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Disorders of the Nervous System

Accumbens Cholinergic Interneurons Mediate
Cue-Induced Nicotine Seeking and Associated
Glutamatergic Plasticity
Jonna M. Leyrer-Jackson,1 Michael Holter,2 Paula F. Overby,1 Jason M. Newbern,2 Michael D. Scofield,3

M. Foster Olive,1 and Cassandra D. Gipson4

https://doi.org/10.1523/ENEURO.0276-20.2020

1Department of Psychology, Arizona State University, Tempe, AZ 85281, 2Department of Neuroscience, School of Life
Sciences, Arizona State University, Tempe, AZ 85281, 3Department of Anesthesiology, Medical University of South
Carolina, Charleston, SC 29425, and 4Department of Family and Community Medicine, University of Kentucky,
Lexington, KY 40536

Abstract

Nicotine, the primary addictive substance in tobacco, is widely abused. Relapse to cues associated with nico-
tine results in increased glutamate release within nucleus accumbens core (NAcore), modifying synaptic plas-
ticity of medium spiny neurons (MSNs), which contributes to reinstatement of nicotine seeking. However, the
role of cholinergic interneurons (ChIs) within the NAcore in mediating these neurobehavioral processes is un-
known. ChIs represent less than 1% of the accumbens neuronal population and are activated during drug
seeking and reward-predicting events. Thus, we hypothesized that ChIs may play a significant role in media-
ting glutamatergic plasticity that underlies nicotine-seeking behavior. Using chemogenetics in transgenic rats
expressing Cre under the control of the choline acetyltransferase (ChAT) promoter, ChIs were bidirectionally
manipulated before cue-induced reinstatement. Following nicotine self-administration and extinction, ChIs
were activated or inhibited before a cue reinstatement session. Following reinstatement, whole-cell electro-
physiology from NAcore MSNs was used to assess changes in plasticity, measured via AMPA/NMDA (A/N) ra-
tios. Chemogenetic inhibition of ChIs inhibited cued nicotine seeking and resulted in decreased A/N, relative
to control animals, whereas activation of ChIs was unaltered, demonstrating that ChI inhibition may modulate
plasticity underlying cue-induced nicotine seeking. These results demonstrate that ChI neurons play an impor-
tant role in mediating cue-induced nicotine reinstatement and underlying synaptic plasticity within the NAcore.

Key words: accumbens; cholinergic; glutamate; nicotine; plasticity; relapse

Significance Statement

The studies reported here are the first to address the role of cholinergic interneurons (ChIs) in cue-induced
nicotine seeking and in nicotine-induced changes in synaptic plasticity within nucleus accumbens medium
spiny neurons (MSNs). Chemogenetic inhibition of ChIs prevented cue-induced nicotine seeking and asso-
ciated MSN plasticity. Additionally, these studies highlight the role of nicotinic acetylcholine receptors
(nAChRs) in mediating cue-induced nicotine seeking and associated MSN morphology. Through the use of
chemogenetics, behavioral assessments, and electrophysiology the results presented here highlight the im-
portance of the cholinergic circuitry within the nucleus accumbens core (NAcore) for mediating cue-induced
nicotine seeking.
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November 25, 2020.
The authors declare no competing financial interests.
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Introduction
Tobacco use disorder is the leading preventable cause

of death within the United States and represents a sub-
stantial burden to public health (Prochaska and Benowitz,
2016). Self-administration of nicotine produces robust
cellular adaptations within brain regions associated with
drug reward, including the nucleus accumbens core
(NAcore; Dani et al., 2001; Mansvelder et al., 2009;
Gipson et al., 2013b; Scofield et al., 2016). The effects of
nicotine on dopaminergic neurons within the ventral teg-
mental area (VTA) are perhaps the most prominently char-
acterized synaptic alterations. Specifically, nicotine has
been shown to increase glutamatergic input onto dopami-
nergic neurons, as measured by changes in AMPA/NMDA
(A/N) ratios, and has been found to potentiate GABAergic
input onto local VTA inhibitory neurons. Together, these
findings support that nicotine exposure enhances VTA
dopaminergic excitability and dopamine release into tar-
get areas, including the nucleus accumbens (Mansvelder
and McGehee, 2000; Brown et al., 2010; Grieder et al.,
2012). Enhanced dopaminergic release within the accum-
bens is hypothesized to potentiate medium spiny neuron
(MSN) synapses as well as their response to glutamater-
gic stimulation (Pistillo et al., 2015). In support, increases
in MSN spine length and density are observed in rats
chronically exposed to nicotine (Brown and Kolb, 2001),
an effect associated with enhanced NMDA receptor
mediated currents within the NAcore. Further, drugs of
abuse including nicotine induce changes in glutamater-
gic homeostasis within the mesocorticolimbic brain cir-
cuitry (Kalivas, 2009), thus altering glutamatergic-MSN
connectivity and associated synaptic plasticity within the
accumbens. In fact, cue-induced nicotine seeking has
been shown to alter glutamatergic plasticity within the
NAcore, enhancing the A/N of MSNs in a rapid and tran-
sient manner as well as morphologic increases in dendri-
tic spine head diameter (Gipson et al., 2013b). Thus,
while prior studies have explored changes in MSN synaptic
plasticity because of altered dopaminergic and glutamatergic
signaling, current studies have yet to explore additional
mechanisms driving changes in MSN synaptic plasticity,
whichmay underlie nicotine-seeking behaviors.
Cholinergic interneurons (ChIs) account for ,1% of the

cell population within the accumbens, yet they have the
ability to exert powerful modulatory control over accum-
bens circuitry (Zhou et al., 2002; Tepper and Bolam, 2004)
and may play a role in synaptic plasticity of MSNs. ChIs

provide most of the intrinsic cholinergic innervation of the
NAcore and are widely distributed throughout the striatum
(Girasole and Nelson, 2015). Additionally, ChIs provide
cholinergic modulation of striatal dopaminergic transmis-
sion and are known to co-release ACh and glutamate
(Zhou et al., 2001; Cachope et al., 2012; Threlfell et al.,
2012; Kljakic et al., 2017), allowing for additional modula-
tion of MSN activity (Witten et al., 2010; Oldenburg and
Ding, 2011). Importantly, NAcore ChIs are involved in re-
ward-predicting events (Atallah et al., 2014) and extracel-
lular ACh is elevated following drug intake (Rada et al.,
2001; Mansvelder et al., 2003; Crespo et al., 2006; Yee et
al., 2011). In fact, acquisition of cocaine and remifentanil
is paralleled with an increase in ACh release. Specifically,
an overflow of ACh was observed following drug delivery,
and blocking nicotinic acetylcholine receptors (nAChRs)
was found to inhibit drug acquisition (Crespo et al., 2006).
Together, these studies indicate that ChI-induced activa-
tion of nAChRs plays an important role in driving moti-
vated drug use.
Increased glutamate release from prelimbic afferents

