
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Nutritional Sciences Nutritional Sciences 

2014 

ROLE OF SCAVENGER RECEPTOR CLASS B TYPE I IN ROLE OF SCAVENGER RECEPTOR CLASS B TYPE I IN 

THYMOPOIESIS THYMOPOIESIS 

Zhong Zheng 
University of Kentucky, zizzizheng@gmail.com 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Zheng, Zhong, "ROLE OF SCAVENGER RECEPTOR CLASS B TYPE I IN THYMOPOIESIS" (2014). Theses 
and Dissertations--Nutritional Sciences. 12. 
https://uknowledge.uky.edu/nutrisci_etds/12 

This Doctoral Dissertation is brought to you for free and open access by the Nutritional Sciences at UKnowledge. It 
has been accepted for inclusion in Theses and Dissertations--Nutritional Sciences by an authorized administrator 
of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/nutrisci_etds
https://uknowledge.uky.edu/nutrisci
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Zhong Zheng, Student 

Dr. Xiang-An Li, Major Professor 

Dr. Howard Glauert, Director of Graduate Studies 



 

 

 

 

 

DISSERTATION 

 

A dissertation submitted in partial fulfillment of the 

requirements for the degree of Doctor of Philosophy in the 

College of Medicine  

at the University of Kentucky 

 

By 

Zhong Zheng 

Lexington, Kentucky 

Director: Dr. Xiang-An Li, Associated Professor of Pediatrics 

Lexington, Kentucky 

                                           Copyright © Zhong Zheng 2014               

ROLE OF SCAVENGER RECEPTOR CLASS B TYPE I 
IN THYMOPOIESIS 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T cells, which constitute an essential arm in the adaptive immunity, 
complete their development in the thymus through a process called 
thymopoiesis. However, thymic involution can be induced by a couple of factors, 
which impairs T cell functions and is slow to recover. Therefore, understanding 
how thymopoiesis is regulated may lead effort to accelerate thymic recovery and 
improve immune functions in thymocyte-depleted patients.  In this project, we 
identified scavenger receptor BI (SR-BI), a high density lipoprotein (HDL) 
receptor, as a novel modulator in thymopoiesis. In mice, absence of SR-BI 
causes a significant reduction in thymus size after puberty and a remarkable 
decrease in thymic output. Consequently, SR-BI-null mice show a narrowed 
naïve T cell pool in the periphery and blunted T cell responses, indicating that the 
impaired thymopoiesis due to SR-BI deficiency leads to compromised T cell 
homeostasis and functions. The impaired thymopoiesis of SR-BI-null mice is 
featured by a significant reduction in the percentage of earliest T progenitors 
(ETPs) but unchanged percentages of other thymocyte subtypes, suggesting that 
SR-BI deficiency causes a reduction in progenitor thymic entry. Further 
investigations reveal that SR-BI deficiency impairs thymopoiesis through 
affecting bone marrow progenitor thymic homing without influencing the lymphoid 
progenitor development in bone marrow. Importantly, SR-BI-null mice exhibit 
delayed thymic recovery after sublethal irradiation, indicating that SR-BI is also 
required for thymic regeneration. Using bone marrow transplantation models, we 
elucidate that it is non-hematopoietic rather than hematopoietic SR-BI deficiency 
that results in the defects in thymopoiesis. However, SR-BI deficiency-induced 
hypercholesterolemia is not responsible for the impaired thymopoiesis. Using 
adrenal transplantation models, we found that absence of adrenal SR-BI is 
responsible for the impaired thymopoiesis, as shown by that adrenalectomized 
mice transplanted with SR-BI-null adrenal gland display reduced thymus size, 
decreased percentage of ETPs and delayed thymic regeneration compared with 
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those transplanted with wild-type adrenal. Altogether, results from this study 
elucidate a previously unrecognized role of SR-BI in thymopoiesis. We reveal 
that SR-BI expressed in adrenal gland is critical in maintaining normal T cell 
development and enhancing thymic regeneration, providing novel links between 
adrenal functions and T cell development. 
 
Keywords: T cell development, scavenger receptor class B type I, thymic 
recovery, progenitor thymic homing, adrenal gland 
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Chapter 1 Background 

1.1   T cell development and homeostasis 

1.1.1   Introduction to the immune system 

The mammalian immune system can be divided into two branches: the 

innate immune system and the adaptive immune system. The innate immune 

system provides the first line of defense against invading pathogens, but is non-

specific to pathogens and unable to establish immunological memory. On the 

contrary, the adaptive immune system is pathogen-specific and can create 

immunological memory that mounts enhanced responses to pathogens upon re-

infection [1, 2]. In the adaptive immune system, the two major players are B cells 

and T cells. B cells primarily fight against infections by producing antibodies and 

thereby play a key role in the humoral immunity. B cells can also act as antigen-

presenting cells during immune responses [3]. In contrast, T cells are the central 

player in cell-mediated immunity as T cells can directly kill cells infected with 

intracellular pathogens or facilitate other cell types, including B cells, to fulfill their 

immune functions [4, 5]. The detailed characteristics and functions of T cells are 

discussed below.   

1.1.2   Introduction to T cells  

Distinguished from other lymphocytes, T cells bear T cell receptors 

(TCRs) on their surface, which can recognize major histocompatibility complex 

(MHC)-bound antigens and are highly diverse in binding specificity [6]. The 

majority of T cells in the immune system express TCRs composed of α- and β-
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TCR chains and thus are known as the αβ T cells. In contrast, a minority of T 

cells express TCRs formed by γ- and δ-TCR chains, which are known as γδ T 

cells and exert distinct functions from αβ T cells [7, 8]. In this dissertation, T cells 

will refer to the conventional αβ T cells unless otherwise stated.  

Two major classes of T cells that have different effector functions are 

distinguished by the surface co-receptors CD4 and CD8. CD8+ cells recognize 

class I MHC molecules and can kill cells infected with intracellular pathogens. 

Therefore, CD8+ cells are also called cytotoxic T cells or killer T cells. CD4+ T 

cells recognize class II MHC molecules. These cells are able to provide essential 

signals to help other immune cells during immune responses and thus are also 

known as helper T cells [9, 10]. CD4+ T cells can be further divided into several 

subtypes, such as Th1 cells, Th2 cells, Th17 cells and regulatory T cells. These 

helper T cell subtypes secrete different cytokines and play various roles in 

immune processes [11-13]. 

1.1.3   T cell homeostasis 

Both CD4+ and CD8+ T cells contain three major populations, naïve cells, 

memory cells and effector cells. Naïve T cells are T cells that have not 

encountered their specific antigens and do not have functional activities. Naïve T 

cells are characterized by the presence of surface receptor L-selectin (CD62L) 

[11, 14] and the absence of activation markers such as CD69, CD25 or CD44 

[15, 16]. Circulating through peripheral lymphoid tissues, naïve T cells scan 

MHC/peptide complexes on the surface of antigen presenting cells. Effector T 

cells can perform T cell functions such as producing cytokines (for CD4+ cells) or 
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invoking cell killing (for CD8+ cells). They can migrate to the site of infection and 

directly participate in the removal of antigens [13, 17]. Memory T cells are 

“experienced” T cells that have previously encountered their cognate antigens 

and are characterized by the expression of surface marker CD44. Memory T 

cells can be further divided into two major groups, central memory T cells and 

effector memory T cells. Central memory T cells express homing receptors, such 

as CD62L and C-C chemokine receptor type 7 (CCR7), that allow cells to migrate 

to secondary lymphoid organs. These cells are able to self-renew, but lack 

immediate effector functions. In contrast, effector memory T cells express 

molecules required for homing to inflammation tissues and have rapid effector 

functions [18, 19].  

The numbers of naïve T cells, effector T cells and memory T cells are 

tightly regulated by complex homeostatic mechanisms to ensure optimal immune 

responses to antigens as well as reduce a risk of damaging self-tissues (Figure 

1.1) [13]. Under normal conditions, naïve T cell numbers are maintained in a 

relatively constant level. Because naïve T cells are long-lived cells that rarely 

proliferate [20], their homeostasis in the periphery is mainly maintained by 

controlling survival. Naïve T cells depend on extrinsic signals such as self-

peptide+MHC complexes and interleukin-7 (IL-7) to survive [21-24]. Though new 

T cells are produced continuously from the thymus, all naïve T cells compete for 

the limited survival signals and a balanced number of naïve T cells are removed 

by apoptosis [13, 25]. Meanwhile, naïve T cells can give rise to a number of 

memory-phenotype T cells through a process called homeostatic proliferation. 
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The homeostatic proliferation of naïve T cells may reflect naïve T cell responses 

to self-antigens and is responsible for the progressive accumulation of memory T 

cells as age increases [26]. Unlike naïve T cells, memory T cells are proliferative. 

Their survival relies on IL-7 and interleukin-15 (IL-15) but not on self-

peptide+MHC complexes [21, 27, 28]. Also, the degree of death appears to 

balance with the cell division to keep the size of memory cells relatively steady 

under normal circumstances [13, 26]. 

When the body is invaded by a pathogen, the specific naïve T cells 

recognize the peptide/MHC complexes on antigen presenting cells and then 

become activated. Activated T cells undergo clonal expansion, giving rise to 

thousands of effector T cells with identical binding specificity, which then migrate 

to the inflammation site to exert their functions. T cell-mediated immune 

responses are also tightly controlled. On one hand, a small group of effector T 

cells differentiate into regulatory T cells, which can suppress immune responses 

and prevent autoimmune problems [29]. On the other hand, after the antigen is 

cleared, the majority of effector T cells are rapidly removed by apoptosis to avoid 

damage to self tissues. Only a small group of effector T cells are retained to 

develop into memory T cells [30-32]. If the memory T cells are exposed to the 

same antigen, they can rapidly produce a large number of effector T cells, 

providing a quicker and stronger secondary immune response to clear the 

invading pathogen [13]. 
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1.1.4   Thymopoiesis 

T cells complete their development in the thymus, an organ located 

anatomically in the anterior superior mediastinum. Generally speaking, cells in 

the thymus, i.e. thymocytes, can be divided into two major groups, T-lineage cells 

and stromal cells. Thymic T-lineage cells are cells being “educated” in the 

thymus. They develop from bone marrow-derived precursors to mature naïve T 

cells, constituting a majority of thymocytes. Thymic stromal cells include thymic 

epithelial cells, thymic endothelial cells, dendritic cells and macrophages, which 

are important in providing a specialized environment to instruct T cell 

development [33, 34]. 

Bone marrow-derived progenitors undergo a complex developmental 

program in the thymus to generate mature naïve T cells (Figure 1.2). The most 

original T-lineage cells in the thymus are the earliest T progenitors (ETPs), which 

are derived from bone marrow precursors that enter the thymus via the 

circulation. ETPs lack most of the surface molecules characteristic of mature T 

cells but express high levels of the cytokine receptor Kit (cKit or CD117) [35, 36]. 

After settling in the thymus, ETPs start to proliferate and give rise to downstream 

T lineage cells. Thymocytes in the early developmental stage including ETPs do 

not express CD4 or CD8. Thereby these cells are called double negative (DN) 

thymocytes. During the DN stage of thymopoiesis, T-lineage cells temporarily 

express surface marker CD25 and down-regulate CD44 expression. Thus, based 

the expression of CD44 and CD25, the DN cells are further divided to four 

groups, that is, from immature to mature, CD44+CD25- (DN1) cells, CD44+CD25+ 
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(DN2) cells, CD44-CD25+ (DN3) cells and CD44-CD25- (DN4) cells. DN1 cells 

are highly heterogeneous which include ETPs and a variety of non-T-lineage 

cells. In contrast, nearly all of DN cells in other three stages are T-lineage cells 

[13, 37, 38]. The rearrangement of TCR-β chain locus occurs in DN2 and DN3 

stage. Only thymocytes with successful β chain rearrangements can progress to 

DN4 stage. This process is regarded as the first checkpoint of T cell 

development, which is called β selection [39].   

Thymocytes passing β selection begin to express CD4 and CD8 to 

become double positive (DP) thymocytes, which comprise the majority (>80%) of 

thymocytes [13, 37, 38]. During the DP stage, the TCR-α locus rearranges and a 

selection process called positive selection occurs. In positive selection, 

thymocytes are screened for their recognition of MHC molecules. DP thymocytes 

without a TCR capable of binding MHC molecules are removed by apoptosis. DP 

thymocytes also undergo negative selection in which they are tested for their 

reactivity to self-ligands. Cells with high reactivity to self-ligands are eliminated in 

this selection process. Positive selection and negative selection ensure that only 

T cells that contain functional TCRs and do not recognize self-antigens are 

generated from the thymus [40]. DP thymocytes passing two selection processes 

differentiate to CD4+ single positive (4SP) or CD8+ single positive (8SP) cells. 

During the SP stage, thymocytes down-regulate proteins involved in selection 

processes and begin expressing a series of markers involved in thymocyte 

egress from the thymus or homing to secondary lymphoid organs. This process 

is called SP thymocyte maturation [41, 42].  The mature SP thymocytes finally 
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the egress from the thymus to blood as recent thymic emigrants (RTEs) to 

maintain the naïve T cell pool [34].   

1.1.5   Thymopoiesis and T cell homeostasis 

Thymopoiesis plays an essential part in the homeostatic regulation of 

naïve T cells (Figure 1.3). The contribution of thymopoiesis to maintaining the 

naïve T cell pool size was revealed in mice or human beings whose thymopoiesis 

was ablated.  In mice, absence of thymopoiesis in mice causes a dramatically 

decreased naïve T cell pool size and a reduced naïve T cell to memory T cell 

ratio [43, 44]. The decay of the naïve T cell pool was also reported in 

thymectomized human beings [45, 46]. The reduction of naïve T cells is thought 

to be due to successive antigen stimulation that shifts naïve cells to memory cells 

[44, 47].  

More importantly, thymopoiesis plays a key role in replenishing the naïve 

T cells to maintain a diverse TCR repertoire and optimal T cell functions. A 

maximally diverse TCR repertoire of naïve T cells is essential for the efficient 

generation of immune responses to new infections [48, 49]. However, during 

antigen stimulation or homeostatic proliferation, the clone sizes and relative 

clonal representation in TCR repertoire can be altered, causing a progressive 

loss of diversity and accumulation of auto-reactive T cells [50-53]. The biased 

TCR repertoire can be corrected by RTEs. The newly generated T cells have a 

competition advantage over the old ones, replacing equal numbers of preexisting 

naïve T cells in the pool [54]. Through injecting TCR transgenic cells into mice, 

Tanchot et.al showed that in presence of thymic output, the gradually T cell 
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substitution results in a decay of preexisting TCR transgenic cells, demonstrating 

that the RTEs play a critical role in renewing the TCR repertoire [55]. The 

absence or reduction of thymic output leads to a loss of TCR diversity and 

accumulation of auto-reactive T cells, which is responsible for the compromised 

immune responses and autoimmune disorders in thymectomized patients, and 

aged people or mice [46, 56-59]. 

T cell production not only maintains TCR diversity, but also is required for 

optimal naïve T cell functions. When thymopoiesis is absent and the naïve T cell 

pool is not replenished, naïve T cells live longer and undergo proliferation in an 

attempt to restore the size of the reduced pool [44, 60, 61]. In this process, T cell 

function is compromised. In aged or thymectomized mice, T cells show a 

decreased functional avidity, defective stimulation-induced signaling as well as 

blunted responsiveness to stimulation [62-64]. Increasing thymopoiesis in aged 

animals can improve their peripheral T cell functions [65-67]. These observations 

revealed that thymopoiesis is essential in maintaining optimal T cell functions. 

1.1.6   Lymphoid progenitor development and thymic homing 

Due to a lack of self-renewal progenitors in the thymus, long-term 

thymopoiesis depends on continuous settlement of bone marrow progenitors to 

the thymus [54, 68, 69]. The thymic precursors originally derive from 

hematopoietic stem cells (HSCs) residing in bone marrow, which are able to self-

renew and have the potential to generate all the blood cell types. HSCs are 

positive for the molecule Sca-1 and cKit, and negative for surface expression of 

markers found on mature cell types (lineage markers). Thus, they belong to Lin-
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Sca-1+cKit+ (LSK) cells in bone marrow. Within LSK cells, HSCs are 

characterized by the lack of CD135 expression [70, 71]. The first step in the 

differentiation of HSCs involves the generation of multipotent progenitors 

(MPPs). Compared with HSCs, MPPs lose the self-renewal capacity and only 

maintain short-term multilineage reconstituting potential. MPPs also belong to 

LSK cells but begin to express low levels of CD135 [72, 73]. MPPs then give rise 

to lymphoid-primed multipotent progenitors (LMPPs), which start to express 

lymphoid-specific genes and are more committed to lymphoid development. 

LMPPs are still Lin-Sca-1+cKit+, but distinguished from HSCs and MPPs by their 

high levels of CD135 expression [74]. LMPPs in turn produce common lymphoid 

progenitors (CLPs), which possess high lymphoid potential with limited myeloid 

potential. Compared with their upstream progenitors, CLPs display elevated IL-7 

receptor α (IL-7Rα) expression and reduced Sca-1 and cKit expression [75, 76] 

(figure 1.4).  

Bone marrow progenitors can mobilize out of bone marrow into the 

circulation and then migrate to the thymus through a process called progenitor 

thymic homing (Figure 1.4) [34, 68]. Though all bone marrow progenitors can be 

detected in blood [77], only LMPPs and CLPs have the ability to enter the thymus 

and are closely related with the intrathymic precursors at the molecular level [78, 

79]. Consequently, LMPPs and CLPs are believed as the direct ancestors of 

thymic T-lineage cells. Due to the extremely low numbers of progenitors settling 

to the thymus, the detailed mechanism of progenitor thymic settling is not 

completely understood [80, 81]. However, a group of adhesive molecules and 
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cytokines expressed in thymic endothelial cells, such as P-selectin, CCL21 and 

CCL25, have been reported to mediate the entry of progenitor cells [68, 82]. 

Multiple mouse strains with disrupted progenitor thymic homing due to the 

blockage of the adhesion cascade display reduced thymocyte numbers and 

impaired thymopoiesis [83, 84], highlighting the essential role of progenitor 

thymic homing in maintaining normal thymopoiesis. 

1.1.7   Age-related thymic involution 

Despite being the main site for T cells development, thymus mass and 

thymic cellularity begins to decrease after adolescence [85-87]. This 

phenomenon is known as age-related thymic involution. This thymus regression 

is an evolutionary conserved event, as it occurs in nearly all vertebrates that 

have a thymus [88]. The age-related thymic involution is characterized by a 

systematic loss of thymocytes without an obvious blockade in thymocyte 

differentiation [89]. It has been showed that age-related thymic involution leads to 

reduced T cell production [90, 91]. Consequently, aged people or mice display a 

restricted naïve T cell pool, a skewed TCR repertoire and impaired T-cell 

functions [62, 87, 92, 93], which are believed at least partly responsible for the 

impaired immune response to newly encountered antigens and increased 

susceptibility to infections [62, 92]. The reason why the thymus involutes in the 

elderly has not been fully elucidated, but multiple defects have been suggested 

to underlie age-related thymic involution, including the loss of developmental 

potential in aged bone marrow cells[94]; the decline in ETPs and their 
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proliferative potential [94, 95]; and decreased numbers and altered structure of 

thymic epithelial cells (TECs) [96-99]. 

1.1.8   Thymocyte depletion and thymic recovery 

In addition to age-related thymic involution, the thymus can also undergo 

transient and reversible regression under certain circumstances [100]. Transient 

thymic regression is called acute thymic involution, and is characterized by 

enhanced thymocyte death and acute loss of DP thymocytes [100-103]. Naturally 

occurred acute thymic involution is usually associated with stress, under 

conditions such as infections [104], malfunction [105] and pregnancy [106]. Some 

therapeutic processes, such as clinical cancer treatments or preparative 

regimens for bone marrow transplant, can also cause acute thymic involution 

[102, 107, 108].  Similar to age-related thymic involution, acute thymic involution 

results in a disrupted thymopoiesis, which is considered deleterious as it 

decreases the likelihood of infectious agent being cleared and increases the risk 

of infections by newly encountered antigens [89, 107, 109, 110]. Moreover, the 

thymic recovery after lymphocyte depletion is a prolonged process, which is the 

primary obstacle to reconstitute peripheral T cell pool and immune responses in 

thymic depleted patients [102, 107, 111-113]. How thymic involution is induced 

and how thymic recovery is regulated still remains incompletely understood [102].  
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Figure 1.1   Regulation of T cell homeostasis. 

Under normal circumstances (top), the naïve T cell pool size is maintained by T 

cell production from the thymus and balanced cell death of existing naïve T cells. 

In addition, naïve T cells can undergo homeostatic proliferation and be converted 

to memory T cells. In contrast, the memory T cell pool is mainly maintained by 

proliferation. During immune responses (middle), naïve T cells are activated and 

generate large numbers of effector T cells, which can migrate to the inflammation 

site to fight against pathogens. If the antigen is not new, memory T cells can also 

generate effector T cells in a quicker and stronger manner. When the antigen is 

removed (bottom), most effector T cells undergo apoptosis to avoid damages to 

self-tissues. A small number of effector T cells develop to memory cells to protect 

against secondary invasions.     

  



14 
 

 

Figure 1.2   T cell development in the thymus.  

Bone marrow-derived precursors arrive in thymus as earliest thymic 

progenitors(ETPs), which then develop from double negative stages(DN; CD4-

CD8-) to double positive stages(DP; CD4+CD8+) after being screened for the 

expression of pre-TCR(β selection). DP cells undergo positive selection to delete 

cells without effective TCR and negative selection to remove cells interact with 

self-antigens, followed by differentiating into single positive (SP; CD4+CD8- or 

CD4-CD8+) cells. SP cells, after maturation, exit the thymus as recent thymic 

emigrants (RTEs). 
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Figure 1.3   Consequences of the impaired thymopoiesis.  

Adequate T cell production is essential for maintaining a normal naïve T cell pool 

size, maximal TCR diversity and optimal T cell responses (upper). Inadequate T 

cell production leads to decreased naïve T cell numbers, restricted TCR 

repertoire and impaired T cell responses (bottom). 
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Figure 1.4   Thymic progenitor development and homing.  

Thymic progenitors originally derive from hematopoietic stem cells (HSCs) in 

bone marrow. To generate thymic progenitors, HSCs give rise to multipotent 

progenitors (MPPs), which then develop to lymphoid-primed multipotent 

progenitors (LMPPs). HSCs, MPPs and LMPPs are all subgroups of LSK (Lin-

Sca-1+cKit+) cells. LMPPs can further develop to common lymphoid progenitors 

(CLPs). LMPPs and CLPs are able to settle in the thymus via the circulation 

through a process called progenitor thymic homing, followed by the generation of 

downstream thymocytes. 
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1.2   Scavenger receptor class B type I 

1.2.1   Overview of SR-BI 

Scavenger receptor class B type I (SR-BI) is a 509-amino acid 

transmembrane protein belonging to the class B scavenger receptor family. As 

with CD36 and lysosome membrane protein 2 (LIMP2), the other members of 

this family, SR-BI has a horseshoe-like structure with short N- and C-terminal 

cytoplasmic domains, two transmembrane domains and a large heavily N-

glycosylated extracellular loop (Figure 1.5) [114, 115]. The extracellular domain 

of SR-BI is predicted to contain a helical bundle which binds with ligands and a 

tunnel used for substrates delivery [116]. SR-BI also has a splice variant, SR-BII, 

which differs from SR-BI in its carboxyl terminal and serves as another member 

of class B scavenger receptor family [117]. 

