2007

Groundwater Quality in Kentucky: Manganese

R. Stephen Fisher
University of Kentucky

Bart Davidson
University of Kentucky, bdavidson@uky.edu

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kgs_ic

Part of the Geology Commons

Repository Citation
https://uknowledge.uky.edu/kgs_ic/12

This Report is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Information Circular by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Groundwater Quality in Kentucky: Manganese
R. Stephen Fisher and Bart Davidson

Introduction
Manganese is a common constituent of Kentucky rocks and soils and, along with iron, is one of the most widespread causes of problems in groundwater supplies. Rainwater seeping through soils and bedrock dissolves manganese and carries it in the groundwater system to wells and springs. In deep, slow-moving systems that lack oxygen, manganese remains in solution. Under oxidizing conditions, however, such as in shallow groundwater systems where the water is exposed to air, manganese combines with oxygen to form black particles that can clog plumbing fixtures and stain containers and clothing.

In addition to occurring naturally, manganese is released by coal combustion. It also is a component of some pesticides and can enter the groundwater system as a result of over-application of those pesticides. Manganese is a drinking water contaminant that is considered a health threat; in fact, small amounts of manganese are essential to human health. Excessive amounts can only affect the flavor and color of food and water, however (National Drinking Water Clearinghouse, West Virginia University, 1998). Manganese is considered a secondary or aesthetic contaminant in water because of its clogging and staining properties. For these reasons, the U.S. Environmental Protection Agency (2003) has set a secondary maximum contaminant level for manganese of 0.05 mg/L (or the equivalent parts per million).

Manganese Concentrations in Groundwater

Data Sources
Results of manganese analyses used in this report were compiled from the Kentucky Groundwater Data Repository, maintained by the Kentucky Geological Survey. The repository was established in 1990 to archive and disseminate groundwater data collected by various agencies in Kentucky. Major data sources for the repository include the Kentucky Division of Water, the Kentucky Geological Survey, the U.S. Geological Survey, the National Uranium Resource Evaluation Program, and the U.S. Environmental Protection Agency.

The database contains 20,814 analyses of samples from 1,917 wells and 2,318 springs throughout Kentucky as of November 2004. Of the analyses, 6,249 were identified as containing manganese (total manganese and dissolved manganese). Of these, 8,223 were identified as dissolved manganese (filtered groundwater), and the rest were unspecified. Analytical results for groundwater samples collected from known or suspected contaminated sites, identified by regulatory program names such as the Resource Conservation and Recovery Act, Solid Waste, and Underground Storage Tank programs, were not included in this report because they are not representative of regional groundwater quality. Samples from wells deeper than 1,000 ft were excluded because such deep wells are not likely to be used for domestic or industrial water supplies.

Variations in Manganese Concentrations
Manganese concentrations of several hundred mg/L have been reported. The maximum manganese concentration in each of Kentucky’s geologic regions far exceeds the cosmetic and aesthetic level of 0.05 mg/L. Even the median manganese concentration exceeds 0.05 mg/L in all regions except the Inner Bluegrass, Western Pennyrhil, and Jackson Purchase Regions. At these locations, the median manganese concentration is less than 0.01 mg/L. In all other regions, the median manganese concentration is greater than 0.05 mg/L. Approximately 50 percent of all recorded manganese concentrations were greater than 0.05 mg/L (Fig. 1).

Table 1. Summary of manganese concentrations.

<table>
<thead>
<tr>
<th>Region</th>
<th>No. of Measurements</th>
<th>Percentile Value</th>
<th>Median Value</th>
<th>Percentile Value</th>
<th>No. of Sites</th>
<th>Percent of Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Kentucky Coal Field</td>
<td>2,078</td>
<td>505.9</td>
<td>56.1</td>
<td>11.4</td>
<td>1,481</td>
<td>41.4</td>
</tr>
<tr>
<td>Fayette County</td>
<td>37</td>
<td>14.0</td>
<td>3.6</td>
<td>1.2</td>
<td>25</td>
<td>7.1</td>
</tr>
<tr>
<td>Harrison County</td>
<td>48</td>
<td>9.0</td>
<td>3.6</td>
<td>1.2</td>
<td>31</td>
<td>9.1</td>
</tr>
<tr>
<td>Jackson County</td>
<td>48</td>
<td>9.0</td>
<td>3.6</td>
<td>1.2</td>
<td>31</td>
<td>9.1</td>
</tr>
<tr>
<td>Kentucky Coal Field</td>
<td>2,078</td>
<td>505.9</td>
<td>56.1</td>
<td>11.4</td>
<td>1,481</td>
<td>41.4</td>
</tr>
<tr>
<td>Mauve Manganese</td>
<td>1,370</td>
<td>14.0</td>
<td>3.6</td>
<td>1.2</td>
<td>968</td>
<td>28.1</td>
</tr>
<tr>
<td>Knox County</td>
<td>154</td>
<td>9.0</td>
<td>3.6</td>
<td>1.2</td>
<td>117</td>
<td>3.5</td>
</tr>
<tr>
<td>Logan County</td>
<td>154</td>
<td>9.0</td>
<td>3.6</td>
<td>1.2</td>
<td>117</td>
<td>3.5</td>
</tr>
<tr>
<td>Pulaski County</td>
<td>34</td>
<td>9.0</td>
<td>3.6</td>
<td>1.2</td>
<td>25</td>
<td>7.1</td>
</tr>
</tbody>
</table>

Figure 1. Cumulative plot of reported manganese concentrations. Values range as high as 540 mg/L. Values greater than 0.05 mg/L (dissolved manganese) were excluded from this graph to better show the region of interest.