targeting the NAcore increases cue-induced drug seeking
(Stefanik et al., 2016) by modulating MSN synaptic physi-
ology (Gipson et al., 2013b; Quintero, 2013; Alasmari et
al., 2016). Given that NAcore ChIs are involved in drug-
motivated behavior, we hypothesized that this small pop-
ulation of cells mediates glutamatergic plasticity and nico-
tine-seeking behavior. Using choline acetyltransferase
(ChAT) cre-recombinase transgenic rats (ChAT::cre), ChI
activity was bidirectionally manipulated via viral adminis-
tration of cre-dependent designer receptors exclusively
activated by designer drugs (DREADDS) before cue-in-
duced reinstatement to examine the modulatory role of
ChIs over nicotine-seeking behaviors. Whole-cell electro-
physiological recordings were then conducted from
NAcore MSNs to determine whether modulation of ChI
activity mediates MSN synaptic plasticity measured via A/
N currents.

Materials and Methods
Subjects
Sixty- to 90-d-old adult Long–Evans male (N=17) and

female (N=20) rats were housed in a temperature and hu-
midity-controlled animal facility on a 12/12 h dark/light re-
verse cycle and had ad libitum access to food and water
before experimentation. All procedures were approved
by the Institutional Animal Care and Use Committee
(IACUC) of Arizona State University. All animals used for
chemogenetic ChI manipulation were bred in-house and
confirmed ChAT::cre-positive through genotyping de-
scribed below. Breeder ChAT::cre-positive males (Long–
Evans- Tg(ChAT-cre5)5.1 Deis) were purchased from Rat
Resource and Research Center (RRRC, RRC#658) and
bred in-house with Long–Evans wild-type females pur-
chased from Envigo.
All ChAT::cre self-administration data presented here

are included within a larger data set exploring the role of
sex and strain on nicotine self-administration in our re-
cently published study (Leyrer-Jackson et al., 2020).

This work was supported by National Institutes of Health Grants DA036569,
DA036569-S1, DA044479, DA046526, and DA045881 (to C.D.G.), F32AA027962-
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However, while these animals were included within the
Long–Evans male and female groups, the study did not
focus on the subset of animals as reported here, but
rather included in a larger dataset focusing on self-admin-
istration parameters across strain and sex.

ChAT::cre genotyping
Tail snips were collected from all animals at PND 10.

Subjects were genotyped using the following primers: 59-
AGA GTA CAC TGT GGG CAG GA-39 (R658.F2 located
within the promotor region of ChAT; forward primer) and
59-GCA AAC GGA CAG AAG CAT TT-39 (Cre.R located in
cre-recombinase reverse primer). Using standard PCR-
based genotyping, all animals used were confirmed
ChAT::cre transgene-positive.

Surgical procedures
All rats were anesthetized using ketamine hydrochloride

(80–100mg/kg, i.m.) and xylazine (8mg/kg, i.m.) and under-
went surgical implantation of intravenous jugular catheters
as well as stereotaxically implanted guide cannulae target-
ing the NAcore as previously described (Leyrer-Jackson et
al., 2020; Namba et al., 2020). Intravenous jugular catheters
(made from polyurethane tubing; BTPU-040; Instech) were
inserted 2.5–3cm into the right jugular vein and were
threaded subcutaneously to the posterior side of the animal
where it was connected to an indwelling back port
(Instech). Dental cement (SNAP or Ortho-Jet) was used to
adhere the catheter to the port. The indwelling port was su-
tured using 4–0 vicryl braided suture (Ethicons) subcutane-
ously ;2cm caudal from the shoulder blades. Following
jugular vein catheterization, animals were immediately
transferred to a rat stereotaxic frame and NAcore guide
cannulae were bilaterally aimed at the NAcore according to
a stereotaxic atlas (Paxinos and Franklin, 2001). Guide can-
nulae were bilaterally implanted (11.5 mm anterior/poste-
rior, 62.0 mm medial/lateral, and �5.5 mm dorsal/ventral;
Paxinos and Franklin, 2001). Guide cannulae were posi-
tioned 2 mm dorsal to the NAcore to prevent damage to the
area. Three screws were placed into the skull, where they
were used as anchors (one anterior to bregma, and two
posterior) for adhering dental cement to the skull to hold
guide cannulae in position. Microinjectors protruded 2 mm
past the guide cannulae into the NAcore. Immediately fol-
lowing implantation, viral vectors encoding DREADDs for
ChI manipulation were infused into the NAcore of ChAT::cre
animals: AAV5-hsyn-DIO-HM4D(Gi)-mCherry (inhibitory;
titer: 1.2� 1013 vg/ml; N=15; Addgene, #44362), AAV5-
hsyn-DIO-rM3D(Gs)-mCherry (excitatory; titer: 1.3� 1013
vg/ml; N=10; Addgene, #50485; packaged into an AAV5
vector by Penn Vector Core), or AAV5-hSyn-DIO-mCherry
(control; i.e., only mCherry-expressing; titer: 1.5� 1013 vg/
ml; N=12; Addgene, #44362) at a volume of 0.5ml per
hemisphere. Rats were immediately administered cefazolin
(100mg/kg, i.v.) and heparin (10 U/ml, i.v.) and for seven
consecutive days during the recovery period. Meloxicam
(1mg/kg, s.c.) was given immediately and for the first 3d of
the recovery period. Heparin (10 U/ml, i.v.) was adminis-
tered daily.

Food training procedures
All rats underwent food training on the sixth day of post-

operative care. Food restriction (20 g of chow/d) was im-
plemented a minimum of 2 h before food training initiation
and was maintained for the duration of the experiment.
Food training sessions were 15 h duration, and one active
lever press resulted in the delivery of one food pellet
[fixed-ratio-1 (FR1), schedule of reinforcement; Bio-Serv,
45mg/pellet) Concurrently, one food pellet was delivered
every 20 min regardless of response. Light and tone stim-
uli were not paired with pellet administration. Food train-
ing criteria was set to 2:1 active to inactive lever presses
throughout the session and a minimum of 200 active lever
presses. All food training, self-administration, extinction,
and reinstatement sessions were conducted in modular
operant conditioning chambers (13 ENV-008, 15 ENV-
007; Med Associates), which have been previously de-
scribed in detail (Overby et al., 2018; Leyrer-Jackson et
al., 2020).

