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Abstract

Introduction: Analysis of sequence data in high-risk pedigrees is a powerful approach

to detect rare predisposition variants.

Methods: Rare, shared candidate predisposition variants were identified from

exome sequencing 19 Alzheimer’s disease (AD)-affected cousin pairs selected from

high-risk pedigrees. Variants were further prioritized by risk association in various

external datasets. Candidate variants emerging from these analyses were tested for

co-segregation to additional affected relatives of the original sequenced pedigree

members.

Results: AD-affected high-risk cousin pairs contained 564 shared rare variants.

Eleven variants spanning 10 genes were prioritized in external datasets: rs201665195

(ABCA7), and rs28933981 (TTR) were previously implicated in AD pathology;

rs141402160 (NOTCH3) and rs140914494 (NOTCH3) were previously reported;

rs200290640 (PIDD1) and rs199752248 (PIDD1)werepresent inmore thanone cousin

pair; rs61729902 (SNAP91), rs140129800 (COX6A2, AC026471), and rs191804178

(MUC16) were not present in a longevity cohort; and rs148294193 (PELI3) and

rs147599881 (FCHO1) approached significance from analysis of AD-related pheno-

types. Three variants were validated via evidence of co-segregation to additional rela-

tives (PELI3, ABCA7, and SNAP91).

Discussion: These analyses support ABCA7 and TTR as AD risk genes, expand on pre-

viously reported NOTCH3 variant identification, and prioritize seven additional candi-

date variants.

KEYWORDS

ABCA7, Alzheimer’s disease, genetic analysis, high-risk pedigree, NOTCH3, rare variant analysis,
TTR, Utah Population Database, whole exome sequence
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1 INTRODUCTION

Genetic variation significantly impacts Alzheimer’s disease (AD) risk

and is estimated to account for 53% of total trait variance.1 To date,

genome-wide association studies (GWAS) for AD have identified com-

monvariants occurring inmore than30 genes.1,2 Despite this progress,

it is estimated that more than 40% of the genetic variance of AD

remains uncharacterized.3 While rare variation contributing to AD

is difficult to detect via GWAS, it may be discoverable in pedigree-

based designs. It is well recognized that high-risk pedigree studies are

a powerful and efficient method for identification of rare predisposi-

tion variants and should be performed when these rare resources are

available.4–6 Pedigree-based studies are ideal for rare variant identi-

fication because rare variants can occur at a higher-than-population

rate among related affected individuals, thereby enhancing statisti-

cal power.7,8 Additionally, pedigree analyses limit locus heterogeneity

(i.e., different gene loci or gene loci interactions causing a similar phe-

notype) because the rare variants are inherited by a common ances-

tor with a common haplotype. Although familial locus heterogeneity

may exist, the success rate at identifying causal variants in large pedi-

grees can be much higher than in clinical settings.9 Pedigree-based

designs have been successfully applied to gene discovery for many

phenotypes10–12 including AD, where notable examples are PLD3,13

NOTCH3,14 and RAB10.15 Here, a pedigree-based analysis using exome

sequences from 19 AD-affected cousin pairs belonging to pedigrees

with a statistical excess of AD mortality was performed to identify

genetic variants associated with AD risk. Candidate variants arising

from this analysis were then further prioritized in publicly available,

large-scale datasets to further evaluate their risk of AD. Prioritized

variants were then tested for co-segregation in additional previously

sampled relatives of the index cousin pairs.

2 MATERIAL AND METHODS

2.1 Utah Population Database (UPDB)

The UPDB includes a genealogy of Utah, representing the founders in

the mid-1800s to their modern-day descendants. It originated from

three-generation genealogy records16 and is kept current with Utah

vital statistics data, which includes approximately 50,000 largely unre-

lated founders of European descent. More than three million indi-

viduals with at least three generations of genealogy connecting to

Utah founders in the UPDB were analyzed here. The UPDB has been

linked to various phenotypic data including the Utah Cancer Reg-

istry from 1966 and Utah death certificates from 1904 to 2014.

