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ABSTRACT OF DISSERTATION 

A SYSTEMS APPROACH TO THE PROBLEM OF FALLS IN OLD AGE 

The problem of falls in old age is enormously costly and disruptive for the older 
individual, others, and society, and its severity is likely to intensify as our population 
ages. This dissertation takes a systems-oriented approach toward the falls problem and is 
presented in two parts.  The first part critically develops a new approach to the problem 
of falls.  The second part describes an empirical study that applies this new approach in a 
pragmatic manner. 

 Conventional fall prevention strategies employ a reductionist approach to the 
problem of falls.  This approach is questioned because it corresponds poorly to the 
holistic nature of postural control.  A systems-oriented conceptual framework explains 
postural instability in old age as the gradual decline of a postural control system’s ability 
to adapt. 

Realizing that falls arise from a complex system of interacting components of 
various levels and domains makes it imperative to investigate interventions aimed toward 
systemically fostering robust postural control.  A dynamic systems theoretical framework 
is outlined that views postural control to be the result of synergies which function to 
control myriad inherent degrees of freedom.  Complexity-based measures of postural 
sway are suggested as indicators of postural control system robustness. 

This new approach to the problem of falls is applied in an empirical study in 
which Tai Chi serves as a systems-oriented intervention.  Using a dynamic systems 
perspective, motor imagery, along with other Tai Chi principles, are hypothesized to 
provide interacting physical and cognitive constraints on motor behavior that form 
synergies which enable robust postural stability into old age. 

This hypothesis was tested in a quasi-experiment comparing effects of Tai Chi 
motor imagery in Tai Chi experts and non-experts.  The expected significant effects on 
postural sway complexity were not found, but significant main effects and interactions on 
sway variability and ease of imagery were discovered with respect to expertise and 
imagery type.  Findings, results, innovations, implications and future directions are 



presented, and discussed as they pertain to four specific aims, and to ameliorating the 
problem of falls in old age. 

KEYWORDS: Falls, Older Adults, Tai Chi, Dynamic Systems, Motor Imagery, Postural 
Control 
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Chapter 1: Confessions of a Recovering Reductionist 

We have looked at many aspects of low back pain and disability, and it is time to 
fit them all together.  Let us step back and try to see the whole picture.  It should 
be clear that the traditional disease model is inadequate to understand low back 
pain and disability.  We need a new model… (Waddell, 2004, p. 265). 

Orthopedic surgeon, Gordon Waddell, MD published these words in his book, 

The Back Pain Revolution, in response to a time of exponential increase in lower back 

pain-related disability and social security benefits in the United Kingdom that lasted into 

the mid-1990s. 

Around the same time of which Waddell wrote, I was practicing physical therapy 

with my wife, Michelle, in our privately-owned clinic in Maysville, KY.  My special 

interest had been spinal pain and dysfunction, and my particular training was in the 

mechanical assessment and treatment of spinal problems.  My approach was often 

reductionist and reliant on a disease model, in which the culprit pathology responsible for 

a spinal problem was thought to involve one or just a few anatomical structures, not the 

least of which was the intervertebral disc.  I was well aware of how back and neck pain 

involved the social and psychological domains of life, but I considered these domains as 

removed from practically all my training as a physical therapist and, quite honestly, I 

preferred not to deal with them unless absolutely necessary. 

It was around the same time that (being the perpetual student that I am) I 

considered advancing my specialty training in spinal disorders, but did not.  Looking 

back, I know now that ultimately my choice was to see things in terms of whole systems.  

My reductionist thinking probably started to crumble when I began to dabble in 

traditional Chinese martial arts as an interesting and motivating way to get physical 
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exercise.  I found it curious how Chinese kung fu training was as much mental as it was 

physical.  Some of the mental training even struck me as perplexingly paradoxical and 

bizarre.  For instance, one training method was to stand still and perform a variety of 

mental imagery tasks.   It became clear to me that I assumed that the physical and mental 

domains were much more distinct and separate than the kung fu paradigm suggested.  I 

wondered: how is it possible that mental imagery training could play a role in acquiring 

physical skill?  If so, what is the nature of this mind-body relationship? 

I also began to question how I should understand my patients and the conditions I 

was called upon to treat.  Barring complete unconsciousness on the part of the patient, 

can I really separate effects of the physical treatment from all the non-specific effects 

related to a patient-provider encounter that experimental research endeavors so intensely 

to control (Benedetti, 2014; Harrington, 1997, 2008; Moerman, 2002)?  Furthermore, 

would I want to if I could? 

My reductionist ways of thinking were further contested during my graduate 

education.  I came to understand that the sum of the parts often does not always fully 

explain the whole.  Rather, new properties can arise out of the relationships among parts 

of a system that are not always reducible to the parts themselves.  This process of 

something new arising at the level of a whole system from nothing but its component 

parts, is known as emergence (Goodenough & Deacon, 2008).  Emergence has a long 

history in systems-oriented thinking (Clayton, 2004) and has broad applications.  Not 

only has emergence been a paradigm to understand physical, mental and social 

phenomena (Clayton, 2004; Deacon, 1997, 2013), but it has also served as a theological 
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paradigm to reconcile understandings of God in a culture that has increasingly valued 

scientific rationality (Kauffman, 2008; Kaufman, 2004; Rue, 2005, 2011). 

Although systems-oriented thinking has been around for a long time with several 

applications, the development of a systems-oriented approach within research addressing 

the problem of falls is new. 

This dissertation is presented in two parts.  The first is an investigation of a new 

approach to the problem of falls and is presented in Chapters 2, 3 and 4.  The second 

applies this new approach in an empirical study with four specific aims and is presented 

in Chapters 5 and 6.  Chapter 7 unites these two parts in a discussion of the sample, study 

design, and findings from each of the specific aims of the empirical study. In this chapter 

I integrate the two overall themes in discussion of the innovations, implications and 

future directions provided by the entire dissertation project.  Chapter 8 concludes the 

dissertation. 
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Chapter 2: Falls in Old Age 

This chapter will elaborate on what a fall is, why humans are prone to falling, 

when and how falling is a problem, and why falling is pressing concern in old age.  The 

many and varied identified factors that place older adults at risk will be discussed, and the 

enormous complexity of the problem will be demonstrated.  After summarizing a 

systematic review of falls prevention programs for older persons, the conceptual 

approach of current research and practice is critically evaluated.   

The Problem of Falls in Old Age 

A “fall” is generally defined in the research literature as an event in which a 

person comes to rest unintentionally on the ground or other lower level (Masud & Morris, 

2001).  Definitions vary depending on the source.  For instance, definitions may specify 

that a fall is not caused by a major intrinsic event (such as a heart attack) or 

overwhelming hazard (Tinetti, Speechley, & Ginter, 1988), or that a stumble qualifies as 

a fall (Ory et al., 1993), or that the height of the descent of a fall must be greater than one 

meter (Kannus et al., 1999).  A fall may occur from any starting position, including 

sitting or even lying, but because of the relationship of the center of gravity to base of 

support, humans are more prone to fall from the standing position. 

The Relation between Center of Gravity and Base of Support and Human 

Postural Control.  For any stationary object to maintain stability requires that its center 

of gravity (the downward vertical projection of gravity on the center of mass) be kept 

over the support area (Latash, 2012).  When the object’s center of gravity is positioned 

beyond the area of its base of support, it falls.  Figure 2.1 depicts a table in three different 
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positions of tilt.  The dot represents the center of gravity, where the center of mass is 

being acted upon by the downward vertical force of gravity.  The tables to the left and in 

the center of the figure will not completely topple because the center of gravity is 

positioned over their support base.  The table on the right is unstable and will fall on its 

side because the center of gravity is positioned beyond its base of support. 

The higher the center of gravity relative to base width, the less inherently stable is 

an object.   Figure 2.2 illustrates two wine glasses with the same actual base width that 

are resting on a slope at the same angle of tilt.  The effective base width (as measured 

perpendicular to the vertical projection of gravity) of these glasses is smaller than their 

actual base width because they are on a slope.  Even though their effective base widths 

are equal, because of the higher center of gravity belonging to the full glass, the vertical 

projection of its center of gravity is positioned much closer to the edge of its effective 

base and prone to tipping in that direction if disturbed.  In this respect, we could say the 

full glass in less stable than the empty glass. 

The integrity of the materials of an object could also be a factor in stability.  A 

wine glass with a cracked base may be less stable because it is less likely to withstand a 

disruptive force without breaking and falling over. 

The same principles making inert objects less stable apply to human bodies.  

One’s stability is affected by the height of one’s center of gravity relative to one’s base 

width.  Holding a heavy object overhead will effectively raise one’s center of gravity and 

reduce stability.  Widening one’s stance to increase base width or crouching will lower 

the center of gravity and improve stability. Conversely, narrowing one’s stance can 

reduce stability.  Standing on a slope reduces stability by making the effective base 
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smaller compared to standing on flat ground.  One’s musculoskeletal integrity can be a 

factor of stability.  Like the wine glass with a cracked base, a person with a weak ankle is 

less able to withstand forces that challenge his or her upright position. 

In all cases, when center of gravity is kept over base of support, as in the left hand 

and middle illustrations of Figure 2.3, stability is maintained.  When the center of gravity 

becomes positioned beyond a person’s base of support, as in the right hand illustration of 

Figure 2.3, the person will fall, unless the center of gravity is quickly repositioned over 

the base of support.  In fact, humans must do this during walking, a situation in which a 

moving center of gravity is repeatedly positioned beyond the base of support and is 

recovered by placement of the swinging leg. 

Compared to most quadruped animals, bipedal humans have a relatively high 

center of gravity and a small base of support. These characteristics make humans 

inherently unstable in standing (Latash, 2012).   This is illustrated in Figure 2.4. 

Unlike the inert objects discussed above, humans can act to get from one place to 

another and maintain their stability.  This is accomplished by way of a class of motor 

behaviors known as postural control, the ability to purposefully move about, and respond 

to destabilizing forces.  Postural control is concerned with controlling the body’s position 

in space for stability, and also with orienting the relationships among body segments, and 

the relationship between the body and its environment.  Postural stability, or balance, 

refers primarily to postural control, but specifically to the ability to control the center of 

gravity with respect to the support base (Shumway-Cook & Woollacott, 2012).  In these 

terms, an unintentional fall is the result of a failure in postural stability.  Since the 

orientation of inter-segment relationships in the body, and orientation of the body- 
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environment relationship is integral to postural stability, an unintentional fall is also a 

failure in postural control. 

When and How Falling Is a Problem.  Falling is a fact of life for humans.  As 

long as there is no injury, falling is considered normal in developing postural control as 

children learn to hold their head up, sit up, roll over, stand, walk, play and explore their 

environment (Peden, 2008).  But not all falls are harmless or normal.  Some cause injury, 

and these are a problem at any age.  

It is mostly in old age that falling is a problem.  This is easily illustrated by 

Figures 2.5 and 2.6 that show falls data collected in Ontario, Canada, during fiscal year 

2005/06.  Notice in figure 2.5 that falls requiring emergency department visits are well 

represented in every age group.  But, as illustrated in the figure 2.6, more severe and 

costly falls requiring hospitalization occur at disproportionately higher rates among older 

adults (Falls Across the Lifespan: Evidence-Based Practice Synthesis Document, 2008). 

Data collected by the Kentucky Injury Prevention and Research Center (KIPRIC) 

reveal the same pattern (Figures 2.7 and 2.8; Kentucky Injury Indicators 2013, 2016).  

Although emergency department visits in Kentucky for unintentional falls occurred in 

2013 at substantial rates in all age groups, hospitalization from falling occurred at a much 

higher rate among older age groups.  Figure 2.9 shows that deaths resulting from falls 

occurring in 2013 in Kentucky are also disproportionately more frequent among the 

elderly. 

Incidence and Cost of Falling among the Old.  Evidence that falling is 

primarily a problem in old age is not limited to data from Ontario and Kentucky.  Older 

people fall frequently regardless of location.  Thirty-five to 40 percent of all adults aged 
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65 years or older and living in the community fall every year, with a higher incidence in 

those 75 years or older (Kenny, Rubenstein, Martin, & Tinetti, 2001; Rubenstein, & 

Josephson, 2002).  In older persons with dementia the proportion of falls per year is 60-

80% (Bassiony et al., 2004; Shaw et al., 2003; Tinetti et al., 1988; van Dijk, Meulenberg, 

Van de Sande, & Habbema, 1993). 

Falls among those 65 and older represent the leading cause of non-fatal injuries, 

accounting for 2,791,459 fall-related injuries in the US in 2014 (Centers for Disease 

Control and Prevention [CDC], 2016a).  Studies have found that 23% of older adult 

fallers experience a serious injury, and that 12% of older fallers suffer serious injury as a 

result of their first fall (Tinetti, Doucette, Claus, & Marotolli, 1995; Tinetti, Doucette, & 

Claus, 1995). 

When falls harm older people the injuries are disproportionately severe.   One 

retrospective study found that falls were the mechanism of injury 48% of the time in 

those 65 years and older, and 32% of those falls were rated as severe.  In contrast, falls 

were the mechanism of injury in only 7% of those under 65 years of age, and only 11% 

of these falls were severe (Sterling, O’Connor, & Bonadies, 2001).   

Fatal falls are also more common in the old.  Falling in the US ranked as the 

fourth leading cause of injury death in 55-64 year olds in 2014, but ranked first in those 

aged over 65 years with 27,044 deaths (CDC, 2016a).  Older adults living longer with 

chronic disease are less likely to survive a fall, and the increasing proportion of these 

chronically ill older adults probably explains a 55.3% increase in rates of fatal falls from 

1993 to 2003 in persons aged 65 years or older in the US (Stevens, Ryan, & Kresnow, 

2006).  Rates of fatal falls in older adults have continued to rise and are likely to remain 
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high given that, in 2014, 61.6% of adults 65 years and older in the US had multiple 

chronic conditions (CDC, 2016a, 2016b; Ward, 2016). 

The direct economic impact of falls in older persons is enormous.  When adjusted 

for inflation, direct medical costs in the US attributable to falls in older adults total $34 

billion annually, with hospitalization accounting for two-thirds of the total cost (Centers 

for Disease Control and Prevention, 2014c; Stevens, Corso, Finkelstein, & Miller, 2006).  

Medicare costs in 2015 for non-fatal falls in older persons exceeded $31 billion, nearly as 

much as the $36 billion spent by Medicare on cancer in the same year (Burns, Stevens & 

Lee, 2016).  Mean cost for those 65 years and older for a hospitalization due to non-fatal 

fall in 2010 was estimated at $38,412 (CDC, 2016a). 

The economics of falls in older adults are compounded by indirect costs affecting 

broader societal productivity.   It is estimated that in 2020 the direct and indirect falls-

related cost (in 2012 dollars) will be $67.7 billion (CDC, 2014b; Fred Englander, 

Hodson, & Terregrossa, 1996). 

There are non-economic costs related to falls in older adults.  One direct non-

economic cost is fear.  In a 1997 study of older adults, the 219 who fell were asked, “Are 

you worried about falling again?”  Thirty-two percent reported they were (Vellas, Wayne, 

Romero, Baumgartner, & Garry, 1997).  In a cross-sectional study of 4,031 Dutch older 

adults, 54.3% reported being afraid of falling.  Among those afraid, 37.9% reported 

avoiding certain activities because of their fear (Zijlstra et al., 2007).   Falls not only 

create fear among the old, but also a contraction of freedom and reluctance to venture 

away from familiar environments.  Other direct non-economic costs affecting the older 

faller may be frustration, loss of physiological confidence, or anger, all of which 
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influence life quality on an emotional level.  Non-economic costs that indirectly affect the 

older faller may include the loss of opportunity to engage in normal activities or social 

interaction. 

In summary, being a bipedal human means having to move and control bodies 

that are inherently unstable.  Not surprisingly, falls occur in all age groups.  Harm occurs 

in every age group too, but the problem of falls is particularly severe in old age.  Older 

adults are falling at a rate of 35-40% and suffer the highest rates of injury, highest rates of 

hospitalization, and the highest rates of death due to falls.  The economic and non-

economic costs to the faller and to society are huge.  The facts speak for themselves: 

falling in old age is an enormous problem in terms of human suffering and economics.  

This dissertation focuses on exploring strategies to best ameliorate the problem of falls in 

old age.  It begins by examining the very nature of the problem, starting by evaluating the 

factors that place older adults at risk for falling. 

Risk Factors for Falling.   

A fall risk factor is a situation or circumstance that increases the likelihood of a 

person falling.  Fall risk factors have been classified as either intrinsic or extrinsic.  

Intrinsic fall risk factors are considered those in which a condition or characteristic of the 

individual increases the  risk of falling.  Extrinsic factors are those in which some 

environmental factor increases risk of a fall.  Some risk factors are modifiable while 

others are generally not (Masud & Morris, 2001).  Table 2.1 stratifies intrinsic and 

extrinsic risk factors based on modifiability resulting in four distinct groups.  Examples 

are given for each group. 
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Tables 2.2 and 2.3 provide a more comprehensive summary of intrinsic and 

extrinsic factors that put community-dwelling older adults at risk for falling (Deandrea et 

al., 2010; Fried, et al., 2001; Hanlon, Landerman, Fillenbaum, & Studenski, 2002; 

Koepsell et al., 2004; Nicklett, & Taylor, 2014; Menz, Morris, & Lord, 2006; Tencer et 

al., 2004; Tinetti & Kumar, 2010). 

A striking feature of Tables 2.2 and 2.3 is the large number of individual fall risk 

factors identified in older persons.  Table 2.2 lists 21 intrinsic factors.  Table 2.3 lists 39 

extrinsic risk factors relating to an older adult’s environment, and the hazards listed are 

only those most commonly encountered.  Unlisted are countless other possible hazardous 

environmental conditions. 

Another salient feature of the lists in Tables 2.2 and 2.3 is wide variation and 

complexity among fall risk factors.  Among the long list of intrinsic fall risk factors, are a 

vast array of bodily systems, including the musculoskeletal, neurological, endocrine, and 

cardiovascular.   Emotional and cognitive domains are also included in the mix.  Some 

individual risk factors reflect discreet underlying impairments such as Parkinson ’s 

disease or visual impairment.  Most are not so discreet.  “Gait Impairment/Difficulty 

Walking” may involve abnormalities in multiple bodily systems including the 

musculoskeletal, peripheral nervous, central nervous, or vestibular systems.  Fall risk 

associated with medication use could involve drug-induced impairment of just about any 

of the intrinsic bodily systems, depending on the specific medications and their side-

effects.  The fall risk factor of frailty, by definition, also suggests multiple possible 

underlying causes that may include abnormalities involving musculoskeletal, metabolic, 

digestive, or emotional domains (Fried et al., 2001). 
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Understanding fall risk becomes more complicated when considering how two or 

more concurrent risk factors may be interacting with each other to produce greater risk 

overall.  Tinetti, Speechley, & Ginter, (1988) conducted a one-year prospective study of 

336 adults of at least 75 years of age who were living in the community and found a 

dramatic rise in fall risk as the number of risk factors increased from one to four or more 

(Tinetti, Speechley, & Ginter, 1988).  Fall risk factors considered were sedative use, 

cognitive impairment, lower extremity disability, palmomental reflex, foot problems and 

gait/balance abnormalities.  Figure 2.9 illustrates the relationship between the number of 

fall risk factors and overall risk of falling (Tinetti, Speechley, & Ginter, 1988). 

In this case, there appears to be no clear linear or non-linear trend in which fall 

risk rises incrementally as the number of risk factors increases, but it appears that the 

largest jump in fall risk in an older person occurs during the transition between the 

presence of two and three risk factors.  There are at least three of the individual fall risk 

factors considered that are not discreet and that could involve multiple body systems.  

This design precludes a clear understanding of their relationship when more than one are 

present.   For example, lower extremity disability, foot problems, and gait/balance 

abnormalities could all share the same underlying cause, such as a sprained foot or foot 

weakness secondary to a peripheral nerve pathology.  It is also possible that they could 

have entirely distinct underlying causes, such as knee arthritis causing a lower extremity 

disability, toe arthritis causing a foot problem, and Parkinson’s disease causing a 

gait/balance abnormality.  The data presented in Figure 2.9 do not permit an adequate 

interpretation of how the mechanisms underlying these risk factors may, or may not, be 

interacting with each other to produce the result of greater risk. 
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Another layer of complexity is revealed when critically evaluating attempts to 

categorize fall risk factors (Fabre, Ellis, Kosma, & Wood, 2010).  Categorization for 

some fall risk factors is ambiguous.  Medication use has been listed as a fall risk factor 

that is extrinsic.  This extrinsic categorization seems perfectly reasonable when 

medications are outside of the body.  But an extrinsic categorization is hard to reconcile 

at the point where medications actually become incorporated intrinsically with the bodily 

systems of older adults, and where the interactions occur that actually produce increased 

risk.  Categorizing the use of a walking aid or footwear as intrinsic or extrinsic risk 

factors may be ambiguous.  The decision of one over the other may be arbitrary since 

both are at the very interface of individual and environmental interaction.   

Absolute categorization of fall risk factors into intrinsic and extrinsic is false at a 

more fundamental level.  If postural stability is the motor behavior that enables the older 

person to avoid a fall, then individual and environment are inseparably intertwined.  

Recall that postural stability is the ability to control one’s center of gravity with respect 

one’s base of support.  Accordingly, the older individual who intends to maintain balance 

is constantly and inextricably interacting with the external force of gravity and other 

possibly destabilizing environmental forces.  Any fall risk factor intrinsic to the 

individual older person is by default a fall risk factor to an individual-environmental 

relationship.  With respect to postural stability or instability, the absolute division of fall 

risk factors into categories of intrinsic and extrinsic, or individual and environmental, 

does not align with the very nature of how older people balance. 

Taken together, the underlying mechanisms contributing to falls are complicated, 

dynamic and still rather unpredictable in their effects; they are associated with a wide-
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range of multiple bodily systems and innumerable environmental factors that defy 

placement into absolute intrinsic or extrinsic categories.  

Falls Prevention.   

For the purpose of describing conventional strategies for preventing falls in older 

adults, and the conceptual framework upon which these strategies rely, an often cited 

systematic review by the Cochrane Collaboration authored by Gillespie, et al. (2013), is 

summarized here (Gillespie et al., 2013).  A total of 159 randomized trials of 

interventions for preventing falls in community-dwelling older adults aged 60 years or 

older were included in this systematic review.  The review analyzed falls prevention 

interventions using two functional measures.  The first was a rate ratio (RaR) comparing 

the rate of falls per person per year between intervention and control groups.  The second 

functional measure was a risk ratio (RR) based on the total number of fallers in each 

group.  Only trials that reported data relating to these two functional measures of fall rate 

and fall risk were included in the review.  Sample sizes of the trials ranged from 10 to 

9,940 with 230 as the median sample size.   

Interventions in the Cochrane review were divided into three categories: single, 

multiple and multi-factorial.  Single interventions involved only one major category of 

intervention (e.g., exercise, medication modification, or vision treatment).  Multiple 

interventions included two or more major categories of intervention that were given to all 

participants in the study.  Multi-factorial interventions consisted of two or more major 

categories of interventions but individual participants received different interventions 

depending on their identified risk factors.  Some of the Cochrane review’s main findings 

are presented below. 
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Exercise was categorized as a single intervention but sub-divided into either 

multi-category or single category exercise programs.  Single category exercise 

interventions included:  

 Programs intended to train only gait, balance or function;

 Resistive exercise programs intended to improve muscle strength;

 Three-dimensional programs, defined as “constant repetitive movement in all

three spatial planes (Gillespie et al., 2013, p. 8)” including Tai Chi and square

stepping; and

 General physical activity, such as walking groups.

Multi-category exercise interventions included two or more single exercise

interventions (e.g. balance and strength training) and were found to reduce both rate and 

risk of falls compared to controls.  Tai Chi reduced risk of falls and bordered on 

significantly reducing the rate of falls.  In sub-groups of participants that were not at high 

risk of falling, Tai Chi did reduce the rate of falls significantly.  Single exercise 

interventions of only balance, gait or functional training reduced the rate but not the risk 

of participant falls versus controls.  Strength training alone failed to reduce rate or risk of 

fall significantly.  Walking programs as a single exercise category also did not 

conclusively reduce risk or rates of falls at a level of acceptable significance.  Overall, 

exercise significantly reduced risk of fracture.  In sum, exercise as a single category 

intervention has been demonstrated to effectively prevent falls in older adults who live in 

the community. 

Other single category interventions analyzed by the Cochrane review were also 

effective in reducing the risk and/or rate of falls.  Home safety modification, for example, 
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reduced the rate and risk of falls especially in those individuals with high fall risk who 

were treated by an occupational therapist.  Gradual withdrawal of psychotropic 

medication reduced rate but not risk of falls.  However, a program for primary physicians 

focusing on modifying patient medications reduced fall risk.  Certain shoe modification 

and podiatry programs were found to reduce fall rate.  An intervention that replaced 

multifocal lenses with single lenses reduced the number of falls in the subgroup who 

were regularly active outdoors. 

