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ABSTRACT OF DISSERTATION 

 
 
 

RELIANCE ON ALGORITHMIC EVIDENCE: THE JOINT INFLUENCE OF 
MEASUREMENT UNCERTAINTY AND ALGORITHM ADAPTABILITY  

 
Artificial intelligence (AI) systems’ capability is rapidly expanding to perform complex 
tasks once reserved only for humans. With machine learning algorithms, AI can learn and 
adapt as it encounters more data, which has enabled these systems to improve the quality 
of accounting estimates that traditionally have been more difficult for humans. Although 
AI systems’ capability to adapt has potential benefits, these systems also have become 
increasingly complex, making it difficult for individuals to understand the processes or 
algorithms these systems use to produce advice. Practitioners worry that when algorithms 
behave like “black boxes” this opacity may lead to a lack of reliance on evidence provided 
by these systems. This study seeks to examine and understand whether the degree of 
measurement uncertainty within a complex estimate influences the weight individuals will 
place on advice provided by an algorithm and whether that relationship depends on the 
algorithm’s capability of adapting. I experimentally demonstrate that higher levels of 
measurement uncertainty increase individuals’ reliance on advice provided by an 
algorithm, but only if that advice is produced by an algorithm capable of adapting (versus 
an algorithm not capable of adapting). I also find that this joint effect of measurement 
uncertainty and algorithm adaptability on individual’s advice utilization operates indirectly 
through individuals’ willingness to trust the algorithm. This study provides important 
insights to firms that are planning to deploy AI systems that will assist accounting 
professionals with developing and evaluating complex estimates.  
 
 
KEYWORDS: Algorithm, adaptability, uncertainty, accounting, advice taking, judgment 

and decision making 
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CHAPTER 1 

INTRODUCTION 

Companies (e.g., audit firms, financial service firms) are investing significant 

resources in developing artificial intelligence (AI) systems capable of assisting accounting 

professionals with complex business and financial decision-making (Deloitte 2018c; 

KPMG 2018; Bloomberg Tax 2020; KPMG 2020a).1 With recent advancements in AI’s 

capability, such as the ability to learn and adapt overtime, firms are keen on implementing 

these systems in areas that have traditionally proven difficult for accountants (CPA Canada 

and AICPA 2020). For example, financial service companies have begun developing AI 

technology to provide managers with financial forecast estimates such as future cash flow 

(Deloitte 2019a). While companies continue to encourage accounting professionals to seek 

and utilize advice to improve the quality of developing and evaluating judgment-based 

tasks, such as complex estimates (Ranzilla, Chevalier, Herrmann, Glover, and Prawitt 

2011; PCAOB 2016; Deloitte 2019d), literature suggests that accounting professionals may 

not be willing to rely on an AI system, and as a consequence may place less weight on 

advice provided by the system (Dietvorst, Simmons, and Massey 2015; Dietvorst 2016; 

Commerford, Dennis, Joe, Ulla 2021). Likewise, practitioners have expressed concerns 

that characteristics of these advanced technology, such as lack of interpretability and 

transparency, could lead to a loss of trust in these systems (EY 2018; KPMG 2018; CPA 

Canada and AICPA 2019, 13; KPMG 2019a). Consequently, accounting practitioners’ 

 
1 Following the Brookings Institution (e.g., West and Allen 2018), I define AI as a network of algorithms 
that are capable of performing actions traditionally considered only possible by humans, such as creatively 
solving problems or completing complex tasks. The AI technology that I consider in this paper is “narrow” 
AI, which performs one specified, narrow task, as opposed to a general AI that is able to perform any task 
that a human can do (Bughin, Chui, and McCarthy 2017).  
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reluctance in utilizing advice provided by an AI system may lead to lower quality 

accounting estimates and companies may not capitalize on their investments in these 

advanced technologies. Given the increasing prevalence and magnitude of complex 

estimates in financial statements (Christensen, Glover, and Wood 2012; PCAOB 2014), it 

is important to understand factors affecting accounting professionals’ willingness to utilize 

evidence produced by algorithms. 

 Accounting practitioners experience many challenges when developing and 

evaluating complex estimates due to the extreme measurement uncertainty and the inherent 

subjectivity in predicting future outcomes (Christensen et al. 2012; Bratten, Gaynor, 

McDaniel, Montague, and Sierra 2013; Glover, Taylor, and Wu 2017).2 Individuals are 

averse to uncertainty, and to reduce uncertainty they tend to seek out advice from others 

(Sniezek and Van Swol 2001). Specifically, advice-taking literature finds that when 

individuals face tasks that exhibit greater uncertainty and difficulty, they are more likely 

to solicit and utilize advice from another person (Schrah, Dalal, and Sniezek 2006; Gino 

and Moore 2007). Importantly, uncertainty has been identified as a key antecedent for the 

development of an individual’s need to seek out and utilize advice because if a situation is 

certain then there is no need to seek out advice (Van Swol and Sniezek 2005). These 

findings suggest that accounting practitioners might be relatively more willing to 

incorporate advice from an algorithm when facing higher degrees of measurement 

uncertainty.  

 
2 Measurement uncertainty is defined as the “ambiguity in the valuation of an item (e.g., financial 
instrument)” (Bratten et al. 2013, 10). For example, measurement uncertainty can arise from uncertainty 
surrounding the model inputs and the model selected to value a financial item. 
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Although individuals may be more willing to utilize advice when facing higher 

uncertainty regarding a decision, literature has found that another key component in advice 

utilization is whether individuals believe the advisor possesses the necessary skillset or 

competencies to assist with the task (Mayer, Davis, and Schoorman 1995; Van Swol and 

Sniezek 2005). Specifically, individuals tend to weight others’ advice proportional to the 

expertise or level of knowledge attributed to that source such that greater emphasis is 

placed on recommendations provided by more capable sources (Birnbaum and Stegner 

1979; Harvey and Fischer 1997; Pornpitakpan 2004). Furthermore, certain advisor 

characteristics, such as adaptability, may be more highly valued depending on the specific 

environmental characteristics of the task at hand. For example, firms note that they seek 

out leadership that will undertake an adaptive business strategy because firms view this 

approach is more sustainable in an uncertain and rapidly changing business environment 

(Reeves and Deimler 2011). In another example, firms have noted that in volatile times, as 

a means of “confronting uncertainty intelligently”, they have leveraged their advanced 

technology to “adaptively navigate (during) evolving conditions” (Deloitte 2021). 

Collectively, these examples suggest that when facing environments that exhibit relatively 

high uncertainty, individuals may increasingly value algorithms that can adapt as a means 

of confronting uncertainty. This has important implications in an accounting setting where 

accountants will likely encounter technologies that vary in the degree to which they can 

adapt. For example, some systems utilize static algorithms that function on defined rules 

that are not capable of adapting, while other more capable systems utilize learning 

algorithms that can adapt to improve the prediction models (Schatsky, Muraskin, and 
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Gurumurthy 2015; Deloitte 2018a; EY 2018; Deloitte 2019a).3 Although there are concerns 

regarding lack of transparency in these learning algorithms leading to lower reliance on 

their output, advice-taking literature suggests that accounting practitioners may weight 

algorithmic advice proportional to the algorithm’s capability, where greater weight is 

placed on algorithms capable of adapting. Accordingly, I predict that as individuals face 

higher measurement uncertainty, they will place heavier weight on advice especially if the 

advice is provided by an algorithm that exhibits learning capabilities rather than if the 

algorithm does not exhibit learning capabilities.  

To test my predictions, I conduct an experiment using a 2 × 2 between-subjects 

design, manipulating measurement uncertainty surrounding the inputs to generate an 

estimate (higher versus lower future uncertainty) and capability of an algorithm (more 

versus less capable). Participants are asked to help with intangible asset impairment testing 

by estimating the fair value of a patent related to natural gas drilling. Participants receive 

macroeconomic information to assist them with developing their estimate. To manipulate 

measurement uncertainty, I provide participants with a graph of natural gas price forecasts 

and analysts quotes that exhibit either higher or lower uncertainty in future natural gas 

prices. Next, participants provide their initial patent fair value estimate. Before providing 

their final estimate, participants receive an estimate developed by a proprietary software 

system called the E-Val system, which recommends a lower patent fair value than the 

participant’s initial estimate. To manipulate algorithm capability, I inform participants that 

the E-Val system utilizes learning algorithms that can adapt and improve (i.e., more 

 
3 The statement that a learning algorithm is more capable than a static algorithm is based on the assumption 
that the technology has been properly developed and trained on a sufficient amount of dataset, which is 
consistent with how firms are currently developing these technologies (Deloitte 2018a).  
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capable algorithm) or static algorithms (i.e., less capable algorithm) that are fixed and do 

not adapt. My dependent variable measures the degree to which individuals incorporate the 

algorithm’s recommended fair value into their final estimate.  

Consistent with my theory-based expectations, I find that higher future uncertainty 

causes individuals to more heavily weight advice but only if the advice is provided by a 

learning algorithm rather than a static algorithm. Furthermore, results indicate that when 

facing lower future uncertainty, individuals do not differentially weight advice provided 

by a learning or static algorithm. Supplemental mediation analyses reveal that individuals’ 

willingness to trust in an algorithm mediates the positive relation between future 

uncertainty and utilization of advice, but that this mediation indirect effect is conditional 

upon the capability of the algorithm. Specifically, I find that the indirect effect of 

measurement uncertainty on advice utilization through willingness to trust in an algorithm 

is significant when individuals receive advice from a learning algorithm but that the 

indirect effect is not significant when individuals receive advice from a static algorithm. 

This is consistent with literature, which identifies advisor’s capability as a key factor in the 

development of an individual’s willingness to trust in others. Collectively, these findings 

suggest that although higher uncertainty may increase the degree to which individuals 

incorporate advice into their final estimate, advice utilization also depends on the capability 

of the algorithm.  

In a second study, I further validate my findings in Experiment 1 in a different 

financial setting. Specifically, in Experiment 2, I examine whether individuals will more 

heavily weight advice provided by an algorithm capable of adapting relative to an 

algorithm not capable of adapting when completing a task that contains high uncertainty 
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regarding the task solution. Participants are tasked with forecasting a stock’s future price. 

Similar to Experiment 1, participants provide their initial forecast and then are provided 

with the algorithm’s estimate before finalizing their forecast. I use a 1 × 2 between-

participants design, manipulating the adaptive capability of the algorithm that provides 

advice to the participant as an algorithm capable of adapting or not capable of adapting 

(i.e., learning versus static algorithm). Consistent with my Experiment 1 findings, 

Experiment 2’s results reveal that when tasks that contain high uncertainty, individuals 

weigh advice provided by a learning algorithm relative to a static algorithm.  

My study has both theoretical and practical contributions. First, my study 

contributes to the growing literature around complex accounting estimates. High degree of 

measurement uncertainty and subjectivity remains a challenge for accounting practitioners 

(Cannon and Bedard 2017; PCAOB 2017; Griffith 2020). For example, financial institution 

managers are experiencing difficulties with developing forward looking estimates such as 

current expected credit loss (CECL) estimates in part due to macroeconomic uncertainty 

(Mard 2018; Pinello 2020). Furthermore, recent literature suggests that under greater 

uncertainty, auditors are less able to negotiate a downward fair value estimate adjustment 

(Cannon and Bedard 2017). I contribute to this literature by providing direct evidence on 

how measurement uncertainty influences the degree to which accounting practitioners 

willingly incorporate advice into their accounting estimate. Specifically, my results reveal 

that overall, individuals are more willing to incorporate algorithmic evidence into their 

final estimate when facing higher uncertainty, which is of importance to practitioners given 

that they intend to deploy advanced technologies in these more challenging areas. I also 

demonstrate that reliance on algorithmic advice is contextually dependent and that 
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algorithm adaptability is an important technological feature that influences advice 

utilization.  

Secondly, I contribute to psychology literature regarding human and algorithm 

interaction. Studies have shown that individuals are averse to relying on algorithms across 

various factors and decision domains (Dietvorst et al. 2015; Dietvorst, Simmons, and 

Massey 2016; Burton, Stein, and Jensen 2020; Castelo, Bos, and Lehmann 2019). Results 

suggest that individuals may be reluctant to rely on algorithmic advice in part due to 

concerns that algorithms lack the necessary level of expertise or capability (Castelo et al. 