This unique combination of genealogy with phenotypes has con-

tributed to the identification, recruitment, consent, and sampling of

over 30,000 individuals in thousands of high-risk pedigrees represent-

ing many disorders. Previous analyses of the UPDB genealogy have

reported that founder effects are not present among the Utah popu-

lation and indicate low inbreeding levels similar to other places in the

United States.17,18

RESEARCH INCONTEXT

1. Systematic review: Despite recent advances in identify-

ing common genetic variants associated with Alzheimer’s

disease (AD), it is estimated that more than 40% of the

genetic variance of AD remains uncharacterized. High-

risk pedigree studies offer more statistical power for

identification of rare predisposition variants, and they

have previously been used to identify variants in PLD3,

NOTCH3, and RAB10.

2. Interpretation: Pedigree-based analyses using exome

sequences from 19 AD-affected cousin pairs with

extended segregation assays were performed. These

analyses add support to ABCA7 and TTR as AD risk

genes. Furthermore, seven other candidate variants are

prioritized in addition to NOTCH3 variants that were

previously reported.

3. Future directions: Our analyses provide support for rare

variant prioritization through pedigree-based analyses.

Additional inquiries into ABCA7 and TTR as AD risk genes

are warranted. Moreover, these analyses suggest rare

variants in NOTCH3, PIDD1, SNAP91, COX6A2, MUC16,

PELI3, and FCHO1may contribute to AD risk.

2.2 Identification of sampled high-risk AD
mortality pedigrees

Among the individualswith storedDNA fromUtah pedigreeswere 199

subjects whose death certificates indicated AD as a cause of death.

These 199 individuals were related in 102 independent, descending

pedigrees including between two and six sampled AD mortality cases.

Each pedigree was tested for an excess of AD deaths among descen-

dants as described elsewhere.15using all available genealogy and death

certificate data. Twenty-four high-risk pedigrees including two to four

sampled AD cases were identified. Of those pedigrees, 19 unrelated

pedigreeswere selected for this analysis that includedat least one sam-

pledAD-affected approximate-cousin pair, ranging in relationship from

avuncular (n = 1; expected shared DNA = 25%) to third cousin (n = 1;

expected shared DNA= 0.78%).

2.3 Exome sequencing of AD cousin pairs

TwoAD-affected cousins from each of the 19 high-risk pedigrees were

exome sequenced at the Huntsman Cancer Institute’s Genomics Core

Facility. The Agilent SureSelect XT Human All Exon + UTR (v5) cap-

ture kit was used to prepare the DNA library from 2 μg of DNA per

sample. Paired-end reads of up to 150 base pairs were sequenced on

the IlluminaHiSeq2000 sequencer. BWA-MEM19,20 mapped rawreads

to the human genome v37 (GRCh37) reference genome. The Genome
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Analysis Toolkit 3.5.0 (GATK)21 software called variants using the

Broad Institute’s best practices guidelines. Variants were removed if

they occurred outside the exon capture kit intended area of coverage,

and the remaining variantswere annotatedwithANNOVAR22 for their

predicted pathogenicity.

Pathogenicity predictions were conducted in ANNOVAR using

various algorithms because deleterious predictions made by mul-

tiple prediction methods are more likely to be reliable.23 Table S1

in supporting information shows scores reported by SIFT,24,25

Polyphen-2,26 LRT,23 MutationTaster2,27 FATHMM,28 PROVEAN,29

VEST3,30 MetaSVM, MetaLR, M-CAP,31 REVEL,32 CADD,33 DANN,34

EIGEN,35 GenoCanyon,36 and GERP++.37 Prioritized variants were

predicted to be deleterious by at least two of those functional

prediction algorithms.

2.4 The Alzheimer’s Disease Genetics Consortium
Dataset

Some variant prioritization (described below) was based on compar-

isons to theAlzheimer’sDiseaseGeneticsConsortium (ADGC) dataset.

ADGC contains imputed single-nucleotide polymorphism (SNP) array

data for 28,730 subjects (11,967 males and 16,760 females), includ-

ing 10,486 AD cases and 10,168 healthy controls. Of the shared rare

exonic variants in the cousin pairs, 291 were sequenced or imputed in

the ADGC dataset.