Some single interventions had no significant effect of fall risk or rate, including 

Vitamin D, cognitive behavioral therapy, and falls education.  One intervention in which 

616 participants’ vision problems were treated paradoxically increased fall risk and fall 

rate in the group.  One possible explanation given by the authors was that many 

participants had major changes in prescriptions and were more vulnerable to falling while 

adjusting to the changes (Cumming et al., 2007).  Multi-factorial interventions, in which 

treatment is based on the individual’s identified risk factors, reduced rate of falls.  

The Cochrane review contributed much toward understanding the effectiveness of 

falls prevention programs in older community-dwelling adults.  It has potential to greatly 

influence what kind of programs healthcare providers prescribe, in what programs 

individuals themselves decide to participate, and the direction and funding of falls 

prevention research in the future.  For these reasons it is essential to evaluate the 

conceptual framework by which a review of such a large and influential body of falls 

research is understood.  Examining the implicit assumptions of the Cochrane review 

gives clues about the conceptual lens that shapes it. 
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An implicit assumption guiding the interventional strategies systematically 

reviewed by the Cochrane Collaboration is that falling is the result of abnormality in one 

or more underlying components as identified by individual fall risk factors.  This is 

evident in the classification of falls prevention programs into discreet categories of 

single, multiple, and multi-component interventions.  This assumption suggests that to 

effectively prevent falls requires implementing one or more discrete and targeted 

interventions to reduce underlying fall risk components.  This is plainly illustrated by the 

Cochrane Collaboration’s determination that Tai Chi is a single category exercise 

intervention properly classified as three-dimensional movement training.  This 

categorization reduces Tai Chi’s potential contribution to fall prevention to a focus on 

narrow movement characteristics that address mobility-related falls risk factors.  It is true 

that Tai Chi movement is three-dimensional, but this is a gross simplification compared 

to how Tai Chi communities themselves describe the integrative complexity of the 

characteristics of movement, and the goals of their art (Wayne & Fuerst, 2013; Yang et 

al., 2011; Yang, Grubisich & Feng, 2005). 

The point here is that the Cochrane review seems to approach the problem of falls 

in old age by addressing components of the problem rather than the full gestalt of an 

older person falling.  Its approach identifies and addresses the presence of component risk 

factors associated with falling but does not look at the problem at the level of a whole 

system as it behaves across time and space.  It seems to assume that a fall results from the 

sum of one or more component risk factors and that falls prevention is a matter of 

normalizing the values of these component risk factors (e.g., measures of muscle 

strength, range of motion, visual acuity, single leg stance time, blood pressure).  This 
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reductionist model is linear in its thinking.  It assumes that falling is explained and 

resolvable by correcting its component parts. 

A reductionist approach contrasts with a systems-oriented approach, which 

acknowledges that properties arise from the system as a whole in a manner that cannot be 

explained solely by its component parts.   Whereas a reductionist interventional approach 

focuses on normalizing static values of one or more single factors based on the 

assumption that outcomes are additive, a systems-oriented approach takes into account 

the dynamic and non-additive behaviors of a whole system in which components are 

interacting with each other (Ahn, Tewari, Poon, & Phillips, 2006).  Table 2.4 summarizes 

differences between key characteristics of a reductionist versus a systems-oriented 

approach (Ahn et al., 2006). 

The linkages between interacting factors affecting fall risk are changing, not only 

by effects of age-related processes occurring in the individual, but also by socially 

determined influences related to cohort, and by historical influences related to the period 

during which the individual is living.  A reductionist approach to fall risk and the 

problem of falls does not take into account these dynamics. 

As an alternative to a reductionist approach toward understanding the problem of 

falls in older adults, Chapter 3 presents a systems-oriented conceptual framework that is 

consonant with the holistic nature of postural instability in old age. 
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Table 2.1.  Categorization of Fall Risk Factors. 

Source:  Expanded from Fabre, Ellis, Kosma, & Wood (2010). 
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Table 2.2.  Intrinsic Risk Factors for Falling among Community-Living 

Older Adults.   

Sources:  Compiled from: Deandrea et al. (2010); Fried, et al. (2001); Hanlon, 

Landerman, Fillenbaum, & Studenski (2002); Koepsell et al. (2004); Menz, 

Morris, & Lord (2006); Nicklett, & Taylor (2014); Tencer et al., 2004; and Tinetti 

& Kumar (2010). 
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Table 2.3.  Extrinsic Risk Factors for Falling among Community-Living 

Older Adults. 

Source: Compiled from: Dickinson, Shroyer, Elias, Curry, & Cook, (2004); Fabre, 

Ellis, Kosma, & Wood, (2010); Koepsell et al., (2004); Menant, Steele, Menz, 

Munro, & Lord, (2008); Menz, Morris, & Lord, (2006); and Tencer et al., (2004). 
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Table 2.4.  Reductionism versus a Systems-Oriented Approach. 

Source:  Adapted from Ahn et al. (2006), Table 1 (p. 0710). 

Figure 2.1.  Center of Gravity of Table in Three Different Positions of Tilt. 

Source:  Taken from BBC GCSE Bitesize, (2016). 
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Figure 2.2.  The Wine Glass with the Higher Center of Gravity is Less Stable. 

Source:  Taken from: Chapter 10-Center of Gravity (Stanbrough, 2016) 

Figure 2.3.  Human Stability and Instability in Standing. 

Source: Taken from Englander (2013). 
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Figure 2.4.  Inherent Instability of Bipedal Humans versus Quadruped 

Animals. 

Source: Taken from Lumbard (2014). 

Figure 2.5. Emergency Department Visits in Ontario, Canada for 

Unintentional Falls in FY 2005/06. 

Source:  Taken from Falls Across the Lifespan: Evidence-Based Practice 

Synthesis Document (2008). 



25 

Figure 2.6.  Hospitalizations for Unintentional Falls in Ontario, Canada in 

FY 2005/06.  

Source:  Taken from Falls Across the Lifespan: Evidence-Based Practice 

Synthesis Document (2008). 

Figure 2.7.  Emergency Department Visits in Kentucky for Unintentional 

Falls in 2013. 

Source: Taken from “Kentucky Injury Indicators 2013” (2016). 
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Figure 2.8.  Hospitalizations in Kentucky for Unintentional Falls in 2013. 

Source: Taken from “Kentucky Injury Indicators 2013” (2016). 

Figure 2.9.  Fatalities in Kentucky Caused by Unintentional Falls in 2013. 

Source: Taken from “Kentucky Injury Indicators 2013” (2016) 
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Figure 2.10.  Occurrence of Falls According to the Number of Risk Factors. 

Source:  Taken from Tinetti, Speechley, & Ginter (1988), Figure 1. (p. 1705) 
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Chapter 3:  A Systems Approach 

An implied assumption of conventional fall prevention strategies is that the 

problem of falls is reducible to one or more component fall risk factors.  This chapter 

calls into question this linear reductionist approach because it corresponds poorly to the 

holistic nature of human postural control.  In the course of arguing for a systems-oriented 

approach to the problem of falls, it will be necessary to confront a current controversy 

among theorists about the essential character of human postural control, and motor 

behavior in general.  The problem of falls will be re-framed as that which arises from a 

complex dynamic system.  Tai Chi will serve as an example of a systems-oriented 

approach for optimal postural stability into old age. 

The Nature of Human Motor Behavior   

There is a fundamental disagreement among contemporary motor control theorists 

about the essence of human action.  Current theories driving motor behavior research 

have been described as belonging to one of two opposing camps: representational or 

anti-representational (Kelso, 1982). 

Representational Theories.  Representational conceptual models have 

dominated motor behavior research (Kelso, 1982).  They came about in cognitive science 

to interpret the inner operations of the mind occurring between stimulus and response that 

had largely been ignored by behaviorist psychologists.  Representational theories assume 

mental operations between stimulus and response are computational, typically occur in 

the brain, and “involve operations over symbols, where these symbols are entities with a 

representational content and an arbitrary connection to that which they represent” 
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(Shapiro, 2011, p.14).  In other words, the human brain is like a general purpose 

computer or a symbol-manipulating device, and human thinking is thought processes like 

the processes which occur in a computer.  From a representational research perspective, 

the goal is to understand the programs that run the computational mechanisms of the 

mind (Shapiro, 2011) 

A core representational concept in motor control is the motor program, defined as 

an abstract representation of a movement sequence stored in memory (Schmidt, 1982a; 

Schmidt, 1982b).  The concept was developed from the engram proposed by Nikolai 

Bernstein (Latash, 2012).   

Bernstein thought engrams were stored memories that were recalled when 

coordinated movement was required.  He proposed that engrams encoded salient features 

of movement which could be scaled in magnitude and time.  He demonstrated their 

existence by noting the remarkable similarity in writing the same word written with 

dominant and non-dominant hands and other body parts, despite the use of entirely 

different joints, muscles and areas of the body (Latash, 2008b, 2012). Figure 3.1 depicts 

the word “Coordination” (in Russian) written by Nikolai Bernstein with the pencil 

grasped by the dominant hand, non-dominant hand, attached to dominant and non-

dominant elbows, to the right and left feet, and gripped with the teeth.  The similarity of 

the of writing samples at different scales suggest that learning a skill, such as writing, is 

not a matter of learning a program of specific commands to particular muscles, but rather 

a more abstract pattern (in this case a topological pattern) that is transferrable to 

coordinated movement in disparate areas of the body (Latash, 2012).  [Bernstein used the 

term “topology” to denote “the whole of the qualitative characteristics of space 
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configurations and of the form of movements in contrast to the quantitative, metric ones 

(Whiting, 1984, p. 102).”] 

In the 1970’s Bernstein’s idea of engram became the basis for the concept known 

as the Generalized Motor Program (GMP).  Like the engram, the GMP was associated 

with learning abstract patterns of the spatial and timing relationships of a movement 

pattern, and was stored as memory in the central nervous system.  Later theorists took a 

major break from previous conceptions and assumed that the GMP encoded not only 

abstract features of movement, but also specific peripheral mechanical variables, such as 

motor unit firing, muscle forces and joint torques.  This notion of the GMP served as a 

conceptual precursor of contemporary Internal Models, a theoretical construct heavily 

influenced by control theory and engineering (Latash, 2008a).  Internal Models are 

essentially neural representations in the central nervous system that function to model the 

outside world and the body so that movement can be computed or predicted.  Internal 

Models assume that the peripheral variables of movement (muscle contractile forces, 

joint torques, motor unit activation patterns) are all pre-computed, and the perceptual 

consequences are predicted, by neural structures in the brain before a movement starts 

(Latash, 2012).   

The Implausibility of Representational Theories of Motor Behavior.   

Contemporary representational models of human motor behavior are disputed on both 

pragmatic and philosophical grounds.  Turvey, Fitch & Fuller (1982) do this by way of a 

“straw man” argument and clever use of a theory of motor control once popular in the 

19th century (Turvey, Fitch, & Tuller, 1982).  In Figure 3.2 there is a “little man” or 

homunculus who has access to motor plans stored in memory.  When coordinated 
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movement is required, the homunculus executes a selected motor plan as though it were a 

musical score played on the brain’s cortical keyboard.  The specifics of the executed 

motor plan are likened to musical notes being played on various instruments of the 

movement system, depicted in Figure 3.2 as motor units, alpha-gamma links, muscles or 

joints (Turvey et al., 1982).  Like contemporary representational theories of motor 

behavior, the homunculus in the brain must have motor plans in memory for all possible 

movements, and all the peripheral details of movement must be pre-computed by a motor 

plan before the selected movement is executed. 

This scenario is extremely unlikely because of the motor system’s inherently large 

number of degrees of freedom, independently variable factors that affect the range of 

possible states of a system.   The greater number of degrees of freedom, the greater the 

number of possible states in which a system may exist.  Estimating the number of degrees 

of freedom in a simple coordinated movement of the human arm demonstrates the 

enormous amount of computation necessary.  Coordinated movement in a single arm 

requires an executive controller in the brain to determine values for seven degrees of 

freedom of involved joints (two in the wrist, one in the forearm, one in the elbow, three in 

the shoulder), twenty-six degrees of freedom of involved muscles (one degree of freedom 

per muscle), and 2600 degrees of freedom of involved motor units (conservatively 

estimating 100 motor units per muscle) (Turvey et al.,1982).  The neural controller would 

also need to compute for variability related to the context of movement, such as 

anatomical sources of variability (variability of an individual muscle’s function on a joint 

movement), mechanical sources of variability (non-muscular forces, such as gravity, 
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momentum), and physiological sources of variability (peripheral neural influences on 

muscle activity). 

Finally, there remains a storage problem for the brain.  Does the brain have the 

capacity to store pre-computed motor plans for every possible movement?  This is 

improbable, in light of the motor system’s more than 2600 degrees of freedom in the 

human arm alone, not including the hand.  Imagine a steering control system of a car that 

has these four degrees of freedom: one steering wheel for each its four wheels.  

Controlling all four steering wheels would make steering that car very difficult.  

Controlling over 2600 independent degrees of freedom is monumental in comparison 

(Turvey et al., 1982). 

The representational idea of a motor program has been rejected on philosophical 

grounds because it necessarily implicates an intelligent controller.  Any representation is 

something that represents for or to someone, and this requires a user or interpreter that is 

external to it (Dennett, 1981).  A motor program implies a user with intelligent attributes 

(goals and interests) of the human whose behavior it attempts to explain, and has been 

likened to a homunculus inside the brain.  The problem with a homunculus strategy to 

explain goal-directed human behavior is that it does not really explain it.  It only deflects 

it, leading to an infinite chain of regression wherein a proposition’s truth relies on the 

truth of another, which in turn relies on the truth of still another, and so on (Dennett, 

1981; Kelso,1982). 

Representational theories are extremely implausible explanations for how human 

motor behavior arises.  A systems-oriented conceptual model is anti-representational 

because it avoids the intractable pragmatic and philosophical problems of 
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representational theories by explaining the order and properties observed in human motor 

behavior without invoking a homunculus-like central authoritarian controller (Shapiro, 

2011; Kelso, 1982).  Rather than referring to representations in the brain to explain 

human actions, a systems approach looks to the way a system is designed, and the 

constraints on the system that make the emergence of movement possible (Kelso, 1982). 

A Systems-Oriented Approach to Motor Behavior. 

A system is “a collection of components that interact or that have some functional 

relationship to each other, so that the collection possesses a wholeness of unity” (Riley, et 

al., 2011, p. 6).  A dynamic system is “any system which is comprised of a number of 

elements that cooperate to cause change in the system over time (Perry, 1998, p. 4).”  

Dynamic systems theory (DST) is the name systems-oriented researchers in the field of 

motor control have given to this approach, a designation taken from the larger area of 

study of how complex dynamic systems change over time (Kamm, Thelen & Jenson, 

1990; Kelso & Tuller, 1984; Perry, 1998; Shumway-Cook & Woollacott, 2012).   

Although dynamics as a field of study deals with any system that changes over time, 

dynamic systems theorists are particularly concerned with the behavior of systems that 

are non-linear at a level of complexity that makes the system behavior unpredictable 

(Latash, 2012; Strogatz, 2015). 

 A linear dynamic system is one in which the component parts of the system 

interact additively, such that the behavior of the whole system at some future time can be 

fully described by the sum of the parts.  That is, if we know the initial conditions of the 

parts of a linear dynamic system, then each part can be solved separately and combined to 

solve what the state of the system will be at some time in the future (Strogatz, 2015). 
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A non-linear system has parts that interact with each other multiplicatively, 

although it may also include linear interactions as well.  In non-linear dynamic systems of 

a certain complexity, a small change in the initial conditions can produce 

disproportionate changes in the future behavior of the whole system (Kuznetsov, 

Bonnette, & Riley, 2013).  This high-sensitivity to the initial conditions of its 

components, can make solving the future behavior of a non-linear system impossible.  

This feature of unpredictability in non-linear systems is also referred to as chaos 

(Strogatz, 2015).  Non-linear systems also enter in and out of stable behaviors referred to 

as attractor states (Shumway-Cook & Woollacott, 2012; Strogatz, 2015). 

The principle of self-organization is foundational to DST.  Self-organization 

occurs spontaneously in dynamic systems when individual components of a system are 

coupled and interact with each other to behave collectively and in an orderly manner 

(Shumway-Cook & Woolacut, 2012).  Self-organization is found throughout nature in 

systems that are dissipative and far from equilibrium.  In the inanimate world, self-

organizing systems form weather patterns, planetary systems, and snowflakes.  In the 

animate world they result in growth of tree branches and leaves, kidney function, and the 

swarming behavior of birds and fish.  Self-organization is also found in economic and 

political behaviors (Haken, 2008). 

A self-organized system functions with no outside controller.  This feature is a 

key difference in how the nature of human motor behavior is conceptualized by DST 

compared to a representational perspective.  Figure 3.3 illustrates the conceptual 

differences between self-organized and externally-organized systems in postural control 

that distinguish dynamic systems from representational theoretical approaches.  The 
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hand-controlled marionette is an example of the perspective of an externally-controlled 

system.  For the marionette to assume its posture, the hand must control its many degrees 

of freedom. 

Figure 3.4 illustrates the perspective of a self-organized system.  The many 

degrees of freedom are reduced by the coupled relationship of its component parts.  There 

are less strings for the same number of parts as the externally-controlled marionette.  No 

external controller is needed for the marionette to assume its posture (Turvey, 1990). 

A systems-oriented approach views postural control as emergent behavior of a 

self-organized, dynamic system.  It seeks to understand how the vast number of possible 

states of the postural control system are constrained so that a posturally stable behavior 

can emerge.  Important to this approach is the concept of synergies, also known as 

coordinative structures (Bernstein, 1967; Kelso, 2009; Latash, 2008; Turvey, 1990) 

“Synergy” has been defined as “groups of motor system degrees of freedom (e.g., 

joints, muscles, or motor units) that are coupled to act as a single, functional unit to 

achieve and maintain a behavioral goal” (Riley, Kuznetsov & Bonnette, 2011, p.7).  

Synergies do two things that make control of a high-dimensional motor system simpler.  

First, synergies provide Dimensional Compression by coupling the many available 

degrees of freedom at the component level of organization (such as joints, muscles or 

motor units) in order to constrain or reduce degrees of freedom at the system level.  This 

remedies the computational difficulties associated with having to control every variable 

separately (Turvey et al., 1982).  Second, synergies result in Reciprocal Compensation, 

which refers to how degrees of freedom within a synergy compensate for one another to 

stabilize the performance of the motor task, even when variations are occurring in 
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degrees of freedom at the component scale.  Reciprocal compensation allows greater 

variability in how a task is successfully performed, by stabilizing the performance 

without need of authoritarian centralized control (Riley et al., 2011). 

 Synergistic control of a motor control system with more available degrees of 

freedom is a more adaptable system because there are more possible configurations 

available to achieve a motor task.  Suppose that when playing basketball, we only had 

only one degree of freedom in the joint movements of the arm, elbow flexion/extension, 

and that this was sufficient to make a goal playing basketball.  Even though one degree of 

kinematic freedom is enough to get the basketball in the hoop, this severely restricts the 

possible joint configurations by which to successfully make the shot.  Instead, there are at 

least seven degrees of joint freedom in the human arm, many more than needed and with 

many more possible joint configurations that could be used to score.  The benefit of 

having so many more joint degrees of freedom in the arm is that when they are linked 

together for the purpose of making a shot, there is greater adaptability in changing the 

joint configurations as needed depending on the external circumstances.  When a 

defender bumps the forearm and disrupts the elbow joint angle during a shot, the 

synergistic relationship of the entire arm allows the angles of the other joints to 

compensate to make the shot. 

This benefit of high dimensionality in the motor control system is known as the 

“principle of abundance,” a positive response to negative connotations associated with 

the so-called “problem of motor redundancy,” also known as the “Bernstein problem” 

(Gelfand & Latash, 1998, 2002; Latash, 2010, 2012; Latash et al., 2007). 
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Systems-oriented approaches also view the postural control system as extending 

beyond the individual, an idea influenced by a perspective inspired by, and developed 

from, the work of James Gibson in the 1960’s called The Ecological Approach.  The 

Ecological Approach is marked by an appreciation of how an organism’s action is 

fundamentally oriented to, and constrained by, the environment (Gibson, 1966; Lee & 

Young, 1986).  According to an Ecological Approach, purposeful action relies on, and is 

tightly coupling with, goal-specific perceptual information within a specific environment 

(Reed, 1982).  Important to the individual organism is the perception and use of what 

Gibson referred to as “affordances,” or any possible behaviors for an organism in a given 

environment (Gibson, 2014; Riccio & Stoffregen, 1988).  In many environments, stance 

is an affordance for humans.  Human stance may afford other behaviors, such as 

locomotion by walking or running, or manipulation of objects at greater height.  

Affordances themselves offer opportunities for the individual.  Affordances also 

constrain behavior because there are a limited number of affordances for an individual in 

any given environment (Riccio & Stoffregen, 1988). 

Consonant with The Ecological Approach is Newell’s (1986) classification of 

three general kinds of interacting constraints from which coordinated movement arises: 

the environment, the individual, and the task (Newell, 1986).  In the context of 

environmental gerontology, Iwarsson (2004) proposed a similar classification of 

interacting components to explain functional performance of the older adult (Iwarsson, 

2004).  In Newell’s model, environmental constraints on motor behavior are those 

existing outside of the individual, such as gravity, support surface, ambient temperature, 

or light (the relationship of environmental constraints and fall risk is reflected in Table 
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2.3).  Individual constraints are those intrinsic to the individual (such as neurons, motor 

units, muscles, or joints) happening at every level of analysis.  Task constraints relate to 

the goal of the activity being performed, but may include any imposed rules of movement 

or specific tools or machines being used (Newell, 1986).  According to DST, motor tasks 

are goals to meet, or problems to be solved, and the movement strategies produced by the 

system are the solutions (Perry, 1998). 

Newell’s (1986) classification of constraints on motor coordination apply to 

postural control.  Individual attributes shape the strategy that a postural control system 

generates.  For example, brain aging associated with reduced automaticity of walking 

may produce a postural stability response of slower gait velocity (Liu, Chan, & Yan, 

2014).  Fear of falling may promote a postural control strategy of avoiding that which 

may be more stability-challenging for the older person, such as walking outside of one’s 

home on variable terrain. 

Task demands and environmental conditions shape the requirements of postural 

stability, and therefore shape the strategy of the postural control system (Horak, 2006).  

The task of sitting, for instance, has less stability demands than standing, which has less 

and different stability requirements than walking while reading a book.  The requirements 

of postural stability also change according to the environment. The stability requirements 

in standing vary depending on whether one is standing on a moving bus, against strong 

winds, or on an icy incline. 

Systems Approach to Postural Control.   

Woollacott & Shumway-Cook (2012) incorporated concepts from both dynamic 

systems and ecological theories of motor control, and call their theory of motor control 
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simply, Systems Approach (Shumway-Cook & Woollacott, 2012).  They adopted 

Newell’s idea that movement emerges from interacting constraints of individual, task and 

environment, and Gibson’s idea of tight perception-action coupling (Gibson, 1966; 

Newell, 1986).  

 Figure 3.5 is a schematic conceptualization of a Systems Approach.  Movement 

and postural control emerge from a complex dynamic system of interacting constraints of 

individual, task and environment.  Attributable to the individual are interacting 

constraints of perception, action and cognition.  Perception is the conscious and 

unconscious processing that integrates raw sensory input into information that is 

interpreted and given meaning, as it relates to movement afforded by a given 

environment.  Action refers to the particular activity associated with any movement, such 

as reaching, standing, sitting, walking, running, or jumping.  Cognition refers to the 

cognitive processes that underlie the intent of purposeful movement, such as attention, 

motivation, emotion, planning, and problem solving (Shumway-Cook & Woollacott, 

2012).  Constraints of the individual are perceptual and involve action systems that 

continually interact and influence each other at multiple levels of a cognitive processing 

hierarchy.  Perception-action-cognition refers to constraints attributable to the individual 

yet still strongly coupled with the environment and the goal of the motor task. 

Systems Approach provides an explanatory framework for changes in postural 

stability observed during various sensory conditions.  Computerized dynamic 

posturography (CDP) is used by researchers to determine the contributions of the visual, 

vestibular and musculoskeletal sensory systems on postural stability.  As will be 

explained in the next paragraph, by testing six different sensory conditions, the Sensory 
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Organization Test (SOT) is performed using CDP to measure an individual’s ability to 

use or suppress each of three sensory systems in order to maintain standing postural 

stability.  Among the six conditions, the task is to maintain balance in standing, the 

environment is altered in order to manipulate how visual or somatosensory input and the 

individual’s perceptual and action systems interact through cognitive processes to 

generate a postural response. 

In condition 1 the individual stands on a stable surface with eyes open so neither 

visual nor somatosensory input is manipulated.  In conditions 2 and 3 visual information 

is either removed completely, or manipulated by having the visual screen sway with the 

individual producing an illusion that the person is not swaying.  Conditions 4 through 6 

are the same as 1 through 3 except the supporting surface moves with the individual’s 

sway, thus providing unreliable somatosensory information.  The six conditions are 

illustrated in Figure 3.6.   