2019; Commerford et al. 2021). My study finds that algorithm adaptability is an important 

factor that can influence the weight individuals will place on algorithmic evidence under 

certain settings. Additionally, my study suggests that there may be benefits in highlighting 

an algorithm’s advanced capability. Overall, this study helps identify the contexts in which 

accounting practitioners might be more willing to rely on algorithms.  

Lastly, practitioners continue to voice concerns that as technologies’ capability 

continues to increase, its processes behave more like a “black box” which prevents 

individuals from understanding how the algorithm developed its output. This lack of 

transparency may reduce an individuals’ willingness to trust output provided by learning 

algorithms. Contrary to these practitioner concerns, I find that under higher levels of 

uncertainty, accounting practitioners are quite willing to rely on a learning algorithm 

(relative to a static algorithm) despite the lack of ability to understand its decision 

processes. The results of my study should be of interest to businesses employing algorithm-

based technology. Furthermore, my study’s results suggests that potential advantages of 



8 
 

combining human and algorithmic advisors’ insights may not be realized if individuals are 

unwilling to incorporate algorithmic advice into their judgment and decisions. 

The remainder of this dissertation is organized as follows. In Chapter 2, I provide 

background and discuss psychology theory relevant to the development of my hypothesis. 

In Chapter 3, I describe the research design and results for my two studies. Chapter 4 

reports the results of additional analyses. In Chapter 5, I draw conclusions about the results 

of my dissertation and discuss the implications of the findings for accounting research. 
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CHAPTER 2 

BACKGROUND AND HYPOTHESIS DEVELOPMENT 

Artificial Intelligence: The Moving Target 

The term “artificial intelligence’ (AI) was first coined in 1955 and defined as 

machines that can simulate or imitate human intelligence (McCarthy, Minskey, Rochester, 

and Shannon 1955). A more current and generally accepted definition of artificial 

intelligence is the theory and development of machines (i.e., computer systems) able to 

complete tasks that normally require human intelligence (Deloitte 2014, 2; CPA Canada 

and AICPA 2019). However, human intelligence-required tasks that qualify systems to be 

labeled as “AI” continuously changes – a phenomenon termed the ‘AI Effect’ (Hofstadter 

1980). For example, in the 1960s chatbots that simulate and process human conversation 

were once considered intelligent systems (Shum, He, and Li 2018). As technology’s 

capability to conversate with humans became more widely adopted or diffused as a 

common part of daily life, the AI effect occurs and general population cease to view 

chatbots as AI (Deloitte 2014). In another example, technology capable of face recognition 

was once labeled as AI (Think Automation 2020). However, as this function became a 

widespread technological application, face recognition was no longer a defining capability 

that classified technology as artificially intelligent. Thus, the label of “AI” continuously 

evolves and is concisely stated as “AI is whatever hasn’t been done yet” (Hofstadter 1980, 

608). 
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A Brief History of Technology in Accounting Settings: Decision Aids and Expert 

Systems  

 Decision aids are tools that provide assistance to decision makers in “gathering, 

processing, or analyzing information for a decision” (Brown and Eining 1997, 164). 

Decision aids utilized in the accounting setting ranged from simple checklists and statistical 

models to more complex expert systems (Ashton 1990; Kachelmeier and Messier 1990; 

Eining, Jones, and Loebbecke 1997; Bonner 2008, 342). Decision aids were designed to 

improve accountants’ judgment and decision-making quality by reducing the negative 

effect of certain task-specific characteristics, such as task complexity (Bonner 2008). For 

example, a management fraud decision aid checklist can improve auditors’ performance of 

multi-cue judgments by focusing auditors on a set of information or cues which reduces 

task complexity by decreasing the volume of information the auditor (Bonner 2008). Given 

these benefits decision aids provide, firms began to invest in and develop more advanced 

decision aids, such as statistical models and expert systems, that were capable of assisting 

accountants with judgment-laden tasks such as predicting likelihood of going concern 

(Brown and Jones 1998; Davis 1996), forecasting earnings (Ghosh and Whitecotton 1987; 

Whitecotton 1996), or assessing likelihood of management fraud (Boatsman, Moeckel, and 

Pei 1997; Arnold and Sutton 1998).  

Expert systems gained prominence in the 1980s and were designed to perform tasks 

in a narrow or specific decision domain and were once the latest advancement in the field 

of AI (Turban and Watkins 1986; Brown 1991; EY 2019). Designers held high hopes for 

expert systems to not only assist humans with complex tasks but also to potentially replace 

people or experts. Expert systems were developed to replicate an expert’s knowledge base 
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for a specific problem domain and to mimic a human expert’s decision processes, 

reasoning, and behavior in a decision-making task (Enslow 1989).4 Accounting firms used 

expert systems to assist with a range of task in their tax, audit, and consulting practices. 

For example, these systems were capable of assisting tax accountants in selecting 

accounting methods and structuring transactions to minimize federal and state income taxes 

(Brown 1991). Specific to audit, firms developed a variety of expert systems that could 

assist auditors with selecting testing procedures and determining sample sizes (Brown 

1991; Eining et al. 1997), establishing materiality thresholds (O’Leary and Watkins 1989), 

and conducting fraud risk assessments (Lombardi 2012). Although expert systems were 

meant to replace human specialists and experts, these systems failed to reach expectations 

and were used in a more advisory role (Bonner 2008). Firms realized that unlike a human 

specialist, the expert system was unable to draw on past experiences to solve an unusual or 

new case and as a result, the expert system was only capable of solving “rudimentary 

problems” (EY 2019). Furthermore, decision aids and expert systems are both more akin 

to passive machines that are mechanical in nature and as such, are poor tools for handling 

uncertainty, an “ubiquitous fact of life’ (Deloitte 2014; West 2018). Several factors 

contributed to expert system’s limited success: mounting costs of maintaining these large 

systems, difficulty of capturing experts’ tacit knowledge and reasoning capabilities, and 

lack of data availability (Turban and Watkins 1986; Deloitte 2014; Deloitte 2019c). Given 

these shortcomings, interest in expert systems declined and firms ceased funding the 

development of these systems (EY 2019). 

 
4 Another aspect of expert systems that differentiates it from prior decision aids is expert systems contain an 
explanation and justification capability that provides the user with some explanation of its reasoning (Turban 
and Watkins 1986).  
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Artificial Intelligence and Machine Learning  

Letting the Machine “Think” 

While expert systems, along with other similar decision aids in the past, attempted 

to model a human expert’s thought patterns, current AI systems are developed to perform 

tasks that require human intelligence rather than to emulate how they think (Deloitte 2014). 

Alan Turing, the father of AI, stated, “If the man were to try and pretend to be the machine 

he would clearly make a very poor showing. May not machines carry out something which 

ought to be described as thinking but which is very different from what a man does” (Turing 

1950, 4). Enabling an AI system to develop its own method of “thinking”, learning, and 

reasoning has allowed technology to not only surpass prior technological limitations, but 

also outperform human experts. For example, the DeepMind for Google (DMG) team 

developed an AI system named AlphaGo (Stern, Graepel, and MacKay 2004). AlphaGo 

was designed to play Go, an abstract strategy board game that originated from China and 

dates back some 4,000 years ago (Holcomb, Porter, Ault, Mao, and Wang 2018). Experts 

doubted that an AI system could ever defeat a human in Go given the massive amount of 

possible moves (i.e., large degrees of freedom) players can make and the high uncertainty 

about the future course of the game (Stern et al. 2004).5 Furthermore, given the large 

degrees of freedom in potential moves, Go is associated with imaginative and creative 

thinking, traits that are not commonly associated with an AI system (Bory 2019). In a stark 

contrast to prior AI systems that were generally modeled on how an expert or a human 

would perform a task, DMG’s scientists and engineers instead focused their efforts towards 

developing an “un-humanlike” system that could learn the game with as little human 

 
5 For example, at the start of the game, each player has an estimated 360 options for placing each stone (Cho 
2016). In total, the number of possible arrangements of stones is beyond googol (i.e., 10100). 
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guidance and interference as possible using machine learning technology (Bory 2019). In 

2016, AlphaGo defeated Lee Sedol, the leading Go professional player. AlphaGo 

demonstrated that AI systems could not only surpass human achievements in highly 

uncertain and subjective domains, but also exhibit creativity and a new way of thinking 

that is “un-humanlike”.6 

Currently, AI technology can perform tasks that require human intelligence by 

seeking patterns, learning and adapting from experience, and updating its output based on 

situational or environmental awareness (Citibank 2018). One of the methods a system can 

achieve artificial intelligence is through machine learning algorithms.7 Similar to how 

humans learn through experiences, machine learning is an application of artificial 

intelligence that equips computer systems with the capability to learn and adapt as it 

interacts with its environment and encounters more data in order to achieve “intelligence” 

(Deloitte 2019c). Specifically, machine learning refers to a “set of algorithms that enables 

[a system] to recognize patterns from large datasets and then apply these findings to new 

data” (Citibank 2018, 20). See Figure 1 for a depiction of the relationship between AI, 

machine learning, and future machine learning applications such as deep learning.  

 

 

 

 

 
 

6 The landmark event that defined the encounter between AlphaGo and Sedol occurred in Game 2 move 37. 
AlphaGo’s move 37 was described as one that “normally humans would never play”, “very beautiful” play, 
and a move never played by a strong player (Bory 2019, 636).  
7 Algorithms are a set of rules or problem-solving operations used to interpret the training data and create a 
model which will predict an output when given an input (i.e., live data) (EY 2018). 
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FIGURE 1 

Relationship Between Artificial Intelligence, Machine Learning, and Deep 
Learning 

 
 

 
 
 

Note: The purpose of Figure 1 is to illustrate the relationship between artificial intelligence (AI), machine 
learning, and deep learning, which is the next generation of machine learning technology (Oppermann 
2019).  

 

 

Advancements in Artificial Intelligence and Machine Learning – Why Now? 

Development of artificial intelligence and machine learning technology began in 

the 1950s (Alzubi, Nayyar, and Kuma 2018). Although machine learning is not new 

technology, several barriers prevented widespread adoption of machine learning enabled 

systems. The unprecedented availability of affordable advanced computing power, massive 

increase in data availability (i.e., big data), and a reduction in cost of storing and 
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accumulating large amounts of data are three key recent developments that facilitated the 

recent industrialization of machine learning enabled systems referred to as AI (Citibank 

2018; Deloitte 2018b). See Figure 2 for a depiction of the “raw materials” for AI. With 

these necessary “raw materials” now readily available, AI researchers have begun to 

capitalize on machine learning technology’s practical applications (Jordan and Mitchell 

2015).  
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FIGURE 2 
Raw Materials of Artificial Intelligence 

 
 

 
 

Note: The purpose of Figure 2 is to illustrate the three recent developments that have allowed AI to become 
a practical technology application available for widespread commercial use (Citibank 2018). Current AI 
systems have surpassed prior technological capabilities in part due to machine learning algorithms.  

 

 

Machine Learning and Adaptability 

Machine learning algorithms equips technology with new capabilities, such as the 

ability to adapt and learn from its mistakes (i.e., the capability to improve its performance 

over time) (Deloitte 2017a; CPA Canada and AICPA 2019). Using machine learning 

technology, algorithm-based models are trained on massive amounts of data and can 

improve as it continues to encounter more data. For example, a typical process for using 

machine learning algorithms to develop a credit card fraud detection model capable of 

identifying potentially fraudulent transactions begins with feeding the model with training 

data. In the training data, transactions are labeled as fraudulent or non-fraudulent. The 
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model begins to recognize patterns and learns which features should be weighted more or 

less heavily when delineating between fraudulent and non-fraudulent transactions (Deloitte 

2017b). As more data is fed into the model, the machine learning algorithms will update 

the model by adapting and refining these features’ weights to improve its future predictions 

(Deloitte 2017b; Deloitte 2019c).  