Like many other scavenger receptors, SR-BI can recognize a wide range 

of self- and foreign ligands (Figure 1.5) [118-121]. The self-originated ligands of 

SR-BI include modified low density lipoprotein (LDL), naïve LDL, high density 

lipoprotein (HDL), maleylated bovine serum albumin (BSA), anionic 

phospholipids and apoptotic cells [122-125]. The non-self-ligands include 

lipopolysaccharide (LPS), lipoteichoic acid (LTA), gram-negative bacteria, gram-

positive bacteria and soluble hepatitis c virus (HCV) E2 glycoprotein [126-128]. 

SR-BI is most abundantly expressed in liver, adrenal gland and ovaries, which is 

closely related with its major functions (discussed in detail below) [125, 129, 

130]. SR-BI is also expressed many other cell types, such as endothelial cells 

[131], epithelial cells [132], macrophages [133] and lymphocytes [134]. The wide 
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range of ligands SR-BI can bind and the diverse tissues SR-BI is expressed 

underlie the multiple functions of SR-BI within the body [135]. 

1.2.2   Classical function of SR-BI in HDL metabolism 

HDLs are the smallest and most dense group of lipoproteins in plasma 

[136]. HDLs are highly heterogeneous, as they vary in diameter, density and 

composition [137, 138]. The basic structure of HDLs include two major parts, a 

core made of hydrophobic lipid, such as cholesteryl ester and triglyceride, and a 

surface monolayer of phospholipid, free cholesterol and apolipoproteins [138, 

139]. HDL cholesterol (HDL-c) is recognized as “good” cholesterol, as it is well 

documented that the concentration of HDL-c in blood is inversely associated with 

the risk of cardiovascular diseases [140, 141]. Intense researches on the 

metabolism and functions of HDLs have revealed that they can exert multiple 

atheroprotective functions, including mediating cholesterol transportation[142, 

143], anti-inflammation[144-146], and anti-oxidation [147, 148].  

An essential mechanism by which HDLs protect against cardiovascular 

disease is mediating cholesterol transport from peripheral tissues via reverse 

cholesterol transport (RCT) [149]. Due to the inability to degrade cholesterol, 

peripheral cells must transport excess cholesterol to the liver to prevent 

cholesterol accumulation. RCT is the process by which HDLs take away 

cholesterol from peripheral tissues and transport cholesterol to the liver for 

excretion [150]. Blockage of RCT causes cholesterol accumulation in peripheral 

tissues, which leads to elevated risk for arthrosclerosis [151]. In addition to 

transporting cholesterol to the liver, HDLs are also responsible for delivering 
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cholesterol to steroidogenic tissues, such as the adrenal gland, providing 

cholesterol as sources for steroid synthesis [152-154]. 

In 1996, SR-BI was identified as the first HDL receptor as it was reported 

that SR-BI not only binds HDL but also mediates selective cholesterol uptake 

from HDL [125]. Later it was confirmed that SR-BI is a physiological HDL 

receptor. In mice, overexpression of SR-BI decreases plasma HDL levels [155] 

and the deficiency of SR-BI causes hypercholesterolemia and accumulation of 

large HDL particles in the circulation [156]. In humans, SR-BI mutations also lead 

to elevated HDL concentrations in plasma and altered cholesterol metabolism in 

macrophages [157, 158]. Nowadays, it has is well known that SR-BI is a key 

mediator in HDL metabolism and plays multiple roles in RCT (Figure 1.6) [159, 

160].  

The primary role of SR-BI in RCT is that it is the sole molecule mediating 

cholesterol uptake from HDL in the liver, where SR-BI is most abundantly 

expressed [125, 161-163]. In this process, cholesterol and other lipids are 

selectively delivered to cells without endocytosis or degradation of lipoprotein 

particles [164, 165]. Consequently, this process is called selective cholesterol 

uptake. Hepatic SR-BI-mediated selective uptake is a key determinant of the 

efficiency of RCT, as revealed by hepatic overexpression of SR-BI decreases 

plasma HDL-c concentration and increases biliary cholesterol secretion [155, 

166, 167]; hepatic-specific down-regulation or knockout of SR-BI elevates 

plasma HDL-c levels [168-170]. SR-BI also plays a role in mediating selective 

cholesterol uptake in steroidogenic tissues, such as the adrenal gland [161]. 
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Adrenal SR-BI-mediated selective uptake is essential for adrenal 

steroidogenesis, which is highlighted by recent findings that adrenal-specific 

disruption of SR-BI in mice results in glucocorticoid insufficiency [171]. 

HDL takes cholesterol from peripheral tissues in interstitial space and then 

delivers cholesterol to the liver via blood. Thus, in RCT, HDL needs to travel 

between interstitial fluid and blood to deliver cholesterol. Recent publications 

indicate that SR-BI is involved in HDL transport. To enter the interstitial fluid, 

lipid-poor HDL in blood crosses aortic endothelial cells by transcytosis [172, 173]. 

Silencing SR-BI in endothelial cells decreases the binding of HDL by 50% and 

reduces HDL transcytosis, indicating that endothelial SR-BI participates in this 

movement [173]. After loading cholesterol from peripheral cells, lipid-rich HDL 

returns to blood via lymphatic vessels [174, 175]. Lymphatic endothelium-

expressed SR-BI mediates the uptake and transcytosis of HDL to lymphatic 

vessels. Blocking SR-BI significantly reduces the transport of HDL from the 

periphery to blood in mice [174], indicating that SR-BI is an essential determinant 

in the process that returns HDL to blood  . 

SR-BI plays a role in mediating free cholesterol efflux from peripheral cells 

to HDL. The role of SR-BI in cholesterol efflux was elucidated by the 

observations that in cell lines, the cholesterol efflux rate from cells to HDL 

correlates with the SR-BI expression levels [176, 177], and macrophages from 

SR-BI-deficient mice or patients carrying functional SR-BI mutations display 

reduced capability of effluxing cholesterol to HDL [157, 178]. However, one group 

reported that SR-BI deficiency in macrophages does not impair RCT in vivo 
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[179]. How SR-BI-mediated cholesterol efflux in macrophages and other cell 

types physiologically affects RCT still remains incompletely understood.  

1.2.3   SR-BI and atherosclerosis 

As SR-BI is a key player in RCT, it is not surprising that SR-BI plays a 

protective role against atherosclerosis. The systemic role of SR-BI in protecting 

against atherosclerosis was demonstrated by manipulating SR-BI expression in 

animal models. In mice, modest SR-BI overexpression decreases the 

development of the diet-induced fatty streak lesions [180], whereas attenuation 

or ablation of SR-BI expression increases diet-induced aortic atherosclerosis 

[178, 181, 182]. Moreover, the absence of SR-BI in apolipoprotein E (ApoE)-

deficient background spontaneously induces accelerated atherosclerosis, early 

onset occlusive coronary artery disease, and premature death [183]. These data 

clearly indicate a protective role of SR-BI against atherosclerosis.  

Interestingly, though the atheroprotective effects of SR-BI are thought 

mainly attributed to its roles in cholesterol transport, several other 

atheroprotective properties of SR-BI are also identified [184-187]. For example, 

SR-BI expressed in hematopoietic cells plays a role in protection against 

atherosclerosis, since the absence of SR-BI expression in hematopoietic cells 

leads to elevated atherosclerosis [178, 182, 188-190]. SR-BI expressed in 

macrophages seems to provide the major atheroprotective effect, which is 

supported by the observation that the absence of macrophage SR-BI impairs 

cholesterol homeostasis [191] and exaggerates cytokine secretion in 

macrophages [189, 192]. Meanwhile, SR-BI-facilitated bidirectional cholesterol 
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efflux influences foam cell formation. Though hematopoietic SR-BI deficiency 

alone does not cause foam cell accumulation, it exaggerates foam cell 

accumulation when hematopoietic ATP-binding cassette transporter A1(ABCA1) 

is absent, suggesting that SR-BI may serve as a compensatory route of 

cholesterol efflux to decrease foam cell formation [190, 193]. 

HDL can also protect against atherosclerosis through its anti-oxidative 

properties. This anti-oxidative benefit is mainly attributed to two HDL-bound 

antioxidative enzymes, paraoxonase 1 (PON1) and platelet-activating factor 

acetylhydrolase (PAF-AH) [139, 143, 148].  SR-BI deficiency decreases PON1 

and PAF-AH activity, causing an increased oxidative stress in vivo [194]. In 

addition, SR-BI was reported to participate in the pathway in which PON1 directly 

dampens macrophage inflammatory responses [195], suggesting that SR-BI 

deficiency may increase atherosclerosis through impairing anti-oxidative property 

of HDL. SR-BI expressed in endothelial cells also contributes to reducing 

atherosclerosis. Endothelial SR-BI not only mediates HDL-induced endothelial 

cell migration and repair [196], but also induces the production of the anti-

atherogenic molecule NO in response to HDL [197, 198].  

1.2.4   SR-BI as a multi-functional receptor 

In addition to mediating cholesterol transport and protecting against 

atherosclerosis, SR-BI is able to perform several other functions in multiple 

systems. Currently identified roles of SR-BI include controlling induced steroid 

production, preventing female infertility, maintaining normal erythropoiesis and 

platelet functions, and a series of functions in immunity.  
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SR-BI-mediated selective cholesterol uptake from HDL is an essential 

pathway to supply exogenous cholesterol to the adrenal gland [161, 199-202], 

which is shown by the depletion of cholesterol storage in adrenal gland of SR-BI-

deficient mice [156]. Because of the existence of other pathways that can supply 

cholesterol to adrenal, such as endogenous cholesterol synthesis [203] and LDL 

receptor-mediated cholesterol uptake [204], the adrenal functions of SR-BI-null 

mice appear unaffected under normal conditions [205-207]. However, the 

deficient mice exhibit a lack of inducible glucocorticoid production in response to 

ACTH or stress [206-208], indicating that SR-BI-mediated cholesterol uptake is 

required for inducible glucocorticoid production. Patients carrying missense 

mutations of SR-BI also display marked reductions in urinary steroid secretion 

and decreased responses to corticotrophin stimulation, indicating that SR-BI is 

also essential in maintaining normal adrenal function in humans [157]. 

The absence of SR-BI in mice also causes female infertility which is 

believed to be a result of the defective oocytes that display abnormal morphology 

and arrested development in vitro [209]. Meanwhile, the SR-BI deficiency-

induced abnormal HDLs are also linked to the female infertility. Normalization of 

the HDL particles in SR-BI-/- mice by disrupting apolipoprotein A-I (apoA-I), 

probucol treatment or hepatic SR-BI expression relieves the female infertility [210, 

211]. In contrast, in spite of the lipid storage depletion [209], SR-BI-null ovaries 

are not responsible for the female infertility, since SR-BI-/- ovaries transplanted to 

ovariectomized SR-BI+/+ mice display normal functions[210].   
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The loss of SR-BI in mice leads to abnormalities in erythrocytes and 

platelets. For erythrocytes, SR-BI-deficient mice show accumulation of 

reticulocytes in the circulation and a blockage in erythrocyte development in 

spleen [212, 213]. For platelets, SR-BI deficiency causes abnormal platelet 

morphologies, elevated rates of platelet clearance from the circulation and a 

defect in ADP-induced platelet aggregation in mice [214-216]. The abnormalities 

in erythrocytes and platelets are at least partly induced by the SR-BI deficiency-

induced hypercholesterolemia; and are thought to be the reason for anemia and 

increased susceptibility to thromobosis [212, 214, 217]. 

1.2.5   Roles of SR-BI in immunity 

SR-BI-deficient mice exhibit several phenotypic changes in the immune 

system (Figure 1.7), such as increased susceptibility to septic death, impaired 

lymphocyte homeostasis and reduced HCV infection [135]. Based on these major 

immunological phenotypes, multiple functions of SR-BI in immunity have been 

discovered in recent years. 

A well-documented role of SR-BI in immunity is in protection against septic 

death. SR-BI deficiency causes significantly elevated death rate in sepsis, as 

shown by our observations that LPS injection induced 90% fatality in SR-BI-

deficient mice, whereas all wild-type littermates survived [218]; and cecal ligation 

and puncture (CLP) induced 100% fatality in SR-BI-deficient mice, compared 

with 21% fatality in controls [207]. In addition to the increased death rate, during 

sepsis, SR-BI-/- mice have multiple defects including uncontrolled inflammatory 

cytokine production, delayed LPS clearance and augmented tissue damage [206, 
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207]. These observations indicate that SR-BI provides essential protection 

against sepsis. 

Further investigations revealed that SR-BI can exert multiple protective 

functions against septic death [135]. The primary leading factor to the elevated 

mortality in sepsis of SR-BI-/- mice is thought to be the impaired inducible steroid 

synthesis in the adrenal gland. After LPS injection, supplementation of 

corticosterone in drinking water normalizes cytokine production and rescues 

survival rate of SR-BI-/- mice; and adrenalectomy abolishes the differences in 

inflammatory cytokine production between wild-type and SR-BI-deficient mice 

[206]. Under CLP challenge, though corticosterone supplementation in drinking 

water does not increase the survival rate of SR-BI-/- mice [207], adrenalectomized 

SR-BI+/+ mice transplanted with SR-BI-/- adrenal show higher fatality than those 

transplanted with SR-BI+/+ adrenal, suggesting that the insufficiency of multiple 

adrenal-derived steroids instead of corticoids alone is responsible for decreased 

survival rate during sepsis [219].  

SR-BI deficiency also leads to elevated macrophagic inflammatory 

responses in mice [192, 207]. Hematopoietic SR-BI deficiency causes higher 

cytokine productions in response to LPS, indicating that macrophage SR-BI 

helps control inflammatory responses in vivo.[192]. The uncontrolled 

inflammatory responses of macrophages are a contributing factor to the elevated 

septic death of SR-BI-null mice, as shown by that overexpression of an SR-BI 

mutant in SR-BI-deficient mice, which normalizes macrophagic cytokine 
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production without restoring corticosterone generation, significantly improves 

their survival under CLP challenge [207, 220]. 

As a scavenger receptor able to recognize foreign ligands, SR-BI can bind 

LPS and mediate its removal [126]. Hepatocytes from SR-BI-null mice display a 

decreased ability to uptake LPS in vitro, resulting in decreased hepatic LPS 

uptake and increased plasma LPS retention after LPS injection in vivo [206]. In 

the CLP model, SR-BI-deficient mice also show higher plasma LPS 

concentrations, providing further support that SR-BI deficiency decelerates LPS 

clearance [207]. Interestingly, during early stages of sepsis, SR-BI-deficient mice 

display lower plasma LPS concentrations than their wild-type counterparts, 

suggesting that SR-BI-mediated LPS uptake may also be essential for 

transporting LPS from the inflammation site to blood [207]. ScarbII179N mice, 

whose SR-BI expression is specifically decreased by 90% in the liver [168], show 

elevated mortality under CLP challenge associated with impaired hepatic LPS 

uptake, but normal corticosterone production and macrophagic inflammatory 

response, indicating that the SR-BI-mediated hepatic LPS uptake is also critical 

in protecting against septic death [221]. In addition, SR-BI can also protect 

against NO-induced cytotoxicity. The lack of SR-BI-mediated protection against 

NO-induced cytotoxicity is believed to be responsible for the increased tissue 

damage during sepsis [218]. 

Though its functions are mostly considered beneficial, SR-BI is utilized by 

HCV in the process of cell entry [222]. The involvement of SR-BI in HCV entry 

was elucidated by the fact that down-regulating or blocking SR-BI in hepatocytes 
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decreases HCV infectivity in vitro [223-227] and the deficiency or blockage of 

SR-BI in humanized mice reduces HCV infection in vivo [228-230]. Therefore, 

SR-BI is regarded as a promising target to treat HCV infection [231]. 

Initially it was thought SR-BI mediates HCV entry through direct binding 

[128]. However, later research indicated that HCV entry involves the lipid transfer 

functions of SR-BI [222, 232-235] but is probably not dependent on the SR-BI-

HCV binding [228, 235, 236]. Notably, SR-BI may be important in initiating the 

host defense during HCV infection because dentritic cells also depend on SR-BI 

to uptake HCV [237]. The detailed role of SR-BI in HCV infection and how this 

receptor can be used to prevent HCV infection requires further investigation. 

1.2.6   SR-BI and adaptive immunity 

In recent years, several players in RCT, including ApoA-I, ATP-binding 

cassette transporter G1 (ABCG1) and Liver X receptor (LXR) have been 

identified as modulators in adaptive immunity [139, 238-242]. For example, the 

absence of ApoA-I, the major protein in HDL [136, 243] induces cholesterol 

accumulation in T cells, causing T cell expansion and hyperactivation in skin 

lymph nodes associated with an autoimmune phenotype in LDL receptor (LDLR)-

deficient mice fed with an atherogenic diet [239, 240]. Similarly, deficiency of 

ABCG1, a key transporter mediating cholesterol efflux in RCT [244, 245], causes 

increased cholesterol accumulation in T-lineage cells, resulting in increased 

thymocyte and peripheral T cell proliferation in mice [241]. Our group 

investigated the role of SR-BI in adaptive immunity using SR-BI-deficient mice 
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and were the first to report that the loss of SR-BI causes impaired lymphocyte 

homeostasis [134].  

SR-BI-deficient mice display significant lymphocyte expansion in spleen 

resulting in significantly enlarged spleen sizes. Notably, the lymphocyte 

expansion is imbalanced, as SR-BI-deficient mice exhibit a 30% decrease in the 

T/B cell ratio. Meanwhile, the SR-BI deficiency also causes lymphocyte 

hyperactivation and hyperproliferation. As a consequence of the impaired 

lymphocyte homeostasis, aged SR-BI-deficient mice suffer from profound 

autoimmune disorders. With these data, we demonstrated that SR-BI is essential 

in maintaining lymphocyte homeostasis and preventing autoimmunity [134]. 

The adaptive immune defects of SR-BI-deficient mice are at least partly 

attributed to their abnormal HDL, which is larger in size and characterized by the 

accumulation of free cholesterol  [156]. Functionally, SR-BI-deficient HDL shows 

a reduced ability to mediate selective cholesterol uptake [246], decreased anti-

oxidative enzyme activity [194], and is responsible for female infertility [210, 211].  

We found that the dysfunctional HDL from SR-BI-null mice partly loses the 

inhibitory effects on anti-CD3-stimulated T cell proliferation and LPS-induced B 

cell proliferation of normal HDL, indicating that SR-BI can indirectly influence 

lymphocyte function through regulating HDL properties [134]. Intriguingly, we 

recently reported that HDL from SR-BI-deficient mice is also dysfunctional in 

enhancing glucocorticoid-induced thymocyte apoptosis, which contributes to the 

increased septic death of SR-BI-null mice, providing another clue of how HDL 

functions in adaptive immunity [247]. 
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The mechanism by which normal/dysfunctional HDL modulates 

lymphocyte proliferation is not yet fully understood.  Several pieces of evidence 

have implied that HDL may affect lymphocyte proliferation through regulating its 

cholesterol contents, as seen in leukocytes [139] and hematopoietic progenitors 

[248]. Bensinger et al. reported that during T cell activation, the LXR pathway 

controlling cholesterol export is suppressed and the pathway controlling 

cholesterol synthesis is induced, suggesting that T cell cholesterol homeostasis 

is altered during the activation process [242]. Pharmaceutically activating LXR 

pathways inhibits activation-induced T cell proliferation while absence of LXRβ 

causes a proliferative advantage of T cells [242]. Importantly, LXR modulates T 

cell function via ABCG1, the transporter mediating cholesterol efflux from cells to 

HDL [242]. The ABCG1 deficiency also causes increased proliferation of T cells 

in mice [241], together suggesting that ABCG1-mediated cholesterol efflux to 

HDL inhibits T cell proliferation. In SR-BI-deficient mice, the HDL may be 

dysfunctional in acquiring cholesterol from lymphocyte via ABCG1, which causes 

the proliferative advantage.  Further investigations are warranted to test this 

possibility. 
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Figure 1.5   General structures and ligands of SR-BI. 

SR-BI has a horse-shoe structure with two short intracellular domains, two 

transmembrane domains and a large extracellular loop. It can bind a variety of 

self-molecules or microbial ligands. 
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Figure 1.6   Multiple roles of SR-BI in RCT.   

In RCT, HDL loads cholesterol from peripheral tissues (shown as macrophage in 

figure) via ATP-binding cassette transporters and delivers cholesterol to liver for 

disposal or to steroidogenic tissues, such as adrenal gland, for steroidogenesis. 

The roles SR-BI plays in RCT including 1, mediating selective cholesterol uptake 

in liver or steroidogenic tissues; 2, facilitating cholesterol efflux in peripheral 

tissues and 3, mediating HDL transport between blood and interstitial fluid.  
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Figure 1.7   Major immune phenotypes of SR-BI-deficient mice.  

SR-BI deficiency causes several defects in immunity including increased 

susceptibility to atherosclerosis, elevated susceptibility to sepsis and impaired 

lymphocyte homeostasis (shown in red). SR-BI deficiency also has beneficial 

effects in mice as it decreases HCV infection (shown in green) [135]. 

  



33 
 

1.3   Synopsis of the project 

During the past few years, our group has been intensively working on 

investigating the multiple roles of SR-BI in immunity.  We were the first to report 

that SR-BI-deficient mice have impaired lymphocyte homeostasis and that SR-BI 

deficiency-induced dysfunctional HDL is the leading cause of lymphocyte 

expansion, hyperactivation and hyperproliferation [134, 135]. However, as the 

SR-BI-null HDL is dysfunctional in inhibiting the stimuli-induced proliferation of 

both T cells and B cells, it is not likely responsible for the decrease in T cell/ B 

cell ratio.  Thus, SR-BI should play additional roles in maintaining lymphocyte 

homeostasis in addition to preventing lymphocyte expansion by keeping normal 

HDL functions.  

In an effort to identify the additional roles of SR-BI in adaptive immunity, 

we focused on T cell development. Interestingly, by comparing the phenotypes of 

SR-BI-null mice with mice whose T cell production is decreased, we found that in 

addition to the decrease in T cell/B cell ratio, several other phenotypes of SR-BI-

null also potentially result from reduced T cell production, including the 

decreased percentage of naïve T cells, blunted T cell response to stimuli and 

autoimmune problems. These observations led us to hypothesize that SR-BI 

deficiency causes impaired thymopoiesis, which contributes to the lymphocyte 

imbalance in SR-BI-null mice.  In chapter 3, we tested this hypothesis by 

evaluating thymus size and thymic output. We observed significantly reduced 

thymus size and markedly declined thymic output in SR-BI-null mice, clearly 

indicating that SR-BI deficiency impairs thymopoiesis in mice. Importantly, by 
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assessing peripheral T cells and their function in young age SR-BI-null mice, we 

elucidated that SR-BI deficiency also impairs T cell homeostasis and responses, 

demonstrating that SR-BI plays a role in maintaining lymphocyte homeostasis by 

maintaining an optimal T cell production. 