Evidence from CDP research on normal healthy adults suggests that cognitive 

processes in the central nervous system adjust the importance, or weight, of a sensory 

input (visual, somatosensory, or vestibular) being manipulated by environmental changes, 

depending on its relative accuracy in orienting the body in space.  In other words, through 

perceptual and cognitive processing of sensory information, more weight is given by the 

central nervous system to more reliable sources of sensory input.  This perception-action-

cognition interaction enables a successful postural response to emerge given the 

constraints of environmental conditions and the demands of the task (Nashner, 1982; 

Peterka, & Black, 1989; Woollacott, Shumway-Cook & Nashner, 1986). 
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Postural control in dual-tasking research reveals that postural stability is 

cognitively constrained by limited attentional resources.  Although maintaining balance 

while standing and walking is typically an automatic process, the attentional demands 

required may be affected by the demands of a secondary cognitive task.  This secondary 

task is known as a dual task, in a so-called dual task paradigm.  When motor or cognitive 

performance levels decline because both a motor task (such as walking) and a cognitive 

dual task (such as counting backward from 100 by 7’s) are performed simultaneously, the 

effects are referred to as dual-tasking interference or dual-task costs.   Dual-tasking costs 

of performing a secondary attentional task that manifests as decreased gait speed or 

reaction time occur in both young and old healthy adults, but generally increase with age 

(Yogev‐Seligmann, Hausdorff, & Giladi, 2008).  

Not all dual tasks cause interference.  When participants stood while performing a 

dual cognitive task of fixing their gaze on a target while counting letters in a block of text 

(versus looking at a blank target), standing postural stability was enhanced.  This 

supports the idea that visual information is used by the central nervous system as part of 

an integrated perception-action system in which postural control is modulated (disrupted 

or enhanced) according to the goal of the task being performed (Stoffregen, Pagulayan, 

Bardy, & Hettinger, 2000). 

One study suggests a link between executive cognitive function and postural 

stability in older adults (Herman, Mirelman, Giladi, Schweiger, & Hausdorff, 2010).  The 

study evaluated and tracked 201 participants without a history of falls for two years for 

changes in executive function (specifically including tests of response inhibition) and an 

array of gait, mobility and other cognitive functions.  Lowered indices of executive 
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function and greater gait variability (gait speed, swing time variability) during dual task 

conditions were found to be predictive of future falls, while other measures of gait, 

mobility and cognitive function were not.  Multivariate analyses suggested that gait 

ability under dual task conditions was a functional measure of, and interchangeable with, 

executive function as a predictor of future falls.  Taken together, the results imply that 

falls in older adults that have been interpreted as having no specific cause (“I just fell 

down”) may have been attributable to declines in executive function and attentional 

resources.  A further implication is that cognitive training which targets executive 

functions, such as divided attention, may potentially reduce falls in older adults. 

It has been proposed that normal aging-related structural and functional brain 

changes are linked to cognitive changes, which in turn can adversely affect motor control 

and learning in older adults (Fasano, Plotnik, Bove, & Berardelli, 2012; Liu, et al., 2014).  

Cognitive function and gait performance decline concurrently in old age as the brain 

ages.  Aging of the brain cortex disrupts its neural integrity and function.  The 

consequence is a reduction in the automaticity of movements, such as walking, and the 

older person must use more conscious control and attentional resources in order to walk 

without sacrificing postural control.   

The link between gait performance and attentional resources is hypothesized to be 

the result of evolution of human bipedal locomotion, which placed spatial and other 

cognitive processing needed for vertical balance in the higher-functioning levels of the 

central nervous system, including the cerebral cortex.  This conjecture is supported by a 

disequilibrium syndrome associated with a rare autosomal recessive disorder 
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characterized by severe spatial deficits and an inability to walk bipedally, despite intact 

sensory, vestibular and motor coordination function (Skoyles, 2006). 

Cognitive training in older adults may be a promising strategy for falls 

prevention.  Although it has been unclear whether falls prevention programs shown 

effective for normal older adults are truly effective in those with dementia or cognitive 

impairment (Oliver et al., 2007), there is evidence that cognitive interventions improve 

gait velocities with and without a dual cognitive task.  Computerized cognitive training 

(while seated) significantly improves gait velocities in sedentary older adults (Verghese, 

Mahoney, Ambrose, Wang, & Holtzer, 2010).   Dual-task training produces these same 

positive effects in older persons with balance impairment (Silsupadol et al., 2009).  

Preliminary evidence suggests that the failure of otherwise effective falls prevention 

programs to prevent falls in those with dementia and cognitive impairment may be 

because the programs do not address relevant cognitive constraints (Montero-Odasso, 

Verghese, Beauchet, & Hausdorf, 2012). 

In summary, the Systems Approach is a reasonable conceptual model in which 

postural control is distributed, and emerges from, an individual-environment-task system.  

This conceptual framework avoids the practical and philosophical pitfalls associated with 

representational theories, and is consonant with the non-linear systems behavior that 

characterizes human action.  Recent research supports the importance of cognition as a 

constraint shaping postural control, and may be under-appreciated among falls prevention 

strategies for older adults. 
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A Systems-Oriented Approach to Aging and Postural Instability in Old Age. 

The concept of homeostasis dates back to Claude Bernard in 1865 and was later 

developed by Walter B. Cannon.  It continues to be an essential principle in medicine by 

providing a model to explain how organisms successfully respond and adapt to stress by 

returning to equilibrium (Buchman, 2002).  Influenced by modern dynamic systems 

thinking, Yates (2008) offers the term homeodynamics to describe the properties of 

biological systems characterized by a flexible dynamic stability necessary for adaptation 

to internal and external disturbances (Yates, 2008).  Since the 1990s, the term 

homeodynamics has increasingly replaced homeostasis by virtue of the fact that internal 

physiology of complex biological systems is not static, is not in equilibrium, and interacts 

across various levels of organization (Rattan, 2012).  Rejecting a reductionist disease-

oriented approach in favor of a health-oriented systems approach to physiological aging, 

Rattan (2012, 2013) defines aging as an emergent expression of a failing homeodynamic 

system, rather than as the result of one or more age-related diseases.  Aging, as described 

by Rattan (2012, 2013), is a shrinkage of homeodynamic space, using “space” as a 

metaphor that refers to the diminishing buffering capacity of an organism to adapt and 

maintain a healthy state in the midst of internal and external threats (Holliday, 2007; 

Rattan, 2012, 2013). 

This homeodynamic buffering capacity is the organism’s ability to counteract 

stress, repair and clean up any damage, and to constantly remodel and adapt to changes in 

its internal and external circumstances.  Aging into old age is a process of gradual 

reduction in an organism’s homeodynamic buffering capacity, and increasing probability 

of the emergence of age-related diseases and death (Rattan, 2012).  Important here is that 



45 

Rattan’s (2012) concept of aging is descriptive of properties at the systems-level, as 

opposed to reductionist descriptors of aging as one or more diseases, or deviations in 

static values of one or more bodily system components.  Likewise, in systems-oriented 

thinking, “health” denotes “complete physical, mental and social well-being, as opposed 

to merely absence of disease or infirmity” (Rattan, 2013; World Health Organization 

[WHO], 2003). 

A central goal of contemporary aging research has been to increase health span, 

defined as “…the period of maintained function and stress resistance that precedes 

debilitating decline” (Iwasa, Yu, Xue, & Driscoll, 2010, p. 490).   An implication of 

Rattan’s systems perspective with regard to this goal is that a robust homeodynamic 

adaptive capacity is that which leads to increased health span.  Wellness promotion and 

disease prevention are more likely to accomplish this, rather than only treating disease 

and chronic health conditions associated with old age.  Furthermore, increased health 

span is more likely when health-enhancing behavior is started early in life, or better yet, 

practiced lifelong.  Another implication of Rattan’s systems-oriented view of aging is that 

health is not reducible to a static state of disease absence (Rattan, 2012).  Health is 

instead a systems-level robustness characterized by a large, resilient adaptive capacity 

against external and internal stressors (Ahn, Tewari, Poon, & Phillips, 2006; Rattan, 

2012). 

There are socio-economic implications of approaching health in old age from a 

systems-oriented perspective that deserve taking into account generational and historical 

life course influences.  Given increasing life expectancies and an expanding proportion of 

older adults in the population, a disease-oriented approach is economically, socially and 
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politically unsustainable when compared to social policies geared toward promoting 

long-term behaviors that reduce chronic health problems and compress the duration of 

end-of-life disability (Carnes, Olshansky, & Hayflick, 2013; Olshansky et al., 2011).  

This, of course, does not mean we should stop diagnosing and treating acute or chronic 

disease.  Rather, a system-oriented approach suggests that the implications of a broader 

systems-oriented view be taken into account, and that we act accordingly. 

 The concept of aging as a gradual loss of systems robustness may be applied to 

the phenomenon of loss of postural stability in old age.  Just as an individual’s response 

to stress is more accurately described as a homeodynamic process rather than a 

homeostatic one, postural stability is also better understood as marked by change.  

Humans are never really still in standing: they constantly sway despite attempts to remain 

motionless (Loram, Gawthrop, & Lakie, 2006).  Like the phenomenon of aging of the 

individual, the process of decreasing postural stability during old age may also be 

understood as an emergent property of a dynamic system.  Seen from this perspective, 

postural instability in old age is the gradual reduction of a postural system’s robustness 

that results in an increasing vulnerability and probability of the occurrence of a fall. 

Thinking about the problem of falls as the result of a decline in robustness of a 

system (as opposed to abnormalities in one or more of its components) has implications 

similar to those of Rattan’s conceptions of health in old age.  If the goals are to increase 

the postural control system’s health span and compress end-of-life disability, then they 

are more likely to be met by including and emphasizing long-term postural stability-

enhancing behaviors.   Recall that the bodily systems influencing postural control are 

reflected in the vast number and variety of intrinsic fall risk factors associated with those 
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bodily systems (Table 2.2).  It is not surprising then that long-term behaviors suggested 

for falls prevention in older persons, such as adequate physical activity, are similar to 

those for increasing health span of the individual in general (WHO, 2011, 2014).  Given 

that fall risk may be susceptible to socially-determined cohort effects, and by influence of 

historical events, the suggestion that these long-term behaviors are best promoted 

throughout the life course is also unsurprising (Peel, Bartlett, & McClure, 2007). 

If similar long-term health-enhancing behaviors improve the health span of both 

the postural control system, and the individual in general, then including and emphasizing 

social policies geared toward promoting prevention of chronic health problems in order to 

shorten end-of-life disability are favored when compared to an unsustainable illness-

based strategy of solely prescribing falls interventions only after falls occur or when 

specific risk factors are recognized.  This, of course, does not mean that we should stop 

identifying risk factors in older individuals and treating them.  Instead, the implications 

of a broader, systems-oriented perspective are that falls prevention behaviors occur 

throughout the life course, and address many domains that promote a robust system of 

postural control. 

In summary, the phenomenon of aging in old age involves the gradual loss of 

robustness in an individual’s ability as a whole system to adapt to threats from within and 

from the environment in which the individual is embedded.  Similarly, the phenomenon 

of postural instability in old age is explained by the gradual decline of the homeodynamic 

buffering capacity, or the robustness, of a postural control system’s ability to adapt to 

intrinsic and environmental threats.  The problem of falls, from a systems-oriented 

conceptual framework, emerges as the result of this decline in robustness at a level of 
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description appropriate to a postural control system, rather than to the sum of its 

components.  A systems-oriented perspective is a fitting lens for conceptualizing the 

problem of falls in old age.  A systems-oriented strategy toward the problem is a holistic, 

long-term, and sustainable enterprise that takes into account life course influences, and 

which is aimed at promoting robustness in a postural control system so that the span of 

postural stability is increased, and the duration of postural instability is minimized at the 

end of life. 

Postural Sway Variability, Robustness and Loss of Complexity. 

Center of gravity (COG) is the downward vertical projection of gravity on the 

center of mass.  The horizontal movement of one’s center of gravity (COG) while 

standing is known as postural sway.  Horizontal movement of the center of pressure 

(COP) on a supporting surface occurs during postural sway, but COG is not the same.  

COP is the point of application of the total force distribution that a standing person 

applies to a supporting surface (Shumway-Cook & Woollacott, 2012).  It is believed that 

COG is a key variable by which the central nervous system controls posture (Scholz, et 

al., 2007).  Shifting of the COP created by the activity of postural muscles produces 

change in the moment of force acting on the standing body, and is seen as the mechanism 

by which COG is controlled with respect a supporting surface (Latash, 2012).  Even in 

quiet standing, the COP moves continually about a shifting COG producing unintentional 

sway (Latash, 2012; Shumway-Cook & Woollacott, 2012). 

As one sways, the COP location moves on a two-dimensional support surface in 

accordance with that sway.  Data on COP position is collected through a force platform 

upon which one stands.  The COP position at any particular time on the two-dimensional 



49 

horizontal platform surface is described by its values on anterior-posterior (forward-

backward) and medial-lateral (side-to-side) coordinates.  Data collected through a force 

platform during postural sway can be used to graph COP displacement across time.  

Figures 3.9 and 3.10 are graphs depicting COP displacement occurring during 30 seconds 

of postural sway while standing quietly that was decomposed into the anterior-posterior 

and medial-lateral directions of sway, respectively.  Time-series data of COP 

displacement such as these are used to arrive at measures of postural sway variability that 

describe the patterns of change occurring in COP displacement across time.    

The apparent irregularity in the pattern of peaks and valleys is typical of COP 

time series graphs and indicates a certain degree of variability that occurs during postural 

sway.  The patterns of variability are clearly not a regular and predictable pattern of peaks 

and valleys as seen in sine waves.  Neither are the patterns random, despite their apparent 

irregularity.  Rather, the patterns of irregularity seen in Figures 3.7 and 3.8 lie on a 

continuum of complexity between the extremes of sine waves and random noise, and 

which is characteristic of non-linear dynamic systems (Goldberger, 1996). 

The observable and measurable variability in COP displacement occurring with 

postural sway is an output known, in mathematical terms of dynamic systems, as state 

dynamics, one of three nested levels of dynamics by which all dynamic systems are 

described (Saltzman, Nam, Goldstein, & Byrd, 2006).  Other physiological systems have 

observable and measurable state dynamics.  Heart rate variability, respiration rate 

variability, and stride length variability are examples of physiological behaviors that are 

state dynamics of the cardiovascular, respiratory and gait systems, respectively.  All 

exhibit non-linear behaviors in their state dynamics (Goldberger, 1996; Kuznetsov, 
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Bonnette & Riley, 2013).  A theoretical framework proposed by Riley et al. (2011) and 

outlined below, demonstrates how postural sway variability, as an observable output of a 

postural control system, may be analyzed to arrive at quantitative indicators of the 

robustness of an entire postural control system (Riley et al., 2011). 

Three Levels of Dynamics.   A key aspect to conceptualizing how postural sway 

variability leads to an understanding of the deeper structure of a postural control system 

comes from mathematical modelling of non-linear dynamic systems.   

The indirect strategy employed here of investigating the whole postural control 

system by looking at the state dynamics of postural sway reflects the current limits in 

motor control science in mathematically modelling what happens at deeper levels of a 

postural control system (Riley, et al., 2011).  These limits are understandable given the 

enormous complexity of a postural control system.  However, the laws and rules of 

motion of simpler, and well-articulated models of non-linear systems (such as 2nd-order 

systems of a damped mass-spring, a limit cycle pendulum clock, or nth–order 

connectionist network systems) describe how all non-linear systems inform a theoretical 

framework of postural control, and how the state dynamics of COP displacement can 

explain the deeper structure of the whole system (Mitra, Amazeen & Turvey, 1998; 

Saltzman et al., 2006).   

State, parameter and graph dynamics are the three types of variables by which all 

dynamic systems are completely described.  A basic way in which these three levels of 

dynamics are related is that the graph and parameter dynamics determine the state 

dynamics of the system (Riley et al., 2011; Saltzman et al., 2006).  For example, the 

anterior-posterior (A-P) and medial-lateral (M-L) positions of COP during standing are 
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considered state variables for the postural control system.  The dynamics of these state 

variables change quickly over time (Figures 3.9 and 3.10), and they do so according to 

parameter and graph dynamics.   

In mathematical terms, parameter dynamics are the constants or coefficients in the 

dynamic system’s equation and typically change at a slower rate than the state dynamics.  

Change in the muscle stiffness, or co-contraction, of muscles crossing a joint is an 

example of parameter dynamics in a postural control system that affects the behavior of 

postural sway state dynamics. 

Graph dynamics are the “architecture” of the system and the slowest to change.  

In mathematical equations, the graph dynamics are altered if the coupling of state 

variables changes or if the parameter types change.  Changes in the graph dynamics 

qualitatively alter the behavior of the system.  A child learning to throw a ball who begins 

to employ other body segments beside the arm (such as the trunk and legs) is an instance 

of graph dynamics in a motor control system (Riley et al., 2011).  Keeping both feet on 

the ground and moving at the hips or ankles as a response to a mild balance challenge, 

versus taking a step to maintain balance during a more forceful perturbation, is an 

example of graph dynamics in a postural control system. 

Synergies.  Typically, the underlying equations describing the deeper structure of 

postural sway dynamics are unknown, but the relatively easily observed and measured 

behavior of COP dynamics can be used to make inferences about the system’s deeper 

aspects (Kuznetsov et al., 2013).  According to the Embedding Theorem, a measure of a 

single-state variable is enough to understand the underlying dynamics of the whole 

system (Kuznetsov et al., 2013, Takens, 1981; Webber Jr & Zbilut, 2005). In other 
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words, properties of a highly dimensional dynamic system can be reconstructed from a 

single dimensional time series.  On the basis of the Embedding Theorem, non-linear 

methods are used to analyze the state dynamics of physiological systems in order to more 

fully understand the system as a whole.  In the case of a postural control system, non-

linear analysis of postural sway variability is used to investigate the postural control 

system’s underlying structure (Riley et al., 2011).   

Synergies are key in conceptualizing how this is accomplished.  Recall that the 

motor system’s way of controlling movement occurs by coupling and reducing the 

system’s available degrees of freedom (DOFs) to form synergies so that motor system 

components work together as a functional unit, and stabilize the performance of a task.  

Figure 3.9 schematically depicts how a postural synergy is formed and produces non-

linear behavior in the system’s state dynamics system.  The top of the figure depicts the 

high-dimensionality of a postural control system with many available DOFs (such as 

muscles, joints, or motor units) that must be controlled in order to coordinate a postural 

response.  A postural synergy is generated from this high-dimensional substrate of 

available DOFs when interacting constraints related to the individual, the task and the 

environment bind the available DOFs together (top).  This coupling reduces the number 

of available DOFs to a controllable number by forming a low-dimensional structure, or a 

postural synergy (middle).  State dynamics (bottom) are the expressed behavior of a 

postural control system resulting from further constraint, and may have a lower 

dimensionality than the synergy from which it was distilled (Riley et al., 2011).   

The constraints attributable to the individual, task and environment that form 

postural control synergies change from moment to moment.  For this reason, it is 
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postulated that postural control synergies are not general purpose devices that are applied 

to solve multiple tasks, but rather are contextually, quickly, and temporarily assembled to 

solve the specific demands of the task as afforded by a given environment (Riley, et al., 

2011; Riley, Shockley & Van Orden, 2012). 

Dynamic Levels and Synergies.  Synergies in motor control may be understood 

as a graph-dynamic process (Riley, et al., 2011).  A study of intermediate learning of a 

bimanual coordination task supports this relationship between synergy and graph 

dynamics by demonstrating that motor learning is a process by which a progressive 

reduction of DOFs of graph dynamics parallels improvements in performance of the 

learned task (Mitra, Amazeen & Turvey, 1998).  As motor performance of the bimanual 

coordination task improved, there was a corresponding reduction in the number of active 

DOFs, as indicated by the minimum number of autonomous, differential equations 

needed to fully describe the system’s behavior. 

 The same conceptual framework may be applied to postural control.  In order to 

stand and maintain standing, the postural control system’s available DOFs are 

synergistically coupled at the graph level of dynamics.  Different combinations of muscle 

activation or joint configurations (for example, at the ankles or hips) can produce 

functionally equivalent postural sway adjustments (Edelman & Galley, 2001; Mayer-

Kress, Liu, & Newell, 2006).   It is the level of graph dynamics that determines what the 

specific architecture of the postural response will be---an architecture that is shaped by 

the values of the parameter dynamics (such as apparent muscle stiffness/co-contraction).  

The end result is a postural control system that is responsible for the evolution of the 

system’s state variables, and expressed in COP displacement across time. 
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In sum, because non-linear measures of postural sway state dynamics are an 

output of the underlying architecture (parameter and graph dynamics), the behavior of 

these changes detected in the state dynamics of postural sway give indications of the 

underlying architecture of a postural control system.  Based upon this conceptual 

framework, non-linear analyses of time-series COP data offer a way to understand the 

synergies undergirding the state dynamics behavior of a postural control system. 

Loss of Complexity Hypothesis and Robustness.  The loss of complexity 

hypothesis of aging and disease proposes that complexity in physiological control 

systems enables an organism to respond and adapt across a range of time scales in order 

to return to a more stable state in response to stress.  Conversely, a loss of complexity is 

associated with a loss in the range of adaptive responses to physiological stress 

(Goldberger et al., 2002; Lipsitz, 2002).  According to the hypothesis, the dynamics of a 

robust physiologic control system are characterized by a high degree of complexity.  

Aging and disease is associated with a loss of complexity (Goldberger et al., 2002; 

Lipsitz, 2002; Vaillancourt & Newell, 2002).  Components of the body system decouple 

with age or disease, and when this happens, options for an adaptive response are reduced.   

Figure 3.10 illustrates the physiological basis of frailty as a function of 

complexity loss with age (Lipsitz, 2002; Sleimen-Malkoun, Jean-Jacques, & Hong, 

2014).  Multiple interacting components of a physiological system (top) produce highly 

complex and irregular behavior in the systems output signal (middle), with greater 

function and adaptability in young adults (bottom).  The decoupling of the components 

associated with old age produces less complex and more regular behavior of the output 
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signal, and a loss of function that eventually reaches a threshold of frailty and poor 

adaptability.  

Applied to postural control, the loss of complexity hypothesis predicts that aging 

produces decoupling in the component DOFs, resulting in more regular, and less 

complex, dynamics of COP time series behavior which accounts for postural instability 

seen in old age.  Studies using non-linear analysis COP dynamics support this hypothesis 

and indicate that complexity in postural control systems declines from young adulthood 

through old age (Duarte and Sternad, 2008; Thurner, Mittermaier & Ehrenberger; 

Vaillancourt, 1998; Vaillancourt & Newell, 2002). 

According to the loss of complexity hypothesis, the robustness of a postural 

control system is a function of systems complexity and indicated by the degree of 

complexity and irregularity in the system’s state dynamics.  Based on this hypothesis, 

complexity-based, non-linear analysis of COP time-series data is a way to measure the 

robustness of a postural control system. 

Tai Chi as a Systems Strategy for Robust Postural Control into Old Age.   

For several reasons, the martial art of Tai Chi is thought to provide training that 

results in high levels of postural stability which may be maintained or improved into old 

age.  Tai Chi training practices evolved over hundreds of years to optimize postural 

stability as a necessary feature of skilled fighting.   Postural stability training is an 

especially important element of Tai Chi.  This is most clearly exemplified in an essential 

Tai Chi training component known as “push hands,” a friendly competition between two 

players, wherein each tries to disrupt the balance of the other while preserving their own 

balance.  Not only does this train reactive balance mechanisms to withstand unpredictable 
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perturbations by an opposing player, but also it trains proactive balance mechanisms to 

maintain stability when applying forces intended to upset an opponent’s balance. 

In addition to training for postural stability, anecdotal evidence suggests that old 

age is not necessarily a barrier to high-levels of Tai Chi skill development.  On average, 

physical work capacity (VO2max) declines at a rate of 1.00-2.5% per year after age 25, 

strength decreases 1% per year beginning in mid-40s and accelerates after age 70, power 

declines with age at greater rates than strength, and motor coordination and skill 

deteriorates with age, especially with more complex movement (Spirduso, Francis & 

MacRae, 2005).  Yet, Tai Chi masters are known in Tai Chi communities to reach peak 

push hands skill at ages around 50 to 60, and observed to maintain their physical vigor 

into old age.  These observations contributed to Tai Chi’s popularity in China 

(Grubusich, 2016). 

Because a postural control system engages such a vast array of disparate bodily 

systems, good general health is likely to be associated with a robust postural control 

system.  Although its design does not allow conclusions about causation, a positive 

correlation between general health and Tai Chi practice was found by a cross-sectional 

study of long-term practitioners.  Analysis of an online survey suggests that in middle 

and late adulthood (but not young adulthood), Tai Chi practitioners enjoy better general 

health than Americans who perform some or no exercise, even when controlling for 

factors such as income and education (Kamelski, Miyazaki & Blieszner, 2012).   