2.5 The Knight cerebrospinal fluid dataset

The Knight Alzheimer’s Disease Research Center at Washington Uni-

versity School of Medicine (Knight ADRC) cerebrospinal fluid (CSF)

dataset was used for analyses of association between candidate vari-

ants and levels of AB42, Tau, or PTau. This cohort consisted of 3963

subjects (1895 males and 1675 females), including 1479 AD cases and

1370 healthy controls. All samples were genotyped using the Illumina

610 or OmniExpress chip. Of the shared rare variants in the cousin

pairs, only 12 appeared in the Knight ADRC dataset. Additional impu-

tation on the Knight ADRC dataset would likely lead to a higher false

discovery rate because rare variant imputation is much less accurate

than common variant imputation.38 Therefore, those 12 variants were

used only for additional variant prioritization on the rare variants iden-

tified in the high-risk pedigrees.

2.6 Wellderly dataset

The Wellderly study39 is an ongoing study that includes elderly peo-

ple (age 80–105) who are cognitively healthy without medical inter-

ventions. Six hundred Wellderly individuals had their whole genomes

sequenced using the Complete Genomics platform. These genomes

were used to perform additional variant prioritization because func-

tionally relevant rare genetic variants associatedwithADshouldnotbe

present in an elderly population that does not exhibit cognitive decline.

2.7 Assessing common genetic variants

Polygenic risk scores for each cousin were calculated and compared to

ADGC cases and controls to ensure that the excess risk for ADwas not

caused by an excess of common disease-associated variants (see Note

S1 in supporting information). The AD polygenic risk scores calculated

from Lambert, Ibrahim-Verbaas,2 and apolipoprotein E (APOE) geno-

type for each cousin are shown in Table S2 in supporting information. A

Welch’s two-sample t-test shows that the mean AD risk from common

variants in the high-risk cousin pairs is significantly less than the mean

AD risk for ADGC cases (P-value= 2.836 × 10−9; see Figure S1 in sup-

porting information) and controls (P-value = 9.486 × 10−4; see Figure

S2 in supporting information). Therefore, the propensity of AD in these

high-risk pedigrees is likely caused by rare genetic variants that can be

prioritized using the pipeline shown below.

2.8 Initial variant prioritization

Candidate variants were initially required to be present in both AD-

affected cousin pairs from at least 1 of the 19 high-risk AD pedigrees.

Further analysis in Ingenuity Variant Analysis software (QIAGEN, Inc.)

ensured variants were rare by removing variants with a population

minor allele frequency (MAF) greater than 0.01 in 1000 Genomes,40

Exome Aggregation Consortium (ExAC) non-Finnish European,41 The

Genome Aggregation Database (gnomAD),41 and NHLBI GO Exome

Sequencing Project (ESP), Seattle, WA (http://evs.gs.washington.edu/

EVS/) [March 2018].

Ingenuity Variant Analysis then prioritized variants based on their

predicted pathogenicity. Variants considered “Pathogenic,” “Likely

Pathogenic,” or “Unknown” by theAmericanCollege ofMedical Genet-

ics (ACMG),42 or resulted in either a loss or gain of gene function by in

silico functional prediction algorithmswere prioritized.

2.9 Prioritization in external datasets

Four distinct strategies were used to further prioritize candidate vari-

ants in external datasets related to AD. Each strategy was evaluated

independently of the others. Variants thatmet any one of these criteria

were prioritized as candidate variants for AD. Variants were assumed

to be likely causing the excess of AD mortality in the pedigrees if they

were (1) a known AD risk variant, (2) a CSF biomarker of AD with a P-

value less than .1, (3) not present in the Wellderly dataset and more

prevalent in ADGC AD cases than ADGC controls, or (4) observed in

more than one AD-affected cousin pair, as described below.

2.9.1 Known AD risk variant

A literature search of all shared rare variants was conducted in Inge-

nuity Variant Analysis to determine the extent to which these vari-

ants were previously implicated in AD pathology, indicating additional

http://evs.gs.washington.edu/EVS/
http://evs.gs.washington.edu/EVS/
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support from independent studies. Variants with publications support-

ing their association with ADwere prioritized.

