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Abstract
Background: HIV Associated Dementia (HAD) is a common complication of human
immunodeficiency virus (HIV) infection that erodes the quality of life for patients and burdens
health care providers. Intravenous drug use is a major route of HIV transmission, and drug use is
associated with increased HAD. Specific proteins released as a consequence of HIV infection (e.g.,
gp120, the HIV envelope protein and Tat, the nuclear transactivating protein) have been implicated
in the pathogenesis of HAD. In primary cultures of human fetal brain tissue, subtoxic doses of
gp120 and Tat are capable of interacting with a physiologically relevant dose of cocaine, to produce
a significant synergistic neurotoxicity. Using this model system, the neuroprotective potential of
gonadal steroids was investigated.

Results: 17β-Estradiol (17β-E2), but not 17α-estradiol (17α-E2), was protective against this
combined neurotoxicity. Progesterone (PROG) afforded limited neuroprotection, as did
dihydrotestosterone (DHT). The efficacy of 5α-testosterone (T)-mediated neuroprotection was
robust, similar to that provided by 17β-E2. In the presence of the specific estrogen receptor (ER)
antagonist, ICI-182,780, T's neuroprotection was completely blocked. Thus, T acts through the ER
to provide neuroprotection against HIV proteins and cocaine. Interestingly, cholesterol also
demonstrated concentration-dependent neuroprotection, possibly attributable to cholesterol's
serving as a steroid hormone precursor in neurons.

Conclusion: Collectively, the present data indicate that cocaine has a robust interaction with the
HIV proteins gp120 and Tat that produces severe neurotoxicity, and this toxicity can be blocked
through pretreatment with ER agonists.

Background
A particularly devastating complication of HIV infection is
a pervasive form of damage to the brain, HAD [1]. The

overall incidence of severe HAD is estimated at about 30%
of the HIV infected population [2]. However, HAD occurs
more often in HIV-positive IV drug users than HIV-posi-
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tive non-drug users [3-5]. Neuroimaging and autopsy
studies demonstrate that the basal ganglia and frontal
lobes are preferentially affected by HAD [5,6]. These struc-
tures may degenerate with chronic psychostimulant
(methamphetamine, cocaine) abuse [7,8], eventually
leading to a Parkinson type syndrome [9]. Injection of
abused drugs, such as cocaine, has been noted to acceler-
ate the progression of HIV infection to AIDS status and to
HAD [8,10-12].

In the United States, cocaine use plays a larger role in HIV
transmission to women than it does to men [13]. HIV
infected women have lower initial viral loads than men,
progress to AIDS status at the same rate as men, yet have
higher mortality and lower life expectancy than men [14-
16]. How sex differences contribute to the progression to
HAD is largely unknown. However, female gender or
estrogenic steroids are recognized as protective against
several neurological insults, including animal models of
ischemia, oxidative stress, and psychostimulant-induced
neurotoxicity [17-22] and human neurodegenerative dis-
eases such as Alzheimer's disease [23-26] and Parkinson's
disease [27-29]. Tissue culture studies have found that the
estrogenic steroid, 17β-E2, is protective against neurotoxic
HIV proteins [30,31]. Collectively, these gender/hormo-
nal effects suggest that gonadal hormones may play a dif-
ferential role in effects of drug abuse, HIV infection, and
HAD.

Neurotoxic interactions between the HIV proteins, Tat
and gp120, and abused psychostimulant drugs have been
previously reported [30,32]. More recently, 17β-E2 proved
neuroprotective in vitro [30,32]; however, it is unknown
whether this neuroprotection is specifically estrogenic, or
also effected by PROG, and whether it contains an andro-
genic component. Therefore, the aim of the present study
was to determine which gonadal steroids provide neuro-
protection against the synergistic neurotoxicity of HIV
proteins in the presence of cocaine. We investigated the
potential for neuroprotection by T, whether this is medi-
ated through an ER mechanism and the potential concen-
tration-dependent neuroprotection by PROG, DHT and
cholesterol.

We report here concentration dependent neuroprotection
by T mediated through an ICI 182,780-sensitive mecha-
nism. Incomplete neuroprotection at the concentrations
(nM) tested was also provided by PROG, DHT, and
cholesterol.