Another reason why Tai Chi skill development is not necessarily limited by old 

age is that movement speed, muscular strength and flexibility associated with youth are 

not requirements for Tai Chi skill development.  In most instances, movement training in 
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Tai Chi is gentle, and slow or nearly static.  Tai Chi skill relies on relaxation and 

efficiency of movement as opposed to brute muscular force, and is practiced effectively 

in natural and low-intensity postures at moderate levels of aerobic intensity (Li, Hong & 

Chan, 2001; Yang, Grubisich & Feng, 2005).  The moderate intensity of muscular force, 

joint postures and speed characterizing Tai Chi training makes it suitable for older 

persons undergoing normal aging changes and age-associated limitations of joints, 

muscles and cardiovascular systems. 

Not only is Tai Chi training suitable for several age-associated conditions, there is 

evidence that it may improve them.  Systematic reviews conclude that Tai Chi may: 

reduce pain and disability associated with arthritis; reduce blood pressure; be a beneficial 

adjunctive therapy for some patients with cardiovascular disease or risk factors; improve 

psychological well-being  by reducing stress, anxiety, depression and mood disturbance; 

improve functional capacity and quality of life in patients with chronic heart failure; and 

improve cognitive function, particularly executive function in older adults without 

significant cognitive impairment (Hall, Maher, Latimer, & Ferreira, 2009; Wang et al., 

2010; Wayne et al., 2007; Wayne et al., 2014; Yeh, Wang, Wayne, & Phillips, 2009; Yeh 

et al., 2004).   

In summary, Tai Chi training practices evolved to develop high-levels of postural 

stability and lead to skill-building that is not necessarily precluded by the limitations of 

old age.   

The art of Tai Chi is holistic.  It is a systems-oriented activity, geared toward 

long-term behavioral change and skill development in which mental, physical, and 

spiritual components are intended to interact and unify.  This is shown below in two 



58 

ways.  The first is through the manner in which therapeutic components are coupled and 

interact as a system.  The second is through the way in which Tai Chi movement 

characteristics and skill are described and understood in systems-level terms. 

The Eight Active Therapeutic Ingredients of Tai Chi.  Although there are 

likely health benefits associated with training in a single component of Tai Chi, such as 

those associated with the physical exercise component as a moderately intense aerobic 

activity, this singular training component fails to encompass the richness and complexity 

of Tai Chi practice and its therapeutic benefits (Wayne & Kaptchuk, 2008; WHO, 2011; 

Yang et al., 2011).  Tai Chi is an integrated activity with many components, and this 

holism is what is thought to make it such a powerful and uniquely therapeutic and health-

promoting activity. 

Wayne & Fuerst (2013) describe the holistic nature of Tai Chi practice using an 

ecological model of Tai Chi’s therapeutic components involving The Eight Active 

Ingredients of Tai Chi depicted in Figure 3.11 (Wayne & Fuerst, 2013; Wayne & 

Kaptchuk, 2008).  The model illustrates how each of eight different components of Tai 

Chi practice can interact with each other, and that every component can have some 

therapeutic effect.  Although these eight ingredients are not necessarily exhaustive of the 

components of Tai Chi, the authors consider them essential (Wayne & Fuerst, 2013). 

The manner in which each component is integral to the others is illustrated in the 

single element of Tai Chi breathing practice.  For example, to learn to move effectively 

and efficiently, Tai Chi movement training is often performed slowly, while intentionally 

relaxing the muscular system, and without deviating from correct body alignment.  

Integrating deep and slow breathing into these movements is essential Tai Chi practice.  
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Deep breathing is known to reduce elevated sympathetic activity in persons with chronic 

obstructive pulmonary disease, and reduce blood pressure in persons with hypertension 

(Joseph et al., 2005; Raupach et al., 2008).  It is thought that deep breathing balances the 

autonomic nervous system by quelling an overactive sympathetic nervous system and 

stimulating the parasympathetic nervous system responsible.   It is plausible that the 

calming effects of deep Tai Chi breathing interact with and enhance the slow and relaxed 

aspects of Tai Chi movement training to facilitate the coordination of movement and 

body alignment necessary for optimal postural stability. 

Another example of how Tai Chi components are interrelated is illustrated by 

another essential ingredient to Tai Chi practice, mindfulness (Wayne & Fuerst, 2013).  

Jon Kabat-Zinn, developer of the Mindfulness Based Stress Reduction (MBSR) program, 

describes mindfulness as intentionally paying moment-by-moment attention, often to 

bodily sensations, remaining, as much as possible, emotionally non-reactive and non-

judgmental toward distractions (Kabat-Zinn, 2005).  A substantial body of research finds 

that mindfulness-based meditation programs improve mood, reduce perceived stress, and 

improve cognitive functions including sustaining attention and perceptual sensitivity 

(Baer, 2003; Davidson et al., 2003; Hofmann, Sawyer, Witt, & Oh, 2010; MacLean et al., 

2010; Moore, Gruber, Derose, & Malinowski, 2012).  The effects of mindfulness training 

are not limited to cognitive and psychological well-being.  Mindfulness meditation has 

been found to enhance immune antibody response, lower levels of proteins associated 

with inflammation, and produce neuroplastic changes in brain function and structure---

many of which are associated with learning, memory, positive mood, and reduced stress 

response (Davidson et al., 2003; Davidson & Lutz, 2008; Holzel et al., 2010; Holzel et 
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al., 2011; Xiong & Doraiswamy, 2009).  It seems that mindfulness can enhance well-

being. 

Assuming, as the research suggests, that Tai Chi mindfulness training improves 

mood and attention and reduces stress, it is reasonable to suggest that these effects 

enhance Tai Chi motor training by promoting body awareness, relaxation and enjoyment.  

In addition, the practitioner may be more motivated to persist and continue learning Tai 

Chi through regular participation in Tai Chi group classes, thus fostering therapeutic 

social aspects of practice.  These patterns of coupling and interaction are argued to occur 

among all eight active Tai Chi elements (Wayne & Fuerst, 2013; Wayne & Kaptchuk, 

2008). 

Systems-Level Descriptors of Tai Chi Skill and Movement.  Several traditional 

descriptors of Tai Chi skill reflect goals of Tai Chi training that are holistic and systems-

oriented.  Some traditional descriptors seem particularly translatable into terms consonant 

with modern systems theory of motor control.  

One traditional descriptor of Tai Chi that is a particularly holistic term is gong, 

the purported foundation of Tai Chi.  Traditionally, gong is thought to accumulate 

through the cultivation of qi, which has been defined as “life force” or “vital energy.”   

This accumulation of gong denotes improvement in physical skills of power, balance, 

agility and coordination.  Mentally and spiritually, gong pertains to a deepening 

experience of peace and tranquility.  In the context of Tai Chi skill development, gong 

has the root meaning of “essential foundation,” as essential as flour is to noodles, and is 

accumulated through the practice of qigong, described as certain exercises that nurture, 
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circulate, and gather qi.  Gong is said to be the basis from which Tai Chi martial 

techniques and high-levels of postural stability arise (Yang et al., 2005).   

The purpose here is not to support or question the physical existence of qi or 

gong.  Instead, the main point is to demonstrate that the traditionally-understood 

foundation of Tai Chi skill, gong, is conceptually a systems descriptor, in the same way 

that previously mentioned terms such as health, postural control robustness, 

homeodynamic buffering capacity, and aging are consonant with a systems-oriented 

thinking. 

Traditional descriptors of Tai Chi movement characteristics are systems-level 

terms as well.  One of these characteristic of Tai Chi movement is yin/yang balance.  

Over the hundreds of years of the art’s existence, Tai Chi became a blend of traditional 

Chinese martial and healing arts, and Chinese philosophy, particularly Daoism.  One 

characteristic of Tai Chi movement comes from the Daoist concept yin and yang, or the 

interplay of opposites, in which the extreme of one opposite gives rise to the other.  

According to tradition, Tai Chi practice seeks balance between yin and yang (Yang et al., 

2005).  In the following passage, Yang et al. (2005) offer several examples of how the 

balance of yin and yang are embodied in Tai Chi movement: 

If you want to go right, first you have to move left.  If you want to release, first 
you have to store.  If you want extreme quickness, first you have to practice 
slowly.  If the left is attacked, you yield on the left and counterattack on the right.  
If the opponent attacks with the upper body, his or her lower body is undefended.  
If you want extreme hardness, you start with extreme softness (Yang, et al., 2005, 
p. 98).

The aim here is not to argue for or against a Daoist philosophical position, but simply to 

point out that the balance of yin and yang is a systems-level descriptor of Tai Chi 

movement. 
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A second characteristic of Tai Chi movement given in systems terms is xin yi, 

translated as mind/intention (Yang et al., 2005).  Xin yi/mind-intention is a cognitive task 

that involves maintaining one’s attention on the intention of the movement while 

remaining as relaxed as possible, and avoiding unnecessary muscular contraction.  Xin 

yi/mind-intention contrasts sharply with the use of and dependence on, overt muscular 

force to accomplish a desired movement task.   

One example of xin yi/mind-intention in Tai Chi training is found in movements 

that call for upward intention.  The xin yi/mind-intention of upward intention may be 

accomplished by imagining that every cell of one’s body is rising, en bloc, in an upward 

direction.  Another example xin yi/mind-intention is used in Tai Chi movements requiring 

a downward intention, accomplished by imagining that every cell of one’s body is 

dropping downward, as if sinking into the ground.  Another example is the intention to 

move as if one is in water and must exert gentle force with one’s entire body against the 

resistance of the water.  Again, Tai Chi movement training and the cognitive task mind-

intention do not depend on inherent athleticism to acquire an advanced level of Tai Chi 

motor skill.  Both are learned and likely unfamiliar to the untrained (Yang et al., 2005).  

Because xin yi/mind-intention is a necessary feature of all Tai Chi movement and 

characteristic of Tai Chi movement as a whole, this traditional term is another systems-

level descriptor. 

The last systems-level descriptor of Tai Chi movement characteristics is chan si, 

or silk-reeling energy.  Silk-reeling energy refers to the spiraling force that connects the 

body’s joint movements and muscle forces in such a way that the entire body moves as a 

single coordinated functional unit.  Silk-reeling is a characteristic of the whole movement 
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system that enables a high degree of motor control and postural stability.  Because the 

entire body moves and functions as a single holistic structure, when a balance-

challenging force is applied to one part of the body, the other parts of the body 

compensate to maintain the structure’s stability.  Similarly, any part of the body may 

serve as the locus of force produced by the entire ensemble of body parts, while 

preserving postural stability (Yang et al., 2005).  Silk-reeling force is another holistic 

term that is descriptive of a movement system. 

Gong, qigong, yin/yang, xin yi/mind-intention, and silk-reeling force are all 

traditional descriptors of Tai Chi skill.  All are descriptors that refer to skill, movement 

and postural stability at the systems-level.  As with the eight ingredients of Tai Chi, the 

characteristics of Tai Chi movement are interrelated such that training of one can foster 

development of the others (Yang et al., 2005).  Taken together, Tai Chi training is a 

systems-oriented strategy supportive of robust postural control. 

Systems-level Tai Chi Skill Descriptors and a Systems-Oriented Approach to 

Postural Stability.  There is an uncanny consonance between the traditional idea of silk-

reeling and the more contemporary concept of synergy in a dynamic systems model of 

motor behavior.  Recall that synergy is “groups of motor system degrees of freedom (e.g., 

joints, muscles, or motor units) that are coupled to act as a single, functional unit to 

achieve and maintain a behavioral goal:” this serves the two functions of dimensional 

compression and reciprocal compensation in the emergence of postural control (Riley, et 

al., 2011, p. 7).  Also recall that silk-reeling energy refers to the spiraling force that 

connects the body’s joint movements and muscle forces in such a way that the entire 

body moves as a single, coordinated functional unit.  Given the discussion up to this 
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point, it is evident that silk-reeling fits within the definition of synergy. Accordingly, silk-

reeling is a coupling of a vast number of available DOFs involving joint and muscle 

forces.  This coupling forms synergies in which the entire body acts as an integrated unit.   

The sharing task among the components of this whole-body structure fosters postural 

stability no matter where on the body a balance-challenging force is directed.  In 

summary, it has been suggested that Tai Chi training is a holistic strategy toward 

developing and maintaining robust postural control that continues into old age, and 

enables this control through a learned class of motor synergies, known traditionally as 

silk-reeling. 

Training principles essential to developing silk-reeling skill correspond 

remarkably well to constraints in dynamic systems theory.   Silk-reeling is not an act of 

conscious will, but rather emerges through the correct performance of Tai Chi principles 

(Yang et al., 2005).   The essential Tai Chi principles necessary for the emergence of silk-

reeling, function as both physical and cognitive constraints on movement and posture.   

The manner in which Tai Chi principles constrain motor and postural behavior is 

summarized in the Table 3.1.  Examples of some (not all) Tai Chi principles are listed in 

the left column.  The right column explains constraints provided by each principle.  

Excluding movement/activation other than that allowed by the constraints determines the 

remaining postural and movement possibilities within a highly dimensional motor 

system.   Chest opening/closing, for example, requires that the scapula remain depressed, 

thus excluding any scapular elevation movement.  Similarly, waist rotation requires that 

the pelvis and shoulder girdles remain horizontally level, and central equilibrium requires 

maintaining vertical alignment of the entire spine, both of which exclude side, forward or 
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backward bending of the trunk.  Whole limb movement/activation is spiraling in either a 

shun or a ni, and constrains against any other movement possibilities that deviate from 

this pattern. 

Principles and constraints listed in Table 3.1 are understood to interact with one 

another.  For example, mental tasks of relaxation, central equilibrium and mind-intention 

are constantly maintained during the physical movements of reverse breathing, limb 

spiraling, chest/abdomen opening and closing, waist turning and weight shifting.  This 

cognitive mode by which all physical movement is performed is thought to have 

mechanical effects on the movement expressed that are deemed necessary to the 

emergence of the Tai Chi silk-reeling force (Yang et al., 2005).  In turn, physically 

relaxed and slow movement, and deep reverse breathing have calming effects on 

emotional and mental states necessary for emergence of Tai Chi skill.  Proper execution 

of essential Tai Chi principles is understood using a dynamic systems theoretical 

framework as constraints necessary for the emergence of silk-reeling synergies. 

In conclusion, Tai Chi practice trains its practitioners to develop robust postural 

control that may continue into old age, and can be viewed as a systems-oriented approach 

to postural stability.  The Tai Chi movement characteristic traditionally known as silk-

reeling is particularly translatable into a dynamic systems theoretical framework of motor 

behavior.  Within this theoretical framework, silk-reeling is a learned and special class of 

motor and postural control synergies that emerge from the mechanical and cognitive 

constraints provided by correct execution of Tai Chi principles.  It is hypothesized that 

development of these learned synergies through Tai Chi training facilitates robust 

postural stability that can extend into old age. 
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Table 3.1.  Examples of Tai Chi Motor Principles and Their Constraints 
on Motor Behavior. 

Source:  Adapted from Yang et al., 2005. 
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Figure 3.1.  Examples of the word “Coordination” (in Russian) written by 

Nikolai Bernstein with various parts of his body. 

Source: Taken from Latash, 2012, as reproduced from Bernstein (1935). 
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Figure 3.2.  A 19th Century View of Motor Control Similar to Contemporary 

Representational Theories of Motor Control. 

Source:  Taken from Turvey et al., 1982, Figure 10.1 (p. 240). 
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Figure 3.3.  The Perspective of an Externally-Controlled System. 

\

Source:  Taken from Turvey, 1990, Figure 1 (p. 939). 

Figure 3.4.  The Perspective of a Self-Organized System. 

Source:  Taken from Turvey, 1990, Figure 1 (p. 939). 
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Figure 3.5.  The Systems Approach. 

Source:  Adapted from Shumway-Cook & Woollacutt, 2012, Figure 1.2 (p. 5). 
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Figure 3.6.  Six testing conditions of the Sensory Organization Test.   

Source: Taken from Bittar, 2007, Picture 2, (p.332). 

Figure 3.7.  Anterior-Posterior Center of Pressure Displacement during 30 

Seconds of Quiet Standing. 
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Figure 3.8.  Medial-Lateral Center of Pressure Displacement during 30 

Seconds of Quiet Standing. 
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Figure 3.9.  A Schematic Depiction of a Postural Control Synergy. 

Legend:   = each represents one of a diverse set of DOFs. 

Source:  Adapted from Riley, Kuznetsov, et al., 2011, Figure 2 (p. 7) as adapted 
from Riley & Turvey, 2002, and Kay, 1988. 
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Figure 3.10.  Loss of Complexity with Age and Frailty. 

Source:  Taken from Sleimen-Malkoun et al., 2014 (p. 7) as inspired by Lipsitz, 

2002. 
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Figure 3.11.  The Eight Active Therapeutic Ingredients of Tai Chi. 

Source:  Reproduced from Wayne & Fuerst, 2013 (p. 35). 
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Chapter 4:  Xin Yi/Mind-Intention and Motor Imagery Research 

Xin yi, or mind-intention, is considered an essential principle of Tai Chi practice.  

It is traditionally known to be characteristic of all Tai Chi movement and integral to the 

generation of silk-reeling force (Yang et al., 2005).  Chapter 3 demonstrated that, from a 

dynamic systems theoretical perspective, Tai Chi xin yi/mind-intention is one of a family 

of constraints necessary for the emergence of a class of synergies hypothesized to 

undergird silk-reeling movement and an associated robust postural control that seems to 

extend into old age.  This chapter seeks to provide deeper understanding of Xin yi/mind-

intention as a constraint on motor behavior by identifying it as a practical form of motor 

imagery, and interpreting relevant motor imagery research.  In order to do this, it is 

necessary to clearly define and describe motor imagery. 

Motor imagery involves kinesthetically imagining a motor task experience from a 

first person perspective, without executing the task.  The focus of attention with motor 

imagery, as opposed to visual imagery, is on the somatosensory feelings experienced as 

if actually performing the motor task (Jeannerod, 1995; Munzert, Lorey, & Zentgraf, 

2009; Stinear, Byblow, Steyvers, Levin, & Swinnen, 2006).  Motor imagery has been of 

interest to researchers because it activates the nervous system, and produces training 

effects on motor performance, that are similar to overt execution of movement. 

Motor imagery training has been practiced to improve motor performance in 

diverse areas including sports, the performing arts, martial arts, and physical 

rehabilitation (Cumming & Williams, 2012; Dickstein & Deutsch, 2007; MacIntyre & 

Moran, 2010; Wayne & Fuerst, 2013).  In sports and the performing arts, motor imagery 
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has long been incorporated with physical training, mixed with other types of imagery 

(visual, auditory, gustatory), and used through employing one or more perspectives (first 

person, third person) or agencies (self, other). The practice may include a wide range of 

metaphor images including color, objects not present, and actions that are impossible to 

perform (Holmes & Collins, 2001; Nordin & Cumming, 2005).  There is now a 

substantial body of experimental research confirming that motor imagery training, either 

by itself or mixed with other modalities, improves motor performance across a number of 

tasks.   

Yue and Cole (1992) trained subjects for five sessions per week for four weeks 

with one group producing maximal voluntary isometric contractions of the little finger 

abductors and a second group imagining the same effortful contractions.  Average force 

production of the trained muscle group improved 22% in the motor imagery group and 

30% in the isometric contraction group (Yue & Cole, 1992). 

Another study investigated motor imagery training on speed and accuracy of a 

finger tapping sequence involving three groups: a motor training group who physically 

practiced, a mental training group who only performed motor imagery, and a third group 

who trained both physically and mentally (Nyberg, Eriksson, Larsson, & Marklund, 

2006).  Improvement in performance occurred in all three groups.  The mental training 

group had the least improvement, the physical training group improved more than the 

mental training group, and the mental-plus-physical training group improved the most, 

with significant differences among the groups.  An additional finding was that the 

mental-plus-physical training group was the only group to improve significantly on an 
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untrained sequence, demonstrating that this group’s improvement in motor performance 

generalized and transferred into an untrained task (Nyberg et al., 2006). 

Four cycle-ergometer training groups were measured after six weeks for power on 

a cycle-ergometer: a motor imagery, a power training, a motor imagery-plus-power 

training, and a control group were employed.  The power training, and the motor 

imagery-plus-power training groups each significantly improved in measures of power on 

the ergometer.  However, only the motor imagery plus power training group significantly 

improved their 40-meter sprint time, representing another example in which motor 

imagery training combined with physical training produced motor skill learning that 

generalized to an untrained motor skill (Vangyn, Wenger, & Gaul, 1990).  

Motor imagery has been investigated as one of a mix of imagery types in meta-

analyses and single studies investigating effects of mental imagery (Braun et al., 2006; 

Driskell, Copper, & Moran, 1994; Holmes & Collins, 2001; Landers, 1983; Smith, 

Wright, & Cantwell, 2008).  In these studies, mental imagery included motor imagery or 

visual imagery, or a combination of both, and the visual imagery was from either a first 

or third person perspective.  Mixing types of imageries creates problems in discerning 

training effects specific to motor imagery, especially given that neural pathways for 

visual and kinaesthetic imageries are distinctive in both neural underpinnings and effects 

(Stinear et. al, 2006).  Nevertheless, imagery experiments that mix motor imagery with 

other types of imagery provide evidence that motor imagery is a component that may 

improve motor skill.   

One imagery technique from sports psychology takes into account several 

characteristics of imagery.  PETTLEP combines seven elements represented by the 
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acronym (Physical, Environment, Task, Timing, Learning, Emotion, and Perspective) 

(Holmes & Collins, 2001).  The PETTLEP model is based on a hypothesis proposed by 

Jeannerod (1995) that physical and mental practice are cognitively represented in the 

motor system in functionally equivalent ways.  Hence, the most effective imagery 

technique is one that matches as much as possible the conditions of effective physical 

practice (Holmes & Collins, 2001; Jeannerod, 1995).  

 In a study of a golf bunker shot performance after six weeks training, four 

training groups were compared: PETTLEP imagery, physical practice, PETTLEP-plus-

physical practice, and a control.  The PETTLEP group and the physical training group 

each significantly improved their bunker shot.  The PETTLEP-plus-physical training 

group significantly improved more than any of the other groups (Smith, Wright, & 

Cantwell, 2008).  The results provide additional evidence of the superiority of combining 

mental and physical training for improving motor skill. 

Another study involved 20 active athletes with grade II ankle sprains.  One group 

received 12 sessions of imagery rehearsal of physical therapy-plus-physical therapy, 

while the other group received physical therapy only (Christakou, Zervas, & Lavallee, 

2007).  The group that underwent imagery rehearsal-plus-physical therapy improved 

significantly in muscular endurance compared to the group that received physical therapy 

alone. 

In a four week of study of 24 people with chronic hemiparetic stroke, one group 

performed locomotor imagery training-plus-physical therapy, and a second group 

watched television documentaries-plus-physical therapy (Hwang et al., 2010).  The 

locomotive imagery training included first person perspective imagery and observed 
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video (third person perspective) of each participant’s own abnormal gait and the gait of a 

normal adult male.  The locomotive imagery training group made significant 

improvement in measures of gait parameters, balance confidence, postural control and 

dynamic balance.  

Thirty-two chronic stroke patients with moderate motor deficits were divided into 

two groups: one received relaxation exercises plus physical training of arm motor 

movements, and a second received first person perspective visual and motor imagery 

mental practice plus physical training of arm movements.  After six weeks of training, 

involving 30 minute sessions twice per week, the motor imagery-plus-physical training 

group significantly out-performed the relaxation-plus-physical training group in measures 

of arm movement and daily functional skills (Goginsky & Collins, 1996). 

Measures of combined gait and balance skill, improved in persons with chronic 

stroke after six weeks of gait training-plus-mental imagery when compared to gait 

training alone (Cho, Kim, & Lee, 2013).  The mental imagery intervention consisted of 

both first person kinesthetic imagery and third person visual imagery of normal walking 

mechanics. 

Experimental designs specific to effects of motor imagery on postural control 

provide some evidence that motor imagery training modulates postural stability (Choi et 

al., 2010).  Performance of a dynamic balance task in healthy young adults improved 

both in the physical trained group and the motor imagery group after three weeks of 

training when compared to a no-training control.  Typical of other controlled studies of 

motor imagery, effects were greater in the physical training group than in the motor 

imagery group (Nyberg et al., 2006; Vangyn, Wenger, & Gaul, 1990; Yue & Cole, 1992) 
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Hamel and Lajoie (2004) studied 20 healthy individuals ranging in age from 65 to 

90 years (Hamel & Lajoie, 2005).  The twelve participants in the intervention group 

performed a kinesthetic motor imagery task in the lying position in which each imagined 

standing perfectly still on a force platform daily for six weeks.  The eight participants in 

the control group had no intervention.  Pre-tests and post-tests of dual tasking revealed 

that the motor imagery group performed significantly better on a dual task of verbal 

response time to a visual cue than did the control group while performing a primary task 

of standing perfectly still on the force platform.  The motor imagery group also 

demonstrated significantly less postural sway amplitude in the anterior-posterior direction 

versus the control group.  The authors hypothesized that the motor imagery task had the 

training effect of reducing attentional demands during the performance of a dual task by 

making the standing-still task more automatic. 