2.9.2 Increased AD risk in CSF dataset

Three linear regressionswere conductedon theKnightADRCCSFdata

using PLINK43: one for each of the phenotypes of interest (AB42, Tau,

andPTau), with age,APOE status, sex, and twoprincipal components2,44

as covariates. The threshold for prioritizing candidate variants was

P-value less than .1 for any of the three phenotypes. The significance

threshold was relaxed because variants had a low minor allele fre-

quency and a small sample size.

2.9.3 AD risk gradient

Variants positively affecting AD mortality are expected to be more

prevalent in diseased elderly cohorts than healthy elderly cohorts. The

Wellderly dataset was used to ensure that prioritized variants were

not present in a healthy longevity cohort. Furthermore, the MAF of

the variant in ADGC controls needed to be less than or equal to the

MAF in ADGCAD cases to ensure that the variant wasmore prevalent

in AD cases than controls.

2.9.4 Multiple hit pedigrees

Variants that were identified inmore than one AD-affected cousin pair

were also prioritized as candidates. This prioritization provided addi-

tional evidence for the candidate variant as a potential AD risk fac-

tor because of its prevalence in AD subjects from multiple high-risk

pedigrees. Because all variants analyzed in this study are rare variants

(MAF<0.01), it is not likely that the same rare variantwouldbepresent

in two independent pedigrees and shared by both affected cousins by

random chance.

2.10 Evidence for segregation with AD risk in
additional affected sampled relatives

A set of 199 individuals previously sampled for Utah high-risk dis-

ease studies whose Utah death certificate included AD as a cause of

death and had at least three generations of genealogy linking to Utah

founders, was assayed for 9 of the 11 variants. An assay was not avail-

able for PIDD1 rs200290640, and the assay for PIDD1 rs199752248

failed due to too many homologous regions in the genome to specify

the right location. The AD cases from all affected cousin pairs were

included, and all assays correctly identified the observed carriers for

eachof thenine candidate variants. Evidenceof co-segregation to addi-

tional affected relatives was evaluated with the RVsharing program.45

The RVsharing calculates the probability of an observed configuration

of carriers and affection status in a pedigree having occurred by chance

transmission, assuming that the variant is rare (MAF < 0.01) and has

entered the pedigree only once. The RVsharing program provides a

test of co-segregation (e.g., linkage) in which the strength of evidence

against the null hypothesis of no co-segregation between the disease

and a variant is expressed as an exact probability (P-value) for a given

pedigree structure and disease configuration. Because the pedigrees

werepre-screened for a statistical excess ofAD, rare variants thatwere

shared among the related individuals likely contribute to the excess

in AD cases. Institutional Review Board approval was in place for all

reported analyses.

3 RESULTS

3.1 Variant prioritization

Initial variant prioritization of rare variants shared by at least one

cousin pair identified 400 rare variants spanning 470 genes. Ingenu-

ity Variant Analysis subsequently prioritized 382 variants in 447 genes

thatwerepathogenic, likely pathogenic, uncertain significance, or asso-

ciated with a gain or loss of gene function. Of those shared rare vari-

ants, 117 variants in 138 genes had a biological interaction with genes

implicated in AD. The numbers of variants included after each analy-

sis are shown in Figure 1, and each variant is listed in File S1 in sup-

porting information. That list of 117 variants was then used by four

independent prioritization screens to identify 11 rare variants span-

ning10geneswith the strongest support for increasingADrisk in these

high-risk pedigrees (see Table 1). Four rare variants previously associ-

ated with increased AD risk were identified using a literature search

in Ingenuity Variant Analysis. The Knight ADRC CSF dataset identi-

fied two additional variants (Note: of the 117 prioritized variants, only

11 appeared in the CSF dataset) that were associated with increased

risk for AB42, Tau, or Ptau in CSF. Additionally, the AD Risk Gradi-

ent identified three variants that were not present in the Wellderly

dataset and were more prevalent in ADGC cases than ADGC controls.

Finally, two variants were present in two independent high-risk AD

pedigrees.