Machine learning algorithms have drastically improved technology’s ability to 

recognize patterns and forecast or predict future events (Deloitte 2019b). In the past with 

expert systems, data scientists would create models by coding each rule by hand. However, 

machine learning algorithms can develop higher quality models that contain millions of 

parameters or rules without human intervention (Bleicher 2017). With advancements in 

storage systems along with improvement in processing speeds and analytic techniques, 

algorithms are now capable of conducting complex analyses and decision-making that 

could exceed beyond human capabilities (West 2018; Ding, Lev, Peng, Sun, and 

Varsarhelyi 2020).8 For example, financial investment algorithms are able to manage large 

volumes of transactions in multiple markets, learn and adapt to real-time data, and execute 

market transactions that take advantage of information extracted from the data (Cao, Jiang, 

Yang, and Zhang 2020).9 Some other examples of practical applications of machine 

 
8 For example, Kensho used machine learning algorithms to develop a google-style platform that allows 
investors to ask complex questions and provide answers by analyzing millions of market data points to find 
correlations and arbitrage opportunities (Gara 2018). For example, investors can ask Kensho “What stocks 
go up the most when a Category 3 hurricane hits Florida?” or “How do the big banks trade the day after the 
Federal Reserve’s stress test results are released?” (CNBC 2015; Citibank 2018).  
9 The Man Group, a hedge fund group, manages 45 percent of its $96 billion in assets through quantitative 
trading using machine learning (CNBC 2017). The advantage of quantitative trading is that the algorithms 
do most of the work and develops newer technology where the computer systems do not need to be told what 
and when to trade – the systems identify patterns and arbitrage opportunities on their own and put their own 
buy and sell orders based on its own research (Man Institute 2021). 
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learning algorithms include investment recommendations, language translation, image 

recognition, and predictive analytics (Deloitte 2017b).  

A defining feature that delineates machine learning technology from prior decision 

aid technology is that current AI systems have the capability to learn from prior experience 

(West and Allen 2018). While prior technology operated in a “mechanistic” manner, 

machine learning enabled technology can adapt as it encounters real-time external data just 

as humans can gain more knowledge through experience. Although the capability of 

adapting is highly beneficial when dealing with uncertainties and instability in the external 

world, it could erode a decision maker’s trust in the model (KPMG 2019b). Specifically, it 

could cause concerns that as AI integrates changes in its models, the decision processes 

and rules that guide the model’s decision making may become opaque or a “black box” 

(Bleicher 2017; CPA Canada and AICPA 2019). While adaptability is a new feature of 

technology that can provide comfort to firms deploying these systems in uncertain 

environments, this new capability may not always be viewed as beneficial. 

Machine Learning Applications in Accounting Settings 

Accounting firms have begun to implement AI technology that rely on algorithms 

to perform judgment-based tasks once reserved for humans, such as developing and 

evaluating complex estimates (i.e., an estimate that contains a predictive input or element) 

(KPMG 2016; Deloitte 2017a; West and Allen 2018; CPA Canada and AICPA 2019).10 

For example, financial service companies are developing AI technology capable of 

forecasting financial estimates, such as future cash flows (Deloitte 2019a). Similarly, audit 

 
10 In a survey of 250 senior executives, a third of respondents are developing systems to support better human 
judgement and decision making by using advanced technology to provide predictions based on analyzing 
structured and unstructured data (Deloitte 2017a).  
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firms are also investing substantial resources into developing AI systems to assist auditors 

with the evaluation of complex accounting estimates (e.g., commercial loan grades; KPMG 

2016) (Shandwick 2016; Bughin et al. 2017; Commerford et al. 2021).  

Organizations are rapidly integrating advanced technology into their business 

strategy as a tool for generating value (McKinsey Analytics 2020).11 Specifically, firms are 

keen on integrating AI technology into their processes not only for potential operational 

efficiencies (i.e., cost savings), but also for the technology’s ability to enhance the quality 

of accounting information (Raschke, Saiewitz, Kachroo, and Lennard 2018; Ding et al. 

2020; KPMG 2020a; KPMG 2020b). For example, Ding et al. (2020) developed AI 

technology using machine learning algorithms that produced more accurate valuations of 

insurance companies’ loss reserves (i.e., estimates of future claims expenditures) compared 

to managers’ actual estimate of the reserves reported in the financial statements. 

Accordingly, AI technology can help improve accounting practitioners’ judgment and 

decision making on some of the more challenging tasks, such as estimating and evaluating 

complex estimates (KPMG 2016; Murphy 2017; Deloitte 2019a; Commerford et al. 2021). 

However, practitioners have voiced concerns regarding whether these advanced 

technologies’ lack of interpretability and transparency could potentially lead to a “lack of 

trust” in these systems (CPA Canada and AICPA 2019, 13). Given the increasing 

significance and magnitude of complex estimates in financial statements (Christensen et 

al. 2012; PCAOB 2014), it is important to understand factors affecting accounting 

professionals’ willingness to rely on evidence produced by these AI-based systems.  

 
11 While firm value is a very broad term, recently firms cited that AI adoption has generated firm value in the 
form of increasing revenue while also at the same time decreasing expenses (McKinsey Analytics 2020). 
However, other forms of value that AI adoption could yield is streamlining processes and higher quality 
decision making. 
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Measurement Uncertainty and Complex Estimates  

Many accounting estimates involve a forward-looking element (e.g., allowance for 

loan loss provision, projected benefits obligation) (Spiceland, Nelson, and Thomas 2018). 

For example, when determining the value to record for an intangible asset such as a patent, 

accountants can utilize a discounted cash flow method which involves predicting the future 

cash flow that the patent will likely generate. The inherent subjectivity in predicting future 

outcomes, along with the potential of extreme measurement uncertainty, makes estimating 

and evaluating complex accountings estimates (hereafter complex estimates) particularly 

problematic for accounting practitioners (Christensen et al. 2012; Bratten et al. 2013; 

Glover et al. 2017; Ding et al. 2020). Measurement uncertainty is defined as the “ambiguity 

in the valuation of an item” (Bratten et al. 2013, 10). Some of the difficulty related to 

measurement uncertainty can be attributed to market volatility, which further adds to the 

challenges of developing reasonable and accurate model inputs (e.g., future cash flows for 

a discounted cash flow model valuation) (Bratten et al. 2013). Consistent with the notion 

that accountants struggle with developing complex estimates, PCAOB inspection reports 

continue to identify audit deficiencies related to the evaluation of complex estimates 

(Church and Shefchik 2012; PCAOB 2017, 2020a, 2020b, 2020c, 2020d). Given the 

challenges with developing and evaluating complex estimates, accounting practitioners 

generally involve valuation specialists to provide advice and to assist with the assessment 

of these estimates (Martin, Rich, and Wilks 2006; Deloitte 2015; Griffith, Hammersley, 

Kadous, and Young 2015; Cannon and Bedard 2017; Griffith 2018). As technology 

continues to evolve and improve, firms are moving towards implementing AI specialist 

systems to develop and evaluate complex estimates (Commerford et al. 2021).   
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One of the key findings in advice-taking literature is that individuals tend to 

discount advice (Yaniv and Kleinberger 2000; Yaniv 2004; Bonaccio and Dalal 2006). 

According to the egocentric bias explanation, individuals view themselves as superior to 

others and consequently prefer their own opinions over opinions or recommendations 

received from advisors (Kruger 1999; Gino and Moore 2007). However, evidence suggests 

that while people view themselves as superior to others on less complex tasks, they tend to 

believe they are worse than others on difficult or more complex tasks (Kruger 1999). As a 

result, when individuals face tasks with greater difficulty or involving higher uncertainty 

(i.e., uncertainty about the solution to the task), they are more willing to trust in others and 

also utilize advice as a means to reduce that uncertainty (Sniezek and Van Swol 2001; Gino 

and Moore 2007). For example, in a study where participants were asked to estimate the 

weight of a person in a photo, participants more heavily relied on advice when examining 

a blurry photo (i.e., more uncertainty) than a clear photo (i.e., less uncertainty) (Gino and 

Moore 2007). Collectively, these studies suggest that when accountants are developing a 

complex estimate that exhibits higher measurement uncertainty, they may view themselves 

as less capable of developing the estimate and as a result, are more likely to utilize advice 

provided by others. 

Although individuals may exhibit greater reliance on advice when completing tasks 

with higher uncertainty, the degree advice utilization also depends on whether individuals 

perceive the advisor of being capable of completing the task (Mayer et al. 1995; Van Swol 

and Sniezek 2005). Specifically, literature finds that individuals weight other sources’ 

advice proportional to the expertise or level of knowledge attributed to that source, such 

that higher emphasis is placed on information provided by more capable and competent 
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sources (Birnbaum and Stegner 1979; Harvey and Fischer 1997; Pornpitakpan 2004; 

Bonaccio and Dalal 2006). For example, in an experiment where participants were 

presented with selecting a hypothetical medical treatment, participants more heavily 

weighted advice from an advisor who was a trained counselor (i.e., higher expertise) 

compared to advice from a friend (i.e., lower expertise) (Jungermann and Fischer 2005). 

Advice-taking literature suggests that increasing the perceived capability of the advisor, 

such as an algorithm, could increase reliance on that algorithm’s advice. These findings 

have implications when applied to an accounting setting because accounting practitioners 

will likely encounter technologies that vary in the degree to which they can adapt. For 

example, some systems utilize static algorithms that function on defined rules that do not 

adapt, while other more capable systems utilize algorithms that can adapt to improve 

performance (i.e., learning algorithms) (Schatsky et al. 2015; Deloitte 2018a; Deloitte 

2019a). With the application of machine learning algorithms, systems are capable of 

learning and adapting without being given explicit instructions on how to perform a task 

(EY 2018; Deloitte 2019a). Overall, theory suggests that an algorithm characteristic, such 

as adaptability, may be an important factor that influences the degree to which individuals 

will rely on its output. 

However, literature also finds that the value individuals place on certain advisor 

characteristics may depend on environmental factors. For example, Song et al. (2013) find 

that firms engaging in more complex mergers and acquisitions (M&A) deals are more 

likely to hire “boutique” banks as their advisors because these banks tend to specialize by 

industry and have expertise in M&A. However, in less complex M&A deals, firms are less 

likely to select a boutique advisor and instead will engage in a full-service bank, which 
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tend to have less experience with M&A deals. This is consistent with the notion that certain 

advisor characteristics, such as capability of adapting, may be more highly valued 

depending on the specific environmental characteristics of the task.  

When facing environments that exhibit relatively high uncertain, individuals may 

increasingly value algorithms capable of adapting as a means of confronting uncertainty. 

For example, businesses face growing instability since the 1980s due to globalization of 

business operations along with the introduction of new technologies that upend the 

business environment (Reeves and Deimler 2011). Firms note that they seek out leadership 

that will undertake dynamic and adaptive strategies because firms view this approach is 

more sustainable in an uncertain and volatile business environment. In other words, 

adaptability is viewed as a “competitive advantage” and is a highly valued characteristic 

(Reeves and Deimler 2011, 137). In another example specific to adaptive technology, as a 

response to the COVID-19 pandemic, organizations have reported increased investment in 

advanced technology to assist with decision-making during a time of great uncertainty 

(McKinsey Analytics 2020). These organizations note that AI’s capability to adapt to 

current economic environment has allowed them to develop real-time solutions that they 

otherwise would not have had. Furthermore, firms have noted that in volatile times, as a 

means of “confronting uncertainty intelligently”, they have leveraged their advanced 

technology to “adaptively navigate (during) evolving conditions” (Deloitte 2021). 

