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The Function of Boundary Conditions
in the Physical Sciences

Julia R. S. Bursten*y

Early philosophical accounts of explanation mistook the function of boundary conditions
for that of contingent facts. I diagnose where this misunderstanding arose and establish
that it persists. I disambiguate between two uses of the term “boundary conditions” and
argue that boundary conditions are explanatory via their roles as components of models.
Using case studies from fluid mechanics and the physics of waves, I articulate four ex-
planatory functions for boundary conditions in physics: specifying the scope of a model,
enabling stable descriptions of phenomena in a model, generating descriptions of novel
phenomena, and connecting models from differing theoretical backgrounds.

1. Introduction. I want to begin with an old joke. It goes: A physics stu-
dent is taking a history test and is asked to identify two causes of World
War I. In the essay space on the test paper, the student writes, “The universal
wave function, and the initial and boundary conditions of the universe.”

That is the end of the joke. The joke is that the student is mistaken in
thinking that if one could specify the universal wave function—that is, the
fundamental dynamical law of the physical universe—along with the set
of happenstance conditions that determine the shape and distribution of
the stuff to which the fundamental law applied at the first instant of the uni-
verse, then one would have a means of specifying every successive state of

*To contact the author, please write to: Department of Philosophy, University of Ken-
tucky, 1415 Patterson Office Tower, Lexington, KY 40506; e-mail: jrbursten@uky.edu.

yI am grateful for many conversations with Bob Batterman and Mark Wilson, which
aided in developing the view advanced here, and for discussions with Sara Green, Robin
Hendry, Jennifer Jhun, Collin Rice, and Jeffrey Sykora, which shaped the contours of the
argument. I am also grateful for the comments from three anonymous reviewers, which
significantly improved the clarity of the ideas presented here, and for comments from
Stephen Perry. This research was supported in part by the National Science Foundation
under grant 1247842. As ever, thanks to STARS.

Received January 2019; revised January 2020.

Philosophy of Science, 88 (April 2021) pp. 234–257. 0031-8248/2021/8802-0003$10.00
Copyright 2021 by the Philosophy of Science Association. All rights reserved.

234

mailto:jrbursten@uky.edu


the universe, including those contemporaneous with a multinational war on
earth. It is not a particularly good joke, but it is one that educators, physicists,
historians, and philosophers of science have all passed among themselves
over the years.

I find the joke amusing for reasons that have less to do with the misap-
plication of physics to history and more to do with the conceptions of phys-
ics embedded in the student’s response. I find it funny, or at least foolish, that
the student hastily groups initial and boundary conditions together as a sin-
gle cause of the war. This is an unusual place to locate the humor in the joke,
for, as I will discuss below, many philosophers of science have made the same
grouping over the years. My aim in what follows will be to show why this is
a misguided approach to understanding the explanatory roles of initial and
boundary conditions in physics.

Specifically, my aim here is to show that boundary conditions play a more
significant role in physical modeling and explanation than the student’s di-
vision would suggest. To do this, in section 2 I first establish two central te-
nets of the historical view, which are tacit in much historical work on expla-
nation in physics and which have stubbornly persisted to the present day.
These are (a) that boundary conditions and initial conditions play interchange-
able roles in scientific explanation and (b) that more explanatory work is per-
formed by law-like relations than by either initial or boundary conditions.
Next, in section 3 I diagnose an ambiguity in the use of the term “boundary
condition” in the philosophical literature. In section 4 I use case studies from
fluid mechanics and wave physics to articulate four explanatory functions
of boundary conditions: to specify the scope of a model, to enable stable de-
scriptions of phenomena in a model, to generate descriptions of novel phe-
nomena, and to connect models from differing theoretical backgrounds. Sec-
tion 5 contains brief concluding remarks.

2. Two Persistent Theses about the Explanatory Role of Initial and
Boundary Conditions. In the joke, the student’s response generates a bi-
nary division between the universal wave function, on the one hand, and the
initial and boundary conditions of the universe, on the other. This division is
a common and long-standing one in the philosophy of science. It has an evident
origin inHempel’s initial presentation of his deductive-nomological (D-N) the-
ory of explanation (Hempel 1942). In the D-N view, explanations and predic-
tions are deductions carried out over two types of statements: universal hypoth-
eses and determining conditions. Universal hypotheses are general laws, and
the determining conditions are, in a sense, everything else: they are statements
that hem in the specifics of an event such that it is possible for a universal hy-
pothesis to apply to it. Hempel occasionally refers to the information contained
in statements of determining conditions as information about the causes of a
specific event; one can imagine him giving the physics student full marks.
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The vocabulary of “determining conditions” is, in Hempel’s philosophy,
more widely applicable than that of “initial and boundary conditions,”which
is restricted to the physical sciences (1942, 36). The function of initial and
boundary conditions in physical explanation is indicated via his discussion
of the role of determining conditions in scientific explanation more generally.
In Hempel’s account, determining conditions are causal, and they link uni-
versal hypotheses to a hypothetical “complete description” of an event, which
would specify all of the properties predicated of the event (37). In their canon-
ical presentation of the D-N view, Hempel and Oppenheim exchange the vo-
cabulary of “determining conditions” for “antecedent conditions,” and they
specify that while a scientific explanation cannot be considered logically ad-
equate without a general law, it is possible to conceive of adequate expla-
nations consisting solely of general laws, that is, without antecedent con-
ditions (1948, 137). Clearly, laws play the leading explanatory role in the
D-N account.

There are three central themes in the D-N analysis of initial and boundary
conditions that are worth highlighting. First, initial and boundary conditions
are the type of antecedent condition that is native to physics. They are, jointly,
one subcategory of a more general category of condition type in the D-N ac-
count. Second, initial and boundary conditions play one sort of role in generating
scientific explanations, while general laws play a different sort of role. Third,
the sort of role that initial and boundary conditions play is a causal role.

Together these themes imply two theses about the explanatory role(s) of
initial and boundary conditions in physics under the D-N view. I will call
these the Hempelian theses about initial and boundary conditions. They are,

Thesis 1. There is no difference worth noting between the explanatory roles
of initial conditions and those of boundary conditions.

Thesis 2. Laws play the more central of the explanatory roles, relative to
initial or boundary conditions.

That the D-N view subscribes to thesis 1 is evident from the lack of dis-
tinction between initial conditions and boundary conditions as types of an-
tecedent conditions in physics, as well as in the indiscriminate attribution of
a causal role to both. That the D-N view subscribes to thesis 2 is apparent
from the logical conditions of adequacy in the canonical account. Its roots
are also evident in the naming conventions Hempel chose for the initial pre-
sentation: the article is about the function of general laws, not the function of
determining conditions, and the account Hempel develops has “nomologi-
cal” in its very name.

I want to impress the point that these theses are not mere quirks of the D-N
account. The role of laws of nature in scientific explanation, and in science
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more generally, became a central subject of analysis for philosophy of sci-
ence throughout the twentieth century. In addition to deductive accounts of
explanation that followed the D-N archetype (e.g., Braithwaite 1955; Nagel
1961), prominent theories of explanation that reacted to problems in these
accounts (e.g., Achinstein 1971; Kitcher 1981; Salmon 1984) also tended to
emphasize the role of laws in explanations—whether that role was logical,
unificatory, causal, or otherwise. Even the canonical pragmatic account of ex-
planation (van Fraasen 1980), while deeply critical of the structure of expla-
nation espoused by earlier accounts, concludes that “theory” and “fact” are
two of the three relata in an adequate scientific explanation. Contemporary
causal-mechanical accounts (e.g., Woodward 2003) de-emphasize the role of
laws per se but still regard generalizations as a central subject of analysis. At
the same time, literatures have arisen on ceteris paribus laws, laws and ideal-
ization, and whether laws govern or describe their target systems (e.g., Dretske
1977; Cartwright 1983; Earman, Glymour, and Mitchell 2003; Lange 2009).
The corresponding literatures on determining conditions, and on initial and
boundary conditions in physics, are comparatively scarce. This disparity dem-
onstrates the historical impact of thesis 2.