Despite the inability of these studies to determine effects attributable to motor 

imagery alone, the totality of the evidence suggests that such training improves motor 

performance.  Although motor imagery training has a generally weaker effect than overt 

physical training on motor performance, there is evidence that combining motor imagery 

with physical training is superior to either one alone.  In some instances, combining 

motor imagery training with physical training demonstrated effects that transfer to motor 

skills beyond those being trained.  One study suggests that motor imagery improves 

attentional demands of a standing-still task during a dual cognitive task in older adults 

(Hamel & Lajoie, 2005). 
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Xin Yi/Mind-Intention as Motor Imagery.   

Tai Chi mind-intention practice meets two defining features of motor imagery; it 

is first person and kinesthetic.  Take, for instance, performing a Tai Chi movement during 

the mind-intention task of imagining moving in water as if exerting a gentle force with 

one’s entire body against the resistance of the water.  The imagery task is first person 

because it requires attentional focus on imagining one’s own bodily sensations, and is 

kinesthetic because it requires focus on the sensations of bodily movement, momentum, 

force and posture during the imagined motor task.  Key here is that this task allows 

execution of movement (albeit with only enough muscular contraction to complete the 

movement slowly and still maintain other Tai Chi movement principles).   Because 

movement is being executed, it is uncertain whether this task is really motor imagery 

according to some descriptions (Jeannerod, 1995; Munzert et al., 2009; Stinear et al., 

2006).  There are reasons, however, to suggest that it is. 

One reason is that evidence of muscle activity detected during a motor imagery 

task suggests that some execution of the task occurs unintentionally during motor 

imagery (Bonnet et al., 1997; Gandevia et al, 1997; Guillot, Lebon, Rouffet, Champely, 

Doyon, & Collet, 2007).     Electromyography (EMG) studies that record and evaluate 

electrical activity produced in muscles by motor neuron firing, find that effects of motor 

imagery on muscle activation and related physiological processes indicate motor imagery 

is more nuanced than many definitions of motor imagery allow.   

Skeletal muscles have contractile properties that function to produce joint torques 

in order to move and control body movement and posture.   Each skeletal muscle contains 

arrangements of many muscle cells, or muscle fibers.  The muscle fibers are innervated 
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by two types of effector neurons that originate in the spinal cord: alpha motor neurons 

(AMNs) and gamma efferent neurons (GMNs).  When an AMN is activated and reaches 

its threshold, the action potential generated is sent peripherally along the neuron that 

ultimately causes a group of muscle fibers, known as a motor unit, to contract 

simultaneously.  The force of this contraction depends, among other things, on the size of 

the motor unit and the frequency of the action potentials.  AMNs innervate force-

generating muscle fibers called extrafusal fibers, which are one of two types of muscle 

fibers.  The other type, intrafusal muscle fibers, function primarily in detecting changes 

in muscle length for the purpose of motor control, rather than in generating contractile 

force. 

Intrafusal fibers are innervated by GMNs, and are located in muscle spindles 

arranged parallel to the force-generating extrafusal fibers.  Muscle spindles have the 

important function of providing sensory information that detects changes in muscle 

length and joint position.  This proprioceptive information is sent back to the spinal cord 

by way of sensory fibers called Ia afferent neurons.  Ia afferent neurons are some of the 

fastest sensory nerves with a transmission speed of up to 120 meters per second, 

suggesting that receiving timely information sent by these fibers is extremely important 

for motor control.  In the case of some pathologies in which this afferent information is 

absent, motor control is still possible but severely impaired, especially when visual 

feedback is absent as when the eyes are closed (Cole, 1995; Latash, 2012). 

 The Ia afferents from the muscle spindles in a muscle send their proprioceptive 

information rapidly via a single synapse to the alpha motor neuron that innervates the 

same muscle.  As this is a single synaptic pathway to the AMN, reflexes that use this 
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pathway to cause a muscle contraction are called monosynaptic reflexes.  Quick 

lengthening of intrafusal fibers stimulates muscle spindle organs that produce signals that 

synapse with, and activate, the AMN in the spinal cord, which in turn sends signals 

activating and contracting extrafusal muscle fibers.  

Two different reflexes cause a muscle contraction by stimulating the Ia afferents, 

which in turn connect and cause firing of the AMNs:  the tendon reflex (T-reflex) and the 

Hoffman’s reflex (H-reflex).  The T-reflex stimulates the Ia afferents through a quick 

stretch to the muscle fibers by tapping the tendon, whereas the H-reflex does this by 

electrical stimulation directly to the Ia afferents (Latash, 2012).  AMNs are not only 

affected by the proprioceptive information coming from Ia afferents, but also by central 

motor commands sent from the brain and down the spinal cord by way of corticospinal 

pathways.  

EMG studies indicate that motor imagery produces weak activations in the 

specific muscles relevant to the motor task being imagined (Bonnet et al.,1997; Gandevia 

et al., 1997; Guillot, Lebon, Rouffet, Champely, Doyon, & Collet, 2007).  For example, 

in a study investigating actual and imagined movements involving the hand or foot, five 

of the seven participants background levels of EMG activity significantly increased in the 

relevant muscles compared to EMG activity at rest.  These cases of unintended muscle 

contraction were due to activation of AMNs, and if strong enough, also produced muscle 

spindle afferent activity.  It was concluded that muscle spindle afferent activity only 

occurred when there was AMN activation, and never independent of it (Gandevia et al., 

1997). 
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Bonnet et al. (1997) investigated H-reflex and T-reflex activity in subjects 

performing actual and imagined motor tasks involving the gastroc-soleus muscle.  

Surface EMG activity during a mental simulation of the task increased to twice the 

resting levels, although twenty times less than when actually executing the task.  Spinal 

reflex pathway excitability (in T-reflex, but not H-reflex excitability), was revealed to be 

“only slightly weaker” than during actual performance of the tasks.  Correlation 

coefficients among H- or T-reflex amplitude and background EMG amplitude during the 

mental simulation strongly suggest that the increased background EMG activity during 

motor imagery was not strong enough to explain the large changes in monosynaptic 

reflex amplitudes.  The finding that motor imagery produces high levels of increased 

excitability in the T-reflex but not the H-reflex, indicates that imagined movement 

selectively increases the activation of GMNs, since the H-reflex bypasses the 

neuromuscular spindles (Bonnet, Decety, Jeannerod, & Requin, 1997). 

The implication of such a high level of gamma bias during motor imagery is that 

muscle spindles have similar sensitivity in detecting important proprioceptive 

information as when movement is fully executed, despite the lack of alpha motor 

activation.  Studies of both animals and humans find this same type of gamma bias in 

muscle spindle activity during states of arousal and expectancy.  The findings are 

purported to support a view that the gamma motor system behaves as a neural network 

independent of the AMN system.  Through this network the increase in muscle spindle 

sensitivity is associated with gamma bias, and enables richer and more accurate feedback 

information about movement to be gathered and processed, even though the alpha motor 

system is quiescent (Bergenheim, Johansson, & Pedersen, 1995; Cordo, Inglis, 
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Verschueren, Collins, Merfeld, Rosenblum,…Moss, 1996; Prochazka, 1989; Ribot-

Ciscar, Rossi-Durand, & Roll, 2000)).  Taken together, EMG studies of motor imagery 

make clear the presence of weak muscle activation in muscles related to the imagined 

motor task during motor imagery. 

This is further supported by the presence of task-specific postural sway during 

motor imagery (Boulton & Mitra, 2013; Grangeon, Guillot & Collet, 2011; Lemos, 

Rodrigues & Vargas, 2014; Lemos, Souza, et al., 2014; Rodrigues et al., 2010).  Using 

force platform data, Rodrigues et al. (2010) found that only kinaesthetic imaging 

performing calf raises resulted in increased postural sway in the directions specific to the 

task (anterior-posterior), but visual imagery of performing calf raises or control imagery 

of singing “Happy Birthday” did not.  Surface EMG of posterior calf muscles showed no 

change in amplitude during motor imagery (Rodrigues et al., 2010).  EMG data from the 

same study were later analyzed to find that, although the mean amplitude of EMG did not 

change while imaging performing calf raises, center of pressure changes and EMG 

fluctuations of the posterior calf muscle were correlated and synchronized (Lemos, 

Rodrigues, & Vargas, 2014). 

Task-specific postural sway changes have also been detected during several other 

motor imagery tasks.  These include calf raising, whole-body forward reaching, and 

whole-body lateral reaching (Lemos, Souza, et al., 2014), imagined arm movements 

(Boulton & Mitra, 2013), and jumping (Grangeon, Guillot, & Collet, 2011).  Taken 

together, motor imagery in the standing position produces some motor execution in the 

form of modulating postural sway in directions specific to the task being imagined. 
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Outside of controlled conditions in the laboratory, it is likely that at least some 

executed movement is occurring in many practical applications of motor imagery.  In 

some cases, this overt movement may be inadvertent, and below the imager’s level of 

awareness.  In other applications of motor imagery, the executed movement is an 

intended and conscious aspect of the motor imagery technique (Guillot, Di Rienzo, 

MacIntyre, Moran, & Collet, 2012). Tai Chi xin yi/mind-intention is a practical 

application of motor imagery accomplished by intentionally allowing conscious 

movement execution, but it is not the only one.  Take the example of the Olympian who 

is mentally imagining her ski jump before its execution.  Her motor imagery is typically 

accompanied by movements relevant to the key features of the jump, perhaps for the 

purpose of enhancing the vividness of her imagery task (Lorey, Bischoff, Pilgramm, 

Stark, Munzert & Zentgraf, K., 2009).  Whatever the reason, it seems that the practical 

application of imagined movement includes some degree of execution (Gandevia, 

Wilson, Inglis, & Burke, 1997; Guillot et al., 2012).   

It has been suggested that relaxation, imagination and action are a continuum 

(Gandevia, et al.,1997), a suggestion validated by increases detected in resting muscle 

activity and reflex excitability during motor imagery (Bonnet et al., 1997; Guillot, et al., 

2007), and by changes in task-specific postural sway during motor imagery in standing 

(Boulton & Mitra, 2013; Grangeon, Guillot & Collet, 2011; Lemos, Rodrigues & Vargas, 

2014; Lemos et al., 2014; Rodrigues et al., 2010).   This continuum is further supported 

by studies of corticospinal excitability detected by changes in motor evoked potentials 

(MEP) thresholds during motor imagery.  Motor imagery facilitates corticospinal 

excitability that is both temporally-specific, and muscularly-specific, to the imagined 
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task, but at lower levels of excitability compared to when the same movement is executed 

(Clark, Tremblay, & Ste-Marie,2004; Guillot et al., 2012; Kumru, Soto, Casanova, & 

Valls-Sole, 2008; Léonard, & Tremblay, 2007; Rossini et al., 1999; Stinear, & Byblow, 

2003; Stinear & Byblow, 2004). 

Figure 4.1 depicts a proposed model of the action continuum that consists of rest, 

imagined movement, and executed movement, and lists evidence-based characteristics of 

each.  This model refutes the notion that motor imagery is necessarily void of any form of 

execution.  Instead, motor imagery may reasonable be understood to include a variable 

degree of motor activation and executed movement, produced either intentionally or 

unintentionally. 

According to the model, Tai Chi xin yi/mind-intention training is a form of motor 

behavior that lies on the imagined movement segment of the continuum.  Specifically, it 

is a practical application of motor imagery that may allow movement to occur 

consciously in its full range in accordance with other Tai Chi principles, but otherwise 

with a level of muscle activation as close to relaxation as possible.  Reasonably placing 

xin yi/mind-intention in a category of motor imagery, as proposed here, substantiates the 

plausibility that this mode of Tai Chi movement facilitates proportionately high-levels of 

important proprioceptive input associated with more overtly executed movement, as 

observed in studies of reflex excitability during motor imagery (Bonnet, Decety, 

Jeannerod & Requin, 1997).  It is also makes it plausible that Tai Chi motor imagery 

practice may improve motor performance as have other motor imagery training 

interventions. 
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Determining a conceptual framework that best explains effects of motor imagery 

is the focus of the next section. 

Interpreting Relevant Motor Imagery Research.   

Simulation Theory (Jeannerod, 2001) is the prevailing conceptual framework used 

to explain motor imagery training effects on motor performance.  It is at its core 

representational (Jeannerod 2001, 2010).  Simulation Theory posits that action is a 

continuum of two stages: covert (or unexecuted) action, and overt (or executed action).  

Covert action precedes overt action, but covert action does not necessarily result in overt 

action.  Covert actions are thought to be mental states in which actions are represented in 

the central nervous system, and are similar to overt actions in terms of content and neural 

implementation.  It is argued that this similarity is so close in neural representation that 

covert actions are postulated to equal overt actions, minus their execution.  According to 

the theory, unexecuted representations of action occur, and are similar in content, to their 

corresponding executed actions in a number of mental states, called “S-states.”  Table 4.1 

presents a taxonomy of behaviorally defined S-states (Jeannerod, 2001). 

Several studies have been cited to support the assertion that covert action is 

functionally equivalent to overt action.  These studies demonstrate similarity across a 

wide-range of indicators (Jeannerod, 2010).  Chronometric durations of imagined action 

and executed action have been found similar (Decety, Jeannerod, & Prablanc, 1989; 

Landauer, 1962; Saimpont, Malouin, Tousignant, & Jackson, 2012, 2013).  

Spatiotemporal characteristics of overt and covert action are similar with each seemingly 

following Fitts’ Law, an equation that describes the speed-difficulty trade-off that occurs 

regarding reaching a target (Decety & Jeannerod, 1995; Fitts & Peterson, 1964; 
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Georgopoulos & Massey).  Imagined actions produce similar physiological responses as 

executed action with regard to heartrates and respiratory rates (Decety, Jeannerod, 

Durozard, & Baverel, 1993; Decety, Jeannerod, Germain, & Pastene, 1991).  Imagined 

movement produces corticospinal excitability that is temporally-specific and muscle-

specific to the same executed movement (Clark et al.; Guillot, et al., 2012; Kumru et al., 

2008; Léonard & Tremblay, 2007; Rossini et al., 1999; Stinear & Byblow, 2003, 2004).  

There is also a high-degree of overlap between imagined movement and execution of the 

same movement with respect to brain activations (Lotze & Halsband, 2006; Munzert et 

al., 2009). 

Jeannerod (2001) explains, from the representational perspective of Simulation 

Theory, how the training effect of motor imagery on motor performance is due to the 

functional equivalence of overt and covert action, and the similarities of their 

representation in the nervous system: 

 …because all aspects of action appear to be involved in S-states, it seems 
a logical consequence of this rehearsal of the corresponding brain structures, and 
specifically the motor structures, that the subsequent execution will be facilitated.  
The presence of activity in the motor system during S-states would put the action 
representation in a true motor format, so that it would be regarded by the motor 
system as a real action.  This facilitation would explain various forms of training 
(e.g., mental training) and learning (e.g., observational learning) which occur 
during S-states (Jeannerod, 2001, p. S108). 

It is also assumed that there are ongoing inhibitory mechanisms during motor 

imagery so that the represented action, in the form of an elaborated central motor 

command, is not executed (Guillot et al., 2012; Jeannerod, 2010).  The main point here is 

that motor imagery and its training effects, are explained by Simulation Theory as 

functionally equivalent to executed action in terms of representation of action.  This 

explanation of motor imagery effects may be disputed on two fronts.  The first disputes 
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their equivalency.  The second disputes the conceptual framework from which functional 

equivalency is argued. 

Despite the large body of evidence demonstrating similarities between imagined 

and executed movement, there is also a long list of departures in similarity, many of 

which have already been demonstrated.  Motor imagery training effects on motor 

performance are consistently lower than those of executed movement training.  There are 

areas of non-overlapping areas of activation, and differences in degrees of activation, 

when comparing brain activation patterns occurring during imagined movement and 

during the execution of the same movement (Lotze & Halsband, 2006; Munzert et al., 

2009).  Corticospinal excitability is significantly less during movement imagery than 

during its execution.  Similarity in ventilation between imagined and executed treadmill 

walking has been shown to depend on whether or not participants were competitive 

athletes (Wuyam et al., 1995).  Similarity in chronometric characteristics has been shown 

to break-down depending on the task-demands (whether or not carrying weight, or in 

congruent body position during motor imagery, or familiar with the task), and depending 

on the age of the participants (Decety, Jeannerod, & Prablanc, 1989; Saimpont, Malouin, 

Tousignant, & Jackson, 2012; Nadja Schott & Munzert, 2007).  In sum, the effects of 

actual movement and imagined movement are non-equivalent in many respects.   

On another front, the idea of representational motor program is at the very heart 

of the conceptual framework of Simulation Theory (Jeannerod, 2006).  To assert that 

representations in the central nervous system are the same in both imagined and executed 

movement assumes that, 1) representations are a necessary component of human motor 

behavior, despite their lack of explanatory value, and 2) the central nervous system has 
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enough storage space to include instructions for all the content of those representations, 

including the motor system’s enormous number of available degrees of freedom.  The 

implausibility of these assumptions has already been demonstrated in Chapter 3. 

Tai Chi Xin Yi/Mind-Intention as a Constraint on Postural Control Synergies.   

An alternative and non-representational theoretical framework for understanding 

effects of motor imagery training is through the dynamic systems approach explained in 

Chapter 3.  This conceptual framework posits that motor imagery is a cognitive constraint 

that is attributable to the individual, and along with constraints attributable to the task and 

the environment, shapes the formation of postural synergies in a self-organized postural 

control system (Figure 3.11).  Within this framework, Tai Chi xin yi/mind-intention 

training is understood as a (cognitive) task constraint that may be categorized as motor 

imagery.  As motor imagery it constrains motor behavior to produce real motor effects 

that are distinguishable from both complete relaxation and fully executed movement 

(Figure 4.2).   

Summary of Conceptual Review (Chapters 2, 3 and 4). 

Chapter 2 demonstrated that the problem of falls is primarily one of old age, and 

that its underlying mechanisms are complicated, non-additive in their effects, and 

associated with a wide-range of multiple bodily systems and innumerable environmental 

factors that defy placement into absolute intrinsic or extrinsic categories.  It was argued 

that reductionist approaches to fall risk and falls prevention are inappropriate given the 

complex and interactive nature of component fall risk factors. 

Building on this base, Chapter 3 presented a systems-oriented conceptual 

framework consonant with the holistic nature of postural instability in old age.  The 



93 

phenomenon of postural instability in old age was explained as the gradual decline of 

robustness in a postural control system’s ability to adapt to intrinsic and environmental 

threats.  Falls in old age emerge as the result of this decline in system robustness.  A 

dynamic systems theoretical framework was outlined that views postural control as the 

result of synergies wherein individual, task and environmental constraints combine and 

reduce available degrees of freedom.  On the basis of the loss of complexity hypothesis, 

complexity-based measures of postural sway data are suggested to be indicators of a 

postural control system’s robustness.  

Chapter 3 ended with an explanation of Tai Chi as a systems strategy for robust 

postural control into old age.  It was hypothesized that Tai Chi principles are a family of 

interacting physical and cognitive constraints on motor behavior, and that the Tai Chi 

characteristic known as silk-reeling is a class of synergies that emerge as a result, and 

enable a high degree of postural stability.   

If this hypothesis is correct, then when Tai Chi motor imagery (xin yi/mind-

intention) is performed in quiet standing by experts who have had extensive training in 

Tai Chi principles, silk-reeling postural control synergies may emerge, and their level of 

robustness may be captured with complexity-based, non-linear analysis of postural sway 

center of pressure data.  Findings from this kind of research may have important 

implications toward optimizing strategies to prevent falls in older persons. 

The research presented in the next chapter is a quasi-experimental design, the 

purpose of which is to explore effects of Tai Chi motor imagery during quiet standing, in 

both Tai Chi experts and those naïve to Tai Chi practice, on measures of postural sway.  

These measures include traditional measures of path length and standard deviations of 
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sway amplitude, and one complexity-based measure, Sample Entropy (SampEn).  

Specific aims of this research are: 

Specific Aim #1:  To develop a methodology to investigate Tai Chi motor 

imagery 

Specific Aim #2:  To investigate people’s self-rated ability to perform motor 

imagery. 

Specific Aim #3:  To explore the effects of Tai Chi motor imagery on postural 

control. 

Specific Aim #4:  To compare traditional measures with a complexity-based 

measure of motor imagery effects on postural control. 

 In chapter 5 I outline the research design and methodology employed in addressing these 

aims. 
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Table 4.1.  A Taxonomy of Behaviorally Defined S-States. 

Type of S-state Degree of Awareness 

Intended action Conscious/non-conscious 

Imagined action Conscious 

Prospective action judgments Non-conscious 

Perceptually based decisions Non-conscious 

Observation of graspable objects Non-conscious 

Observation of actions performed 
by others 

Conscious/non-conscious 

Action in dreams Conscious 

Source: Taken from Jeannerod, 2001, Table 1, p. S104. 

Figure 4.1.  The Action Continuum. 

Source:  Inspired by Gandevia et al., (1997). 
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Chapter 5: Research Design and Methodology 

Overview 

I have argued that falls are a huge problem in old age and that research into fall 

risk and prevention for older adults has been reductionist, including research completed 

to date evaluating Tai Chi training’s effectiveness in falls prevention.  I have postulated 

that postural instability in old age is at the root of the falls problem and that postural 

instability emerges from changes in a complex, dynamic postural control system.   

Tai Chi training is a systems-oriented approach that promotes robust postural 

control throughout a person’s life and extending into old age.  The Tai Chi movement 

characteristic known as silk-reeling is described by experts as a spiraling force 

connecting and unifying the entire body such that it moves and functions as a single unit.  

This facilitates a high degree of postural stability (Yang et al., 2005).  Based on a 

dynamic systems theoretical framework, I have hypothesized that silk-reeling is a class of 

postural control synergies that emerge from correctly performing a family of interacting 

Tai Chi movement principles.  These principles function as constraints which shape and 

form postural control synergies.  Xin yi/mind-intention is one of these interacting Tai Chi 

principles, a principle that can be reasonably categorized as motor imagery.  If Tai Chi 

motor imagery is integral to the emergence of silk-reeling synergies that enable 

exceptional postural stability, then its effects should be detectable in Tai Chi experts, 

when compared to non-experts, through indicators of postural control system robustness.   

Complexity-based, non-linear analyses of postural sway characteristics provide 

indicators of the robustness of a postural control system.  Based on the loss of complexity 
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theory of aging and disease, reduced complexity of postural sway characteristics 

associated with aging and disease is a sign of a dynamic system that is less adaptable to 

disturbances, and therefore more likely to fail (Goldberger et al., 2002; Lipsitz, 2002; 

Vaillancourt & Newell, 2002).  Sample Entropy (SampEn) analysis of force platform 

center of pressure (COP) time series data provides a complexity index based on the 

degree of irregularity of postural sway variability (Kuznetsov, et al., 2013).  SampEn 

analysis, as described by Ramdani et al. (2009), successfully detects reduced complexity 

of postural sway characteristics (at levels of significance) in eyes-closed conditions 

compared to eyes-open conditions during quiet standing in normal young adults 

(Ramdani, Seigle, Lagarde, Bouchara, & Bernard, 2009).  This finding is consistent with 

a loss of complexity theory of aging and disease (Goldberger et al., 2002; Lipsitz, 2002; 

Ramdani et al., 2009; Vaillancourt & Newell, 2002).  This is a relatively easy and 

inexpensive method of quantitatively evaluating the complexity, and therefore the 

robustness, of a postural control system. 

The research design presented here is quasi-experimental; it used a matched 

control group to compare with a group of Tai Chi standing training experts. The purpose 

was to explore the effects of Tai Chi motor imagery on SampEn and other measures by 

addressing the specific aims listed at the end of Chapter 4. 

Participant Recruitment 

Enrollment began June 5, 2015 and ended September 25, 2016.  Sixty-five 

participants were actually involved in the study (22 females and 43 males).  I excluded 

one male participant’s data because important information needed for matching a control 

was discovered to be missing after data collection and the participant could not be 
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contacted.  The outcome was that a total of 64 participants (22 females and 42 males) 

were included in the study. 

This sample for the experimental component of this study included 32 individuals 

with extensive Tai Chi training and 32 individuals without such training as a control 

group (n=32 per group).  A power analysis for ANOVA designs (Friendly, 2007) 

revealed that for a similar n=35 per group and p < .05, the probability of finding a main 

effect of size Delta = .500 (medium) is .835.  The n used in this study was comparable to 

the n used in the power analysis, and therefore has a similar probability of finding a main 

effect of the same effect size.  The high power of this study marks a strength of the study 

design, and indicates a relatively low probability that there were Type II errors (that is, 

concluding that there was no effect when there actually was one).  Details of the power 

analysis are available in Appendix A. 