Collectively, this is consistent with the notion that individuals view algorithms that are 

capable of adapting as more equipped to handle uncertainty (Deloitte 2014; KPMG 2020c) 

and that individuals may value an adaptive algorithm more when facing higher uncertainty 

relative to lower uncertainty.  
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Consistent with the theory above, I expect that higher measurement uncertainty in 

a complex estimate will cause accounting practitioners to more heavily weight advice 

provided by an algorithm. However, individuals may be reluctant to utilize advice provided 

by an algorithm, especially a learning algorithm capable of adapting that lacks 

transparency. Despite this, advice-taking literature suggests that individuals will weigh 

other sources’ advice proportional to how capable they perceive that source. As such, I 

propose that the relationship between measurement uncertainty and degree to which 

accounting practitioners utilize advice from an algorithm depends on whether the algorithm 

is capable of adapting. Specifically, I expect that higher measurement uncertainty will 

cause accounting practitioners to more heavily weight advice, especially if the advice is 

provided by a learning algorithm rather than a static algorithm. However, as the degree of 

measurement uncertainty decreases, individuals place less value on an algorithm’s 

capability of adapting and as a result, an algorithm’s adaptive capability will have less of 

an effect on the weight an individual places on the algorithm’s advice. Accordingly, I 

propose the following interaction hypothesis:  

Hypothesis:  As measurement uncertainty increases, individuals will more 
heavily weight algorithmic advice, especially if the advice is provided by an 
algorithm capable of adapting relative to an algorithm not capable of adapting. 
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CHAPTER 3 

EXPERIMENT I – DESIGN, METHODS, AND RESULTS 

Design and Participants – Experiment 1 

I use a 2 × 2 between-participants design, manipulating the adaptive capability of 

the algorithm that provides advice to the participant as an algorithm capable of adapting 

(i.e., learning algorithm) or not capable of adapting (i.e., static algorithm).12 I also 

manipulate the degree of measurement uncertainty related to a complex accounting 

estimate (i.e., higher versus lower). This design results in four between-participants 

conditions and I randomly assign participants to one of these four conditions. I recruited 

participants through Prolific, an online crowdsourcing platform, and my final dataset 

contains 145 responses.13,14 At a minimum, participants were required to have an 

undergraduate business degree. In exchange for completing this study, I paid each 

participant a fixed wage of $1.75. My participants had a reasonable understanding of 

accounting and finance as, on average, they completed four accounting and finance 

courses. Furthermore, all participants have an undergraduate degree in the field of business 

or economics. See Table 1 for demographic information for the final sample. On average, 

 
12 This experiment was administered in early fall of 2019, well before the COVID-19 pandemic. As such, I 
do not expect the uncertainty of the COVID-19 pandemic to affect participants’ stock price forecast.  
13 Both experiments in this study were approved by the Institutional Review Board (IRB) for Human 
Participants at the university where administration of the study was completed. 
14 I develop a minimum 9-minute cutoff as a conservative estimate of how long participants should have 
taken if they were reading the case details. For silent reading of non-fiction, most adults fall in the range of 
175-300 words per minute (wpm) (Andrews 2010; Brysbaert 2019). I use a conservative estimate of 300 
wpm as the “fastest” rate at which individuals can read case information while attending to the case details. 
On average, there are 2,689 words in each condition, which should take the participant approximately 9 
minutes to read (i.e., 2,689 words divided by 300 wpm). Participants who did not meet the 9 minutes 
minimum criteria were excluded, which resulted in 35 participants being excluded. Retained participants 
spent a median of 14 minutes on the case, yielding an effective hourly wage of $7.48. 
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participants are 29 years old, have some experience with making financial forecasts, and 

are comfortable relying on technology. 
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TABLE 1 
Demographic Information 

 
Final Sample (n=145) 

 
Variable N Mean Median 

FinAcctCourses 145 5.2 4.0 

Forecast Experience 145 3.4 3.0 

Technology Comfort 145 5.6 6.0 

Age 145 29.4 27.0 

    
 N Percent  
Gender (female) 145 43.4%  

    
This table provides descriptive statistics on demographic information of participants.  
 
Variable Definitions:  
FinAcctCourses = number of finance and accounting courses participant has taken;  
Forecast Experience = participants assessed their level of experience with making 
projections and forecasts on a 7-point scale with endpoints No Experience At All (1) to 
Highly Experienced (7); and 
Technology Comfort = participants assessed how comfortable they are relying on 
technology on a 7-point scale with endpoints Not At All Comfortable (1) to Very 
Comfortable (7);  
Age = participant’s age; and  
Gender = female or male. 
    

 

Prolific workers with general business experience are appropriate participants for 

my study because I am examining a psychological phenomenon that does not necessarily 

require extensive prior knowledge or expertise. Although the experimental task involves 

estimating the fair value of a patent, the task is simplified by asking participants to estimate 
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sales forecasts related to the patent (i.e., a key input in a discounted cash flow model).15 

Thus, given that a basic familiarity with accounting and business was required, I believe 

the knowledge base of my participants matches the requirement of the task and the goals 

of my research (Libby, Bloomfield, and Nelson 2002).  

Materials, Manipulations, and Dependent Measure – Experiment 1 

Following advice-taking literature (e.g., Yaniv and Kleinberger 2000; Yaniv 2004; 

Önkal, Goodwin, Thomson, Gönül, and Pollock 2009), I employ a two-stage design where 

participants provided their initial estimate and then finalized their estimate after receiving 

advice from an algorithm. Participants were instructed to assume the role of a manager at 

Heartland Resource Corporation (HRC), a publicly traded oil and gas company that 

engages in acquisition, exploration, and production of crude oil and natural gas. HRC 

recently acquired a patent for a state-of-the-art drill technology that can minimize wasteful 

natural gas exploration spending. Due to recent changes in the business climate (i.e., 

competing drill technology being developed), HRC’s CFO tasked the manager with 

estimating the fair value of the patent as part of an intangible asset impairment test. 

Specifically, manager participants were asked to project patent-related sales revenue, a key 

input for estimating the fair value of a patent using a discounted cash flow model.  

Next, participants were provided with additional information to assist with the 

projection of patent-related sales revenue. Participants were informed that forecasted 

natural gas price is a major macroeconomic input that is a good indicator for projected 

 
15 Participants are provided a discounted cash flow Microsoft Excel spreadsheet to assist with the calculation 
of the patent fair value (see Figure 4, Panel A). The discount rate and useful life of the patent were already 
determined and prepopulated in the spreadsheet. Additionally, once participants entered their future cash 
flow predictions into the cells, the spreadsheet automatically discounted the cash flow to its present value 
and provided the participant with their fair value estimate of the patent based on their cash flow predictions 
(see Figure 4, Panel B). 
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patent-related sales revenues and the related estimated fair value of the patent. To 

manipulate future uncertainty of the market, I provided participants with a graph of natural 

gas price forecasts and analysts quotes (i.e., macroeconomic information) that exhibited 

either higher or lower future uncertainty in future natural gas prices.16,17 See Figure 3 Panel 

A and Panel B which presents the experimental manipulation for measurement uncertainty. 

  

 
16 The forecast graph contains four price indices’ projections of future natural gas prices. In the higher future 
uncertainty condition, the four price indices exhibit higher volatility and divergence in price projections. In 
the lower future uncertainty condition, the four price indices exhibit lower future volatility and price projects 
exhibit a more linear pattern. Although the price indices exhibit different patterns between the two conditions, 
the average natural gas price projection each year is the same across conditions. For example, the average 
natural gas price for 2022 for both higher and lower uncertainty conditions is $2.84. Additionally, the average 
projected growth rate per year is equal across conditions (i.e., average price increase from year 2022 to 2023 
is 1.4% for both conditions).  
17 The construct of interest is measurement uncertainty, which is defined as the “ambiguity in the valuation 
of an item” (Bratten et al. 2013, 10). While individuals may feel that the task is more difficult in the higher 
measurement uncertainty condition than in the less measurement uncertainty condition, the task of 
developing the fair value of the patent using the discounted cash flow spreadsheet is the same in all 
conditions.  
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FIGURE 3 
Experimental Manipulation for Measurement Uncertainty 

Panel A: Higher Future Uncertainty 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Panel B: Lower Future Uncertainty 
 

 
 
 
 
 
 

 
 
Note: The purpose of Figure 3 is to illustrate the information participants were provided in the higher and 
lower measurement uncertainty conditions.  
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Following this, participants were provided a discounted cash flow spreadsheet 

where they submitted their projections of patent-related sales revenue cash flow for each 

year of the patent’s useful life. See Figure 4, Panel A for the spreadsheet provided to all 

participants to assist with the discounted cash flow calculation. Participants entered in their 

projected future cash flows by typing their estimates into the empty yellow boxes in the 

spreadsheet. The spreadsheet automatically calculated the fair value of the patent by 

discounting the participant’s projected future cash flows. See Figure 4, Panel B for an 

example of the spreadsheet’s calculation of the patent fair value. The participant’s 

estimated fair value of the patent prepopulates in the blue box. At this point, participants 

submitted their initial estimate of the patent value.  
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FIGURE 4 
Discounted Cash Flow Spreadsheet 

Panel A: Discounted Cash Flow Spreadsheet Provided to All Participants  

 
Panel B: Example of Discounted Cash Flow Spreadsheet Filled Out 

 
 

Note: The purpose of Figure 4 is to illustrate the discounted cash flow spreadsheet that participants filled 
out to estimate the fair value of the patent. Participants were first provided a spreadsheet where they were 
instructed to fill in the empty yellow boxes with their projected patent-related sales revenue growth rate 
each year. When participants finish submitting their projections, the spreadsheet provides the fair value of 
the patent in the blue box, which is based on their input. 

 

Next, all participants learn that HRC developed a proprietary software system 

named the E-Val system that assists with complex valuations. The description of the 

algorithm is my second manipulation. Specifically, participants in the algorithm capable of 
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adapting condition were informed that the E-Val system utilizes learning algorithms that 

can adapt and improve. Participants are informed that because the E-Val system uses 

learning algorithms, it can discover new predictors and identify different predictor weights 

to improve the model. Participants in the algorithm not capable of adapting condition read 

that the E-Val system utilizes static algorithms that are fixed and stay constant when 

developing its fair value estimate. Participants read that because the E-Val system uses 

static algorithms, the model’s predictors and predictor weights are fixed and remain 

constant (i.e., could not adapt). In all conditions, participants are informed that the HRC 

firm guidance indicates that the E-Val system is considered an approved source of 

information and its models are reviewed by the firm. Following this, participants received 

the E-Val system’s estimate of the patent fair value, which is always 20% less than the 

participant’s initial fair value estimate.18 See Figure 5 which presents the experimental 

manipulation of algorithm adaptability.  

  

 
18 Prior advice-taking literature has found that weight placed on advice decreases as the distance between the 
advice and initial opinion increases (Yaniv 2004). Therefore, to keep the distance equal in all conditions, I 
set the E-Val system’s estimate as 20% less than the participant’s initial fair value estimate.  
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FIGURE 5 
Experimental Manipulation for Algorithm Adaptability 

Panel A: Description of Learning Algorithm  

 
Panel B: Description of Static Algorithm 

 

Note: The purpose of Figure 5 is to illustrate the information participants were provided in the learning and 
static algorithm conditions.  
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After reviewing the advice, participants submitted their final estimate (i.e., adjusted 

estimate) of the patent value and completed a post-test questionnaire. See Figure 6 for the 

sequence of the experimental procedures. 
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FIGURE 6 
Sequence of Experimental Procedures 

Note: Figure 6 presents the flow of the experimental design and where the Measurement Uncertainty and Algorithm Adaptability manipulations occur in 
the sequence of experimental procedures.

* Measurement Uncertainty is manipulated as higher future uncertainty of the market (i.e., natural gas price projections exhibit higher volatility) or lower
future uncertainty of the market (i.e., natural gas price projections exhibit lower volatility).
** Algorithm Adaptability is manipulated as an algorithm capable adapting (i.e., learning algorithm) or an algorithm not capable adapting (i.e., static
algorithm).
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My primary dependent variable is advice utilization, which is calculated as weight 

of advice (WOA) (e.g., Önkal et al. 2009; Kadous, Leiby, and Peecher 2013). Expressed 

mathematically:  

	

	

WOA captures the extent to which an individual incorporates the E-Val system’s 

estimate into their final estimate. WOA values can range from 0 to 1.19 If participants’ final 

estimate is equal to their initial estimate, then WOA would equal 0 and represents no 

weighting and a complete discounting of the E-Val system’s advice. In contrast, if there is 

a complete shift of the initial estimate to the E-Val system’s estimate, WOA would equal 

1, which represents full weighting of the E-Val system’s advice. Partial reliance on the E-

Val system’s estimate results in intermediate values ranging between 0 and 1. For example, 

a WOA of 0.50 reflects situations where participants average the E-Val system’s estimate 

with their initial estimate.	