Next, we sought to elucidate the mechanism by which SR-BI deficiency 

impaired thymopoiesis. As the first step, described in chapter 4, we analyzed 

thymocyte subtypes in SR-BI-null mice in order to understand which steps of 

thymopoiesis SR-BI plays a role in. We observed that SR-BI-null mice do not 

show any significant change in the percentages of thymocyte subtypes except for 

a remarkable decrease in the portion of ETPs, suggesting that SR-BI deficiency 

reduces the progenitor entry into the thymus but does not influence other 

downstream steps in thymopoiesis. To determine whether or not SR-BI 

deficiency affects progenitor entry into the thymus, we analyzed bone marrow 

progenitor development and progenitor thymic homing, two major steps upstream 

of ETPs in T cell development, in SR-BI-null mice. Although we did not detect 

any defect in progenitor development in the absence of SR-BI, we found that 

fewer circulating bone marrow progenitors settle into the thymus in SR-BI-null 

mice, demonstrating that SR-BI deficiency impairs thymopoiesis though 

impacting bone marrow progenitor thymic homing. As SR-BI-null mice display 

decreased percentage of ETPs and impaired progenitor thymic homing, we 

hypothesized that SR-BI deficiency leads to delayed thymic recovery after 

thymocyte depletion. Using the sublethal irradiation model, we observed that SR-
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BI-null mice exhibit impaired thymic recovery, indicating SR-BI is also required 

for thymic regeneration. 

In chapter 5, we investigated how the absence of SR-BI induces defects in 

T cell development. First, we utilized bone marrow transplantation models to 

investigate the role of hematopoietic and non-hematopoietic SR-BI in 

thymopoiesis. We found that non-hematopoietic SR-BI deficiency is the leading 

factor to the impaired thymopoiesis whereas hematopoietic SR-BI deficiency 

does not cause any disadvantages in T cell development. Next, to evaluate the 

contribution of SR-BI deficiency-induced hypercholesterolemia to the impaired 

thymopoiesis, we manipulated plasma cholesterol concentration in SR-BI-/- mice. 

Exaggerating hypercholesterolemia of SR-BI-null mice does not worsen thymic 

hypocellularity, nor does relieving hypercholesterolemia correct thymic 

hypocellularity, indicating that the defects in thymus are not induced by SR-BI 

deficiency-induced hypercholesterolemia. We also did not observe cholesterol 

accumulation in thymic macrophages of SR-BI-null mice, excluding the possibility 

that SR-BI deficiency induces impaired thymopoiesis through cholesterol 

accumulation and the subsequent NLRP3 inflammasome activation. Interestingly, 

using adrenal transplantation models, we found that mice with adrenal SR-BI 

deficiency display reduced thymus size, declined ETP percentage and impaired 

thymic regeneration, demonstrating that absence of SR-BI in adrenal is the 

leading cause to the impaired thymopoiesis. 

Taken together, we identified a previously unrecognized role of SR-BI in 

thymopoiesis. We conclude that 1: SR-BI deficiency impairs bone marrow 
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progenitor thymic homing, which further causes reduced thymus size, decreased 

ETP percentage, declined T cell production and delayed thymic recovery, 2: The 

reduced T cell production induced by SR-BI deficiency impairs peripheral T cell 

homeostasis and functions, and 3: Adrenal SR-BI plays a major role in 

maintaining normal thymopoiesis and thymic regeneration.  
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Chapter 2 Materials and Methods 

2.1   Mice 

2.1.1   General information  

SR-BI+/- (B6;129S2-Srb1tm1Kri/J), Rag-1-/- (B6.129S7-Rag1tm1Mom/J), 

CD45.1(B6.SJL-Ptprca Pepcb/BoyJ), LDLR-/- (B6.129S7-Ldlrtm1Her/J) and 

C57BL/6J mice were purchased from the Jackson Laboratory. Because of the 

female infertility due to SR-BI deficiency [210], SR-BI-/- mice were generated by 

breeding SR-BI+/- mice, and the SR-BI+/+ littermates were used as controls. Rag-

1-/-, CD45.1 and C57BL/6J mice were all maintained by sibling mating. Mice were 

kept and bred in a temperature-controlled room with 12-hour light and 12-hour 

dark diurnal cycle at the animal facility of the University of Kentucky. All mice 

were housed in filter-topped cages and were fed a standard laboratory diet 

(0.015% wt/wt cholesterol, 5.7% wt/wt fat, Harlan Tekland 2018) if not otherwise 

stated. Animal care and experiments were all approved by the Institutional 

Animal Care and Use Committee of the University of Kentucky. 

2.1.2   Generation of SR-BI/Rag-1 double knockout mice 

To generate SR-BI-/-Rag-1-/- mice, male SR-BI-/- mice and female Rag-1-/- 

mice were first cross-bred to generate SR-BI+/-Rag-1+/- F1 offspring, which were 

subsequently intercrossed to generate F2 offspring. SR-BI+/-Rag-1-/- mice in F2 

offspring were selected and intercrossed. Generated SR-BI-/-Rag-1-/- and SR-

BI+/+Rag-1-/- offspring were used for experiments, while the SR-BI+/-Rag-1-/- 

offspring were further intercrossed to maintain the strain.  
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2.1.3   Generation of SR-BI-null mice in C57BL/6J background 

Most SR-BI-null mice used in this project were in a C57BL/6J/129 mixed 

background. However, these mice could not be used in bone marrow 

transplantation or bone marrow transfer experiments together with CD45.1 mice 

that were in the C57BL/6J background. Thus, we backcrossed SR-BI+/- mice with 

C57BL/6J mice for more than 10 generations. After backcrossing, the SR-BI+/- 

offspring were selected and intercrossed to generate SR-BI-/- and SR-BI+/+ mice 

in C57BL/6J background.  

2.1.4   Generation of SR-BI/LDLR double knockout mice 

To generate SR-BI-/-LDLR-/- mice, male SR-BI-/- mice and female LDLR-/- 

mice were first cross-bred to generate SR-BI+/-LDLR+/- F1 offspring, which were 

subsequently intercrossed to generate F2 offspring. SR-BI+/-LDLR-/- mice in F2 

offspring were selected and intercrossed. Generated SR-BI-/-LDLR-/- mice were 

used for experiments, while SR-BI+/-LDLR-/- mice were further intercrossed to 

maintain the strain.  

2.1.5   Genotyping of mice 

2.1.5.1   Preparation of tail genomic DNA 

When necessary, the genotypes of mouse offspring were determined by 

polymerase chain reaction (PCR) with tail genomic DNA before they were 

weaned. Briefly, ~0.4cm tail tips were cut from mice at the age of 14-19 days  

and digested with 100μL 0.4μg/μL proteinase K in 55˚C water bath for 16~18 

hours. The digested tails were then centrifuged at 2,000 rpm for 5 min at room 

temperature and heated at 95 °C for ten minutes to deactivate the proteinase K. 
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The solution was diluted by 5-fold volume of ddH2O and centrifuged again at 

2,000 rpm, 5 min at 4 °C. The supernatant containing the genomic DNA was 

used as the template for PCR. 

2.1.5.2   Preparation of liver genomic DNA 

The genotypes of all experimental mice were confirmed using DNA from 

liver tissues after mice were sacrificed. To isolate the genomic DNA, 

approximately 30mg liver tissue was cut into small pieces and incubated with 

600µL digestion buffer (116µL 0.5M pH=8.0 EDTA + 484µL Nuclei lysis solution 

+ 4µL 20mg/mL proteinase K solution) in 55˚C water bath for 18-20 hours. After 

digestion, the protein was precipitated by adding 200µL Protein Precipitation 

Solution and incubating on ice for 5 minutes. The solution was then centrifuged 

at 12,000rpm for 5 minutes at 4°C, before the supernatant was mixed with 

isoproterenol at a ratio of 1:1. The mixed solution was centrifuged again at 

12,000rpm for 5 minutes at 4°C. After the centrifuge, the pellet was washed with 

70% ethanol and dissolved in 400µL ddH2O. The final solution contained the 

genomic DNA and was used as the template for PCR. 

2.1.5.3   PCR genotyping of SR-BI 

SR-BI wild-type and knockout alleles in mice were amplified as described 

previously [249]. The primer sequences for amplifying SR-BI alleles were 5'-GAT-

GGG-ACA-TGG-GAC-ACG-AAG-CCA-TTC-T-3' (named as AB2) and 5'-TCT-

GTC-TCC-GTC-TCC-TTC-AGG-TCC-TGA-3' (named as AB3). The reaction 

system was made of 10μL Taq Red Mix (Bioline), 1μL 10μM AB2 primer, 1μL 

10μM AB3 primer, 1μL DNA template and 7μL ddH2O. The PCR machine 
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settings were: step 1: 5 minutes at 95°C; step 2: 30 seconds at 95°C, 30 seconds 

at 58°C, 2 minutes at 72°C, 35 cycles; step 3: 10 minutes at 72°C. After reaction, 

PCR products were analyzed using 1.5% agarose gels. The 1.0kb amplified DNA 

band was from the wild-type allele and the 1.5kb one was from the knockout 

allele (Figure 2.1).  

2.1.5.4   PCR genotyping of Rag-1 

In the process of generating SR-BI-/-Rag-1-/- mice, Rag-1 alleles were 

genotyped in mice. The protocol to amplify the Rag-1 alleles was modified from 

the protocol suggested by Jackson Lab. Briefly, to amplify the wild-type allele of 

Rag-1, two primers, 5'- GAG-GTT-CCG-CTA-CGA-CTC-TG -3' (named as 

oIMR1746) and 5'- CCG-GAC-AAG-TTT-TTC-ATC-GT -3' (named as oIMR3104) 

were used. The reaction system was made of 10μL Taq Red Mix, 0.5μL 10μM 

oIMR1746 primer, 0.5μL 10μM oIMR3104 primer, 1μL DNA template and 8μL 

ddH2O. The PCR machine settings were: step 1: 2 minutes at 95°C; step 2: 30 

seconds at 95°C, 30 seconds at 58°C, 30 seconds at 72°C, 35 cycles; step 3: 2 

minutes at 72°C. Later, PCR products were analyzed using 2.0% agarose gels. A 

474 bp band was amplified if the wild-type Rag-1 allele was present (Figure 2.2). 

The PCR reaction to amplify the mutant allele of Rag-1 was the same with 

the one to amplify the wild-type allele except that a primer 5’-TGG-ATG-TGG-

AAT-GTG-TGC-GAG-3’ (oIMR8162) was used to replace oIMR1746. The 

amplified DNA product from the mutant allele was 530bp (Figure 2.2). 
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2.1.5.5   PCR genotyping of LDLR 

In the process of generating SR-BI-/-LDLR-/- mice, LDLR alleles were 

genotyped in mice. The protocol to amplify the LDLR alleles was modified from 

the protocol suggested by Jackson Lab. Briefly, two primers used to amplify the 

wild-type allele of LDLR were 5'- CCA-TAT-GCA-TCC-CCA-GTC-TT-3' (named 

as oIMR3349) and 5'- GCG-ATG-GAT-ACA-CTC-ACT-GC-3' (named as 

oIMR3350). Two primers used to amplifying the mutant allele of LDLR were 

oIMR 3349 and 5'- AAT-CCA-TCT-TGT-TCA-ATG-GCC-GAT-C-3' (named as 

oIMR0092). The reaction system was made of 0.5μL GoTaq (Promega), 4μL 5X 

reation buffer (Promega), 0.4μL dNTP (Promega), 1.6μL Mg2+ (Promega), 0.5μL 

10 μM oIMR0092, 0.5μL 10 μM oIMR3349, 0.5μL 10 μM oIMR3350, 1μL DNA 

template and 11μL ddH2O. The PCR machine settings were: step 1: 3 minutes at 

94°C; step 2: 30 seconds at 94°C, 1 minute at 65°C, 1 minute at 72°C, 35 cycles; 

step 3: 2 minutes at 72°C. Later, amplified PCR products were analyzed using 

2.5% agarose gels. A 167 bp band was amplified from wild-type LDLR allele and 

a 350 band was amplified from the mutant LDLR allele (Figure 2.3). 

2.2   Mouse treatments 

2.2.1   BrdU injection 

5-bromo-2'-deoxyuridine (BrdU) is an analog of thymidine which can be 

integrated into newly synthesized DNA of cells during proliferation. BrdU that is 

incorporated into the DNA can be detected with its specific antibody and thus can 

be used to monitor cell proliferation in vivo and in vitro [250-252]. For in vivo 

BrdU labeling, we gave mice two intraperitoneal injections of 1mg BrdU in 200μL 
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sterile PBS. The injections were spaced 24 hours apart and 24 hours after the 

second injection, the mice were sacrificed and the BrdU incorporation in cells 

was detected (BrdU detection procedure described in chapter 2.3.5).  

2.2.2   Bone marrow transplantation 

Bone marrow transplantation was performed as described previously [253, 

254]. Briefly, recipient mice (13~20 weeks) were maintained on antibiotic water 

(4μg/mL sulfratrim) for one week before irradiation. Then, the recipient mice were 

irradiated with two doses of 400Rads from a cesium source that was delivered 3 

to 4 hour apart. After irradiation, 5 million bone marrow cells obtained from 

femurs of 5~6-week-old donor mice (bone marrow cell isolation procedure 

described in chapter 2.3.1.5) were suspended in 100μL PBS and injected via tail 

vein into the irradiated recipient mice. After bone marrow transplantation, mice 

were maintained on antibiotic water for another 4 weeks, and then changed on 

regular water for 2 weeks before being sacrificed. 

2.2.3   Short-term homing assay 

The short-term homing assay is commonly used to investigate the thymic 

progenitor settlement in mice [83, 255]. Briefly, 20 million bone marrow cells from 

5-week-old SR-BI+/+ mice labeled with carboxyfluorescein succinimidyl ester 

(CFSE, labeling procedure described in chapter 2.5) were suspended in 100μL 

PBS and injected to non-irradiated 5-week-old SR-BI+/+ or SR-BI-/- mice via tail 

vein. The mice were maintained on regular water and normal diet for two days 

before analysis.  
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2.2.4   Long-term homing assay  

The long-term homing assay was conducted to study the contribution of 

circulating bone marrow progenitors to thymopoiesis [255]. In this assay, 20 

million bone marrow cells from 6-week-old CD45.1 mice suspended in 100μL 

PBS were injected to non-irradiated SR-BI+/+ or SR-BI-/- mice in C57BL/6J 

background (6~26 weeks) via tail vein. The mice were maintained on regular 

water and normal diet for two weeks before analysis. 

2.2.5   Sublethal irradiation 

Sublethal irradiation in mice mimics the whole body irradiation in patients 

which is a preparative regimen for hematopoietic stem cell transplantation and 

causes acute thymic atrophy. Sublethal irradiation thus is widely used for 

investigating thymocyte recovery after thymocyte depletion [111, 256, 257]. In 

this project, 8~10-week-old mice were irradiated with a single dose of 450 Rads 

from a cesium source. Then the irradiated mice were maintained on regular 

water and normal diet for 4 days, 7 days or 14 days before analysis. 

2.2.6   High fat diet feeding 

The high fat diet used in this project contains 15.8% by weight fat, 1.25% 

by weight cholesterol and 0.5% by weight sodium cholate (Harlan Tekland), 

which is widely used for elevating cholesterol concentrations in mice [258, 259]. 

After being weaned at the age of 3 weeks, the mice were immediately fed with 

the high fat diet. The mice fed on normal diet described in chapter 2.1.1 were 

used as control. 
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2.2.7   Probucol administration 

Probucol is a cholesterol lowering drug [260, 261] which was reported to 

relieve the hypercholesterolemia in SR-BI-/- mice and normalize several adverse 

effects of SR-BI deficiency [210, 262]. Probucol (Sigma) was dissolved in ethanol 

at 55°C water bath before being sprayed on normal diet at 0.2% by weight. Then 

the probucol-added diet was dried for one week before use. After being weaned 

at the age of 3 weeks, mice were immediately fed with the probucol diet. The 

mice on normal diet described in 2.1.1 were used as control. 

2.2.8   Adrenal transplantation 

The procedure of adrenal transplantation was previously described [171, 

263].  Briefly, at day 8 after birth, the donor mice (offspring of SR-BI+/- breeders) 

were genotyped using tail tips. At day 9, the SR-BI+/+ or SR-BI-/- donor mice were 

euthanized using CO2 and their adrenal glands were harvested. The SR-BI+/+ 

recipient mouse (10-12 weeks) was anesthetized by isoflurane inhalation. After 

anesthetization, the adrenal glands of the recipient were removed bilaterally and 

one donor adrenal gland was put under the right kidney capsule through a slit 

made by tweezers. After the right kidney was returned, the incisions were 

sutured. After the surgery, the recipient was maintained on water containing 

0.9% NaCl, before they were used for experiments 6 weeks later. 
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2.3   Flow cytometry 

2.3.1   Preparation of single cell suspensions 

2.3.1.1   Spleen 

The spleens were isolated and weighed immediately after mice were 

sacrificed. Isolated spleen (if the spleen was less than 100mg, the whole spleen 

was used; otherwise, a 70-100mg piece of spleen was used) was placed in a 

stomacher bag (Seward) in the presence of 10mL RPMI 1640 (Gibco) containing 

5% FBS (Gibco) and disrupted using Stomacher 80 (Seward). Later, the 

suspension was moved to a 50mL centrifuge tube (BD Biosciences) through a 

100μm cell strainer (BD Biosciences). Then 5mL RPMI 1640 containing 5% FBS 

was added to wash the stomacher bag and transferred to the same centrifuge 

tube through the strainer. After the wash was added, the cell suspension was 

centrifuged at 1,500 rpm for 5 minutes at 4˚C. The supernatant was discarded 

and the cells were incubated with 5mL ACK lysis buffer (0.15 M NH4Cl, 10 mM 

KHCO3, 0.1 mM EDTA, pH=7.4) at room temperature to deplete erythrocytes. 

After 5 minutes incubation, 10mL PBS w/o calcium and magnesium (Gibco) was 

added to cease the lysis. 100μL of the cell suspension after lysis was 

immediately diluted and counted, before the cells were centrifuged at 1,500 rpm 

for 5 minutes. Then the cells were washed again with PBS w/o calcium and 

magnesium before they were suspended in 5mL RPMI 1640 containing 5% FBS 

to make the final suspension.  
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2.3.1.2   Thymus 

Thymus was isolated, weighed and placed in a 60mm culture dish (BD 

Biosciences) immediately after the mouse was sacrificed. The isolated thymus 

was then mechanically disrupted through a 100μm cell strainer into 10mL RPMI 

1640 containing 5% FBS. The cell suspension was transferred into a 15mL 

centrifuge tube (BD Biosciences). 5 mL RPMI 1640 containing 5% FBS was 

added to wash the dish and strainer, and then transferred to the same centrifuge 

tube. After the wash was added, the cell suspension was centrifuged at 1,500 

rpm for 5 minutes at 4˚C. The cells were suspended in 5mL RPMI 1640 

containing 5% FBS to make the final suspension. 

2.3.1.3   Lymph nodes 

Mesenteric lymph nodes were isolated and weighed immediately after a 

mouse was sacrificed. 2-4 lymph nodes were used for making single cell 

suspensions following the method that was described in chapter 2.2.1.2. The 

cells were finally suspended in 2mL RPMI 1640 containing 5% FBS. 

2.3.1.4   Blood 

Blood was collected from mouse by abdominal arterial puncture. To 

prevent coagulation, the needles were pre-rinsed with 0.5M EDTA (Sigma) and 

the collected blood was immediately mixed with 20μl 0.5M EDTA in a 1.5mL EP 

tubes. 300uL anti-clotted blood was added to 5mL ACK lysis buffer in a 50mL 

centrifuge tube to remove red blood cells. 5 minutes after incubation, 45mL PBS 

w/o calcium and magnesium was added to cease lysis and the cells were 

immediately centrifuged at 1,500 rpm for 5 minutes at 4˚C. The pellet was 
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resuspended with 1mL RPMI 1640 containing 5% FBS to make the final 

suspension. 

2.3.1.5   Bone marrow 

Two femurs were removed immediately after a mouse was sacrificed. 

After both ends of a femur were cut, 5 mL RPMI 1640 containing 5% FBS was 

used to flush out the bone marrow cells into a 15mL centrifuge tube. Bone 

marrow cells from two femurs of one mouse were pooled together and then 

moved into a 50mL centrifuge tube through a 100μm cell strainer. The cells were 

centrifuged at 1,500 rpm for 5 minutes at 4˚C and resuspended in 1mL RPMI 

1640 containing 5% FBS to make the final suspension. 

2.3.2   Cell counting 

For splenocytes, 100μL cell suspension was diluted 10-fold with RPMI 

1640 containing 5% FBS immediately after lysis and then counted using a 

counting chamber. For thymocytes, 100μL final cell suspension was diluted 10-

fold, 20-fold or 50-fold with RPMI 1640 containing 5% FBS and then counted 

using a counting chamber. For lymph node cells and whole blood cells, 10μL final 

cell suspension was directly counted without dilution with a counting chamber. 

The number of lymph node cells was normalized to cells per 2 lymph nodes. The 

concentration of blood cells was shown as cells per mL blood. For bone marrow 

cells, 10μL final cell suspension was 100-fold diluted with RPMI 1640 containing 

5% FBS and then counted using a counting chamber. 
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2.3.3   Surface marker antibody staining 

The antibodies used in this project are listed in Table 1. For most assays 

in this project, 5x105 cells were first incubated with 0.25μg anti-mouse 

CD16/CD32 in 30μL FACS staining buffer (PBS w/o calcium and magnesium 

containing 1% BSA) for 10 minutes at 4˚C to block Fc receptors. Then 20μL 

FACS staining buffer containing fluorescent dye-labeled antibodies (0.125μg per 

antibody) was added to make a final volume of 50μL and the cells were 

incubated at 4˚C 30 minutes. After incubation, the cells were washed twice with 

500μL FACS staining buffer. Finally the stained cells were suspended in 250μL 

FACS staining buffer and analyzed with FACSCalibur or LSRII flow cytometer 

(BD Biosciences). The generated data were analyzed with FlowJo software 

(Treestar). 

For TUNEL, BrdU or filipin staining assay, 1 million cells were stained with 

0.25μg of antibody in 100μL staining buffers and washed with doubled volume of 

buffers before subsequent staining. For ETP staining or bone marrow progenitor 

analysis, 5~15 million cells were stained and washed with proportionally 

increased volume of buffers and antibodies. The stained cells were suspended in 

1~1.5mL FACS staining buffer before analysis. 

2.3.4   TUNEL apoptosis detection assay 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) is 

a widely used method for detecting DNA fragmentation which is an essential 

marker for cell apoptosis [264, 265]. Briefly, 1 million cells were first stained with 

antibodies recognizing surface antigens as described in chapter 2.2.3, followed 
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by incubation with 100μL BD Cytofix/Cytoperm solution (BD Biosciences) for 20 

minutes at room temperature. After washing twice with 1x BD Perm/Wash buffer 

(BD Biosciences), the cells were incubated with 50μL TUNEL reaction mixture 

(Roche) that was prepared following the manufacture instructions for 45 minutes 

at 37˚C. Finally the cells were washed twice with FACS staining buffer, 

suspended in 500μL FACS staining buffer and analyzed with flow cytometer.  