3.2 Evidence for co-segregation with AD risk in
additional affected sampled relatives

Five candidate variants assayed for segregation evidence had no

additional carriers beyond the original cousin pair, including: MUC16

rs191804178, NOTCH3 rs141402160, NOTCH3 rs140914494, FCHO1

rs147599881, and COX6A2 rs140129800. An additional carrier was

identified among the 199 assayed AD cases for TTR rs28933981, but

the additional carrier was not related to the original AD-affected

cousin pair sharing the variant. Additional related AD-affected carri-

ers were observed among the 199 assayed cases for four of the nine

assayed candidate variants. The other five newly identified AD case

carriers were not related to any of the other carriers or to each other.

Five AD-affected carriers were observed for PELI3 rs148294193,

including the original cousin pair. One of the newly identified case

carriers was a cousin (and avuncular) to the original cousin pair (rare
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F IGURE 1 Flowchart depicting variant prioritization. The number of rare variants and genes remaining at each level are shown. ADRC,
Alzheimer’s Disease Research Center; CSF, cerebrospinal fluid; MAF, minor allele frequency.

variant sharingP-value= .006), and theother twonewly identified case

carriers were unrelated to all other carriers. Four AD-affected carriers

were observed for ABCA7 rs201665195 including the original cousin

pair. One of the newly identified case carriers was a sibling to one of

the original cousin carriers (rare variant sharing P-value = .027), and

one carrier was not related to any other carriers. Three AD-affected

carriers were observed for SNAP91 rs61729902, including the original

cousin pair. The newly identified case carrier was a sibling of one of the

original cousins (rare variant sharing P-value= .027).

4 DISCUSSION

Analysis of exomes from 19 AD-affected cousin pairs identified 400

shared rare candidate AD predisposition variants. Initial prioritization

with Ingenuity Variant Analysis on likely pathogenicity and biological

context reduced this list to 117 rare variants occurring in 138 genes.

Further prioritization in one of four independent datasets, further pri-

oritized 11 variants in 10 genes (Table 1). Four of these variants in

three genes (ABCA7, TTR, and NOTCH3) represent replications of pre-

vious associations to AD, while the remaining eight variants are better

classified as candidate variants still requiring validation, although each

exhibited some level of replication throughoneof the four independent

prioritization strategies. Finally, variants in ABCA7, SNAP91, and PELI3

showed significant evidence of segregation to other related AD cases

in the high-risk pedigrees in which they were identified.

Four identified rare variants were previously reported in the lit-

erature as associated with increasing AD risk (known AD risk vari-

ants). The first variant, NM_019112.3:c.302T > G (rs201665195), is

found in the ABCA7 gene on chromosome 19. Unfortunately, this
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TABLE 1 Prioritized variants

Accession number Gene HGVS variant Impact Final prioritization

rs201665195 ABCA7 NM_019112.3:c.302T>G Missense KnownAD risk variant46,47

rs28933981 TTR NM_000371.3:c.416C> T Missense KnownAD risk variant48

rs141402160 NOTCH3 NM_000435.3:c.743G>C Missense KnownAD risk variant (reported using

these pedigrees in Patel et al.49)

rs140914494 NOTCH3 NM_000435:c.593C> T Missense KnownAD risk variant (reported using

these pedigrees in Patel et al.49)

rs148294193 PELI3 NM_001243135.1:c.115G>C Missense CSF biomarker P-value= .0553

rs147599881 FCHO1 NM_001161357.1:c.557G>A Missense CSF biomarker P-value= .0624

rs61729902 SNAP91 NM_00124279.1:c.2113C> T Missense AD risk gradient

rs140129800 COX6A2 NM_005205.3:c.34T>G Missense AD risk gradient

rs191804178 MUC16 NM_024690.2:c.10900C> T Missense AD risk gradient

rs200290640 PIDD1 NM_145886.3:c.2044C> T Missense Prioritized inmultiple pedigrees

rs199752248 PIDD1 NM_145886.3:c.2042-2A>G Splicing (intronic) Prioritized inmultiple pedigrees

Notes: These variants are most likely to affect AD pathology in the high-risk pedigrees. The accession number, affected gene, the Human Genome Variation

Society (HGVS) variant annotation, impact on translation, and the final prioritization option that identified the variant are shown.

