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CYTOCHROME P450S AND USES THEREOF 

RELATED APPLICATIONS 

This application is a continuation of US. patent applica 
tion Ser. No. 12/182,000, ?led Jul. 29, 2008, now US. Pat. 
No. 8,263,362 which is a continuation of US. patent appli 
cation Ser. No. 10/097,559, ?led Mar. 8, 2002 (now issued 
US. Pat. No. 7,405,057), which claims the bene?t of US. 
Provisional Application Nos. 60/274,421 and 60/275,597, 
?led on Mar. 9, 2001 and Mar. 13, 2001, respectively, all of 
which are hereby incorporated by reference. 

FIELD OF THE INVENTION 

This invention relates to cytochrome P450s and uses 
thereof. 

BACKGROUND OF THE INVENTION 

Cytochrome P450s encompass a superfamily of oxidases 
responsible for the oxidation of numerous endobiotics and 
thousands of xenobiotics. In addition, in plants, cytochrome 
P450s play important roles in wound healing, pest resistance, 
signaling, and anti-microbial and anti-fungal activity. 

Capsidiol is a bicyclic, dihydroxylated sesquiterpene pro 
duced by many Solanaceous species in response to a variety 
of environmental stimuli, including exposure to UV (Back et 
al., Plant Cell. Physiol. 389:899-904, 1998) and infection by 
microorganisms (Molot et al., Physiol. Plant Pathol. 379-389, 
1981; Stolle et al., Phytopathology 78:1193-1197,1988; 
Keller et al., Planta. 205:467-476, 1998). It is the primary 
antibiotic or phytoalexin produced in tobacco in response to 
fungal elicitation, and it is derived from the isoprenoid path 
way via its hydrocarbon precursor, 5-epi-aristolochene (FIG. 
1). Several of the biosynthetic enzymes leading up to 5-epi 
aristolochene formation have been studied (Chappell, Annu. 
Rev. Plant Physiol. Plant Mol. Biol. 46:521-547, 1995), espe 
cially 5-epi-aristolochene synthase (BAS) (Vogeli and Chap 
pell, Plant Physiol. 88: 1291 -1296, 1988; Back and Chappell, 
Proc. Natl. Acad. Sci. USA. 93:6841-6845, 1996; Mathis et 
al., Biochemistry 36:8340-8348, 1997; Starks et al., Science 
277: 1815-1820, 1997). BAS commits carbon to sesquiter 
pene metabolism by catalyzing the cyclization of famesyl 
diphosphate (FPP) to 5-epi-aristolochene. However, until the 
present invention, the enzyme(s) responsible for the conver 
sion of 5-epi-aristolochene to capsidiol has yet to be fully 
identi?ed and characterized. 

Biochemical evidence from previous studies in tobacco 
(Whitehead et al., Phytochemistry 28:775-779, 1989) and 
green pepper (Hoshino et al., Phytochemistry 38:609-613, 
1995) have suggested that the oxidation of 5-epi-aris 
tolochene to capsidiol occurs in a two step process with one of 
the hydroxylation steps being constitutive and the other being 
mediated by an elicitor-inducible cytochrome P450 

(FIG. 1). Because 1-deoxycapsidiol had been isolated from 
natural sources (Watson et al., Biochem. Soc. Trans. 11:589, 
1983), Whitehead et al. (Phytochemistry 28:775-779, 1989), 
surmised that perhaps the biosynthesis of this intermediate 
was due to pathogen induction of a corresponding hydroxy 
lase. They therefore prepared synthetic 1-deoxycapsidiol and 
reported a modest conversion of this compound to capsidiol 
when fed to control or unelicited tobacco cell cultures. This 
was further supported by their observation that radiolabeled 
5-epi-aristolochene was only converted to capsidiol when fed 
to elicitor-induced cell cultures but not control cultures. 
Whitehead et al. (Phytochemistry 28:775-779, 1989) there 
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2 
fore concluded that the 3-hydroxylase, responsible for 
hydroxylation of 5-epi-aristolochene at C3 to generate 
1-deoxycapsidiol, was pathogen/elicitor inducible, while the 
1-hydroxylase, responsible for hydroxylating 1-deoxycap 
sidiol at the C1 to generate capsidiol, was constitutive. 
Hoshino et al. (Phytochemistry 38:609-613, 1995) added to 
the observations of Whitehead et al. (Phytochemistry 28:775 
779, 1989) by directly measuring 3-hydroxylase-activity in 
microsomal preparations of arachidonic acid-elicited Capsi 
cum annuum fruits and seedlings. These assays consisted of 
incubating 5-epi-aristolochene with microsome preparations 
and subsequently determining the amount of 1-deoxycapsid 
iol generated by a combination of thin-layer chromatography 
(TLC) separations and gas chromatography (GC). Their evi 
dence demonstrated that the conversion of 5-epi-aris 
tolochene to 1-deoxycapsidiol was dependent on both 
NADPH and 02, and that 1-deoxycapsidiol accumulation 