The map shows the locations of wells and springs where manganese in groundwater has been measured, with different symbols to indicate concentration ranges. Sites that have been sampled more than once may have more than one symbol, and sites that are near each other may be indicated by superimposed or overlapping symbols. The density of sampled sites is greatest below approximately 38°N latitude because the extensive sampling for the National Uranium Resources Evaluation Program did not extend north of this line.

The Eastern Kentucky Coal Field, Eastern Pennyrhil, Outer Bluegrass, and Western Kentucky Coal Field Regions have the highest percentage of sites where the SMCL is exceeded, whereas the Inner Bluegrass, Western Pennyrhil, and Jackson Purchase Regions have the lowest percentage of such sites.

Figure 2 summarizes total manganese (measured from unfiltered water) and dissolved manganese (measured from filtered water) concentrations. In this plot, boxes enclose the central 50 percent of the values, from the 25th percentile value to the 75th percentile value. The median value is shown by a vertical line through the box. Lines extend from each end of the box for a distance of 1.5 times the concentration range represented by the central box. Extreme values are shown as individual squares. Total manganese concentrations have a higher median value, higher 75th percentile value, and larger range of values in the central 50 percent of the reported concentrations than dissolved manganese. This comparison shows that unfiltered ground water typically has a higher manganese concentration than filtered water; therefore, suspended particulate manganese is commonly present.

Water-Quality Concerns
Manganese in groundwater commonly exceeds the SMCL of 0.05 mg/L. Manganese is present to some degree in all of Kentucky’s bedrock types, and so in all the physiographic regions. Therefore, sites where manganese exceeds the SMCL are spread across the state, and pipe-clogging as well as clothing-staining is a common problem unless manganese is removed by some treatment process.

Various treatment options, including aeration, filtration, water softening, use of ion exchangers, ozonation, and chlorination are available to reduce manganese in groundwater supplies (Department of Public Health, Washington County, Minnesota, 2005). Citizens who have high manganese concentrations in their water supplies can consult with water-treatment companies to determine which method might work best in their particular situation.

These findings should be viewed as general patterns. Individual wells or springs should be tested for the occurrence of manganese and other potential contaminants before being used as drinking-water supplies. Citizens with concerns about the quality of water in private wells or springs should contact their local health department or the Groundwater Branch of the Kentucky Division of Water, a division of the Kentucky Natural Resources and Environmental Protection Cabinet. The Groundwater Branch can provide literature on maintaining private wells and springs and information on sampling for water-quality analysis. The Kentucky Geological Survey Data Repository receives new results of analyses periodically. To view the latest data, visit kgwweb.uky.edu/DataSearching/searchwater.asp.

The Kentucky Interagency Groundwater Monitoring Network
The Kentucky Interagency Groundwater Monitoring Network (KIGMN) is a cooperative effort of the Kentucky Interagency Groundwater Monitoring Network, which was established in 1998 by legislation (KRS 161.625) to collect groundwater quality data, characterize groundwater resources, and distribute the resulting information. The network is assisted by an Interagency Technical Advisory Committee on Groundwater, which was also created by statute (KRS 151.629). Additional information and a list of member agencies can be found at www.uky.edu/KIGMN/gnet/gnet.htm.

References Cited

For further information, contact: R. Stephen Fisher, Ph.D., Kentucky Geological Survey 228 Mining & Mineral Science Building University of Kentucky Lexington, KY 40506-1017 USA (859) 257-1500

KENTUCKY GEOLOGICAL SURVEY
James C. Cobb, State Geologist and Director UNIVERSITY OF KENTUCKY, Lexington

INFORMATION CIRCULAR 14 SERIES XII, 2007

https://doi.org/10.13023/kgs.ic14.12

IRS 0755-5583

ISSN 0755-5583
MANGANESE CONCENTRATIONS IN WELLS AND SPRINGS IN KENTUCKY

EXPLANATION

Physiographic regions
- Eastern and Western Kentucky Coal Fields
- Inner Bluegrass
- Outer Bluegrass
- The Knobs
- Eastern Pennyroyal
- Western Pennyroyal
- Alluvium or glacial deposits
- Jackson Purchase

Manganese (mg/L) SMCL = 0.05 mg/L
- ▲ > 2
- ◇ 0.051 – 2
- ● 0 – 0.05
- □ < detection

Data from Kentucky Groundwater Data Repository, July 2005

Cartography by Terry Hountalad