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid.

variant was not included in the ADGC validation datasets, so it could

not be independently validated beyond the cousin pairs. Le Guennec

et al.46 observed this variant, along with other rare ABCA7 variants,

in AD cases and confirmed that rare, loss of function, and predicted

damaging missense variants in ABCA7 are more common in patients

with AD. Vardarajan et al.47 also identified this rare variant in two

of their three late-onset AD (LOAD) cohorts, and this variant was

not seen in unaffected individuals. The cousin pairs analysis, and evi-

dence for segregation, adds additional support toABCA7 as a gene that

impacts AD.

Variant NM_000371.3:c.416C > T (rs28933981) is located in the

TTR gene on chromosome 18. Although this variant was sequenced in

the ADGC validation datasets, it did not pass quality control thresh-

olds, so it could not be used for validation. Sassi et al.48 observed this

variant in 6 out of 332 AD cases (1.8% of cases), and this variant had a

strong effect size (odds ratio= 6.19, 95% confidence interval= 1.099–

63.091). It was also observed in two of their 676 cognitive-normal con-

trol samples (0.30% of controls). TTR is known to be involved in amy-

loid beta (Aβ) catabolism and has no homologous proteins, suggest-

ing that subtle changes to this protein could have strong functional

implications.48 This analysis of high-risk cousin pairs adds additional

support to TTR as a gene that impacts AD.

Patel et al.49 reported missense mutations NM_000435.3:

c.743G > C (rs141402160) and NM_000435:c.593C > T

(rs140914494) in NOTCH3 using the pedigrees from this analysis

combined with other population resources. However, these variants

were not sequenced in the validationdatasets.NOTCH3plays a key role

in neural development and is known to cause cerebral autosomal dom-

inant arteriopathy with subcortical infarcts and leukoencephalopathy

(CADASIL). The same region of NOTCH3 was also linked to AD in a

Turkish family.14. NOTCH3 is known to bind PSEN150,51 and PSEN2.50

Furthermore, NOTCH3 had a P-value of 1 × 10−4 from the gene-based

testing of AD risk in the ADGC dataset, implying that multiple variants

in the genemay play a role in AD risk.

Two variants approached significance for increased AD risk in

the Knight ADRC CSF dataset. A missense mutation in PELI3

(NM_001243135.1:c.115G > C; rs148294193) has a suggestive pos-

itive influence on AD risk (P-value = .0553). PELI3 binds UBC52 and

APP.53 UBC is significantly downregulated in AD brains suggesting that

decreased UBC function may be important in AD pathogenesis includ-

ing increased neuronal death and non-regulated APP production.54

APP is awell-studied AD risk gene, andmanymutations in this gene are

known to cause early-onset AD. APP is cleaved into Aβ peptides, which
are a major component of the amyloid plaques deposited in the brains

of AD patients.55 PELI3 encodes a scaffold protein and an intermediate

signaling protein in the innate immune response pathway. Segregation

of the PELI3 variant to an additional AD-affected relative in the original

high-risk pedigree was observed.

AmissensemutationNM_001161357.1:c.557G>A (rs147599881)

in FCHO1 has an AD risk P-value of .0624 in the CSF with a

positive direction. FCHO1 also binds UBC56 and APP.53 FCHO1 is

involved in vesicle-mediated transportation and clathrin-mediated

endocytosis.

Three variants were not present in the Wellderly dataset and were

more prevalent in ADGC cases than ADGC controls. Missense vari-

ant NM_00124279.1:c.2113C > T (rs61729902) is located in SNAP91,

which encodes a protein that binds UBC.57 SNAP91 is involved in

vesicle-mediated transportation and clathrin-mediated endocytosis.

SNAP91 is a paralog of PICALM, a known top 10 AD risk gene,58

and they both have similarities between their functions of clathrin-

mediated endocytosis. The SNAP91 variant was observed in an addi-

tional AD case in the original high-risk pedigree sequenced.