in vitro was arrested by the P450 antagonists carbon monox 
ide (Omura and Sato, J. Biol. Chem. 239:2370-2378, 1964), 
ancymidol (Coolbaugh et al., Plant Physiol. 62:571-576, 
1978), and ketoconazole (Rademacher, Arum. Rev. Plant 
Physiol. Plant Mol. Biol. 51:501-531, 2000). 

Recent results suggest that the hydroxylation of 5-epi 
aristolochene is an important regulated step in capsidiol bio 
synthesis. In studies to evaluate the effectiveness of methyl 
jasmonate as an inducer ofcapsidiol biosynthesis in tobacco 
cell cultures, Mandujano-Chavez et al. (Arch. Biochem. Bio 
phys. 381 :285-294, 2000), reported that the modest accumu 
lation of this phytoalexin was accompanied by a strong induc 
tion of EAS. This result implied that steps before or after the 
sesquiterpene cyclase reaction were limiting. Using an in vivo 
assay measuring the conversion rate of radiolabeled 5-epi 
aristolochene to capsidiol, a very limited induction of the 
hydroxylase activity was observed in cells treated with 
methyl jasmonate relative to that in fungal elicitor-treated 
cells. This result pointed to the hydroxylase reactions as a 
potentially limiting step in capsidiol biosynthesis. 

SUMMARY OF THE INVENTION 

In one aspect, the invention features several isolated cyto 
chrome P450 polypeptides (such as CYP71D20, CYP71D21, 
CYP73A27, CYP73A28, and CYP92A5, and P450s having 
substantial identity to these polypeptides), as well as isolated 
nucleic acid molecules that encode these P450s. 

In related aspects, the invention features a vector (such as 
an expression vector) including an isolated nucleic acid mol 
ecule of the invention and a cell (for example, a prokaryotic 
cell, such as Agrobacterium or E. coli, or a eukaryotic cell, 
such as a mammalian, insect, yeast, or plant cell) including 
the isolated nucleic acid molecule or vector. 

In yet another aspect, the invention features a transgenic 
plant or transgenic plant component including a nucleic acid 
molecule of the invention, wherein the nucleic acid molecule 
is expressed in the transgenic plant or the transgenic plant 
component. Preferably, the transgenic plant or transgenic 
plant component is an angiosperm (for example, a monocot or 
dicot). In preferred embodiments, the transgenic plant or 
transgenic plant component is a solanaceous, maize, rice, or 
cruciferous plant or a component thereof. The invention fur 
ther includes a seed produced by the transgenic plant or 
transgenic plant component, or progeny thereof. 

In another aspect, the invention features a method of pro 
viding an increased level of resistance against a disease 
caused by a plant pathogen in a transgenic plant. The method 
involves: (a) producing a transgenic plant cell including the 
nucleic acid molecule of the invention integrated into the 
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genome of the transgenic plant cell and positioned for expres 
sion in the plant cell; and (b) growing a transgenic plant from 
the plant cell wherein the nucleic acid molecule is expressed 
in the transgenic plant and the transgenic plant is thereby 
provided with an increased level of resistance against a dis 
ease caused by a plant pathogen. 

In another aspect, the invention features a method for pro 
ducing an altered compound, the method including the steps 
of contacting the compound with one or more of the isolated 
polypeptides disclosed herein under conditions allowing for 
the hydroxylation, oxidation, demethylation, or methylation 
of the compound and recovering the altered compound. 

In still another aspect, the invention features a hydroxylat 
ing agent including any of the isolated polypeptides disclosed 
herein. 