Results - Experiment 1 

Manipulation Checks 

 I evaluate whether I successfully manipulated the uncertainty of the market by 

asking participants to assess, “how certain or uncertain are future natural gas prices” (1 = 

“Very Certain” and 7 = “Very Uncertain”). Participants in the higher uncertainty conditions 

(mean = 5.83, standard deviation = 1.22) assessed future natural gas prices as more 

uncertain than participants in the less uncertain condition (mean = 3.11, standard deviation 

 
19 Following previous research, I truncate the WOA value to 1 if the participant “overshoots” the advice (i.e., 
participants’ final estimate is less than the E-Val system’s estimate) (Gino and Moore 2007; Gino, Shang, 
and Croson 2008). 
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= 1.50, t143 = 12.00, p < 0.01, untabulated), suggesting a successful manipulation of market 

uncertainty.20 To assess whether I successfully manipulated the adaptive capability of the 

algorithm, I asked participants to rate “which description best describes your company’s 

E-Val system” (1 – “static algorithms and prediction methods that are fixed and do not 

adapt over time” and 7 – “learning algorithms and prediction methods that adapt and 

improve over time”). 21 Results show that participants in the learning algorithm condition 

(mean = 6.01, standard deviation = 1.24) responded higher on the scale, which reflects a 

selection of a description closer to a learning algorithm (i.e., algorithm capable of 

adapting), while participants in the static algorithm condition (mean = 2.16, standard 

deviation = 1.78) responded lower on the scale consistent with a description of a static 

algorithm (t143 = 15.25, p < 0.01, untabulated).22 

 To further examine whether my adaptive capability of the algorithm manipulation 

was successful, I ask the participants to assess the degree to which they agree or disagree 

with the following statement, “The E-Val system responds the same way under the same 

 
20 Consistent with my directional prediction, all reported p-values are one-tailed equivalents, unless otherwise 
noted. 
21 My algorithm manipulation should have only affected the degree to which participants view the adaptive 
capability of the algorithm. Although I did not intentionally anthropomorphize the algorithm capable of 
adapting, it is possible that individuals could view the learning algorithm as more human-like compared to 
the static algorithm. Waytz, Heafner, and Epley (2014) explain that anthropomorphizing a non-human does 
not simply involve attributing superficial human characteristics, such as a name or a face, to the algorithmic 
agent. Instead, they find that internal characteristics, such as attributing a human-like mind capable of feeling 
or thinking, were more effective methods of anthropomorphizing algorithm agents. To provide evidence that 
I did not manipulate the human-likeness or degree of anthropomorphism that the algorithm exhibited, I asked 
participant to assess the following statement, “How similar is the E-Val system’s decision-making process 
compared to your decision-making process?” (1 = “Not at All Similar” and 7 = “Very Similar”). Participants’ 
responses in the learning algorithm condition (mean = 3.57, standard deviation = 1.32) did not significantly 
differ from participants’ responses in the static algorithm condition (mean = 3.78, standard deviation = 1.27, 
t143 = 1.01, p = 0.32, two-tailed). 
22 If analyses did not include 12 participants in Lower Uncertainty condition who responded greater than 4 
and in Greater Uncertainty condition who responded less than 4 on the scale were excluded from analyses, 
my main results remain significant (e.g., the predicted interaction effect remains significant at p = 0.05, 
untabulated). 
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conditions over time” (1 = “Strongly Disagree” and 7 = “Strongly Agree”). Because 

learning algorithms have the capability to adapt overtime while static algorithms are fixed 

and stay constant, I expect that individuals in the static algorithm condition to report higher 

values (i.e., strongly agree) with the statement compared to individuals in the learning 

algorithm condition. I find further evidence of a successful manipulation of algorithm 

adaptability as participants in the static algorithm condition (mean = 5.42, standard 

deviation = 1.43) were more likely to agree that the E-Val system responds the same way 

over time than participants in the learning algorithm condition (mean = 3.66, standard 

deviation = 1.80, t143 = 5.06, p < 0.01, untabulated).23 

Test of Hypothesis 

 To test my hypothesis, I estimate a 2 × 2 ANOVA with degree of future uncertainty 

and adaptive capability of algorithm as manipulated variables and WOA (i.e., weight 

managers placed on advice from the algorithm) as my dependent variable. Table 2, Panel 

A provides descriptive statistics by experimental condition, Figure 7 graphs these cell 

means, and Table 2, Panel B reports the results of my Analysis of Variance model.  

  

 
23 If analyses did not include 15 participants in Static Algorithm condition who responded greater than 4 and 
in Learning Algorithm condition who responded less than 4 on the scale were excluded from analyses, my 
main results remain significant (e.g., the predicted interaction effect remains significant at p = 0.03, 
untabulated). Additionally, when excluding these 15 participants and the 12 participants in footnote 22, my 
main results remain significant (e.g., the predicted interaction effect remains significant at p = 0.05, 
untabulated). 
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Panel B: Conventional ANOVA 

Source 
Sum of 
Squares    df    F     p

a 

Algorithm Adaptability 0.08 1 1.34 0.25† 

Measurement Uncertainty 0.14 1 2.38 0.06† 

Algorithm Adaptability × Measurement Uncertainty 0.19 1 3.33 0.04† 

Error 8.16 141   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 2 
Weight of Advice 

 
Panel A: Descriptive statistics: Least squares mean (standard error) [n] Cell 

 

 
     Degree of Measurement Uncertainty   
    

Lower 

Measurement 

Uncertainty  

Higher 

Measurement 

Uncertainty  Overall 
Algorithm 

Adaptability 
 

 
Learning Algorithm 

  0.62  0.75  0.68 

   (0.04)  (0.04)  (0.03) 

   [39] 
 

[37] 
 

[76] 

     A  

 
B  

 

 
Static Algorithm 

  0.64 
 

0.63  0.64 

   (0.04)  (0.04)  (0.03) 

   [34] 
 

[35] 
 

[69] 

 
 

  C  

 
D  

 

 Overall   0.63 
 

0.69   

    (0.03) 
 

(0.03)   

    [73] 
 

[72] 
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Table 2 (continued) 
 
Panel C: Simple Effects Tests 

Source df t p 

Effect of Algorithm Adaptability given Higher Measurement 
Uncertainty (B vs D) 

1,141 4.23 0.02† 

Effect of Algorithm Adaptability given Lower Measurement 
Uncertainty (A vs C) 

1,141 0.23 0.64† 

Effect of Measurement Uncertainty given Learning Algorithm  
(A vs B) 

1,141 5.96 < 0.01† 

Effect of Measurement Uncertainty given Static Algorithm  
(C vs D) 

1,141 0.04 0.84† 

 
Note: The dependent variable is participants’ advice utilization, which is measured as weight of advice 
(WOA). WOA equals (initial estimate – final estimate)/(initial estimate – E-Val system’s estimate) and 
ranges from 0 to 1 where larger values of WOA indicates greater weighting of advice provided by the 
algorithm (i.e., greater reliance on advice). I manipulate algorithm adaptability as static algorithm (i.e., not 
capable of adapting) versus learning algorithm (i.e., capable adapting), between participants, and the degree 
of measurement uncertainty as higher future uncertainty versus lower future uncertainty, between 
participants.  
a I derive the one-tailed equivalent p-values in Panel B from the ANOVA contrast t-statistics, which are 
equivalent to the square roots of the respective F-statistics (see, e.g., Kachelmeier and Williamson [2010]; 
Piercey [2011]; Saiewitz and Kida [2018]). 
† p-values are equivalent to a one-tailed test, consistent with my directional predictions.  
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FIGURE 7 
Observed Effects of Measurement Uncertainty and Algorithm Adaptability 

on Participants’ Weight of Advice 
 
 

    
 
Note: See notes to Table 2 for descriptions of dependent variable and independent factors. Figure 7 graphs 
the means for my main dependent variable, WOA, by experimental condition, as reported in Table 2, Panel 
A.  
 

 

My hypothesis predicts an interaction such that when future uncertainty is higher, 

managers will weight advice more heavily from a learning algorithm rather than a static 

algorithm compared to when future uncertainty is lower. Consistent with my hypothesis, I 

find a significant interaction between algorithm adaptability and measurement uncertainty 

(F1,141 = 3.33; p = 0.04). I perform follow-up simple effects (Table 2, Panel C) to more 

directly test the hypothesis. Results show that individuals exhibited greater WOA on 

estimates provided by a learning algorithm when facing higher future uncertainty compared 

to lower future uncertainty (0.75 versus 0.62 WOA; p < 0.01 one-tailed). Furthermore, 

A 

 

B 

C D 
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when future uncertainty is higher, the effect of algorithm adaptability is significant (0.75 

versus 0.63 WOA; p = 0.02), but not when future uncertainty is lower (0.62 versus 0.64 

WOA; p = 0.64, two-tailed). These simple effects provide further support for my 

hypothesis and demonstrate that when individuals face higher future uncertainty, they will 

weight advice from the algorithm relatively more only if the algorithm exhibits adaptive 

capabilities. Lastly, results show that under lower future uncertainty, individuals do not 

differentially weight advice from a learning algorithm compared to a static algorithm. This 

is consistent with expectations that when measurement uncertainty is lower, individuals 

will feel less of a need to seek and utilize advice and as a result, algorithm adaptability will 

have less of an effect on individuals’ WOA. Collectively, these results provide strong 

support for my theory-based predictions. 

Moderated Mediation Analyses 

 In developing my hypothesis, I draw on theory that suggests an individual’s degree 

of advice utilization may be determined by the level of trust in the algorithm (i.e., the 

advisor). Specifically, advice utilization is a decision and an outcome of an individual’s 

willingness to trust in others (i.e., a judgment). An individual’s willingness to trust others 

is defined as a behavioral intention that reflects a willingness to rely on “the behavior of a 

person in order to achieve a desired but uncertain objective in a risky situation” (Giffin 

1967, 105; Coleman 1990; Moorman, Zaltman, and Deshpande 1992; Mayer et al. 1995).24 

As such, for an individual (i.e., the trustor) to exhibit a need and willingness to trust an 

advisor, there must be some uncertainty involved in the situation or task (Sniezek and Van 

 
24 This is consistent with judgment and decision-making research which defines a judgment as an idea or 
opinion about an object and tends to “take the form of predictions about the future or an evaluation of a 
current state of affairs (Bonner 1999, 385). On the other hand, a decision refers to a course of action that 
individuals take to perform a task or solve a problem (Bonner 1999; Solomon and Trotman 2003).  
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Swol 2001). In a most extreme example of a need to place trust in others, a person in an 

uncertain and desperate situation from which he is unable to free himself from without help 

is more likely to accept assistance from another (Coleman 1990). Although higher 

uncertainty may increase an individual’s willingness to trust others, trust is also dependent 

on whether the individual perceives the advisor has the necessary capability and skillset to 

provide assistance (Barber 1983; Mayer et al. 1995; Sniezek and Van Swol 2001). In 

particular, researchers found that individuals developed higher levels of trust in their 

advisor as the task expertise asymmetry between the individual and the advisor became 

greater (Sniezek and Van Swol 2001).25  

In my setting, I expect that when accounting practitioners are completing tasks 

while facing higher future uncertainty, they will be more willing to trust an algorithm, but 

only if that algorithm exhibits advanced capabilities suited to handle uncertainty, such as 

the capability of adapting. I also expect that individuals’ willingness to trust the algorithm 

is the mechanism that influences the weight individuals place on an algorithm’s advice 

such that increase in an individual’s willingness to trust an algorithm will cause an 

individual to more heavily weight advice. If results are consistent with theory, I expect a 

significant indirect effect of measurement uncertainty on advice utilization through 

willingness to trust in algorithm when evidence is provided by a learning algorithm but an 

insignificant indirect effect when evidence is provided by a static algorithm. The model is 

depicted in Figure 8.  