Another missense mutation, NM_005205.3:c.34T > G

(rs140129800), was found in the COX6A2 gene, which encodes a
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protein that binds APP.53 COX6A2 is a terminal enzyme in the mito-

chondrial respiratory chain and is part of the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway for AD.59–61

Missense mutation NM_024690.2:c.10900C > T (rs191804178)

in MUC16 affects binding of UBC,62 and MUC16 forms a protec-

tive mucous barrier on the apical surfaces of the epithelia. Muta-

tions in MUC16 are associated with ovarian cancer, endometriosis,

Pseudo-Meigs syndrome, serous cystadenocarcinoma, and bron-

chogenic cysts.MUC16 has not previously been implicated in AD.

4.1 Variants observed in more than one
AD-affected cousin pair

Three variants were observed to be shared by both members of the

AD-affected cousin pair in more than one high-risk pedigree. Mis-

sense variant NM_145886.3:c.2044C > T (rs200290640) and splice

site variant NM_145886.3:c.2042-2A > G (rs199752248) both affect

the PIDD1 gene, which is shown to bind APOE ε4.63 Neither of these

variants were sequenced in the ADGC validation datasets. PIDD1 con-

tains a death domain, interacts with other death domain proteins, and

is suggested to be an effector of p53-dependent apoptosis. Mutations

in PIDD1 are associated with poikiloderma with neutropenia (PN) dis-

order that affects the skin and the immune system.

4.2 Strengths and limitations

Rare variant-sharing in AD-affected relatives who are members of

validated high-risk pedigrees is central to prioritize candidate vari-

ants. Similar approaches capitalizing on shared genetics between

related individuals in high-risk pedigrees have been used successfully

in Utah for decades to identify rare variants contributing to common

diseases,10,64,65 as well as more recent adaptations.12,66 This study

design is limited by a relatively small available sample size (19 pedi-

grees with 38 index cases), the absence of other ethnicities besides

Whites, and the fact that AD phenotyping was based solely on death

certificate data. However, the approach raises statistical power by

increasing the relative allele frequencies of rare variants, which allows

a single pedigree in the sample set to identify rare candidate variants,

a key advantage in the presence of locus heterogeneity. Replication in

external datasets can be difficult to achieve, given the rare nature of

such variants. However, the absence of these limitations in external

dataset validations (i.e., if all variants were present in ADGC, Knight

ADRC, or the Wellderly dataset) would likely lead to more candidate

variants identified through this approach. The prioritization criteria

were very conservative and report only the most supported variants

that likely affect AD within these high-risk pedigrees. Additional vari-

ants that may affect AD within these pedigrees may have been de-

prioritized because of the stringent nature of the analysis. All genetic

variants identified at each prioritization level are reported for future

research to assess the relative support of each variant. The most sup-

ported variants were also assessed for co-segregation using a small

number of additional AD-affected relatives with the AD phenotype

within the original high-risk pedigrees. Although the UPDB popula-

tion genealogy data include the possibility of undocumented relation-

ships among subjects and inadequate phenotyping strategies, previous

research shows that founder effects and inbreeding are no greater in

the UPDB than in the general population,17,18 and the UPDB has been

used extensively in previous disease studies.

4.3 Conclusion

The presence of rare variants identified here may explain the preva-

lence of AD mortality in 19 of the 36 AD-affected individuals from

high-risk pedigrees (see Table S2). The excess AD mortality observed

in the remaining individuals might be due to complex interactions, het-

erogeneity in the pedigree, misdiagnosis of AD, non-coding variants,

or variants that were removed due to stringent prioritization crite-

ria. Because the initial prioritization included only variants in genes

known or predicted to affect AD pathology, the analysis is dependent

on current understanding of AD pathology and may not encompass

all disease-causing variants. However, the purpose of this study was

to identify highly supported candidate variants associated with AD

risk. To that end, these analyses provide additional support to previ-

ous studies that implicate ABCA7 and TTR with AD mortality. Because

many known AD risk variants were prioritized in these analyses, other

prioritized variants also likely affect AD mortality, and all 11 variants

spanning 9 genes should be prioritized in future analyses. These out-

comes indicate that a high-risk pedigree approach can achieve suffi-

cient power to detect rare variants, particularly when coupled with

external datasets that contain meaningful data about disease risk.
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