In yet another embodiment, the invention features an iso 
lated nucleic acid molecule that speci?cally hybridizes under 
highly stringent conditions to the complement of any one of 
the sequences described in SEQ ID N012 (CYP71D20), SEQ 
ID N014 (CYP71D21), SEQ ID N016 (CYP73A27), SEQ ID 
N018 (CYP73A28), or SEQ ID N0112 (CYP92A5), wherein 
such a nucleic acid molecule encodes a cytochrome P450 
polypeptide. 

In another aspect, the invention features a host cell express 
ing a recombinant isoprenoid synthase and a recombinant 
cytochrome P450. In preferred embodiments, the host cell 
further expresses, independently or in combination, a recom 
binant acetyltransferase, methyltransferase, or fatty acyl 
transferase. In other preferred embodiments, the host 
expresses an endogenous or recombinant cytochrome reduc 
tase. Preferably, the host cell is a yeast cell, a bacterial cell, an 
insect cell, or a plant cell. 

In a related aspect, the invention features a method for 
producing an isoprenoid compound, the method including the 
steps of: (a) culturing a cell that expresses a recombinant 
isoprenoid synthase and a recombinant cytochrome P450 
under conditions wherein the isoprenoid synthase and the 
cytochrome P450 are expressed and catalyze the formation of 
an isoprenoid compound not normally produced by the cell; 
and (b) recovering the isoprenoid compound. In preferred 
embodiments, the host cell further expresses a recombinant 
acetyltransferase, a recombinant methyltransferase, or a 
recombinant fatty acyltransferase. In other preferred embodi 
ments, the host cell expresses an endogenous or recombinant 
cytochrome reductase. Preferably, the host cell is a yeast cell, 
a bacterial cell, an insect cell, or a plant cell. 

In yet another aspect, the invention features an isoprenoid 
compound produced according to the above-mentioned 
methods. 
By “P450 polypeptide,” “cytochrome P450,” or “P450” is 

meant a polypeptide that contains a heme-binding domain 
and shows a C0 absorption spectra peak at 450 nm according 
to standard methods, for example, those described herein. 
Such P450s may also include, without limitation, hydroxy 
lase activity, dual hydroxylase activity, demethylase activity, 
or oxidase activity. Such enzymatic activities are determined 
using methods well known in the art. 
By “polypeptide” is meant any chain of amino acids, 

regardless of length or post-translational modi?cation (for 
example, glycosylation or phosphorylation). 
By “substantially identical” is meant a polypeptide or 

nucleic acid exhibiting at least 80 or 85%, preferably 90%, 
more preferably 95%, and most preferably 97%, or even 98% 
identity to a reference amino acid sequence (for example, the 
amino acid sequence shown in SEQ ID NOS11, 3, 5, 7 and 11) 
or nucleic acid sequence (for example, the nucleic acid 
sequences shown in SEQ ID NOS12, 4, 6, 8 and 12, respec 
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4 
tively). Forpolypeptides, the length of comparison sequences 
will generally be at least 16 amino acids, preferably at least 20 
amino acids, more preferably at least 25 amino acids, and 
most preferably 35 amino acids. For nucleic acids, the length 
of comparison sequences will generally be at least 50 nucle 
otides, preferably at least 60 nucleotides, more preferably at 
least 75 nucleotides, and most preferably 110 nucleotides. 

Sequence identity is typically measured using sequence 
analysis software (for example, Sequence Analysis Software 
Package of the Genetics Computer Group, University of Wis 
consin Biotechnology Center, 1710 University Avenue, 
Madison, Wis. 53705, BLAST, or PILEUP/PRETTYBOX 
programs). Such software matches identical or similar 
sequences by assigning degrees of homology to various sub 
stitutions, deletions, and/or other modi?cations. Conserva 
tive substitutions typically include substitutions within the 
following groups: glycine, alanine; valine, isoleucine, leu 
cine; aspartic acid, glutamic acid, asparagine, glutamine; 
serine, threonine; lysine, arginine; and phenylalanine, 
tyrosine. 
By an “isolated polypeptide” is meant a P450 polypeptide 