Intravenous nicotine self-administration, extinction,
and reinstatement
Nicotine infusions (0.02mg/kg/infusion) were paired

with a compound stimulus (light1tone), and was followed
by a 20-s timeout period. Nicotine was delivered across a
5.9-s duration, at a total volume of 0.1 ml of nicotine was
administered per infusion. Infusions were paired with cue
lights, located above each lever, and a 2900-Hz tone was
presented throughout the duration of the nicotine infu-
sion. Active lever presses during the timeout period were
recorded, but did not result in additional nicotine infu-
sions. An inactive lever was extended at all times and re-
sponses were recorded; however, presses yielded no
programmed consequences or rewards. Session duration
was 2 h in length and a FR1 schedule of reinforcement
was used. During the first two sessions of self-administra-
tion, nicotine infusions were capped at 25 to prevent aver-
sive effects that can accompany high nicotine intake. All
animals were required to complete a minimum of 10 ses-
sions before moving into extinction with the following cri-
teria: �10 nicotine infusions obtained and �2:1 active/
inactive lever press ratio. Additionally, extinction can be
defined in two ways: (1) either by the lack of delivery of a
reinforcer that was previously delivered after a response
(e.g., responses on the active lever no longer result in nic-
otine infusions), or (2) as the absence of a contingency be-
tween response and reinforcer (e.g., the nicotine infusion
occurs regardless of an animals’ response; see Rescorla
and Skucy, 1969; Lattal and Lattal, 2012). Given that the
reinforcer here (the nicotine infusion) is not delivered fol-
lowing a time-out active lever press, the latter definition
applies to these types of responses and are therefore dis-
tinct from active lever presses that directly result in the ini-
tiation of a nicotine infusion. Thus, these two types of
lever presses were analyzed separately in the current
study.
Following 10 non-consecutive criteria making sessions,

animals were moved to the extinction phase which took
place in the same boxes as self-administration. During the
extinction phase, active lever presses no longer resulted
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in nicotine infusions or associated cues. A minimum of 14
2-h extinction sessions was required for each animal.
Extinction criteria were set at ,30 active lever presses on
the last day of extinction. For reinstatement sessions, pre-
viously paired nicotine cues were presented on active
lever pressing, however no nicotine infusions were deliv-
ered. Reinstatement sessions were 15min in duration.
Animals were then immediately killed for whole-cell elec-
trophysiological recordings. Eight animals were removed
from the current study because of not meeting self-ad-
ministration criteria (N=5) or lack of DREADD expression/
improper cannula placement (N=3).

Intra-NAcore microinjections
For ChI manipulation, bilateral intra-NAcore microinjec-

tions of clozapine N-oxide [CNO; 0.1mg/ml dissolved in
artificial CSF (aCSF)] at a volume of 0.5ml/hemisphere
were conducted 15min before reinstatement testing (Fig.
1A). Intra-NAcore microinjections were chosen to avoid
potential indirect effects of systemic CNO, since intracra-
nial CNO administration does not exhibit DREADD-inde-
pendent effects in multiple brain regions (for review, see
Mahler and Aston-Jones, 2018).

Electrophysiology
Following reinstatement, animals were anesthetized

with CO2 and rapidly decapitated. Brains were rapidly

removed and submerged in ice-cold carbogen (95% O2/
5% CO2) saturated cutting solution (cutting aCSF) con-
taining the following: 120 mmol/l NaCl, 25 mmol/l
NaHCO3, 10 mmol/l dextrose, 3.3 mmol/l KCl, 1.23 mmol/
l NaH2PO4, 1.8 mmol/l CaCl2, and 2.4 mmol/l MgCl2.
Solution osmolarity was adjusted to 2956 5 mOsm and
pH adjusted to 7.4060.03. Brains were then transferred
to a cutting chamber of a vibrating tissue slicer (Leica,
VT1000S) and 300-mm-thick coronal slices of the NAcore
were prepared in ice-cold cutting aCSF. Slices were then
placed in a holding chamber filled with recording aCSF
solution containing the following: 120 mmol/l NaCl, 25
mmol/l NaHCO3, 3.3 mmol/l KCl, 1.23 mmol/l NaH2PO4,
0.9 mmol/l CaCl2, 2.0 mmol/l MgCl2, and 10 mmol/l dex-
trose, osmolarity adjusted to 29565 mOsm and pH ad-
justed to 7.406 0.03. During brain slicing, cannulae
placement was confirmed based on cannula track marks
targeting the NAcore. In the holding chamber, aCSF was
continuously bubbled with carbogen (95% O2/5% CO2)
and incubated at 34°C for 45min and then allowed to cool
to room temperature before slice recording. Before ex-
periments, slices were transferred to a recording chamber
where they were perfused continuously at a flow rate of
1–2 ml/min with filtered, carbogen-saturated recording
aCSF solution. MSNs were visually identified using infra-
red DIC microscopy with an Olympus BX51WI micro-
scope. Additionally, a green collimated LED (ThorLabs)
was used to visualize mCherry-DREADD expression

Figure 1. Nicotine self-administration and extinction. A, A timeline of experimental procedures. JVC, jugular vein catheterization;
RST, reinstatement. B, Rats acquired nicotine self-administration, distinguishing between active (red) and inactive (gray) levers to re-
ceive intravenous infusions of nicotine (black). Active lever pressing was reduced across extinction sessions; #p, 0.05 represents a
main effect of session on active lever pressing. The vertical dotted line in B separates self-administration sessions and extinction
sessions.
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within the NAcore to ensure proper expression and loca-
tion before recordings. Whole-cell recordings were made
from the soma of MSNs neurons after establishing a giga-
ohm seal (resistance range: 1–10 GV). Recording pipettes
(7–15 mV), made from thin-walled capillary tubes were
filled with an intracellular solution containing the following:
135 mmol/l K-gluconate, 12 mmol/l NaCl, 1 mmol/l K-
EGTA, 10 mmol/l HEPES, 2 mmol/l Mg-ATP, and 0.38
mmol/l tris-GTP. Osmolarity was adjusted to 2856 5
mOsm and pH adjusted to 7.306 0.01. Upon establishing
a giga-seal, the cell membrane was ruptured and held at –
80 mV. Resting membrane potential, cellular capacitance,
membrane resistance and pipet resistance were moni-
tored throughout the duration of the recording. Only cells
that exhibited thin, over shooting action potentials, normal
resting membrane potential, and changes in uncompen-
sated access resistance ,20 mV were included in analy-
sis. Recordings were initiated 10min after cell membrane
rupture to allow for diffusion of the internal solution into
the cell. A stimulating electrode was placed in the dorsal
region of the NAcore to active prelimbic excitatory fibers
targeting the NAcore. AMPA currents, evoked by electri-
cal stimulation, were first measured at �80mV. The mem-
brane potential was then gradually increased to 140mV.
The cell was left to stabilize at 140mV for 5min. EPSCs
composed of both AMPA and NMDA receptor mediated
currents were then elicited at 140 mV. DNQX (20 mM) was
then bath applied for 5min and NMDA receptor mediated
currents were obtained. AMPA currents were then ob-
tained by subtracting the isolated NMDA receptor-medi-
ated current from the whole EPSC. A/N ratios were
calculated by measuring the peak amplitude of each cur-
rent and taking a ratio. For DREADD function validation,
see procedures outlined in (Tomek et al., 2020). All re-
cordings were conducted using the recording software
Axograph. Responses were digitized at 10 kHz and saved
on a disk using digidata interface (Molecular Devices) and
analyzed offline using Axograph.

