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ABSTRACT OF DISSERTATION 

NOVEL ROLE OF INTESTINAL LIPID TRANSPORT IN FOOD ALLERGY AND 
CHOLESTEROL HOMEOSTASIS 

The small intestine is the main organ for food digestion and nutrient absorption. It is constantly 
exposed to antigen and immunomodulatory agents from diet and commensal microbiota. Thus, 
the intestine is the largest compartment of the immune system in the body. Peanuts and many 
other allergen resources contain triglycerides, which may affect the antigen absorption through 
the intestine, but their effects on sensitization and anaphylaxis are unknown. We found that 
medium chain triglycerides (MCT) promoted antigen absorption into Peyer’s Patches, rather 
than into the blood directly. Both gavage and feeding of MCT plus peanut protein induced 
spontaneous allergic sensitization. MCT-sensitized mice experienced the IgG-dependent 
anaphylaxis from systemic challenges and the IgE-dependent anaphylaxis from oral challenges. 
Furthermore, MCT alone had direct pharmaceutical effect on enterocytes, like stimulating 
Jejunal-epithelial Th2 cytokine responses compared with what was seen in the long chain 
triglycerides (LCT) treated group. Moreover, the oral challenges conducted with peanut protein 
in MCT significantly exacerbated anaphylaxis compared with the LCT challenges.  

The intestine also plays an important role in whole body cholesterol homeostasis due to its 
exclusive function in cholesterol absorption. The researchers found that the intestine function in 
cholesterol secretion and elimination, but it has not been proven directly until recently. This 
pathway that facilitates the cholesterol secretions through intestine was named the 
Transintestinal Cholesterol Efflux (TICE) and has not been well studied yet.  

To find the possible transporter candidates involved in TICE, we compared both biliary and 
intestinal cholesterol excretion rates in wild-type (WT) and G5G8 deficient (KO) mice of both 
sexes. All mice were maintained on a plant-sterol free diet beginning at weaning to prevent the 
development of secondary phenotypes associated with Sitosterolemia. We found that WT mice 
had higher biliary cholesterol excretion rates compared to their G5G8 KO littermates as 
previously reported. However, this difference is significantly greater in females compared to 
males. Interestingly, intestinal cholesterol excretions increased in female KO mice compared to 
their WT littermates, a difference not observed in males. This data suggests a sexually dimorphic 
adaptive mechanism to maintain cholesterol elimination in the absence of G5G8. Whereas male 
mice maintain a greater level of biliary output in the absence of G5G8, female mice upregulate 
an alternate intestinal elimination route.  

To determine the origin of intestinally secreted cholesterol, we compared both hepatobiliary 
and intestinal cholesterol secretion rates in male wild-type (WT) and CETP transgenic (CETP TG) 
mice at the age of 12 weeks. Cholesteryl ester transfer protein (CETP) facilitates the transport of 
cholesteryl esters and triglycerides between lipoproteins in plasma and alters the lipoprotein 
distribution of plasma cholesterol. We found that WT and CETP TG mice did not differ in either 
biliary or intestinal cholesterol secretion rates when maintained on a standard chow diet. 
However, CETP TG mice showed increased biliary cholesterol secretion rates and decreased 
intestinal cholesterol secretion rates compared to the WT group in response to a Western diet. 
We next determined the effect of CETP on the delivery of radiolabeled HDL-cholesterol ester to 
bile and intestinal lumen. Unlike bulk cholesterol secretions, HDL-derived cholesterol esters 
were preferentially delivered to the intestine in CETP TG mice. This data suggests that CETP alter 
the routes of total and HDL cholesterol elimination from the body in mice. 
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CHAPTER I. BACKGOUND 

1.1 Small intestine and its physiological functions 

1.1.1 Small intestine[1] 

The small and large intestines represent the continuous tube system connecting the outlet 

of the stomach to the anus. The small intestine contains the part from the pylorus to the 

ileocaecal valve, which is the entry point to the large intestine. The small intestine can be 

divided into three main segments. The duodenum is the closest to the stomach, followed by the 

jejunum and the ileum. The small intestine is characterized by villi, finger-like projections which 

extend into the lumen and increase the active digestive epithelium surface area. In the opposite, 

caecum and colon lack villi and their surfaces are flat. In all parts of intestine, the surface 

epithelium is renewed continuously by multipotent stem cells arising from crypts of Lieberkϋhn. 

These cells are comprised of absorptive enterocytes, but also Paneth cells, goblet cells and 

neuroendocrine cells. Paneth cells migrate downwards to the base of the crypt, while the other 

newly formed cells move from bottom of the crypt to the tip of the villus, followed by extrusion 

after 4-5 days. During this process, the epithelial cells acquire the majority of enzymes and other 

properties needed for digestion and absorptive functions as they reach the base of the villus. 

