al. 2011).

Synchronous with the development of the NLCD, a

percent imperviousness dataset was produced at the same

scale from the same imagery. Total population and me-

dian income at the level of census tracts were obtained

from the American Community Survey via the U.S.

Census Bureau’s American FactFinder. The American

Community Survey (ACS) is an ongoing national survey

distributed to randomly selected households and is used

to produce period estimates of numerous demographic

variables (U.S. Census Bureau 2013). ACS 5-yr estimates

in this study are for the years 2007–11.

b. Database assembly

All preprocessing and data assembly were performed

in ArcGIS, version 10.1, and integrated into a USA

Contiguous Lambert conformal conic projection. The

geographic extent of the 36 CWAs (Table 1; Fig. 1) was

used to clip SVT polygons and data for percent imper-

vious cover, total population, and median income. All

data were joined to a rectangular grid of 20 3 20km
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cells. Based on pilot analyses, 10- and 50-km grid sizes

were not optimal for interpreting SVT patterns in re-

lation to the size of cities and CWA boundaries.

The total population for an individual grid cell was

derived from the sum of population values for each cen-

sus tract centroid falling within a cell. An estimate of

income within each grid cell was determined by taking

the average of the centroids for each of the tracts that fell

within a grid cell. Block statistics were employed in

ArcGIS to convert the NLCD impervious data to

20km 3 20km resolution. Regional and urban–rural

contrasts were evident in each of these three indepen-

dent variables (Fig. 2). Pearson’s correlation coefficients

for the gridcell values of each independent variable in-

dicated a high positive correlation of population and

impervious cover (r 5 0.92, p , 0.001), followed by im-

pervious cover and median income (r 5 0.26, p , 0.001)

and population and median income (r5 0.27, p, 0.001).

TABLE 1. WFO cities and regions in this study.

Office Code Forecast Office

AKQ Wakefield, VA

BMX Birmingham, AL

CAE Columbia, SC

CHS Charleston, SC

CLE Cleveland, OH

DVN Davenport/Quad Cities, IA

FFC Peachtree City–Atlanta, GA

GSP Greenville–Spartanburg, SC

HUN Huntsville, AL

ILM Wilmington, NC

ILN Wilmington, OH

ILX Lincoln, IL

IND Indianapolis, IN

IWX Northern Indiana

JAN Jackson, MS

JAX Jacksonville, FL

JKL Jackson, KY

LIX New Orleans–Baton Rouge, LA

LMK Louisville, KY

LOT Chicago, IL

LSX St. Louis, MO

LWX Baltimore, MD–Washington, D.C.

MEG Memphis, TN

MFL Miami, FL

MHX Newport–Morehead City, NC

MLB Melbourne, FL

MOB Mobile, AL–Pensacola, FL

MRX Morristown–Knoxville, TN

OHX Nashville, TN

PAH Paducah, KY

PBZ Pittsburgh, PA

RAH Raleigh, NC

RLX Charleston, WV

RNK Blacksburg, VA

TAE Tallahassee, FL

TBW Tampa, FL

FIG. 1. (top) WFO cities and their forecast zone boundaries;

(bottom) other larger cities in study area.
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Each grid cell contained the number of SVTs issued

over the 8 years of the study, the percent impervious

surface, total population, and median income. Grid

cells over adjacent coastal waters of the study area

were manually extracted from the dataset given that

they did not record land surface properties. Buffering

the data by selecting only grid cells at a uniform dis-

tance inland was considered. However, because there

are several large coastal cities, manual deselection of

grid cells was preferred.

c. GWR

GWR is a modeling technique that detects spatial

nonstationarity in data relationships (Brundson et al.

1996). GWR accounts for the violation of independence

that spatially distributed data manifest. By capturing the

FIG. 2. Independent variables used in the analyses. Cell size is 20 km 3 20 km.
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stationary trend in the global relationship between a

dependent and an independent variable, GWR can then

estimate local regression parameters over actual geo-

graphic space and present the results as a map-based

visualization. In local areas where the explanatory

power of the independent variables exceeds or is less

than that of the overall global trend, we can then begin

to infer relationships about overwarning and under-

warning and how it relates to CWA boundaries and

patterns of population, income, and impervious surface.