Results
17β-, not 17α-Estradiol, protects against HIV proteins plus 
cocaine synergistic neurotoxicity
Clear and robust synergistic neurotoxicity of the HIV pro-
teins Tat and gp 120 was repeatedly observed when com-

bined with a physiologically relevant dose of cocaine
(Figs. 1C, 1D, 2 Left Panel, 3 Left Panel, 4 Top Panel, 5
Top Panel). False color visualization of the intensity of
trypan blue within neurons verified the assay for cell
death and demonstrated the synergistic toxicity of cocaine
with the HIV proteins (Fig. 1). Furthermore, this neuro-
toxicity is precluded by pretreatment with 10 nM dose of
17β-E2, but not with 17α-E2. Neither the HIV proteins, Tat
plus gp120, nor cocaine alone were more toxic than the
Locke's buffer control; however, in combination they pro-
duced synergistic neurotoxicity (Fig. 2). The ANOVA con-
firmed the presence of a significant interaction of the HIV
proteins with cocaine (F(1,24) = 15.38, p < 0.0008; n = 6
each point) (Fig. 2 Left Panel). The presence of this signif-
icant neurotoxic effect was demonstrated in every experi-
ment at p < 0.005. The stereoisomers of estradiol
demonstrated a significant treatment effect against this
toxicity (F(2,15) = 6.95, p < 0.007). The 17β-stereoisomer of
estradiol demonstrated significant neuroprotection
(F(1,24) = 24.71, p < 0.0001; n = at least 3 each point). The
percent neuronal death with 17α-E2 treatment was not sig-
nificantly different from the synergistic toxicity control
(Fig. 2 Right Panel).

DMSO at 10 nM (0.1%) served as the solvent for 17α-E2
and for ICI-182,780; therefore, it was tested for toxicity
and was not significantly different from Locke's buffer
incubation (data not shown). β-Cyclodextrin (100 nM)
served as an encapsulating carrier to enhance solubility for
the steroids 17β-E2, T, PROG and cholesterol and was
therefore tested for neuroprotection. When coincubated
with the toxic combination of HIV proteins plus cocaine,
this carrier also had no significant effect on cell death
(data not shown).

Progesterone provides partial neuroprotection against HIV 
proteins plus cocaine synergistic neurotoxicity
To study the effect of PROG on HIV protein and cocaine
synergistic toxicity we treated cultures with 1 nM, 10 nM,
and 100 nM doses of PROG prior to adding the toxic com-
bination of HIV proteins and cocaine (Fig. 3 Right Panel).
PROG demonstrated significant neuroprotection (F(1,28) =
11.03, p < 0.0025; n = 5 each point). There was no concen-
tration-dependent effect on percent neuronal death
(F(1,28) < 1.0). Further, the neuroprotection was incom-
plete at these concentrations as the magnitude of cell
death was significantly greater than that observed with
Locke's Buffer control (ps < 0.01 for all concentrations
tested). Fig. 3 Left Panel shows the significant interaction
of the HIV proteins with cocaine confirming the presence
of synergistic neurotoxicity (F(1,16) = 10.97, p < 0.0044; n
= 5 each point;).
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Testosterone completely protects against HIV proteins 
plus cocaine synergistic neurotoxicity
Concentrations of 1 pM, 100 pM, 1 nM, 10 nM, 100 nM
and 10 µM of T were tested against the synergistically neu-
rotoxic combination of HIV proteins and cocaine (Fig. 4).
A significant interaction of the HIV proteins with cocaine
(F(1,20) = 8.47, p < 0.0087; n = at least 6 each point) con-
firmed the presence of synergistic neurotoxicity (Fig. 4
Top Panel). T treatment provided significant neuroprotec-
tion (F(1,57) = 12.71, p < 0.0007; n = at least 4 each point).
Specifically, there was a concentration-dependent effect of
T with a significant linear decrease in percent neuronal
death as a function of increasing dose (F(1,57) = 22.56, p <
0.0001) (Fig. 4 Middle Panel). The neuroprotective effect
of T was characterized against the negative control of
Locke's buffer vehicle and the positive control of the syn-
ergistically toxic combination of HIV proteins with
cocaine. A ceiling effect of maximal neuroprotection at T
concentrations of 10 nM or greater, was noted; magnitude
of cell death was not significantly different from incuba-
tion with Locke's buffer vehicle. A floor effect was identi-

fied at the lowest concentrations tested, 100 pM or less,
with the magnitude of cell death not significantly differ-
ent from that observed by the toxic synergism of the HIV
proteins with cocaine.