The different regions of intestine have distinct physiological functions. The surface of 

absorptive epithelial cells in the small intestine is covered by a layer of microvilli where the 

majority of digestive enzymes are located, as well as nutrient transporters (Figure 1). The  
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Figure 1.1. Anatomy of the intestinal mucosa and its immune apparatus[1]. 
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‘brush border’ increases the surface area for digestion on the basis of long villi in the duodenum 

and jejunum. Most protein, carbohydrates and lipids digestions occur in this upper part of 

intestine. Damage to the upper small intestine leads to severe malabsorption, protein leakage 

and malnutrition. Compared to upper intestine, ileum mainly absorb bile salts and vitamin B12, 

contributing less to nutrition absorption and has remarkably shorter villi and lower levels of 

brush border enzymes[1]. 

1.1.2 Role of small intestine in immunology[1] and food allergy 

1.1.2.1 Role of small intestine in immunology 

The epithelium, the underlying lamina propria and the muscularis mucosa, a thin muscle 

layer below the lamina propria, comprise the mucosa, where most immunological processes 

occur (Figure 1). Lamina propria consists of connective tissues, blood supply, lymph drainage, 

nervous supply for the mucosa and also many cells from innate and adaptive immune systems. 

The lamina propria and epithelium form very distinct immunological compartments. The 

organized structures of the Gut Associated Lymphoid Tissue (GALT) that comprises subepithelia 

lymphoid and lies in the mucosa and the mesenteric lymph nodes are the primary locations for 

priming adaptive immune cell responses in the intestine. Effector immune cells are distributed 

throughout the lamina propria. 

GALT is characterized by being covered by follicle-associated epithelium which contains 

Microfold cell (M cells). M cells uptake and transport particular antigens from lumen into 

subepithelial dome (SED) region which is rich in dendritic cell (DC), where they can be presented 

to adaptive immune cells by antigen presenting cells (APC). Peyer’s patches are the best-

characterized tissues in GALT and locate on the outside of small intestine. Peyer’s patches are 

found mostly in the ileum, less in jejunum and barely found in duodenum[2]. There are great 

amount of B cell lymphoid follicles surrounded by smaller T cell areas in Peyer’s patches. 
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Different from lymph nodes, Peyer’s patches do not have complete capsule structures and 

contain germinal centers always, indicating of continual immune stimulation mainly in response 

to antigen from intestinal lumen. With the same reason, the intestinal (mesenteric) lymph nodes 

draining are the largest in the body.  

The lamina propria and epithelium are the main distribution site for effector cells in the 

intestinal immune system and their compartments are very distinct. The lamina propria is rich in 

B cells, T cells and great amount of innate immune cells such as DCs, macrophages, eosinophils 

and mast cells. The epithelium contains T cells primarily. In summary, lamina propria and 

epithelium contain the largest population of innate immune cells in the body[1]. 

1.1.2.2 Role of intestine in food allergy 

As mentioned above, the varieties of intestinal compartments made intestine a good 

barrier for nutrients absorption and exclude the unwanted components, such as pathogens or 

allergen. Under normal conditions, after the consumption of nutrients, most of food proteins 

are hydrolyzed under the action of gastric, pancreatic and small intestinal brush border 

proteases such as pepsin, trypsin and chymotrypsin, to a mixture of free amino acids, di and tri-

peptides and other proteolysis products for absorption[3]. There are still around 10% of the 

proteins that escape from proteolysis crossing intestinal barrier intact[3]. Husby et al. detected 

intact ovalbumin in human blood after egg white consumption by using a combination of HPLC 

and ELISA[4]. It is believed that those intact proteins and peptides may contain intact epitopes 

to be recognized by antigen presenting cells and induce sensitization or to elicit an allergic 

reaction. It is shown that 40% of the hydrolyzed protein have an 1100 Da molecular weight, 

which is still big enough to be recognized by MHC-II molecules (minimum length: 18-20 amino 

acids)[5]. Besides, 2% of intact proteins are estimated to reach mesenteric lymph nodes and 

portal circulation under normal conditions[6]. 
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How do these non-fully hydrolyzed proteins absorbed as intact? Firstly, besides not fully 

hydrolysis through proteolysis, other trans-cellular pathway can also enhance antigen uptake by 

enterocytes and absorbed as intact. One of the believed mechanisms is the IgE coating theory. 

The luminal antigen-specific IgE forms a complex with antigen which are transported by CD23 

receptor, which are overexpressed in the sensitized persons, trans-cellularly without lysosomal 

degradation across the intestinal membrane[7].  