We used a Poisson-based GWR model given that our

dependent variable is warning counts per grid cell. In

Eq. (1), yi is the dependent variable at location i;Ni is the

offset variable at the ith location; bk(ui, yi) are co-

efficients that vary based on location; ui and yi are x and

y coordinates of the ith location, respectively; and xk,i is

the kth independent variable at location i,

y
i
;PoissonfN

i
exp[S

k
b
k
(u

i
, y

i
)x

k,i
]g. (1)

GWR requires specification of two parameters. Band-

width is the distance or area under which the relationship

between the dependent and independent variable is spa-

tially assessed. Bandwidth can have a large impact on

GWR coefficients. As the bandwidth increases, the GWR

coefficient estimates approach those of a global model,

and the spatial pattern of the GWR coefficients will ap-

pear increasingly smooth across the study area. On the

other hand, if a smaller bandwidth is used, then the GWR

coefficient estimates depend on the observations in close

proximity to the subject point and the coefficient estimates

change rapidly over space (Fotheringham et al. 2002; Guo

et al. 2008). The corrected Akaike information criterion

(AICc) is a value representing divergence between ob-

served and fitted values for a model. It was used to select

bandwidth. The optimal bandwidth is the one that mini-

mizes the AICc. Comparisons of the AICc values for the

non-GWRand theGWRregressions can be used to gauge

the contribution of spatial structure to the regressive re-

lationship. The other specification required in GWR, the

kernel, determines how observations are geographically

weighted in the model. The type of kernel to use is based

on the distances between observations. A fixed kernel is

appropriate when the data are regularly positioned across

the study area, with little to no clustering.

To perform Poisson GWR, we employed the software

program GWR, version 4 (GWR4; Nakaya et al. 2009;

Nakaya 2015; http://gwr.maynoothuniversity.ie/).Data for

each grid cell were converted to a centroid. A fixed bis-

quare kernel was used in GWR4 to weight these equally

spaced data. The bisquare distance decay function assigns

zero weight to any value falling outside of the bandwidth

and provides a much steeper curve for spatial weights

than a Gaussian kernel. Bandwidth distances and their

AICc values were calculated from an interval search for

an optimal bandwidth bounded by 20km (only the eight

contiguous neighbors) as a minimum up to 200km in in-

tervals of 10km.

Instead of a local variance explained (R2), Poisson

models in GWR4 provide a global and a local percent

deviance explained (Pdev). Term Pdev is a pseudo-R2

statistic that provides an indication of the goodness of fit

in themodel. The higher the Pdev, the better themodel fit

(Nakaya 2015). In the case of Pdev 5 1, the model pre-

dictions are equal to the observed ones. Negative values

are possible with the pseudo R2 calculated in GWR4,

thus comparisons of Pdev from one independent variable

to another are best approached as relative.

GWRalso produces local regression coefficients that can

track howan independent variable can shift in the direction

of its association with the dependent variable across the

study area beyond that of the global trend. Positive local

coefficients indicate a disproportionate local increase in

SVT counts relative to an increase in the independent

variable. Negative coefficients indicate a lowering of SVT

countswith an increase in the independent variable beyond

that accounted for in the global model. Thus, the co-

efficient tells you how much the SVT counts are expected

to increase (if the coefficient is positive) or decrease (if the

coefficient is negative) when that independent variable

increases. However, the complexity that allows GWR to

elaborately illustrate local spatial relationships also en-

genders less certainty in the interpretation of coefficients

when collinear independent variables are used in a single

model (Wheeler and Tiefelsdorf 2005; Charlton and

Fotheringham 2009). For that reason, we performed uni-

variate regressions on our three independent variables.