2.3.5   BrdU incorporation detection 

The BrdU incorporation was evaluated using a commercial BrdU kit (BD 

bioscience) following instructions of the manufacture. Briefly, 1 million cells were 

first stained with antibodies recognizing surface antigens as described in chapter 

2.2.3, followed by incubation with 100μL BD Cytofix/Cytoperm solution for 20 

minutes at room temperature. After washing twice with 1x BD Perm/Wash buffer, 

the cells were incubated with 100μL BD Cytoperm Permeabilization Buffer Plus 

for 10 minutes at room temperature and again washed twice with 1x BD 

Perm/Wash buffer. After the wash, the cells were suspended in 100μL BD 

Cytofix/Cytoperm solution and incubated for 5 minutes, before they were washed 

twice with 1x BD Perm/Wash buffer. Later, the fixed cells were incubated with 

100μL 300μg/mL DNase in PBS for 1 hour at 37˚C to expose the incorporated 

BrdU. After the DNase was washed away with 1x BD Perm/Wash buffer, the cells 

were stained with 1:50 APC-conjugated anti-BrdU antibodies in 50μL 1x BD 

Perm/Wash buffer. Finally, the cells were washed with FACS staining buffer 

twice and suspended in 250μL FACS staining buffer before analysis. 
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2.3.6   Filipin staining 

Filipin is a highly fluorescent compound that specifically binds cholesterol. 

Thus it can be used as a probe to evaluate the level of cholesterols [191, 266, 

267]. One million thymocytes of mice were first stained with surface markers and 

then incubated with 100μL BD Cytofix/Cytoperm solution (BD Biosciences) for 20 

minutes at room temperature. After washing twice with 1x BD Perm/Wash buffer 

(BD Biosciences), the cells were incubated with 100μL 100μg/mL filipin (Sigma) 

in 1x BD Perm/Wash buffer for 1 hour at 37˚C. Finally the cells were washed 

twice, suspended in 100μL PBS and analyzed with flow cytometer. 

2.4   T cell receptor excision circles detection 

T cell receptor excision circles (TRECs) are circular DNA molecules 

generated during TCR rearrangements which lack the ability to replicate. These 

molecules were diluted during T cell proliferation and thus nicely correlated with 

T cell production [90, 268, 269]. To detect TRECs in T cells, splenocytes of mice 

were stained with surface antibodies as described in chapter 2.2.3. Then CD4+ 

and CD8+ splenocytes were sorted with an iCyt Synergy sorter system (Sony). 

The cell lysate was prepared by incubating 10,000 cells/μL isolated cells with 

0.4μg/μL proteinase K (QIAGEN) at 55˚C for one hour, followed by inactivating 

proteinase at 95˚C for 15 minutes. The lysate from 50,000 cells (5μL) was added 

to a quantitative PCR (qPCR) reaction.  

The qPCR was performed using a LightCycler 480 Instrument (Roche). 

The forward primer to amplifying TRECs was 5’-CAT-TGC-CTT-TGA-ACC-AAG-

CTG-3’ and the reverse primer was 5’-TTA-TGC-ACA-GGG-TGC-AGG-TG-3’. 
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The probe was 5’-FAM-CAG-GGC-AGG-TTT-TTG-TAA-AGG-TGC-TCA-CTT-

Black hole Quencher-1-3’ (synthesized by Integrated DNA Technologies). The 

reaction system was modified from previous report [90] and contained 12.5μL 

LightCycler 480 Probes Master (Roche), 1μL 0.5μM forward primer, 1μL 0.5μM 

reverse primer, 1μL 12.5μM probe, 4.5μ H2O and 5μL templates. The qPCR 

program was set as: step 1: 10 minutes at 95°C; step 2: 15 seconds at 95°C, 1 

minute at 60°C, single data collection, 45 cycles; step 3: 37°C, hold. 

The standard curves for murine TRECs were generated by using standard 

mouse TRECs plasmids, which were a generous gift from Dr. Gregory D. 

Sempowski, Duke University Medical Center [90]. For each real-time PCR assay, 

stock dilutions of 107, 106, 105, 104, 103 and 102 plasmids per 5uL were run in 

triplicate to generate standard curves. TREC frequency of isolated cells was 

determined in triplicate and expressed as the number of TRECs per 100 cells. 

The total number of TRECs of a given population was calculated by multiplying 

the TREC frequency by the number of that population. 

2.5   CFSE labeling 

CFSE is a widely used fluorescent cell staining dye for in vivo cell tracing 

[270]. In this project, we used CFSE-labeled bone marrow cells in the short-term 

homing assay (described in 2.2.3). We labeled bone marrow cells with CFSE 

using a commercial kit (Molecular Probes). Briefly, bone marrow cells were first 

suspended in PBS containing 0.1% BSA at a concentration of 20 million cells per 

mL. Then 2μL 5mM CFSE stock solution per mL of cells was added to make a 

final CFSE concentration of 10μM, followed by incubation with cells at 37°C for 
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10 minutes. The staining was quenched by adding 5 volumes of ice-cold PBS 

and incubation on ice for 5 minutes. After washing cells three times with PBS, the 

cells were suspended in PBS at the concentration of 20 million cells per 100μL 

before being injected into mice. 

2.6   in vitro T cell activation 

Splenocytes or lymph node cells from mice were plated at a concentration 

of 4 x 106 cells per mL in a 96-well plate and cultured in RPMI 1640 medium 

supplemented with 10% FBS, 5 mM L-glutamine (Gibco), 100 units/mL penicillin, 

100 μg/mL streptomycin, and 50μM 2-mercaptoethanol (2-ME). For anti-CD3 

stimulation, the plates were incubated with 100μL anti-CD3 (eBioscience) in PBS 

at indicated concentrations overnight and washed twice with 100 μL PBS before 

use. For proliferation assay, 5μg/mL pre-bound anti-CD3 were used to stimulate 

T cells and 10 μM BrdU was added to track new born cells. After 96 hours 

incubation at 37°C, BrdU incorporation in T cells was analyzed by FACS. For 

activation assays, cells were stimulated with indicated concentrations of pre-

bound anti-CD3 and soluble anti-CD28 (eBioscience). Forty-eight hours later, 

CD69 expression in T cells was evaluated.  

2.7   Plasma cholesterol determination 

Fresh anti-coagulated blood was drawn by tail bleeding or from abdominal 

aorta from mice and used to determine plasma cholesterol concentrations. 

Quantitative determination of plasma total cholesterol was performed with 

enzymatic colorimetric method following the instruction from manufacturer (Wako 

Pure Chemical Industries, Ltd). 



53 
 

2.8   Western blot 

The thymi from 5-week-old mice were first lysed with cell lysis buffer (cell 

signaling) in the presence of proteinase inhibitor (Sigma), before being 

centrifuged at 12,000 rpm for 15 minutes at 4°C. The protein concentration in the 

supernatant was determined by Lowry protein assay [271] with a commercial kit 

(Biorad). Then, 100μg (by protein) cell lysate was loaded and resolved in a 

12.5% polyacrylamide gel. After the gel electrophoresis, the protein in the gel 

was electrically transferred to a polyvinylidene fluoride (PVDF) membrane, which 

was then blocked with 5% milk in Tris-Buffered Saline with Tween 20 (TBST, 

50mM Tris, 150mM NaCl, 0.05% Tween 20, pH=7.6) at room temperature for 1 

hour and incubated with 1:10000 anti-caspase 1 (4B4, a gift from Dr. Vishva 

Dixit, Genentech) in 5% milk/TBST at room temperature for 1 hour. After washing 

for three times with 0.25% milk/TTBS, the membrane was incubated with 1:1000 

peroxidase-conjugated anti-Rat IgG in 0.25% milk/TTBS for 1 hour at room 

temperature. After washing three times with 0.25 milk/TTBS, the membrane was 

incubated with peroxidase substrates (Thermo Scientific) for 5 minutes before the 

chemiluminescence was detected.  

Then the membrane was stripped with stripping buffer (Thermo Scientific) 

and blotted with 1:500 anti-β-tublin (E7-c, Developmental Studies Hybridoma 

Bank). After washing, the membrane was incubated with 1:5000 peroxidase-

conjugated anti-mouse IgG and detected as described upon. 
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2.9   Statistic analysis  

In this dissertation, data were all shown as mean ± standard error. 

Comparison of two groups was by 2-tailed Student’s t-test. P values for survival 

curves were determined from the Kaplan-Meier survival curves by use of the 

Log-Rank test utilizing SAS software. Means were considered different at p < 

0.05.  
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Figure 2.1   Genotyping for SR-BI alleles.  

PCR system for SR-BI genotyping was set up as described in 2.1.5.3. Fifteen 

microliter amplified DNA product was resolved in a 1.5% agarose gel under 100 

volts for 30 minutes.   
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Figure 2.2   Genotyping for Rag-1 alleles. 

PCR system for Rag-1 genotyping was set up as described in 2.1.5.4. Ten 

microliter amplified DNA product was resolved in a 2.0% agarose gel under 100 

volts for 30 minutes. 
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Figure 2.3   Genotyping for LDLR alleles.  

PCR system for LDLR genotyping was set up as described in 2.1.5.5. Ten 

microliter amplified DNA product was resolved in a 2.5% agarose gel under 100 

volts for 30 minutes. 
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Table 2.1   Antibodies used for flow cytometry.  

Antigen Clone Format Source Note 

BrdU - APC BD Biosciences Proliferation marker 

B220 
RA3-
6B2 

FITC Biolegend 
Lineage marker for ETP and bone 
marrow progenitor staining 

CD2 RM2.5 FITC Biolegend 
Lineage marker for bone marrow 
progenitor staining 

CD3ε 17A2 FITC BD Biosciences 
Lineage marker for ETP and bone 
marrow progenitor staining 

CD4 GK1.5 APC Biolegend 
Thymocyte and peripheral T cell 
subset staining 

CD4 GK1.5 FITC Biolegend 
Lineage marker for bone marrow 
progenitor staining 

CD4 GK1.5 PE Biolegend 
Thymocyte and peripheral T cell 
subset staining 

CD8α 53.67 FITC Biolegend 

Lineage marker for ETP and bone 
marrow progenitor staining; 
Thymocyte and peripheral T cell 
subset staining 

CD8α 53.67 PE-cy5 BD Biosciences 
Thymocyte and peripheral T cell 
subset staining 

CD8β 53.58 FITC Biolegend Lineage marker for ETP staining 

CD11b M1/70 FITC Biolegend 
Lineage marker for ETP and bone 
marrow progenitor staining 

CD11b M1/70 
PerCP-
cy5.5 

BD Biosciences Thymic macrophage staining 

CD11c n148 FITC Biolegend Lineage marker for ETP staining 

CD16/ 
CD32 

93 Purified BD Biosciences Fc blocking 

CD19 6D5 FITC Biolegend 
Lineage marker for ETP and bone 
marrow progenitor staining 

CD25 PL61 APC Biolegend Thymocyte subset staining 

CD44 1M7 PE-cy5 Biolegend 
Thymocyte and peripheral T cell 
subset staining 

CD45 30-F11 APC BD Biosciences For blood lymphocyte staining 

CD45.1 A20 PE-cy7 Biolegend 
Bone marrow transplantation and 
thymic homing assay 

CD45.2 104 
APC-
cy7 

Biolegend 
Bone marrow transplantation and 
thymic homing assay 

CD62L 
MEL-
14 

PE-cy7 Biolegend 
Thymocyte and peripheral T cell 
subset staining 

CD69 
H1.2F
3 

PE BD Biosciences 
Thymocyte subset staining; 
activation marker 

CD135 A2F10 APC Biolegend Bone marrow progenitor staining 



59 
 

Table 2.1   Antibodies used for flow cytometry (continued). 

Antigen Clone Format Source Note 

CD135 A2F10 APC Biolegend Bone marrow progenitor staining 

cKit 2B8 PE Biolegend 
Bone marrow progenitor and ETP 
staining 

F4/80 BM8 PE eBioscience Thymic macrophage staining 

GR-1 
RB6-
8C5 

FITC 
Biolegend Lineage marker for ETP and bone 

marrow progenitor staining 

IL-7Rα 
A7-
R34 

APC-
cy7 

Biolegend 
Bone marrow progenitor staining 

NK1.1 PK136 FITC Biolegend 
Lineage marker for ETP and bone 
marrow progenitor staining 

Sca-1 D7 PE-cy7 Biolegend Bone marrow progenitor staining 

TCR-β H57 FITC Biolegend Lineage marker for ETP staining 

TCR-
γ/δ 

GL3 FITC Biolegend Lineage marker for ETP staining 

Ter119 Ter119 FITC Biolegend 
Lineage marker for ETP and bone 
marrow progenitor staining 
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Chapter 3 SR-BI is required for maintaining normal thymopoiesis and 

peripheral T cell homeostasis 

3.1   Introduction  

Our group previously reported that SR-BI deficiency results in impaired 

lymphocyte homeostasis in mice [134]. The key features of the impaired 

lymphocyte homeostasis in SR-BI-deficient mice include lymphocyte expansion, 

lymphocyte hyperactivation, lymphocyte hyperproliferation and a decrease in T 

cell to B cell ratio. Later, we identified that the HDL from SR-BI-/- mice is 

dysfunctional in inhibiting stimuli-induced proliferation of both T cells and B cell, 

which is responsible for the lymphocyte expansion, hyperactivation and 

hyperproliferation in the deficient animal [134]. However, the dysfunctional HDL 

is not likely responsible for the reduced percentage of T cells, suggesting SR-BI 

probably plays additional roles in preventing lymphocyte imbalance.  

Several pieces of evidence have suggested an additional role of SR-BI in 

adaptive immunity in maintaining normal thymopoiesis. In addition to the 

decrease in T cell/B cell ratio, SR-BI-null mice display several other phenotypes 

potentially resulting from reduced T cell productions. First, SR-BI-deficient mice 

show a reduced percentage of naïve populations and increased portion of 

memory population in T cells [134], which is commonly seen in mice whose T cell 

production is decreased [43, 44]. Second, T cells from SR-BI-deficient mice 

display reduced cytokine production in response to stimuli in vitro [134], which 

might be the consequence of the inadequate refreshment of the T cell pool by 

newly generated T cells that is known to cause T cell senescence and impaired T 
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cell functions to stimuli [62-64]. Third, aged SR-BI-deficient mice have 

autoimmune problems [134], which might also be contributed by decreased 

thymopoiesis that is known to cause accumulation of autoimmune T cells in the 

periphery [50-53]. These observations implied that SR-BI might modulate T cell 

development. 

We hypothesized that SR-BI deficiency impairs thymopoiesis, which 

contributes to the lymphocyte imbalance in SR-BI-null mice. To test this 

hypothesis, in this chapter, we first analyzed thymus weight and thymic cellularity 

of SR-BI-deficient mice at different ages and observed that SR-BI deficiency 

causes reduced thymus size in mice. Next, we evaluated T cell production by 

detecting TRECs in mice and found that SR-BI deficiency causes declined T cell 

production. The reduced thymus size and declined T cell production of SR-BI-null 

mice together indicate that SR-BI deficiency impairs thymopoiesis in mice. By 

assessing the peripheral T cell homeostasis of mice, we found that the decline of 

T cell production in the deficient mice leads to narrowed naïve T cell pool in the 

periphery and compromised T cell functions at young ages. Results from these 

studies indicate that SR-BI is required in maintaining normal thymopoiesis and 

peripheral T cell homeostasis. 
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3.2   Results 

3.2.1   SR-BI deficiency leads to reduced thymus weight in mice 

To understand if SR-BI plays a role in modulating thymus size, we first 

evaluated thymus weight of SR-BI-/- mice after puberty (around 5 weeks), when 

thymus size declines as age increases [87, 272]. As shown in Figure 3.1A and 

3.1B, though an age-related decrease in thymus mass was observed in both 

groups, SR-BI-/- mice display significantly lower thymus weight than age-matched 

SR-BI+/+ controls until 32 weeks. In older ages (>32 weeks), the reduction in 

thymus weight of SR-BI-/- mice was not observed, as thymus weight of both 

groups has declined to a low level. This group of data indicates that SR-BI 

deficiency causes a reduction in thymus weight in mice.  

3.2.2   SR-BI deficiency results in decreased thymic cellularity in mice 

We also assessed thymocyte number of SR-BI-/- mice after puberty. In line 

with the lower thymus weight, the deficient mice exhibit markedly smaller thymic 

cellularity than with age-matched controls (Figure 3.2A and 3.2B). Notably, the 

reduction in thymic cellularity could still be observed when the SR-BI-/- mice were 

over 40 weeks. This group of data show that SR-BI deficiency results in reduced 

thymic cellularity in mice. 

3.2.3   SR-BI modulates thymus size in a gender-independent manner 

It is well documented that in both humans and mice, females have larger 

thymic size and higher-grade thymopoiesis than males, indicating gender is an 

essential factor influencing the thymus [272, 273]. Thus, we next analyzed if SR-

BI influences thymus size in a gender-dependent manner. We observed that in 
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both male and female group, SR-BI-/- mice exhibit significantly reduced thymus 

weight in early ages (<16 weeks for female and <40 weeks for male) and 

remarkably decreased thymocyte counts compared with their SR-BI+/+ 

counterparts (Figure 3.3).  These observations reveal that the effect of SR-BI on 

thymus size is not gender-dependent. 

3.2.4   SR-BI does not affect thymus size before puberty 

We then asked when SR-BI deficiency begins to affect thymus size in 

mice. To answer this question, we examined thymus weight and thymic cellularity 

in mice before puberty (1 week of age) and during puberty (5 weeks of age). 

Consistent with former observations, 5-week-old SR-BI-/- mice display significant 

reductions in both thymus weight and thymocyte counts compared with 5-week-

old SR-BI+/+ mice (Figure 3.4A and 3.4B). However, neither thymus weight nor 

thymic cellularity of 1-week-old SR-BI-/- mice is significantly lower than those of 

their SR-BI+/+ littermates (Figure 3.4A and 3.4B), indicating that SR-BI does not 

affect thymus size before puberty. 

3.2.5   SR-BI deficiency causes a decline in thymic T cell output 

T cell production from the thymus is usually correlated with thymus size 

[274]. Thus, we next hypothesized that the SR-BI deficiency induces reductions 

in thymic T cell export associated with the decrease of thymus size. To test this, 

we determined TRECs in CD4+ and CD8+ splenocytes isolated from mice. As 

expected, the frequency of TRECs in both CD4+ and CD8+ cells from SR-BI-/- 

mice is lower (Figure 3.5A and 3.5B), indicating that the frequency of newly 

generated T cells is decreased by SR-BI deficiency. More importantly, the 
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absolute numbers of TRECs are decreased by 26% and 22% respectively in 

CD4+ and CD8+ splenocytes of SR-BI-/- mice (Figure 2.5C and 2.5D), indicating 

that the loss of SR-BI also reduces the number of RTEs. This group of data 

indicate that SR-BI deficiency reduces thymic T cell output in addition to lowering 

thymus size. 

3.2.6   SR-BI deficiency leads to narrowed naïve T cell pool in the periphery 

Continuous T cell output from the thymus is essential in maintaining 

peripheral T cell homeostasis. Inadequate T cell production narrows naïve T cell 

pool and compromises T cell functions in the periphery [62, 92].  Though 20-

week-old SR-BI-/- mice show reduced percentage of naïve population in T cells, 

their naïve T cell numbers are not decreased [134], which may result from 

increased T cell proliferation induced by dysfunctional HDL. To further investigate 

how SR-BI deficiency-impaired thymopoiesis affects peripheral T cell 

homeostasis, we evaluated CD62L and CD44 expression in T cells from lymph 

nodes, spleen and blood in younger mice.  

We found that in lymph nodes from 5-week-old SR-BI-/- mice, the 

percentages of the naïve (CD62LhiCD44-) cells in CD4+ and CD8+ population are 

all significantly reduced compared with SR-BI+/+ controls, while the portion of 

memory T cells (CD62LhiCD44+, central memory T cells and CD62LlowCD44+, 

effector memory T cells) is elevated, in line with the observations in 20-week-old 

mice (Figure 3.6A-3.6D).  However, the numbers of lymph node naïve cells in 

CD4+ and CD8+ population are also reduced by 34% and 36% respectively in the 

5-week-old deficient mice, indicating that their naïve T cell pool size is narrowed 
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(Figure 3.6F and 3.6G). Shrinkage in the naïve T cell pool of SR-BI-/- lymph 

nodes is not due to heightened T cell activation, since the total number of 

memory T cells is not increased (Figure 3.6 F and 3.6G). The decrease in the 

number of naïve T cells results in a marginal reduction in total T cell numbers in 

lymph nodes from 5-week-old SR-BI-/- mice (Figure 3.6E).  

The SR-BI deficiency-induced reductions in lymph node naïve T cell 

counts were also observed in 13-week-old mice. Though compared with 5-week-

old group, the percentage of naïve cells in T cells in both SR-BI+/+ and SR-BI-/- 

mice is declined in 13-week-old group (Figure 3.7A and 3.7B, in comparison with 

Figure 3.6B and 3.6D), the T cells from SR-BI-/- lymph nodes display lower 

portion of naïve subsets than those from SR-BI+/+ counterparts (Figure 3.7A and 

3.7B). Meanwhile, the total numbers of naïve cells in CD4+ and CD8+ population 

are reduced by 50% in lymph nodes from 13-week-old SR-BI-/- mice (Figure 3.7C 

and 3.7D). These findings from 5-week-old and 13-week-old mice together 

indicate that the absence of SR-BI narrows the naïve T cell pool in lymph nodes. 

We also assessed the naïve T cell pool in spleens and blood of 5-week-

old SR-BI-/- mice. Consistent with the observations from lymph nodes, SR-BI-/- 

mice show remarkable decreases in naïve T cell percentage (Figure 3.8A-3.8D) 

and marginal reductions in naïve T cell number in spleen (Figure 3.8E and 3.8F). 

Importantly, a dramatic decline in the blood naïve T cell concentrations was  

detected in SR-BI-/- mice compared with SR-BI+/+ mice (Figure 3.8G). These 

observations support our conclusion that SR-BI deficiency-impaired thymopoiesis 

result in a narrowed naïve T cell pool in mice.  
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3.2.7   SR-BI deficiency leads to increased proliferation of naïve T cells 

Naïve T cells rarely proliferate under normal conditions. However, reduced 

naïve T cells in the periphery can increase naïve T cells proliferation as a 

compensatory mechanism to maintain the relative steady naïve T cell pool size 

[17]. Thus, we hypothesized that SR-BI deficiency-reduced T cell output results 

in an increase in the proliferation of naïve T cells. To test this hypothesis, we 

injected BrdU to mice and analyzed BrdU incorporation in naïve CD4+ cells. As 

expected, SR-BI-/- mice show 40% and 30% decreases in the BrdU+ percentage 

of naïve CD4+ cells in spleen (Figure 3.9A and Figure 3.9B) and lymph nodes 

(Figure 3.9C and Figure 3.9D) compared with SR-BI+/+ mice, though the 

decrease does not reach statistically significance in lymph nodes (Figure 3.9A 

and Figure 3.9B). These observations further support that SR-BI deficiency 

reduced T cell production and impaired peripheral T cell homeostasis. 