It is reported that antigens are secreted into exosomes after uptake with or without 

lysosomal degradation[8]. Thereafter, the antigen-containing exosomes cross basolateral 

membrane pore and enter circulation to reach MHC-II molecules to present the antigen to T 

cells[9, 10]. Inflammatory conditions may enhance these exosomes from intestinal epithelial 

cells[9]. However, the role of these exosomes remains debatable. Besides, IgA and IgG are 

involved in enterocytic antigen transport as well. The Polymeric IgA reach the intestinal lumen 

by polymeric IgA receptors[11]. However, different from IgE, IgA binds antigen to prevent their 

absorption and can lead to secretion back to intestinal lumen[3]. Therefore, antigen-specific IgA 

is considered to play a protective role in sensitization and allergic reactions. Polymeric IgG is 

secreted to intestinal lumen by Fc receptors and binds antigen as a complex as well. It is 

believed absorption of IgG-antigen complex in the neonate seems to be protective from 

sensitization, yet the role in adults remains unclear[12]. M cells, the specialized epithelial cells of 

Peyer’s patches, have been shown to transport proteins, bacteria, viruses and other particles of 

size smaller than 1µm[13]. It is suggested that M cells transport proteins or antigens via a basal 

pocket which is rich in B and T cells, macrophages and dendritic cells[14, 15]. The exact function 

of the pockets remain unclear but it is assumed that the pockets may shorten the intracellular 

distance before antigens being seen by antigen presenting cells (APC), which then migrate to 

antigen-specific lymphocytes to induce T cell proliferation[3]. M cells have been confirmed to 
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transport both soluble and insoluble peptides. Sensitization or tolerance induction most likely 

depends on the particle sizes[16, 17]. Mast cells, DCs, macrophages and goblet cells are also 

thought to influence protein transport in the intestine yet the mechanisms remain 

controversial[3]. Taken these findings together, intestine is a significant organ to study the 

initiation of food allergy and has significant potential to works as an important therapeutic 

target for food allergy prevention and treatment. 

1.1.3 Role of intestine in cholesterol homeostasis 

Whole body cholesterol homeostasis is highly regulated by a balance of sterol uptake, 

absorption, de novo synthesis, fecal losses and export of intestinal lipoproteins, principally 

chylomicrons[18]. Intestine contributes significantly to sterol uptake, absorption and reverse 

cholesterol transport process. 

Both dietary and biliary cholesterol are found absorbed from intestinal lumen in the 

proximal jejunum of small intestine. This process has been considered solely passive despite the 

fact that cholesterol is absorbed in a high efficiency yet the structurally similar plant sterols are 

not. The mechanisms of the interaction between sterols and intestinal brush-border membrane 

transporters still remain controversial, but it is proved that the key step of this process is to 

interact with Niemann-Pick C1 like 1 (NPC1L1) by the discovery of a powerful cholesterol 

absorption inhibitor, ezetimibe, a drug that inhibits intestinal sterol absorption by binding to the 

NPC1L1 transporter and blocking its internalization with sterol via clathrin-coated vesicles[19]. 

NPC1L1 is expressed at the brush border membrane of intestine and NPC1L1 deficient mice 

showed around 70% reduction in cholesterol absorption[19]. ABCG5/G8 are heterodimers 

cholesterol transporter located at the canalicular membrane of hepatocytes and the brush 

border of enterocytes. In humans, mutations in genes encoding ABCG5 or ABCG8 were shown to 

cause sitosterolemia (STSL) characterized by accumulation of plant sterols in blood and tissues 



7 
 

due to the increased intestinal sterols absorption and decreased biliary removal[20]. G5 and/or 

G8 in mice were confirmed to upregulate plant sterol absorption[21] yet the effect on 

cholesterol absorption efficiency are limited[22]. In contrast, overexpression of G5G8 in mice 

leads to a dramatically reduced cholesterol absorption efficiency under pharmacological 

induction[23], indicating G5G8 manipulate cholesterol absorption under certain conditions. In 

the small intestine, SR-B1 localized both apical and basolateral phases of enterocytes. It was 

reported that SR-B1 deficiency only leads to a slightly increase in cholesterol absorption and 

decrease in fecal neutral sterol loss[24]. Similary, overexpression of SR-B1 did lead to increased 

cholesterol absorption, suggesting a possible role of SR-B1 in intestinal cholesterol 

absorption[25]. After uptake by enterocytes, cholesterol is esterified to cholesterol ester by 

ACAT2 at the endoplasmic reticulum (ER). ACAT-2 deficiency in mice would reduce cholesterol 

absorption upon high fat, high cholesterol Western diet feeding yet no clear reduction of 

cholesterol absorption was found in mice fed with chow diet[26]. Other proteins like 

microsomal triglyceride transfer protein (MTTP) and apolipoprotein B (apoB) are crucial in 

chylomicron formation, a critical process for cholesterol absorption. Mutations in MTTP gene 

leads to abetalipoproteinemia characterized by extremely low plasma cholesterol and TG levels 

and absence of apo-B-containing particles[27]. 

As described above, intestine plays a significant role in cholesterol homeostasis as a 

cholesterol absorbing tissue. It is recently revealed that intestine also acts as a cholesterol 

secretion tissue in Reverse Cholesterol Transport (RCT) process. Details will be discussed in the 

paragraph 1.3.4. In summary, besides an absorptive tissue, intestine has significant potential as 

a therapeutic target for maintaining cholesterol homeostasis in the whole body. 