Males and females of all ethnic groups who were 20 years of age or older and 

living independently in the community were eligible for the study.  Exclusion criteria 

included self-reported inability to walk continuously for 15 minutes unassisted; inability 

to read, write, and speak English; and the presence of certain medical conditions. These 

conditions included vestibular disorder, dementia, mild cognitive deficit, stroke, 

neurological condition (e.g., Parkinson’s disease, seizure disorder, or peripheral 

neuropathy), significant neuromuscular or musculoskeletal conditions or impairment, 

cardiovascular conditions (angina, myocardial infarction, atrial fibrillation, or presence of 

pacemaker), or any acute medical condition requiring hospital admission within six 

months prior to participation.  
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Each participant signed a University of Kentucky Institutional Review Board 

approved consent form prior to participation in the study (included as Appendix B).  

Participants consisted of two groups: experts in Tai Chi standing motor imagery, and 

persons naïve to Tai Chi standing motor imagery. 

Experts in Tai Chi Standing Motor Imagery.   I defined experts in Tai Chi 

standing motor imagery as individuals with five years or more experience with Tai Chi 

standing meditation training, also known as standing wuji meditation training.  All 

participants in the expert group were recruited from a community of Tai Chi players who 

gather from around the United States and abroad to attend one to three, five-day-long 

Taiji and Qigong intensive training camps in Blowing Rock, NC, offered by the Center 

for Taiji StudiesTM (Yang, 2016).  Although these experts have a variety of Tai Chi 

training and instructional backgrounds, they share a common training experience of Tai 

Chi principles as taught by the particular curriculum at camps offered by the Center for 

Taiji and Qigong StudiesTM.  Many of the experts use the same curriculum while training 

with their local Tai Chi communities.  This is a curriculum that holds standing meditation 

as essential practice toward acquiring Tai Chi movement skill characteristics, including 

silk-reeling.  It includes in its standing meditation training the Tai Chi motor imagery 

investigated here (Yang, 2007; Yang, 2016; Yang et al., 2005; Yang et al., 2007). 

Recruitment of experts occurred during two six-day long Taiji and Qigong 

intensive training camps held at the Blowing Rock Conference Center in Blowing Rock, 

NC.  One was held from June 5-10, 2015, and the other from August 9-14, 2016.  

Recruitment began at each camp after I spoke directly to the campers prior to the first 

training session.  Recruitment continued through group announcements, and as I spoke 
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individually to campers about the study during times between and after training sessions.  

Those who participated were asked to “spread the word” to other campers about the 

opportunity to be involved.  Typically, potential participants were provided with the 

Informed Consent Form and Participant Intake Information Form (see Appendices B and 

C) at the time of scheduling an appointment for participation, in case they wished to

examine them beforehand. 

Persons Naïve to Tai Chi Standing Motor Imagery.  This group was defined as 

persons with no experience with Tai Chi standing motor imagery training, and was 

designed to serve as a matched control to the expert group.  Participants were recruited 

from communities in Kentucky including Lexington, Georgetown, Flemingsburg, and 

small communities in Northern Kentucky.  One was a resident of Tennessee but was 

visiting Kentucky at the time of participation.  I recruited participants in the naïve group 

to match as closely as possible those in the expert group on characteristics of sex, race 

and age. 

Methods of recruiting the naïve group included directly speaking to individuals, 

emailing, telephoning, and handing-out or posting lists of the characteristics of 

individuals in the expert group for whom matches were needed.  Persons recruited 

included family members, friends and acquaintances.  Also participating were faculty and 

staff from the University of Kentucky Graduate Center for Gerontology and College of 

Public Health, and their families and friends.  Several who participated helped recruit 

additional matching participants for the naïve group. 
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Procedures for Data Collection. 

Data collection for each participant occurred at a mutually agreed upon place and 

time.  For the expert group, all data collection occurred either in a lodge room or in a 

meeting room at the Blowing Rock Conference Center in Blowing Rock, NC.  For the 

naïve group, data collection was conducted in an office in the University of Kentucky 

Graduate Center for Gerontology, at my home in Flemingsburg, KY, or in the 

participant’s home.  This required moving testing equipment (force platform, cords, 

connectors, and laptop computer) from place to place.  The places of data collection were 

generally well lit, quiet, and at a comfortable temperature, and were chosen to facilitate 

minimal distraction. 

Informed Consent.  At the commencement of each data gathering session, I gave 

each participant an Informed Consent Form approved by the University of Kentucky 

Institutional Review Board (see Appendix A).  Each participant was given as much time 

as they needed to read the form, ask questions, and demonstrate understanding.  Usually 

this required fifteen minutes or less.  I reviewed inclusion and exclusion criteria with 

each participant to ensure that they were qualified for the study.  Each participant gave 

their informed consent by signing and dating the form.  I then dated and signed the same 

form.  A copy of the signed form was provided to each participant. 

Participant Intake Information Form.  Each participant completed a Participant 

Intake Information Form (see Appendix B) to self-report their years of experience with 

Tai Chi standing meditation training, and the following demographic and health-related 

information: age, sex, ethnicity, height, weight, history of diabetes, peripheral 
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neuropathy, cardiovascular disease, chronic obstructive pulmonary disease and 

osteoarthritis, highest level of education attained, and average hours of exercise per week. 

Postural Sway Test.  This test required the participant to stand on a stationary 

force platform under four different conditions:  

1. Eyes open while performing a Tai Chi motor imagery task;

2. Eyes open while performing a control motor imagery task;

3. Eyes closed while performing a Tai Chi motor imagery task;

4. Eyes closed while performing a control motor imagery task.

The Tai Chi motor imagery task consisted of three sub-tasks performed

simultaneously.  These were: (a) imagining a relaxed bodily feeling of peace and 

tranquility; (b) imagining growing an inch in an upward direction from the point at the 

center of the crown of the head; and (c) imagining standing in water while giving oneself 

permission to sway randomly, passively and slowly, as if there was a gentle current in the 

water.  The control motor imagery task was imagining singing “Happy Birthday” 

throughout the duration of the task.  The four conditions of the postural sway test are 

illustrated in Figure 5.1.  

I explained to each participant that, in contrast to visual imagery in which one 

images the visual appearance of something, motor imagery involves imagining what a 

movement, exertion, or posture feels like in his or her body as if they were actually doing 

it.  I also explained that, although visual imagery might be experienced during the test, 

the focus of attention was to be the motor imagery task.  Similarly, during the control 

motor imagery of singing “Happy Birthday,” I explained that imagining the melody 
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would likely be experienced, but that one’s attentional focus was to be on imagining the 

bodily (kinesthetic) feelings of the task. 

Participants stood barefoot on the force platform (502 x 502 x 44.96 mm), facing 

a wall approximately one meter away, in a quiet stance with feet positioned comfortably 

at shoulder width apart, allowing their arms to suspend naturally along their trunk, and 

with their hips and knees very slightly and comfortably bent.  Participants maintained this 

stance for three trials of up to 60 seconds for each of four different conditions performed 

in random order.  I used a random number generator (RANDOM.ORG, 2016) to 

determine the sequence of trials.   I asked participants to keep the same position of their 

feet on the platform throughout the duration of the test, but informed them that between 

trials they could move the rest of their body as they wished.  If they needed to step off the 

platform prior to completing the activities in order to rest, they might do so after I had 

marked their foot positions.  All participants were able to maintain their foot positions 

through the duration of this data collection.  Using an AMTI Accusway system 

(Advanced Mechanical Technology, Inc., Watertown, Massachusetts) force platform, 

center of pressure coordinates were recorded with force signals sampled at a rate of 200 

data points per second (200 Hz.). 

After each trial, participants self-rated how easy, or difficult, it was to feel the 

imagined kinesthetic sensations. I used an ordinal scale of 1 to 7 developed by Hall & 

Martin (1997). In this scale, 7 is very easy to feel, 6 is easy to feel, 5 is somewhat easy to 

feel, 4 is neutral (not easy, not hard), 3 is somewhat hard to feel, 2 is hard to feel, and 1 is 

very hard to feel (Hall & Martin, 1997).  I recorded each score immediately in a 

notebook. 
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After each participant completed all tasks, I exported center of pressure (COP) 

data to produce a text data file for each of the twelve trials (three trials for each of the 

four test conditions).  At the sampling rate of 200 Hz, each 60-second trial produced a 

text file containing 12,000 data points described in two columns.  In the chronological 

order that the 12,000 data points were collected, the first column contained the COP 

positions on the anterior-posterior (A-P) axis, and the second column contained the COP 

positions on the medial-lateral (M-L) axis of the force platform.  Formatting COP data in 

this manner made it appropriate for further analysis.  This step of the procedure required 

less than 10 seconds. 

Once the text data files were saved, I told each participant that the test was 

completed and that they could step off the force platform.  I thanked each participant for 

volunteering their time and effort on behalf of my study, and answered any questions that 

they wished to ask about the research.  Participants were not compensated, monetarily or 

otherwise, for their participation.  Typically, the entire postural sway test required thirty 

minutes or less. 

Data Analyses 

Postural sway results, scores of self-rated ease of kinesthetic imagery, and 

participant characteristics were entered and organized into Microsoft Office Excel 2016 

spread sheets (Microsoft Corporation, Redmond, WA), and then converted into text files 

for subsequent statistical analysis. 

Traditional Postural Sway Measures.  Traditional postural sway measures 

include COP path length, and standard deviations of A-P and M-L COP displacement.  

These traditional measures offer static values indicating the magnitude of postural sway.  
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They do not provide insight into the variability of COP change across time, as do non-

linear analyses of COP trajectories. 

In this experiment, I performed analysis of path length and standard deviations of 

A-P and M-L COP displacement using MATLAB R2015b software (student version

8.6.0.2672246, the Mathworks, Inc., Natick, MA).  This step of the analysis produced 

results that were saved in a CSV data format.  I converted these to TXT data files in a 

format suitable for further statistical analysis. 

Sample Entropy.  A key advantage of this study was its use of a sophisticated 

non-linear method of measuring postural sway.  Although traditional measures provide 

indications of postural sway magnitude, these measures cannot take into account how 

postural sway evolves and varies over time.  The non-linear method of analysis used here 

known as Sample Entropy (SampEn) has advantages over traditional measures of 

postural sway because it can provide an indication of a postural control system’s 

robustness. 

In general, Sample Entropy (SampEn) analysis is a method used to quantify the 

degree of irregularity that occurs in a time series (Kuznetsov et al., 2013; Richman & 

Moorman, 2000).  As applied to postural sway data, the higher the value of the SampEn 

statistic of a center of pressure (COP) time series, the greater the irregularity of the time 

series, indicating a more unpredictable, random, and therefore, more complex output of a 

postural control system.  Reduced regularity of COP trajectories, as indicated by a lower 

SampEn value, has been documented in eyes closed versus eyes open conditions (Newell, 

1998; Ramdani et al., 2009; Donker et al., 2007). These findings support a hypothesis 

that the loss of complexity in physiological systems associated with aging or disease 



106 

indicates a reduction in the number of, or interaction among, subsystems, which renders 

the system less robust because of its smaller range of adaptive responses (Goldberger, 

1996, 2002; Lipsitz, 2002). 

SampEn analysis of human postural sway as described by Ramdani et al. (2009) 

employs a method of parameter selection that is able to detect lower SampEn in young 

adults in the eyes closed condition (versus eyes open condition) during quiet standing.  

Performing SampEn analysis of the same data, but with standard parameters failed to 

make this distinction.  Neither did a similar method of analysis, known as Multi-Scale 

Entropy analysis (Ramdani et al., 2009).  The method of SampEn described by Ramdani 

et al. (2009) was the chosen method of analysis because it was better able to distinguish a 

loss of complexity in a postural control system when the interacting visual component 

was removed.   

I performed SampEn analysis of all COP time series data using MATLAB.  

Included in this procedure were mathematical transformations prior to the actual SampEn 

analysis to address two important properties of the time series that affect the validity of 

SampEn results.  The first property is sampling rate.  A sampling rate that is too high can 

lead to erroneous results.  During the postural sway test, I collected data on center of 

pressure at a rate of 200 data points per second (200 Hz.).  The sampling rate of time 

series was mathematically transformed to a lower rate, or down sampled, from 200 Hz to 

20 Hz. in order to avoid an oversaturation of data points that could adversely affect the 

validity of SampEn results.   

The second important property addressed was the stationarity of the time series.  

A stationary time series has a stable mean and variance, and is a requirement for valid 
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SampEn results.  A mathematical transformation of the data known as differencing was 

performed to ensure that the data used for Samp En analysis was stationary (Kantz & 

Schreiber, 2004).  This procedure standardizes the data in a way that removes temporal 

trends.  The reader is referred to Kuznetsov et al. (2013) for detailed explanation of down 

sampling and differencing time series data for purposes of SampEn analysis (Kuznetsov 

et al., 2013). 

SampEn analysis provides an index of the irregularity of a COP time series in 

which larger SampEn values are associated with greater irregularity, and therefore greater 

complexity, of postural sway.  To accomplish this, SampEn analysis calculates the 

probability that a data point sequence pattern of length m, within a tolerance range r, will 

repeat itself for m + 1 points, without allowing self-matches (Kuznetsov et al., 2013).  

Using MATLAB R2015b software (student version 8.6.0.2672246, the Mathworks, Inc., 

Natick, MA), I used the method described by Ramdani et al. (2009) (partially derived 

from Lake et al., 2002) to select m and r parameters necessary for SampEn analysis.  In 

accordance with the method, parameters m and r were chosen separately for A-P and M-

L directions of COP displacement and kept constant for all statistical comparisons (Lake 

et al., 2002; Ramdani et al., 2009).  The procedure resulted in selecting an m value of 1.0 

and an r value of 0.10 as the parameters values appropriate for SampEn analyses of both 

A-P and M-L COP time series.

I performed SampEn analyses of A-P and M-L COP time series all postural sway 

test trials using MATLAB R2015b software (student version 8.6.0.2672246, the 

Mathworks, Inc., Natick, MA).  This step of the analysis produced results that I saved as 
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CSV data files.  I converted these to TXT data files in a format suitable for further 

statistical analyses. 

Self-Reported Ease of Imagery.  I organized all self-reported ease of imagery 

scores into an Excel spreadsheet, and then saved the scores in a CSV data file in a format 

suitable for further statistical analysis. 

Analyses of Variance (ANOVAs).  Group (expert or naïve), condition of eyes 

(open or closed), and type of imagery (Tai Chi or control) were the independent variables 

for ANOVAs.  Using CSV data files produced as described above, Proc Mixed ANOVAs 

were used to make statistical comparisons describing the main and interacting effects of 

the independent variables on each of the following six dependent variables: 

1. Anterior-Posterior (A-P) Sample Entropy (SampEn);

2. Medial-Lateral (M-L) SampEn;

3. A-P center of pressure (COP) displacement standard deviation (SD);

4. M-L COP displacement standard deviation (SD);

5. COP path length; and

6. Self-reported ease of imagery score

ANOVAs were performed using SAS software (SAS Institute, Inc., Cary, NC). 

In this chapter I have described the research methodology and design of an 

empirical study in which I apply the systems-oriented approach to the problem of falls 

that was developed in chapters 2, 3 and 4.  In chapter 6, I describe participant 

characteristics, and present results and findings of the ANOVAs as they pertain to each of 

the four specific aims.  I also offer preliminary comment on salient features of those 

results and findings. 
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Figure 5.1.  The Four Conditions of the Postural Sway Test. 

Source: Dillon, 2016. 
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Chapter 6.  Findings and Results from the Empirical Study 

The findings of this dissertation are organized and presented in six sections.  The 

first describes the characteristics of the sample.  The next four sections present results as 

they pertain to each of the four Specific Aims and include findings of statistical 

comparisons generated by the Proc Mixed ANOVAs as described at the end of Chapter 5.  

A comprehensive report of statistical comparisons generated by the Proc Mixed 

ANOVAs is included as Appendix D.  The final section offers an integrative overview of 

the chapter. 

Participant Characteristics. 

Table 5.1 describes participant characteristics separately for the group of experts 

in Tai Chi standing meditation and those naïve to Tai Chi standing meditation.  The 

number of participants included in the study is 64 (22 females, 42 males).  All 

participants in the naive group were recruited to match as closely as possible with an 

individual in the expert group according to sex, race and age.  All in the naïve group were 

matched by sex, and all but two were matched by race.  Age was matched to within +/- 

four (4) years.  Notable exceptions were a pairing of males with 8 years’ age difference, a 

pairing of females with 5 years’ age difference, and a pair of females with 6 years’ 

difference in age. 

Experts had a mean ± SD = 13.6 ± 5.0 years of experience in standing meditation 

training.  Both groups reported similarly high levels of education, although fewer in the 

expert group reported Master’s or Doctoral levels of education than in the naïve group.  

This was a sample of convenience, and the high levels of education in both groups 
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probably reflect the educational levels of people with whom I am acquainted.  Despite 

similarities in height, the experts reported weighing less, mean ± SD = 161.3 ± 31.0 

pounds in experts vs. 194.8 ± 41.1 pounds in the naïve group.  Experts also reported 

engaging in more hours of exercise per week, mean ± SD = 9.9 ± 5.7 in experts vs. 5.3 ± 

3.4 in the naïve, which may help explain the dissimilarity in weight between the two 

groups, despite their remarkable similarity in height.  Another explanation may be that 

Tai Chi experts are more health-conscious and are motivated to maintain a lower body 

weight.  Although the naïve group was recruited to match the expert group in sex, age 

and race, the two groups were well-matched in other characteristics overall. 

The following four sections address each of the specific aims in order. 

Specific Aim #1:  To Develop a Methodology to Investigate Tai Chi Motor Imagery. 

 The methodology developed to investigate Tai Chi motor imagery contained 

aspects that worked well, and other aspects that were challenging.  The method of 

recruitment of Tai Chi experts worked exceptionally well.  Experts came from several 

disparate areas of the US.  Recruiting this group as they gathered at a single location to 

attend two, six-day Tai Chi camps solved the challenging logistics of finding and 

recruiting enough experts to have a high-powered study.  The location of the camps were 

within a six-hour drive from my home.  The campers as a group were enthusiastic about 

the study and about participating.  At one camp, all testing occurred in the same lodge 

room where I stayed.  At the other camp, all testing occurred in a lodge conference room.  

Having a consistent place to test saved me from carrying and setting-up the testing 

equipment.  It required only 12 total days to recruit and test the entire group of experts. 
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Recruiting a control group of those naïve to Tai Chi standing meditation was 

more difficult, particularly because they were recruited to match with the experts in age, 

sex and race.  Several persons I had been recruiting were willing to participate but were 

not included because they did not match anyone in the expert group.  Recruiting and 

testing the entire matched control group required several months, a much longer period of 

time than for experts.  Testing the naïve occurred at several sites; University of Kentucky 

offices, my home, and in several homes of participants.  Locations of testing controls 

were in Kentucky including Lexington, Flemingsburg, Georgetown, Edgewood and Villa 

Hills.  Frequently this required loading, carrying, assembling and disassembling testing 

equipment between tests.  Testing in a participant’s home involved deciding upon and 

preparing a room that was free from distractions, well lit, and with access to power 

outlets. 

Testing equipment was quickly and easily available from the University of 

Kentucky musculoskeletal lab throughout the testing periods.  Participants scored their 

ease of motor imagery without exception or significant delay.  All participants endured 

the entire postural sway test without needing to step off the force platform to rest.  All 

participants maintained their balance throughout the test, and gave no indications that 

they felt unstable. 

The test duration was a methodological concern after piloting.  The pilot study 

had less stringent inclusion and exclusion criteria.  Eligibility for the pilot required that 

participants did not use an assistive device to walk, and had the ability to walk unassisted 

for 15 minutes.  As a result, some of the eligible pilot participants were unable to endure 

the postural sway test without interrupting the test to sit and rest.  This required marking 
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the position of the feet prior to stepping off the platform so that they might later resume 

the test in the same foot position.  There were other related concerns.  Pilot participants 

with low endurance gave indications that balance was significantly challenged in eyes 

closed conditions, and required close supervision during testing.  There was also a 

concern that fear may be induced in a participant whose balance is significantly 

challenged during testing.   

The development of inclusion and exclusion criteria for this study design were 

informed by concerns identified during piloting that, once addressed, provided a sample 

with a level of endurance to complete the postural sway test without interruption. The 

concerns recognized in piloting raise the question of how the methodology might be 

modified to include an older, frailer sample, especially since their likely increased risk for 

falling make them a study population of interest.  Possible solutions are to consider 

shorter testing durations, and provide stable grab bars around the participant and/or closer 

standby supervision by one or more research personnel to facilitate a feeling of security. 

Specific Aim #2:  To Investigate People’s Self-Rated Ability to Perform Motor 

Imagery. 

Participants self-rated how easy, or difficult, it was to feel the imagined 

kinesthetic sensations after each trial on an ordinal scale of 1 to 7 developed by Hall & 

Martin (1997).  In this scale, 7 is very easy to feel, 6 is easy to feel, 5 is somewhat easy to 

feel, 4 is neutral (not easy, not hard), 3 is somewhat hard to feel, 2 is hard to feel, and 1 is 

very hard to feel (Hall & Martin, 1997).   
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Table 6.2 presents the mean scores of self-reported ease of imagery.  These results 

suggest that, on average, participants of both groups reported they were able to perform 

both the Tai Chi and control motor imagery tasks without difficulty. 

For all imagery, greater ease of imagery was reported by experts vs. the naïve at a 

high level of significance, F(1,62) = 29.84, p < 0.0001.  This is perhaps not surprising 

given that experts have had extensive training is standing motor imagery, though their 

training would not have included imagining singing Happy Birthday.  For all participants, 

a significantly greater ease of imagery was reported with eyes closed vs eyes open, 

F(1,62) = 23.58, p < 0.0001, possibly because closing the eyes removed visual input that 

could distract from the task of focusing attention on the private bodily sensations related 

to the motor image. 

Experts and the naïve participants differed in their rating with respect to the ease 

of performing Tai Chi vs. control imagery.  Experts reported greater ease with Tai Chi vs. 

control motor imagery at a level of significance, F(1,62) = 37.09, p < 0.001.  Conversely, 

the naïve participants reported greater ease with the control imagery, also at a level of 

significance, F(1,31) = 6.74 p < 0.02.  One might expect that experts would have greater 

ease with the Tai Chi imagery given that they have had extensive training in its 

performance, but it is curious that the naïve found the control imagery easier to feel.  One 

possible reason is because the Tai Chi motor imagery is a more complex task than the 

control imagery, and this made it relatively harder to feel by the naïve.   

There was a significant interaction between eye condition and imagery type with 

respect to scores of imagery ability: In the eyes closed condition, participants rated 

significantly greater ease with Tai Chi imagery than with control imagery, F(1,31) = 
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11.01, p < 0.0015, but in the eyes open condition, no significant difference was found 

between the two types of imagery, F(1,31) = 2.52, p < 0.1175.  Among all participants, 

this result suggests that closing the eyes facilitates greater ease of the Tai Chi motor 

imagery task to a degree that makes it significantly easier to feel than the control 

imagery, despite the greater complexity of the Tai Chi imagery task. 

Specific Aim #3:  To Explore the Effects of Tai Chi Motor Imagery on Postural 

Control. 

Effects of Tai Chi Motor Imagery and Sample Entropy.  The SampEn results 

represent the most important findings of the quasi-experiment because they relate directly 

to my hypothesis.  No statistically significant differences were found between the two 

types of imagery on A-P or M-L SampEn values.  Experts did, however, have lower M-L 

SampEn values during Tai Chi motor imagery compared to control motor imagery at a 

level that approached significance, F(1,31) = 3.46, p < 0.07, whereas the naïve group did 

not, F(1,31) = 1.49, p < 0.25.   

These findings do not support my hypothesis that greater postural sway 

complexity, as measured by SampEn, is associated with Tai Chi motor imagery.  My 

prediction that Tai Chi motor imagery would result in increased SampEn in this study 

may not have adequately considered the conditions during which other research has 

found Tai Chi-related increases in postural sway complexity.  Detailed explanation about 

why I was wrong in my prediction, and how my overall hypothesis may still stand, is 

offered in the next chapter. 
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Effects of Tai Chi Motor Imagery on Traditional Postural Sway Measures of 

A-P COP Displacement SD, M-L COP Displacement SD, and COP Path Length.

Participants demonstrated a main effect of greater A-P COP displacement SD during Tai 

Chi motor imagery compared to the control imagery at a level of significance, F(1,62) = 

16.49, p < 0.0001.  There were no main effects with respect to imagery type in M-L COP 

displacement SD, F(1,62) = 1.09, p < 0.35, or path length, F(1,62) = 1.96, p < 0.20. 

The naïve group had significantly greater A-P COP displacement SDs with Tai 

Chi imagery than with control imagery, F(1,31) = 19.85, p < 0.0001, but among experts, 

the type of imagery made no significant difference in A-P sway, F(1,31) = 0.71, p < 0.45.  