(for example, a CYP71D20 (SEQ ID N011), CYP71D21 
(SEQ ID N013), CYP73A27 (SEQ ID N015), CYP73A28 
(SEQ ID N017), or CYP92A5 (SEQ ID N011 1) polypeptide) 
that has been separated from components that naturally 
accompany it. Typically, the polypeptide is isolated when it is 
at least 60%, by weight, free from the proteins and naturally 
occurring organic molecules with which it is naturally asso 
ciated. Preferably, the preparation is at least 75%, more pref 
erably at least 90%, and most preferably at least 99%, by 
weight, a P450 polypeptide. An isolated P450 polypeptide 
may be obtained, for example, by extraction from a natural 
source (for example, a plant cell); by expression of a recom 
binant nucleic acid encoding a P450 polypeptide; or by 
chemically synthesizing the protein. Purity can be measured 
by any appropriate method, for example, column chromatog 
raphy, polyacrylamide gel electrophoresis, or by HPLC 
analysis. 
By “derived from” or “obtained from” is meant isolated 

from or having the sequence of a naturally-occurring 
sequence (e.g., cDNA, genomic DNA, synthetic, or combi 
nation thereof). 
By “isolated nucleic acid molecule” is meant a nucleic acid 

molecule, e.g., a DNA molecule, that is free of the nucleic 
acid sequence(s) which, in the naturally-occurring genome of 
the organism from which the nucleic acid molecule of the 
invention is derived, ?ank the nucleic acid molecule. The 
term therefore includes, for example, a recombinant DNA 
that is incorporated into a vector; into an autonomously rep 
licating plasmid or virus; or into the genomic DNA of a 
prokaryote or eukaryote; or that exists as a separate molecule 
(for example, a cDNA or a genomic or cDNA fragment pro 
duced by PCR or restriction endonuclease digestion) inde 
pendent of other sequences. The term “isolated nucleic acid 
molecule” also includes a recombinant DNA which is part of 
a hybrid gene encoding additional polypeptide sequences. 
By “speci?cally hybridizes” is meant that a nucleic acid 

sequence is capable of hybridizing to a DNA sequence at least 
under low stringency conditions, and preferably under high 
stringency conditions. For example, high stringency condi 
tions may include hybridization at approximately 42° C. in 
about 50% forrnamide, 0.1 mg/ml sheared salmon sperm 
DNA, 1% SDS, 2><SSC, 10% Dextran sulfate, a ?rst wash at 
approximately 65° C. in about 2><SSC, 1% SDS, followed by 
a second wash at approximately 650 C. in about 0.1><SSC. 
Alternatively high stringency conditions may include hybrid 
ization at approximately 420 C. in about 50% forrnamide, 0.1 
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mg/ml sheared salmon sperm DNA, 0.5% SDS, 5><SSPE, 
1><Denhardt’s, followed by two washes at room temperature 
in 2><SSC, 0.1% SDS, and two washes at between 55-600 C. 
in 0.2><SSC, 0.1% SDS. Reducing the stringency of the 
hybridization conditions may involve lowering the wash tem 
perature and/ or washing at a higher concentration of salt. For 
example, low stringency conditions may include washing in 
2><SSC, 0.1% SDS at 40° C. 
By “transformed cell” is meant a cell into which (or into an 

ancestor of which) has been introduced, by means of recom 
binant DNA techniques, a DNA molecule encoding (as used 
herein) a P450 polypeptide. 
By “positioned for expression” is meant that the DNA 

molecule is positioned adjacent to a DNA sequence which 
directs transcription and translation of the sequence (i.e., 
facilitates the production of, for example, a P450 polypeptide, 
a recombinant protein, or an RNA molecule). 
By “reporter gene” is meant a gene whose expression may 

be assayed; such genes include, without limitation, beta-glu 
curonidase (GUS), luciferase, chloramphenicol transacety 
lase (CAT), green ?uorescent protein (GFP), beta-galactosi 
dase, herbicide resistant genes, and antibiotic resistance 
genes. 
By “expression control region” is meant any minimal 

sequence suf?cient to direct transcription. Included in the 
invention are promoter elements that are suf?cient to render 
promoter-dependent gene expression controllable for cell-, 
tissue-, or organ-speci?c gene expression, or elements that 
are inducible by external signals or agents (for example, 
light-, pathogen-, wound-, stress-, or hormone-inducible ele 
ments or chemical inducers such as salicylic acid (SA) or 
2,2-dichloro isonicotinic acid (lNA)); such elements may be 
located in the 5' or 3' regions of the native gene or engineered 
into a transgene construct. 
By “operably linked” is meant that a gene and a regulatory 

