2000

Mining Geology of Coals in Western Kentucky

Stephen F. Greb
University of Kentucky, greb@uky.edu

David A. Williams
University of Kentucky

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kgs_mc

Part of the [Geology Commons](https://uknowledge.uky.edu/kgs_mc)

Repository Citation

https://uknowledge.uky.edu/kgs_mc/12

This Map and Chart is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Map and Chart by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Mining Geology of Coals in Western Kentucky

Stephen F. Greb and David A. Williams

Introduction

The Western Kentucky Coal Field, which is the largest coal-producing area in Kentucky, has a long history of coal mining. It is characterized by a complex geologic setting that includes a variety of coal seams, each with its own unique set of mining challenges. This introduction provides an overview of the geological features and mining obstacles encountered in the Western Kentucky Coal Field, focusing on the Springfield coal bed, which is the most important coal bed in the region.

Geology

The Western Kentucky Coal Field is situated in the Appalachian Mountains, extending from the Ohio River to the Tennessee border. It is a regional sedimentary basin that contains a series of coal beds deposited during the Pennsylvania and Westphalian periods of the Paleozoic era. The Springfield coal bed, which is composed of black shale and coal, is part of the Breathitt Group and is located in the upper Pennsylvanian age. It is flanked by the Rough Creek and Pennyrile Fault Zones, which represent major tectonic boundaries.

Mining Obstacles

1. Faults: The Rough Creek and Pennyrile Fault Zones, which are major structural features, can cause significant mining obstacles. These faults can be categorized into normal, reverse, and thrust faults, each with distinct characteristics and implications for mining operations.
2. Shear Fractures: Shear fractures, which are common in the area, can lead to floor heave, which can be remediated by using stratified coal or installing floor supports.
3. Slickensides: Slickensides are a result of tectonic activity and can cause floor heave. They are especially prevalent above the Springfield coal bed.
4. Coal Balls: Coal balls are result of in situ coalification and can cause mining problems, especially in the Springfield coal bed.
5. Carbonate Concretions: Carbonate concretions are common in the Springfield coal bed and can cause mining problems.}

Acknowledgments

We wish to thank the mine personnel and inspectors who provided information and access to mines. Data collections were funded by the National Coal Resources Data System and the U.S. Geological Survey. We also acknowledge Cordell Bill, William Andrews, and Brad hemos from the Kentucky Geological Survey for reviews and editing.

References