A particularly telling instance of the persistence of the Hempelian theses
can be found in a contemporary argument by Jeremy Butterfield on the under-
determination of theory by evidence in cosmology. After proposing a hypo-
thetical explanation of the cosmological principle, Butterfield analyzes the
adequacy of the proposed explanation scheme. While his analysis of the expla-
nation is fascinating, the details of his account are not important here. What is
worth noting, instead, is the appearance of both Hempelian theses in one short
passage and its footnote. Butterfield writes, “The physical idea is a bit more
specific, though also independent of theory. It is that initial conditions are a
matter of mere happenstance, in some sense that a theory’s laws (in partic-
ular: equations of motion) are not” (2014, 64). An extensive footnote is ap-
pended to this passage, part of which reads, “I have stated the idea in terms
of initial conditions: as is usual, and as suits our cosmological discussion. But
one can, and some authors do, state the same idea for final and-or boundary
conditions” (64n14). Thesis 1 is evidenced in Butterfield’s (2014) footnote 14.
Thesis 2 underwrites the attribution of “mere happenstance” to initial (or bound-
ary, or final) conditions—and not to laws.

Similarly, in a recent piece on the role of symmetries in noncausal expla-
nations in physics, French and Saatsi introduce their argument in the fol-
lowing manner: “We will argue that various symmetry explanations can
be naturally captured in terms of a counterfactual-dependence account in
the spirit of Woodward (2003), liberalized from its causal trappings. From
the perspective of this account symmetries can function in explanatory ar-
guments by playing a role (roughly) comparable to a contingent initial or
boundary condition in causal explanations: a symmetry fact (in conjunction
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with an appropriate connection between that fact and the explanandum) can
contribute to provision of what-if-things-had-been-different information” (2018,
185). It is apparent that French and Saatsi’s view is that boundary conditions
play an equivalent explanatory role to initial conditions (thesis 1), and this
role contrasts with the explanatory role of laws. Further, their description
of boundary conditions as contingent facts underlines their subscription to
the usual contrast drawn in accounts of explanation between laws and facts.
It does not imply that they subscribe to thesis 2—indeed, the focus of their
account is on the explanatory role of contingent symmetry facts—but it em-
phasizes the persistence of the division witnessed in this essay’s opening
joke. My aim here is to demonstrate that, whether or not some version of
that division is a useful one to draw in constructing a theory of explanation
in physics, interpreting the explanatory work performed by boundary condi-
tions as equivalent to that performed by merely contingent facts mistakes
the role of boundary conditions in physical modeling and, consequently, in
physical explanation. Below, I develop an alternative account by identifying
four distinct explanatory roles played by boundary conditions in physical ex-
planation, none of whichmaps neatly onto the explanatory functions typically
ascribed to particular contingent facts. In so doing, I will in passing distinguish
the explanatory role of boundary conditions from that of initial conditions.

3. What Boundary Conditions Are. In order to explicate the explanatory
role of boundary conditions, it is necessary to clarify a few points about what
boundary conditions are. In this section, I consider the origin of the concept
of a boundary condition in mathematical modeling in physics, identify how
philosophical use of the term has departed from this origin, and offer reasons
to return it whence it came. I summarize some useful philosophical theoriz-
ing on boundary conditions that has come from considering the mathemat-
ical concept, and I show that such considerations have been steering toward
analyzing boundary conditions as components of models, rather than as con-
tingent facts about a system. The upshot of making this distinction will be
that once boundary conditions are understood as components of models, phil-
osophical work on how models explain can be applied to accounts of how
boundary conditions explain.

In physics, the term “boundary condition” is used to denote a particular
sort of component of some mathematical models. In particular, boundary
conditions are specified sets of values that a differential equation must take
at the boundary region of the problem’s solution space. Boundary conditions
are typically associated with boundary-value problems, a type of differential-
equation problem that is commonly solved in order tomodel a diverse array of
physical phenomena including fluid dynamics, heat diffusion, electrostatics,
and acoustics. This usage of the term “boundary condition” is distinct from,
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but historically related to, the way that the term was introduced to the philos-
ophy of science, where, as discussed above, “boundary condition”was used to
refer to something like aHempelian determining condition that occurredwithin
in the domain of physics.

Amid the progress in philosophical analysis of scientific explanation that
has taken place during the 75 years since Hempel’s initial theorizing about
determining conditions, this residual ambiguity between the physical and
the philosophical meanings of “boundary condition” has contributed to con-
tinued misunderstanding of the explanatory role of boundary conditions.
Since the term originates in the mathematics of physics, and since its mean-
ing there is better specified and has been the subject of more extensive the-
orizing and modeling, it seems evident that the philosophical usage of the
term should be revised to conform to the mathematical usage. This sugges-
tion has recently been made as well by both Wilson (2017), who simply
takes the mathematical concept as a point of fact, and Sykora (2019), who
argues that defining boundary conditions by contrast with laws does not
align with the historical and present use of the concept of a boundary condi-
tion in physics. Below, I draw from these accounts to argue that boundary
conditions are components of explanatory models, rather than contingent
facts. I then employ recent philosophical analyses of how models explain
fromMorrison (1999, 2015, 2018), Bokulich (2008, 2013, 2017), and Poto-
chnik (2017), in order to orient this alternative view in the literature on
explanation.

3.1. Boundary Conditions Are Not Not-Laws. A commonly discussed
boundary condition in contemporary philosophy of physics is the slip con-
dition, which is used in the modeling of viscous fluid flow via Navier-Stokes
equations. The slip condition is the mathematical representation of the tan-
gential component of the velocity of a fluid at the surface of a flow along a
stationary boundary, for example, the surface of contact between the water
flowing through a straw and the straw itself. It is represented by the expres-
sion u � n, where u stands for the fluid velocity and n is the normal to the
solid surface. “No slip” refers to setting the value of this expression to 0,
meaning that the tangential component of the fluid’s velocity is 0, that is, that
the fluid is stationary at the edge of the flow.

In his analysis, Sykora shows that the no-slip condition (1) is invariant
under certain classes of intervention, (2) is broader in scope than mere con-
tingent facts, and (3) enjoys significant empirical and theoretical support. He
argues that these aspects of what he calls the “epistemic role” of the no-slip
boundary condition allow it to function more like a law than like a contingent
fact in explanations of fluid flow. Coupling this analysis with study of inlet/
outlet conditions on fluid flows, he develops a contextual approach to the
question of the relation between laws and boundary conditions, arguing both
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that the distinction is fuzzy and that there are more law-like and less law-like
applications of boundary conditions in physics. This contextual approach
problematizes Hempelian thesis 1.