Values for t can be used to quantify the statistical

strength in the relationship between the independent and

dependent variable. For Poisson GWR, t values are ex-

pressed as a pseudo t (estimate/standard error) in order to

assess whether the spatial variation in a coefficient is sig-

nificantly different from zero. The greater the magnitude

of t (it can be either positive or negative), the greater the

evidence against the null hypothesis that there is no sig-

nificant relationship between independent and dependent

variables. The closer t is to 0, the more likely there is no

significant difference. Given that the t values are ap-

proximations, the usual 95% thresholds of 61.96 were

used in a purely informal sense for evidence of parameter

estimates that are significantly different from zero.

The spatial patterns of standardized residuals can be

used to identify locations that deviate from the global

regressive relationship. If standardized residuals are

clustered, it can indicate that another factor or variable

is shaping the distribution of the dependent variable.
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Moran’s I, a measure of spatial autocorrelation, was

calculated for the standardized residuals of each in-

dependent variable to determine whether residuals were

randomly distributed, clustered, or evenly dispersed.

When the Z score or p value indicates statistical

significance, a positive Moran’s I index value indicates

tendency toward clustering. A negative Moran’s I index

value indicates tendency toward dispersion.

3. Results

Total warning counts did not exhibit latitudinal trends,

although they were somewhat expected given the north-

to-south gradient in moisture and convective potential

energy in our study area (Fig. 3). Instead, variability in

warning counts was more associated with CWA bound-

aries and WFO city locations. These boundary and city

effects were pronounced in North and South Carolina

(Carolinas) and north into Virginia, Kentucky, and

Tennessee, as well as parts of Mississippi and Louisiana.

The highest total warnings per square kilometer were for

grid cells in the CWAs of South Carolina.

Verified counts tended to increase aroundWFO cities

in eastern CWAs (Fig. 3). By contrast, higher counts of

unverified warnings were concentrated in the western

half of our study area (Fig. 4). Unverified counts also

tended to peak near WFO cities in some but not all

CWAs. Verified warnings per square kilometer were

highest for the CWAs in South Carolina.

Unverified warnings per square kilometer were highest

in the CWA for Mobile, Alabama. Two of the largest

metropolitan areas in our study—Chicago, Illinois, and

Atlanta—had comparatively low counts for both verified

and unverified SVTs. False alarm rates also corresponded

with CWA boundaries and peaked in coastal Louisiana

(Fig. 4). In the western and central portions of the study

area, many of the CWAs demonstrated a trend where the

FAR was higher in the periphery of the CWA and lower

as the WFO city was approached. The visual result was a

ring effect, as seen in the St. Louis area.

Non–geographically weighted regression models

reported a very weak relationship between warnings and

the independent variables, for both verified and un-

verified counts (Table 2). All of the six individual

non-GWR models had low percent deviance explained.

Coefficients were very close to zero. In contrast, global

explained deviance for GWR models was high for all

independent variables, ranging from 0.67 to 0.81 and ac-

companied by large reductions in AICc values compared

to the non–geographically weighted models. Verified

GWR global models explained slightly more deviance

than unverified models. Optimal bandwidths among all

six independent variables ranged from 50 to 80km.

FIG. 3. Gridded (top) total severe thunderstorms warning counts

and (bottom) verified warning counts only.
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Standardized global GWR coefficients suggested

more variability in the spatial relationship between SVT

counts and population than between SVT counts and the

other two independent variables (Table 3). Standard-

ized coefficients for population had a larger range, a

higher mean and standard deviation, and a larger

interquartile range for both unverified and verified

warnings. Coefficient statistics were not as variable for

impervious cover, and least of all for median income.

However, these are measures of the central tendency of

the global GWR coefficients. The spatial pattern of the

local coefficients provides more detailed information.

a. Total population

Verified population coefficients were predominantly

positive for many of the WFO locations (Fig. 5), im-

plying that increases in population in these cities was

associated with a disproportionately greater increase in

verified warnings when compared to the global GWR

model. These were supported by significant positive

t-score values, as exemplified by St. Louis, Peachtree

City–Atlanta area, and the Washington, D.C., corridor.