Dihydrotestosterone provides limited neuroprotection 
against HIV proteins plus cocaine synergistic neurotoxicity
DHT, the androgen receptor (AR) active metabolite of T,
was tested for neuroprotection in the linear range of the T
concentration-effect curve, 1 nM, 10 nM and 100 nM,
against the toxic synergism of HIV proteins with cocaine
(Fig. 4). DHT treatment was confirmed to provide signifi-
cant neuroprotection (F(1,57) = 10.66, p < 0.002; n = at least
4 each point). However, there was no concentration-
dependent effect on percent neuronal death (F(1,57) <1.0).
Further, the neuroprotection was incomplete across these
concentrations as the magnitude of cell death was signifi-
cantly greater than that observed with Locke's Buffer con-
trol (F(1,57) = 6.72, p < 0.012) (Fig. 4 Bottom Panel).
Because the DHT treatments were run in parallel with the
T concentration effects, the control values are the same for

True and false color photomicrographs of human neurons (A-C)Figure 1
True and false color photomicrographs of human neurons (A-C). Control culture after trypan blue exclusion assay in 
true color (A) and false color (B). Cultures exposed to HIV proteins 40 nM Tat plus 32.5 pM gp120 and 1.6 µM cocaine show 
synergistic toxicity trypan blue exclusion assay in true color (C) and false color (D).
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both sets of treatments. That is, the presence of synergistic
neurotoxicity was indicated by the same significant inter-
action of the HIV proteins with cocaine (F(1,20) = 8.47, p <
0.0087) as it was for the T treatments (Fig. 4 Top Panel).
Ethanol at 10 nM (0.1%) served as the solvent for DHT;
therefore, it was tested for toxicity and was found not to
differ significantly from Locke's buffer incubation (data
not shown).

ICI-182,780 blocks testosterone's neuroprotection against 
HIV proteins plus cocaine synergistic neurotoxicity
The cultures were pretreated with the specific ER antago-
nist, ICI-182,780 at 100 nM before addition of T (10 nM)
then challenged with the HIV proteins plus cocaine syner-
gistic toxicity (Fig. 5). A significant interaction of ICI-
182,780 with T was observed (F(1,22) = 33.71, p < 0.0001;
n = at least 6 each point). Importantly, the ICI compound
was not more toxic to the cultures than was Locke's buffer;

nor was it neuroprotective against the toxic challenge. T at
10 nM provided neuroprotection (F(1,65) = 121.26, p <
0.0001), which was not significantly different from incu-
bation with Locke's buffer vehicle alone. This neuropro-
tective effect of T was fully blocked by pretreatment of the
cultures with ICI-182,780 (100 nM) (Fig. 5 Middle
Panel). A significant interaction of the HIV proteins with
cocaine indicated the presence of synergistic neurotoxicity
(F(1,28) = 61.04, p < 0.0001; n = 8 each point) (Fig. 5 Top
Panel).

Cholesterol provides concentration dependent 
neuroprotection against HIV proteins plus cocaine 
synergistic neurotoxicity
Cholesterol was added to the cultures at concentrations of
1 nM, 10 nM, and 100 nM prior to treatment with the syn-
ergistic toxic combination of HIV proteins plus cocaine
(Fig. 5). Significant neuroprotection by cholesterol

17β-, not 17α-E2, protects human fetal neurons against the synergistically toxic of incubation with Tat [40 nM] plus gp120 [32.5 pM] (HIV Proteins) plus cocaine (Coc) [1.6 µM]Figure 2
17β-, not 17α-E2, protects human fetal neurons against the synergistically toxic of incubation with Tat [40 nM] 
plus gp120 [32.5 pM] (HIV Proteins) plus cocaine (Coc) [1.6 µM]. Control conditions of incubation with Locke's 
Buffer vehicle or the HIV proteins or Coc only produced similar neuronal death. (Left Panel) Significant interaction of the 
HIV proteins with Coc, as illustrated by the lines diverging from parallel, produced toxic synergism (*p < 0.0008). (Right 
Panel) Significant neuroprotection by 17β-E2 against HIV proteins w/ Coc toxic synergism (#p < 0.0001).
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against this synergistic toxicity was observed (F(1,65) =
55.74, p < 0.0001; n = at least 3 each point) (Fig. 5 Bottom
Panel). There was a concentration-dependent effect of
cholesterol with a significant linear decrease in percent
neuronal death as concentration increased (F(1,65) =
4.4042.73, p < 0.0398). The neuroprotection afforded by
the high dose (100 nM) of cholesterol was asymptotic to
a ceiling effect; the magnitude of cell death was not signif-
icantly different from that observed by Locke's buffer
incubation. Because the cholesterol treatments were per-
formed concurrently with the ICI-182,780 treatments, the
control values are the same for both sets of treatments.
The presence of synergistic neurotoxicity was indicated by
the same significant interaction of the HIV proteins with
cocaine as it was for the ICI-182,780 treatments (F(1,28) =
61.04, p < 0.0001) (Fig. 5 Top Panel).