Immunohistochemistry
Slices from electrophysiology were postfixed in 4%

paraformaldehyde (PFA) solution for a minimum of 2 d.
Slices were washed three times for 10min each with PBS
and placed into blocking solution containing PBST (PBS
containing 0.1% Triton X-100) and 5% normal donkey
serum. Slices were blocked for 2 h at room temperature.
The mouse monoclonal Anti-ChAT antibody (1:1000;
Atlas Antibodies; AMAB91130) was added to the block-
ing solution at a concentration of 1:1000. Tissue was in-
cubated overnight at 4°C with gentle rocking. Slices
were washed three times for 10min each using PBST.
Following the third wash, slices were incubated with
Alexa Fluor 488-conjugated donkey anti-mouse IgG sec-
ondary antibody (1:200; Abcam; ab205718) in PBST
(1:200) for 2 h. Slices were washed for three times using
PBST under gentle agitation. Brains were mounted onto
microscope slides using ProLong Gold Antifade mount-
ing medium (ThermoFisher Scientific) and covered with
cover glasses, and sealed with clear nail polish. Images
were collected on a Zeiss LSM800 confocal microscope

from three different tissue sections per rat with a mini-
mum of three biological replicates. Optical sections were
taken from a range of 5–15mm from the surface of the
brain tissue. All images were acquired using the same
acquisition parameters, including laser power, gain, and
offset.

Drugs and viral vectors
(-)Nicotine tartrate (MP Biomedicals) was dissolved in

0.9% sterile saline and adjusted to pH 7.2–7.4 with 1 M

NaOH. The final stock concentration was 0.2mg/ml free
base, which was adjusted for body weight to achieve an
infusion concentration of 0.02mg/kg/ml. CNO was pur-
chased from Sigma-Aldrich and diluted in ACSF pur-
chased from Tocris Biotech to 0.1mg/ml. Heparin,
xylazine (100mg/ml), cefazolin and meloxicam used at
10 U/ml, 8mg/kg/ml, 100mg/kg/ml, and 1mg/kg in
0.9% sterile saline, respectively.

Data analysis
Analysis of self-administration, extinction and rein-

statement data were performed using two-way, mixed
measures ANOVA with DREADD virus as a main factor
and session (extinction vs reinstatement, where applica-
ble) as a repeated-measure factor. Electrophysiological
data were analyzed using a one-way ANOVA, where
DREADD virus was considered a factor. Bonferroni-cor-
rected t tests post hoc, were conducted where appropri-
ate. The effects of sex were examined in a separate one-
way ANOVA to ensure no differences between groups
before collapsing for analyses. Analysis of behavioral
data only included animals that met self-administration
criteria, had proper cannula placement, and expressed
DREADDs within the NAcore. Linear regression analyses
were used to explore the relationship between A/N and
number of active lever presses. Statistical tests were
performed in GraphPad Prism 8.0, and p, 0.05 was
considered statistically significant. Values presented are
represented as mean 6 SEM. All results and statistical
tests ran are listed within Table 1.

Results
Nicotine self-administration and extinction
A two-way ANOVA revealed that active lever pressing

remained higher than inactive lever pressing across self-
administration sessions (F(9,780) = 349.3; p, 0.05; Fig.
1B). No interaction between session and lever was ob-
served (p. 0.05; Fig. 1B). We next compared reinforced
and non-reinforced active lever pressing. A two-way
ANOVA where session and group (reinforced and non-
reinforced active lever pressing) were considered main
effects revealed an effect of group (F(1,740) = 13.6;
p,0.05) but not session (p. 0.05) and no interaction
was observed (p, 0.05). However, a Bonferroni’s post
hoc comparison showed no differences between rein-
forced and non-reinforced lever pressing across session
(p. 0.05). For extinction, a two-way ANOVA revealed
that active lever pressing decreased across sessions
(F(13,1092) = 3.2; p, 0.05; Fig. 1B). Further, a post hoc
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Table 1: Statistical analyses in Figures 1-6

Figure location Behavioral test Statistical test used Variables/comparisons Degree of freedom Test value p value

1B Self-administration Two-way ANOVA Session 780 1.8 0.07

Lever 780 349.3 ,0.0001

Interaction 780 0.8 0.60

Extinction Two-way ANOVA Session 1092 3.2 ,0.001

Lever 1092 103.7 0.0001

Interaction 1092 1.1 0.33

Bonferroni’s post hoc Active vs inactive lever: session 1 1092 5.1 ,0.0001

Bonferroni’s post hoc Active vs inactive lever: session 2 1092 4.0 0.0009

Bonferroni’s post hoc Active vs inactive lever: session 3 1092 3.4 0.0096

Bonferroni’s post hoc Active vs inactive lever: session 4 1092 3.2 0.019

Bonferroni’s post hoc Active vs inactive lever: session 5 1092 2.7 0.28

Bonferroni’s post hoc Active vs inactive lever: session 6 1092 3.2 0.02

Bonferroni’s post hoc Active vs inactive lever: session 7 1092 2.4 0.29

Bonferroni’s post hoc Active vs inactive lever: session 8 1092 1.4 0.90

Bonferroni’s post hoc Active vs inactive lever: session 9 1092 2.7 0.10

Bonferroni’s post hoc Active vs inactive lever: session 10 1092 3.1 0.03

Bonferroni’s post hoc Active vs inactive lever: session 10 1092 2.7 0.09

Bonferroni’s post hoc Active vs inactive lever: session 10 1092 1.6 0.82

Bonferroni’s post hoc Active vs inactive lever: session 10 1092 1.7 0.75

Bonferroni’s post hoc Active vs inactive lever: session 10 1092 1.4 0.90

None Self-administration (reinforced vs non-

reinforced)