1.2 Peanut Allergy and Dietary Fats  

1.2.1 Peanut allergy 
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Food allergy is thought to cause more than 50,000 cases anaphylaxis and estimated 100 

deaths annually in the U.S. The foods that induce allergy can be divided into two groups briefly: 

1) the foods that commonly cause food allergy in infants and young children but rarely cause 

food allergy in adults and rarely cause death, such as milk and eggs. 2) the foods that cause food 

allergy in both children and adults and very likely to cause severe shock and death, such as fish, 

shellfish, nuts and peanuts[28]. Of the second category, peanuts are inexpensive and broadly 

consumed in unmodified form and the components of many food products, causing the largest 

population of peanut allergy with severe anaphylaxis and death in U.S[29]. 

1.2.1.1 The prevalence and pathogenesis of peanut allergy 

Several studies have evaluated peanut allergy prevalence in the U.S. and Canada and 

determined if it is changing by time. In one study, 1.4% of subjects were reported peanut or tree 

nuts allergy by random telephone survey [30]. This percentage in children (less than 18 years) 

increased from 0.6% in 1997 to 1.2% in 2002 and 2.1% in 2007. Yet the percentage remains 

unchanged in adults [31]. Consistent with the increased peanut allergy prevalence in children, 

the data of evaluating hospitalization rates for peanut induced anaphylaxis in New York State 

showed a 4-fold increase from 1990 to 2006 for young subjects younger than 20 years[31]. 

Another study, however, reported that only 22% of the children (8 years) who were diagnosed 

to be peanut sensitized based on skin prick testing or plasma IgE measurements had positive 

response to oral peanut challenge[32], indicating that not all people who have “peanut allergy” 

would actually develop anaphylaxis responses following peanut consumption. Even so, some 

studies showed that children with asthma and peanut allergy had 2.32-fold more 

hospitalizations for asthma than asthmatic children without peanut allergy[33]. Furthermore, a 

survey found that the incidence of peanut allergy in sibling of patients with peanut allergy is 6-7 

fold higher than the siblings of children without peanut allergy[34]. 
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A British study evaluated the relationship between peanut exposure and peanut allergy 

development. In the study, the prevalence of peanut allergy of Jewish children in the UK are 

found 10% less than the Jewish children in Israel [35]. The hypothesis from this study is that the 

early consumption of peanut product (bamba, food made from peanut butter and puffed corn) 

by Israeli infants may reduce the chance to develop peanut allergy because the infants in the UK 

avoid peanut products. However, non-oral exposure to peanuts, especially peanut butter, is 

found related to increased risk of peanut sensitization[36]. These studies indicate but not 

proved that consumption of peanut products at early life would reduce the risk of peanut allergy 

development. More animal experiments and clinical trial in infants needed to be initiated to 

provide more evidences to test the hypothesis. 

Peanut allergy shares the similar induction mechanism as other food allergy which can 

be broadly divided into IgE mediated or non-IgE-mediated reactions. In IgE-mediated food 

allergy, exposure to glycoproteins in food would cause a series reactions among antigen 

presenting cells (APC), T cells, B cells, and production of IgE, which resides on mast cells and 

basophils. This phase is named “sensitization” (Figure 2). The same glycoprotein exposed to the 

sensitized subjects the second time would bind the IgE residing on mast cells and basophils 

which induces the activation and degranulation of these cells. Activated mast cells and basophils 

release histamine and other inflammatory chemical mediators that cause systemic reactions 

such as mucous secretion, smooth muscle contraction and vasodilatation. These effects result in 

symptoms like rhinorrhea, itching, dyspnea and anaphylaxis (Figure 2)[37]. Non-IgE mediated 

food allergy is more common. Activation and recruitment of lymphocytes and eosinophils are 

the cause of these diseases and symptoms. 

Studies based on mouse model showed that IgE, mast cells and IL-13 are required for 

peanut allergy development[38]. Unlike requirements of IgE and mast cells that were  
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Figure 1.2 Sensitization and allergic reaction[37].  
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demonstrated in food allergy models requirement for IL-13 were recently shown to effect on 

vascular and epithelial cell permeability and smooth muscle contractility, the critical factors in 

food allergy induction[38]. A separate study reveal the complement is activated by aqueous 

extracts of peanuts and tree nuts but not milk or eggs in both mouse and human plasma[39]. In 

addition, peanut extract would exacerbate the severity of IgE-mediated anaphylaxis in mice 

through complement activation mechanism, indicating the complement by components from 

peanuts contributes to anaphylaxis induction significantly [39]. 

1.2.1.2 Peanut allergens 

Allergens are defined by the binding ability to plasma IgE from allergic individuals and 

the activation ability of mast cells and/or basophils that have been sensitized with serum rich in 

IgE[28]. Chung and Champagne reported that roasted peanuts have higher binding ability to IgE 

than raw peanuts, suggesting their potency in allergy induction[40]. Based on these criteria, 11 

peanut allergens have been determined (Table 1). 