Discussion
Neuroprotection is clearly afforded by physiological con-
centrations of 17β-E2 in this human fetal neuronal model

of gp120 and Tat HIV protein neurotoxic synergism with
cocaine [30]. In the current studies, we have replicated
and extended these findings to examine the ability of
other gonadal steroids to provide neuroprotection against
this combined insult. We now show robust neuroprotec-
tion mediated through the ER is provided by T while
PROG, DHT and cholesterol provide only partial or
incomplete neuroprotection in the same concentration
range.

There are at least two mechanisms for the neuroprotective
actions of estradiol: receptor mediated cellular events; and
non-receptor mediated anti-oxidant effects. Stereo-spe-
cific neuroprotection by estradiol (Fig. 2) suggests a recep-
tor-mediated mechanism rather than global scavenging of
reactive oxygen species (ROS) by the phenolic ring. Both
of the estradiol stereoisomers, but not PROG, T, DHT, nor
cholesterol contain the phenolic moiety of estradiol. In
contradiction to our results, neuroprotection by neutrali-
zation of ROS would be exhibited by both estradiol

PROG [M] is partially neuroprotective against synergistic neurotoxicity of HIV proteins with cocaine (Coc)Figure 3
PROG [M] is partially neuroprotective against synergistic neurotoxicity of HIV proteins with cocaine (Coc). 
Control conditions of incubation with Locke's Buffer vehicle or the HIV proteins or Coc only produced similar neuronal death. 
(Left Panel) Significant interaction of the HIV proteins with Coc, as illustrated by the lines diverging from parallel, produced 
toxic synergism (*p < 0.0044). (Right Panel) PROG provided partial neuroprotection against HIV proteins w/ Coc toxic syn-
ergism at all concentrations tested (#p < 0.0025) however, the neuroprotection was not concentration dependent.



BMC Neuroscience 2005, 6:40 http://www.biomedcentral.com/1471-2202/6/40

Page 6 of 13
(page number not for citation purposes)

T [M] provides concentration-dependent neuroprotection against synergistic neurotoxicity of HIV proteins with cocaine (Coc); DHT's [M] neuroprotection is limitedFigure 4
T [M] provides concentration-dependent neuroprotection against synergistic neurotoxicity of HIV proteins 
with cocaine (Coc); DHT's [M] neuroprotection is limited. Control conditions of incubation with Locke's Buffer vehi-
cle or the HIV proteins or Coc only produced similar neuronal death. (Top Panel) Significant interaction of the HIV proteins 
with Coc, as illustrated by the lines diverging from parallel, produced toxic synergism (*p < 0.0087) (Middle Panel). T pro-
vides significant concentration-dependent neuroprotection against HIV proteins w/ Coc toxic synergism (#p < 0.0001). (Bot-
tom Panel). DHT mediated partial protection against synergistic neurotoxicity of HIV proteins w/ Coc (#p < 0.023); 
however, the neuroprotection was not concentration dependent.
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ER mediation of T's protection against synergistic neurotoxicity of HIV proteins with cocaine (Coc); cholesterol's [M] neuro-protection is incompleteFigure 5
ER mediation of T's protection against synergistic neurotoxicity of HIV proteins with cocaine (Coc); cholesterol's [M] neuro-
protection is incomplete. Control conditions of incubation with Locke's Buffer vehicle or the HIV proteins or Coc only pro-
duced similar neuronal death. (Top Panel) Significant interaction of the HIV proteins with Coc, as illustrated by the lines 
diverging from parallel, produces toxic synergism (*p < 0.0001. (Middle Panel) The ER specific antagonist, ICI-182,780 (ICI), 
completely blocked T-mediated neuroprotection. ICI's toxicity and T's neuroprotection did not differ from vehicle control (#p 
< 0.0001). (Bottom Panel) Cholesterol produced significant, concentration-dependent protection against synergistic neuro-
toxicity of HIV proteins w/ Coc (#p < 0.0001); however full protection was demonstrated only at 100 nM.



BMC Neuroscience 2005, 6:40 http://www.biomedcentral.com/1471-2202/6/40

Page 8 of 13
(page number not for citation purposes)

isomers but not the other steroid compounds tested.
Moreover, the phenolic ring's efficacy in quenching ROS
usually requires higher concentrations than needed for
receptor-mediated activity [33-35]. Our data suggest that
there is a specific ER modulation of the neurotoxic cascade
preventing neural death, rather than nonspecific scaveng-
ing of ROS by estrogens.