Two-way ANOVA Session 740 1.74 0.08

Group (reinforced, non-reinforced) 740 13.6 0.0002

Interaction 740 1.16 0.32

None Self-administration (reinforced vs non-

reinforced)

Bonferroni’s post hoc Reinforced vs non-reinforced, all sessions 740 0.44–2.22 0.27 to .0.999

2A Self-administration: sex differences, active

lever pressing

Two-way ANOVA Sex (male, female) 360 1.64 0.20

Session 360 1.30 0.24

Interaction 360 0.33 0.97

2B Self-administration: sex differences, inactive

lever pressing

Two-way ANOVA Sex (male, female) 360 0.63 0.77

Session 360 8.57 0.004

Interaction 360 0.21 0.99

2B Self-administration: sex differences, inactive

lever pressing

Bonferroni’s post hoc Male vs female all sessions 360 0.37–1.55 .0.999

2C Self-administration: sex differences, infusions Two-way ANOVA Sex (male, female) 360 0.34 0.56

Session 360 3.47 0.004

Interaction 360 0.31 0.97

2C Self-administration: sex differences, infusions Bonferroni’s post hoc Male vs female: all sessions 360 0.03–1.08 .0.999

2D Self-administration: sex differences, total num-

ber of infusions

Unpaired Student’s t test Sex (male, female) 36 0.25 0.80

2E Extinction: sex differences, active lever

pressing

Two-way ANOVA Sex (male, female) 504 2.55 0.11

Session 504 2.28 0.006

Interaction 504 0.75 0.71

2E Extinction: sex differences, active lever

pressing

Bonferroni’s post hoc Male vs female: all sessions 504 0.02–1.67 .0.999

2F Extinction: sex differences, inactive lever

pressing

Two-way ANOVA Sex (male, female) 504 5.46 0.02

Session 504 0.70 0.76

Interaction 504 0.48 0.93

2F Extinction: sex differences, inactive lever

pressing

Bonferroni’s post hoc Male vs female: all sessions 504 0.0007–1.7 0.74 to .0.999

3A Self-administration: DREADD treatment, active

lever pressing

Two-way ANOVA Treatment (Gs, Gi, control) 350 8.72 0.0002

Session 350 1.21 0.29

Interaction 350 0.56 0.92

3B Self-administration: DREADD treatment, inac-

tive lever pressing

Two-way ANOVA Treatment (Gs, Gi, control) 350 6.65 0.002

Session 350 1.04 0.411

Interaction 350 0.65 0.86

3C Self-administration: DREADD treatment,

infusions

Two-way ANOVA Treatment (Gs, Gi, control) 350 0.57 0.56

Session 350 3.18 0.001

Interaction 350 0.33 0.99

3D Self-administration: DREADD treatment, total

number of infusions

One-way ANOVA Treatment (Gs, Gi, control) 35 1.25 0.90

(Continued)
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comparison revealed that at the beginning of extinction,
active lever pressing was higher than inactive lever
pressing (t(1092) = 5.1; p,0.05; Fig. 1B). However, for the
last four sessions, active and inactive lever pressing
were not statistically different (p.0.05; Fig. 1B).

Sex differences in self-administration and extinction
We next examined differences between males and fe-

males throughout self-administration and extinction using
a two-way ANOVA, where session and sex (male and fe-
male) were considered factors. No differences in active
lever pressing between sexes across self-administration
sessions were observed (p. 0.05; Fig. 2). An effect of
session on inactive lever pressing (F(1,360) = 8.6; p,0.01)
and infusions (F(1,360) = 3.5; p, 0.01) was observed.
However, post hoc analysis revealed no within session
differences between males and females for inactive lever
pressing (p. 0.05) or infusions (p. 0.05), suggesting that
females and males do not differ within sessions.
During extinction, an effect of session on active lever

pressing was observed throughout sessions (F(13,504) = 2.28;
p, 0.01). A post hoc comparison revealed no differences
between sexes within sessions (p.0.05). Additionally, an
effect of sex on inactive lever pressing was observed
throughout extinction sessions (F(13,504) = 5.46; p, 0.05),
yet a post hoc comparison revealed no differences within
sessions. Additionally, no differences in the total number of
infusions earned across the 10-criteria making sessions
were observed between male (N=17) and female (N=20)
animals (p. 0.05; Fig. 2). These results are consistent with
our previous study, where we found no differences in total
infusions or number of infusions across self-administration
sessions between Long–Evans male and female rats
(Leyrer-Jackson et al., 2020).

DREADD-type differences in self-administration and
extinction
A two-way ANOVA where session and treatment

(DREADD type; control: N=12; excitatory: N=10 and

inhibitory: N = 15 DREADD-expressing animals) were
considered factors revealed a significant effect of treat-
ment (F(2,350) = 8.7; p, 0.001) but not session (F(9,350) =
1.2; p. 0.05) on active lever pressing. However, no in-
teraction was observed (p. 0.05). . A significant effect
of treatment (F(2,350) = 6.7; p, 0.01) but not session
(F(9,350) = 1.0; p. 0.05) on inactive lever pressing.
However, no interaction was observed (p. 0.05). A
post hoc comparison revealed no differences between
DREADD type within sessions (p.0.05). A two-way
ANOVA also revealed a significant effect of session
(F(9,350) = 3.2; p, 0.01) but not DREADD type (F(2,350) =
0.6; p. 0.05) on nicotine infusions throughout self-ad-
ministration. No interaction was observed. Additionally,
a post hoc comparison revealed no differences between
DREADD type within sessions. Lastly, control, excita-
tory, and inhibitory DREADD-expressing animals did not
differ in total number of nicotine infusions earned across
the 10-criteria making sessions (p. 0.05; Fig. 3). An
effect of treatment and session on active lever press-
ing was observed throughout extinction sessions
(F(2,504) = 12.75; p,0.01 and F(13,504) = 2.2; p, 0.01,
respectively). No interaction was observed (p. 0.05).
Additionally, an effect of treatment on inactive lever
pressing was observed throughout extinction sessions
(F(2,504) = 10.5; p, 0.05), yet a post hoc comparison
revealed no differences between DREADD groups
within sessions.

