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Abstract: Lung cancer is the leading cause of cancer-related death in the United States. 

Here, we evaluated the potential clinical utility of soluble human epidermal growth factor 

receptor 2 (sHER2) for the risk assessment, screening, and diagnosis of non-small cell  

lung cancer (NSCLC) using an unmatched case-control study design. Serum sHER2 

concentrations were measured by immunoassay in 244 primary NSCLC cases and  

218 healthy controls. Wilcoxon rank-sum tests, logistic regression models, and receiver 

operating characteristic plots were used to assess whether sHER2 is associated with lung 

cancer. Median serum sHER2 concentrations are higher in patients with adenocarcinoma 

than squamous cell carcinoma regardless of gender, and sHER2 is a weak, independent 

biomarker of adenocarcinoma, but not of squamous cell carcinoma, adjusted for age and 

gender. The age-adjusted relative risk (odds) of adenocarcinoma is 3.95 (95% CI: 1.22, 

12.81) and 7.93 (95% CI: 2.26, 27.82) greater for women and men with high sHER2 

concentrations (≥6.60 ng/mL) vs. low sHER2 concentrations (≤1.85 ng/mL), respectively. 

When adjusted for each other, sHER2, age, and gender discern healthy controls from 

patients with primary adenocarcinomas of the lung with 85.9% accuracy. We conclude that 

even though serum sHER2 is not a strong, stand-alone discriminatory biomarker of 

adenocarcinoma, sHER2 may be a useful, independent covariate in multivariate risk 

assessment, screening, and diagnostic models of lung cancer. 

Keywords: soluble human epidermal growth factor receptor 2 (sHER2); non-small cell 

lung cancer; adenocarcinoma; squamous cell carcinoma (SCC); risk assessment; screening; 

early detection; diagnosis 

 

1. Introduction 

Lung cancer is the leading cause of cancer-specific mortality for men and women in the U.S. [1–3]. 

The National Cancer Institute’s (NCI) Surveillance Epidemiology and End Results program estimated 

that 226,160 new lung cancer cases were diagnosed in the U.S. in 2012, and that 160,340 individuals 

died of this disease. Of all lung cancers, 99% consist of either small cell carcinomas (13.9%) or  

non-small cell carcinomas (85.1%). Histological subtypes of non-small cell lung cancer (NSCLC) 

include adenocarcinomas (37.5%), squamous and transitional cell carcinomas (19.8%), large cell 

carcinomas (3.3%), and other tumor subtypes (24.5%). Patients diagnosed with localized, early stage 

lung cancer have a 5-year survival rate of 49.5% and may be cured by surgical resection [4,5]. 

However, 77% of lung cancer patients have advanced stage disease at diagnosis, and their 5-year 

survival rate is only 20.6% for disease that has spread to the regional lymph nodes or 2.8% for disease 

that has metastasized to distant anatomical sites. Because patients who are diagnosed with early stage 

lung cancer have a significantly better prognosis, screening (i.e., early detection) represents a practical 

public health approach for decreasing lung cancer mortality. 

Throughout the 1960s and 1970s, chest x-ray (CXR) alone or in conjunction with sputum cytology 

were evaluated to detect early stage lung cancer [4,5]. To assess the feasibility, validity, and efficacy 

of CXR for lung cancer screening, the NCI sponsored the Prostate, Lung, Colorectal, and Ovarian 
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(PLCO) randomized screening trial, which was designed with a “no-screening” study arm and 89% 

power to detect a 10% reduction in lung cancer mortality [6,7]. While awaiting PLCO trial results [8,9], 

contemporary researchers have focused on developing low dose computed tomography and biomarkers 

as potential lung cancer screening modalities [10–16]. 

The human epidermal growth factor receptor 2 (HER2/ERBB2/neu) proto-oncogene encodes a cell 

surface receptor tyrosine kinase (RTK) that functions to regulate cell proliferation and survival [17]. 

HER2 amplification and protein overexpression have been implicated in the etiology and pathogenesis 

of several human malignancies including lung cancer [18]. HER2 is overexpressed in 10–20% of 

NSCLC cases and in perhaps as many as 30% of lung adenocarcinomas [19–23], where overexpression 

is associated with adverse tumor characteristics and poor patient prognosis [24,25]. In addition to  

full-length HER2, cells synthesize “soluble” HER2 (sHER2) isoforms [26–30]. These sHER2 isoforms 

are produced either by alternate mRNA splicing or by proteolytic cleavage, and, are either secreted or 

proteolytically shed from the plasma membrane into extracellular body fluids. Alternate splicing 

results in mRNA transcripts that encode 68-kDa [30] and 100-kDa [28] sHER2 isoforms; whereas, 

proteolytic cleavage results in 105-kDa [26] and 110-kDa [27] shed isoforms of sHER2 that 

encompass only extracellular subdomains of this RTK. While it is widely assumed that the 105-kDa 

sHER2 isoform represents the major constituent of human blood, a careful biochemical characterization 

of serum sHER2 isoforms has not yet been performed. Nonetheless, multiple assays to quantify sHER2 

have been developed and used to assess the potential clinical utility of serum sHER2 in cancer patients 

across disease sites [31,32]. In particular, serum sHER2 has been examined in preliminary studies of 

lung cancer, but has not yet been rigorously validated as a potential risk assessment, screening, and/or 

diagnostic biomarker. Initial reports suggest that serum sHER2 is elevated in 5–64% of lung cancer 

cases [23,32–36] and may be elevated many months prior to clinical diagnosis [33].  