3.2.8   SR-BI deficiency causes compromised T cell function 

Reduced T cell production is also known to compromise T cell functions in 

the periphery [62, 92]. Thus, we determined if the declined T cell output in SR-BI-

/- mice results in impaired T cell functions. For this purpose, we activated 

splenocytes from mice with anti-CD3 in vitro, and detected the proliferation of T 

cells using BrdU. As expected, we found significantly lower BrdU+ percentage in 

CD4+ (Figure 3.10A and 3.10B) and CD8+ (Figure 3.10C and 3.10D) cells in SR-

BI-/- group than SR-BI+/+ controls. Moreover, the counts of newborn (BrdU+) CD4+ 

and CD8+ cells are dramatically (>70%) decreased in SR-BI-/- group (Figure 
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3.10E and 3.10F), indicating that T cells from SR-BI-/- mice have impaired stimuli-

induced proliferation of T cells. 

To further confirm that the SR-BI deficiency causes T cell dysfunctions in 

response to stimuli, we assessed the activation status of SR-BI-/- T cells after 

incubation with TCR ligand by detecting the expression of the T cell activation 

marker CD69 (Figure 3.11). Forty-eight hours after cell culture, though in the 

absence of stimuli, T cells from SR-BI+/+ and SR-BI-/- mice show low and 

comparable levels of CD69 expression, in the presence of stimuli SR-BI-/- T cells 

show markedly reduced level of CD69 expression in comparison with SR-BI+/+ T 

cells (Figure 3.11 A-D). This group of data reveals that T cells from SR-BI-/- mice 

have compromised stimuli-induced activation. 

Previously, we also reported that SR-BI-/- T cells display reduced IL-4 

secretion in response to TCR ligand engagement [134], demonstrating SR-BI 

deficiency also renders T cells dysfunctional in stimuli-induced cytokine 

secretion. Altogether, this group of data elucidates that SR-BI deficiency causes 

compromised T cell functions associated with decreased T cell production and 

the impaired peripheral T cell homeostasis.  
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3.3   Summary 

In this chapter, we tested our hypothesis that SR-BI deficiency caused 

impaired thymopoiesis, which contributed to the lymphocyte imbalance in SR-BI-

null mice. By assessing thymus weight and thymic cellularity of SR-BI-/- mice 

(Figure 3.1 and 3.2), we found that absence of SR-BI in mice causes a reduction 

in thymus size. Notably, the adverse effect of SR-BI deficiency on thymus size is 

not gender-dependent (Figure 3.3) and initiates around puberty (Figure 3.4). By 

detecting TRECs in isolated T cells from mice, we revealed that SR-BI deficiency 

decreases T cell output (Figure 3.5). Reduced thymus size and thymic output 

together lead us to conclude that SR-BI deficiency impaired thymopoiesis in 

mice. By examining the T cell homeostasis in mice at young ages, we observed 

that SR-BI-null mice display a narrowed naïve T cell pool size (Figure 3.6, 3.7 

and 3.8) and increased naïve T cell proliferation (Figure 3.9). These observations 

indicate that SR-BI deficiency leads to impaired T cell homeostasis in the 

periphery. Finally, by evaluating T cell responses to stimuli in vitro, we found that 

SR-BI deficiency also compromises T cell functions (Figure 3.10 and 3.11). 

Altogether, in this chapter, we identify SR-BI as a novel modulator in 

thymopoiesis. Our data clearly indicate that SR-BI is required in maintaining 

normal thymopoiesis and optimal peripheral T cell homeostasis in mice. 
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Figure 3.1   SR-BI deficiency reduces thymus weight in mice.  

The thymi of mice without any treatment were isolated and weighed. A) The age-

related changes in thymus weight of SR-BI+/+ (n=322) and SR-BI-/- (n=221) mice 

after puberty are displayed. B) The weight of SR-BI-/- (n=221) thymi is grouped by 

age and compared with age-matched SR-BI+/+ (n=322) controls. *, p<0.05; **, 

p<0.01; ***, p<0.001. 
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Figure 3.2   SR-BI deficiency decreases thymic cellularity in mice.  

The thymi of mice were mechanically disrupted through 100μm cell strainers and 

re-suspended with 5mL medium. The thymocyte suspension was then diluted 

and counted using a counting chamber. The total thymocyte number in the 5mL 

suspension was regarded as the thymic cellularity of mice. A) The age-related 

changes in the thymic cellularity of SR-BI+/+ (n=145) and SR-BI-/- (n=92) mice 

after puberty are shown. B) The thymic cellularity of SR-BI-/- (n=92) mice is 

grouped by age and compared with age-matched SR-BI+/+ (n=145) controls. *, 

p<0.05; ***, p<0.001. 
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Figure 3.3   SR-BI deficiency reduces thymus size in both males and 

females.  

A)-D) Reduced thymus weight was detected in both female (A and B) and male 

(C and D) SR-BI-/- mice compared with SR-BI+/+ controls. E)-H) Decreased thymic 

cellularity was observed in both female (E and F) and male (G and H) SR-BI-/- 

mice compared with SR-BI+/+ controls. *, p<0.05; **, p<0.01; ***, p<0.001. 
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Figure 3.4   SR-BI deficiency does not decrease thymus size before puberty.  

A) 5-week-old but not 1-week-old SR-BI-/- mice exhibit lower thymus weight than 

age-matched SR-BI+/+ mice. n=5-8 per group. B) 5-week-old but not 1-week-old 

SR-BI-/- mice display reduced thymocyte counts compared with age-matched SR-

BI+/+ mice. n=5-8 per group. **, p<0.01. 
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Figure 3.5   SR-BI deficiency reduces T cell output from thymus.  

CD4+ and CD8+ splenocytes were sorted from 13-week-old SR-BI+/+ and SR-BI-/- 

mouse by flow cytometry and then lysed with proteinase K. The lysates from 

50,000 cells were used for TREC detection with quantitative PCR. A)-B) The 

frequency of TRECs is showed as TREC numbers per 100 CD4+ or CD8+ cells. 

C)-D) The total number of TRECs of a given population was calculated by 

multiplying the TREC frequency by the number of cells. n=3 per group with 

triplicate measurements. *, p<0.05. 
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Figure 3.6   SR-BI deficiency reduces naïve T cell pool in lymph nodes of 5-

week-old mice.  

Mesenteric lymph nodes from 5-week-old SR-BI+/+ and SR-BI-/- mice were 

mechanically disrupted through 100μm cell strainers and stained with a panel of 

fluorescent-labeled antibody.  Cells were then analyzed by flow cytometry. A)-D) 

Based on expression of CD62L and CD44, three major cell subtypes of CD4+ (A 

and B) or CD8+ (C and D) cells were gated: naïve cells (CD62LhiCD44-), central 

memory cells (CD62LhiCD44+) and effector memory cells (CD62LloCD44+). E) 
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The total number of CD4+ or CD8+ cells of a given mouse was calculated by 

multiplying its CD4+ or CD8+ percentage in total viable lymph node cells by the 

number of lymph node cells. F)-G) The total number of a CD4+ or CD8+ subtype 

in a given mouse was calculated by multiplying its percentage in CD4+ or CD8+ 

cells by the CD4+ or CD8+ cell numbers. n=5-6 per group. *, p<0.05; ***, p<0.001. 
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Figure 3.7   SR-BI deficiency reduces naïve T cell pool in lymph nodes of 

13-week-old mice.  

Mesenteric lymph nodes from 13-week-old SR-BI+/+ and SR-BI-/- mice were 

mechanically disrupted through 100μm cell strainers and stained with a panel of 

fluorescence-labeled antibody.  Cells were then analyzed by flow cytometry. A)-

B) Based on expression of CD62L and CD44, three major cell subtypes in CD4+ 

(A) or CD8+ (B) cells were gated: naïve cells (CD62LhiCD44-), central memory 

cells (CD62LhiCD44+) and effector memory cells (CD62LloCD44+). C)-D) The total 

number of a CD4+ or CD8+ subtype of a given mouse was calculated by 

multiplying its percentage in CD4+ or CD8+ cells by the CD4+ or CD8+ cell 

numbers. n=5 per group. *, p<0.05. 
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Figure 3.8   SR-BI deficiency reduces naïve T cell pool in spleen and blood 

of 5-week-old mice.  

A)-D) Spleens from SR-BI+/+ and SR-BI-/- mice were disrupted with a stomacher, 

incubated with ACK lysis buffer  to deplete erythrocytes and stained with a panel 

of fluorescent-labeled antibody.  Cells were the analyzed by flow cytometry.  

Based on expression of CD62L and CD44, three major cell subtypes in CD4+ (A-

B) and CD8+ (C-D) cells were gated: naïve cells (CD62LhiCD44-), central memory 
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cells (CD62LhiCD44+) and effector memory cells (CD62LloCD44+). E)-F) The total 

number of a CD4+ or CD8+ subtype of a given mouse was calculated by 

multiplying its percentage in CD4+ or CD8+ cells by the splenic CD4+ or CD8+ cell 

numbers. n=5-6 per group. G) anti-clotted blood from SR-BI+/+ and SR-BI-/- mice 

was first incubated with ACK lysis buffer to remove erythrocytes, stained with a 

panel of fluorescent-labeled antibody and analyzed with a flow cytometer. The 

naïve cells were defined as CD62LhiCD44- population in CD4+ or CD8+ cells. The 

concentration of naïve cells was calculated by multiplying the percentage of 

naïve T cells CD45+ blood cells by the CD45+ cell concentration of the mouse. 

n=5-6 per group. *, p<0.05; **, p<0.01. 
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Figure 3.9   SR-BI deficiency increases naïve T cell proliferation.  

Five-week-old SR-BI+/+ and SR-BI-/- mice were given two i.p. injections (spaced 

24 hours apart) of 1mg BrdU in 1mL sterile PBS. Forty-eight hours after the first 

injection, mice were sacrificed. A)-B) BrdU incorporation in naïve CD4+ T cells 

(CD4+CD62LhiCD44-) from spleens of mice was analyzed. n=7-8 per group. C)-

D) BrdU incorporation in naïve CD4+ T cells (CD4+CD62LhiCD44-) from lymph 

nodes of mice was analyzed. n=5 per group. *, p<0.05. 
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Figure 3.10   SR-BI deficiency impairs stimuli-induced proliferation of T 

cells. 

Eight hundred thousand splenocytes from SR-BI+/+ or SR-BI-/- mice (8-12 weeks) 

were incubated with 20μM BrdU in the presence of 5μg/mL pre-bound anti-CD3 
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for four days. A)-D) The incorporation of BrdU in cultured CD4+ (A and B) and 

CD8+ (C and D) T cells was analyzed. E)-F) The total number of BrdU+CD4+ or 

BrdU+CD8+ populations were calculated by multiplying its percentage in cultured 

cells by total cell numbers in cell cultures after 4-day incubation. n=14 per group. 

*, p<0.05; ***, p<0.001. 
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Figure 3.11   SR-BI deficiency impairs stimuli-induced activation of T cells.  

Two hundred thousand lymph node cells from SR-BI+/+ or SR-BI-/- mice (8 weeks) 

were incubated with 20μM BrdU in presence of indicated concentrations of pre-

bound anti-CD3 and soluble anti-CD28. A)-D) After 48-hour incubation, the level 
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of CD69 expression in CD4+ (A and B) and CD8+ (C and D) cells was detected.  

MFI: mean fluorescence intensity. n=3 per group. *, p<0.05; **, p<0.01. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Zhong Zheng 2014 



85 
 

Chapter 4 SR-BI is required in maintaining normal bone marrow 

progenitor thymic homing and thymic regeneration 

4.1   Introduction 

T lineage cells in the thymus undergo an established program in which 

they develop from bone marrow-derived progenitors to mature naïve T cells. The 

key events in thymopoiesis include the entry of bone marrow progenitors in 

thymus; β-selection and generation of DP thymocytes; positive and negative 

selections; generation and maturation of SP thymocytes and the export of mature 

T cells from the thymus.  Based on surface marker expression, thymocytes in 

different developing stages can be distinguished. The percentage of thymocyte 

subsets under normal conditions remains relatively stable. Alterations in the 

percentage of one or more thymocyte subset are seen as indicators of changes 

in T cell development [33, 34, 40]. 

Our data in chapter 3 indicates that SR-BI is a novel player in 

thymopoiesis as SR-BI deficiency causes reduced thymus size and decreased 

thymic output. However, the underlying mechanism for this is not understood. To 

investigate the mechanism by which SR-BI modulates thymopoiesis, in this 

chapter we analyzed thymocyte subtypes in SR-BI-deficient mice at young ages 

in an effort to understand which steps in thymopoiesis are affected by SR-BI. We 

found that the intrathymic T cell developmental program is intact in SR-BI-/- mice, 

as no alterations in the percentage of major thymocyte subsets was observed in 

the deficient mice. Interestingly, we found that SR-BI-null mice display a 
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significant reduction in the percentage of ETPs, suggesting that SR-BI deficiency 

reduces progenitor thymic entry in mice. 

Changes in the ETP population of SR-BI-null mice led us to hypothesize 

that SR-BI deficiency impairs thymopoiesis by affecting bone marrow-derived 

progenitors upstream of ETPs. Starting from the HSCs in bone marrow, T lineage 

progenitors experience two major developmental events before giving rise to 

downstream cells in the thymus [77]. The first is the lymphoid progenitor 

development in bone marrow, in which progenitors develop from HSCs to LMPPs 

and CLPs to gain the ability of entering thymus. The second is the bone marrow 

progenitor thymic homing, in which progenitors move out of bone marrow and 

migrate to the thymus via the circulation. Reduced progenitor entry into the 

thymus has been shown to decrease the portion of ETPs and lead to thymic 

hypocellularity [83, 84]. Thus, to test our hypothesis, we evaluated bone marrow 

progenitor development and progenitor thymic homing in SR-BI-/- mice. We found 

that the absence of SR-BI does not affect lymphoid progenitor development in 

bone marrow, but impairs progenitor thymic homing, demonstrating that SR-BI 

deficiency causes impaired thymopoiesis in mice by inducing reduced bone 

marrow progenitor settlement in the thymus. 

Acute thymus involution can be induced by several factors and the thymic 

recovery is slow [68, 275]. As SR-BI is required in maintaining normal thymus 

size and function, we also tested whether SR-BI plays a role in modulating 

thymic recovery after thymocyte depletion. Thymus regeneration in early stages 

depends on intrathymic precursors [276] and in the long term requires the 
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migration of bone marrow progenitors [277]. Due to the decreased portion of 

ETPs and impaired thymic homing of SR-BI-/- mice, we hypothesized that SR-BI 

deficiency impairs thymus regeneration after thymocyte depletion. To test this, 

we induced thymocyte depletion with sublethal irradiation in mice and evaluated 

subsequent thymic recovery. We observed SR-BI-null mice display delayed 

thymic regeneration after irradiation. 

Taken together, this data revealed that SR-BI deficiency impairs 

thymopoiesis by decreasing progenitor thymic homing. Also, our results indicate 

that SR-BI deficiency delays thymic recovery after thymocyte depletion.  
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4.2   Results 

4.2.1   SR-BI deficiency does not alter CD4/CD8 profile in the thymus 

To investigate the mechanism by which SR-BI modulates thymopoiesis, 

we initially stained thymocytes from 5-week-old SR-BI+/+ and SR-BI-/- with anti-

CD4 and anti-CD8. Based on the expression of these two markers, thymocytes 

can be divided to DN, DP, 4SP and 8SP populations. We chose mice at 5 weeks 

because at this age thymocyte number peaks and the reduction of thymic 

cellularity in SR-BI-/- mice is significant. We observed a normal CD4/CD8 profile 

in the SR-BI-/- thymi compared with the SR-BI+/+ counterparts (Figure 4.1A and 

4.1B). The number of each population is reduced coordinately with the total 

thymocyte number in the deficient mice (Figure 4.1 C). These findings are 

consistent with our former observations in 6-week-old and 25-week-old mice 

[134]. 

4.2.2   SR-BI deficiency does not change DN1-4 profile in the thymus 

As a step further, we evaluated the DN1-4 profile of mice. We divided the 

DN population into DN1, DN2, DN3 and DN4 cells based on the expression of 

CD25 and CD44. We did not detect any difference in the percentage of the four 

DN subsets in the deficient mice (Figure 4.2A and 4.2B), indicating SR-BI 

deficiency does not affect the DN1-4 profile. Similarly, the numbers of all DN 

subtypes are decreased due to the decline in total thymocyte numbers (Figure 

4.2C).   
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4.2.3   SR-BI deficiency does not affect selection processes in thymopoiesis 

We evaluated if SR-BI deficiency affects selection processes, i.e. β-

selection, positive selection and negative selection in mice. To determine if SR-BI 

deficiency influences β-selection, we evaluated TCR-β expression in DN cells. 

SR-BI-/- show comparable TCR-β expression in DN cells with SR-BI+/+ mice 

(Figure 4.3A), which together with the observation that the percentages of DN 

subsets are unaltered in SR-BI-/- mice indicate that loss of SR-BI does not cause 

any defect in β-selection.  

We next assessed if SR-BI modulates selections in DP stage by 

distinguishing the pre- and postselection DP thymocytes using expression of 

CD69 and TCR-β [278].  Both SR-BI-/- and SR-BI+/+ mice exhibit ~10% 

CD69+TCR-β+ (postselection) cells in the DP population (Figure 4.3B and 4.3C). 

Meanwhile, the TCR-β expression in 4SP and 8SP population is also identical in 

SR-BI-/- and SR-BI+/+ thymi (Figure 4.3D and 4.3E). These observations indicate 

that SR-BI deficiency is not likely to influence positive selection or negative 

selection. 

4.2.4   SR-BI deficiency does not impair γδ T cell development 

Most T cells are αβ T cells because they express αβ TCR chains. In 

contrast, a small group of T cells possess a distinct TCR, namely γδ TCR, and 

thus are called γδ T cells, which also develop in the thymus [7]. We investigated 

if SR-BI deficiency results in a defect in the development of γδ T cells associated 

with thymic hypocellularity. As shown in Figure 4.4, we found that the  γδ TCR 

expression in DN cells is comparable in SR-BI+/+ and SR-BI-/- thymi, 
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demonstrating that SR-BI deficiency does not influence γδ T cell development in 

the thymus. 

4.2.5   SR-BI deficiency does not influence single positive thymocyte maturation 

process 

We next evaluated if SR-BI plays a role in SP thymocyte maturation.  To 

this purpose, we distinguished immature and mature SP thymocytes by the 

expression of CD69 and CD62L. In either 4SP (Figure 4.5A and 4.5B) or 8SP 

(Figure 4.5C and 4.5D) thymocytes, SR-BI-/- mice do not show significant 

changes in the percentage of immature (CD69+CD62Llo) and mature (CD69-

CD62Lhi)  subtypes compared with SR-BI+/+ counterparts, indicating that SR-BI 

does not affect in SP thymocyte maturation process.  

4.2.6   SR-BI deficiency causes reduced apoptosis of DN thymocytes 

We also evaluated if SR-BI deficiency influences thymocyte apoptosis as 

elevated thymocyte apoptosis is able to induce thymic hypocellularity in mice. For 

this purpose, we detected the DNA strand breaks in thymocytes by TUNEL 

analysis. As shown in Figure 4.6A, SR-BI-/- mice display slightly lower rather than 

higher TUNEL+ percentage in total thymocytes than SR-BI+/+ mice (Figure 4.6A), 

formally excluding the possibility that SR-BI deficiency impairs thymopoiesis by 

inducing elevated thymocyte apoptosis. TUNEL analysis in thymocyte subtypes 

revealed that the decreased apoptotic cell accumulation in SR-BI-/- thymocytes is 

mainly found in the DN population, since the TUNEL+ percentage in DN cells is 

25% lower in SR-BI-/- mice than in SR-BI+/+ mice (Figure 4.6A and 4.6B). In 

contrast, the TUNEL+ percentages in DP, 4SP and 8SP population are 
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comparable between SR-BI+/+ and SR-BI-/- mice. These data indicate that SR-BI 

deficiency causes decreased apoptosis in DN thymocytes. 

4.2.7   SR-BI deficiency results in decreased proliferation of DN2 thymocytes 

SR-BI deficiency could also possibly cause reduced thymus size by 

decreasing thymocyte proliferation. To test this possibility, we injected mice with 

BrdU and evaluated thymocyte proliferation by measuring BrdU incorporation. As 

shown in Figure 4.7A, SR-BI-/- mice do not show significant decline in BrdU+ 

percentage in thymocytes, indicating that SR-BI deficiency does not cause 

thymic hypocellularity by reducing thymocyte proliferation. Interestingly, by 

detecting the proliferation of thymocyte subsets, we found that SR-BI-/- mice 

exhibit a significantly reduced BrdU+ portion in DN2 thymocytes compared with 

SR-BI+/+ controls. In DN3 thymocytes, SR-BI-/- mice also show a strong 

decreasing trend in proliferation, though statistical significance is not reached. In 

contrast, for DN1 cells, DN4 cells (Figure 4.7A), DP cells, 4SP cells and 8SP 

cells (Figure 4.7B), the BrdU+ percentage is not altered by the absence of SR-BI. 

These data indicate that SR-BI deficiency results in a decrease in the 

proliferation of DN2 and DN3 thymocytes.   

4.2.8   SR-BI deficiency decreases the percentage of ETPs 

The decreased apoptosis of DN thymocytes and the reduced proliferation 

of DN2 and DN3 thymocytes may be linked because β selection occurs in the 

DN2 and DN3 stages when cells that fail to express functional TCR-β are 

removed by apoptosis. Given that the percentages of thymocyte populations 

before and after β selection are not changed in SR-BI-null mice, we speculated 
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that fewer DN2 cells are generated to enter β selection in SR-BI-null mice, which 

results in the reduction in the proliferation of early DN subsets. DN2 thymocytes 

are direct descendants of ETPs, which are a small subset of DN1 cells. Thus, 

next we evaluated if SR-BI deficiency affects ETPs in mice. The gating strategy 

for ETPs is shown in Figure 4.8A. The mature thymocytes were first excluded by 

a panel of lineage markers (anti-CD3ε, CD8α, CD8β, B220, CD19, CD11b, 

CD11c, GR-1, NK1.1, Ter119, TCR-β and TCR-γ/δ) and then the ETP was gated 

as the CD25-CD44+cKithi population in the Lin- cells [279]. Although SR-BI-/- thymi 

exhibit comparable Lin- and Lin-CD25- fractions with SR-BI+/+ controls, their ETP 

percentage in Lin-CD25- population and in all thymocytes is reduced by 50% and 

40%, respectively (Figure 4.8A and B), together with a 65% decrease in the 

number of ETPs (Figure 4.8C). These results clearly indicate that SR-BI 

deficiency-induced thymic hypocellularity is accompanied by a decrease in the 

portion of ETPs. 

4.2.9   SR-BI deficiency does not impair thymopoiesis through affecting lymphoid 

progenitor development in bone marrow 

As SR-BI deficiency leads to dramatically reduced portion of ETPs, the 

most primitive population in thymocytes, we hypothesized that SR-BI deficiency 

affects T cell development upstream of ETPs. To test this hypothesis, at first we 

evaluated bone marrow lymphoid progenitor development in mice. The gating 

strategy of bone marrow lymphoid progenitors is shown in Figure 4.9A. Briefly, a 

group of lineage markers (anti-CD2, CD3ε, CD4, CD8α, B220, CD19, CD11b, 

GR-1, NK1.1 and Ter119) were first used to exclude mature cells. LSK cells were 
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then distinguished as the Sca-1+cKit+ population in Lin- cells and Sca-1intcKitint 

population (f1) was meanwhile gated. HSCs, MPPs and LMPPs were gated in 

the LSK population based on the expression of CD135 [280]. CLPs were defined 

as IL7R+ population in f1 population [281]. In 5-week-old SR-BI-/- mice, we did not 

detect any significant difference in either percentages or numbers of gated bone 

marrow progenitors compared with SR-BI+/+ mice (Figure 4.9A-4.9C), indicating 

that SR-BI deficiency does not affect lymphoid progenitor development in bone 

marrow.  