The interaction between group and imagery type with respect to M-L sway was 

particularly curious.  The naïve group produced significantly higher M-L displacement 

COP SDs during Tai Chi imagery than during the control imagery, F(1,31) = 5.65, p < 

0.025.  In contrast, experts had significantly lower M-L displacement during Tai Chi 

imagery than during control imagery, F(1,31) = 6.74, p < 0.015.  Task-specific postural 

sway changes are known to occur as the result of performing motor imagery during quiet 

standing (Boulton & Mitra, 2013; Grangeon, Guillot, & Collet, 2011; Lemos, Rodrigues, 

& Vargas, 2014; Lemos et al., 2014; Rodrigues et al., 2010).  Part of the Tai Chi motor 

imagery task, that was not included in the control task, was imagining standing in water 

with a gentle current.  The greater sway found in the naïve during Tai Chi motor imagery 

may have been the result of task-specific sway modulations.  An explanation of why an 

opposite result was found in experts may relate to their Tai Chi training.  The discussion 

in the next chapter examines these possibilities more closely. 
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Specific Aim #4:  To Compare Traditional Measures with a Complexity-Based 

Measure of Motor Imagery Effects on Postural Control. 

This study employed the complexity-based measure, SampEn, and three 

traditional measures of postural sway in order to discern effects of Tai Chi motor imagery 

on postural control.  When comparing the results of these two types of postural sway 

metrics as they relate specifically to effects of motor imagery, we find no main effects of 

imagery at levels of significance with respect to A-P or M-L SampEn.  In contrast, a main 

effect of imagery was found with respect to A-P COP displacement SD, and there was 

significantly greater sway in this direction during Tai Chi motor imagery that during 

control imagery.  The lack of statistically significant differences in SampEn with respect 

imagery type is unexpected, and not the result I predicted on the basis of my hypothesis. 

As intimated earlier, the equivocal SampEn results might be reasonably explained 

without rejecting my hypothesis, and are an important topic of discussion in Chapter 7. 

No significant differences were found in SampEn values between Tai Chi and 

control imageries, or between eyes open and eyes closed conditions, in either the expert 

or the naïve groups.  Using traditional measures, some of these differences were 

statistically significant.  The naïve group had significantly more A-P displacement and 

M-L displacement, and experts had significantly less M-L displacement, during Tai Chi

imagery compared to control imagery.  As mentioned in the previous section, these are 

particularly interesting findings with plausible explanations to be covered in detail in the 

chapter that follows. 
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No significant main effect was found in A-P or M-L SampEn with respect to 

group, but experts did have lower A-P SampEn values than did the naïve at a level that 

approached significance, F(1.62) = 2.81, p < 0.10.  My hypothesis is that Tai Chi motor 

imagery is associated with greater postural sway complexity as evidenced by higher 

SampEn values.  The lower SampEn values were the opposite finding of that which I 

predicted.  An explanation for the unexpected finding may lie in whether training effects 

of Tai Chi-related training are best captured in quiet standing during, or not during, motor 

imagery.  If training effects of Tai Chi motor imagery are best detected in quiet-standing-

alone, then testing this condition during future investigations of this sort is critical. 

In contrast to the lack of significant effects found in SampEn, significant main 

effects were found in A-P COP displacement SD and COP path length.  The expert group 

was found to sway with significantly higher A-P COP displacement SD, F(1,62) = 4.93, p 

< 0.04, and longer COP path length, F(1,62) = 5.53, p < 0.025, when compared to the 

naïve.  These two findings are meaningfully related since path length is representative of 

movement that includes A-P, as well as M-L, directions. 

SampEn measures detected no significant main effect with respect to eye 

condition (open versus closed).  This is a surprising result given that method of SampEn 

analysis used in this study has been reported to detect lower Sampen values in eyes 

closed vs. eyes open conditions in young adults in quiet standing and without the added 

task of motor imagery (Ramdani, et al, 2009).  The results suggest that these differences 

in sway complexity between eyes open and eyes closed condition disappear with the 

introduction of a motor imagery task.  To my knowledge, these findings are new, and 
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important for informing future research on effects of motor imagery on postural sway 

complexity measures. 

In contrast to the equivocal results of SampEn, the use of traditional measures 

found significantly greater A-P COP displacement SD, F(1,62) 16.88, p < 0.0001, M-L 

COP displacement SD, F(1,62) = 128.98, p < 0.0001) and COP path length, F(1,62) = 

62.40, p < 0.0001, during eyes closed vs. eyes open conditions.  Substantial increases in 

postural sway magnitude are typical in eyes closed vs. eyes open conditions, and results 

of these traditional metrics are not surprising (Latash, 2012).  Overall, traditional 

measures were more sensitive in detecting main effects and interactions of the particular 

motor imageries of this study than were A-P or M-L SampEn measures. 

Overview. 

To summarize the description of the sample, characteristics of the expert and 

naïve groups were remarkably similar.  A notable exception was the greater body weight 

reported by the naïve, despite the groups’ very similar heights, a difference that may be 

explained by the greater number of hours of exercise per week reported by experts. 

Recruitment and testing of the sample required much less time and trouble in the 

expert group, and is a strength of the study’s design.  Recruiting a naïve control group 

matching those in the expert group had challenges but was successful nonetheless.  By all 

indications, the postural sway test and self-rating of imagery ability went smoothly for 

the entire sample in terms of understanding and performing the tasks, and enduring the 

postural sway test without evidence of excessive balance challenge.  Piloting contributed 

to the success of this study’s methodology in this respect. 
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According to self-reports, all imagery tasks performed by the sample were 

relatively easy.  Experts reported greater ease than the naïve, and greater ease with the 

Tai Chi imagery compared to the control imagery.  The naïve reported that the control 

imagery was easier to feel.  Overall, the findings on motor imagery ability indicate that 

the measured effects of motor imagery are valid. 

In sum, the ANOVAs show a number of interesting findings.   The most 

important to the new approach being tested here is the lack of significant effects of Tai 

Chi motor imagery on SampEn measures of postural sway complexity.  These findings do 

not support my hypothesis, and were not what I predicted, but neither do they defy an 

explanation by which my hypothesis still stands.  The absence of significantly lower 

SampEn values in eyes closed vs. eyes open conditions was unexpected, given that 

SampEn detects these difference in quiet standing without an imagery task.  Like the 

previous finding, these findings do not defy explanation, as will become apparent in the 

deeper discussion of the next chapter. 

The traditional metrics of postural sway, compared to SampEn, were more 

sensitive to effects related to Tai Chi motor imagery, and to eyes open versus eyes closed 

conditions.  I have already made preliminary comments about these differences in the 

previous section.  In Chapter 7, I discuss these and other findings in depth.  I conclude 

Chapter 7 by exploring innovations, implications, and future directions of the entire 

project. 
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Table 6.1. Participant Characteristics. 
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Table 6.2.  Mean Scores of Self-Reported Ease of Imagery. 
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Chapter 7: Discussion  

As noted at the outset, this dissertation is presented in two parts.  Chapters 2 

through 4 form the first part and constitute a critical philosophical and scientific 

exploration of developing a new approach to the problem of falls in old age.  Why 

develop a new approach?  Because the falls problem is enormously costly and disruptive 

for the older individual, others, and society, and its severity is likely to intensify along 

with the growing proportion of older persons in our population projected to occur over 

the next few decades.  Chapters 5 and 6 form the second part of this dissertation:  here, I 

describe an empirical study that was conducted to apply this new approach in a pragmatic 

manner.  The purpose of this chapter is bring these two parts together by discussing 

findings and results of the empirical study, and by discussing the implications, 

innovations and future directions of the entire dissertation within the broader context of a 

new way of addressing the problem of falls.  

The conceptual basis for the dissertation research discussed here is systems-

oriented.  This research takes a systems approach toward: 1) understanding the very 

nature of the problem of falls in old age; 2) presenting a strategy for developing optimal 

interventions, and; 3) selecting the type of analysis by which to test this strategy.  I have 

postulated that postural instability in old age is at the crux of the falls problem, and that 

postural instability emerges from gradual changes occurring in a complex, dynamic 

postural control system.  Realizing that falls arise from a complex system of interacting 

components of various levels and domains, and are not merely the sum of component risk 
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factors, makes it imperative to investigate interventions that are aimed toward 

systemically fostering robust postural control in the long-term.  

In Chapter 3, I explained how Tai Chi training is one such intervention.  Tai Chi 

is a systems-oriented approach that promotes robust postural control throughout a 

person’s life and extending into old age.  The systemic nature of Tai Chi’s effects on 

postural control is discerned by the holistic descriptors of the movement characteristics 

that Tai Chi training intends to develop.  Silk-reeling is one Tai Chi movement 

characteristic that is a holistic descriptor of the motor coordination that Tai Chi training 

intends to develop.  Silk-reeling is described by Tai Chi experts as a spiraling force 

connecting and unifying the entire body such that it moves and functions as a single unit, 

and as a result facilitates a high degree of postural stability (Yang et al., 2005). 

Based on a dynamic systems theoretical framework, I have hypothesized that silk-

reeling is a class of robust postural control synergies that emerge from correctly 

performing a family of interacting Tai Chi movement principles.  These principles 

function as constraints which shape and form postural control synergies (Table 3.1).  Xin 

yi/mind-intention is one of these interacting Tai Chi principles; a principle and constraint 

that is reasonably categorized as motor imagery (see Chapter 4).  If Tai Chi motor 

imagery is integral to the emergence of silk-reeling synergies that enable exceptional 

postural stability, then its beneficial effects will hypothetically be detectable in Tai Chi 

experts, when compared to non-experts, through indicators of postural control system 

robustness. 

SampEn is a complexity-based, non-linear analysis that provides an indication of 

the robustness of a postural control system.  When applied to center of pressure (COP) 
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time series data, higher SampEn values indicate greater complexity, and therefore greater 

robustness of a postural control system.  I chose SampEn as the measure of postural 

control system robustness to serve to test my hypothesis.  This study is a first step toward 

deeper understanding of how a systems-oriented intervention, such as Tai Chi training, 

may promote postural stability extending into old age.  The approach has important 

implications for generating improved falls prevention strategies. 

The first section of this chapter is devoted to reviewing the sample and study 

design.  In the next four sections I discuss the findings with respect to each of the specific 

aims.  Attention is paid to understanding how my experimental results inform the systems 

approach I have taken in researching the problem of postural instability in old age.  

Following these sections, I discuss limitations of the research.  In the final section I 

discuss how the study is innovative, and reflect on implications and directions for future 

research and application. 

Sample and Study Design. 

This sample for the experimental component of this study included 32 individuals 

with extensive Tai Chi training and 32 individuals without such training as a control 

group.  A power analysis for ANOVA designs (Friendly, 2007) of a comparable n reveals 

that this study is high powered for a medium effect size (see Appendix D for details).   

This high power represents a strength in the study’s design, and indicates that the sample 

is large enough to find effects that are actually present. 

The sample was part of a matched subjects design in which participants were 

assigned to groups based on expertise in Tai Chi standing meditation.  That the expert 

group had an average ± SD = 13.6 ± 5.0 of years’ experience in Tai Chi standing 
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meditation represents a strength of this experimental group in terms of its level of 

expertise.  But since the matched subjects design increases the probability that 

confounding variables are present, conclusions about causality are more guarded 

compared to a design in which participants are randomly assigned.   

The validity of five years’ experience in Tai Chi standing meditation as the 

criterion for expertise in Tai Chi motor imagery may be called into question.  The group 

of experts had all attended Tai Chi camps, and local Tai Chi schools that share a common 

curriculum of training Tai Chi movement principles and standing meditation, which 

includes the Tai Chi motor imagery used in the study.  This provides one measure of 

support for the validity of the criterion used to determine expertise.  However, future 

study may consider a more direct and detailed account of the participants’ experience of 

training in Tai Chi principles, and experience with any specific motor imagery being 

investigated. 

The sample was one of convenience and this limits generalizability to a larger 

population.  Any non-equivalence between the groups, apart from the independent 

variable of Tai Chi standing meditation expertise, also limits how results may generalize 

to a larger population.  The control group was matched closely, though not perfectly, in 

characteristics of sex, race, age and height.  There were notable differences between the 

expert and naïve groups in reported weight and hours of exercise per week.  The non-

equivalence in these characteristics between the two groups are possible threats to the 

external validity of the study.  Otherwise, the two groups are remarkably well-matched 

and this supports the study’s external validity. 
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The high levels of education reported in both expert and naïve groups may invoke 

caution when generalizing the results of this study to less educated populations.  One 

possibility to consider is that motor imagery ability is associated with educational level.  

There does not appear to be any salient report of this association in the motor imagery 

research literature.  However, one study found that motor imagery vividness does not 

abate with age, despite the markedly lower educational levels of the older age group that 

was compared (Malouin, Richards, & Durand, 2010). 

The age range (29-80 years) of the sample precludes conclusions about whether 

the results of the study would differ or not in an older or younger sample.  The 

methodology is sound (see next section) and seems appropriate for a broader age range.  

It would be useful in future investigations to explore the interactions of age with expertise 

and motor imagery type, and the degree to which relationships hold in samples of 

different age groups, such as 20-39, 40-59, and 60-80 years or older. 

Specific Aim #1:  To Develop a Methodology to Investigate Tai Chi Motor Imagery. 

This research has demonstrated that the methodology developed here to 

investigate Tai Chi motor imagery can be successfully implemented with efficient and 

effective recruitment.  This includes the logistically challenging recruitment of a group of 

Tai Chi standing meditation experts with common training experience in Tai Chi 

principles from a single instructor.  It was also demonstrated that participants with a wide 

age range were successfully able to understand and complete the testing without 

difficulty. 

Specific Aim #1 was achieved.  The methodology developed in this dissertation 

serves as a model for future motor imagery and postural control studies designed to 
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generate optimal strategies for addressing the problem of falling in old age.  I suggest that 

future study take into account that the data collection in this study occurred at several 

different places and the conditions were not always exactly the same. 

This inconsistency in testing conditions represents a limitation in the 

methodology, particularly regarding the visible field available to participants during 

postural sway testing with eyes open.  During the eyes open conditions of the postural 

sway test, participants stared at a wall approximately three meters in front of them.  

Although the appearance of the walls varied between different testing sites, they were all 

free of wall hangings.  The ways in which the walls varied were mainly in color, pattern 

and texture.  For example, at one site the wall had a textured wall paper with red and 

brown tones, but it had clear a horizontal line in the pattern at about three feet from the 

floor.  At another site, the wall was made of cinder blocks painted an off-white tone.   

Vertical and horizontal recessed lines were visible in this wall.  Another site involved a 

wall with yellow tones, painted using a rag technique.  At a different site, participants 

stared forward at a paneled door that was painted white, which provided visible 

horizontal and vertical lines.   

This variation among test sites means that the available visual input at different 

sites varied during the postural sway test, and this could possibly confound comparisons 

and interpretations concerning eyes open conditions.  Consistency in test conditions is 

important, but in order to make the eyes open conditions distinct from eyes closed 

conditions, it is desirable to have a visual field during all postural sway testing with eyes 

open that provides rich and relevant input to the postural control system, such as 

information about depth, horizon and verticality. 
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It is recommended that future study implements methods to reduce differences 

among testing site conditions.  However, it should be noted that testing in a setting (even 

a consistent one) that is very different from that in which Tai Chi motor imagery training 

is typically performed could threaten the ecological validity of the study. 

Overall, study of a systems-oriented intervention, such as Tai Chi training, 

appears worthwhile and appropriate given the nature of postural instability in old age as a 

failure in the complex and dynamic system that controls posture.  The methodology 

presented here may serve to inform future systems-oriented research that strives to 

alleviate the pressing problem of falls in older adults. 

Specific Aim #2:  To Investigate People’s Self-Rated Ability to Perform Motor 

Imagery. 

This aim was achieved.  Mean scores of self-reported ease of imagery indicate 

that both the experts and the naïve participants reported an ability to perform both Tai 

Chi and the control motor imagery tasks that fell on the “easy” end of the ordinal scale.  

The degree to which all participants rated their imagery ability suggests that motor 

imagery can be performed with relative ease, even in those without expertise.  On the 

basis that experts and the naïve seem to be able to perform motor imagery with ease, 

motor imagery appears to have considerable potential as part of a falls prevention 

intervention worthy of further study. 

Although the quasi-experimental design of the study makes conclusions about 

causation between subject groups less definitive than if the sample was randomized, the 

fact that experts reported significantly greater ease with the Tai Chi motor imagery 

(compared to the naïve participants who reported significantly greater ease with the 
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control imagery) raises the reasonable possibility that increased Tai Chi motor imagery 

ability is a training effect of years of practice.  This notion is reasonable because experts 

reported significantly greater ease with Tai Chi versus control motor imagery, even 

though the Tai Chi motor imagery was a more complex task in which three sub-tasks (as 

opposed to one with the control imagery) were performed simultaneously. 

No participants mentioned during testing any difficulty with complying with 

instructions given beforehand to focus their attention on the motor image during the 

control motor imagery task, even when the auditory image of the Happy Birthday melody 

was likely experienced.  This is an indication that my instructions on attentional focus 

prevented a problem in this regard.  One participant reported a “bleed-over” effect in 

which motor images from one imagery task were being experienced during testing of the 

imagery task.  In these cases, the participant was instructed to do their best to bring their 

attention on the motor imagery task being tested, which seemed to resolve the 

participant’s concern. 

Conclusions regarding the participants’ imagery ability require caution because 

imagery ability was self-reported, and may or may not be an accurate measure of actual 

imagery ability.  Furthermore, as with any self-reported measure, a self-reported imagery 

ability score is vulnerable to expectation bias.  Until there is a “gold standard” for 

measuring motor imagery ability, these may be limitations with which future study must 

contend as it attempts to quantify motor imagery ability.  As with pain, it remains unclear 

how motor imagery ability may be objectively quantified given the private nature of 

motor imagery as imagining first-person experiences of kinesthetic bodily sensations.  

Brain imaging may one day provide a quantitative measure of motor imagery ability by 
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measuring the levels of activation in brain areas known to occur with motor imagery.  

Even if valid and reliable measures of motor imagery ability could be detected by brain 

imaging, cost and convenience would likely prohibit how extensively these measures 

would be used. 

Specific Aim #3:  To Explore the Effects of Tai Chi Motor Imagery on Postural 

Control. 

Effects on Sample Entropy.  The findings most relevant to my hypothesis are the 

absence of statistically significant differences between the Tai Chi motor imagery and the 

control imagery on A-P or M-L SampEn, and the absence of statistically significant 

differences in A-P or M-L SampEn between the interactions of the two imageries in 

either experts, or the naïve.  These findings fail to support my hypothesis that greater 

SampEn values would be associated with Tai Chi motor imagery, or with expertise with 

Tai Chi standing meditation.  

One interpretation of these results is that Tai Chi motor imagery training is not 

associated with the formation of more complex and more robust postural control 

synergies as hypothesized.  This interpretation is perhaps bolstered by results of SampEn 

differences that approached a level of significance.  Rather than showing an increase in 

SampEn associated with Tai Chi motor imagery, the differences approaching levels of 

significance revealed just the opposite.  A-P SampEn was found less in experts than in 

the naïve participants (p < 0.10), and in experts, M-L SampEn was found less during Tai 

Chi motor imagery than during the control imagery (p < 0.07). 

Another interpretation, and one consistent with my hypothesis, is that lack of an 

increase (or perhaps even a reduction) in the irregularity/complexity of COP trajectories 
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is a phenomenon that occurs in quiet standing during intense cognitive training of Tai Chi 

motor imagery, but that a beneficial training effect of Tai Chi motor imagery of increased 

postural control complexity is better captured by entropy analysis during quiet standing 

without a cognitive task.  My study did not include a test of quiet standing without an 

additional cognitive task, and therefore could not directly address this notion.  Results 

from other studies suggest, in light of my findings, that this interpretation is plausible and 

worthy of future investigation (Manor, Lipsitz, Wayne, Peng & Li, 2013; Wayne, Gow, 

et al., 2014). 

Tai Chi training is reportedly associated with increased postural sway complexity 

in quiet standing without a cognitive task.  Wayne, et al. (2014) made cross-sectional 

comparisons between Tai Chi experts with an average of 24.6 years of Tai Chi training 

(N = 27, age 62.8 ± 7.5 years) and age-matched Tai Chi naïve participants (N = 60, age 

64.5 ± 7.5 years).  Using multi-scale entropy analysis to quantify the irregularity of COP 

trajectories, he found that during quiet standing, without an additional cognitive task, the 

experts exhibited significantly greater irregularity/complexity of sway in the A-P 

direction with eyes closed, and in the M-L direction in both eyes open and eyes closed 

conditions.  Those naïve to Tai Chi participated in a six month, two-arm, wait-list 

randomized clinical trial of Tai Chi training.  Post hoc analysis revealed that increases in 

irregularity/complexity of A-P and M-L COP trajectories with eyes closed were 

positively correlated with Tai Chi practice hours.  Manor et al. (2013) found increases in 

irregularity/complexity in A-P COP trajectories during quiet standing with eyes closed in 

adults with peripheral neuropathy after 24 weeks of Tai Chi training.  These results 

suggest that Tai Chi motor imagery training effects on postural control system 
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complexity may also be captured using entropy analyses in quiet standing without the 

condition of an additional cognitive task. 

Performing secondary cognitive tasks have effects of their own on postural sway 

complexity during quiet standing as detected in SampEn analysis.  In both pre-adolescent 

dancers and non-dancers, quiet standing during a dual task of word memorization 

increased SampEn values when compared to quiet standing alone (Stins, Michielsen, 

Roerdink, & Beek, 2009).  In healthy young adults with eyes closed, quiet standing 

during a dual task of pronouncing names spelled in reverse order increased SampEn 

compared to quiet standing alone (Donker, Roerdink, Greven, & Beek, 2007).  In stroke 

patients, quiet standing while performing an arithmetic task produced higher SampEn 

values as compared to simply standing quietly (Roerdink et al., 2006).  One explanation 

for these increases in postural sway complexity holds that dual tasking diverts attention 

away from cognitive monitoring of postural control, and allows more automaticity of 

postural control, as evidenced by the greater irregularity/complexity of postural sway 

(Donker et al., 2007).  Yet, a study of adults over the age of 70 years seems to contradict 

this interpretation, wherein quiet standing while counting backwards by 3s resulted in 

decreased SampEn values when compared to quiet standing alone (Manor et al., 2010).   

These studies demonstrate that an additional cognitive task is known to have 

(variable) effects on postural sway complexity in quiet standing.  My study seems to be 

the first to investigate the effects of motor imagery during quiet standing.  The dual task 

literature makes it unclear what to expect regarding effects of motor imagery on SampEn 

measures.  Is Tai Chi motor imagery a dual task that diverts attention away from, or 

attracts attention toward, cognitive monitoring of postural control?  If it attracts attention, 
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then it may be expected to reduce complexity of postural sway, according to the 

interpretation of Donker et al., (2007).  This interpretation may explain the decreases in 

SampEn found associated with Tai Chi motor imagery that approached levels of 

significance.  If during the act of Tai Chi motor imagery training, the automaticity of 

postural control is being challenged to a greater degree in experts than in the naïve, then 

this may be reflected by lower SampEn values in experts. 

How would this possible scenario fit with my hypothesis?  It may be that Tai Chi 

motor imagery training is the path to, rather than the goal of, robust postural control 

synergies.  The phenomenon of increased postural sway with eyes closed (which has been 

shown associated with reduced postural sway irregularity/complexity), seems to serve an 

information gathering function with the purpose of exploring stability limits in a more 

challenging condition (Donker et al., 2007; Riley & Clark, 2003; Sarabon, Panjan, & 

Latash, 2013)   Tai Chi motor imagery may also be a condition during which information 

gathering plays a stronger role, which in turn reduces the automaticity of postural control, 

and is marked by decreased postural sway complexity.   Tai Chi motor imagery may 

function as a cognitive constraint, that not only provides rich proprioceptive information 

during the training of movement and posture (Chapter 4), but also provides continual 

training and challenge to limited attentional resources associated with postural control 

(Chapter 3).  In this sense, the practitioner is engaged in ongoing motor-related 

information gathering and learning during training, no matter the skill level, the goal of 

which is greater automaticity and system complexity of postural control that is made 

evident during the absence of intense cognitive training. 
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Taken together, the results of my study do not support my hypothesis that Tai Chi 

motor imagery in experts is associated with increased complexity and robustness of a 

postural control system, but the results do not disprove my hypothesis either.  My 

prediction that SampEn values would be higher in experts during Tai Chi motor imagery 

may have been hasty, given the variability of dual cognitive task effects on, and the 

unknown effects (until now) of motor imagery on a postural sway complexity measure.   

 It seems plausible that to capture the increased complexity I have hypothesized 

associated with Tai Chi motor imagery may require testing during quiet standing without 

an additional task of motor imagery.  Including quiet-standing-only test conditions is 

critical to future investigation of Tai Chi motor imagery effects on postural control that 

seeks to deepen our understanding of how a systems-oriented intervention may contribute 

toward solutions to the problem of postural instability in old age. 