In this study, we evaluated 244 primary NSCLC cases and 218 healthy controls using an unmatched, 

retrospective, case-control study design to determine whether age and/or gender are confounders or 

effect modifiers of the relationship between sHER2 and NSCLC. We observed that sHER2 

concentrations are associated with age among healthy men, and differ between healthy men and 

women. Although sHER2 concentrations do not differ between healthy controls and patients with 

NSCLC overall, they are slightly higher in patients with adenocarcinoma regardless of gender, but not 

squamous cell carcinoma. Logistic regression models further demonstrate that sHER2 is a weak, 

independent classifier of adenocarcinoma but not of squamous cell carcinoma, and when adjusted for 

age and gender, the risk of adenocarcinoma increases with higher sHER2 concentrations. Moreover, 

when mutually adjusted for each other, sHER2, age, and gender distinguish healthy controls from 

patients with adenocarcinoma with 85.9% accuracy. These data suggest that albeit serum sHER2 is not 

a strong, stand-alone discriminatory classifier of adenocarcinoma, its independence of age and gender 

may confer some limited utility to sHER2 as a covariate in multivariate models for the risk assessment, 

screening, and/or diagnosis of lung adenocarcinoma. 
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2. Materials and Methods 

2.1. Serum Samples 

Serum samples were collected at the Mayo Clinic, Olmsted County, Rochester, MN, and stored  

at −80 °C, as described in detail previously, from 218 healthy controls between 1981 to 1984, and  

244 primary NSCLC cases between 1997 to 2002 through a “Normal Values Study” [37] and 

“Comprehensive Lung Cancer Resource” [38], respectively; both protocols were approved by the 

Mayo Clinic Institutional Review Board. Written informed consent was obtained from each participant 

and all biospecimens were redacted of the patient’s identity. Each control was annotated with age and, 

if female, menopausal status at venipuncture; and each lung cancer case was annotated with age, tumor 

histological subtype, and, if female, menopausal status at diagnosis. Information concerning disease 

stage and tumor grade were unavailable. The cases included 79 patients with squamous cell carcinoma 

(SCC) and 165 with adenocarcinoma. 

2.2. sHER2 ELISA 

Serum sHER2 concentrations were measured using the 
sp185

HER-2 ELISA (Bender MedSystems 

Diagnostics GmbH, Vienna, Austria) according to the manufacturer’s instructions. The manufacturer 

reports an analytical detection limit of 0.06 ng/mL sHER2 (two standard deviations above the mean 

absorbance observed with sample buffer), mean intra-assay coefficient of variation of 1.9%, mean 

inter-assay coefficient of variation of 5.8%, and mean spike recovery of 89% with serum for this 

ELISA. In addition, the manufacturer reports no significant loss of serum sHER2 immunoreactivity 

after five freeze-thaw cycles at −20 °C or following a 24 h storage period at −20 °C, 2–8 °C, 24 °C, or  

37 °C, indicating that sHER2 is not an inherently unstable serum protein.  

All serum samples in the present study were initially quantified in quadruplicate at a 1:20 dilution. 

Serum samples yielding absorbance values outside the linear range of the assay’s standard curve, 

below the biological detection limit (four standard deviations above the mean absorbance observed 

with sample buffer), or with a coefficient of variation ≥20% were re-assayed at either a 1:10, 1:40, 

1:80, or 1:120 dilution to obtain accurate estimates of serum sHER2 concentrations. We report a mean  

inter-assay analytical detection limit of 0.02 ng/mL, mean inter-assay biological detection limit of  

0.05 ng/mL, mean intra-assay coefficient of variation of 8.27% and 8.45% with normal serum sample 

controls estimated to contain 3.2 and 7.7 ng/ml sHER2, respectively, and mean inter-assay coefficient 

of variation of 4.11% and 2.26% with low and high quality control standards supplied by the 

manufacturer estimated to contain 20.9 and 146.6 ng/ml sHER2, respectively. 

2.3. Statistical Analysis 

Statistical analyses were performed using “R” (R Foundation for Statistical Computing, Vienna, 

Austria. http://www.R-project.org) and SAS version 9.2 (SAS Institute, Cary, NC, USA). Descriptive 

statistics were calculated, and the nonparametric Wilcoxon rank-sum test was used to determine 

whether sHER2 concentrations differ significantly between healthy controls and patients with primary 

NSCLC, before and after stratification by gender, tumor histology, and menopausal status. 