 
 

 
25 Expertise in this study was defined as “knowledge about a specific domain” and operationalized as 
computer-knowledge based on an 18-item pre-test where participants who scored higher were considered to 
exhibit greater expertise and participants who scored lower were considered to exhibit less expertise 
(Ericsson and Smith 1991; Snizek and Van Swol 2001; Van Swol and Sniezek 2005). 
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FIGURE 8 
Moderated Mediation Model 

 

 
 
Note: The above diagram represents a moderated mediation model (Hayes 2018). I use a Model 8 with one 
mediator. Specifically, this model depicts the effect of measurement uncertainty and algorithm adaptability 
on weight placed on algorithm’s advice (i.e., Weight of Advice) and that interactive effect is expected to 
operate through willingness to trust in the algorithm. Measurement Uncertainty equals 1 (0) for higher 
(lower) measurement uncertainty condition. Algorithm equals 1 (0) for learning (static) algorithm condition. 
To capture participants’ willingness to trust in the algorithm, I asked participants to assess the following three 
statements, “When I am uncertain about a decision, I believe the E-Val system rather than myself”, “I believe 
advice from the E-Val system even when I don’t know for certain that it is correct”, and “The E-Val system 
is trustworthy” on a 7-point scale with endpoints Strongly Disagree (1) to Strongly Agree (7). I take the 
average of these three items to measure an individual’s willingness to trust in algorithm. 

 
 

 

I measure participants’ willingness to trust in an algorithm and examine whether 

individuals’ judgment on the degree to which they are willing to trust an algorithm 

mediates algorithm adaptability and measurement uncertainty’s effect on WOA. I develop 

a composite measure of an individual’s willingness to trust in the algorithm by asking 

participants to assess the following three statements: “The E-Val system is trustworthy”, 

“When I am uncertain about a decision, I believe the E-Val system rather than myself”, 

and “I believe advice from the E-Val system even when I don’t know for certain that it is 

correct” on a 7-point scale with endpoints Strongly Disagree (1) to Strongly Agree (7) 
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(Madsen and Gregor 2000).26 Cronbach’s alpha for the three-item measure is 0.69, 

indicating acceptable reliability (Kline 2016; Field 2018). As the three trust items appear 

to capture a single underlying construct, I use the average of the three measures as the 

mediator in my analyses, which I label as willingness to trust in the algorithm. 

 Following the procedures described by Hayes (2018), I conduct a moderated 

mediation analysis using the SPSS PROCESS macro (model 8) with participants’ 

willingness to trust in the algorithm as the mediator. To test for indirect effects, I construct 

90% confidence intervals with 10,000 bootstrapped resamples of data with replacement. 

Figure 9, Panel A presents results for the learning algorithm conditions, which reveal 

results consistent with my expectations. The indirect effect is significant for the learning 

algorithm conditions (90 percent confidence interval of 0.003 to 0.067, indicating a one-

tailed p-value less than 0.05). Examining the coefficients reported in the path model 

provides additional insights into the indirect effect of measurement uncertainty on weight 

of advice through willingness to trust in algorithm. Measurement uncertainty has a 

significant positive effect on individuals’ willingness to trust in the algorithm (p < 0.05) 

and willingness to trust in the algorithm exhibits a significant positive effect of on weight 

of advice (p < 0.01). These results are consistent with expectations that under learning 

algorithm conditions, higher measurement uncertainty causes individuals to exhibit a 

 
26 I utilize a three-item scale to capture individuals’ willingness to trust in the algorithm. The first item directly 
assesses participants’ perception of the E-Val system’s trustworthiness. However, trust is a complex concept 
that is difficult to measure with one item (Madsen and Gregor 2000). Thus, in addition to the first item in my 
willingness to trust measure, I also use two items from the human-computer trust scale that Madsen and 
Gregor (2000) develop to measure faith, which is trust in the capability of the system to “perform even in 
situations where it is untried”. I selected these two items instead of utilizing the entire human-computer trust 
scale to keep the instrument at a manageable length for the participants. Additionally, given that the E-Val 
system is predicting future outcomes and events, I expected these two items to be most applicable to this 
setting. 
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greater willingness to trust in the algorithm and that greater willingness to trust increases 

the degree to which individuals incorporate algorithmic advice into their final estimate. 
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FIGURE 9 

Moderated Mediation Analysis 
 
Panel A: Learning Algorithm Conditions  

 

 

 

  

 

 

 

 

Panel B: Static Algorithm Conditions  

 

 

 

 

 

 

 

 
 
 
Note: The above diagram represents a moderated mediation model (Hayes 2018). For visual simplicity, I 
present results separately for the learning and static algorithm conditions, even though the model is calculated 
simultaneously for all conditions using Model 8 in the PROCESS macro in SPSS. See notes in Figure 8 for 
descriptions of dependent variables, independent factors, and mediator. All continuous variables are mean-
centered to facilitate interpretation of the coefficients.  
a To test for indirect effects, I construct 90% confidence intervals for the product of paths a and b. I use 
10,000 bootstrapped resamples of data with replacement (Hayes 2018). Reflecting my directional predictions, 
I use 90% confidence intervals (i.e., bounded at 0.05 and 0.95) to test whether one-tailed p-values are less 
than 0.05. 
** denotes statistical significance equivalent to p < 0.05, one-tailed. 
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† one-tailed given directional prediction (all other p-values are two-tailed). 
 
 

 

Figure 9, Panel B presents results for the static algorithm conditions. The indirect 

effect is not significant (90 percent confidence interval of -0.048 to 0.014). Examining the 

coefficients reported in the path model reveals that higher measurement uncertainty does 

not significantly increase an individual’s willingness to trust in the algorithm. This is 

consistent with literature that identifies algorithm capability, in this case the capability of 

adapting, as an important factor in the development of willingness to trust in the algorithm. 

Lastly, I find that the index of moderated mediation is significant (90 percent confidence 

interval of 0.002 to 0.098, indicating a one-tailed p-value less than 0.05), which confirms 

that the indirect effects estimated at the two levels of algorithm capability are significantly 

different from each other. Collectively, results of the moderated mediation indicate that the 

joint effect of measurement uncertainty and algorithm adaptability on individuals’ advice 

utilization operates indirectly through willingness to trust the algorithm. Furthermore, the 

development of an individual’s willingness to trust an algorithm is jointly determined by 

measurement uncertainty and algorithm adaptability.  

Additional Analyses 

Relative Confidence as an Alternative Mediator 

 In my paper, I draw upon theory that predicts measurement uncertainty and 

algorithm adaptability influences individual’s degree of advice utilization through an 

individual’s willingness to trust in an algorithm. However, an alternative explanation in the 

observed results could be that participants’ algorithm advice utilization was solely driven 

by their confidence in their own ability relative to their confidence in the algorithm’s 
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capability rather than their willingness to trust in the algorithm. Specifically, it is possible 

that individuals who encounter a task that exhibits greater measurement uncertainty views 

themselves as less capable of completing the task and as a result, feel less confident in their 

own ability. Consequently, individuals who feel less self-confident in their own judgments 

are more likely to incorporate advice from others (See, Morrison, Rothman, and Soll 2011), 

but only if individuals are less confident in their own abilities relative to their confidence 

in the algorithm’s ability to complete the task.  

 Confidence is defined as the “belief, based on experience or evidence, that certain 

future events will occur as expected” (Earle and Siegrist 2006, 386). However, trust is a 

“reliance upon information received from another person about uncertain environmental 

states and their accompanying outcomes in a risky situation” (Schlenker, Helm, and 

Tedeshi 1973, 419). While both trust and confidence in an advisor could both lead to 

greater weight placed on the advisor’s recommendations, confidence is based on past 

performance or evidence while trust is free of that criterion. In complex accounting 

estimates settings, individuals may never know the “right answer” or the correct value of 

an estimate and as a result, may not be able to confirm based on past events that the advisor 

is capable of providing quality advice. Given the lack of prior evidence or experience 

necessary to develop an individual’s confidence in an advisor’s capability of completing a 

task in complex estimate settings, I predict and find (in Experiment 1) that an individual’s 

willingness to trust in an algorithm is the mechanism that drives individual’s decision to 

utilize the algorithm’s advice.  

 However, to rule out this alternative mechanism, I examine whether participants’ 

algorithm advice utilization was driven by their confidence in their own ability relative to 
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their confidence in the algorithm’s capability in Experiment 1. I measure participants’ 

relative confidence by asking them to assess the following statement, “How confident are 

you in your ability relative to the E-Val system’s ability to accurately estimate the fair 

value of the patent” on a 7-point scale with endpoints More Confident in E-Val System’s 

Ability (1) to More Confident in Own Ability (7). See Figure 10 for the model results. 

 

FIGURE 10 

Moderated Mediation Model 
 

 
Note: The above diagram represents a moderated mediation model (Hayes 2018). I use a Model 8 with one 
mediator. Specifically, this model depicts the effect of Measurement Uncertainty and Algorithm Adaptability 
on weight placed on algorithm’s advice (i.e., Weight of Advice) and that interactive effect is expected to 
operate through an individual’s confidence in their own ability relative to their confidence in the algorithm’s 
ability (i.e., Relative Confidence).  Measurement Uncertainty equals 1 (0) for higher (lower) measurement 
uncertainty condition. Algorithm Adaptability equals 1 (0) for learning (static) algorithm condition. To 
capture participants’ Relative Confidence, asking them to assess the following statement, “How confident are 
you in your ability relative to the E-Val system’s ability to accurately estimate the fair value of the patent” 
on a 7-point scale with endpoints More Confident in E-Val System’s Ability (1) to More Confident in My Own 

Ability (7). 
a To test for indirect effects, I construct 90% confidence intervals for the product of paths a and b. I use 
10,000 bootstrapped resamples of data with replacement (Hayes 2018). Reflecting my directional 
predictions, I use 90% confidence intervals (i.e., bounded at 0.05 and 0.95) to test whether one-tailed p-
values are less than 0.05. 
† one-tailed given directional prediction (all other p-values are two-tailed). 
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Following the procedures described by Hayes (2018), I conduct a moderated 

mediation analysis using the SPSS PROCESS macro (model 8) with participants’ relative 

confidence as the mediator. To test for indirect effects, I construct 90% confidence intervals 

with 10,000 bootstrapped resamples of data with replacement. Figure 10 results reveal that 

participants’ relative confidence does not mediate the interactive effect of measurement 

uncertainty and algorithm adaptability on participants’ algorithm advice utilization. 

Specifically, indirect effects are not significant for the learning algorithm conditions (90 

percent confidence interval of -0.010 to 0.030) nor static algorithm conditions (90 percent 

confidence interval of -0.038 to 0.004). Additionally, the index of moderated mediation is 

not significant (90 percent confidence interval of -0.031 to 0.021).27 Collectively, these 

results suggests that individuals’ confidence measures do not mediate the interactive effect 

of measurement uncertainty and algorithm adaptability on individuals’ advice utilization.  

To provide additional evidence that individuals’ willingness to trust is the 

mechanism that drives individuals weight of advice decision, I conduct a conditional 

parallel mediation analyses using Model 8 in the SPSS Process macro with willingness to 

trust in the algorithm and relative confidence included as parallel mediators. This model 

examines whether individuals’ willingness to trust in the algorithm continues to mediate 

the interactive effect of measurement uncertainty and algorithm adaptability’s effect on 

weight of advice while including individual’s relative confidence in the model. Figure 11 

presents the results of the model.  

  

 
27 Indirect effects for learning algorithm conditions (80 percent confidence interval of -0.031 to 0.000) and 
static algorithm conditions (80 percent confidence interval of -0.006 to 0.024) remain nonsignificant when I 
construct 80% confidence intervals with 10,000 bootstrapped resamples of data with replacement. 
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FIGURE 11 
Conditional Parallel Mediation Model 

 
Note: The above diagram represents a moderated parallel mediation model (Hayes 2018). I use a Model 8 
with two mediators. Specifically, Algorithm Adaptability is depicted as having a moderating effect on the 
mediation paths from Measurement Uncertainty to Weight of Advice (i.e., weight placed on algorithm’s 
advice) via two parallel mediators: Willingness to Trust in Algorithm and Relative Confidence. See notes in 
Figure 8 and Figure 10 for descriptions of dependent variable, independent factors, and mediators. 
a To test for indirect effects, I construct 90% confidence intervals for the product of paths a and b. I use 
10,000 bootstrapped resamples of data with replacement (Hayes 2018). Reflecting my directional 
predictions, I use 90% confidence intervals (i.e., bounded at 0.05 and 0.95) to test whether one-tailed p-
values are less than 0.05. 
** denotes statistical significance equivalent to p < 0.05, one-tailed. 
† one-tailed given directional prediction (all other p-values are two-tailed). 
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Results in Figure 11 reveal a significant indirect effect for the learning algorithm 

conditions (90 percent confidence interval of 0.003 to 0.061, indicating a one-tailed p-value 

less than 0.05) and nonsignificant indirect effect for the static learning algorithm conditions 

(90 percent confidence interval of -0.043 to 0.013). Lastly, I find that the index of 

moderated mediation is significant (90 percent confidence interval of 0.002 to 0.089, 

indicating a one-tailed p-value less than 0.05), which confirms that the indirect effects 

estimated at the two levels of algorithm capability are significantly different from each 

other. However, results for individuals’ relative confidence measure as a mediator reveal 

two nonsignificant indirect effects and a nonsignificant index of moderated mediation. 