sequence(s) are connected in such a way as to permit gene 
expression when the appropriate molecules (for example, 
transcriptional activator proteins) are bound to the regulatory 
sequence(s). 
By “plant cell” is meant any self-propagating cell bounded 

by a semi-permeable membrane and typically is one contain 
ing a plastid. Such a cell also requires a cell wall if further 
propagation is desired. Plant cell, as used herein includes, 
without limitation, algae, cyanobacteria, seeds, suspension 
cultures, embryos, meristematic regions, callus tissue, leaves, 
roots, shoots, gametophytes, sporophytes, pollen, and 
microspores. 
By “plant component” is meant a part, segment, or organ 

obtained from an intact plant or plant cell. Exemplary plant 
components include, without limitation, somatic embryos, 
leaves, stems, roots, ?owers, tendrils, fruits, scions, and root 
stocks. 
By “transgene” is meant any piece of DNA which is 

inserted by arti?ce into a cell and typically becomes part of 
the genome, for example, the nuclear or plastidic genome, of 
the organism which develops from that cell. Such a transgene 
may include a gene which is partly or entirely heterologous 
(i.e., foreign) to the transgenic organism, or may represent a 
gene homologous to an endogenous gene of the organism. 
By “transgenic” is meant any cell which includes a DNA 

sequence which is inserted by arti?ce into a cell and becomes 
part of the genome of the organism which develops from that 
cell. As used herein, the transgenic organisms are generally 
transgenic plants and the DNA (transgene) is inserted by 
arti?ce into the nuclear or plastidic genome. A transgenic 
plant according to the invention may contain one or more 
engineered traits. 
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6 
By “pathogen” is meant an organism whose infection of 

viable plant tissue elicits a disease response in the plant tissue. 
Such pathogens include, without limitation, bacteria, myco 
plasmas, fungi, insects, nematodes, viruses, and viroids. Plant 
diseases caused by these pathogens are described in Chapters 
11-16 ongrios, 

Plant Pathology, 3rd ed., Academic Press, Inc., New York, 
1 988. 
By “increased level of resistance” is meant a greater level 

of resistance to a disease-causing pathogen in a transgenic 
plant (or cell or seed thereof) of the invention than the level of 
resistance relative to a control plant (for example, a non 
transgenic plant). In preferred embodiments, the level of 
resistance in a transgenic plant of the invention is at least 20% 
(and preferably 30% or 40%) greater than the resistance of a 
control plant. In other preferred embodiments, the level of 
resistance to a disease-causing pathogen is 50% greater, 60% 
greater, and more preferably even 75% or 90% greater than a 
control plant; with up to 100% above the level of resistance as 
compared to a control plant being mo st preferred. The level of 
resistance is measured using conventional methods. For 
example, the level of resistance to a pathogen may be deter 
mined by comparing physical features and characteristics (for 
example, plant height and weight, or by comparing disease 
symptoms, for example, delayed lesion development, 
reduced lesion size, leaf wilting and curling, water-soaked 
spots, and discoloration of cells) of transgenic plants. 
By “puri?ed antibody” is meant antibody which is at least 

60%, by weight, free from proteins and naturally-occurring 
organic molecules with which it is naturally associated. Pref 
erably, the preparation is at least 75%, more preferably 90%, 
and most preferably at least 99%, by weight, antibody, for 
example, an acquired resistance polypeptide-speci?c anti 
body. A puri?ed P450 antibody may be obtained, for 
example, by af?nity chromatography using a recombinantly 
produced P450 polypeptide and standard techniques. 
By “speci?cally binds” is meant an antibody which recog 

nizes and binds a P450 protein but which does not substan 
tially recognize and bind other molecules in a sample, for 
example, a biological sample, which naturally includes a 
P450 protein such as CYP71D20, CYP71D21, CYP73A27, 
CYP73A28, or CYP92A5. Other features and advantages of 
the invention will be apparent from the following description 
of the preferred embodiments thereof, and from the claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic diagram of a proposed alternative 
pathway for the biosynthesis of capsidiol in elicitor-treated 
Nicoliana labacum cells. 5-epi-aristolochene is synthesized 
from FPP by the action of a sesquiterpene cyclase, 5-epi 
aristolochene synthase (EAS), and is subsequently hydroxy 
lated at C1 and C3 to form capsidiol. 