Nonparametric local weighted regression and Spearman’s rank-order correlation coefficients (ρ) were 
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calculated to determine whether associations exist between sHER2 concentrations and age for healthy 

controls or patients with NSCLC by gender. Univariate and multivariate logistic regression analyses 

were performed to assess whether log-transformed sHER2 concentrations, age, and gender are 

associated with lung cancer. Logistic regression models were compared for their ability to discriminate 

NSCLC from control patients and adenocarcinoma from SCC tumors using the area under the curve 

(AUC) of receiver operating characteristic (ROC) plots, and to assess the age- and gender-adjusted 

effect of sHER2 on cancer risk. Statistical adjustment for multiple comparisons was performed with 

the step-up procedure developed by Benjamini and Hockberg (1995) to control the false discovery rate 

(FDR) [39,40]. FDR p-values <0.05 differ significantly between diagnostic groups; however, because 

this is an exploratory hypothesis generating study of a small sample size, after stratification by gender 

and tumor histological subtype, FDR p-values between 0.10 and 0.05 were considered to be of 

borderline significance. 

3. Results 

3.1. sHER2 Concentrations Are Associated with Age in Healthy Men 

This unmatched, retrospective, case-control study consists of 218 healthy controls (81 men,  

137 women) and 244 patients with primary NSCLC (139 men, 105 women). The healthy men and 

women in this study are younger (median age: 47 and 38 years, respectively) than the men and women 

with NSCLC (median age: 68 and 64 years, respectively, p < 0.0001; FDR p < 0.0005, Table 1). Since 

the cases and controls are unbalanced with regard to both gender and age, these parameters represent 

potential confounders or effect modifiers of the association between serum sHER2 concentrations and 

a classification of NSCLC. Therefore, we assessed whether sHER2 is associated with age among healthy 

participants or patients with NSCLC in this study population by gender (Figure 1). These analyses 

show that sHER2 concentrations are not associated with age among healthy women (Figure 1(B);  

ρ = 0.055; p = 0.515; FDR p = 0.649), women with NSCLC (Figure 1(D); ρ = −0.082; p = 0.405; FDR 

p = 0.537), or men with NSCLC (Figure 1(C); ρ = −0.110; p = 0.197; FDR p = 0.298). In contrast, 

sHER2 concentrations decrease with age in healthy men (Figure 1(A); ρ = −0.354; p = 0.001; FDR  

p = 0.004). Furthermore, sHER2 concentrations do not differ between healthy premenopausal vs. 

postmenopausal women (p = 0.731; FDR p = 0.824), or between healthy premenopausal (p = 0.966; 

FDR p = 0.966) and postmenopausal (p = 0.102; FDR p = 0.169) women vs. women with NSCLC of 

the same menopausal status (Table 1). Stratification of NSCLC cases by histological subtype further 

shows that sHER2 concentrations are not associated with age among all patients with SCC (ρ = −0.045; 

p = 0.692; FDR p = 0.815) or adenocarcinoma (ρ = −0.063; p = 0.421; FDR p = 0.544), men with SCC 

(ρ = −0.095; p = 0.530; FDR p = 0.653) or adenocarcinoma (ρ = −0.113; p = 0.281; FDR p = 0.414), and 

women with SCC (ρ = −0.008; p = 0.963; FDR p = 0.966) or adenocarcinoma (ρ = −0.042; p = 0.726; 

FDR p = 0.824).  
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Table 1. Comparison of age and serum concentrations of soluble human epidermal growth 

factor receptor 2 (sHER2) in healthy controls vs. lung cancer cases. Age and serum sHER2 

concentrations are compared between healthy men and women (i.e., controls) vs. patients 

with lung cancer by gender, and by menopausal status among healthy women. 

Patient Groups 
Median Age 

(Range) in years 
Wilcoxon/FDR P values 

       Healthy Men & Women (n = 218) 43 (21–79) 
<0.0001/<0.0005 

    

Lung Cancer Patients (n = 244) 66 (35– 88)     

       
Healthy Men (n = 81) 38 (24–79) 

<0.0001/<0.0005 
 

0.061/0.112 

  

Men with Lung Cancer (n = 139) 68 (35–88)   

0.038/0.078      Healthy Women (n = 137) 47 (21–76) 
<0.0001/<0.0005 

  

Women with Lung Cancer (n = 105) 64 (36–83)    

       Healthy Premenopausal Women (n = 79) 33 (21–57) 
0.003/0.009 

    

Premenopausal Women with Lung Cancer 
(n=11) 

42 (33–62)     

       Healthy Postmenopausal Women (n = 56) 59 (45–76) 
<0.0001/<0.0005 

    

Postmenopausal Women with Lung Cancer 
(n=90) 

66 (42–83)     

       
Patient Groups 

Median sHER2  
(Range) in ng/mL 

Wilcoxon/FDR P values 

       Healthy Men & Women (n = 218) 2.91 (0.94– 68.60) 
0.172/0.276 

    

Lung Cancer Patients (n = 244) 3.06 (1.15–138.63)     

       
Healthy Men (n = 81) 3.09 (1.18–68.60) 

0.573/0.690 
 

0.022/0.051 

  

Men with Lung Cancer (n = 139) 3.04 (1.15– 77.03)   

0.958/0.966      Healthy Women (n = 137) 2.71 (0.94–5.80) 
0.052/0.098 

  

Women with Lung Cancer (n = 105) 3.07 (1.33–138.63)    

       Healthy Premenopausal Women (n = 79) 2.82 (0.94–16.44) 
0.966/0.966 

 