Among the 11 allergens, Arah 2 and 6 are considered to be more potent in peanut 

allergy development than others although the other allergen also bind IgE from majority of 

peanut allergic subjects[41]. To determine the epitopes of Arah 2, some studies have 

demonstrated that most IgE from peanut-allergic patients’ serum binds to the conformational 

epitopes generated by native polypeptide folding of the allergen, rather than the linear epitopes 

generated by consecutive amino acids independent of polypeptides folding. However, it is still 

unclear how this finding explain the previous evidence that the patients with high concentration 

of serum IgE specific for linear epitopes of peanut allergen usually had the worst allergic 

symptom of allergy[42]. 

Some studies aimed at modifying peanut allergenicity by decreasing the levels of Arah 2 

and 6. These studies suggested the feasibility of the approach, yet the hypothesis that peanuts  
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Table 1 Characteristics of Peanut Allergens [43] 

Allergen Molecular  Molecular Mass  Characteristics 
 

Ara h 1 63 k‐Da Member of vicilin family of 
seed storage proteins, a 7S 
globulin 
 

Ara h 2 17–19 k‐Da Member of conglutin family 
of seed storage proteins, a 2S 
albumin 

Ara h 3 14–45 k‐Da processed from 
64 k‐Da protein 
Member of glycinin family of 
seed storage proteins; 
heteromultimeric protein 
formed from differently 
proteoltically 
processed products of the 
same gene, an 11S globulin 
 

Ara h 4 37 k‐Da Isoform of Ara h 3 
Ara h 5 15 k‐Da Member of 
profilin family of 
G‐actin‐binding proteins 
 

Ara h 6 15 k‐Da Member of conglutin family 
of seed storage proteins, a 2S 
albumin 

Ara h 7 17 k‐Da Member of conglutin 
family of seed storage 
proteins, a 2S albumin 
 

Ara h 8 16 k‐Da Homologous to major birch 
pollen allergen, Bet v 1 and 
other pathogenesis‐related 
proteins 

Ara h 9 9.8 k‐Da Lipid transfer protein 
 

Ara h 10 16 k‐Da Oleosin seed storage protein 
 

Ara h 11 14 k‐Da Oleosin seed storage protein 
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depleted of Arah 2 and 6 have less allergenicity than conventional peanuts was not tested[44]. 

One concern about this approach is that populations with different geographical distributions or 

ethnics are prominently sensitive to different allergens. For example, one study demonstrated 

that Arah 9, an allergen that is relative insignificant to induce allergy in U.S., is a very potent 

allergen for peanut-allergic patients from Mediterranean area than Arah 1, 2 and 3[45]. 

Secondly, like mentioned in 1.2.1.1, since peanut allergy is comprised of sensitization and 

anaphylaxis phases, although Arah 2 and 6 have the highest affinities to IgE in peanut-allergic 

patients’ serum (for the anaphylaxis phase), other allergens play important roles in sensitization 

phase. With the regard, crude peanut extract is much more allergenic than any of the purified 

major allergens in animal studies [46]. 

It is worth noting that despite the less potency of binding IgE from allergic patients, 

other allergens such as Arah 5, 8 and 9 are types of panallergens, which are responsible for 

allergic cross-reactivities across a broad range of unrelated plants. The cross-reactivities are 

always associated with birch and grass pollen or involved in “nsLTP-syndrome)[47]. 

1.2.1.3 Current therapies for peanut allergy 

Currently, the only therapy for peanut allergy is to strictly avoid peanuts and their 

related products. Allergens from peanut would cause severe anaphylaxis reactions even the 

patients only had very mild symptoms before [48]. Therefore, besides strict avoidance, the main 

managements of peanut allergy focus on are to closely observe the early symptoms due to 

accidental ingestions and to self-administer epinephrine [49]. However, one study reported that 

these approaches negatively affect patients’ life qualities [50]. Hence, therapeutic approaches 

that modify the immune responses to peanut allergens are needed to protect patients from 

accidental peanut exposure. Such novel immunotherapeutics are generally classified into 

allergen-specific and allergen-nonspecific. 
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Allergen-specific immunotherapy is based on induction of immune tolerance to peanut 

in IgE-mediated allergic patients by approach of administering patients with progressively higher 

doses of potent allergen over a relative long period such as weeks or months to induce clinical 

desensitization. ‘Clinical desensitization’ refers to the threshold dose of the potent allergen 

required to induce allergic response. Immune tolerance is defined as to induce a permanent non 

response to the offending allergen associated with the ability of the allergen ingestion and no 

more ongoing therapy[51]. Approaches of administering offending allergens including 

subcutaneous injections, and oral, sublingual or epicutaneous applications. Subcutaneous 

immunotherapy (SIT) is to applicate food allergen through subcutaneous injection. This therapy 