In these studies, the neurons were exposed to estrogens for
15 hours. This time course (15-hour incubation) does not
preclude estrogen-mediated genomic activity; however,
estrogens are known to act through both genomic and
non-genomic pathways [36,37]. Nevertheless, the lack of
effect by the transcriptionally inactive stereoisomer of
estradiol (17α-E2) provides evidence for a genomic neuro-
protective mechanism. Neuroprotection by 17α-E2 has
been reported in human neuronal cultures [38,39]. This
neuroprotection, which was not seen in our model, was
realized in some non-genomic manner such as activation
of signal transduction. Research reports also support three
other non-genomic actions of steroids that may protect
neurons from toxic insults [40]: 1) an indirect effect due
to structural and functional perturbation of membrane
properties by the intercalation of the cholesterol moiety
comprising the steroids; 2) a direct activation of mem-
brane-bound steroid specific protein recognition sites;
and 3) modulation of classical neurotransmitter receptor
activity. Furthermore, neuroprotection conferred by an
individual agent may not be attributable to a single mode
of action. All steroid hormones, including 17α-E2, might
be expected to modulate neurotransmission by altering
the relative steroidal composition of the neuronal mem-
brane. Since 17α-E2 failed to show neuroprotection, these
nonspecific membrane effects are ruled out, but activity at
a membrane receptor or modulation of neurotransmitter
activity is not. We tested six steroids (the two estradiol
stereoisomers, PROG, T, DHT and cholesterol) at physio-
logically relevant nanomolar (nM) concentrations against
the synergistic neurotoxic challenge to delineate neuro-
protection by steroids in this model of HAD, while con-
sidering that each steroid may operate by different as well
as pleiotropic means.

Treatments with PROG may be neuroprotective [41-43].
The neuroprotective capability of PROG in the physiolog-
ical range [44] was also exhibited against our neurotoxic
challenge (Fig. 3). Although PROG's neuroprotection was
significant, it was incomplete in the nM concentration
range tested, as PROG was significantly different from the
negative control (i.e., relative to incubation in Locke's
buffer). The linear regression analysis confirmed the sig-
nificance of the neuroprotection. However, PROG as well
as some of its metabolites are known to act both as ago-
nists at the intracellular and membrane PROG receptors

and as allosteric modulators of some neurotransmission
[45].

In contrast, T (10 nM) produced neuroprotection of a sim-
ilar magnitude to that achieved by 17β-E2 (Fig. 3). A log
plot of the data (Fig. 4 Middle Panel) describes a linear
function between 100 pM and 10 nM. No protection is
seen at 1 pM, whereas concentrations above 100 nM show
maximal protection, thus establishing the EC50 for the
neuroprotective effect of T between 1 pM and 100 nM.
The pharmacokinetics of a concentration-dependent
effect are consistent with a receptor-mediated mechanism
of neuroprotection. Because T can be aromatized to estra-
diol by P450 aromatase expressed by astrocytes [46] and
by neurons [47] in rat brain, it is not entirely surprising to
see a robust neuroprotective effect of T, as was seen with
17β-E2. Such neuroprotection could be produced through
activation of the ER. Therefore, the question remained
whether an androgenic component to the presumptive
steroid receptor-mediated neuroprotection is operating.

T is not specific in identifying the receptor mediating its
effects because it is the prohormone for both DHT, the
principal ligand at the AR, and 17β-E2, the principal lig-
and at the ER. DHT is a useful androgen for evaluating the
relative contributions of AR and ER-mediated neuropro-
tective effects because it does not serve as an agonist at the
ER nor can it be converted to estradiol. Our toxic chal-
lenge test results with DHT suggest that the AR may medi-
ate neuroprotection, but do not exclude the possibility of
effects by other means (Fig. 4 Bottom Panel). To clarify
whether T was acting at the AR or the ER, we used the
specific ER antagonist, ICI-182,780, while treating the
cultures with T and the toxic combination of HIV proteins
and cocaine. The ER antagonist completely blocked T's
neuroprotection thus demonstrating that the effect is
mediated through the ER (Fig. 5 Middle Panel) at physio-
logical concentrations [48,49]. If an AR-mediated compo-
nent were active in T's neuroprotection it would have been
revealed when T was tested while the ER was pharmaco-
logically blocked by ICI-182,780. Therefore, we conclude
that T's neuroprotection is mediated through the ER with
no portion attributable to AR activation or to non-
genomic pathways.