0.731/0.824 

  

Premenopausal Women with Lung Cancer 
(n=11) 

2.74 (1.33–4.76)   

0.324/0.440      Healthy Postmenopausal Women (n = 56) 2.61 (1.11– 18.01) 
0.102/0.169 

  

Postmenopausal Women with Lung Cancer 
(n=90) 

3.13 (1.43–38.63)    

       

Figure 1. Log soluble human epidermal growth factor receptor 2 (sHER2) concentrations 

vs. age. Log-transformed serum sHER2 concentrations are plotted against age (years) with 

nonparametric regression curves for healthy men (a), men with non-small cell lung cancer 

(b), healthy women (c), and women with non-small cell lung cancer (d). Spearman 

correlations (rho) and p-values are given for each comparison. 
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Figure 1. Cont. 

 

3.2. sHER2 Concentrations are Higher in Patients with Adenocarcinoma  

Although sHER2 concentrations do not differ between healthy controls vs. patients with NCSLC 

(Table 1; p = 0.172; FDR p = 0.276), men vs. women with NSCLC (p = 0.958; FDR p = 0.966), or 

healthy men vs. men with NSCLC (Figure 2(A); p = 0.573; FDR p = 0.690) in univariate analyses, they 

are slightly higher in healthy men than healthy women (p = 0.022; FDR p = 0.051). In addition, sHER2 

concentrations trend towards being higher in women with NSCLC compared to healthy women 

(Figure 2(B); p = 0.052; FDR p = 0.098). 

Figure 2. Scattergrams of sHER2 concentrations in healthy controls and patients with lung 

cancer. Serum sHER2 concentrations are compared between healthy men vs. men with 

non-small cell lung cancer (a), healthy women vs. women with non-small cell lung cancer 

(b), men with squamous cell carcinoma (SCC) vs. adenocarcinoma (c), and women with 

SCC vs. adenocarcinoma (d). Each data point represents the median sHER2 concentration 

for one serum sample assayed in quadruplicate. The horizontal lines indicate the median 

serum sHER2 concentration for each group of participants. Horizontal lines in the box plot 

represent the first, second (median), and third quartiles; whiskers extend from the box to a 

distance of 1.5 interquartile ranges. 
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Figure 2. Cont. 

 

Table 2. Serum sHER2 concentrations by tumor histology. Serum sHER2 concentrations 

are compared between lung cancer cases with squamous cell carcinomas vs. adenocarcinomas 

by gender, and healthy men and women (i.e., controls) vs. patients with squamous cell 

carcinomas and adenocarcinomas by gender. 

Patient Groups 
Median sHER2 

(Range) in ng/mL 

Wilcoxon/FDR  

P values 

     Men & Women with Squamous Cell Carcinoma (n = 79) 2.57 (1.15–40.01) 
0.004/0.012   

Men & Women with Adenocarcinoma (n = 165) 3.21 (1.33–138.63)   
     Men with Squamous Cell Carcinoma (n = 46) 2.63 (1.15–40.01) 

0.035/0.074   
Men with Adenocarcinoma (n = 93) 3.21 (1.62–77.03)   
     Women with Squamous Cell Carcinoma (n = 33) 2.51 (1.43–9.41) 

0.044/0.086   
Women with Adenocarcinoma (n = 72) 3.21 (1.33–138.63)   
     Healthy Men & Women (n = 218) 2.91 (0.94–68.60) 

0.302/0.421   
Men & Women with Squamous Cell Carcinoma (n = 79) 2.57 (1.15–40.01)   
     Healthy Men & Women (n = 218) 2.91 (0.94– 68.60) 

0.014/0.035   
Men & Women with Adenocarcinoma (n = 165) 3.21 (1.33–138.63)   
     Healthy Men (n = 81) 3.09 (1.18–68.60) 

0.084/0.144  
0.794/0.877 Men with Squamous Cell Carcinoma (n = 46) 2.63 (1.15–40.01)  

Men with Adenocarcinoma (n = 93) 3.21 (1.62–77.03)   
     Healthy Women (n = 137) 2.71 (0.94–35.80) 

0.838/0.906  
0.008/0.022 Women with Squamous Cell Carcinoma (n = 33) 2.51 (1.43–9.41)  

Women with Adenocarcinoma (n = 72) 3.21 (1.33–138.63)   
     

Table 3. Unadjusted relative risk of tumor histological subtype associated with serum 

sHER2 concentration. Unadjusted odds ratios (OR) and 95% confidence intervals (95% 

CI) comparing adenocarcinomas vs. squamous cell carcinomas are shown for quintiles of 

serum sHER2 concentration by gender. 