Sykora’s project builds on analyses of fluid-mechanical models from
Morrison (1999, 2015), Batterman (2001), Rueger (2005), and others. Com-
mon to all these analyses is a robust accounting of themathematical structure
of physical models of fluid behavior, accompanied by an argument for the
essential role that such structure plays in modeling or explanation. Sykora
follows a similar approach in articulating the epistemic role of boundary
conditions in fluid modeling. However, neither Sykora’s account nor many
of the other studies on fluid mechanics sufficiently address the notion that
boundary conditions are components of models and that, as such, there is al-
ternative philosophical infrastructure available for analyzing the explana-
tory role(s) of boundary conditions.

Morrison (1999) is an exception to this trend, as she discusses at length
the relation between setting the boundary condition relevant to slip and
the development of boundary-layer models for fluid flow. Modeling flows
with slip requires the addition of boundary-layer models, and the represen-
tational and explanatory requirements of this more complicated modeling
scenario are amongMorrison’s central concerns in her account. Morrison ul-
timately concludes that the explanatory capacities of the models she consid-
ers are a function of their representational capacities, but along the way she
notes that the need to represent the slip condition in order to model some flu-
ids suggests the need to generate a phenomenological boundary-layer model,
which in turn “explains the behaviour of the system because it contextualises
the laws in a concrete way” (64). Morrison attributes the contextualization
of laws to the boundary-layer model in her analysis; using an acoustic case
study below, I will argue that such a contextualization, which I will call the
scope-setting role of a model component in an explanation, is at least some-
times properly attributable to the boundary condition itself.

3.2. Boundary Conditions Are Components ofModels. Morrison’s anal-
ysis explicates how boundary conditions work in the development of mod-
els to guide epistemic activities associated with those models, particularly
representing and explaining. Sykora also notes that the no-slip boundary
condition is “representational in the sense that [it] represent[s] physical
boundaries in the world” (2019, 24), which implies that he views boundary
conditions as able to take on representational capacities of the sort typically
ascribed to models or parts of models. Moreover, in physics, boundary con-
ditions simply are components of mathematical models. This is a very dif-
ferent epistemic or explanatory category than “contingent fact.” It imports
very different associations regarding what we expect boundary conditions
to tell us about the systems they associate with and how we expect them
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to do the telling. Facts invite questions about truth, falsehood, and evidence;
models invite questions about representation, idealization, structure, and
scope. Philosophers have overlooked the explanatory role of boundary con-
ditions by asking the wrong questions; the model-driven questions are the
ones we should be asking when we ask about how boundary conditions
function in scientific explanations.

Conceiving of boundary conditions as components of mathematical mod-
els assists in clarifying an additional dimension of the confusion that has per-
sisted in the philosophical literature. When authors have employed the term
“boundary condition” in the sense of a contingent fact, what they are typi-
cally referring to—and, quite explicitly, what Hempel was referring to—is
the specification of values of variables within a model. Variable fixing is a
particular sort of epistemic activity that should be understood as distinct from
the epistemic activity of specifying the mathematical structure of the bound-
ary condition. Consider slip once more: there is a difference between spec-
ifying that slip is the tangential component of fluid velocity at the surface of
the flow, on the one hand, and setting that tangential component to 0 (or any
other value), on the other. To put the point another way, recognizing the re-
lationship that expresses the boundary condition on the flow as v � n (struc-
ture specifying) is distinct from setting v � n 5 0 (variable fixing).

Wilson offers a particularly evocative description of the structure-specifying
role of boundary conditions in a passage about modeling a cracked billiard
ball as a boundary-value problem (2017, 35–36). In the discussion, he distin-
guishes the differential equations describing the behavior of the interior ma-
terial of the billiard ball from the mathematics describing the interfacial be-
havior of the ball, arguing that “a canny modeler must somehow crush [the]
rich array of surface region data into a comparatively coarse package to reach
a proper inferential accord with the interior equations. The end result is a sit-
uation where the physical data pertinent to a target system are codified accord-
ing to distinctly different recipes” (36).

I want to make four observations about Wilson’s analysis. First, Wilson’s
“canny modeler” is specifying structure, not fixing variables. Second, in the
lead-up to this analysis on pages 35–36, Wilson takes pains to describe the
complex reasoning processes that underlie the specification of that structure,
describing the mathematical strategies taken to bring the interior and surface
models into accord. Third, that description is a description of mathematical
modeling techniques, rather than an articulation of contingent facts. Fourth,
Wilson juxtaposes his analysis with contemporary philosophical work on
multiscale modeling. Taken together, the first three observations provide ad-
ditional support for the notion that explicating boundary conditions in the
structure-specification mode is a philosophical project rather different from
explicating the role of contingent facts in scientific explanation. The fourth
observation draws attention to the link between philosophical analysis of
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boundary conditions and of modeling. That link, I believe, requires further
investigation.

It is a blunt fact that boundary conditions on differential equations are a
recognizable component of certain mathematical models in physics, just as
squiggle-covered capsules are a recognizable component in models of cellu-
lar structure (representing mitochondria) or dots around letters are recogniz-
able components of Lewis-structure models of chemical bonding (represent-
ing valence electrons). Morrison, Sykora, and Wilson have all theorized
about boundary conditions in relation to structure specifying. I believe this
stems from their shared, although largely tacit, recognition that boundary
conditions are components of models. As such, boundary conditions function
like many components of models: they can be representational, they can have
internal structure, they can contain idealizations, and so forth. Both Morrison
and Sykora have written more extensively on the role of boundary conditions
in representation, but relatively little has been said about how boundary con-
ditions function in explanation qua components of models; while Wilson’s
analysis draws nearer, explanation as such never enters his discussion.

When the notion of a boundary condition was introduced to the explana-
tion literature, very little philosophical ink had been spilled on the role of
models in explanation. Happily, this is no longer the case. Recently, philoso-
phers includingMorrison (1999, 2015), Bokulich (2008, 2013, 2017), Batter-
man and Rice (2014), and Potochnik (2017) have offered accounts of the
role(s) of models in scientific explanation. While there are important differ-
ences between these accounts, a conclusion they share is that, if a model is to
play a role in explanation, (i) some accounting must be given of how real or
true insight may be obtained out of idealizations or fictions that the model
employs and (ii) that fulfilling i generally involves some sort of appeal to
the model’s ability to capture important aspects of stable, reliable patterns
of phenomena.

For instance, in Bokulich’s view, one condition that must be met for a
model to explain an explanandum is that the model, in its capacity as an ex-
planans, “show[s] how there is a pattern of counterfactual dependence of the
relevant features of the target systemon the structures represented in themodel”
(2008, 226). Relatedly, in Potochnik’s (2017) account, explanations employ
“causal patterns,” which are depicted by idealizations in models. Earlier, Mor-
rison makes a similar point, using the vocabulary of dependencies rather than
patterns: “The reason thatmodels are explanatory is that in representing [certain
physical] systems they exhibit certain kinds of structural dependencies. The
model shows us how particular bits of the system are integrated and fit to-
gether in such a way that the system’s behaviour can be explained” (1999,
63). Likewise, Batterman and Rice contrast their view with representation-
driven accounts of how models explain, yet they still develop an account of
minimal-model explanations based on an answer to the question of “in virtue
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of what [minimal models] are able to explain universal patterns across diverse
real systems” (2014, 350). To put the consensus plainly: somehow or other,
models are explanatory through their ability to instantiate patterns.