4.2.10   SR-BI deficiency causes decreased progenitor homing to the thymus 

We next evaluated if SR-BI deficiency impairs bone marrow progenitor 

thymic homing. To this purpose, we injected 20 million CFSE-labeled SR-BI+/+ 

bone marrow cells into non-irradiated SR-BI+/+ and SR-BI-/- mice, and examined 

the seeding of labeled bone marrow cells within the thymus two days later. In this 

short-term progenitor homing assay, though comparable concentrations of 

CFSE+ cells were found in the blood of SR-BI-/- and SR-BI+/+ mice two days after 

injection (Figure 4.10A), 34% fewer labeled bone marrow cells were detected in 

the thymi of SR-BI-/- mice (Figure 4.10B). These observations reveal that 

absence of SR-BI impairs the entry of bone marrow progenitors into the thymus.   

4.2.11   SR-BI deficiency leads to a reduced contribution of circulating 

progenitors to thymopoiesis 

To determine how the reduced bone marrow progenitor entry into the 

thymus in SR-BI-/- mice contributes to the downstream T cell development, we 

conducted the long-term homing assay, in which 20 million CD45.1+ bone 
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marrow cells were injected into non-irradiated mice and thymocyte subtypes 

derived from injected CD45.1+ bone marrow cells were analyzed two weeks later. 

As expected, the percentage and number of CD45.1+ thymocytes are both 

significantly lower in the deficient mice than control mice (Figure 4.11A-C), 

indicating that the contribution of circulating bone marrow progenitors to 

thymopoiesis is impaired by SR-BI deficiency. Interestingly, despite the reduced 

numbers, the CD45.1+ cells in SR-BI-/- thymi show a similar CD4/CD8 profile with 

those in SR-BI+/+ mice (Figure 4.11D-E), indicating the downstream development 

of settled progenitors is intact in the deficient mice. The numbers of CD45.1+ 

thymocyte subtypes are all significantly reduced in SR-BI-/- mice (Figure 4.11F).  

These findings indicate that SR-BI deficiency impairs thymopoiesis by affecting 

the thymic homing process of bone marrow progenitors. 

4.2.12   SR-BI deficiency impairs thymic recovery after sublethal irradiation 

Because the ETPs and progenitor thymic homing are essential for thymic 

regeneration [68, 277], we proposed that SR-BI deficiency results in impaired 

thymic recovery after thymocyte depletion. Indeed, using CLP, a model inducing 

sepsis and thymocyte depletion in mice [282], we had observed that SR-BI-/- mice 

show much smaller thymi and lower thymic cellularity than SR-BI+/+ mice 7 days 

after the surgery, which implies that SR-BI deficiency leads to delayed thymic 

regeneration (unpublished data). However, CLP is not a good model for studying 

the role of SR-BI in thymic recovery because it has been shown that CLP 

induces dramatic thymocyte apoptosis in SR-BI+/+ mice but not in SR-BI-/- mice 18 

hours after surgery [247], suggesting that SR-BI deficiency may also affect CLP-
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induced thymocyte apoptosis. To induce the same levels of thymocyte depletion 

in SR-BI+/+ and SR-BI-/- mice, we utilized the sublethal irradiation model, which is 

widely used for investigating thymic recovery [111, 256, 257].  

Four days after irradiation, SR-BI+/+ and SR-BI-/- mice show equally low 

levels of thymocyte numbers (Figure 4.12A), indicating that in contrast to CLP-

induced thymocyte apoptosis, SR-BI deficiency does not affect irradiation-

induced thymocyte apoptosis. From day 4 to day 7 post irradiation, thymic 

cellularity of SR-BI+/+ mice is increased by 8.4-fold while that of SR-BI-/- mice is 

only elevated by 3.1-fold (Figure 4.12A), indicating that the thymic recovery after 

irradiation is impaired in the deficient mice. At day 14 after irradiation, the 

thymocyte counts of SR-BI-/- mice are still 32% lower than those of SR-BI+/+ 

controls (Figure 4.12A). We also analyzed the thymic CD4/CD8 profile at day 7 

after irradiation. Consistent with former observations in SR-BI-/- mice and in long-

term homing assay, we found that 7 days post irradiation, SR-BI-/- mice show a 

comparable CD4/CD8 profile with SR-BI+/+ mice (Figure 4.12B), demonstrating 

that during thymic recovery, the T cell development is normal inside SR-BI-/- 

thymi. Similarly, the number of DN, DP, 4SP and 8SP thymocytes were all 

significantly decreased associated with total thymocyte counts in the deficient 

mice (Figure 4.12C). Altogether, these data indicate that SR-BI deficiency 

impairs thymic recovery after sublethal irradiation.  
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4.3   Summary 

In this chapter, we investigated different steps of T cell development to 

understand which step of thymopoiesis is modulated by SR-BI. First, we 

examined thymocyte subsets in 5-week-old mice and found that SR-BI deficiency 

does not cause any obvious blockage in intrathymic T cell development, as 

shown by normal percentages of thymocyte subsets (Figure 4.1, 4.2, 4.4 and 4.5) 

and unaltered TCR-β expression in all thymocyte subsets (Figure 4.3) in SR-BI-

null mice. Furthermore, we did not observe increased apoptosis (Figure 4.6) or 

decreased proliferation (Figure 4.7) of thymocytes in SR-BI-deficient mice, 

excluding the possibility that SR-BI deficiency causes thymic hypocellularity via 

affecting thymocyte apoptosis or proliferation. Interestingly, we observed a 

remarkable decrease in the portion of ETP in SR-BI-/- thymi (Figure 4.8), 

suggesting that SR-BI deficiency impairs thymopoiesis by affecting progenitor 

entry into thymus. 

We then studied bone marrow progenitor development and thymic homing, 

two key steps upstream of ETPs in T cell development in mice. By flow cytometry 

analysis of the bone marrow lymphoid progenitors in mice, we found SR-BI 

deficiency does not cause any blockage in lymphoid progenitor development 

(Figure 4.9). Interestingly, by injecting labeled bone marrow cells into the 

circulation of mice, we observed that 2 days later fewer bone marrow cells 

homing to the thymus in SR-BI-/- mice (Figure 4.10), demonstrating that SR-BI 

deficiency impairs bone marrow progenitor thymic homing. The reduction of bone 

marrow progenitor settlement further results in decreased number of downstream 
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thymocytes, as shown by that 2 weeks after the labeled bone marrow cell 

injection, SR-BI-/- mice show 60% fewer thymocytes derived from labeled bone 

marrow cells (Figure 4.11). These data reveal that SR-BI deficiency impairs bone 

marrow progenitor thymic homing, which results in the defects in thymopoiesis. 

Finally, we investigated if SR-BI deficiency has any effect on thymic 

regeneration utilizing the sublethal irradiation model. We found that although the 

thymic cellularity of SR-BI+/+ and SR-BI-/- mice is decreased into an equally low 

level 4 days after irradiation, the thymocyte numbers of SR-BI-/- mice are 63% 

lower than those of SR-BI+/+ mice 7 days after irradiation (Figure 4.12), indicating 

that SR-BI is also required for normal thymic regeneration. 

Taken together, our results indicate that SR-BI deficiency impairs 

thymopoiesis by impairing bone marrow progenitor thymic homing and SR-BI is 

required for rapid thymic regeneration after thymocyte depletion.  
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Figure 4.1   SR-BI deficiency does not affect the CD4/CD8 profile in mice.  

A)-B) Thymocytes from 5-week-old mice were stained with anti-CD4 and anti-

CD8 to distinguish double negative (DN, CD4-CD8-), double positive (DP, 

CD4+CD8+), CD4 single positive (4SP, CD4+CD8-) and CD8 single positive (4SP, 

CD4-CD8+) populations. C) The number of each population was calculated by 

multiplying its percentage in viable thymocytes by the number of viable 

thymocytes. n=5-6 per group.  
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Figure 4.2   SR-BI deficiency does not affect the DN1-4 profile in mice.  

Thymocytes from 5-week-old SR-BI+/+ or SR-BI-/- mice were stained with a panel 

of fluorescence-labeled antibody. A)-B) The DN population was divided into four 

subtypes (DN1, CD25-CD44high; DN2, CD25+CD44high; DN3, CD25+CD44low, and 

DN4, CD25-CD44low) according to the expression of CD44 and CD25. C) The 

number of each population was calculated by multiplying its percentage in DN 

thymocytes by the total number of DN thymocytes. n=5-6 per group. *p<0.05. 
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Figure 4.3   SR-BI deficiency does not impair selections during 

thymopoiesis.  

Thymocytes from 5-week-old SR-BI+/+ or SR-BI-/- mice were stained with a panel 

of fluorescence-labeled antibody. A) The TCR-β expression was evaluated in DN 

population. B)-C) The postselection population in DP cells was defined as CD69+ 

TCR-β+ cells. D)-E) The TCR-β expression was evaluated in 4SP and 8SP 

population. Representative gating figures are shown. n=3 per group.  
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Figure 4.4   SR-BI deficiency does not affect γδ T cell development.   

Thymocytes from 5-week-old SR-BI+/+ or SR-BI-/- mice were stained with a panel 

of fluorescence-labeled antibody. The TCR-γ/δ expression was evaluated in DN 

population. Representative gating plots are shown. n=3 per group.  
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Figure 4.5   SR-BI deficiency does not affect γδ T cell development.   

The maturation process of 4SP (A and B) or 8SP (C and D) thymocytes from 5-

week-old mice was evaluated by CD69 and CD62L expression. The immature 

population was defined as CD62LloCD69+ SP cells. The mature population was 

defined as CD62LhiCD69- SP cells. n=5-6 per group. 
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Figure 4.6   SR-BI deficiency causes reduced apoptosis in DN thymocytes.  

Thymocytes from 5-week-old SR-BI+/+ or SR-BI-/- mice were first stained with a 

panel of fluorescence-labeled antibody. Cells were then fixed and permeabilized, 

before the DNA strand breaks were detected by TUNEL assay. A) The TUNEL+ 

percentage in all thymocytes and four thymocyte subtypes was statistically 

analyzed. B) Representative TUNEL+ gating plots in DN population are 

displayed. n=5 per group. *p<0.05. 
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Figure 4.7   SR-BI deficiency causes reduced proliferation in DN2 

thymocytes.  

Thymocytes isolated from 5-week-old SR-BI+/+ or SR-BI-/- mice were first stained 

with a panel of fluorescence-labeled antibody before the BrdU incorporation in 

thymocytes was detected with the specific antibody. A) BrdU+ percentages in DN 

thymocytes and four DN thymocyte subtypes were statistically analyzed. B) 

BrdU+ percentage in DP, 4SP and 8SP was statistically analyzed. n=5-7 per 

group. *p<0.05. 
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Figure 4.8   SR-BI deficiency decreases the portion of ETPs in thymocytes.  

Thymocytes isolated from 5-week-old SR-BI+/+ or SR-BI-/- mice were stained with 

a panel of fluorescence-labeled antibodies. A) Gating strategy to distinguish 

ETPs. The mature thymocytes were first excluded by a panel of lineage markers 

(anti-CD3ε, CD8α, CD8β, B220, CD19, CD11b, CD11c, GR-1, NK1.1, Ter119, 

TCR-β and TCR-γ/δ) and then the ETP was defined as the CD25-CD44+cKithi 

population in Lin- cells. B) Percentage of ETPs in all thymocytes was statistically 

analyzed. C) The number of ETPs was calculated by multiplying the percentage 



106 
 

of ETPs in all thymocytes by the number of total thymocytes. n=5-6 per 

group.*p<0.05, **p<0.01. 
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Figure 4.9   SR-BI deficiency does not cause defects in lymphoid progenitor 

development in bone marrow.  

Bone marrow cells from 5-week-old SR-BI+/+ or SR-BI+/+ mice were stained with a 

panel of fluorescence-labeled antibodies. A) Gating strategy of bone marrow 

lymphoid progenitors. Lineage markers to exclude mature bone marrow cells 

include anti-CD2, CD3ε, CD4, CD8α, B220, CD19, CD11b, GR-1, NK1.1 and 

Ter119. The HSCs, MPPs and LMPPs were distinguished in LSK population (Lin-

Sca-1+cKit+) based on the expression of CD135, and the CLPs were defined as 
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IL-7Rα+ population in Lin-Sca-1intcKitint cells. B) The percentages of bone marrow 

progenitor populations were analyzed. C) The number of a given progenitor 

population was calculated by multiplying its percentage in all bone marrow cells 

by total bone marrow cell counts. n=5 per group. 
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Figure 4.10   SR-BI deficiency causes reduced progenitor cell settlement on 

thymus.  

Twenty million CFSE-labeled bone marrow cells from SR-BI+/+ mice were injected 

into 5-week-old SR-BI+/+ or SR-BI-/- mice. Two days later, the CFSE+ cells in 

blood and thymus were analyzed. SR-BI+/+ mice without bone marrow cell 

injection were used as negative controls. A) The percentage of CFSE+ cells in 

blood cells was shown as the number of CFSE+ cells per 20,000 CD45+ blood 

cells. B) The percentage of CFSE+ cells in thymus was shown as the number of 

CFSE+ cells per 2 million thymocytes. n=7-8 for CFSE+ cell injected groups; n=2 

for no injection group. *, p<0.05. 
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Figure 4.11   SR-BI deficiency reduces the contribution of circulating bone 

marrow progenitors to thymopoiesis.  

Twenty million bone marrow cells from CD45.1 mice were injected into SR-BI+/+ 

or SR-BI-/- mice in C57BL/6J background. Two weeks later, the contribution of 

CD45.1+ bone marrow cells to thymopoiesis was evaluated. A)-B) The 

percentage of CD45.1+ cells in thymi was analyzed. C) The number of CD45.1+ 

population was calculated by multiplying its percentage in thymocytes by total 

thymocyte numbers. D)-E) The CD4/CD8 profile was analyzed in CD45+ cells.  E) 
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The number of a given population in CD45+ cells was calculated by multiplying its 

percentage in CD45.1+ cells by the number of CD45.1+ cells. n=5-6 per group. 

*p<0.05; **p<0.01. 
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Figure 4.12   SR-BI deficiency impairs thymic recovery after sublethal 

irradiation.  

SR-BI+/+ and SR-BI-/- mice were irradiated with a single dose of 450 rads from a 

cesium source. Thymocytes were analyzed at indicated times after the 

irradiation.  A) Thymocyte numbers of mice were analyzed at indicated times 
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after irradiation. n=3-5 per group. B) The thymocyte CD4/CD8 profiles were 

analyzed 7 days after irradiation.  C) The number of a given population was 

calculated by multiplying its percentage in thymocytes by the number of total 

thymocytes. n=4-5 per group. **p<0.01, ***p<0.001. 
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Chapter 5 Adrenal SR-BI is required for maintaining normal thymopoiesis 

and thymic regeneration 

5.1   Introduction 

SR-BI is a multifunctional receptor expressed in a variety of tissues. SR-BI 

expressed in different tissues can exert various functions in a number of 

physiological or pathological processes [135, 159]. For instance, hepatic SR-BI 

mediates selective uptake from HDL and acts as the key modulator of HDL 

metabolism [202, 209], adrenal SR-BI controls steroid production under stress 

[160, 206], and macrophage SR-BI facilitates cholesterol efflux [283] and 

suppresses inflammatory responses [192]. In chapter 4 we revealed which step 

of thymopoiesis is affected by SR-BI deficiency. We found that in the absence of 

SR-BI, mice display impaired progenitor thymic homing, which is responsible for 

the decreased thymopoiesis. However, how SR-BI deficiency causes these 

defects in T cell development has not been clear. Therefore, in this chapter, we 

utilized different mouse models to investigate how the impairments of 

thymopoiesis are induced by the deficiency of SR-BI. 

Given that SR-BI is expressed in T-lineage cells as well as other 

hematopoietic cells [134], the first question we asked was that how the lack of 

hematopoietic or non-hematopoietic SR-BI contributes to the thymus defects in 

SR-BI-null mice. Actually, the progenitor homing assays (Figure 4.10 and Figure 

4.11) suggested that the non-hematopoietic SR-BI deficiency is at least partly 

responsible for the impaired thymopoiesis, as we injected the same labeled cells 

into SR-BI+/+ or SR-BI-/- environment and detected fewer cells homing to the 
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thymi of SR-BI-/- mice. To determine whether hematopoietic SR-BI deficiency 

contributes to the impaired thymopoiesis and confirm the contribution of non-

hematopoietic SR-BI deficiency, we utilized a series of bone marrow 

transplantation models. Our data indicate that lacking SR-BI in hematopoietic 

cells does not lead to any defects in thymopoiesis whereas the non-

hematopoietic SR-BI deficiency is responsible for the impaired thymopoiesis in 

SR-BI-null mice. 

The observation that the impaired thymopoiesis of SR-BI-null mice is due 

to non-hematopoietic SR-BI deficiency raised the possibility that the 

thymopoiesis defects are induced by the SR-BI deficiency-induced 

hypercholesterolemia. Indeed, several detects due to SR-BI deficiency have 

been linked to the hypercholesterolemia [135], such as abnormal erythropoiesis 

[212, 213], female infertility [210], and impaired lymphocyte homeostasis [134]. 

Therefore, we hypothesized that non-SR-BI deficiency impairs thymopoiesis by 

causing hypercholesterolemia. To test this hypothesis, we manipulated plasma 

cholesterol levels in mice. We found that neither exacerbating nor normalizing 

hypercholesterolemia affects thymic cellularity of SR-BI-null mice, indicating the 

impaired thymopoiesis is not due to SR-BI deficiency-induced 

hypercholesterolemia. 

One study reported that cholesterol accumulation in thymic macrophages 

activates NLRP3 inflammasome, which contributes to the age-related thymic 

involution in mice [65]. This report led us to hypothesize that SR-BI deficiency 

impairs thymopoiesis by causing cholesterol accumulation in thymic 
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macrophages and subsequent NLRP3 activation in mice. However, we did not 

observe cholesterol accumulation in thymic macrophages of SR-BI-null mice, nor 

did we detect NLRP3 inflammasome activation, demonstrating that SR-BI 

deficiency does not cause thymus defects via inducing cholesterol accumulation 

in thymic macrophages. 

Our findings excluded the involvement of the altered cholesterol 

metabolism in the impaired thymopoiesis of SR-BI-null mice, which led us to 

consider alternative explanations of how SR-BI deficiency leads to the defects in 

thymopoiesis. In addition to hypercholesterolemia, another well-studied defect in 

SR-BI-null mice is the impaired adrenal function. SR-BI-mediated cholesterol 

uptake is an essential pathway to supply cholesterol to adrenal glands for steroid 

synthesis [161]. Lack of SR-BI in adrenal causes a deficiency of inducible 

steroids [206-208], which is responsible for the elevated septic death [206] and 

the lack of thymocyte apoptosis during sepsis[247]. We utilized adrenal 

transplantation models to evaluate if the defects in thymopoiesis were a result of 

the adrenal SR-BI deficiency. Surprisingly, we found that mice with a loss of 

adrenal SR-BI in mice display defects in T cell development similar with SR-BI-

null mice, demonstrating that loss of SR-BI in adrenal gland is the responsible for 

the impaired thymopoiesis.  

In this chapter, we provide data indicating that the adrenal SR-BI is 

required for maintaining normal T cell development in mice, whereas neither SR-

BI deficiency-induced hypercholesterolemia nor a lack of hematopoietic SR-BI is 

responsible for the impaired thymopoiesis in SR-BI-null mice. 
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5.2   Results 

5.2.1   Hematopoietic SR-BI deficiency does not influence thymopoiesis 

To investigate whether hematopoietic SR-BI deficiency contributes to the 

impaired thymopoiesis, we compared the ability of SR-BI-/- bone marrow cells in 

competing with CD45.1+ bone marrow cells in thymopoiesis with that of SR-BI+/+ 

bone marrow cells in lethally irradiated Rag-1-/- recipients (Figure 5.1A). Notably, 

the SR-BI-/- mice and their SR-BI+/+ littermates used in this assay were all 

backcrossed more than 10 times to the C57BL/6J background. Rag-1-/- mice 

were chosen as recipients because they lack T-lineage cells beyond DN3 stage 

[284] and therefore we can exclude the influence of recipient-derived T-lineage 

cells on the process of thymocyte repopulation. Six weeks after bone marrow 

transplantation, Rag-1-/- mice transplanted with SR-BI-/- and SR-BI+/+ bone 

marrow cell mixes show similar CD45.2+ percentage in total thymocytes (Figure 

5.1B and 5.1C). Meanwhile, the CD45.2+ percentage in DN, DP, 4SP and 8SP 

subsets is all comparable in two groups, indicating that SR-BI-/- bone marrow 

cells have intact ability to support thymopoiesis. These results reveal that the 

impaired thymopoiesis in SR-BI-/- mice is not attributed to the hematopoietic SR-

BI deficiency. 

5.2.2   Non-hematopoietic SR-BI deficiency is responsible for impaired 

thymopoiesis 

We next investigated the contribution of non-hematopoietic SR-BI 

deficiency to the impaired thymopoiesis. For this purpose, we repopulated 

lethally irradiated SR-BI-/-Rag-1-/- mice and SR-BI+/+Rag-1-/- controls with CD45.1+ 
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bone marrow cells (Figure 5.2A). Unexpectedly, before detecting thymopoiesis 

endpoints six weeks after bone marrow transplantation, we observed a 

significantly higher mortality in SR-BI-/-Rag-1-/- after bone marrow transplantation 

(Figure 5.2B). Though all the SR-BI+/+Rag-1-/- recipients survived after the 

transplantation, all the male and one in four female SR-BI-/-Rag-1-/- recipients 

died (Figure 5.2C), indicating non-hematopoietic SR-BI deficiency indeed causes 

a survival disadvantage in bone marrow transplantation.  

We then evaluated the development of CD45.1+ cells in the thymi of 

survived recipients 6 weeks after BMT. In both groups of recipients, over 85% 

thymocytes are CD45.1+ cells (Figure 5.3A), indicating the successful thymic 

repopulation with donor cells. However, SR-BI-/-Rag-1-/- recipients display 30% 

lower CD45.1+ thymocytes numbers than SR-BI+/+Rag-1-/- recipients (Figure 

5.3B). Analysis of CD4/CD8 profile in CD45.1+ cells reveals that SR-BI-/- Rag-1-/- 

recipients do not show significant differences in the percentage of  CD45.1+ 

thymocyte subtypes (Figure 5.3C), while only the number of CD45.1+ DP cells 

are significantly reduced in SR-BI-/-Rag-1-/-  recipients (Figure 5.3D). Interestingly, 

the donor-derived ETPs are also significantly reduced both in percentage and 

numbers in SR-BI-/- Rag-1-/- recipients (Figure 5.3E and F). This group of data 

shows that non-hematopoietic SR-BI deficiency impairs the ability of bone 

marrow cells to repopulate thymi and thus is responsible for the impaired 

thymopoiesis in SR-BI-/- mice. 
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5.2.3   Non-hematopoietic SR-BI deficiency causes decreased T cell pool in the 

periphery 

We also evaluated whether non-hematopoietic SR-BI deficiency affects 

peripheral T cell repopulation after bone marrow transplantation. Consistent with 

the observations in the thymus, we found that in lymph nodes of SR-BI-/-Rag-1-/- 

recipients, the numbers of donor-derived CD4+ and CD8+ cells are reduced by 

34% and 44%, respectively, compared with those of SR-BI+/+Rag-1-/- recipients 

(Figure 5.4A). Moreover, SR-BI-/- Rag-1-/- recipients show  significantly reduced 

donor-derived CD4+ cells in spleen (Figure 5.4B), and markedly decreased 

donor-derived CD4+ and CD8+ cells in blood (Figure 5.4C). These findings 

indicate that non-hematopoietic SR-BI deficiency impairs not only the 

regeneration of the thymus but also the repopulation of peripheral T cells after 

bone marrow transplantation. 