Patterns of negative coefficients were seen in many rural

areas, including eastern Kentucky, along the Gulf–

Atlantic coastal plain, and in parts of Mississippi. With

increases in population in these negative coefficient lo-

cations, warning counts tended to decrease dispropor-

tionately relative to the global trend. These negative

coefficients were also associated with significant nega-

tive t scores. However, percent deviance was lower in

the vicinity of WFO cities. Percent deviance tended to

peak along the borders of each CWA as, for example,

along the Ohio River in Kentucky and along the

Georgia–South Carolina CWA boundaries.

Unverified counts (Fig. 6) had a similar distribution of

positive and negative coefficients. Positive coefficients

over WFO cities conveys that unverified warning counts

tended to increase in the vicinity of more people but less

so than verified counts. These areas of positive co-

efficients were also surrounded bymore strongly negative

coefficients when compared to the results for the verified

counts. As based on t scores, the significance of unverified

population coefficients was also weaker, particularly for

positive values. Percent deviance had a similar range.

b. Percent imperviousness

GWR metrics for the relationship between percent im-

pervious cover and verified warnings (Fig. 7) resembled

those for population. Some WFO locations (St. Louis,

Missouri; Jackson, Kentucky; and Indianapolis, Indiana)

and some non-WFO cities (the Montgomery, Alabama–

Columbus, South Carolina–Atlanta–Macon, Georgia,

corridor; Asheville–Charlotte–Fayetteville area in North

FIG. 4. Gridded (top) unverified warning counts and (bottom) false

alarm rates.
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Carolina, and the Washington, D.C.–Virginia area) had

higher positive coefficients than population. Rural areas

again had lower, more negative coefficients. Significant t

scores were distributed across urban and rural regions,

with the coefficients becoming nonsignificant at the in-

terface between them. Percent deviance remained lower in

and nearWFO cities and tended to increase toward CWA

boundaries. GWR metrics for unverified warnings were

also similar to population (Fig. 8), except positive co-

efficients were less strongly positive. The significance of

positive t scores was also weaker and contracted around

cities. A larger area of nonsignificant t scores developed in

the transition zone between cities and more rural loca-

tions. Local percent deviance explained remained higher

outside of cities.

c. Median income

Median income had finer-scale variability in theGWR

metrics (Figs. 9 and 10) than population and impervious

surface. This was also reflected in its optimal band-

width, which was smaller than that of population and

impervious cover. Magnitude and range of the stan-

dardized coefficients were relatively small compared to

the other two independent variables. A few cities had

weak positive coefficients for verified and unverified

counts (Greenville, South Carolina; and Nashville and

Knoxville, Tennessee). Weak negative relationships

were less common but present for some WFOs

(Huntsville, Alabama, and Jackson, Kentucky). Per-

cent deviance was more heterogeneously distributed

but still tended to peak outside of cities.

d. Standardized residuals

For total population, the residuals for verified and

unverified counts were randomly distributed (Table 2).

This implies that the GWRmodel performs equally well

across the study area. However, residuals for impervious

cover were clustered for both count types. Clustering of

larger residuals for verified counts were centered around

WFOs chiefly in the Carolinas.

Clustering of unverified residuals was visible in CWAs

in the western and southern parts of the study area.

These clusters reflect how individual CWA identity is

important to the relationship between warning counts

and impervious cover.Median income residuals for both

count types were dispersed, suggesting that its GWR

TABLE 2. Non-GWR and GWR regression parameters.

Verified warning counts Unverified warning counts

Percent

impervious

Total

population Median income

Percent

impervious

Total

population Median income

Non-GWR Poisson regression

Explained deviance (%) 0.87 0.87 1.52 0.69 0.31 0.35

Standardized coefficient 0.05 0.04 0.06 20.04 20.01 20.03

AICc 460–592.3 460 593.8 457 568.1 220 896.7 221 739.8 221 633.3

GWR Poisson regression

Explained deviance (%) 75 76 81 67 72 75

AICc 117953.3 110933 89718.9 73788.2 64737.9 59041.1

Bandwidth (m) 80 000 70 000 50 000 80 000 60 000 50 000

Standardized residuals

Moran’s I 0.05 0.01 20.07 0.06 20.01 20.05

Z 4.2 1.2 26.5 5.5 20.9 24.7

p ,0.001 0.22 ,0.001 ,0.001 0.36 ,0.001

TABLE 3. Descriptive statistics for local GWR coefficients.