As a control for general steroidal structural and receptor
activation we tested cholesterol, which is known to mod-
ulate membrane fluidity but is neurally inactive. We saw
that cholesterol's concentration-dependent neuroprotec-
tion against synergistic toxicity of the HIV proteins with
cocaine is more efficacious than that of PROG and DHT
(Fig. 5 Bottom Panel) in that 100 nM cholesterol was fully
neuroprotective whereas the same dose of PROG or DHT
was not. However, cholesterol is less potent than the
gonadal steroids, 17β-E2 and T in that 10 nM cholesterol
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was not fully neuroprotective, whereas the same dose of
the steroids was. The mechanism of this protection is
interesting because the cholesterol moiety is common to
all steroids, but 17α-E2 was not neuroprotective. Further-
more, the ICI-182,780-sensitive neuroprotection pro-
vided by T does not accommodate a nonspecific
cholesterol-mediated component. In this model, choles-
terol may not promote neuronal survival by any intrinsic
activity of its own, but may be serving as a synthesis pre-
cursor for an explicitly protective steroid, e.g., 17β-E2.
Others have also shown increased bioavailability of cho-
lesterol to interact with effects mediated by steroids in the
brain [50,51]. Evidence for all the necessary enzymes of
synthesis in human brain has been reported [52,53]
except for one, which has been identified in rat brain [54].
Because we use primary cell cultures derived from human
fetal brain, it is likely that the metabolic machinery is
present, operational and facilitating cholesterol's neuro-
protection through an estrogenic end product. In support
of our findings, neuroprotection by locally synthesized
estrogen has recently been demonstrated [55], which
when considered with the current findings, suggests pos-
sibilities for steroid prodrugs serving as neuroprotective
therapeutics. However, others have demonstrated that
cholesterol significantly reduces the neurotoxicity of
gp120 by modulating membrane fluidity. In human neu-
roblastoma cells enriching cholesterol significantly
reduced gp120 binding and consequently, the biochemi-
cal events triggered by the viral protein leading to necrotic
death, while depleting cholesterol had the opposite effect
[56]. Therefore the physiochemical properties of the
membrane in mediating neurotoxicity/protection may be
as significant as some pharmacological agents.

Synergistic neurotoxicity of the HIV proteins gp120 and
Tat with cocaine was demonstrated in each experiment.
Although neither the HIV protein combination nor
cocaine alone was more neurotoxic than the Locke's
buffer media, the simultaneous incubation of cells with
both the HIV proteins and cocaine produced significant
neuronal death. The mechanism by which cocaine facili-
tates the HIV protein toxicity is not well characterized.
Recombinant variants of Tat protein (Tat 1–72 and Tat 1–
86) are known to induce neuronal degeneration by mech-
anisms that involve triggering of apoptotic cascades
[57,58]. Cocaine was recently shown to enhance gp120
induced neuronal apoptosis in vivo via a mechanism
implicating glutamate excitotoxicity and iNOS expression
with abnormal NO production in the neocortex of rat
[59]. In vitro work in our lab with rat hippocampal cells
supports a similar mechanism for cocaine's enhancement
of Tat mediated toxicity by augmentation of ROS produc-
tion and mitochondrial depolarization [60]. Likewise
cocaine at very high concentrations in vitro may induce
neuronal apoptosis [61]. Accordingly, estrogen neuropro-

tection could be via stimulation of the expression of anti-
apoptotic proteins [62,63], or alternatively suppression of
pro-apoptotic gene transcripts [21,64], although both of
these interesting possibilities await further
experimentation.

Conclusion
In conclusion, we demonstrated that T provides neuro-
protection through an ICI-182,708-sensitive mechanism
against the synergistic toxicity of gp120 and Tat HIV pro-
teins with cocaine. Additionally, we show that PROG,
DHT and cholesterol provide some less efficacious neuro-
protection than do the steroids, 17β-E2 and T. It is con-
ceivable that gonadal steroids may provide biologically
based gender-specific prophylaxis and/or amelioration
either in the time of onset or symptomology of HAD and
drugs of abuse. These results have implications for the
innovation of therapeutic strategies, including steroid
based neuroprotective prodrugs. Moreover, given that the
neuropathology of HAD may have commonalities with
dementias of other etiologies, the development of success-
ful pharmacology for HAD would surely have applica-
tions for other equally devastating and costly
neurodegenerative conditions.