Effects on Traditional Measures of Postural Sway.  The main imagery effect of 

greater A-P COP displacement SD during Tai Chi motor imagery compared to the control 

motor imagery may be explained by a difference between the Tai Chi and control 

imagery tasks.  The Tai Chi imagery task differed by its inclusion of a sub-task of 

“imagining standing in water while giving oneself permission to sway randomly, 

passively and slowly, as if there was a gentle current in the water” (see Chapter 5). Motor 

imagery has been reported in a number of studies to modulate postural sway in a manner 

that is specific to the motor imagery task (Boulton & Mitra, 2013; Grangeon et al., 2011; 

Lemos, Rodrigues, & Vargas, 2014; Lemos et al., 2014; Rodrigues et al., 2010).  The 

increased A-P sway found during the Tai Chi imagery may be the result of induced sway 

changes that are specific to the motor imagery sub-task of standing in water. 



136 

This specific effect of a Tai Chi motor imagery task on postural sway is consistent 

with, and may help explain, significant interactions between imagery type and group.  

Postural sway during Tai Chi motor imagery was significantly greater among the naïve 

when compared to experts in both A-P and M-L COP displacement SD.  If motor 

imagery falls on a continuum between rest and full execution as previously argued (see 

figure 4.1), then these results suggest that experts are performing the Tai Chi motor 

imagery with less imagery task-specific muscle activation than the naïve participants.  

This may represent a training effect of years practicing this specific motor image.  This 

hypothesis is reasonable given that an essential Tai Chi training principle is to move and 

stand with as much relaxation as possible.  Supporting this notion is the finding that 

experts had significantly less, and that the naïve participants had significantly more, M-L 

sway during Tai Chi motor imagery compared to the control imagery. 

Tai Chi motor imagery seems to have no significant effects on path length.  No 

main imagery effect, or significant interactions, with respect to COP path length were 

found. 

Specific Aim #4:  To Compare Traditional Measures with a Complexity-Based 

Measure of Motor Imagery Effects on Postural Control. 

A main effect of group was found regarding COP path length.  Path length was 

significantly greater among experts than the naïve participant group.  This finding is 

consistent with a main group effect of significantly greater A-P COP displacement SD 

also found in experts.  The typical clinical assessment of postural stability that is based on 

the magnitude of sway has a long history (Cavanaugh, Guskiewicz, & Stergiou, 2005; 

Romberg, 1853).  Traditionally, those who are most stable are conceptualized to be able 
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to stand with less sway, or so-called error, around a target position of equilibrium.  

Higher values of traditional sway measures have been recognized as risk factors for 

falling (Maki, Holliday, & Topper, 1994; Melzer, Benjuya, & Kaplanski, 2004; Pajala et 

al., 2008).  Are these increases in traditional measures of sway magnitude found in Tai 

Chi standing meditation experts an indication of less postural stability? 

The assumption that increased postural stability is marked by less postural sway 

magnitude has been called into question (van Emmerik & van Wegen, 2002), and has not 

always been supported by reported effects of Tai Chi training.  Wolf et al., (1997) found 

that 15 weeks of Tai Chi training reduced risk of injurious falls in older adults, but that 

measures of sway magnitude either remained the same or increased (Wolf, Barnhart, 

Ellison, & Coogler, 1997).  Other Tai Chi interventional studies report variable effects on 

traditional sway measures (Chen, Zhou, & Cartwright, 2011; Li & Manor, 2010; Wu, 

Zhao, & Zhou, 2002).  These results explain why it may not be surprising that Tai Chi 

motor imagery by experts resulted in significant increases in the traditional measures of 

A-P COP displacement and COP path length when compared to naïve participants, as is

the case here.   

The Tai Chi research literature also suggests that increases in sway amplitude may 

not necessarily equate with less postural stability, and highlights the meaningfulness of 

non-linear, complexity-based analyses of postural sway trajectories (such as SampEn) 

that can assess the dynamic structure which underlies a postural control system (van 

Emmerik & van Wegen, 2002).  This seems especially true for Tai Chi interventions.  

Using multiscale entropy analyses, cross-sectional comparisons by Wayne, Gow, et al. 

(2014) found greater complexity of postural sway trajectories, but trends toward greater 
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sway magnitude and other related variables in seven (7) of eight (8) traditional sway 

measures, when compared to group naïve to Tai Chi.  Post hoc analyses of a 6-month 

randomized clinic trial of Tai Chi training using a naïve group, found those who were 

exposed to Tai Chi had significant increases in postural sway complexity. Yet, this group 

showed trends toward greater values in all eight (8) of the traditional postural sway 

metrics tested, as compared to the wait-list control group (Wayne, Gow et al., 2014).  

This study by Wayne, Gow et al. (2014) demonstrates that a non-linear, complexity-

based measure was able to capture beneficial Tai Chi training effects as seen through a 

dynamic systems lens, when traditional measures failed to do so on a conceptual basis 

that equates decreased sway magnitude with postural stability.   

A significant main effect of eyes (open versus closed) was evident in all three 

traditional measures of postural sway used in my study in which there were significantly 

greater A-P and M-L COP displacement SDs, and COP path length with the eyes closed 

compared to the eyes open condition.  It is a classic finding that closing the eyes produces 

substantial increase in traditional sway metrics, and so these finding are not surprising 

(Latash, 2012). 

Surprising is that the SampEn analysis method used as described by Ramdani et 

al. (2009) did not find any significant main effect with respect to eye condition (open or 

closed) (Ramdani et al., 2009).  This method of SampEn was reported to successfully 

differentiate (when similar methods did not) between eyes closed and eyes open 

conditions in young adults in quiet standing; there were significantly lower indices of 

complexity when eyes were closed (Ramdani et al., 2009).  This finding is consistent 
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with the loss of complexity hypothesis of aging and disease, and an important 

underpinning for my hypothesis (Goldberger et al., 2002; Lipsitz, 2002). 

The conditions by which the SampEn method of analysis per Ramdani, et al. 

(2009) successfully differentiated between eyes open and eyes closed conditions did not 

include any additional cognitive task, as was the case in my study.  Quiet standing during 

additional cognitive tasks have effects of their own on SampEn, and have already been 

covered in the discussion related to Specific Aim #3.  Important here is that up until now, 

it has been unknown how motor imagery, when performed during quiet standing, affects 

SampEn.  The absence of a main effect of eyes open versus eyes closed on SampEn in 

my study is a new finding that suggests that the differences in postural sway complexity 

normally detected by SampEn in quiet standing disappear with the addition of a motor 

imagery task.  This new finding has important implications for future research of this 

kind that seeks to understand motor imagery’s role in a systems-oriented falls prevention 

strategy, the most important of which is to include quiet-standing-only conditions when 

assessing Tai Chi-related effects on entropy measures of postural sway complexity. 

Innovations, Implications and Future Directions. 

The dissertation research presented here is innovative in several ways.  First, it is 

innovative in its critical evaluation of a prevailing conceptual framework by which we 

understand falls research and falls prevention that potentially has powerful implications 

for the direction and funding of falls prevention research.  Second, it is innovative in 

articulating the argument for a systems-oriented approach as a more suitable alternative 

to the conventional reductionist understanding of the falls problem using single variable 

and multi-variable analysis.  It is innovative in that it critically examines the likely nature 
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of postural control itself, and by extension, the nature of postural instability that underlies 

falling by older adults. 

Third, this dissertation is innovative in its recognition of how postural instability 

parallels a holistic perspective on understanding aging as an emergent and gradual loss of 

homeodynamic buffering capacity.  This perspective has implications for understanding 

the phenomenon of falls for both the older individual and society.  The holistic nature of 

postural instability in old age calls for systems-oriented strategies of falls prevention. 

Although the whole systems nature of Tai Chi’s therapeutic value has previously 

been described (Wayne & Fuerst, 2013), this research is innovative in a fourth way.  It 

has identified movement characteristics that are goals of Tai Chi training to be holistic 

descriptors related to robust postural control that seems to extend into old age as 

suggested by anecdotal evidence.  Based on its dynamic systems theoretical perspective, 

this research has generated a new hypothesis that the Tai Chi movement characteristic, 

known as silk-reeling, is a class of robust postural control synergies that is developed by 

the systems-oriented practice of Tai Chi. 

A fifth innovation of this research is the recognition that the Tai Chi movement 

principle of xin yi/mind-intention is reasonably understood as motor imagery, and that 

understanding its effects in an older adult may be informed by the large body of scientific 

motor imagery research.  Related to this theme is this project’s innovative articulation of 

a continuum of action within which motor imagery lies between rest and full execution of 

movement (see Figure 4.1).  The use of this continuum to explain the effects of Tai Chi 

motor imagery training is new. 
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Finally, this research has introduced a novel methodology for investigating motor 

imagery effects that has implications for future investigation aimed at falls prevention.  

For example, the methodology serves as a model for future research regarding logistics of 

recruiting Tai Chi experts, and informs eligibility criteria that provide a sample with a 

level of endurance to complete postural sway testing without interruption. 

Other implications of this research are both specific and broad.  The most 

important specific implication is that future investigations of motor imagery’s effect on 

postural sway complexity need to include quiet-standing-only conditions.  This would 

allow important comparisons between quiet standing with, and without, a motor imagery 

task.  This would also allow the research to inform, and be informed by, the substantial 

body of research that has investigated postural sway complexity changes associated with 

quiet standing with, and without, a dual cognitive task. 

Another specific implication pertains to the novelty of motor imagery effects on 

complexity-based measures of postural sway.  Until this study, the effects of motor 

imagery on measures of non-linear forms of analysis of postural control were unknown.  

In addition, the investigation of non-linear methods of analysis of postural sway 

complexity is a young enough field that there currently exists no single and agreed-upon 

method by which to successfully capture change in postural sway complexity in all 

conditions.  This is evident in a survey of the literature by Riley et al., (2011) on effects 

related to constraints of individual, task and environment that demonstrates a wide-

variety of non-linear measures being used to detect changes in postural sway complexity 

(Riley et al, 2011).  It is possible that some other non-linear measure may have been able 

to capture changes in postural sway complexity in my study that were not captured by 
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SampEn.  Since research on the effects of motor imagery on postural sway complexity is 

in its infancy, and there is no firm consensus on the best method to capture that 

complexity, a battery of non-linear analyses of complexity need to be considered in future 

investigations. 

The broader implication of this dissertation’s conceptual framework and the 

example of research adopting this framework presented here is that, in light of 

recognition of the holistic nature of falls in old age, there is an imperative toward 

systems-oriented approaches to falls prevention.  What does this mean in practice?  My 

research is one example of investigating the system-oriented practice of Tai Chi.  There 

may be other mind-body interventions that would qualify in the expansion of this 

research including yoga or similar holistic arts.  A move in the direction of more holistic 

systems-oriented interpretation is also consistent with, and may reinforce current societal 

changes in, a shifting emphasis of health care from treating disease to promoting whole-

person wellness, and disease prevention.  This would likely include changes in 

infrastructure and city planning that would facilitate long-term health-promoting 

behaviors, such as physical activity.  There is plenty of room for creativity here, but 

progress begins with a change in the lens through which we look at the problem of falls 

in old age. 
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Chapter 8: Let Us Step Back 

Below I have taken the opening passage by Waddell (2004) in Chapter 1, 

removed the phrases I had underlined relating to back pain and disability, and replaced 

them with “the problem of falls in old age:” The result is a concluding statement: 

We have looked at many aspects of the problem of falls in old age, and it is time 
to fit them all together.  Let us step back and try to see the whole picture.  It 
should be clear that the traditional disease model is inadequate to understand the 
problem of falls in old age.  We need a new model… 
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Appendix A. Power Analysis 

Power parameters: 
 a = '2' (levels of factor for power)
 b = '2' (levels of factor(s) crossed with A)
 delta = '0.25 0.5 0.75 1.0 1.25' (effect size(s))
 alpha = '0.05' (significance level)

Power analysis for ANOVA designs 
     2x 2   layout Ha: T1=GM-Delta/2, T2=T3=...=T(k-1)=GM,  Tk=GM+Delta/2   tested 
at Alpha= 0.050 

DELTA (in units of sigma=Std. Dev.) 

      N  0.250  0.500  0.750  1.000  1.250 
------------------------------------------ 

      2  0.058  0.085  0.131  0.195  0.275 
      3  0.067  0.119  0.209  0.332  0.477 
      4  0.074  0.151  0.281  0.452  0.632 
      5  0.082  0.183  0.350  0.556  0.746 
      6  0.089  0.214  0.416  0.644  0.829 
      7  0.097  0.245  0.478  0.718  0.887 
      8  0.104  0.276  0.535  0.779  0.926 
      9  0.112  0.307  0.587  0.828  0.953 
     10  0.120  0.337  0.636  0.867  0.970 
     12  0.135  0.395  0.719  0.923  0.988 
     14  0.150  0.450  0.786  0.956  0.995 
     16  0.166  0.503  0.839  0.975  0.998 
     18  0.181  0.552  0.880  0.986  0.999 
     20  0.197  0.597  0.911  0.992  0.999 
     25  0.235  0.696  0.960  0.998  0.999 
     30  0.274  0.775  0.982  0.999  0.999 
     35  0.311  0.835  0.992  0.999  0.999 
     40  0.349  0.881  0.997  0.999  0.999 
     50  0.420  0.940  0.999  0.999  1.000 
     60  0.487  0.971  0.999  0.999  1.000 
     70  0.549  0.986  0.999  1.000  1.000 
     80  0.606  0.993  0.999  1.000  1.000 
     90  0.657  0.997  0.999  1.000  1.000 
The sample size values given are those for each of the 2 levels of the factor called 'Factor 
A'. With 2 combinations of other factors at each level of Factor A, divide the sample size 
by 2 to determine the sample size per treatment cell. 

Retrieved from Friendly, 2007. 
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Appendix B.  Informed Consent Form 

Consent to Participate in a Research Study 
EFFECTS OF TAI CHI STANDING MOTOR IMAGERY ON STANDING 

POSTURAL CONTROL 

WHY ARE YOU BEING INVITED TO TAKE PART IN THIS RESEARCH? 
You are being invited to take part in a research study about the effects of motor imagery 
on balance in adults.  Simply put, motor imagery is imagining what it would feel like in 
your body if you were to do a particular movement but without actually doing it.  You are 
being invited to take part in this research study because you are age 20 years or older, live 
independently in the community, and may or may not have expertise with motor imagery 
while in the standing position. If you volunteer to take part in this study, you will be one 
of about 100 people to do so nationally.  
WHO IS DOING THE STUDY? 
The person in charge of this study is Patrick A. Dillon of University of Kentucky 
Graduate Center for Gerontology He is a doctoral student and is being guided in this 
research by Graham Rowles, PhD. 
WHAT IS THE PURPOSE OF THIS STUDY? 
The purpose of this study is to understand how a particular way of imagining movement 
affects balance in adults. 
By doing this study, we hope to learn more about how to improve balance in older adults 
and prevent falls. 
ARE THERE REASONS WHY YOU SHOULD NOT TAKE PART IN THIS 
STUDY? 
You will not be eligible in this study if you are: 

1. Are unable to walk continuously for 15 minutes without assistance or an assistive
device

2. Are Unable to read, write and speak English.
3. Have any of the following chronic medical conditions: vestibular disorder,

dementia, mild cognitive impairment, stroke, neurological condition (e.g.,
Parkinson’s disease, seizure disorder, or peripheral neuropathy), significant
neuromuscular or musculoskeletal conditions, cardiovascular conditions (angina,
myocardial infarction, atrial fibrillation, or presence of pacemaker), or acute
medical condition requiring hospital admission within the last six months.

WHERE IS THE STUDY GOING TO TAKE PLACE AND HOW LONG WILL IT 
LAST?  
The research procedures will be conducted at the University of Kentucky Center for 
Gerontology.  You will need to come to Suite 280 at the University of Kentucky Federal 
Credit Union at 1080 Export Street, Lexington, KY one time during the study for 
approximately one hour.  One hour is the total approximate amount of time you will be 
asked to volunteer for this study. 
If you prefer, and if you and the investigator agree to do so, the research procedures may 
instead be conducted in a suitable room either at your home or at the home of the 
investigator at 912 Secrest Crossing, Flemingsburg, KY 41041. 
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If you were recruited in Blowing Rock, NC you will need to come to a designated room 
one time at the Blowing Rock Conference Center at 1818 Goforth Road in Blowing 
Rock, NC 28605 for a total time of approximately one hour. 
WHAT WILL YOU BE ASKED TO DO? 
You are about one of 100 participants recruited for this study.  After consent is obtained 
and you have completed the Participant Intake Information Form, you will be asked to 
perform the following test: 
Standing Postural Sway Test:  During this test you will be asked to stand barefoot with 
both feet on a force platform that is securely placed on the floor.  You will be asked to 
stand quietly, have your arms suspended comfortably by your trunk, and have your knees 
and hips very slightly and comfortably bent.  In this position you will be asked to stand 
for three trials of up to 60 seconds each in four different conditions (the order you do the 
tasks in will vary by chance):  

1. Eyes open during Tai Chi motor imagery
2. Eyes open during a control motor imagery task
3. Eyes closed during Tai Chi motor imagery
4. Eyes closed during a control motor imagery task.

Again, motor imagery is imagining what it would feel like in your body if you were to do 
a particular movement but without actually doing it.  Tai Chi is a very old martial art that 
uses motor imagery in its training.  The Tai Chi motor imagery that you will be asked to 
do while standing on the platform consists of 

1. Imagining the bodily feelings of peace and tranquility
2. Imagining that you are growing an inch upward from the point at the very top of

your head
3. Imagining that you are standing safely and comfortably in water, and giving

yourself permission to sway passively, slowly and randomly, as if the water you
imagine standing in has a very gentle current.

After each trial of Tai Chi motor imagery you will be asked to rate how vivid your 
imagery experience was on a scale of 1 to 7. 
The control motor imagery task is imagining singing happy birthday throughout the time 
of the trial. 
WHAT ARE THE POSSIBLE RISKS AND DISCOMFORTS? 
You have been told that the study may involve the following risks and/or discomforts: 
The Standing Postural Sway Test may be associated with temporary loss of balance, and 
could possibly result in a minor sprain of the ankle, fall or other injury.  In order to 
minimize risk of injury during testing, the principal investigator will be standing close by 
you to provide physical support in case you lose your balance.  If you become fatigued 
you are welcome to rest between trials as needed.  There is always a chance that any 
scientific test can harm you, and the scientific tests in this study are no different.  We will 
do everything we can to keep you from being harmed.  In addition to these risks, your 
may experience another previously unknown or unforeseeable risk. 
WILL YOU BENEFIT FROM TAKING PART IN THIS STUDY? 
There is no guarantee that you will get any benefit from taking part in this study.  Your 
willingness to take part, however, may, in the future, help society as a whole better 
understand this research topic. 
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DO YOU HAVE TO TAKE PART IN THE STUDY? 
If you decide to take part in the study, it should be because you really want to volunteer.  
You will not lose any benefits or rights you would normally have if you choose not to 
volunteer.  You can stop at any time during the study and still keep the benefits and rights 
you had before volunteering. 
IF YOU DON’T WANT TO TAKE PART IN THE STUDY, ARE THERE OTHER 
CHOICES? 
If you do not want to be in the study, there are no other choices except not to take part in 
the study. 
WHAT WILL IT COST YOU TO PARTICIPATE? 
The only cost you will experience is your time and travel expenses to the testing site. 
WHO WILL SEE THE INFORMATION THAT YOU GIVE? 
We will make every effort to keep confidential all research records that identify you to 
the extent allowed by law. 
Your information will be combined with information from other people taking part in the 
study. When we write about the study to share it with other researchers, we will write 
about the combined information we have gathered. You will not be personally identified 
in these written materials. We may publish the results of this study; however, we will 
keep your name and other identifying information private. 
We will make every effort to prevent anyone who is not on the research team from 
knowing that you gave us information, or what that information is. All data will be stored 
either in locked file cabinets and on secured password protected computers. You will be 
identified using only a study identification number and the investigators of this study will 
keep private all research records that identify you. Only personnel associated with this 
study will have access to the data and to keep information confined, all subject 
information will be kept under lock and key. 
You should know, however, that there are some circumstances in which we may have to 
show your information to other people.   For example, the law may require us to show 
your information to a court or to tell authorities if you pose a danger to yourself or 
someone else.  Finally, officials of the University of Kentucky may look at or copy 
pertinent portions of the records that identify you. 
CAN YOUR TAKING PART IN THE STUDY END EARLY? 
If you decide to take part in the study you still have the right to decide at any time that 
you no longer want to continue.  You will not be treated differently if you decide to stop 
taking part in the study.   
The individuals conducting the study may need to withdraw you from the study.  This 
may occur if you are not able to follow the directions they give you, or if they find that 
your being in the study is more risk than benefit to you. 
ARE YOU PARTICIPATING OR CAN YOU PARTICIPATE IN ANOTHER 
RESEARCH STUDY AT THE SAME TIME AS PARTICIPATING IN THIS 
ONE? 
You may take part in this study if you are currently involved in another research study.   
WHAT HAPPENS IF YOU GET HURT OR SICK DURING THE STUDY? 
If you believe you are hurt or if you get sick because of something that is due to the 
study, you should call Patrick A. Dillon at (606) 584-0216 (email: pat.dillon@uky.edu) 
immediately.   
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It is important for you to understand that there are no funds set aside by the University of 
Kentucky, the Blowing Rock Conference Center, or the primary investigator to pay for 
the cost of any care or treatment that might be necessary because you get hurt or sick 
while taking part in this study. Also, the University of Kentucky will not, the Blowing 
Rock Conference Center will not, and the primary investigator will not pay for any wages 
you may lose if you are harmed by this study.   
The medical costs related to your care and treatment because of research related harm 
will be your responsibility. 
You do not give up your legal rights by signing this form. 
WILL YOU RECEIVE ANY REWARDS FOR TAKING PART IN THIS STUDY? 
You will not receive any rewards or payment for taking part in the study.   
WHAT IF YOU HAVE QUESTIONS, SUGGESTIONS, CONCERNS, OR 
COMPLAINTS? 
Before you decide whether to accept this invitation to take part in the study, please ask 
any questions that might come to mind now.  Later, if you have questions, suggestions, 
concerns, or complaints about the study, you can contact the investigator, Patrick A. 
Dillon at (606) 584-0216.  If you have any questions about your rights as a volunteer in 
this research, contact the staff in the Office of Research Integrity at the University of 
Kentucky between the business hours of 8am and 5pm EST, Mon-Fri. at 859-257-9428 or 
toll free at 1-866-400-9428.  We will give you a signed copy of this consent form to take 
with you. 
WHAT IF NEW INFORMATION IS LEARNED DURING THE STUDY THAT 
MIGHT AFFECT YOUR DECISION TO PARTICIPATE? 
If the researcher learns of new information in regards to this study, and it might change 
your willingness to stay in this study, the information will be provided to you.  You may 
be asked to sign a new informed consent form if the information is provided to you after 
you have joined the study. 
WHAT ELSE DO YOU NEED TO KNOW? 
There is a possibility that the data collected from you may be shared with other 
investigators in the future.  If that is the case the data will not contain information that 
can identify you unless you give your consent or the UK Institutional Review Board 
(IRB) approves the research. The IRB is a committee that reviews ethical issues, 
according to federal, state and local regulations on research with human subjects, to make 
sure the study complies with these before approval of a research study is issued. 

_____________________________________________ ____________ 
Signature of person agreeing to take part in the study    Date 

_____________________________________________ 
Printed name of person agreeing to take part in the study 

_____________________________________________    ____________ 
Name of [authorized] person obtaining informed consent    Date 

_________________________________________ 
Signature of Principal Investigator or Sub/Co-Investigator 
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Appendix C. Participant Intake Information Form 

Study Identification #: _________________________ 
Number of years’ experience with Tai Chi wuji Standing Training______ 
Age: ____ DOB: _____________  
Sex:  Male   Female 
Ethnicity:  Caucasion   African-American   Hispanic    Asian 

        Other:___________________ 
Height:____________  Weight:____________ 

Medical History 
Diabetes:  Y   N 
Peripheral Neuropathy:  Y   N 
Cardiovascular Disease:  Y   N 
Chronic Obstructive Pulmonary Disease:  Y   N 
Osteoarthritis:  Y   N 
Other: ______________________________________________________ 

Highest level of education attained:  ___________________________________ 
Average hours of exercise per week:___________________________________ 
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Appendix D. Proc Mixed ANOVAs Results 
Key: 
APSampN = Anterior-Posterior Sample Entropy 
MLSampN = Medial-Lateral Sample Entropy 
APDisp = Anterior-Posterior Center of Pressure Displacement Standard Deviation 
MLDisp = Medial-Lateral Center of Pressure Displacement Standard Deviation 
PL = Center of Pressure Path Length 
Score = Self-Rated Ease of Motor Imagery Score 
Grp = Group 

0 = Expert Group 
1 = Naïve Group 

Eyes = Eyes Condition 
0 = Eyes Open 
1 = Eyes Closed 

Imagery = Imagery Type 
0 = Tai Chi Motor Imagery 
1 = Control Motor Imagery 
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