ChI DREADD validation using immunohistochemistry
and electrophysiology
Using immunohistochemistry, all three vectors (two cre-

dependent DREADDs and the cre-dependent mCherry-ex-
pressing control) were validated to ensure specific targeting
of ChIs. DREADD-labeled neurons (mCherry; Fig. 4A, left
panel) co-expressed ChAT protein (Fig. 4A, middle and right
panel). Recordings from mCherry-tagged DREADD-labeled
ChIs confirmed functionality of all DREADDs used. Bath

Table 1: Continued

Figure location Behavioral test Statistical test used Variables/comparisons Degree of freedom Test value p value

3E Extinction: DREADD treatment, active lever

pressing

Two-way ANOVA Treatment (Gs, Gi, control) 504 12.74 ,0.0001

Session 504 2.21 0.008

Interaction 504 0.80 0.75

3F Extinction: DREADD treatment, inactive lever

pressing

Two-way ANOVA Treatment (Gs, Gi, control) 504 10.52 ,0.0001

Session 504 0.67 0.79

Interaction 504 0.21 .0.99

4C Reinstatement Two-way ANOVA Treatment (Gs, Gi, control) 70 8.43 0.0005

Session 70 13.24 0.0005

Interaction 70 6.84 0.0019

4C Bonferroni’s post hoc Control extinction vs control reinstatement 70 4.43 0.0005

4C Bonferroni’s post hoc Gs extinction vs Gs reinstatement 70 2.2 0.03

4C Bonferroni’s post hoc Gi extinction vs Gi reinstatement 70 0.55 0.999

4D A/N ratio Ordinary one-way ANOVA Treatment (Gs, Gi, control) 25 5.7 0.009

4D Bonferroni’s post hoc Control vs inhibitory 25 3.3 0.009

5A Membrane capacitance Ordinary one-way ANOVA Treatment (Gs, Gi, control) 25 0.38 0.69

5B Resting membrane potential Ordinary one-way ANOVA Treatment (Gs, Gi, control) 25 3.3 0.054

5C NMDA decay Ordinary one-way ANOVA Treatment (Gs, Gi, control) 25 5.7 0.009

6 Reinstatement active lever pressing correlation

to A/N

Linear regression analysis Active lever pressing vs A/N ratio 26 12.37 0.002

Bolded values indicate statistical significance.
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Figure 3. Control, excitatory, and inhibitory DREADD-expressing animals did not differ in rates of nicotine self-administration or ex-
tinction lever pressing. Regardless of the type of DREADD expression, animals showed no difference in active (A) or inactive (B)
lever pressing throughout self-administration. Additionally, animals not differ in the number of infusions across self-administration
sessions (C) or the total number of nicotine infusions earned throughout the 10 non-consecutive criteria-making sessions (D). Data
points within D represent individual animal values. DREADD groups did not differ in active (E) or inactive (F) lever pressing through-
out extinction. Control, excitatory and inhibitory DREADD-expressing rats are depicted in black, green, and red, respectively.
Numbers in legend of panel A represent the number of animals in each group.

Figure 2. Male and female rats did not differ in nicotine self-administration or extinction of lever pressing. No differences were
found between male and female rats in active (A) or inactive (B) lever pressing throughout self-administration. Additionally, they did
not differ in the number of infusions across self-administration sessions (C) or the total number of nicotine infusions earned through-
out the 10 non-consecutive criteria-making sessions (D). Data points within D represent individual animal values. Males and females
did not differ in active (E) or inactive (F) lever pressing throughout extinction. Male and female rats are depicted in black and gray,
respectively. Numbers in legend of panel A represent the number of animals in each group.
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Figure 4. Chemogenetic ChI inhibition prevented cue-induced nicotine seeking and reduced A/N ratio. A, The DREADD constructs
used in the current study readily express mCherry in neurons (left panel). ChAT labeled cell bodies within the NAcore (middle panel),
which co-expressed with all mCherry labeled neurons (right panel). Arrows depict cell bodies. Scale bar: 30 mm. B, CNO bath appli-
cation had no effect on control virus expressing ChIs (top; black), promoted firing in the excitatory DREADD-expressing ChI (middle;
green); and blunted firing in the inhibitory DREADD-expressing ChI (bottom; red). C, In control and excitatory DREADD-expressing
animals, active lever pressing was increased during cue-induced reinstatement compared with extinction following intra-NAcore
CNO treatment. In animals expressing the inhibitory DREADD, CNO inhibition of ChIs prevented cue-induced nicotine reinstate-
ment, where active lever pressing during reinstatement was not different from extinction; *p, 0.05 versus extinction, **p,0.01 ver-
sus extinction; n.s., non-significant. Inset numbers represent number of animals. D, A/N ratio was reduced in animals with ChI
inhibition following reinstatement [T(time) = 15] relative to control DREADD-expressing animals. The inset numbers within D repre-
sent number of animals with the total number of cells recorded from within parentheses. Representative AMPA and NMDA traces
for each DREADD type is shown in panel E. A picture depicting the NAcore and stimulating electrode placement is also shown.
Numbers in bars represent animal number and numbers in parentheses represent the total number of cells. Data points within C, D
represent individual animal values. Scale bars (x, y): 50 ms, 100pA; **p, 0.01.
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application of CNO (10 mM) did not alter the resting mem-
brane or spiking in control mCherry-expressing ChIs, in-
duced firing in excitatory Gs- DREADD-expressing ChIs and
inhibited action potential firing in inhibitory Gi-DREADD-ex-
pressing ChIs (Fig. 4B).

ChI inhibition prevents cue-induced nicotine
reinstatement
A two-way ANOVA with treatment (DREADD type) as

between- and session (extinction vs reinstatement) as
within-subject variables revealed a main effect of treat-
ment (F(2,70) = 8.4; p, 0.01; Fig. 4C) and session (F(2,70) =
13.2; p, 0.01; Fig. 4C). Additionally, an interaction be-
tween treatment and session was observed (F(2,70) = 6.8;
p, 0.01; Fig. 4C). Bonferroni post hoc multiple compari-
sons revealed that control CNO-treated rats increased ac-
tive lever pressing during cue-induced reinstatement
(T = 15) relative to the first 15min of extinction (t(70) = 4.4;
p, 0.01; Fig. 4C). Additionally, ChI activation with intra-
NAcore administration of CNO did not prevent cue-in-
duced reinstatement in animals expressing the excitatory
DREADD, as the number of active lever presses during
the cue-induced reinstatement session (T = 15) was higher
than that observed during the first 15min of extinction
(t(70) = 2.2; p, 0.05; Fig. 4C). However, inhibition of ChIs
with CNO prevented cue-induced nicotine reinstatement
in inhibitory DREADD-expressing animals, where the
number of active lever presses during reinstatement
(T = 15) was not different from the first 15min of extinction
(p. 0.05; Fig. 4C). No differences in inactive lever press-
ing were observed relative to extinction for any group
(data not shown). No sex differences in active lever press-
ing within groups were observed (p. 0.05).