Percent impervious Total population Median income

Verified counts

Min–max 22.2 to 4.1 24.2 to 10.6 21.2 to 1.6

Mean 6 std dev 20.01 6 0.3 20.07 6 0.73 0.07 6 0.22

Median 0.02 20.02 0.07

Lower–upper quartile 20.13 to 0.11 20.25 to 0.16 20.04 to 0.19

Unverified counts

Min–max 22.5 to 2.2 27.6 to 5.1 21.8 to 1.3

Mean 6 std dev 20.13 6 0.28 20.36 6 1.18 0.04 6 0.21

Median 20.07 20.14 0.04

Lower–upper quartile 20.24 to 0.02 20.58 to 0.03 20.08 to 0.16
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model tended to perform more evenly across the study

area than expected.

4. Discussion

The overall pattern of total, verified, and unverified

SVTs did not show a strong geographical gradient in

severe thunderstorm frequency. Even though the

thermodynamic environment for severe thunderstorm

development is comparatively weaker in northern and

coastal areas than in central and southern parts of the

study region, changes in warning counts were more

visually associated with CWA boundaries. Global

GWR models confirmed that more than half of the

FIG. 5. GWR metrics for total population and verified warnings.
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variance (Pdev) in the distribution of SVTs could be at-

tributed to the underlying spatial distribution of pop-

ulation, percent impervious, and median income. These

findings suggest that human factors are strongly embed-

ded in the historical spatial patterns of severe thunder-

storm warning issuance and verification. Based on

the descriptive statistics for the GWR standardized

coefficients, warning counts aremore sensitive to changes

in population counts, followed by impervious cover, and

then median income.

Verified warnings increased disproportionately as the

population and impervious cover increased near cities.

This could be expected, as more people equates to a

greater likelihood of warning detection and postevent

FIG. 6. GWR metrics for total population and unverified warnings.
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verification. However, we found that there were also

higher unverified counts around cities. For unverified

warnings to show an enhanced local positive associa-

tion with population and impervious cover in tandem

with verified counts suggests a tendency for fore-

casters to err on the side of overissuance rather than

underissuance around developed areas. Several cities

stand out in this regard. Higher positive coefficients

and significant positive t values for verified and un-

verified warnings were observed for the Washington,

D.C.–Virginia–Maryland corridor, St. Louis, and for

the chain of cities that extend northeast from Atlanta

and into the Carolinas. The converse of this pattern was

also present in less populated regions of the study area.

FIG. 7. GWR metrics for impervious cover and verified warnings.

432 WEATHER , CL IMATE , AND SOC IETY VOLUME 9



Near smaller cities, verified and unverified counts de-

creased disproportionately as populations increased.

Jackson and Paducah, Kentucky, two of the smaller

WFO cities, had negative coefficients for population

and impervious surface. Overall, the pattern of co-

efficients for verified and unverified warning counts

transitioned from positive to negative when moving

from more urban and developed corridors to outlying

rural areas and smaller towns.

Local percent deviance was lower in developed areas.

However, this is not necessarily counterintuitive to the

interpretation that populated areas are disproportion-

ately favored over rural ones for the issuance of severe

thunderstorm warnings. For one reason, the decision to

FIG. 8. GWR metrics for impervious cover and unverified warnings.
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issue a warning near a city could involve a larger number

of factors. Whether it is day or night, or rush hour, what

season of the year it is, the history of past severe weather

impacts, and the particulars of each city’s infrastructure

and land use patterns are all considerations that might

come into play. Since this would imply greater degrees

of freedom for the issuance of warnings around cities

and developed corridors, more deviance could arise in

the relationship of warning issuance to our independent

variables. As observed, explained variance was actually

higher in the rural, peripheral areas of CWAs, near their

borders. Here, the decision process may involve a

smaller number of variables to weigh when issuing

a warning. The ring of higher percent deviance around

FIG. 9. GWR metrics for median income and verified warnings.
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a city or along CWA boundary can be interpreted as a

consequence of these differences in decision strategies.