Collectively, results of the conditional parallel mediation model indicate that the joint 

effect of measurement uncertainty and algorithm adaptability on individuals’ advice 

utilization operates indirectly through willingness to trust the algorithm even when 

including individuals’ relative confidence in the model.  

Additional Analysis on Ordinal Interaction  

Following research documenting that tests of contrasts are generally more 

appropriate to analyze the ordinal interaction effect (e.g., Buckless and Ravenscroft 1990; 

Guggenmos, Piercey, and Agoglia 2019), I conduct the three-part approach discussed in 

Guggenmos et al. (2018) to examine whether my results conform to the specific ordinal 

interaction pattern suggested by my interaction hypothesis. To test this ordinal interaction, 

I use contrast weights of +3 for high measurement uncertainty, learning algorithm and -1 

for the other three conditions (see Table 3).28 First, a visual evaluation of fit supports my 

 
28 These contrast weights reflect my hypothesis by testing whether individuals will weight evidence from an 
algorithm more heavily when they face higher measurement uncertainty and use a more capable algorithm 
compared to when participants use a less capable algorithm and/or face lower measurement uncertainty. 
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expected pattern of means as the condition assigned a weight of +3 is the highest condition 

in Figure 7 compared to the other three conditions, which are assigned -1. Second, this 

contrast is significant (F1,141 = 6.95; p < 0.01) and the semi-omnibus test of residual 

variance is not significant (F1,141 = 0.16; p = 0.85). A non-significant semi-omnibus F-test 

provides evidence of no additional systematic effects in the data after controlling for the 

contrast. Lastly, the proportion of the remaining unexplained between-cells variance to the 

total explainable variance in the experiment (q2) is 4.4 percent. Collectively, these results  

provide strong support for my theory-based predictions in my interaction 

hypothesis.  

 

Note: The dependent variable is participants’ advice utilization, which is measured as weight of advice 
(WOA). WOA equals (initial estimate – final estimate)/(initial estimate – E-Val system’s estimate) and 
ranges from 0 to 1 where larger values of WOA indicates greater weighting of advice provided by the 
algorithm (i.e., greater reliance on advice). I manipulate the capability of the algorithm as static algorithm 
versus learning algorithm (i.e., less versus more capable), between participants, and the degree of 
measurement uncertainty as greater future uncertainty versus lower future uncertainty, between 
participants.  

† p-values are equivalent to a one-tailed test, consistent with my directional predictions.  
 

 

Factor Analysis on Willingness to Trust  

In my moderated mediation analyses for Experiment 1, I develop a composite 

measure of an individual’s willingness to trust in the algorithm by averaging my three-item 

TABLE 3 
 

Contrast and Residual Between Cells Variance Test 
 

 
Source 

Sum of 
Squares 

   
df    F     p 

[-1, +3, -1, -1] for [A, B, C, D]   0.40 1 6.95 < 0.01 

Residual between-cells variance 0.02 2 0.16 0.85 

Contrast Variance Residual, q2  4.4%    
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scale (see Figure 8 note for description of the three items). To further examine whether I 

capture one underlying factor, I conduct a factor analysis of the three items utilizing an 

oblique oblimin rotation. Results indicate only one factor with an eigenvalue greater than 

1. The underlying factor has an eigenvalue of 1.87 which accounts for 62.35% of the 

variance. All items meaningfully load onto this underlying factor as all rotated factor 

loadings were greater than 0.30 (Raykov and Marcoulides 2008, 265). Thus, the three trust 

items appear to capture a single underlying construct. I utilize this factor as the mediator 

in my moderated mediation model to validate that my results remain unchanged when using 

the factor variable. See Figure 12 for results. Results remain unchanged. Specifically, the 

indirect effect is significant for the learning algorithm conditions (90 percent confidence 

interval of 0.003 to 0.061, indicating a one-tailed p-value less than 0.05) while the indirect 

effect for the static algorithm conditions is not significant (90 percent confidence interval 

of -0.043 to 0.014). Additionally, the index of moderated medication indicates that the 

indirect effects are statistically different (90 percent confidence interval of 0.004 to 0.089, 

indicating a one-tailed p-value less than 0.05).29  

  

 
29 Although I expected only one factor to emerge during the factor analysis, if there were more than one factor 
present, theoretically those factors would be related. Thus, I utilize an oblique oblimin rotation, which allows 
the underlying factors to correlate. Results are inferentially identical if I use an orthogonal (i.e., uncorrelated) 
varimax rotation. 
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FIGURE 12 
Moderated Mediation Analysis 

 
Panel A: Learning Algorithm Conditions  

 

  

  
 

 

  

  

 

Panel B: Static Algorithm Conditions   

 

 
 

 
 
  
  
 
 
 
 
 
 
 
Note: The above diagram represents a moderated mediation model (Hayes 2018). For visual simplicity, I 
present results separately for the learning and static algorithm conditions, even though the model is calculated 
simultaneously for all conditions using Model 8 in the PROCESS macro in SPSS. See notes in Figure 8 for 
descriptions of dependent variables and independent factors. To construct the mediator, I asked participants 
to assess the following three statements, “When I am uncertain about a decision, I believe the E-Val system 
rather than myself”, “I believe advice from the E-Val system even when I don’t know for certain that it is 
correct”, and “The E-Val system is trustworthy” on a 7-point scale with endpoints Strongly Disagree (1) to 
Strongly Agree (7). I then conduct a factor analysis of the three items utilizing an oblique oblimin rotation 
and extract one factor called Willingness to Trust in Algorithm. All continuous variables are mean-centered 
to facilitate interpretation of the coefficients.  
a To test for indirect effects, I construct 90% confidence intervals for the product of paths a and b. I use 
10,000 bootstrapped resamples of data with replacement (Hayes 2018). Reflecting my directional predictions, 
I use 90% confidence intervals (i.e., bounded at 0.05 and 0.95) to test whether one-tailed p-values are less 
than 0.05. 
** denotes statistical significance equivalent to p < 0.05, one-tailed. 
† one-tailed given directional prediction (all other p-values are two-tailed). 
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EXPERIMENT 2 – DESIGN, METHODS, AND RESULTS 

 Design and Participants – Experiment 2 

Experiment 2 serves two purposes. First, this experiment examines the extent to 

which the results I find in Experiment 1 generalizes to other financial settings involving 

uncertainty. Specifically, Experiment 2 examines whether individuals who face high task 

solution or outcome uncertainty will more heavily weight advice provided by an algorithm 

capable of adapting relative to an algorithm not capable of adapting. Unlike Experiment 1 

where participants forecasted cash flows and developed a patent fair value, in Experiment 

2 participants provide a stock price forecast. Secondly, Experiment 2 provides evidence 

that validates my algorithm adaptability manipulation. In the task, participants are provided 

with historical stock prices and are asked to forecast the stock’s future price. I use a 1 × 2 

between-participants design, manipulating the adaptive capability of the algorithm that 

provides advice to the participant as an algorithm capable of adapting (i.e., learning 

algorithm) or not capable of adapting (i.e., static algorithm).30 

Participants are 41 graduate students enrolled in a Masters of Finance program from 

a large public university. All participating students were enrolled in upper-division finance 

courses such as “Financial Modeling and Analysis”, “Investments”, and “Options, Futures, 

and Derivatives”. Participants had a reasonable understanding of accounting and finance 

as, on average, they completed seven accounting and finance courses. To ensure that 

participants have a basic amount of experience of forecasting stock prices, participants 

 
30 Participants were also assigned to one of two conditions (manipulating whether participants received an 
algorithm’s forecast for next week’s or next year’s closing stock price). As the manipulation had little effect 
on participants’ reliance on advice (F1,37 = 0.22, p = 0.65, untabulated) and did not interact with my algorithm 
adaptability manipulation (F1,37 = 0.36, p = 0.55, untabulated), I collapse my analyses across the manipulated 
algorithm adaptability variable.  
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were asked to indicate their level of experience with forecasting stock prices on a seven-

point Likert scale (1 – “No Experience at All” and 7 = “Highly Experienced”). 

Additionally, I ask participants to evaluate their level of knowledge of stock prices and 

probability on a seven-point Likert scale (1 = “Very Poor” and 7 = “Very Good”). On 

average, participants report having a basic level of forecasting experience (mean = 2.5) and 

knowledge of stock prices (mean = 3.6).  See Table 4 for demographic information for the 

final sample. Overall, participants were 24 years old and reported a mean of approximately 

2 years of work experience. 
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TABLE 4 

Demographic Information 

Final Sample (n=41) 
 

Variable N Mean Median 

FinAcctCourses 41 7.0 7.0 

Forecast Experience 41 2.5 2.00 

Stock Knowledge 41 3.6 3.0 

Work Experience 41 2.3 1.0 

Age 41 24.4 24.5 

    
 N Percent  

Gender (female) 41 36.6%  

    
This table provides descriptive statistics on demographic information of participants.  

 
Variable Definitions:  

FinAcctCourses = number of finance and accounting courses participant has 
completed;  

Forecast Experience = participants assessed their level of experience with forecasting 
stock prices on a 7-point scale with endpoints No Experience at All (1) to Highly 
Experienced (7); and 
Stock Knowledge = participants assessed their level of knowledge on stock prices and 

probability on a 7-point scale with endpoints Very Poor (1) to Very Good (7);  
Work Experience = participant’s work experience in years; 

Age = participant’s age in years; and  
Gender = female or male. 

    

 

Graduate students with a basic knowledge of forecasting stock prices are 

appropriate participants for my study because I am examining a psychological phenomenon 

that does not necessarily require specialized knowledge or extensive prior expertise. 

Although the experimental task involves forecasting a stock price, the task is 
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straightforward, and the setting is simplified by providing participants limited amount of 

information to base their stock price forecasts. Furthermore, I am mainly interested in the 

weight placed on the advice provided by the algorithm not necessarily how well the 

participants performed in the stock price forecast. Thus, given that a basic familiarity with 

forecasting stock prices was required, I believe the knowledge base of my participants 

matches the requirement of the task and the goals of my research (Libby et al. 2002).  

Materials, Manipulations, and Dependent Measure – Experiment 2 

 Similar to Experiment 1, participants provide their initial estimate and then 

finalized their estimate after receiving advice from an algorithm. Participants complete a 

paper-and-pencil task in which they were instructed to assume the role of equity analyst 

for a large investment management firm. They are told that their job is to develop financial 

projections and forecasts that will be used by their firm’s investment advisors. Participants 

were then provided with information to assist with their stock forecast, such as a time series 

plot of the stock’s historical price, and then asked to forecast the stock’s future price. See 

Figure 13 which presents the time series plot for a stock that was provided to all 

participants. 
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FIGURE 13 

Time Series Plot for Stock  

 
Note: The purpose of Figure 13 is to illustrate the information provided to all participants to assist them 
with forecasting the stock’s future price.  