Recognizing that models are explanatory via their pattern-instantiating
capacity is key to recognizing the explanatory function of boundary condi-
tions: boundary conditions, in their role as a particular sort of model compo-
nent, enable the instantiation of important patterns of physical behavior in
models. This is a strict logical relation applicable to mathematical modeling
in physics: without boundary conditions, many differential equations (and
all those used to solve boundary value problems) are incomplete expressions.
Without boundary conditions on differential equations, those pieces of math-
ematics could not function as mathematical models of physical systems be-
cause the mathematics itself would be a no-go.

This logical relation further encodes a variety of conceptual relations be-
tween what is modeled in the interfacial region of a physical system and what
is modeled in the interior of that system. Taking the example of slip, it is im-
possible to generate a model of fluid flow from the Navier-Stokes equations
without specifyingwhat happens to the tangential component of thefluid’s ve-
locity at the walls of the pipe. It is also the case that specifying the boundary
condition on a mathematical model often has ramifications for the interior be-
havior of a system. For instance, a partial-slip systemwill exhibit a greater rate
of flow than a no-slip system with otherwise identical conditions.

One final comment is required before moving on. I suspect that the con-
tinued philosophical usage of the term “boundary condition” to mean “a
class of contingent facts” arises from a desire to refer to the sort of epistemic
activity I identified above as “variable fixing.” Being able to identify vari-
able fixing as an epistemic activity is likely useful in the context of discus-
sions of divisions between theories and facts, or laws and facts, or general-
ities and particularities, or other similar divisions that the opening joke’s
physics student might endorse. However, this usage trades on a potentially
pernicious category mistake: specifying the values of variables is something
that one can do in a boundary condition, in a governing equation, or in any
number of other parts of mathematical models of physics. Without additional
context provided, it is of course a matter of contingent fact what the particular
values of a flowing fluid’s pressure and density are, but filling in those values
is an activity that occurs in the application of the governing equations (here the
Navier-Stokes equation) to a particular situation, not in or about a boundary
condition. To invoke “boundary condition” in this variable-fixing manner is
to mistake the contingent properties of materials in physical modeling for the
boundary conditions on those models.

4. Four Explanatory Functions for Boundary Conditions. The discus-
sions in the previous section sum to the idea that boundary conditions, in
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their capacities as components of models, play a critical role in enabling the
generation of patterns in mathematical models, and the philosophical litera-
ture on how models explain provides good reason to suspect that these pat-
terns in turn play an important role in generating explanations in physics. This
gloss on the explanatory role of boundary conditions in physics is a significant
departure from the standard philosophical view of boundary conditions as a
variety of contingent facts in physics. My aim in this section is to substantiate
this initial gloss by articulating four specific ways in which boundary conditions
contribute to the generation of explanatory patterns in the models in which
they are components. I will call these the (a) scope-setting, (b) law-stabilizing,
(c) phenomena-generating, and (d ) model-connecting functions of boundary
conditions. I will explicate them through an analysis of the physics of waves,
which I employ as a supplement to the discussions of fluid mechanics and
cracked billiard balls above.

4.1. The Physics of Waves. Partial differential equations and boundary
value problems regularly appear in themodeling of waves, and themodeling
of waves appears across a wide variety of subdisciplines of physics, from
acoustics to seismology to optics and fluid mechanics. This wide applicabil-
ity makes wave physics a good venue for investigation on the explanatory
roles of boundary conditions in physics. Furthermore, in wave mechanics,
the explanatory roles of boundary conditions in the model can be seen even
without recourse to the wave equations themselves, making the example a
particularly accessible one. Here I describe some basic features of the phys-
ics of waves and a particular application of wave physics: explaining the acous-
tics of violins.

Waves may be either traveling, wherein a pulse propagates along a me-
dium, varying its position in space over time, or standing, wherein important
spatial features of waves, known as its nodes and antinodes, remain fixed in
space (see fig. 1). A particularly well-known example of standing waves oc-
curs in acoustics, where vibrating strings and air columns produce the heard

Figure 1. Comparison between a traveling (top) and standing (bottom) wave. Gray
dots indicate the progress of a single wave crest along the length of the line (top).
White dots indicate stable nodes in the standing wave (bottom).
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tones of musical notes; standing waves also occur in lasers, river flows, seis-
mic phenomena, and mechanical resonance.

Different mathematical models are used for traveling waves than for stand-
ing waves. Traveling waves are modeled with wave equations in which ver-
tical displacement is expressed as a function of time, horizontal position, am-
plitude, wavelength, and frequency. Standing waves, however, are modeled
with wave equations in which vertical displacement is expressed as a func-
tion of time, horizontal position, amplitude, frequency, length of the vibrat-
ing body (I will consider a vibrating string below), and harmonic ordinal. The
standing-wave equation is a solution to the traveling-wave equation.

The physics of these two classes of phenomena, and the mathematics of
these two classes of models, are distinct but closely related. A common and
intuitive explanation of the relationship between traveling and standing waves
is that standing waves may be understood as the sum of two traveling waves
of identical velocity and phase, moving in opposite directions along the same
medium. These two component waves interfere with one another, and be-
cause the waves are identical save their direction, the interference is construc-
tive: the amplitudes of the crests and troughs are doubled, rather than canceled
out by one another, as they would be if the component waves were not in
sync. In physical systems, many standing waves genuinely evolve in this
manner from traveling waves that initiate motion in a localized position on
the medium, although it is possible to directly transmit standing waves across
media.

Two further points about standing waves are necessary for the current dis-
cussion. First, it is impossible to generate a standing wave in a medium with
an indefinite or changing length and without at least one fixed end. Fixing
the end of the medium forces the energy generated by the wave to be reflected
back into the system once it encounters that unmoving boundary. If the
endpoint were not fixed, that is, if it moved around, the wave would dissipate
on impact with the boundary via destructive interference. Rather than the
lossless reflection of energy through a fixed point that produced the stand-
ing wave, reflecting a wave through a moving boundary will demolish the
standing wave through destructive interference and dissipative exchange
with the environment. Further, conservation-of-momentum principles dictate
that waves, whether traveling or standing, will flip their pulse (i.e., move from
positive to negative vertical displacement or vice versa) upon contact with a
fixed boundary.

Second, the harmonic ordinal n is a particularly important parameter in
the modeling of standing waves. It can take positive integer values, and it
specifies whether a particular standing wave has the lowest frequency sup-
ported by the medium, second lowest, or so on. A given vibrating medium
can only support certain frequencies, and thus certain wavelengths, of a
standing wave. For instance, a vibrating string of length L can only generate
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standing waves with wavelengths of 2L/n.1 Especially in acoustics, n 5 1 is
known as the fundamental tone or first harmonic, and n 5 2 and higher are
known as the medium’s harmonics, referred to by ordinals (n 5 2 is the sec-
ond harmonic, n 5 3 is the third harmonic, etc.). In music, harmonics are
so central to theory and composition that they comprise their own chapters
in many tutorial books. There is even a musical notation symbol for the play-
ing of a note to emphasize a particular harmonic, a technique popularized in
the 1700s that is common notation in contemporary compositions.

4.2. Three Explanatory Functions. These technicalities provide suffi-
cient detail to see the following point: in modeling waves, to specify that
the medium has a definite length and that the system has at least one fixed
endpoint is to specify boundary conditions on the system. The traveling-wave
equations of motion say nothing about what happens when a wave encounters
the edge of themedium inwhich it is propagating; instead, as described above,
conservation principles external to thewave equation dictate that when awave
reaches the end of the medium, if the end is fixed, the wave will be reflected
back with a flipped pulse. If not, the wavewill dissipate through the motion of
the medium’s edge in interaction with its environment, as well as through de-
structive interference with the portions of these dissipated waves that reflect
along the length of themedium. Holding the endpoint fixed adds a component
to the model of the system, and this addition enables the generation of new
patterns, specifically the patterns modeled by the standing-wave solution to
the wave equation.