Quintiles of Serum sHER2 

Concentration 
OR (95% CI) for Women OR (95% CI) for Men 

    ≤1.85 ng/mL   referent   1.01 (0.57, 1.78)  
 2.40 ng/mL   1.48 (1.09, 2.02)   1.49 (0.79, 2.82)  
 3.00 ng/mL   2.06 (1.16, 3.66)   2.08 (0.94, 4.62)  
 3.65 ng/mL   2.77 (1.23, 6.22)   2.79 (1.05, 7.74)  
 ≥6.60 ng/mL   6.74 (1.48, 30.67)   6.78 (1.36, 33.79)  
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Further comparison of NSCLC cases by histological subtype shows that serum sHER2 concentrations 

are slightly higher in patients with adenocarcinoma than SCC among men (Figure 2(C); Table 2;  

p = 0.035; borderline significance, FDR p = 0.074), among women (Figure 2(D); p = 0.044; borderline 

significance, FDR p = 0.086), and both genders combined (p = 0.004; FDR p = 0.012). Although 

sHER2 concentrations do not differ between healthy controls and patients with SCC among men 

(borderline significance, p = 0.084; FDR p = 0.144) or among women (p = 0.838; FDR p = 0.906), 

sHER2 concentrations are higher in women (p = 0.008; FDR p = 0.022) but not in men with 

adenocarcinoma (p = 0.794; FDR p = 0.877) compared to healthy controls of the same gender. Logistic 

regression models and ROC curves (Figure 3) demonstrate that unadjusted for age, log-transformed 

sHER2 concentrations have a statistically significant, but weak ability to differentiate patients with 

adenocarcinoma from SCC among men (AUC = 0.610) and women (AUC = 0.623). Furthermore, both 

men and women with high serum sHER2 concentrations have higher risk of having adenocarcinoma 

than SCC (Table 3). 

Figure 3. Receiver operating characteristic curves for log serum sHER2 concentrations of 

adenocarcinoma vs. squamous cell carcinoma. ROC curves for log-transformed sHER2 

concentrations are shown comparing patients with adenocarcinoma vs. SCC for men (blue 

ROC curve labeled M) and women (red ROC curve labeled W), respectively. 

 

3.3. sHER2 is a Weak, Independent Discriminatory Biomarker of Adenocarcinoma  

Univariate logistic regression models show that both age (p < 0.0001; FDR p < 0.0005) and gender 

(p < 0.0001; FDR p < 0.0005), but not log-transformed sHER2 concentrations (p = 0.191; FDR  

p = 0.298) are associated with NSCLC when adenocarcinoma and SCC are combined (Table 4). 

Likewise, age (p < 0.0001; FDR p < 0.0005) and gender (p = 0.002; FDR p = 0.007), but not sHER2 

concentrations (p = 0.290; FDR p = 0.415) are associated with SCC. In contrast, sHER2 concentrations 

(p = 0.026; borderline significance, FDR p = 0.057), age (p < 0.0001; FDR p < 0.0005), and gender  

(p = 0.0003; FDR p = 0.0012) are associated with adenocarcinoma. Multivariate logistic regression 

models further demonstrate that log-transformed sHER2 remains independently associated with 

adenocarcinoma (p = 0.022; FDR p = 0.051), but not SCC (p = 0.891; FDR p = 0.945) or all NSCLC 
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tumors combined (borderline significance, p = 0.082; FDR p = 0.144) when adjusted for age and 

gender. ROC curves derived from univariate logistic regression models illustrate that age is a strong 

discriminator of healthy controls from all NSCLC tumors combined (AUC = 0.858), as well as cases 

diagnosed with SCC (AUC = 0.895) or adenocarcinoma (AUC = 0.840), potentially reflecting 

ascertainment bias; while gender is a weak discriminator of all NSCLC tumors combined  

(AUC = 0.594), SCC (AUC = 0.601) or adenocarcinoma (AUC = 0.591) (Table 4 and Figure 4).  

In contrast, log-transformed sHER2 alone does not discriminate healthy controls from all NSCLC 

cases combined (AUC = 0.537) or SCC (AUC = 0.539), but weakly discriminates adenocarcinoma 

(AUC = 0.573). When mutually adjusted for each other, sHER2, age, and gender yield 85.9% accuracy 

(AUC) to discern healthy controls from patients with lung adenocarcinoma across all cut-off 

thresholds of sHER2 (Table 4). Notably, the ability to discern healthy controls from patients with 

adenocarcinoma is contributed mainly by age rather than sHER2 or gender (AUC = 0.840 with age 

alone vs. AUC = 0.859 with age, gender, and sHER2 combined). These ROC curves further 

demonstrate that gender is an important confounder of age for discerning healthy controls from 

patients with adenocarcinoma, but not SCC (compare Figure 4(F) to 4(E) and 4(I) to 4(H)), whereby 

being male is a stronger determinant of adenocarcinoma than being female. For example, ROC curves 

that include age and sHER2 (or age alone, Figure 4(F)) show statistically significantly better 

discrimination of healthy controls vs. patients with adenocarcinoma among men (AUC = 0.91) than 

among women (AUC = 0.78) (Figure 4(I)); notably, the sensitivity to detect adenocarcinoma is 60% 

for men, but only 30% for women at 95% specificity (Figure 4(I)). Adjusted for age and gender, the 

risk of adenocarcinoma increase with higher serum sHER2 concentrations (Table 5). For example, 

adjusted for age, the odds of adenocarcinoma are 3.95 (95% CI: 1.22, 12.81) among women and 7.93 

(95% CI: 2.26, 27.82) among men at a value of >6.60 ng/mL sHER2 compared to the referent value of 