New Orleans, Louisiana, Knoxville, and Nashville have

better model performance just outside of the city center

or along their forecast boundary, suggesting that at some

point from the city center, warning issuance becomes a

less contextual decision to make. However, some cities

retained high percent explained variance for population

and impervious cover closer to their centers, such as

St. Louis and Indianapolis. Here, less deliberation may

play into warning urban populations despite the larger

number of human factors to consider.

Along with a predisposition to overwarn in populated

areas, other factors offer alternative explanations. There

FIG. 10. GWR metrics for median income and unverified warnings.
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could be missed verifications by spotters and the general

public, even though their density around WFOs and

other cities would be higher. The cone of silence around

Doppler radar could predispose a forecaster to issue

warnings for borderline severe storms given that some

aspects of imaging may not be optimal (Davis and

LaDue 2004), although direct visual assessment of an

impending nearby thunderstorm would seem likely. Is-

suing warnings at the county level and for individual

storm polygons could also affect the distribution of both

verified and unverified warning counts. Finer grain

WFO-specific practices shaping warning issuance fre-

quency and the relationship between cancelled county

and continued storm-based polygon warnings may also

contribute (Harrison and Karstens 2017). Differences in

thunderstorm types (supercell, pulse, etc.) across the

study area could also affect issuance, verification, and

accuracy play a role (Guillot et al. 2008), for example,

verified warning peak in states east of Atlanta and un-

verified warnings peak in states to the west. Specula-

tively, this may be related to the different kinds of

thunderstorms more typical of these two regions on ei-

ther side Georgia. The more western locations are more

likely to experience supercell thunderstorms than the

Atlantic coastal plain, and greater care may be taken to

warn for them even in more sparsely populated areas.

Urban meteorological influences could also be ex-

pected to play a role in warning issuance and verification

of severe thunderstorms. While impervious cover and

total population are highly correlated (r 5 0.92), im-

pervious cover did not have the same GWR coefficient

values. This suggests that impervious cover had a dif-

ferent regressive relationship with warning counts in

comparison to population. Urban land cover and asso-

ciated aerosol air pollution can modify thunderstorm

convection (Saide et al. 2015; Dou et al. 2015; Yang et al.

2016). As land cover changes, thermodynamic proper-

ties of the atmosphere change. Aerosols link to storm

severity through their modification of the vertical de-

velopment of thunderstorms and how quickly raindrops

coalesce and fall (Rosenfeld et al. 2008). Thunderstorms

may also split in the vicinity of cities and then strengthen

after merging downwind (Niyogi et al. 2011). These

phenomena have been observed or modeled for Wash-

ington, D.C., and Baltimore, Maryland (Ntelekos et al.

2008; Zhang et al. 2011); the Indianapolis region (Niyogi

et al. 2011); St. Louis (Rozoff et al. 2003); Atlanta

(Stallins et al. 2006; Diem 2008; Haberlie et al. 2015);

and Memphis (Ashley et al. 2012).

Speculatively, an unverified warning could have ini-

tiated as what appeared to be a severe storm, but sub-

sequent exposure to humanized land covers and aerosol

air pollution could alter these features and diminish its

likelihood for verification. Still, there is substantial

variation from city to city in the way thunderstorms are

modified by these land cover and aerosol mechanisms

(Ashley et al. 2012). Furthermore, aerosol effects on

thunderstorms and their phenomena may extend over

regional scales (Bell et al. 2009; Stallins et al. 2013),

even well outside of cities. Locations with greater

spatial and temporal variability in aerosol regimes and

convective processes may also make the issuance of

severe thunderstorm warnings challenging (Petersen

and Rutledge 2001). The pattern of residuals for im-

pervious cover (Table 2) was clustered, as might be

expected if larger agglomerations of urban areas in-

fluence warning issuance and verification. Population,

on the other hand, had randomly dispersed residuals,

suggestive of a more global effect on the issuance of

warnings, which could be derived from forecaster de-

cisions about the demographic template more than any

urban effect on thunderstorms.