is usually associated with high risk of severe allergic reactions. Preliminary studies on this 

therapy showed a reduced skin-prick test (SPT) reactivity and increased tolerance to ingested 

peanut in the patients with oral challenges[52]. However, systemic reactions occurred in the 

following therapy and the authors concluded that modified peanut extracts were needed for 

such treatments [52]. Oral Immunotherapy treatments (OIT) have made progress toward safer 

and more efficient treatment for peanut allergy. Some clinical studies suggest that OIT is 

effective on clinical desensitization and oral tolerance induction among more than 50% children 

by raising threshold dose (at least 10 peanuts) of allergic reaction, which showed the clinical 

efficacy for desensitization during accidental peanuts ingestion[53, 54]. However, other aspects 

like mechanisms of action, dosing regimens and short-phase and long-phase effects still need to 

be established[55, 56]. Sublingual Immunotherapy (SLIT) is effective for tolerance induction on 

respiratory allergies [57]. Peanut EPIT is prolonged and repeated administration low dose of 

peanut allergens through epicutaneous injection. Similar to subcutaneous immunotherapy, 

preclinical studies showed that EPIT also induce desensitization and tolerance to the subsequent 

oral peanut challenge [58-60]. In a recent study in France, it was shown that EPIT was to reach a 
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cumulative threshold dose of peanut allergens 10 times higher than the beginning of the study 

after 18 months treatment, and 40% of the patients were desensitized to the threshold 

doses[61]. Therefore, it is indicated that EPIT is safe and effective in desensitizing allergic 

children to peanut. Immunotherapy with hypoallergenic mutants combined with bacteria 

Adjuvant were shown safe and effective in mice but it is not applicable in humans due to the 

adverse reactions[51]. 

Allergen non-specific therapies include silencing allergen-encoding foods in transgenic 

plants, anti-IgE therapy and DNA vaccines. Since the techniques of these therapies are either not 

mature enough or have some unsafe factors, most of them need more researches to 

establish[51]. 

An efficient therapy might be a good combination of both allergen-specific and allergen-

non-specific applications. Therefore, the current most safe and efficient therapy still rests in 

prevention. 

1.2.2 Dietary Fatty Acids 

1.2.2.1 Category of Dietary Triglycerides 

Dietary Triglycerides (TGs) are indispensable components in our daily diets, they are the 

main constituents of vegetable oil and animal fats. A TG is composed of three fatty acids (FAs) 

esterified to a glycerol molecule in one of the three distinct bonding positions. The combination 

of differences in FA types as well as the positions where they attached to glycerol molecule give 

rise to the huge heterogeneity of TGs one can ever think of. FAs are the major and functional 

unites of TGs and make up approximately 90% of total TG mass for most dietary oils we 

consumed. Three FAs of TGs are generally linear hydrocarbon chains consists with even number 

of carbons atoms ranging from 4 to 26. FAs that have less than 8 carbons are recognized as 

short-chain FAs (SCFA), 8 to 14 carbons as medium-chain FAs (MCFA) and long-chain FAs (LCFA) 
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for those that have 16 or more carbons. The amount of all these FAs varies depend on the 

source of oil but they all exist in human diets.  

In addition to differences in the length of carbons chain, depending on whether or not a 

FA contains double bonds, FAs can be categorized into two types: saturated FAs and 

unsaturated FAs, unsaturated FAs can be further sub-categorized into monounsaturated FAs 

(MUFAs, contains a single double bond) and polyunsaturated FAs (PUFAs, contains two or more 

double bonds). Two systems have be used to identifying the position of double bonds along the 

hydrocarbon chain entail carbon counting from either end of the FA molecule. The less 

commonly used “Δ” system starts the carbon counting from the carboxyl end of the fatty acyl 

chain, whereas the more commonly used “ω or n” system identification of the position of the 

first carbon of a double bond relative to the methyl end. For example a ω-3 (n-3) FA, indicates 

that the first double bond is positioned between the third and fourth carbon atoms from the 

methyl end. In order for a FA to have a single double bond, it must be at least 12 carbon atoms 

in length. For PUFAs, each subsequent double bond almost invariably occurs there carbon atoms 

further along the chain. Thus the number of double bonds within a given FA is restricted 

depending on its length. And so dietary FAs can contain multiple double bonds up to 6.  