 

 

 Next, participants learn that their firm developed a proprietary algorithm that can 

assist equity research analysts by providing financial guidance and expert knowledge of 

stocks and bonds. In all conditions, participants are informed that their firm partnered with 

a large international technology company with leading experts in the field to develop the 

algorithm. Similar to Experiment 1, the description of the algorithm contains my algorithm 

adaptability manipulation. Participants in the learning algorithm condition were informed 

that the algorithm can adapt and improve by modifying its model’s weights and identifying 

new predictors. Participants in the static algorithm condition read that the algorithm is 

based on a complex mapping of if-then statements and rules. Following this, participants 
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received the algorithm’s estimate that the closing price of the stock is $25. See Figure 14 

which presents the experimental manipulation of algorithm adaptability. Similar to 

Experiment 1, I measure participants’ WOA, which captures the extent to which an 

individual incorporates the algorithm’s estimate into their final estimate. WOA values can 

range from 0 to 1 where 0 represents a complete discounting of the algorithm’s estimate 

and 1 represents full weighting of the algorithm’s estimate.  
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FIGURE 14 

Experimental Manipulation for Algorithm Adaptability 
 
Panel A: Description of Learning Algorithm 

 
Panel B: Description of Static Algorithm 

 
Note: The purpose of Figure 14 is to illustrate the information participants were provided in the learning 
and static algorithm conditions. 
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Results - Experiment 2 

Manipulation Check 

 To assess whether individuals attend to my manipulation, I ask participants to 

assess whether their firm’s algorithm can independently adapt and learn over time (1 = 

“Strongly Disagree” and 7 = “Strongly Agree”). Participants in the learning algorithm 

condition (mean = 4.65, standard deviation = 1.50) more strongly agreed with the statement 

than participants in the static algorithm condition (mean = 3.55, standard deviation = 1.98, 

t39 = 1.60, p = 0.06, one-tailed), suggesting a successful manipulation of algorithm 

adaptability. 31 

Results of Experiment 2 

Experiment 2 examines whether individuals who face high measurement 

uncertainty will differentially weight an algorithm’s advice depending on whether the 

algorithm is capable of adapting or not. Forecasting stock prices is a task that exhibits 

measurement uncertainty given that predicting a stock’s future price is ambiguous and 

requires numerous assumptions about the future (Bratten et al. 2013). Furthermore, 

measurement uncertainty can “magnify difficulties” individuals experience in estimating 

items, such as future stock price (Bratten et al. 2013, 11). Although the setting differs from 

Experiment 1, participants in Experiment 2 assessed their forecasting task to be similarly 

difficult as Experiment 1 participants’ difficulty assessments in the higher measurement 

uncertainty conditions. Participants in Experiment 2 (1) were asked to assess how difficult 

it was to accurately forecast the stock price (estimate the fair value of the Patent) on a 7-

point Likert scale with endpoints of: 1 = “Not at All Difficult” and 7 = “Very Difficult”. 

 
31 Consistent with my directional prediction, all reported p-values are one-tailed equivalents, unless otherwise 
noted. 
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On average, participants in the higher measurement uncertainty conditions for Experiment 

1 (mean = 5.25, standard deviation = 1.40) assessed a similar degree of difficulty as 

participants in Experiment 2 (mean = 5.32, standard deviation = 1.51). Additionally, in 

both experiments, participants’ assessment of the difficulty of providing an accurate 

estimate is significantly greater than the mid-point on the scale (untabulated). Furthermore, 

in Experiment 2, participants in the algorithm capable of adapting condition (mean = 5.45, 

standard deviation = 1.47) did not assess the task as more or less difficult to accurately 

forecast the stock price than participants in the algorithm not capable of adapting condition 

(mean = 5.19, standard deviation = 1.57, t39 = 0.55, two-tailed, untabulated). Collectively, 

these analyses provide evidence that the stock forecasting task in Experiment 2 exhibited 

high measurement uncertainty. 

I examine whether participants more heavily rely on advice provided by a learning 

algorithm relative to a static algorithm when facing high measurement uncertainty. Table 

5, Panel A reports descriptive statistics for the WOA by condition. Table 5, Panel B reports 

the results of my one-way Analysis of Variance and Panel C reports the simple effects. 

This simple effect supports my expectation that when individuals place greater weight on 

advice from an algorithm when the algorithm exhibits adaptive capabilities relative to an 

algorithm not capable of adapting (0.63 vs 0.41; p = 0.05). These results corroborate my 

findings from Experiment 1 in a different financial setting and provide further evidence 

that individuals place more value on an algorithm’s capability to adapt when facing high 

measurement uncertainty. Additionally, Experiment 2’s results validate my algorithm 

adaptability manipulation and expectation that algorithm adaptability is an important factor 
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that individuals consider when deciding the degree to which they will rely on algorithmic 

advice.  

 

TABLE 5 

Weight of Advice 

 

 
Panel B: ANOVAa 

Source 

Sum of 

Squares 

   
df    F     p 

Algorithm Adaptability 0.48 1 2.72 0.05† 
Error 6.83 39   
     

 
Panel C: Simple Effects Testa 

Source df t p 
Learning Algorithm vs. Static Algorithm (B vs D) 1,39 1.65 0.05† 

    
    

Note: The dependent variable is participants’ advice utilization, which is measured as weight of advice 
(WOA). WOA equals (initial estimate – final estimate)/(initial estimate – E-Val system’s estimate) and 
ranges from 0 to 1 where larger values of WOA indicates greater weighting of advice provided by the 
algorithm (i.e., greater reliance on advice). I manipulate the adaptive capability of the algorithm as static 
algorithm versus learning algorithm (i.e., not capable of adapting versus capable adapting), between 
participants.  
† p-values are equivalent to a one-tailed test, consistent with my directional predictions.  
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Panel A: Descriptive statistics: Least squares mean (standard error) [n] Cell 
 

     Algorithm Adaptability   

    Learning 
Algorithm  Static Algorithm     

 
 

  0.65  0.41   

   (0.09)  (0.09)   
   [20] 

 
[21] 
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D  
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CHAPTER 4 

CONCLUSION 

Contribution and Implications 

I provide experimental evidence on how the effect of measurement uncertainty and 

algorithm capability affect the weight accounting practitioners place on advice provided 

by an algorithm. I propose and find that when individuals face higher measurement 

uncertainty, they will weight an algorithm’s advice more heavily, especially if the 

algorithm is a learning algorithm rather than a static algorithm. Furthermore, I also find 

that individuals’ willingness to trust an algorithm mediates the joint effect of measurement 

uncertainty and algorithm capability on advice utilization. However, when measurement 

uncertainty is lower, algorithm capability has no differential effect on individual’s advice 

utilization. My predictions build on advice-taking literature by examining algorithms as 

the advisor and whether an algorithm’s capability affects individuals’ advice utilization.  

My results are important for accounting practitioners as companies continue 

moving towards implementing AI systems to assist accounting practitioners with more 

subjective and judgment-based tasks, such as complex estimates (Deloitte 2018c; KPMG 

2020a). Prior literature finds that as tasks increase in subjectivity, individuals become more 

concerned that algorithms lack the necessary competencies to complete the task and as a 

result, are reluctant to rely on algorithmic evidence (Castelo et al. 2019). Accounting firms 

may take comfort in knowing that in my study, individuals exhibited a greater wiliness to 

utilize advice from algorithms when facing higher measurement uncertainty. Though it is 

important to note that this effect is only significant when advice is provided by a learning 

algorithm. My findings can also inform other disciplines how individuals, such as 
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physicians or investment analysts, facing decisions in uncertain environments will utilize 

advice from advanced technology. 

Although a learning algorithm is inherently more capable than a static algorithm, 

practitioners have voiced concerns regarding an inability to trust a learning algorithm due 

to a lack of understanding regarding how the algorithm develops its recommendation (i.e., 

decision making processes), which is commonly referred to as the “black box” concern 

(CPA Canada and AICPA 2019). If the inability to understand the advisor’s decision 

process deters individuals from relying on the advisor’s recommendation, then given that 

a static algorithm’s process is more clear and transparent than a learning algorithms’ 

process, individuals could equally or more heavily weight a static algorithm’s 

recommendation compared to a learning algorithm’s recommendation (Yaniv and 

Kleinberger 2000; Yaniv 2004). Furthermore, given that documentation and justification 

for accounting choices are important features of the accounting profession (Koonce, 

Anderson, and Marchant 1995; Kadous, Leiby, and Peecher 2013; Deloitte 2015), 

regardless of how capable an algorithm is, accounting practitioners may disregard an 

algorithm that lacks interpretability and transparency. If individuals are unwilling to trust 

and rely on advice provided by learning algorithms, then firms may not capitalize on 

resources spent on developing these advanced technologies. It may be comforting for 

accounting practitioners to know that my results show that individuals are more than 

willing to rely on learning algorithms. However, a potential consequence is that accounting 

practitioners and auditors could face challenges when documenting and justifying their 

estimate, which could increase litigation risk or management not accepting the auditors’ 

estimate.  
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Limitations and Future Research Opportunities 

I acknowledge several limitations in this study. First, participants are provided an 

abbreviated description of the algorithm and how the model works. It is possible that 

accounting practitioners would receive more information or training on utilizing advanced 

technology to assist with developing complex estimates. One important aspect of providing 

more information on an algorithms’ processes is understanding how much information is 

adequate. In other words, there may be a point where providing too much information on 

an algorithm’s processes would reduce an individual’s willingness to rely on the algorithm. 

I leave this for future studies to examine potential interventions that can increase reliance 

on evidence provided by an algorithm, such as increasing justifiability or transparency. 

Second, in my experiment, participants first provide their initial estimate, then receive the 

algorithm’s estimate prior to submitting their final estimate. I acknowledge that this two-

stage process of submitting an initial and final estimate may not reflect the actual process 

managers follow when utilizing technology to develop an estimate. However, it is 

reasonable to assume that managers will gather information to develop a reasonable 

expectation of the estimate’s value and then reconcile their expectation with an additional 

evidence (i.e., algorithm’s estimate). To the extent that the participants’ development of 

their initial estimate reflects the process of managers gathering information to develop an 

expectation of the estimate’s value, I would expect my results to generalize to settings 

where managers utilize technology to develop an estimate. Finally, my participants do not 

have any prior experience using the algorithm. It is possible that overtime, the degree of 

reliance on less capable algorithms would increase to a similar level of more capable 

algorithms. However, based on advice-taking literature, individuals tend to exhibit lower 
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reliance on individuals that they view as inherently less capable than themselves. This 

finding is relatively consistent and robust across various decision domains. Future studies 

could also examine whether reliance on algorithmic evidence increases with repeated 

exposure in highly uncertain decision domains. 
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APPENDIX A: RESEARCH INSTRUMENT – EXPERIMENT 1 

This appendix presents screenshots of the research instrument for Experiment 1 

(beginning on the next page) provided to participants. Participants were provided with a link 

used to access the case information through Qualtrics. Text boxes (in red font) were added to 

the screenshots to clarify where necessary. 
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Low Measurement Uncertainty Conditions 
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High Measurement Uncertainty Conditions 
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Static Algorithm Conditions 



86 
 

 

 

 

  
Static Algorithm Conditions 



87 
 

 

 

 

 

  

Static Algorithm Conditions 



88 
 

 

  

Static Algorithm Conditions 



89 
 

 

 

 

 

  

Learning Algorithm Conditions 
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  Learning Algorithm Conditions 
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Note: Participants enter in their initial estimate on page 84. As an example, I 

entered in 100, which populates below under “Your initial estimate”. The E-Val 

System’s estimate is calculated as 20% less than the participant’s initial 

estimate. In the example below, the E-Val System’s estimate is $80 million.  
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APPENDIX B: IRB CERTIFICATION – EXPERIMENT 1 
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APPENDIX C: RESEARCH INSTRUMENT – EXPERIMENT 2 

This appendix presents screenshots of the research instrument for Experiment 1 

(beginning on the next page) provided to participants. Participants were provided with a paper 

copy of the case information. Text boxes (in red font) were added to the screenshots to clarify 

where necessary. 
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  Low Measurement Uncertainty Conditions 
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High Measurement Uncertainty Conditions 
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Note: Participants enter in their initial estimate on page 116. As an example, 

I entered in 100, which populates below under “Your initial estimate”. The 

E-Val System’s estimate is calculated as 20% less than the participant’s 

initial estimate. In the example below, the E-Val System’s estimate is $80 

million.  
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One Week Ahead Conditions 
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One Year Ahead Conditions 



138 
 

 

 

 

  
One Week Ahead - Static Algorithm 

Conditions 
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One Year Ahead – Static Algorithm Conditions 
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  One Week Ahead – Learning Algorithm Conditions 
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One Year Ahead – Learning Algorithm Conditions 
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