Recognizing the specification of a fixed endpoint as a boundary condition
in the model of a standing wave enables two philosophical observations.
First, it provides another illustration of the distinction I drew above between
the variable-fixing and structure-specifying modes of understanding the ex-
planatory role of boundary conditions. In the variable-fixingmode, the ques-
tion of whether a given system is fixed or mobile at its endpoint is merely a
contingent fact about the system, but in the structure-specifyingmode, fixing
the endpoint generates a pattern of further conditions on models of the sys-
tem’s behavior accessible only through standing-wave modeling.

1. The relation between medium length and harmonic ordinal assignment differs de-
pending on whether one or both endpoints of the medium are closed (closed boundaries
are distinct from fixed boundaries). I consider only strings, whose harmonics are iden-
tical with open-ended tubes. Tubes that are closed at one end support harmonics under
the relation l 5 4L=n for odd n only; even n does not produce harmonics in such sys-
tems. Whether a pressure wave is produced in a tube with an open or a closed boundary
affects which pattern of harmonics it produces, but it does not affect the fact that the
standing wave is produced via reflection through an unmoving, unchanging, reduced-
dimension boundary point at the end of the vibratory length of the system. Thanks to
Robert Mullen, Michael Stoelzner, and Eric Winsberg for stimulating conversations on this
subject.
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This latter function builds to the second observation, which is that bound-
ary conditions enable the application of certain classes of model to a sys-
tem. This furnishes the first explanatory function of boundary conditions:

Boundary Conditions Set the Scope of Models. Specifying boundary
conditions can limit the scope of a model to a limited subclass of systems
to which a set of governing equations applies. Examples include fixing an
endpoint on a vibrating string in order to access standing-wave models and
setting a no-slip condition on a fluid flow.

It is widely recognized that specifying scope is a precondition for build-
ing explanations, and most of the accounts of model-based explanations ref-
erenced above address scope-setting explicitly. For instance, in her account
of how models explain, Bokulich has argued that model-based explanations
in particular require a “justificatory step,” in which an explainer “specif[ies]
what the domain of applicability of the model is, and show[s] that the phe-
nomenon in the real world to be explained falls within that domain” (2008,
226). In cases like specifying slip and endpoint fixing, changing the bound-
ary condition changes the scope, or domain of applicability, of the model.
It also changes what model is being used within the scope, for example, from
a traveling-wave model to a standing-wave model, which generates further
restrictions on how an explanation is to be constructed. In Bokulich’s terms,
would-be explainers will have to perform different demonstrations to show
that a phenomenon falls within the domain of a standing-wave model rather
than a traveling-wave model.

I have given the scope-setting example in terms of fixing the endpoint on
a wave medium, but the same point holds for setting a definite length on the
medium.Modeling a wave as moving through amedium of a fixed length, as
opposed to an indefinite or variable length, generates new information about
the system by restricting the possibilities for what happens at the system’s
edge. This occurs in two ways: (1) modeling a traveling wave as moving
along amedium of length L indicates where a givenwave’s vertical displace-
ment (and velocity and acceleration) will be when it reaches the edge of the
medium, provided the starting location of the wave is known, and (2) the ex-
istence of a definite L indicates that there will be certain wavelengths for
which constructive interference is possible, as well as indicating that if the
system were to evolve a standing wave, its first harmonic would be at wave-
length 2L/n.

Specifying that the medium has definite length and fixed endpoints en-
ables the application of the standing-wave model in the scope-setting man-
ner identified above, but it also provides an illustration of the second, related
explanatory function of boundary conditions. By generating rules about
what happens at the edges of models, boundary conditions enable the stable
application of governing equations to the interior behavior of a system.
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Boundary Conditions Enable Stable Descriptions of Law-Like Behav-
ior. Through specifying what occurs at the edge of a modeled system,
boundary conditions enable the production of stable descriptions of the
system’s interior behaviors.

This is the explanatory function of boundary conditions that Wilson con-
jures in his discussion of modeling billiard balls (see sec. 3.2 above). Else-
where in that discussion, he describes how “interior modeling equations
nonetheless demand crude descriptions of these exterior regions; otherwise
all the reasoning advantages offered by differential equations modeling will
vanish” (2017, 36). These “reasoning advantages” are an instance of the tit-
ular phenomenon in the book from which the passage was drawn: Wilson’s
Physics Avoidance (2017). “Physics avoidance” isWilson’s characterization
of the combination of idealizations, abstractions, and tools of mathematical
reasoning (e.g., variable reductions, renormalizations) that comprise the strat-
egy of systematically ignoring certain details of physical systems in order to
obtain stable descriptions of patterns of behavior. Imposing boundary con-
ditions onmodels of physical systems enacts this physics-avoidance strategy
in a notable way, namely, by parameterizing away certain particularities and
details of the complex behaviors that occur at the edges of physical systems.
This parameterization is necessary for producing models capable of describ-
ing patterns of behavior at all: if every detail of a physical phenomenon were
required to be represented in a model, the familiar and lamentable chaos of
oversubscription to detail would ensue.2

Returning to the wave example, fixing the endpoints of the wave medium
is what gives rise to the conceptual possibility of any standing wave what-
soever, as well as to the possibility of a flipped wave pulse. If the endpoints
of the medium move around, then there is no opportunity for the reflection
of a wave: as discussed above, the wave will dissipate due to energy loss
through an open boundary. It is impossible to access the system’s harmonics,
and any explanations they generate, without including fixed endpoints as a
component of the wave model. To put the point another way, without fixed
boundaries on the motion of a wave, there is no possibility for a standing
wave to be generated. The wave equation only dictates how a wave will prop-
agate. Because the very concept of a standing wave entails a notion of reflec-
tion through a fixed boundary, standing waves are strictly features of a system
with fixed endpoints. Without fixed endpoints, the notion of a standing wave

2. While many philosophers have written about the disadvantage of such approaches to
modeling, none have done so as eloquently as Jorge Luis Borges, whose one-paragraph
short story, “On Exactitude in Science” (1998), describes cartographers constructing ever-
larger models of geographic regions until constructing a “Map of the Empire whose size
was that of the Empire, and which coincided point for point with it.”
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ceases to make sense, like a circle without a circumference, a mountain with-
out a valley, or death without life.

This explanatory function of boundary conditions has been gestured at
before, notably in Cartwright’s (1999) account of “nomological machines.”
Cartwright’s machines are systems consisting of a “fixed (enough) arrange-
ment of components, or factors, with stable (enough) capacities that in the
right sort of stable (enough) environment will, with repeated operation, give
rise to the kind of regular behaviour that we represent in our scientific laws”
(50). In her view, these systems give rise to the conditions that permit scien-
tists to observe law-like behavior and apply nomological reasoning to draw
inferences and generate theories. Consequently, in her account, Cartwright’s
nomological machines perform the same sort of sanctioning as I am suggest-
ing that boundary conditions do: like nomological machines, boundary con-
ditions onmodels in physics specify regions where the lawswill apply (func-
tion 1) and enable laws to produce stable descriptions of interior behavior
(function 2).