Inhibition of ChIs reduces the A/N ratio observed in
MSNs
Immediately following a 15-min cue-induced reinstate-

ment session, NAcore MSN recordings were conducted
from acute slices derived from animals expressing either
control, inhibitory, or excitatory DREADD constructs. An
ANOVA revealed a main effect of treatment (DREADD

Figure 5. Cellular capacitance, resting membrane potential and
NMDA decay time did not differ between DREADD-expressing
groups. Cellular capacitance (A), resting membrane potential
(B), and NMDA decay to 37% of the peak amplitude (C) did not
differ between control, excitatory, or inhibitory DREADD-ex-
pressing animals following cue-induced reinstatement. The
inset numbers represent number of animals with the total num-
ber of cells recorded from within parentheses. Data points with-
in represent individual animal values.

Figure 6. Active lever presses during reinstatement was posi-
tively correlated with MSN A/N ratio. The number of active lever
presses and A/N ratio for each animal is shown. The number of
animals plotted for each group is depicted as N within the fig-
ure. The A/N ratio measured for each cell was averaged across
all cells from the same animal (between one and four cells/ani-
mal) to obtain the A/N for each animal which was then com-
pared with the number of active lever presses during the 15-
min reinstatement session. Group assignment is depicted as
follows: control DREADD-expressing rats are shown as black
dots, excitatory DREADD-expressing rats are shown as green,
and inhibitory DREADD-expressing rats are shown as red.
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type) on A/N ratio (F(2,25) = 5.7; p,0.01; Fig. 4D). Post
hoc comparisons revealed that inhibition of ChI activity re-
sulted in a smaller A/N relative to control animals following
the 15-min cue-induced reinstatement session (t(25) = 3.3;
p, 0.01; Fig. 4D). However, no differences were ob-
served between rats in which ChIs were activated relative
to any other group (p. 0.05; Fig. 4D). Additionally, one-
way ANOVAs revealed no differences in MSN cellular ca-
pacitance (p. 0.05; Fig. 5A), resting membrane potential
(p.0.05; Fig. 5B), or NMDA decay time, as measured by
the time to reach 37% of peak amplitude (p. 0.05; Fig.
5C), between control, excitatory or inhibitory DREADD-
expressing animals. No sex differences in A/N or NMDA
decay within groups were observed (p. 0.05).

Active lever pressing during reinstatement is
positively correlated with MSN A/N ratio
The number of active lever presses and A/N were plot-

ted for each animal. The A/N ratio measured for each cell
was averaged across all cells from the same animal (be-
tween one and four cells/animal) to obtain the A/N for
each animal. A linear regression analysis revealed a rela-
tionship between the number of active lever presses dur-
ing reinstatement (T = 15) and the A/N ratio (F(1,26) = 12.4;
p, 0.01; Fig. 6). No sex differences in the slope were ob-
served (p. 0.05; data not shown).

Discussion
The present results show that chemogenetic inhibition

of NAcore ChIs inhibited cue-induced nicotine-seeking
behavior. Additionally, inhibition of ChIs reduced A/N rela-
tive to control animals receiving the same dose of CNO.
Further, the magnitude of reinstated nicotine seeking was
positively correlated with the A/N ratio, where higher ac-
tive lever pressing was associated with a larger A/N ratio,
an effect similar to those observed in other studies
(Gipson et al., 2013a). Together, these results demon-
strate that accumbens ChIs exert control over cue-in-
duced nicotine-seeking behavior and MSN synaptic
physiology within the NAcore (Marchi et al., 2002).

Interactions between ChIs, ACh, nAChRs, and drug-
motivated behavior
The cholinergic system has been heavily implicated in

reward-related behaviors. Interestingly, elevated levels of
ACh have been observed in the nucleus accumbens fol-
lowing cocaine (Crespo et al., 2006; Yee et al., 2011), re-
mifentanil (Crespo et al., 2006), nicotine (Rada et al.,
2001; Mansvelder et al., 2003), and alcohol (Larsson et
al., 2005). Further, elevated levels of ACh in the accum-
bens parallel the reinforcing effects of both intravenous
cocaine and remifentanil (Crespo et al., 2006), providing
evidence for ACh mediation of drug-motivated behavior.
Interestingly, ACh release in the accumbens is also en-
hanced during contingent versus non-contingent intrave-
nous cocaine administration, suggesting that ACh release
may be differentially mediated by volitional versus passive
drug exposure (Mark et al., 1999). ChIs are also heavily
implicated in stimulus-response associations (Aosaki et

al., 1994; Suzuki et al., 2001; Joshua et al., 2008; Collins
et al., 2019), thus it is not surprising that silencing accum-
bens ChIs prevents cocaine conditioned reward (Witten et
al., 2010). Witten and colleagues suggest that acute si-
lencing of accumbens ChIs disrupts drug-related learning
without affecting conditioning (Witten et al., 2010). Thus,
while ACh release is primarily driven by activation of ChIs
within the accumbens, acute silencing of ChIs in this re-
gion can disrupt drug-related learning. ACh-releasing
ChIs have also been shown to exert powerful modulatory
control over MSNs and dopaminergic tone within the
NAcore (Cachope et al., 2012; Yorgason et al., 2017).
Within the current study, we report that inhibition of ChIs
prevented cue-induced nicotine reinstatement, further
suggesting that inhibiting ACh release within the NAcore
may prevent nicotine seeking in part by blunting the stim-
ulus-response association.
nAChRs are densely expressed on ChIs as well as glu-

tamatergic and dopaminergic terminals throughout the
NAcore (Zhou et al., 2001; Zhang and Sulzer, 2004;
Zappettini et al., 2014; Girasole and Nelson, 2015), allow-
ing for extensive control of accumbens circuitry. Further,
nAChRs have been heavily implicated in the molecular as-
pects underlying addiction. For example, nAChRs are up-
regulated within the accumbens following voluntary
ethanol consumption (Larsson et al., 2005). Moreover,
nAChR inhibition also reduces cocaine place preference
and cocaine sensitivity (Zachariou et al., 2001) and
nAChR antagonism within the VTA attenuates cue-in-
duced cocaine seeking (Nunes et al., 2019). While the role
of nAChRs have been explored across multiple drugs of
abuse, their involvement in nicotine use and addiction has
been most prominently studied. Nicotine directly acti-
vates and leads to prolonged desensitization of nAChRs,
which contributes to the reinforcing properties of nicotine
(Picciotto et al., 1998, 2008; Mansvelder and McGehee,
2002; Mansvelder et al., 2003; Giniatullin et al., 2005).
Multiple studies have shown that antagonism of nAChRs
reduces active lever pressing in animals self-administer-
ing intravenous nicotine (Watkins et al., 1999; Markou and
Paterson, 2001; Toll et al., 2012; Liu, 2014), although
nAChR modulation specifically within the NAcore in a
cue-induced nicotine reinstatement paradigm following
self-administration has yet to be studied. Regardless, the
findings of these highlighted prior studies support the hy-
pothesis that the NAcore cholinergic system plays a criti-
cal role in nicotine addiction.