<1.85 ng/mL. The confounding effect of gender on age is not observed in logistic regression models 

that include age and sHER2 (or age alone) for patients with SCC (Figure 4(E)); i.e., men (AUC = 0.91) 

and women (AUC = 0.91) with SCC are discriminated equally well from healthy controls of the same 

gender by age alone (Figure 4(H)). Finally, no evidence of effect modification by age or gender on the 

association between serum sHER2 and NSCLS, adenocarcinoma, or SCC is observed in this dataset 

(not shown). Taken together, these analyses show that age and gender are classifiers of NSCLC, SCC, 

and adenocarcinoma; as well as confounders of the association between sHER2 and adenocarcinoma 

in this dataset. Nevertheless, serum sHER2 remains a weak, statistically significant, independent 

discriminatory biomarker of lung adenocarcinoma, but not of SCC, after adjusting for age and gender. 
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Table 4. Logistic regression models of non-small cell lung cancer (NSCLC) with age, 

gender, and log-transformed serum sHER2 concentrations as covariates. Univariate and 

multivariate logistic regression models are shown of men and women with lung cancer 

compared to healthy men and women (i.e., controls) for all lung cancer cases combined, and 

stratified by tumor histological subtype. 

Univariate Logistic Regression Models 

Patient Groups 
Parameters 

Maximum 
Likelihood 
Estimate 

Standard 
Error 

Wald Χ
2
 

Χ
2
/FDR 

P value 
AUC 

      All Lung Cancer Cases vs. Controls 

Age 0.106  0.010  125.216  <0.0001/<0.0005  0.858 

Gender −0.766  0.187  16.728  <0.0001/<0.0005  0.594 

Log sHER2 0.429  0.328  1.711  0.191/0.298  0.537 

          Squamous Cell Carcinomas vs. Controls 

Age 0.129  0.016  66.308  <0.0001/<0.0005  0.895 

Gender −0.818  0.265  9.499  0.002/0.007  0.601 

Log sHER2 −0.565  0.534  1.119  0.290/0.415  0.539 

          Adenocarcinomas vs. Controls 

Age 0.098  0.010  95.433  <0.0001/<0.0005  0.840 

Gender −0.741  0.207  12.788  0.0003/0.0012  0.591 

Log sHER2 0.777  0.350  4.937  0.026/0.057  0.573 

Multivariate Logistic Regression Models 

Patient Groups 
Parameters 

Maximum 
Likelihood 
Estimate 

Standard 
Error Wald Χ

2 Χ
2
/FDR 

P value AUC 

      All Lung Cancer Cases vs. Controls 
Age 0.112  0.010  121.132  <0.0001/<0.0005   
Gender −0.831  0.252  10.831  0.001/0.004   
Log sHER2 0.801  0.461  3.024  0.082/0.144  0.877 

          Squamous Cell Carcinomas vs. Controls 
Age 0.140  0.018  63.664  <0.0001/<0.0005   
Gender −1.416  0.386  13.462  0.0002/0.0009   
Log sHER2 0.112  0.817  0.019  0.891/0.945  0.917 

          Adenocarcinomas vs. Controls 
Age 0.102  0.011  93.161  <0.0001/<0.0005   
Gender −0.697  0.267  6.807  0.009/0.024   
Log sHER2 1.080  0.472  5.235  0.022/0.051  0.859 

          

Table 5. Age-adjusted relative risk of adenocarcinoma associated with serum sHER2 

concentration. Age-adjusted odds ratios (OR) and 95% confidence intervals (95% CI) 

comparing healthy men and women (i.e., controls) vs. patients with adenocarcinoma are 

shown for quintiles of serum sHER2 concentration by gender. 

Quintiles of Serum sHER2 

Concentration 

OR (95% CI) for Women OR (95% CI) for Men 
    ≤1.85 ng/mL   referent   2.01 (1.19, 3.39)  

 2.40 ng/mL   1.32 (1.04, 1.68)   2.66 (1.52, 4.66)  
 3.00 ng/mL   1.69 (1.08, 2.64)   3.38 (1.74, 6.57)  
 3.65 ng/mL   2.08 (1.11, 3.90)   4.18 (1.90, 9.21)  
 ≥6.60 ng/mL   3.95 (1.22, 12.81)   7.93 (2.26, 27.82)  
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Figure 4. Receiver operating characteristic curves of lung cancer cases vs. controls. ROC 

curves are shown comparing all cancer cases vs. healthy controls (a, d, g), SCC vs. healthy 

controls (b, e, h), and adenocarcinoma vs. healthy controls (c, f, i). ROC curves are shown 

for a reduced model of log-transformed sHER2 concentrations alone (a, b, c), a model of 

age alone (d, e, f), and a model including both age and log-transformed sHER2 

concentrations (g, h, i) for both men and women combined (black ROC curves labeled C), 

men only (blue ROC curves labeled M), and women only (red ROC curves labeled W). 

 

4. Discussion 

Steroid hormones have been implicated in the regulation of HER2 expression; however, the age and 

gender specific effects of steroids on HER2 expression, as well as on sHER2 shedding is not completely 

understood. In human breast cancer cells in vitro, estradiol is a potent inhibitor of HER2 expression 

and sHER2 shedding [41–44]; whereas, progesterone positively regulates HER2 expression [45].  