FIG. 2 is a graph showing an induction time course for 
sesquiterpene cyclase enzyme activity and sesquiterpene 
hydroxylase activity in cellulase-treated cell cultures. Ses 
quiterpene cyclase (5-epi-aristolochene synthase, EAS) 
enzyme activity was determined in extracts prepared from 
control (open squares) and elicitor-treated (closed squares) 
cells collected at the indicated time points. Sesquiterpene 
hydroxylase activity was determined using an indirect assay 
for control (open circles) and elicitor-treated (closed circles) 
cells. Cell cultures were incubated with [3H]-5-epi-aris 
tolochene for 3 hours ending at the indicated time points 
before quantifying the incorporation of radioactivity into 
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extracellular capsidiol, a dihydroxylated form of aris 
tolochene (Mandujano-Chavez et al., Arch. Biochem. Bio 
phys. 381 1285-294, 2000). 

FIG. 3 is a series of graphs showing the dose dependent 
inhibition of 5-epi-aristolochene hydroxylase activity by 
ancymidol and ketoconazole. Cell cultures were incubated in 
the presence of cellulase (0.5p.g/ml) plus the indicated con 
centrations of ancymidol (A) or ketoconazole (B) for 12 hours 
prior to measuring the in vivo 5-epi-aristolochene hydroxy 
lase activity in the cell suspension cultures (squares), or the 
EAS enzyme activity in extracts prepared from the collected 
cells (triangles). The in vitro activity of a puri?ed EAS prepa 
ration (Back and Chappell, J. Biol. Chem. 27017375-7381, 
1995) was also measured at the indicated inhibitor concen 
trations as an additional test for non-speci?c effects of these 
inhibitors (circles). 

FIG. 4A is a schematic diagram of the primary structure of 
a generalized cytochrome P450 with conserved domains used 
for the design of PCR primers highlighted (SEQ ID NOS126 
29). 

FIG. 4B is a list of the degenerate P450-speci?c primers 
(SEQ ID NOS130-36) that were used in various combinations 
with vector speci?c primers in the ampli?cation of cyto 
chrome P450 cDNA fragments. 

FIG. 4C is a scanned image of an ethidium bromide-stained 
agarose gel showing the PCR products ampli?ed from a 
directional cDNA library prepared with mRNA isolated from 
elicitor-treated cells using the degenerate primer GRRXCP 
(A/G)- for (SEQ ID N0135) and the T7 vector-speci?c primer 
(SEQ ID N0137). The T3 vector-speci?c primer is also shown 
(SEQ ID N0138). 

FIG. 5 is a series of Northern blots showing the induction 
time course for CYP71D, CYP73A, CYP82E, CYP92A, and 
EAS transcript accumulation in elicitor treated cells. Total 
RNA was extracted from tobacco suspension cells incubated 
with the cellulase elicitor for the indicated durations, size 
fractionated by agarose gel electrophoresis under denaturing 
conditions, and transferred to a nylon membrane before prob 
ing with the respective full-length cDNAs. The uniformity of 
sample loading was veri?ed by ethidium bromide staining of 
ribosomal RNA (Loading control). 

FIG. 6 is a series of graphs showing carbon monoxide (C0) 
difference spectra of the microsomal fraction isolated from 
yeast expressing the CYP92A5 (A) and CYP71D20 (B) 
cDNAs. Expression of the respective plasmid constructs 
engineered into the yeast (WAT11) cells was induced by a 
galactose treatment, followed by isolation of microsomal 
preparations. The difference adsorption spectra of 
microsomes incubated in the presence (solid lines) and 
absence (broken lines) of carbon monoxide was determined. 

FIG. 7 is a series of gas chromatograms of the reaction 
products formed upon incubation of microsomes isolated 
from WATl 1 yeast cells containing the CYP71D20 expres 
sion construct (A and C) or vector control DNA (B and D) 
with sesquiterpene substrates. Microsomes isolated from the 
indicated yeast lines were incubated with 5-epi-aristolochene 
(A and B) or 1-deoxycapsidiol (C and D) in the presence 
(solid lines) or absence (dashed lines) of NADPH. The iden 
tities of 5-epi-aristolochene, 1-deoxycapsidiol, and capsidiol 
were veri?ed by mass spectrometry. 