Methods
Culture of human brain cells
Neuronal cultures were prepared as described previously
[65-67]. Human fetal brain specimens of gestational age
12–14 weeks were obtained with the consent of women
opting for elective termination of pregnancy. Protocols
were carried out with strict adherence to the guidelines of
the National Institutes of Health (NIH) and with approval
from the University of Kentucky Institutional Review
Board. Briefly, after mechanical dissociation, the cells
were suspended in Opti-MEM with 5% heat-inactivated
fetal bovine serum, 0.2% N2 supplement and 1% antibi-
otic solution (penicillin G sodium 104 units/ml, strepto-
mycin sulfate10 µg/ml and amphotericin-B 25 µg/ml)
(GIBCO). The cells were maintained in culture flasks at
37°C in a humidified atmosphere of 5% CO2 and 95% air
for at least a month. At least 3 days before the experiment
was performed the cells were plated in flat bottom 96 well
plates coated with poly-d-lysine. Sample cultures were
stained for the neuron-specific enolase, microtubule-asso-
ciated protein-2, synaptophysin, and glial fibrillary astro-
cytic protein (GFAP). The cultures were thus characterized
as more than 80% homogenous for neurons. The remain-
ing cells were predominantly astrocytes (GFAP positive)
with less than 1% microglia/macrophages, as determined
by RCA-1 lectin and CD68 staining [67-69]-. Sample cul-
tures were further characterized for the presence of ER-α
and ER-β and dopaminergic neurons. As described earlier,
ERs were visualized in 5–10% of cultured astrocytes and
neurons in the cytoplasm and nuclei of both by immu-
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nostaining. Antigenicity for dopamine and dopamine
transporter were co-localized in nearly 60% of neurons.
Dopamine receptor D1A was seen in 50% of cells while
receptor D2 was seen in 40% of cells. ER co-localized with
cells staining for dopamine as well as D1A and D2 recep-
tor containing neurons [30].

Recombinant Tat and gp120 proteins
Recombinant Tat was prepared as described previously
[67,70] with minor modifications. The tat gene encoding
the first 72 amino acids was amplified from HIVBRU
obtained from Dr. Richard Gaynor through the AIDS
repository at the NIH and inserted into an E coli vector
PinPoint Xa-2 (Promega). This construct allowed the
expression the Tat1-72 protein as a fusion protein natu-
rally biotinylated at the N-terminus. The biotinylated Tat
protein was purified on a column of soft release avidin
resin, cleaved from the fusion protein using factor Xa,
eluted from the column, then desalted with a PD10 col-
umn. The Tat protein was further purified of endotoxin by
passage through a polymycin B, cyanogen bromide,
immobilized on cross-linked 4% beaded agarose column
(Sigma). All purifications steps contained dithiothreitol
to prevent oxidation of the proteins. Tat Protein was more
than 95% pure as determined by SDS-PAGE followed by
silver staining. Analysis by HPLC using a C4 column
showed a single symmetrical peak. Western blot analysis
showed that this preparation contained both monomeric
and dimeric forms of Tat1-72. The functional activity of
Tat1-72 was confirmed using a transactivation assay in
HL3T1 cells containing an HIV-1 LTR-CAT construct. Chi-
ron Corporation made a gift of gp120 from HIVSF2 which
was described previously [30]. Briefly, recombinant
gp120 was made in a Chinese Hamster Ovary cell line.
Purification yielded 95% pure gp120 as determined by
Western blot analysis. The Tat and gp120 preparations
contained less than 1 pg/ml endotoxin as determined
using a Pyrochrome Chromogenic test kit (Associates of
Cape Cod, Inc., Falmouth, MA). The Tat proteins were
stored in a lyophilized form and gp120 as a stock solution
in water at -80°C in endotoxin-free siliconized microfuge
tubes until taken for experimentation. Tat and gp120 are
highly susceptible to degradation and loss of biological
activity with each freeze-thaw cycle. Therefore, single aliq-
uots were used for each experiment. Any remaining solu-
tion was discarded. Prior work has shown that no
significant toxicity is seen with Tat less than 80 nM, gp120
less than 40 pM, or Tat (40 nM) plus gp120 (30 pM) [30].
For these studies, we used subtoxic dosage levels of Tat1-
72 at 40 nM and gp120 at 32.5 pM.

Drug levels
Cocaine hydrochloride obtained from the NIDA Drug
Supply Program was solvated in Locke's buffer (pH 7.2)
immediately prior to use. The dosage of cocaine (500 ng/

ml) in culture translates to 1.6 µM, which is several orders
of magnitude less than studies demonstrating a direct
cytotoxic effect in culture [71-73]-. Fetal brain levels of
cocaine of 1750 +/- 250 ng/ml were associated with fetal
plasma levels of 500 ng/ml following repeated daily dos-
ing in rat [74]. The plasma levels of cocaine from fetuses
of mothers exposed to cocaine using the rat IV model [75]
was 500 ng/ml as this represents 1/5 the peak brain levels
in the fetus. This is also a concentration within the physi-
ological levels experienced by human IV cocaine drug
users [76]. Thus 500 ng/ml (1.6 µM) represents a physio-
logically relevant dose of cocaine to the neurons. Cocaine
levels as high as 16 µM are not neurotoxic in human fetal
neuronal cultures [30]. In these studies the cocaine solu-
tion was diluted such that addition of 1:10 (v/v) to the
culture dishes resulted in a final concentration of 1.6 µM.
This dose of cocaine was added concurrently with the Tat
and gp120 proteins to the cultures.