Our body have the machinery to insert double bonds at the n-9 position or higher during 

FAs de novo synthesis but not at any position closer to the methyl end. Thus, FAs with double 

bonds at the n-3 and n-6 positions can’t be constructed by ourselves but they are essential to 

normal growth in youth and those FAs are considered essential. Essential fatty acids (EFAs) 

therefor must be obtained from plants and other organisms that possess the machinery for their 

synthesis. For instance, dietary sources like walnuts, salmon and soybeans are rich in n-3 FAs, 

poultry meat, eggs and avocado are rich in n-6 FAs. Regardless of their essentiality, whether or 

not consume EFAs have positive health effects on against chronic diseases such as 
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cardiovascular diseases (CVDs) and cancer are still under debate. Indeed, some research 

suggested that excessive levels of certain n-6 FAs relative to n-3 FAs may increase the risk of 

developing a number of diseases,[62] thus an appropriate ratio of n-6 to n-3 FAs need to be 

considered when consuming those EFAs, preferentially 1:1 vs. average 15:1 in typical western 

diet.[63]  

In nature, double bonds in USFAs are present in the cis configuration, in which the 

carbon chain extend at the same side of the double bond and thus creates a kink at the site of 

double bond resulted in a bent hydrocarbon chain; however, trans FAs do present in some food 

which are a result of hydrogenation of vegetable oil, a process to increase the viscosity of oil and 

acquire more desirable physical properties, higher melting temperature for example.[64] As 

appose to cis configuration, carbon chain in trans fat extend from the opposite side of the 

double bond and result in a straighter molecular much like saturated FAs. Although trans fat is 

edible and can be metabolized, intake of trans fat perturbs the ability of our body to metabolize 

essential fatty acids result in changes in fatty acid composition in aorta, moreover, consumption 

of trans fat are associated with increased LDL, decreased HDL and thereby increases the risk of 

coronary heart disease.[65] On 16 June 2015, the FDA finalized its determination that trans fats 

are not generally recognized as safe since its predetermination in 2013, and set a three year 

time limit for their removal from all processed foods. 

1.2.2.2 TG metabolism 

The digestion of dietary lipids begins in the oral cavity via the action of an enzyme 

known as lingual lipase. With the process of salivation and mastication, lingual lipase released 

form the serous glands hydrolysis of free FAs from TGs. This enzyme cleaves at the sn-3 position 

and preferentially hydrolyzing shorter-chain FAs in foods. Continuous digestion happens in 
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stomach, where gastric lipase promotes further hydrolysis of SCFAs from TGs. However the 

major site for dietary lipids digestion is in intestine. Intestinal digestion of TGs requires bile salts 

(BSs) and pancreatic lipase. With the help of colipase, also a pancreatic protein, pancreatic 

lipase adheres to the surface of TG droplet and acts to hydrolyze ester bonds at sn-1 and sn-3 

position of the glycerol moiety. FAs at the sn-2 position however are resistant to hydrolysis by 

lipase. Hydrolysis products, monoglycerides (MGs) and free FAs are then incorporated in to BSs 

containing micelle with the help of phospholipids (PLs), cholesterol (CH) and colipase for their 

transport and subsequent cellular uptake.  

The absorption of lipid hydrolysis products occur in large part through passive diffusion. 

First stage of absorption featured with the penetration of micelles across the unstirred water 

layer adjacent to the brush border surface of intestine mucosal cells. Due to its smaller size and 

the amphipathic nature, micelles but not larger lipid droplet are readily to approach and enter 

the water layer upon formation and continue to shuttle hydrolysis products through in a 

concentration-dependent fashion. This process primarily count on the lower cellular 

concentration of lipid hydrolysis products in the enterocyte, this is achieved by the rapid re-

esterification of intracellular digestion products to form TGs by enzymes of the endoplasmic 

reticulum (ER). Also the intestinal FA binding proteins (FABPs) are involved to assist FAs 

absorption. Besides the process described above, FAs with chain lengths less than 12 carbon 

atoms are also readily absorbed passively by the gastric mucosal boundary and are taken up by 

the portal vein. [66] The efficiency of fat absorption is likely independent of the amount 

consumed but may influenced by the qualitative nature of dietary fat. In general, efficiency 

increases with the degree of FA unsaturation but decreases as FA chain length increases. In 

addition, the position or order of FAs attached to TGs also matters. [67]  
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After absorption, short- and medium- chain fatty acids directly enter the blood via 

intestine capillaries and travel through the portal vein just as other nutrients. But long-chain 

fatty acids are absorption into fatty walls of the intestine villi and reassembled again into 

triglycerides, which coated with cholesterol and apolipoprotein are processed into chylomicrons. 

The chylomicrons are released into lymphatic circulation and transported to thoracic duct up to 

a location near the heart. The thoracic duct empties the chylomicrons into the bloodstream via 

left subclavian vein, where chylomicrons can transport triglycerides to tissues for energy 

metabolism or storage. 

1.2.2.3 Disease related to dyslipidemia 

It is conceivable that any defect happened along the process of lipid digestion 

absorption or transportation might cause disorders in lipid metabolism in our body. For example 

celiac sprue, a common disorder of small intestine that results in lipid malabsorption is 

characterized by lesions of the small intestinal mucosa associated with gluten toxicity.[68] 

Deficiency of pancreatic enzymes necessary for lipid digestion resulted in accumulation of large 

amount of undigested fat in stools is another common disorder which can be treated by 

prescribing a low-fat diet or by supplementation of pancreatic enzymes with meals.[69] Bile salt 

deficiency as consequences of liver disease or gallstone disease results in poor micellar 

solubilization of lipid digestion products and thus insufficient delivery of lipid molecules to the 

small intestinal epithelial cells and accumulation of mainly lipid digestion products in the stool. 