Both the scope-setting and law-stabilizing functions of boundary condi-
tions serve as logical preconditions on the construction of model-based ex-
planations that appeal to the equations of motion inmathematical models, no
matter whether one interprets those equations as laws, governing equations,
or mathematical or causal regularities. The third function of boundary con-
ditions concerns their ability to generate new phenomena that can serve as
explanantia in such explanations.

Boundary Conditions Generate Phenomena. Placing boundary condi-
tions on a model of a physical system can produce novel phenomena that
cannot be predicted from or explained by equations of motion alone.

In the fluid-mechanical case discussed earlier, specifying whether slip oc-
curred in a modeled system enabled the application of Navier-Stokes models
to explanations of a system’s behavior. In cases in which slip occurs, spec-
ifying slip did not necessarily end an explanatory or modeling investigation.
Instead, slip itself became a target for the construction of models and expla-
nations. This is the origin of Prandtl’s boundary-layer models in fluid me-
chanics, which Morrison has argued are an importantly phenomenological
set of mathematical models in physics (Morrison 1999, 53–54). By this
she does not mean to draw a contrast with theory but rather to emphasize that
the Prandtl models were constructed specifically to generate the ability to
represent, examine, and explain the particular phenomenon of the flow of
a thin boundary layer at the edge of a bulk fluid flow. Prandtl initiated devel-
opment of the boundary-layer model in response to the mathematical intrac-
tability of the Navier-Stokes equations in instances when the boundary con-
dition specified partial slip.
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Analogously, in wave physics, the stable nodes and relations among har-
monics in standing waves are phenomena that are inaccessible from the
equations of motion of either traveling or standing waves alone. They appear
only through the specification of the boundary conditions on a standing wave
(determinate length and fixed endpoints), and the harmonic relation in partic-
ular has become a subject of mathematical and physical investigation in its
own right. It has given rise to an entire branch of mathematics, namely, har-
monic analysis, which includes the techniques of Fourier analysis and can
be applied to problems in optics, condensed matter, and quantum mechanics,
as well as synaptic behavior and tidal modeling.

I call attention to these theoretical investigations on boundary phenomena
not for their own sake but to emphasize that such phenomena exist and have
been initially noticed through the specification of boundary conditions. Fur-
ther, it is not uncommon for explanations of the sort that appeal to the math-
ematical models in which conditions are a component to appeal, also, to such
phenomena. For instance, explanations of the mathematical relations among
harmonics typically appeal to the location of nodes along the length of the
medium, using geometric reasoning to rationalize why nodes appear in cer-
tain locations on the medium and not others. Setting the acoustic boundary
conditions generates new phenomena that can be used in the construction of
explanations in acoustics. In this way, boundary conditions broaden and change
the available explanatory landscape.

4.3. A Final Function: Coordinating Models. The final explanatory
function of boundary conditions is somewhat distinct from the first three, be-
cause it considers the role of boundary conditions not only within a partic-
ular model but as a means of generating conceptual, mathematical, and ex-
planatory bridges between models in multimodel explanations:

Boundary Conditions Coordinate Multimodel Explanations. Through
the parameterization of messy edge phenomena, boundary conditions are
able to facilitate the exchange of information among different mathematical
models from different theoretical backgrounds in the construction of expla-
nations that draw on multiple modeling frameworks.

This function of boundary conditions is best explicated through a more ex-
tended example. In wave physics, an important class of explanations of
acoustic phenomena arises from questions like, “Why does a violin sound
like a violin?” In order to answer this question, acoustic physicists employ
not only models of the sound waves produced by the instrument(s) in ques-
tion but also models of the methods of production of those sound waves, that
is, of the structure of the violin. In violins, audible tones are produced when
the violinist generates a resonant vibration in one or more of the instrument’s
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strings. Vibrations in the string produce vibrations in the bridge, which is the
thin piece of wood that raises the four strings away from the body of the in-
strument. Vibrations in the bridge are then transmitted to the instrument’s
body through the bass bar and the sound post (see fig. 2). This induces vibra-
tions in the sound box, that is, the hollow in the wooden body of the instru-
ment, which amplifies the sound and transmits it into the air. Most acoustical
study of sound production in violins centers around questions of the relation-
ship between the instrument’s components, the materials from which they
are made, and the wave energy loss associated with each stage in the trans-
mission process described here.

When a violinist draws her bow along a properly tuned open A string, her
bow induces a vibration in the string. In the first instants of the string’s ex-
citation, the bow produces traveling waves at a variety of frequencies, which
propagate down the length of the string. However, as per the strictures of
wave physics discussed above, only certain frequencies will persist through
reflection at the fixed endpoint of the string, and only these frequencies par-
ticipate in the resultant, resonant vibration, which is recognizable as a stand-
ing wave in the string. That standingwave occurs at a fundamental frequency
of 440.0 Hz, creating a sound wave with a wavelength of approximately
78 cm.

The singular texture and shape of a note played on a violin arises from
the specific combination of fundamental and harmonic tones produced by
the particular bowing or plucking of that particular string and transmitted
through the materially contingent resonance chambers in the violin’s body.
This is what makes a note on a violin sound like a violin, and it is what makes

Figure 2. Anatomy of a violin’s sound box. Adapted from Creative Commons li-
censed sources.
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that violin sound like that violin. Every violin is unique, and instrument
makers and acousticians alike study the material properties of woods, var-
nishes, animal and metal strings, bow designs, rosin types, and other mate-
rial constituents of the instrument, as well as the acoustic impacts of differ-
ences in ambient temperature, humidity, and air pressure. Nonetheless, violins
tend to sound like violins, and the notes they produce generate different
sounds than notes in the same register produced by other instruments: a violin
does not sound like a piano, or a flute, or a tuning fork.

There is an apparent incompatibility between the model of the violin’s
sound transmission and the model of the string’s harmonics. Holding the
endpoints of the vibrating string fixed is necessary to generate a standing
wave, as discussed extensively above. However, holding the endpoints of
a violin string fixed is also antithetical to deriving explanations from the
transmission model: if the end of the violin string that touches the bridge
is fixed and still, the violin is silent—without a moving bridge, there is no
vibration to communicate to the sound post, sound board, instrument body,
or the air beyond. The two models contributing to an explanation of violin
acoustics are, it appears, incompatible, despite that both are fundamentally
about the production of sound waves.

Resolving this apparent incompatibility is a crucial step in developing a
theory of explanation. Similar problems have been encountered elsewhere in
explanation in physics, and philosophers of science have developed a variety
of coping mechanisms: one model of the system might be reduced to the
other, or one might turn out to emerge from the other as a limiting case,
so that the two models on which the explanations are based are no longer
competing over the same explanandum. The problem with this approach is
that reductive and emergent strategies for linking models or theories together
typically rely on some kind of separation along the length, time, or energy
scales involved in the component models, so that it is possible to cleave one
model off from another. In modeling a violin’s acoustics, however, there is
nomeaningful distinction between the length, time, and energy scales involved
in the waves described by the harmonics model and those described in the
structural model of the violin’s sound box. The problem is not one that can
be easily resolved by separation of levels or scales. In a similar vein, there is
no obvious ordering of the two models along the dimension of fundamentality.
The harmonics explanation is not about a more fundamental piece of the
sound production than the vibration-transmission explanation or vice versa.
But if the two explanations are about the same thing, and if they are both es-
sential to understanding violin acoustics, then there should be some way to
reconcile the two—especially since themodels that generate these explanations
are in fact often pooled together in physical explanations of violin acoustics.