In contrast, neither estrogen nor progesterone regulates HER2 expression in ovarian cancer cells [46]. 

Among men with prostate cancer, high HER2 expression has been associated with androgen  

ablation therapy and androgen independent prostate carcinoma [47]. Among healthy women, oral  
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contraceptive use and hormone replacement therapy have been associated with lower serum sHER2  

concentrations [48]. In pregnant women, serum sHER2 concentrations are lower during the first and 

second trimester in pregnant women, which is when estrogen concentrations increase, but are higher 

during the third trimester [49–51]. Finally, elevated serum sHER2 concentrations among women with 

preeclampsia vs. a normal pregnancy suggest the possibility of fetomaternal transfer during the third 

trimester of pregnancy [49,52]. Together, these observations suggest that steroid hormones may 

regulate both the biosynthesis and shedding of sHER2 into circulatory fluids. Our observations that 

sHER2 concentrations decrease with age in healthy men, and that age and gender confound the 

relationship between sHER2 concentrations and lung adenocarcinoma are consistent with hormonal 

regulation of HER2 expression and/or shedding. These observations underscore the importance of 

adjusting for age, gender, and other potential confounding variables that may affect steroid hormone 

biosynthesis, such as body mass and smoking [53,54], when evaluating the utility of sHER2 for the 

risk assessment, early detection, and diagnosis of adenocarcinoma using epidemiological study designs 

and multivariate statistical methods. 

Limitations and caveats of this retrospective study include: (a) an inability to assess the effect of 

long term storage at −80 °C on serum sHER2 stability, (b) an inability to assess potential differences in 

serum sHER2 concentrations between non-small cell adenocarcinomas compared to large or small cell 

carcinomas; (c) an inability to assess potential differences in serum sHER2 concentrations by disease 

stage or tumor grade; (d) lack of data on potential confounders or effect modifiers of sHER2 

concentrations such as smoking status, body mass, personal and family cancer history, carcinogen 

exposure, menstrual cycle phase, parity, and exogenous hormone use among women; (e) potential 

ascertainment and cohort bias of the control group, which was not selected using the same enrollment 

criteria (e.g., age and smoking status) or at random during the same time period from the source 

population as the cases; and (f) an inability to assess the risk of developing lung adenocarcinoma 

among asymptomatic individuals with pre-diagnostic serum samples. Given these caveats and 

limitations, it will be important to conduct well-designed transitional studies to assess the effects of 

storage at −80 °C on serum sHER2 concentrations, and prospective case-control studies to further 

validate sHER2 as a weak, independent biomarker of lung adenocarcinoma using multivariate models. 

Such studies should include incident cases of lung adenocarcinoma, other malignant and benign lung 

neoplasms, and healthy controls selected randomly from the study population. 

Several reports indicate that serum sHER2 concentrations have 5–64% sensitivity to detect lung 

cancer of various histological subtypes using cut-off thresholds that correctly classify healthy controls 

with 95% specificity [23,32–36]. Sensitivity was reported to be higher for patients with late stage lung 

cancer and for patients with adenocarcinoma compared to SCC, large cell carcinoma, and small cell 

carcinoma [23,32,34,35]. In general, these studies were small, used disparate immunoassays, or used 

previously established cut-off thresholds from an external control study group [23]. Additionally, most 

of these studies did not control for confounding by age, gender, and other variables such as smoking 

by using a matched, case-control study design or by adjusting for confounding in an unmatched,  

case-control study design with multivariate logistic regression methods [23,32,34–36]. Notably, the 

highest reported sensitivity (64%) and specificity (95%) of sHER2 concentrations to discern healthy 

controls from lung cancer cases was reported for a small age-, gender-, ethnic group-, and  

smoking-matched case-control study [33]. That age might be a potential confounder or effect modifier 
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of the association between sHER2 and cancer is supported by our observation that sHER2 

concentrations decrease with age in healthy men, and by a previous report showing that sHER2 

concentrations increase with age in healthy women independently of menopausal status [55]. Here, it is 

observed that sHER2 concentrations are higher in primary NSCLC patients with adenocarcinoma than 

SCC, thus confirming that biological differences exist between these histological subtypes. Moreover, 

we report that the ability of sHER2 concentrations to discern healthy controls from patients with 

adenocarcinoma, but not SCC, is indeed confounded by age and gender in our dataset (Table 4 and 

Figure 4). When mutually adjusted for each other, sHER2, age, and gender yield 85.9% accuracy to 

classify controls from primary adenocarcinoma patients (Table 4). However, the strength to discern 

healthy controls from patients with adenocarcinoma is contributed mainly by age, not sHER2 and 

gender (AUC = 0.840 with age alone vs. AUC = 0.859 with age, gender, and sHER2 combined).  