Interactions between ChIs, dopamine release, and
MSN synaptic plasticity
While the main input of MSNs is glutamatergic innerva-

tion from the cortex, ChIs also receive excitatory cortical
inputs. Interestingly, cortical stimulation evokes excitatory
responses in ChIs before MSNs, as depicted by postsy-
naptic current latencies and rise times. Specifically, the
postsynaptic current latency was slower in MSNs relative
to ChIs, indicating that ChIs are excited by excitatory in-
puts before MSNs (Fino et al., 2008). With MSNs being
downstream targets of ChIs, cortical inputs thus have the
ability to directly and indirectly modulate the excitability
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and membrane potential of MSNs through direct synaptic
connectivity and ChIs, respectively. Given these find-
ings, ChIs may have the ability to alter MSN synaptic
plasticity even before MSNs receiving cortical input. As
such, alterations in MSN synaptic plasticity may be be-
cause of modifications in the timing and order of the
presynaptic and postsynaptic activity at cortico-striatal
synapses. In addition to ChIs ability to directly alter
MSN synaptic excitability, ChIs modulate dopamine re-
lease within the accumbens by activating nAChRs lo-
cated on dopaminergic terminals (Nelson et al., 2014).
Specifically, synchronous activity of the ChI population
can induce DA release by bypassing action potential
generation within the dopaminergic soma (Cachope et
al., 2012; Threlfell et al., 2012). Not surprisingly, cortical
glutamatergic inputs targeting the accumbens can
modify dopamine release indirectly through activation
of ionotropic glutamate receptors located on ChIs
(Kosillo et al., 2016). MSNs are particularly susceptible
to dopaminergic modulation, where they are distin-
guished into two major subtypes, classified by their ex-
pression of either D1-type or D2-type dopamine
receptors. Given their extensive expression of dopa-
mine receptors, dopamine has the ability to extensively
modify both the structure and synaptic function of stria-
tal circuits. Current hypotheses suggest that dopami-
nergic neurons innervating the striatum modify the
strength of corticostriatal synapses of MSNs, contribut-
ing to action selection behaviors (Yin and Knowlton,
2006; Cohen and Frank, 2009) such as drug seeking.
In the current study, we report that inhibition of ChIs re-

duced the A/N ratio of MSNs relative to control, where ChI
activity was unaltered. Given the complexity of this cir-
cuitry, it is difficult to pinpoint the exact mechanism driv-
ing the observed changes in A/N ratio of MSNs in the
current study. However, the reduction in ChI activity be-
cause of chemogenetic inhibition may prevent pertinent
crosstalk between glutamatergic inputs, ChIs, dopamine
release, and MSNs, resulting in a reduction of A/N ratios
in MSNs. Additionally, here we report that activation of
ChIs reduced the A/N ratio, consistent with a recent study
showing that ChI activation during the extinction phase of
cocaine CPP reduced the A/N ratio of MSNs, although
not relative to controls (Lee et al., 2016). Furthermore, the
same study reported a reduction in miniature EPSPs in
MSNs as a result of ChI activation, suggesting a reduction
in MSN excitatory tone (Lee et al., 2016). However, it may
also be possible that chemogenetic activation of ChIs did
not promote reinstatement beyond control virus-express-
ing animals in the current study because of ChI autoregu-
lation, where ChI overexcitation and enhanced ACh
release induced by CNO may lead to activation of musca-
rinic M4 autoreceptors located on ChIs. Activation of
these receptors induces membrane hyperpolarization and
inhibition of ChI calcium channels (Girasole and Nelson,
2015), allowing for self-regulation and a blunting of further
ACh release. Because of overexcitation of ChI activity
caused by CNO, autoregulatory mechanisms may have
prevented ChIs from promoting glutamate release and al-
tering MSN synaptic plasticity. However, because these

mechanisms were not examined within the current manu-
script, future studies testing these mechanisms are
warranted.

Limitations of the current study
While the current study used chemogenetics to explore

the effects of ChIs on nicotine-seeking and MSN synaptic
plasticity, the effects of ChIs on other components within
the accumbens circuitry including the glutamatergic in-
puts from the cortex as well as dopamine terminals were
not explored. As discussed above, the synaptic connec-
tivity of MSNs has been shown to be altered by ChIs, do-
pamine release, as well as cortical inputs. Thus, to fully
characterize the role of ChIs in mediating nicotine seeking
and accumbens plasticity, additional studies addressing
the interactions of ChI-dopamine-MSN interactions as
well as MSN subtypes are warranted. These additional
studies would further uncover key components contribut-
ing to MSN synaptic modifications within the NAcore ob-
served in the current study as well as the regulatory role
of the cholinergic system in mediating nicotine-seeking
behavior.
Recent studies have demonstrated that ChAT::cre

rats display elevated levels of the vesicular acetylcho-
line transporter protein, as well as altered motor, anxi-
ety and attentional task performance (Mantanona et al.,
2019). While it is important to note that these effects
could affect the conclusions drawn within the current
study, we have recently compared the self-administra-
tion characteristics of wild-type Long–Evans rats with
ChAT::cre-positive Long–Evans rats and found no dif-
ferences in total infusions across self-administration
sessions or active and inactive lever pressing (Leyrer-
Jackson et al., 2020). Thus, while others have reported
behavioral differences of ChAT::cre rats compared with
wild type (Mantanona et al., 2019), we believe that the
lack of differences in self-administration characteristics
demonstrate that these groups do not differ in their nic-
otine-seeking behaviors. However, future studies would
benefit from comparing the MSN synaptic physiology
and accumbens circuitry between ChAT::cre and wild-
type rats.
In conclusion, we report that ChI inhibition prevents

cue-induced nicotine reinstatement and blunts MSN A/N.
These results suggest that the cholinergic system heavily
modulates nicotine-seeking behavior and associated glu-
tamate plasticity. Thus, ChIs may be an essential modula-
tor of MSN synaptic plasticity, which may play a role in
nicotine seeking, that has been previously overlooked.
Taken together, the current findings illustrate an addition-
al component of the highly complex neurophysiological
underpinnings of nicotine relapse, where ChIs mediate
control of MSN A/N and thus play a pertinent role in tran-
sitioning nicotine craving to seeking.
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