The resolution, I believe, lies in the role of the fixed endpoint as a boundary
condition on the model of the string’s harmonics. In performing the second
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and third explanatory functions identified above, thefixed endpoint of the har-
monic model is essential in generating explanations of the violin’s harmonics.
However, it is a point of fact that the boundary at the bridge end of the violin
simply is not genuinely fixed: it wiggles around and is designed specifically to
do so, and it does so in a way that transmits vibrations from the bridge through
the various parts of the violin and out into the world.What fixing the endpoint
in the harmonic model does is to idealize away the wiggling, so that it is pos-
sible to produce a model of the string’s behavior that successfully generates
the harmonic relations of interest. Holding the endpoint fixed in the model
is an example of Wilson’s physics avoidance, in which the complicated dy-
namics of the actual points of contact between the string and the bridge are
suppressed in order to enable the production of patterns of behavior in the
model. Once those patterns of behavior (i.e., the harmonics) are obtained from
the harmonic model, it is possible to export them into the model of sound
transmission.

A small aside may prove useful. How information can be transmitted
across multiple models in a multimodel explanation is a subject of signifi-
cant recent philosophical interest, particularly as it pertains to the construc-
tion of multiscale models (e.g., as in Winsberg 2010; Green and Batterman
2017; Bursten 2018; Jhun 2019). In a recent article on multiscale modeling,
for instance, I argued that the use of a multiscale model is only justified to the
extent that the “conceptual strategies” connecting the component models in
the multiscale model are justified (Bursten 2018). These strategies draw on a
combination of mathematical, theoretical, and empirical background infor-
mation to rationalize a particular way of stitching multiple component mod-
els together. The model-connecting function of boundary conditions illus-
trated here may be understood as a type of such a conceptual strategy.
Acknowledging that setting the boundary condition in the harmonic model
is an instance of physics avoidance provides justification for exporting har-
monic phenomena into the transmission model. This is itself an instance of
Bokulich’s justificatory step in constructing model explanations. Treating
the contact between the violin’s string and bridge as a fixed endpoint, and
thus modeling it as a reduced-dimension boundary condition, are elements
in the construction of a conceptual bridge between the harmonics and trans-
mission models.

The specification of a boundary, and the encoding of that boundary into a
boundary condition on a mathematical model, are nearly universal precon-
ditions for the generation of explanations in the physical sciences. Further,
there are plenty of domains of physics that require careful study of how cer-
tain features of a system are represented sometimes as boundary conditions
and sometimes as robust physical behaviors with internal mechanics of their
own. The technique of idealizing away complex behavior at material bound-
aries by parameterizing that behavior is a crucial step in building successful
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multiscale models and resolving the problem of the tyranny of scales, as dis-
cussed by Batterman, Phillips, and others (Phillips 2001; Oden et al. 2006;
Batterman 2012). Indeed, it may be the case that most, if not all, explanations
in physics that employ multiscale models rely essentially on the use of bound-
ary conditions to coordinate among theoretical backgrounds. Even mecha-
nistic explanations, in which impulses are transmitted from one part of a system
to another, need a story about how the force from one billiard ball produces
motion in a second ball, and the microphysics of such interactions must be
reconciled with the macroscopic notion of a perfectly elastic collision.

To return to the account being developed here, the final explanatory
function of boundary conditions is to coordinate different models, often
with distinct theoretical backgrounds, into a single explanation. I have illus-
trated this connective function through the example of violin acoustics, but
a similar story could be told about the production of explanations that em-
ploy both Navier-Stokes and boundary-layer flow models in fluid mechanics
and across a variety of other contexts, as well. This function is distinct from
the first three in that it occurs only in the construction of explanations that em-
ploy multiple models, rather than being applicable to either single-model or
multiple-model explanations.

5. Conclusion. The four explanatory functions of boundary conditions
share a few common features: they articulate distinctive roles for boundary
conditions in the project of constructing physical explanations frommodels,
and those roles are derived from what I have called the structure-specifying
way of understanding boundary conditions, rather than the variable-fixing
way of understanding them. In explicating these explanatory roles I have
occasionally explicitly distinguished between attributing an explanatory fact
or feature to a boundary condition as opposed to a law. However, in other
places—for instance, in the explanation of the transmission model of a vio-
lin’s sound production—laws have been left largely out of the developing
picture. The four functions are meant to exist in a compatibilist pluralism
with one another: as seen in the examples given, some individual roles for
boundary conditions occupy multiple functions, and not every function is
instantiated in each application of a boundary condition to the development
of an explanation.

My motivating aim in articulating this account has been to argue against
the two Hempelian theses about the role of boundary conditions in physical
explanations, largely because these theses have been persistent in the philos-
ophy of science and pernicious to our understanding of explanation. The pic-
ture I have painted is one of boundary conditions as components of models
that can set the scope of law-like claims, rationalize the existence of stable
behavior in the interior of modeled physical systems, generate phenomena
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with explanatory value, and coordinate between models with differing the-
oretical backgrounds. This picture is intended as substantial evidence against
the Hempelian thesis 2, namely, that laws always play the more central role
in physical explanation.

Part of this evidence comes from the substantial, irreducible, and varied
functions of boundary conditions in the sorts of explanations I consider here,
but another bulk of the evidence comes from the argument contained in sec-
tion 3, which offered reasons to reject the conception of boundary conditions
as the non-law-like components of explanations. I closed that section with a
discussion point that is important enough that it merits restating here: the
role of contingent facts in scientific explanation is an important subject to
be able to reference in philosophical discussions of explanation, but it is a
mistake to refer to that subject by talking about the boundary conditions, or
initial and boundary conditions, of a system. Doing so invokes the variable-
fixing, rather than the structure-specifying, conception of boundary conditions,
which is the wrong one to attend in considering the function of boundary con-
ditions in physical models. It also has the consequence of steering attention
away from the varied and complex functions of boundary conditions in phys-
ical explanation. To paraphrase Butterfield: variable fixing is a matter of mere
happenstance, in some sense that structure specifying is not.

There is a more limited sense in which some contingent properties of ma-
terials may be represented by or interpreted as initial conditions in some
physical models, insofar as initial conditions specify the state of affairs at
the outset of the evolution of a dynamical system. This constitutes evidence
against thesis 1, since initial conditions can be understood as occupying some
of the same conceptual territory as contingent facts. However, just as bound-
ary conditions are well-definedmathematical objects, so are initial conditions;
likewise, just as boundary-value problems carve out a host of interesting chal-
lenges for physical modeling and its epistemology, so may initial-value prob-
lems. I have not conducted a study on initial conditions to parallel the present
considerations on boundary conditions, but it seems evident that initial condi-
tions will not function to rationalize stable behavior, generate phenomena,
or coordinate models in the same manner as boundary conditions. That said,
they may, in some sense, limit scope in a parallel fashion.

However, important distinctions remain between initial conditions and
boundary conditions. Unlike initial conditions, boundary conditions place
enduring constraints on the behavior of wave and fluid systems, fixing the
spatial regions where the laws will apply. It is not just the wave equation,
but instead the paired team of the wave equation coupled with fixed end-
points, that drives explanations of harmonics. The notion of reflection through
a boundary point is crucial to the generation of a standingwave; remove it, and
the only options left to the wave are propagation and dissipation, neither of
which will produce a violin’s note. In modeling the evolution of a standing
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wave, the initial condition specifies the amplitude and the location of the initial
traveling wave, which resolves into the standing wave once it reflects through
the fixed boundary points. True enough, differences in initial conditions can
affect the amplitude and harmonic ordinal of the resulting wave, but differences
in initial conditions do not constrain the possible frequencies of the standing
wave. To put the point in terms of the violin example, an open A string will al-
ways play A as its fundamental tone, no matter whether it is bowed heavily or
lightly, next to the bridge or up on the neck of the instrument. The boundary
endures, and with it, the boundary conditions on the mathematical model. This
indicates that there is a meaningful difference between the explanatory roles of
initial conditions, on the one hand, and of boundary conditions, on the other.