FIGS. 8A-D provide a sequence comparison of the amino 
acid sequence of Nicotiana tabacum 5-epi-aristolochene (ses 
quiterpene) hydroxylase NtCYP71D20 (SEQ ID N011) with 
other plant terpene hydroxylases (SEQ ID NOS139-43). 
NrCYP71A5v1 (GenBank accession number CAA70575) 
catalyzes the mono-hydroxylation of nerol and geraniol, lin 
ear monoterpenes, while PaCYP71A1 (A35867) catalyzes 
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8 
the epoxidation of these substrates (Hallahan et al., Biochim. 
Biophys. Acta. 1201194-100, 1994). MsCYP71D18 
(AAD44150) and MpCYP71D13 (AAD44151) catalyze the 
mono-hydroxylation at C6 and C3 of limonene, a cyclic 
monoterpene, respectively (Lupien et al., Arch. Biochem. 
Biophys. 3681181-192, 1999). AtCYP701A3 (AAC39505) 
encodes for kaurene oxidase, which catalyzes a 3-step reac 
tion including a hydroxylation followed by oxidation of a 
diterpene (Helliwell et al., Plant Physiol. 1191507-510, 
1999). Shown are sequences from Menlha piperila 
(MpCYP71D13; SEQ ID N0139), Menlha spicala 
(MsCYP71D18; SEQ ID N0140), Nepela racemosa 
(NrCYP71A5v1; SEQ ID N0141), Nicoliana tabacum 
(NtCYP71D20; SEQ ID N011), Persea americana 
(PaCYP71A1; SEQ ID N0142), and Arabidopsis Zhaliana 
(CYP701A3; SEQ ID N0143). Conserved residues are 
shaded. 

DETAILED DESCRIPTION 

Capsidiol is a bicyclic, dihydroxylated sesquiterpene pro 
duced by several Solanaceous species in response to a variety 
of environmental stimuli. It is the primary antimicrobial com 
pound produced by Nicoliana tabacum in response to fungal 
elicitation, and it is formed via the isoprenoid pathway from 
5-epi-aristolochene. Much of the biosynthetic pathway for 
the formation of this compound has been elucidated, except 
for the enzyme(s) responsible for the conversion of the allylic 
sesquiterpene 5-epi-aristolochene to its dihydroxylated form, 
capsidiol. 

Accordingly, an in vivo assay for 5-epi-aristolochene 
hydroxylase-activity was developed and used to demonstrate 
a dose dependent inhibition of activity by ancymidol and 
ketoconazole, two well-characterized inhibitors of cyto 
chrome P450 enzymes. Using degenerate oligonucleotide 
primers designed to the well-conserved domains found 
within most P450 enzymes, including the heme binding 
domain, cDNA fragments representing four distinct P450 
families (CYP71, CYP73, CYP82, and CYP92) were ampli 
?ed from a cDNA library prepared against mRNA from elici 
tor-treated cells using PCR. The PCR fragments were subse 
quently used to isolate full-length cDNAs (CYP71D20 (SEQ 
ID N012) and D21 (SEQ ID N014), CYP73A27 (SEQ ID 
N016) andA28 (SEQ ID N018), CYP82E1 (SEQ ID N0110), 
and CYP92A5 (SEQ ID N0112)), and these in turn were used 
to demonstrate that the corresponding mRNAs were all 
induced in elicitor-treated cells, albeit with different induc 
tion patterns. 

EXAMPLES 

There now follows a description of the cloning of several 
P450s from Nicoliana tabacum. These examples are provided 
for the purpose of illustrating the invention, and are not to be 
considered as limiting. 
Inhibition of the 5-epi-aristolochene to Capsidiol Conversion 
by P450 Antagonists 

Using an indirect assay, a detailed induction time course of 
SEAH activity in elicitor-induced cell cultures was deter 
mined relative to that of EAS activity (FIG. 2), the well 
characterized sesquiterpene cyclase activity that catalyzes the 
formation of 5-epi-aristolochene from FPP (FIG. 1). Using 
assays for EAS and SEAH, EAS activity is not detectable in 
control cell cultures, but is induced signi?cantly within 3 
hours and reaches its maximal level within 15 to 18 hours of 
elicitor-treatment. Similar to the EAS enzyme activity, 5EAH 
activity was negligible in control cell cultures. Nonetheless, 
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