5.2.4   Diet-induced hypercholesterolemia does not influence thymic cellularity or 

ETPs 

SR-BI deficiency in mice causes hypercholesterolemia, which further 

leads to other several defects in mice (discussed in chapter 1.2), we asked if 

hypercholesterolemia is also responsible for defective thymopoiesis in SR-BI-/- 

mice. At first, we detected the plasma cholesterol in 5-week-old mice and 

confirmed that at 5 weeks of age, SR-BI deficiency results in a more than two-

fold elevation in plasma cholesterol concentrations (Figure 5.5A). To determine if 

general hypercholesterolemia has an effect on thymic cellularity in early ages, we 

fed C57BL/6N mice with high fat diet starting from the age of 3 weeks and 
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analyzed thymopoiesis two weeks later. As expected, high fat diet-fed C57BL/6N 

mice display a 4-fold increase in cholesterol concentrations (Figure 5.5B), which 

notably is even higher than in SR-BI-/- mice. However, compared with mice on 

control diet, high fat diet-fed mice do not show any difference in thymic cellularity 

(Figure 5.5C). Meanwhile, the percentages (Figure 5.5D) and numbers of ETPs 

(Figure 5.5E) are also comparable in high fat diet-fed mice and controls. These 

data demonstrate that diet-induced hypercholesterolemia does not result in 

thymic hypocellularity or reduction in ETPs. 

5.2.5   SR-BI deficiency-induced hypercholesterolemia is not responsible for 

impaired thymopoiesis 

Because SR-BI deficiency-induced hypercholesterolemia is different from 

diet-induced hypercholesterolemia as it is characterized by increases in HDL 

cholesterol [114, 156], we next determined whether or not the 

hypercholesterolemia due to SR-BI deficiency causes the thymic abnormalities 

seen in SR-BI-/- mice. For this purpose, we fed SR-BI-/- mice with high fat diet 

from the age of 3 weeks until analyzing their thymi at the age of 5 weeks. High fat 

diet exaggerates hypercholesterolemia in SR-BI-/- mice by 3-fold (Figure 5.6A) 

and slightly decreases their thymocyte numbers (Figure 5.6B). However, 

compared with control-diet SR-BI-/- mice, high-fat-diet SR-BI-/- mice do not show 

reductions in either the percentage or the number of ETPs (Figure 5.6C and 

5.6D), suggesting the exacerbated thymic cellularity is not due to further 

decreased ETPs. Given that the high fat diet contains cholic acid that accelerates 

cholesterol absorption [285, 286] but can cause inflammation [287], we reasoned 
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that the further decrease in thymocyte number of high fat diet-fed SR-BI-/- mice 

may result from inflammation-induced thymocyte depletion. To exclude the side 

effect of the diet and clarify the effect of elevated cholesterol concentration in SR-

BI-/- mice on thymus, we compared thymocyte numbers in SR-BI-/- mice with age-

matched SR-BI-/-LDLR-/- mice, whose cholesterol concentrations are elevated 

endogenously compared with SR-BI-/- mice [182].  We found that the thymic 

cellularity is not lower in 5-week-old or 20-week-old SR-BI-/-LDLR-/- mice than in 

age-matched SR-BI-/- mice (Figure 5.6E), demonstrating that the exaggerated 

hypercholesterolemia does not exacerbate thymic hypocellularity in the SR-BI-

deficient animal. 

In addition to increasing hypercholesterolemia in SR-BI-/- mice, we also 

corrected hypercholesterolemia in SR-BI-/- mice by probucol administration and 

evaluated its effect on thymus. We started to administer 0.2% probucol to SR-BI-/- 

mice at 3 weeks of age. Two weeks later, the plasma cholesterol concentration of 

the deficient mice is normalized to levels similar to those in SR-BI+/+ mice (Figure 

5.7A). However, the thymocyte number of SR-BI-/- mice with probucol 

administration is not elevated compared to mice without this treatment (Figure 

5.7B), indicating that the thymic hypocellularity is not caused by elevated 

cholesterol levels. To exclude the possibility that the relieved 

hypercholesterolemia for two weeks is insufficient to influence the thymic 

cellularity in SR-BI-/- mice, we maintained the deficient mice on the probucol diet 

for as long as 15 weeks. Similarly, we observed comparable thymic cellularity in 

SR-BI-/- mice with or without probucol administration (Figure 5.7C). Altogether, 
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these data indicate that SR-BI deficiency-induced hypercholesterolemia is not the 

leading cause for impaired thymopoiesis. 

5.2.6   SR-BI deficiency does not cause thymic hypocellularity through activating 

NLRP3 inflammasome 

Recently it was reported that age-dependent accumulation of danger 

signals such as free cholesterol in thymic macrophages induces activation of the 

NLRP3 inflammasome which contributes to age-related thymic involution [65]. 

Given the essential role of SR-BI in cholesterol transport, we hypothesized that 

SR-BI deficiency impairs thymopoiesis by causing increased cholesterol 

accumulation in thymic macrophages and subsequent activation of the NLRP3 

inflammasome at younger ages. To test this hypothesis, we first evaluated 

cholesterol levels in thymic macrophages (F4/80+CD11b+ thymocytes) of 5-week-

old mice by filipin staining. We found that 5-week-old SR-BI-/- mice do not exhibit 

elevated cholesterol levels in thymic macrophages in comparison with SR-BI+/+ 

mice (Figure 5.8A and 5.8B), indicating SR-BI deficiency does not cause 

cholesterol accumulation in thymic macrophages of young mice. To fully rule out 

the involvement of NLRP3 inflammasome in SR-BI deficiency-impaired 

thymopoiesis, we evaluated NLPR3 inflammasome activation in the thymi of mice 

by detecting the cleavage of caspase 1, a hallmark of NLPR3 inflammasome 

activation [288, 289].  Similarly, we did not detect p20, the cleaved subunits of 

caspase 1, in either SR-BI+/+ or SR-BI-/- mice at the age of 5 weeks or 6 months 

(Figure 5.8C). These observations indicate that SR-BI deficiency does not impair 

thymopoiesis via NLRP3 inflammasome activation in mice.  
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5.2.7   Adrenal SR-BI deficiency reduces thymus size 

To determine if adrenal SR-BI plays a role in modulating thymopoiesis, we 

transplanted adrenal gland from SR-BI+/+ or SR-BI-/- mice to adrenalectomized 

SR-BI+/+ mice. Six weeks after surgery, the recipient mice receiving SR-BI-/- 

adrenal gland (ADR-T SR-BI-/- mice) display significantly reduced thymus weight 

than those receiving SR-BI+/+ one (ADR-T SR-BI+/+ mice), indicating that the loss 

of SR-BI in adrenal gland is responsible for the reduction in thymus weight 

(Figure 5.9A). Moreover, the thymic cellularity of ADR-T SR-BI-/- mice is ~40% 

lower than that of ADR-T SR-BI+/+ mice, indicating that the absence of adrenal 

SR-BI leads to thymic hypocellularity (Figure 5.9B). These results reveal that 

adrenal SR-BI is essential in maintaining normal thymus size. 

5.2.8   Adrenal SR-BI deficiency does not affect CD4/CD8 profile or DN1-4 profile 

in the thymus 

We next investigated thymocyte subsets of the adrenal transplanted mice. 

Similar to SR-BI-/- mice, ADR-T SR-BI-/- mice displayed identical CD4/CD8 profile 

(Figure 5.10A) and DN1-4 profile (Figure 5.10C) with the ADR-T SR-BI+/+ controls. 

The numbers of DN, DP, 4SP, 8SP (Figure 5.10B) and the DN subtypes (Figure 

5.10D) in ADR-T SR-BI-/- were all reduced corresponding with the total thymocyte 

counts. These observations indicate that the loss of SR-BI in adrenal does not 

affect thymic CD4/CD8 profile or DN1-4 profile. 

5.2.9   Adrenal SR-BI deficiency reduces the percentage of ETPs 

We also evaluated if adrenal SR-BI deficiency leads to a reduction in the 

percentage of ETPs. Compared with ADR-T SR-BI+/+ controls, ADR-T SR-BI-/- 
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mice exhibit a 30% decrease in the percentage of ETPs (Figure 5.11A) and a 65% 

decrease in their numbers (Figure 5.11B), which again mimics the phenotype of 

SR-BI-/- mice. These data indicate that the adrenal SR-BI deficiency is 

responsible for the reduction in the percentage of ETPs in SR-BI-null mice. 

5.2.10   Adrenal SR-BI deficiency causes impaired thymic recovery after 

sublethal irradiation 

Finally, we sublethally irradiated the adrenal transplanted mice in order to 

assess if adrenal SR-BI deficiency results in delayed thymic regeneration. Seven 

days after irradiation, ADR-T SR-BI-/- mice exhibit smaller thymus weight (Figure 

5.12A) and 48% lower thymic cellularity (Figure 5.12B) than ADR-T SR-BI+/+ mice, 

indicating the thymic recovery is delayed by adrenal SR-BI deficiency. In line with 

the observations in SR-BI-/- mice, the percentages of DN, DP, 4SP and 8SP 

thymocytes in ADR-T SR-BI-/- mice are not significantly different in ADR-T SR-

BI+/+ mice (Figure 5.12C). The numbers of all these populations in ADR-T SR-BI-/- 

mice (Figure 5.12D) are all reduced compared with ADR-T SR-BI+/+ mice after 

the irradiation. These results reveal that adrenal SR-BI is required for normal 

thymic regeneration. 
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5.3   Summary 

In this chapter, we investigated how the SR-BI deficiency causes defects 

in T cell development. First, using bone marrow transplantation models, we show 

that hematopoietic SR-BI deficiency does not cause any defect in thymopoiesis 

as SR-BI-/- bone marrow cells display a comparable ability to give rise to 

thymocytes with SR-BI+/+ controls (Figure 5.1); and non-hematopoietic SR-BI 

deficiency results in impaired thymopoiesis as in SR-BI-/- recipients, bone marrow 

cells display reduced ability to support thymopoiesis compared with in SR-BI+/+ 

recipients (Figure 5.3 and 5.4). Next, using cholesterol-manipulating models, we 

show that non-hematopoietic SR-BI deficiency does not impair thymopoiesis 

through inducing hypercholesterolemia. In SR-BI+/+ mice, diet-induced 

thymopoiesis fails to induce thymus defects (Figure 5.5); and in SR-BI-/- mice, 

neither exaggerating nor normalizing hypercholesterolemia alters thymocyte 

numbers (Figure 5.6 and 5.7). By detecting cholesterol in thymic macrophages 

and evaluating NLRP3 inflammasome activation in the thymus, we excluded the 

possibility that non-hematopoietic SR-BI deficiency causes thymus defects by 

inducing cholesterol accumulation in thymic macrophages in young mice (Figure 

5.8). Finally, using adrenal transplantation models, we show that SR-BI 

deficiency in adrenal gland is responsible for the thymus defects in SR-BI-null 

mice, since mice with adrenal-specific SR-BI deficiency display reduced thymus 

size (Figure 5.9), decreased ETP percentage (Figure 5.11) and delayed thymic 

regeneration (Figure 5.12). Based on these findings, we conclude that adrenal 

SR-BI is critical in thymopoiesis and thymic recovery in mice. 
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Figure 5.1   Hematopoietic SR-BI deficiency does not cause any defect in 

thymopoiesis.  

A) Design for the bone marrow cell competition experiments. CD45.1+ bone 

marrow cells were mixed with either SR-BI+/+ bone marrow cells or SR-BI-/- bone 

marrow cells (both CD45.2+) with a ratio of 1:1. Five million mixed bone marrow 
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cells were then injected into lethally irradiated Rag-1-/- mice.  Six weeks later, the 

development of CD45.1+ and CD45.2+ (either SR-BI+/+ or SR-BI-/-) cells in the 

thymi of recipients were evaluated. All the SR-BI+/+ and SR-BI-/- mice used as 

donors in this experiments were in C57BL/6J background. B) Representative 

CD45.1+ and CD45.2+ gating plots in total thymocytes are displayed. C) The 

CD45.2+ percentage in all thymocytes and four thymocyte subtypes was 

statistically analyzed. n=5-6 per group. 
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Figure 5.2   Non-hematopoietic SR-BI deficiency increases the death rate in 

bone marrow transplantation.  

A) Design for the bone marrow transplantation experiment. Five million CD45.1+ 

bone marrow cells were injected into lethally irradiated SR-BI+/+Rag-1-/- or SR-BI-

/-Rag-1-/- mice.  B) Survival curve of SR-BI+/+Rag-1-/- or SR-BI-/-Rag-1-/- mice after 

bone marrow transplantation is shown. C) The survival rate of SR-BI+/+Rag-1-/- or 

SR-BI-/-Rag-1-/- mice by gender after bone marrow transplantation is displayed.
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Figure 5.3   Non-hematopoietic SR-BI deficiency is responsible for impaired 

thymopoiesis.  

Five million CD45.1+ bone marrow cells were injected into lethally irradiated SR-

BI+/+Rag-1-/- or SR-BI-/-Rag-1-/- mice.  Six weeks later, the development of 

CD45.1+ cells in the thymi of recipients were evaluated. A) The percentage of 

CD45.1+ cells in all thymocytes was analyzed. B) The number of CD45.1+ cells 

was calculated by multiplying the percentage of CD45.1+ cells in all thymocytes 

by the number of total thymocytes. C) The CD4/CD8 profile was analyzed in 

CD45.1+ cells.  D) The number of a given population in CD45+ cells was 

calculated by multiplying its percentage in CD45.1+ cells by the number of 

CD45.1+ cells. E) The ETP percentage was analyzed in CD45+ cells.  F) The 

number of ETPs in CD45+ cells was calculated by multiplying its percentage in 
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CD45.1+ cells by the number of CD45.1+ cells. n=3-9 per group. *, p<0.05; **, 

p<0.01; ***, p<0.001. 

  



131 
 

 

Figure 5.4   Non-hematopoietic SR-BI deficiency impairs peripheral 

lymphocyte repopulation after bone marrow transplantation.  

Five million CD45.1+ bone marrow cells were injected into lethally irradiated SR-

BI+/+Rag-1-/- or SR-BI-/-Rag-1-/- mice.  Six weeks later, CD45.1+ T cell numbers in 

the lymph nodes (A), spleen (B) or blood (C) were evaluated. The number of a 

given population was calculated by multiplying the its percentage in CD45.1+ 

cells in lymph nodes, spleen or blood by the CD45.1+ cell numbers in lymph 

nodes or spleen, or the CD45.1+ cell concentration in blood. n=3-9 per group. *, 

p<0.05; ***, p<0.001. 
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Figure 5.5   Diet-induced hypercholesterolemia does not affect 

thymopoiesis.  

A) Plasma cholesterol concentrations were determined in 5-week-old SR-BI+/+ 

and SR-BI-/- mice. n= 3 per group. B)-E) C57BL/6N mice were fed with high fat 

diet or control diet starting from the age of 3 weeks. Two weeks later, plasma 

cholesterol concentrations (B), thymocyte numbers (C), the percentage (D) and 

numbers (E) of ETP were analyzed. n=5 per group. **, p<0.01; ***p<0.001. 
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Figure 5.6   Elevating hypercholesterolemia in SR-BI-deficient mice does 

not further impair thymopoiesis.  

A)-D) SR-BI-/- mice were fed with high fat diet or control diet starting from the age 

of 3 weeks. Two weeks later, plasma cholesterol concentrations (A), thymocyte 

numbers (B), the percentage (C) and numbers (D) of ETPs were analyzed. n= 4-

5 per group. E) Thymocyte numbers of 5-week-old or 20-week-old SR-BI-/- or SR-

BI-/-LDL-/- mice were analyzed. n=2-4 per group for 5-week-old group; n=9-12 per 

group for 20-week-old group. ***, p<0.001. 
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Figure 5.7   Relieving hypercholesterolemia in SR-BI-deficient mice does 

not correct thymic hypocellularity.  

SR-BI-/- mice were fed with a diet containing 0.2% probucol or control diet starting 

from the age of 3 weeks. A)-B) Two weeks later, plasma cholesterol 

concentrations (A) and thymocyte numbers (B) were analyzed. n=5-7 per group. 

C) Fifteen weeks later, thymocyte numbers were analyzed. n=7-9 per group. **, 

p<0.01. 
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Figure 5.8   SR-BI deficiency does not impair thymopoiesis through 

activating NLRP3 inflammasome.  

A)-B) Thymocytes of 5-week-old SR-BI+/+ and SR-BI-/- mice were stained with 

surface markers and then fixed/ permeabilized, before staining with filipin. A) The 

thymic macrophage was defined as the F4/80+CD11b+ population in thymocytes 

and the filipin staining in gated thymic macrophage is shown. B) The mean 

fluorescence density (MFI) of filipin in thymic macrophages was statistically 

analyzed. n=3 per group. C) Thymi from SR-BI+/+ and SR-BI-/- mice were lysed 

and the whole-thymus lysates were subject to western blot analysis with anti-

caspase-1 (4B4) and anti-β-tublin. Representative results from two experiments 

were showed. 
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Figure 5.9   Adrenal SR-BI deficiency reduces thymic size.  

SR-BI+/+ mice (10-12 weeks) were adrenalectomized and transplanted with 

adrenal gland from either SR-BI+/+ or SR-BI-/- donors (9 days) under the right 

kidney capsule. Six weeks later, thymus weight (A) and thymic cellularity (B) 

were analyzed.  n=4-5 per group. **, p<0.01; ***, p<0.001. 

 



137 
 

 

Figure 5.10   Adrenal SR-BI deficiency does not change thymic CD4/CD8 

profile or DN1-4 profile.  

SR-BI+/+ mice (10-12 weeks) were adrenalectomized and transplanted with one 

adrenal gland from either SR-BI+/+ or SR-BI-/- donors (9 days) under the right 

kidney capsule. Six weeks later, thymocyte subsets of the recipient mice were 

evaluated.  A) The CD4/CD8 profile was analyzed.  B) The number of a given 

population was calculated by multiplying its percentage in thymocytes by the total 

number of thymocytes. C) The DN1-4 profile was analyzed.  D) The number of a 

given DN population was calculated by multiplying its percentage in DN 

thymocytes by the number of DN thymocytes. n=4-5 per group. *, p<0.05; **, 

p<0.01; ***, p<0.001. 
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Figure 5.11   Adrenal SR-BI deficiency decreases the portion of ETPs.  

SR-BI+/+ mice (10-12 weeks) were adrenalectomized and transplanted with one 

adrenal gland from either SR-BI+/+ or SR-BI-/- donors (9 days) under the right 

kidney capsule. Six weeks later, thymocyte subsets of the recipient mice were 

evaluated.  A) The percentage of ETPs was analyzed.  B) The number of ETP 

was calculated by multiplying its percentage in thymocytes by the total number of 

thymocytes. n=4-5 per group. *, p<0.05; **, p<0.01. 
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Figure 5.12   Adrenal SR-BI deficiency delays thymic recovery after 

sublethal irradiation.  

SR-BI+/+ mice (10-12 weeks) were adrenalectomized and transplanted with one 

adrenal gland from either SR-BI+/+ or SR-BI-/- donors (9 days) under the right 

kidney capsule. Six weeks later, recipient mice were irradiated with a single dose 

of 450 rads from a cesium source. Seven days after irradiation, the mice were 

sacrificed.  A) Thymus weight was analyzed. B) Thymocyte numbers of mice 
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were analyzed. C) The thymocyte CD4/CD8 profile was analyzed.  D) The 

number of a given population was calculated by multiplying its percentage in 

thymocytes by the number of total thymocytes.  n=7-9 per group. *, p<0.05. 
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Chapter 6 Discussion 

6.1   Summary of this project 

In this project, we identified SR-BI, a well-established HDL receptor that 

can bind a wide range of ligands, as a novel player in thymopoiesis. Loss of SR-

BI in mice leads to a significant reduction in thymus weight (Figure 3.1) and 

thymic hypocellularity (Figure 3.2) after puberty, which is associated with a 

marked decrease in T cell production (Figure 3.5). Meanwhile, SR-BI deficiency 

also induces delayed thymic recovery after sublethal irradiation (Figure 4.12). 

These findings indicate that SR-BI is required for normal thymopoiesis and 

thymic regeneration. 

In the process of T cell development, SR-BI deficiency impairs the thymic 

homing process of bone marrow progenitors (Figure 4.10 and 4.11), causing 

reduced progenitor entry in the thymus and a decreased percentage of ETPs 

(Figure 4.8). In contrast, SR-BI deficiency does not influence the lymphoid 

progenitor development in bone marrow (Figure 4.9). T cell developmental 

processes downstream of ETP are also normal in SR-BI-null mice, as their 

percentages of thymocyte subsets (Figure 4.1, 4.2 and 4.5) and the expression 

of TCR-β in thymocytes (Figure 4.3) are all unaltered. In addition, the reduced 

thymus size of SR-BI-null mice is not due to an increase in thymocyte apoptosis 

or a decrease in thymocyte proliferation, as we only detected minor changes in 

apoptosis (Figure 4.6) and proliferation (Figure 4.7) of DN thymocytes, which 

may be linked to the decrease of ETPs.   
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Consistent with the reduction in T cell production, SR-BI deficiency leads 

to a narrowed naïve T cell pool. The naïve CD4+ and naïve CD8+ cell numbers 

are all decreased in lymph nodes (Figure 3.6 and Figure 3.7), spleen (Figure 3.8) 

and blood (Figure 3.9) of SR-BI-/- mice at young ages. An increase in proliferation 

of naïve T cells was also detected in the deficient mice (Figure 3.9). These 

observations indicate that the reduced T cell production due to SR-BI deficiency 

impairs T cell homeostasis in the periphery. Moreover, T cells isolated from SR-

BI-null mice display reduced responses to TCR stimuli (Figure 3.10 and 3.11), 

suggesting that the reduction in T cell production also compromises T cell 

function in these mice. 

Using bone marrow transplantation models, we show that the absence of 

SR-BI in hematopoietic cells does not cause any defect in T cell development 

whereas the non-hematopoietic SR-BI deficiency is responsible for those defects. 

The hypercholesterolemia in SR-BI-null mice is not likely the leading cause for 

the defects in thymus, as neither exaggerating hypercholesterolemia in SR-BI-

null mice further decreases their thymic cellularity (Figure 5.6), nor does 

normalizing hypercholesterolemia relieve their thymic hypocellularity (Figure 5.7). 