Taken together, these observations are intended as a corrective to the ca-
nonical philosophical use of the term “boundary condition” in discussions of
scientific explanation. Boundary conditions are mathematical objects that
are components of models in physics. They serve at least four distinct ex-
planatory functions: scope setting, law stabilizing, phenomena generating,
and model coordinating. These functions are not mutually exclusive, and
more work remains to be done in articulating how the different functions re-
late to one another. Nonetheless, the functions can be slotted into a variety of
contemporary accounts of explanation, and they are particularly apt for use
in accounts of model-based explanation, where they can be interpreted as
supporting the generation of explanatory patterns in models. Finally, to mis-
take boundary conditions for contingent facts is, at best, a bad joke.

REFERENCES

Achinstein, Peter. 1971. Law and Explanation: An Essay in the Philosophy of Science. Oxford:
Oxford University Press.

Batterman, Robert W. 2001. The Devil in the Details: Asymptotic Reasoning in Explanation, Re-
duction and Emergence. Oxford: Oxford University Press.

———. 2012. “The Tyranny of Scales.” InOxford Handbook of Philosophy of Physics, ed. Robert W.
Batterman, 255–86. Oxford: Oxford University Press.

Batterman, Robert W., and Collin C. Rice. 2014. “Minimal Model Explanations.” Philosophy of
Science 81 (3): 349–76.

Bokulich, Alisa. 2008. “Can Classical Structures Explain Quantum Phenomena?” British Journal
for the Philosophy of Science 59 (2): 217–35.

———. 2013. “Explanatory Models versus Predictive Models: Reduced Complexity Modeling in
Geomorphology.” In EPSA11 Perspectives and Foundational Problems in Philosophy of Sci-
ence, 115–28. Dordrecht: Springer.

———. 2017. “Models and Explanation.” In Springer Handbook of Model-Based Science, ed.
Lorenzo Magnani and Tommaso Bertolotti, 103–18. Dordrecht: Springer.

Borges, Jorge Luis. 1998. “On Exactitude in Science.” In Collected Fictions, ed. Andrew Hurley,
325. London: Penguin.

Braithwaite, Richard Bevan. 1955. Scientific Explanation: A Study of the Function of Theory, Prob-
ability and Law in Science. Cambridge: Cambridge University Press.

Bursten, Julia R. 2018. “Conceptual Strategies and Inter-theory Relations: The Case of Nanoscale
Cracks.” Studies in History and Philosophy of Science B 62:158–65.

Butterfield, Jeremy. 2014. “On Under-determination in Cosmology.” Studies in History and Philos-
ophy of Science B 46:57–69.

256 JULIA R. S. BURSTEN



Cartwright, Nancy. 1983. How the Laws of Physics Lie. Cambridge: Cambridge University Press.
———. 1999. The Dappled World: A Study of the Boundaries of Science. Cambridge: Cambridge

University Press.
Dretske, Fred I. 1977. “Laws of Nature.” Philosophy of Science 44 (2): 248–68.
Earman, John, Clark Glymour, and Sandra Mitchell. 2003. Ceteris Paribus Laws. Dordrecht:

Springer.
French, Steven, and Juha Saatsi. 2018. “Symmetries and Explanatory Dependencies in Physics.” In

Explanation beyond Causation: Philosophical Perspectives on Non-causal Explanations, ed.
Alexander Reutlinger and Juha Saatsi, 185–205. Oxford: Oxford University Press.

Green, Sara, and Robert Batterman. 2017. “Biology Meets Physics: Reductionism and Multi-Scale
Modeling of Morphogenesis.” Studies in History and Philosophy of Science C 61:20–34.

Hempel, Carl G. 1942. “The Function of General Laws in History.” Journal of Philosophy 39 (2):
35–48.

Hempel, Carl G., and Paul Oppenheim. 1948. “Studies in the Logic of Explanation.” Philosophy of
Science 15 (2): 135–75.

Jhun, Jennifer. 2019. “Economics, Equilibrium Methods, and Multi-Scale Modeling.” Erkenntnis.
https://doi.org/10.1007/s10670-019-00113-6.

Kitcher, Philip. 1981. “Explanatory Unification.” Philosophy of Science 48 (4): 507–31.
Lange, Marc. 2009. Laws and Lawmakers: Science, Metaphysics, and the Laws of Nature. Oxford:

Oxford University Press.
Morrison, Margaret. 1999. “Models as Autonomous Agents.” In Models as Mediators: Perspec-

tives on Natural and Social Science, ed. Mary Morgan and Margaret Morrison, 38–65. Cam-
bridge: Cambridge University Press.

———. 2015. Reconstructing Reality: Models, Mathematics, and Simulations. Oxford: Oxford
University Press.

———. 2018. “Turbulence, Emergence and Multi-Scale Modelling.” Synthese. https://doi.org/10
.1007/s11229-018-1825-5.

Nagel, Ernest. 1961. The Structure of Science: Problems in the Logic of Scientific Explanation.
New York: Harcourt, Brace & World.

Oden, J. Tinsley, Ted Belytschko, Jacob Fish, T. J. Hughes, Chris Johnson, David Keyes, Alan
Laub, Linda Petzold, David Srolovitz, and S. Yip. 2006. “Revolutionizing Engineering Sci-
ence through Simulation.” Blue Ribbon Panel Report 65, National Science Foundation,
Alexandria, VA.

Phillips, Rob. 2001. Crystals, Defects and Microstructures: Modeling across Scales. Cambridge:
Cambridge University Press.

Potochnik, Angela. 2017. Idealization and the Aims of Science. Chicago: University of Chicago
Press.

Rueger, Alexander. 2005. “Perspectival Models and Theory Unification.” British Journal for the
Philosophy of Science 56 (3): 579–94.

Salmon, W. C. 1984. Scientific Explanation and Causal Structure of the World. Princeton, NJ:
Princeton University Press.

Sykora, Jeffrey. 2019. “Fluid Mechanics, Models, and Realism: Philosophy at the Boundaries of
Fluid Systems.” PhD diss., University of Pittsburgh.

van Fraasen, Bastiaan. 1980. The Scientific Image. Oxford: Oxford University Press.
Wilson, Mark. 2017. Physics Avoidance: Essays in Conceptual Strategy. Oxford: Oxford Univer-

sity Press.
Winsberg, Eric. 2010. Science in the Age of Computer Simulation. Chicago: University of Chicago

Press.
Woodward, James. 2003. Making Things Happen: A Theory of Causal Explanation. Oxford: Ox-

ford University Press.

BOUNDARY CONDITIONS IN PHYSICAL SCIENCES 257

https://doi.org/10.1007/s10670-019-00113-6
https://doi.org/10.1007/s11229-018-1825-5
https://doi.org/10.1007/s11229-018-1825-5

	The Function of Boundary Conditions in the Physical Sciences
	Repository Citation

	The Function of Boundary Conditions in the Physical Sciences
	Digital Object Identifier (DOI)
	Notes/Citation Information

	tmp.1623555291.pdf.xBqbH