Neurotoxicity assay
At the time of the experimental treatment, the culture
media was replaced with Locke's buffer containing (in
mM) 154 NaCl, 5.6 KCl, 2.3 CaCl2, 1 MgCl2, 3.6
NaHCO3, 5 glucose, 5 N-2-hydroxyethylpiperazine-N'2-
ethanesulfonic acid (HEPES) and 1% antibiotic solution
(penicillin G sodium 104 units/ml, streptomycin
sulfate10 µg/ml and amphotericin-B 25 µg/ml) (pH 7.2).
Cells were incubated for 15 hours in Locke's buffer or with
subtoxic concentrations of the HIV proteins, Tat1-72 (40
nM) plus gp120 (32.5 pM) [30], or cocaine (1.6 µM), or
the HIV proteins plus cocaine to demonstrate the
synergistic effect on cell death of HIV proteins with
cocaine. To replicate the stereoisomer specific neuropro-
tective properties of estrogen, the cultures were treated
with either 17β-E2 (10 nM), or 17α-E2 (10 nM) immedi-
ately preceding addition of the HIV proteins plus cocaine.
To investigate the neuroprotective properties of other
gonadal steroids, the cells were treated with various con-
centrations of PROG or T, immediately followed by expo-
sure to the HIV proteins plus cocaine. To determine the
mechanism of T's neuroprotection, the cultures were
treated with various concentrations of DHT (5α-
Androstan-17β-ol-3-one; 17β-Hydroxy-5α-androstan-3-
one), or ICI-182,780 (100 nM) plus T (10 nM) before the
HIV proteins plus cocaine were added. Various concentra-
tions of cholesterol were used as treatment prior to incu-
bation with the HIV proteins plus cocaine to further
characterize the nature of gonadal steroid neuroprotec-
tion. ICI-182,780, DMSO (10 nM), β-cyclodextrin (100
nM) and ethanol (10 nM) were also tested for neurotoxic/
protective effects. ICI-182,780 and 17α-E2 were solvated
in DMSO. 17β-E2, T, PROG and cholesterol were β-cyclo-
dextrin encapsulated to provide water solubility. Ethanol
was used to solvate DHT. Tat1-72 was produced as indi-
cated above, whereas gp120 was a gift from Chiron Cor-
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poration. The ICI-182,780 compound was obtained from
Tocris Cookson, Inc. (Ellisville, MO). All other chemical
agents were supplied by Sigma Chemicals (St. Louis, MO).
At the end of the incubation period neuronal death was
assessed by trypan blue (Sigma) exclusion assay as
described previously [42,65,66]. In brief, each experiment
was conducted in triplicate and at least three independent
squads were treated with each pharmacological agent.
Five randomly selected fields from each well were photo-
graphed using an inverted microscope (Nikon Diphot,
40X) and coded by a technician blinded to the well treat-
ments. Viable and dead neurons in each photomicro-
graph were counted before decoding for statistical
analysis. In representative fields the neurotoxicity assay
was verified by false color visualization using the MCID
digital camera-based system interfaced with a computer
(Imaging Research, Ontario, Canada).

The neuronal and glial phenotypes seen in these cultures
have been well characterized immunohistochemically
and morphologically in our hands [65,66] as well as by
others [77-79]-. Furthermore, the glia readily attach to the
surface of the culture dish, whereas neurons do not [80].
In our hands, astrocytic attachment to the culture dish is
requisite for the survival of the neurons, which in turn,
attach to the substrate of glia. In this way, the glia are seen
in a specific plane of microscopy that differs from the
microscopic plane in which the neurons are seen. There-
fore, we are confident of our ability to visually recognize
and enumerate neurons as distinct from glia in these
cultures.

Analysis
Data are expressed as percent neuronal cell death/total
viable neurons (means ± SEM). A 2 (presence or absence
of the viral proteins gp120 and Tat) × 2 (presence or
absence of cocaine) analysis of variance (ANOVA) design
was employed to ascertain the potential for synergistic
viral protein/cocaine-induced neurotoxicity. A significant
interaction of the HIV proteins with Coc, as graphically
illustrated by the lines diverging from parallel, provided
evidence of toxic synergism. One-way ANOVAs were used
to assess the neuroprotective potential of the various
gonadal steroid pre-treatments. Regression analysis was
used to determine concentration-effect relationships [81].
Planned Tukey-Kramer comparisons were used to deter-
mine specific treatment effects. An α level of p < 0.05 was
considered significant for all statistical tests employed.
Computer assisted analyses utilized BMDP Statistical Soft-
ware, Release 7, Los Angeles, CA (1993) and SPSS Statisti-
cal Software release 11.5.0, SPSS, Inc., Chicago, IL (2004).
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