Several WFO cities had noteworthy warning signa-

tures in relation to their patterns of demographics and

development. The Washington, D.C., area from Balti-

more south to Norfolk, Virginia, coincides with high

concentrations of wealth and a corridor of critical

governmental infrastructure. The Asheville–Greenville–

Charlotte corridor was another large, contiguous location

with detectable human influences onwarnings. St. Louis,

Nashville, and Memphis also had statistically significant

increases in verified and unverified warnings in relation

to the global trend. The Atlanta–Macon–Columbus

corridor and Jackson, Mississippi, stood out in com-

parison to their rural matrix. Chicago, despite its size,

did not show any significant association of SVT counts

with land cover or demographics. Many northern cities

in this study had generally weaker positive and negative

local departures from the global trend. This suggests

that the latitudinal gradient in severe thunderstorm

frequency, while not strongly apparent in the distribu-

tion of warnings, is still present.

5. Conclusions

More than half of the variance in the issuance of

warnings across the entire study area may be related to

population, percent impervious cover, and median in-

come. WFOs, in addition to other medium to large cities,

had increased numbers of both verified and unverified

SVTs relative to the general trends across the study area.

However, this variance is not simply a matter of more

people equaling more warnings. The amount of local

explained variance decreased in and near cities and in-

creased toward CWA boundaries. One explanation for

this may be related to the influence of context (i.e., time
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of day, day of the week, season, and history of severe

weather impacts) on informal aspects of the warning

decision process in more developed locations. Along

the periphery of forecast zones and in rural areas where

explained variance was higher, contextual factors may

carry less weight. There may be fewer impact scenarios

to consider, resulting in higher explained variance in

our models.

Because the purpose of severe thunderstormwarnings

is to protect people and property, it could be argued that

warning areas with more people and infrastructure is

desired. A propensity to trigger more warnings in the

vicinity of cities could be seen as a successful outcome

and therefore relatively unproblematic. However, living

in a place with fewer people should not be less safe than

living in a place with more people. In smaller cities like

Jackson and Paducah, Kentucky; and Peoria, Illinois; or

Cedar Rapids, Iowa, our results indicate that, despite

local increases in population, fewer warnings may be

issued (relative to the global trend). Still, this study did

not intend to take into account the way different kinds of

thunderstorms impact SVT issuance. Isolated supercell

and convective line storms are most likely to be accu-

rately forecasted, as their higher radar intensities make

them easier to identify than pulse and nonorganized

storms. Information about preferential thunderstorm

initiation zones, their tracks, urban influences, and the

areas of their warning polygons would be useful for a

more detailed interpretation of the findings of this study.

Given the strong CWA boundary and WFO location

effects seen in the distribution of warnings, meteoro-

logical factors may not necessarily override social and

cultural factors related to forecasting. This underscores

the need for more behavioral research on forecasters’

judgment and decision-making processes (Harrison and

Karstens 2017). Our findings are echoed in the recom-

mendations of Lindell and Brooks (2013), who stressed

that there should be more study of forecasters’ decision-

making behaviors among NWS regions, WFOs, and

between individual forecasters. The physical and in-

formational structures of the NWS warning systems

reflect a long history of research, planning, and financial

investment. However, as the underling demographic

template has changed, along with the technologies to

monitor weather, it may be time to reconsider how the

siting of weather offices and boundaries impact the

warning process. Such boundary effects are known in

geography as the modifiable areal unit problem (Dark

and Bram 2007).

Ensuring equitable warning practices for all NWS

subjects is a goal that may become more challenging

over time. As forecast accuracy continues to increase,

city-focused economies are likely to become more

weather sensitive, and thus contribute to an increasing

financialization of forecasting (Anbarci et al. 2011).

Approaches to warning issuance may need to consider

ways to balance the imperative to warn intensively

capitalized andmore densely populated regions with the

need for equitability of warnings among individuals

physically distant from these centers.
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