The accuracy to discern adenocarcinoma patients from controls with age-adjusted sHER2 concentrations 

is 91% among men, but only 78% among women (Figure 4(I)), suggesting that additional confounders 

may be influencing the association between sHER2 and adenocarcinoma among women. Notably, at 

95% specificity, the sensitivity to detect adenocarcinoma is 60% for men and 30% for women; these 

statistics are similar to those reported by Brandt-Rauf and colleagues, who used a matched case-control 

study design to control for confounding by age, gender, ethnicity, and smoking [33]. Importantly, the 

data reported here show that sHER2 is a weak, but statistically significant, independent classifier of 

adenocarcinoma. Although sHER2 is not a strong, stand-alone classifier of adenocarcinoma, its 

independence of age and gender may make sHER2 a useful covariate (with age, gender, and other 

biomarkers) in multivariate screening and diagnostic models of lung adenocarcinoma. 

Risk prediction models that include smoking are useful for advising patients about their propensity 

to develop lung cancer. However, while smoking is a well-known risk factor for lung cancer, 

considered alone, smoking history has limited ability to predict which smokers will develop lung 

cancer. Other contributing epidemiological, clinical, and biological (i.e., biomarkers) factors may 

improve lung cancer risk prediction among smokers and even non-smokers [56,57]. Several groups 

have developed lung cancer risk models using the variables of age, smoking history, carcinogen 

exposure, and family history [58–64]. However, few of these studies included serum biomarkers, 

despite our understanding that biomarkers represent promising risk assessment tools [56,57,59,64]. 

Recently, Spitz and colleagues modestly improved their risk model, which included environmental 

tobacco smoke, family cancer history, dust exposure, prior respiratory disease, hay fever, and smoking 

history variables by adding two in vitro markers of DNA repair capacity (host-cell reactivation and 

mutagen sensitivity) [65]. Adding these markers significantly improved the model’s accuracy to 

discriminate between lung cancer cases and controls from 67% to 70% among former smokers  

(p = 0.006), and from 68% to 73% among current smokers (p = 0.0048). Similarly, Prindiville and 

colleagues found that sputum samples characterized by moderate to worse cytological atypia defined a 

cohort of high-risk patients who were at increased risk of developing lung cancer [66]. Notably, we 

observe that, adjusted for age, the relative risk (odds) of adenocarcinoma is 3.95 (95% CI: 1.22, 12.81) 

among women and 7.93 (95% CI: 2.26, 27.82) among men with high sHER2 concentrations  

(>6.60 ng/mL) compared to women or men with low sHER2 concentrations (<1.85 ng/mL; Table 5). 

These data are consistent, but not conclusive, with a role for serum sHER2 as a biological marker of 

risk for primary non-small cell lung adenocarcinoma. 
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Cancer treatment is undergoing a paradigm shift from the use of broad-spectrum cytotoxic 

chemotherapeutics to biologically targeted therapeutics [67], including HER-targeted drugs [68]. The 

HER family of receptors, EGFR/HER1, HER2, HER3, and HER4 are rational targets for anti-cancer 

drugs because they activate complex signal transduction pathways that lead to tumor cell proliferation, 

survival, and metastasis [69]. In patients with NSCLC, EGFR-targeted RTK inhibitors, such as 

gefitinib and erlotinib, have produced objective response rates in about 10% of patients with advanced 

stage disease and modest improvements in patient survival [70–72]. Clinical trials with HER2-targeted 

monoclonal antibodies, trastuzumab and pertuzumab, also have shown efficacy in some NSCLC 

patients [70,73,74]; however, trials with trastuzumab have been insufficiently powered to determine 

whether NSCLC patients with HER2 gene amplification or overexpression as determined by 

immunohistochemistry may benefit from treatment [75,76]. Notably, responsiveness and efficacy 

toward HER-targeted therapeutics is dependent on the selection of patients who present with the active 

target of choice, and accurate methods to identify these patients [77,78]. Here, we observe that serum 

sHER2 concentrations detected by ELISA are higher in a subset of primary NSCLC patients with 

adenocarcinoma (adjusted for age, 60% of men and 30% of women had sHER2 concentrations above 

the 95th cut-off threshold for healthy controls), suggesting that sHER2 may warrant investigation as a 

theragnostic biomarker to select a subset of patients with lung adenocarcinoma for treatment with 

HER2-targeted drugs. 

5. Conclusions 

In summary, we have observed that serum sHER2 concentrations are higher in a subset of patients 

with primary adenocarcinoma compared to patients with SCC or healthy controls, and weakly, but 

independently associated with adenocarcinoma even after adjusting for confounding by age and 

gender. These results are consistent with the hypothesis that sHER2 may have some limited clinical 

utility as a serum biomarker of non-small cell lung adenocarcinoma, if properly adjusted for 

confounding by age, gender, and variables that affect circulating and tissue steroid hormone 

concentrations (e.g., body mass, smoking, oral contraceptive use, and hormone replacement therapy) 

or circulating steroid hormones themselves. We conclude that even though serum sHER2 is not a 

strong, stand-alone discriminatory biomarker of adenocarcinoma, sHER2 may be a useful, independent 

covariate in multivariate regression models that warrants further investigation for the risk assessment, 

screening, and diagnosis of lung adenocarcinoma in well-designed epidemiological studies that control 

for confounding by age, gender, and other demographical, epidemiological, behavioral, and 

environmental variables using multivariate regression methods or a matched case-control study design. 
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