In addition, young SR-BI-null mice do not exhibit cholesterol accumulation in 

thymic macrophages or activation of NLRP3 inflammasome in the thymus (Figure 

5.8), indicating that thymic hypocellularity is not related to thymic macrophage 

cholesterol accumulation-induced NLRP3 inflammasome activation. 

Unexpectedly, we observed that the loss of SR-BI in adrenal gland leads to 

decreased thymus size, reduced ETP percentage and delayed thymic recovery 
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(Figure 5.9-5.12). With these findings, we demonstrate that the impaired 

thymopoiesis in SR-BI-null mice is attributed to the adrenal SR-BI deficiency. 

6.2   T cell development in the absence of SR-BI 

From the HSCs in bone marrow to the mature naïve T cells in the 

periphery, T cell development can be divided to two major components, lymphoid 

progenitor development in the bone marrow and the T cell development in the 

thymus. These two major processes are connected by progenitor thymic homing, 

in which LMPPs and CLPs migrate from bone marrow to enter thymus via the 

circulation and then participate in thymopoiesis. Because thymus lacks self-

renewal progenitors, long term T cell production requires continuous progenitor 

entry into thymus [68].  

In the absence of SR-BI, the progenitor thymic homing processes in mice 

are impaired, leading to reduced thymus size and decreased thymic cellularity. 

The impaired progenitor thymic homing due to SR-BI deficiency is directly 

elucidated with progenitor homing assays. In these assays, we show that when 

comparable concentrations of bone marrow cells are present in the circulation, 

fewer bone marrow cells settle into thymi in SR-BI-/- mice than in SR-BI+/+ mice 

(Figure 4.10). Moreover, the reduced amount of seeded progenitors gives rise to 

fewer downstream thymocytes in the deficient mice, indicating that the 

contribution of circulating bone marrow progenitors to generating developing 

thymocyte is also impaired (Figure 4.11). Meanwhile, in the bone marrow 

transplantation models, the decreased repopulation of donor-derived thymocytes 

(Figure 5.3) and reduced numbers of donor-derived peripheral T cells (Figure 
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5.4) in SR-BI-/-Rag-1-/- recipients can also be explained by the impaired 

progenitor homing, as they are transplanted with the same numbers of donor 

bone marrow cells via the circulation with SR-BI+/+Rag-1-/- recipients. These three 

models together reveal the fact that due to the impaired thymic homing, fewer 

bone marrow progenitors enter thymus in the absence of SR-BI, which leads to 

the thymic hypocellularity and the reduced T cell generation.  

A direct consequence of the impaired thymic homing is a decrease in the 

percentage of ETPs. For example, CCR7/CCR9 double knockout mice and P-

selectin glycoprotein ligand 1 (PSGL-1) knockout mice, in whom the progenitor 

thymic homing is blocked, display significant reduction in the percentage of ETPs 

in thymocytes [83, 84]. SR-BI-null mice also show a dramatic reduction in the 

percentage of ETPs (Figure 4.8).  In addition, SR-BI-null mice exhibit unchanged 

percentage of DN1-4 profile (Figure 4.2) and reduced thymic cellularity (Figure 

3.2), which is similar to the other two mouse strains whose progenitor thymic 

homing is reduced [83, 84].  Interestingly, we detected a significant decrease in 

the proliferation of DN2 population in SR-BI-null mice (Figure 4.7). Because DN2 

cells are direct descendants of ETPs, the reduced proliferation is probably due to 

the reductions in ETPs. The decreased apoptosis of DN cells (Figure 4.6) may be 

a consequence of the reduced proliferation of DN2 cells, which we speculate 

causes fewer DN cells to enter β-selection. 

The other steps of T cell development in SR-BI-null mice appear normal. 

For the lymphoid progenitor development in bone marrow, we did not observe 

any change in the percentage or the number of bone marrow progenitors in SR-
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BI-null mice, indicating there is not any significant blockage in the lymphoid 

progenitor development. The thymopoiesis events downstream of ETPs are also 

intact in SR-BI-null mice. First, SR-BI-null mice display normal a CD4/CD8 profile 

(Figure 4.1) and DN1-4 profile (Figure 4.2), indicating that there is not a 

significant blockage between thymocyte subtypes. Second, SR-BI-null mice 

exhibit identical TCR-β expression in thymocytes (Figure 4.3), indicating that the 

selection processes are not altered by SR-BI deficiency. Third, SR-BI-null mice 

display unchanged percentage of immature and mature SP cells (Figure 4.5), 

indicating intact SP cell maturation in these mice. Finally, SR-BI-null mice do not 

show reduced proliferation or elevated apoptosis in most thymocyte subtypes, 

excluding the possibility that SR-BI deficiency impairs thymopoiesis by 

decelerating the proliferation or increasing apoptosis of thymocytes. More 

importantly, in the long-term homing assay, although fewer numbers of donor-

derived thymocytes were detected in SR-BI-/- mice, the CD4/CD8 profile of donor-

derived thymocytes is identical in SR-BI-/- mice and SR-BI+/+ controls (Figure 

4.11). This observation indicates that the settled progenitors in SR-BI-null thymi, 

despite lower numbers, are following a normal developmental program to 

generate downstream thymocytes, strongly supporting that SR-BI deficiency 

does not affect T cell development downstream of ETPs. In addition, in bone 

marrow transplanted SR-BI-/- mice (Figure 5.3) and sublethal irradiated SR-BI-/- 

mice (Figure 4.12), the CD4/CD8 profiles of thymocytes are also not significantly 

changed, further indicating the intact T cell development downstream of ETPs.  
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The impairment in progenitor thymic homing and the reduction of ETPs in 

SR-BI-null mice lead to reduced thymus size, which is characterized by the 

decrease in thymus weight (Figure 3.1) and the thymic hypocellularity (Figure 

3.2). Notably, the reduction in thymus size was not observed in 1-week-old SR-

BI-null mice (Figure 3.4), indicating SR-BI does not impair thymus development 

before birth.  

6.3   SR-BI deficiency-impaired thymopoiesis contributes to the lymphocyte 

imbalance 

Our data reveal that the T cell production is decreased by the SR-BI 

deficiency, since both the frequency and the number of TRECs, which are 

correlated with RTEs, are reduced in the T cells of SR-BI-null mice (Figure 3.5). 

As a consequence of the reduction in T cell production, young SR-BI-null mice 

display impaired T cell homeostasis in the periphery, characterized by reduced 

naïve T cell portion (Figure 3.6-3.8) and increased naïve T cell (Figure 3.9) 

proliferation. 

Interestingly, 5-week-old and 20-week-old SR-BI-null mice display marked 

differences in lymphocytes. Formerly, our group reported that 20-week-old SR-BI-

/- mice have T cell expansion and hyperactivation in spleen. Though the reduced 

naïve T cell percentage was also observed in 20-week-old SR-BI-/- mice, we 

thought it was due to the heightened T cell activation, because their naïve T cell 

numbers are not decreased, whereas the memory T cell numbers are 

significantly increased [134]. Results from current project show that the reduced 

thymopoiesis actually has a contribution to the decrease in the portion of naïve T 
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cells. Five-week-old SR-BI-null mice exhibit a remarkable reduction in naïve T 

cell pool in lymph nodes, spleen and blood. Nevertheless, memory T cells are not 

increased in any of these sites (Figure 3.6 and 3.6), indicating that at young age, 

SR-BI deficiency does not induce T cell hyperactivation, but the reduction in 

thymopoiesis has started to affect the T cell homeostasis. The number of T cells 

is not higher in 5-week-old SR-BI-null mice than wild-type mice (Figure 3.6E), 

indicating that T cell expansion also has not been induced by SR-BI deficiency in 

5-week-old mice. The T cell homeostasis in lymph nodes of 13-week-old SR-BI-

null mice is similar with 5-week-old SR-BI-null mice (Figure 3.7), but the T cells in 

spleen have shown a slight expansion (data not shown), indicating that between 

5 weeks and 20 weeks of age, the dysfunctional HDL begins to take over, 

increasing T cell numbers and inducing the T cell hyperactivation. 

Consistent with former reports showing that the reduced T cell production 

causes compromised T cell functions [62-64], we found that T cells from SR-BI-

null mice display impaired responsiveness to stimuli (Figure 3.10 and 3.11). We 

speculate the impaired T cell function in SR-BI-null mice is linked with the 

reduced refreshment of T cell pool by RTEs, which is known to be responsible for 

increased longevity of naïve T cells and accumulation of anergic T cells [54]. 

However, as dysfunctional HDL from SR-BI-null mice can also modulate T cells, 

we cannot exclude its contribution to the impaired T cell functions. Further 

investigation is warranted to further understand how the reduction in T cell 

function is induced by SR-BI deficiency. 
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We also reported that aged SR-BI-null mice suffer from an autoimmune 

problem, as shown by increased autoantibody concentration in the circulation, 

and elevated lymphocyte infiltration and the presence of immunocomplexes in 

the kidney [134]. The lymphocyte hyperactivation due to the dysfunctional HDL in 

SR-BI-null mice was thought to be the leading cause of the autoimmune 

problems. Our current findings raise the possibility that the autoimmune disease 

due to SR-BI deficiency is influenced by the impaired thymopoiesis, as 

thymopoiesis can remove the self-reactive T cells in the periphery [54] and 

reduced T cell production is known to cause autoimmune problems [57]. The 

underlying mechanisms by which SR-BI deficiency leads to the autoimmune 

problem will be an interesting subject for future study. 

6.4   Impaired thymopoiesis in SR-BI-null mice is not due to hematopoietic SR-BI 

deficiency or abnormal cholesterol metabolism 

In addition to investigating how T cell development is changed in SR-BI-

null mice, we studied how SR-BI deficiency causes these changes. Because SR-

BI is expressed in hematopoietic cells such as T cells, B cells [134], and 

macrophages [290], it is possible that absence of SR-BI in hematopoietic cells is 

responsible for the T cell development defects. Hematopoietic SR-BI deficiency 

has been shown to induce elevated susceptibility to atherosclerosis [178, 182, 

188-190], increased inflammation [192], and the red blood cell abnormalities 

(unpublished data). However, Our data indicate that hematopoietic SR-BI 

deficiency is not responsible for the thymic defects, as bone marrow cells from 

SR-BI-null mice do not show any disadvantage in supporting thymopoiesis 
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compared with those from wild-type mice in bone marrow transplantation 

experiments (Figure 5.1). 

If hematopoietic SR-BI deficiency does not lead to impaired thymopoiesis, 

it follows that non-hematopoietic SR-BI deficiency causes the thymic defects in 

SR-BI-null mice. Using another group of bone marrow transplantation assay, we 

confirmed the contribution of non-hematopoietic SR-BI deficiency to the thymic 

defects. SR-BI-deficient recipients display reduced donor-derived cells in the 

thymus (Figure 5.3) and decreased peripheral donor-derived T cells (Figure 5.4), 

indicating that the non-hematopoietic SR-BI deficiency environment is the major 

cause of impaired thymopoiesis. Moreover, in the progenitor homing assays, 

labeled bone marrow cells show lower ability to settle in the thymus (Figure 4.10) 

and give rise to downstream thymocytes in SR-BI-/- recipients (Figure 4.11), 

further suggesting that the non-hematopoietic SR-BI deficiency causes impaired 

progenitor thymic homing in mice. 

 The fact that the non-hematopoietic SR-BI deficiency causes impaired 

thymopoiesis led us to ask if the impaired thymopoiesis is induced by the SR-BI 

deficiency-induced hypercholesterolemia. Actually, several defects due to SR-BI 

deficiency has been shown to be secondary to the defective cholesterol 

metabolism [135]. For example, SR-BI deficiency causes erythrocyte defects 

through inducing cholesterol accumulation in erythrocyte [212, 213]; and SR-BI 

deficiency-induced female infertility is caused by the abnormal HDL particles 

[210]. Abnormalities that are caused by defective cholesterol metabolism in SR-

BI-deficient mice can be relieved by normalizing the cholesterol metabolism. For 
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instance, treatment with probucol, a cholesterol lowering drug, in SR-BI-/- mice is 

able to correct some defects, including increased susceptibility to cardiovascular 

disease [262], female infertility [210], and abnormalities in red blood cells [262]. 

More importantly, the lymphocyte expansion and hyperactivation is correlated 

with the level of hypercholesterolemia in mice, as in SR-BI-null mice, lymphocyte 

expansion is exaggerated by elevated hypercholesterolemia; and furthermore it 

can be corrected by normalization of hypercholesterolemia (unpublished data). 

However, we did not obtain the same results with T cell development in SR-BI-

null mice. We found that neither elevating hypercholesterolemia nor correcting 

hypercholesterolemia in SR-BI-null mice has any effect on their thymic cellularity 

(Figure 5.6 and 5.7), indicating the impaired T cell development is apparently not 

likely linked with impaired cholesterol metabolism.  

Our findings are not inconsistent with current knowledge on how 

cholesterol metabolism is linked with T cell development. It was reported that 

deficiency of ABCG1, a key transporter mediating cholesterol efflux in RCT [244, 

245], causes increased cholesterol accumulation in thymocytes, which induces 

increased thymocyte proliferation [241]. We find that SR-BI-null mice do not show 

increased cholesterol accumulation in thymocytes (data not shown) or elevated 

proliferation rate, indicating SR-BI is not an essential player in regulating 

cholesterol homeostasis in thymocytes. Also it was reported that free cholesterol 

accumulation in thymic macrophages induces activation of NLRP3 

inflammasome, which contributes to age-related thymic involution [65]. We 

observed that young SR-BI-null mice do not have cholesterol accumulation in 
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thymic macrophages, nor do they show the activation of NLRP3 inflammasome 

in thymus (Figure 5.8), indicating that SR-BI deficiency also does not affect 

cholesterol homeostasis in thymic macrophages.  

Taken together, our data indicate that the impaired thymopoiesis in SR-BI-

null mice is caused by the non-hematopoietic SR-BI deficiency but it is not due to 

the impaired cholesterol homeostasis. SR-BI deficiency should cause the defects 

in T cell development via an alternative mechanism. 

6.5   Adrenal SR-BI deficiency is responsible for impaired thymopoiesis 

To figure out the mechanism by which SR-BI deficiency leads to the 

impaired thymopoiesis, we evaluated the contribution of adrenal SR-BI deficiency 

to the impaired thymopoiesis. SR-BI expressed in adrenal gland is essential in 

mediating the uptake of cholesterol from HDL, which provides cholesterol as 

resources for steroid synthesis [161]. Using adrenal transplantation models, 

Hoekstra M et al. showed that the absence of SR-BI in adrenal gland causes 

glucocorticoid insufficiency during fasting, highlighting the essential role of 

adrenal SR-BI in vivo [171]. The glucocorticoid insufficiency in SR-BI-null mice 

has been shown to be responsible for elevated inflammation, decreased 

thymocyte apoptosis and increased death rate in sepsis [135, 206, 247].  

In this study, we also utilized adrenal transplantation technique to 

generate mice with SR-BI deficiency in adrenal gland. We found that the ADR-T 

SR-BI-/- mice display identical thymic phenotypes with SR-BI-/- mice. Compared 

with ADR-T SR-BI+/+ mice, ADR-T SR-BI-/- mice show significantly reduced 

thymus weight and thymic cellularity (Figure 5.9), unaltered CD4/CD8 profile 
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(Figure 5.10) and decreased portion of ETPs (Figure 5.11). Notably, it was six 

weeks after adrenal transplantation that we observed changes in the thymus. 

Given that all the thymocytes can be fully replaced by bone marrow progenitor-

derived cells in four weeks [54], at the time point we evaluated the thymi, the 

thymocytes of the adrenal transplanted mice should all be originated from bone 

marrow cells that enter thymi after surgery. Thus, the thymic defects in ADR-T 

SR-BI-/- mice are likely due to the impaired thymic homing. These findings 

indicate that the impaired thymopoiesis of SR-BI-null mice is induced by its 

abnormal adrenal functions. 

These results are surprising for two major reasons. First, although adrenal 

SR-BI deficiency causes impaired adrenal functions, previous data indicated that 

it only causes an insufficiency of inducible glucocorticoid. Under normal 

conditions, the adrenal function is considered normal, as no significant decrease 

in the concentration of circulating glucocorticoid was detected in SR-BI-null mice 

[206, 207]. However, the impaired thymopoiesis is seen in young SR-BI-null mice 

under normal conditions. The linkage between the SR-BI deficiency in adrenal 

gland and the impaired thymopoiesis indicates that the adrenal functions of SR-

BI-null mice are not intact as was thought previously. Absence of adrenal SR-BI 

leads to changes in adrenal steroid production under normal conditions, which 

subsequently causes the defects in T cell development. How adrenal function is 

affected by SR-BI deficiency under normal condtions warrant further study. 

Second, our findings appear contradictory to current concepts on the 

effect of steroids on thymopoiesis. Prior to our study, the effect of glucocorticoid 
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on T cell development has been intensively investigated. It is well known that 

during inflammatory process such as sepsis, a high level of glucocorticoid is 

induced that causes thymocyte apoptosis [291, 292]. Under normal conditions, 

glucocorticoid is also predicted to suppress T cell development as evidenced by 

the findings that overexpression of GC receptor in thymocytes leads to 

decreased thymic cellularity in mice [293] and adrenalectomy is well-known to 

cause an increase in thymocyte numbers [294, 295]. The discovery of the 

intrathymic glucocorticoid synthesis [296-298] indicated the effect of 

glucocorticoid is more complicated than originally thought. The intrathymic 

glucocorticoid seems to be regulated differently from its adrenal production [299], 

and it has been shown to play a role in regulating thymus size [293, 299] and 

selection processes in thymopoiesis [300, 301]. Given that adrenal SR-BI causes 

impaired adrenal function and reduced inducible glucocorticoid production, one 

may predict that adrenal deficiency of SR-BI should contribute to increasing 

thymus size. But interestingly we got an opposite observation. 

How impaired adrenal function causes impaired thymopoiesis is a puzzle 

that remains to be solved. However, for the first time, we demonstrate that the 

progenitor homing process is the link between them. It is worth noting that SR-BI 

controls the synthesis of not only glucocorticoids but also several other steroids 

[135].  The decrease in the production of other steroids may be responsible for 

the impaired thymopoiesis in the adrenal SR-BI-deficient mice, as the 

physiological concentrations of glucocorticoids are not changed. Further 

investigation is warranted to identify how the adrenal SR-BI deficiency changes T 
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cell development, which may lead to novel findings on the roles of steroids in 

thymopoiesis. 

6.6   SR-BI is required for normal thymic regeneration 

Another major finding in this project is that SR-BI deficiency causes 

impaired thymic regeneration. Using the sublethal irradiation model, which 

mimics the whole body irradiation in humans, we found that SR-BI-null mice 

show a slower recovery after the thymocyte depletion (Figure 4.12). The 

irradiation causes thymocyte depletion and reduces thymocytes of SR-BI+/+ and 

SR-BI-/- mice to comparably low levels in 4 days. After the lowest point, 

thymocytes are increased by 8.4-fold in SR-BI+/+ mice 7 days after irradiation. In 

contrast, in SR-BI-/- mice these cells are only elevated by 3.1-fold. As long as 14 

days after irradiation, the thymocyte numbers of SR-BI-/- mice are still 40% lower 

than that of SR-BI+/+ mice, clearly indicating impaired thymic recovery after 

irradiation. Similarly, during the recovery from CLP-induced sepsis, the 

thymocyte numbers of SR-BI-null mice are also much smaller than those of wild-

type controls 7 days after the surgery (data not shown), which probably also 

results from the delayed thymic recovery due to SR-BI deficiency. 

Both the irradiation resistant T cell progenitors such as ETP and the 

circulating bone marrow progenitors have been shown to be essential for the 

thymic recovery [68, 277]. In the sublethal irradiation model, the thymic recovery 

is mainly dependent on the intrathymic T cell progenitors, as it usually takes 

around 2 weeks for circulating progenitors to develop to double positive stage [77, 

277]. In our long term homing assay, two weeks after the injection of bone 
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marrow cells into the non-irradiated mice, the donor-derived cells are only ~1% in 

total thymocytes (Figure 4.11A and B), also indicating a slow contribution of 

circulating bone marrow cells to thymopoiesis.  Thus, in the sublethally irradiated 

SR-BI-null mice, the delayed thymic recovery is mainly attributed to the decrease 

in the percentage of ETPs. Actually, our bone marrow transplantation 

experiments in which we tested the contribution of non-hematopoietic SR-BI 

deficient to the impaired thymopoiesis (Figure 5.3), can be seen as a model to 

evaluate the contribution of circulating progenitors to thymic recovery in SR-BI-

null mice. In this model, most intrathymic progenitors are deleted by lethal 

irradiation and thus the thymic regeneration is mainly dependent on circulating 

progenitors [277]. The reduced donor-derived thymocyte numbers and ETPs in 

SR-BI-/-Rag-1-/- recipients after bone marrow transplantation indicate that the 

impaired thymic homing is also responsible for the compromised thymic recovery 

in SR-BI-null mice. 

More importantly, we show that adrenal SR-BI deficiency induces the 

impaired thymic recovery after sublethal irradiation (Figure 5.12), providing a 

formerly unseen link between adrenal function and thymic regeneration. As 

thymocyte depletion increases the risks to infection and is extremely slow to 

recover [109, 110, 113], understanding how adrenal function plays a role in 

regulating thymic regeneration may lead to novel methods to accelerate thymic 

recovery in patients. 
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6.7   Prospective 

In this project, we discovered that adrenal SR-BI is required to maintain 

normal thymopoiesis and T cell homeostasis. Several key questions still remain 

to be solved. The most important of these is how SR-BI deficiency impairs 

adrenal function under normal conditions and how impaired adrenal function 

induces the defects in T cell development. Answering this question could be 

challenging, because SR-BI controls synthesis of multiple steroids in adrenal, 

and each steroid (such as glucocorticoids) may play complex roles in T cell 

development. However, understanding how the adrenal-generated steroid affects 

thymopoiesis will be of great significance, as it may lead to new strategies to 

increase thymic functions in the elderly or patients with thymocyte depletion. 

Another interesting question will be how progenitor thymic homing is 

affected by adrenal SR-BI deficiency. The thymic homing process is mediated by 

several adhesion molecules. It is possible the adhesion molecules on thymic 

endothelial cells or bone marrow progenitors are down-regulated in SR-BI-null 

mice. Or, SR-BI deficiency may cause more bone marrow progenitor cell death in 

the circulating. Elucidating how SR-BI deficiency affects thymic homing will 

deepen our understanding of the regulation of progenitor thymic homing, a 

process that has not been well-understood. 

In addition, many detailed questions regarding the adaptive immune 

system of SR-BI-null mice remain to be solved. For example, how the impaired 

thymopoiesis and dysfunctional HDL-induced T cell expansion contribute to the 

impaired lymphocyte homeostasis and the autoimmune problem; how the TCR 
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repertories and the primary immune responses are affected by SR-BI deficiency; 

and how SR-BI deficiency affects the non T-lineage cells in thymus. 

Understanding the role of SR-BI in immunity may generate novel findings that 

link HDL metabolism or adrenal functions to the immune system. 

In summary, in this project, we identified a formerly unseen function of SR-

BI in thymopoiesis. SR-BI deficiency causes reduced thymic size, decreased T 

cell production and delayed thymic recovery in mice by causing impaired 

progenitor thymic homing. Adrenal SR-BI deficiency is responsible for the defects 

in T cell development. 
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