Since dietary fat is the exogenous source of body lipids, malabsorption of fat can lead to 

hypolipidemia, a form of dyslipidemia that is defined by abnormally lowered levels of any or 

all lipids and/or lipoproteins in the blood. Hypolipidemia is relatively uncommon and might be 

asymptomatic in general, however, studies reported close association of this type of 

dyslipidemia with disorders such as anemia, hyperthyroidism and inflammation.[70] In contrast 

https://en.wikipedia.org/wiki/Dyslipidemia
https://en.wikipedia.org/wiki/Lipid
https://en.wikipedia.org/wiki/Lipoprotein
https://en.wikipedia.org/wiki/Blood
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to hypolipidemia, hyperlipidemia is one of the most common form of dyslipidemia involves 

abnormally elevated levels of any or all lipids and /or lipoproteins in the blood. Hyperlipidemia 

can be divided into primary and secondary subtypes.[71] Primary hyperlipidemia is mainly due 

to genetic causes, for instance, deficiency in lipoprotein lipase, enzymes that hydrolyzis TGs in 

lipoproteins, resulting in elevated chylomicrons, the particles that transfer fatty acids from 

the digestive tract to liver. Mutations affect low density lipoprotein receptor (LDLr) or 

apolipoprotein B (ApoB, primary apolipoprotein of lipid reach particles such as chylomicrons) 

result in decreased clearance and elevated blood lipid. Secondary hyperlipidemia or acquired 

hyperlipidemia are usually consequences of underlying conditions such as diabetes, using of 

drug, hypothyroidism and so on. This type of hyperlipidemia often mimic the primary form and 

may have very similar consequences. The fact that hyperlipidemia is such a big health concern is 

that it is very common in population and it is a strong risk factor for cardiovascular diseases due 

to its influences on atherosclerosis. However hyperlipidemia as a CVD risk factor is modifiable, 

thus dietary modification is often the initial approach for treatment of certain types of 

hyperlipidemia.     

1.2.2.4 Pharmacutical effect of TG on intestinal epithelial cells  

The intestine is the critical site for dietary lipid digestion and absorption. Hydrolyzed 

lipid products were uptake by enterocytes through passive diffusion or facilitated by 

transporters. Enterocytes have the capability of eliminate free fatty acid toxicity in cytosol by 

quickly synthesize TGs and for its secretion later in the form of chylomicron. However, to what 

extent this process is controlled have not been fully explored. It is believed that intestine is not 

just an absorption organ, it is also able to modulate lipoprotein production in response to 

various stimuli and signaling pathways to control the amount of lipids that enter the body.[72] 

Recent studies suggested intestine as an insulin sensitive organ, and dysregulation of insulin 
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signaling in intestine resulted in enhance lipogenesis and lipoprotein synthesis, which might be 

key mechanism for atherogenic dyslipidemia in patients with metabolic syndrome.[73] Beside as 

a digestive organ, the intestine also harbors an ecosystem along its length, it is the first barrier 

for bacteria and antigen infiltration and important party of host defense of our body. The excess 

amount of dietary lipids present in the intestine lumen can very well be served as an external 

stimuli that influence the physiology and functionality of the intestine. Perfusion of emulsified 

lipids but not casein or glucose resulted in dose-dependent disruption of the epithelial 

monolayer, the damage can be reversed acutely after stimuli withdraw followed by saline 

perfusion.[74] This suggest that the intestinal epithelium is constantly injured and restitutes 

during the normal digestion and absorption of a meal. However this balanced process can 

sometime be disrupted and lead to unfavorable consequences. For instance, excessive amount 

of fat in complex high fat (HF) diet induces low grade endotoxiemia in parallel with increased 

intestinal goblet cell number in experimental mice model.[75] In colonic adenoma rat model, 

chronic HF feeding promote formation of colonic adenoma through inflammation associated 

with increased circulating TNF-α.[76] Interestingly, the types of TGs present in diet also matters. 

Diet reach in MCT have been indicated to suppress intestinal mucosa atrophy in septic rats,[77] 

decrease gut injuries and mortality in rats exposed to LPS.[78] MCT can also blunt ethanol effect 

to increase gut permeability in experimental mice model.[79] Besides the matter of chain length, 

diet reach in saturated fat is linked to various chronic disease, including inflammatory bow 

diseases as well as CVDs, which may attributed to the ability of saturated fat to induce ER stress 

and macrophage activation result in foam cell formation and tissue inflammation.[80] 

1.2.2.5 Dietary fatty acids and allergy 

Currently, most of the studies on the relationship between dietary fatty acids and 

allergy focus on the effect of polyunsaturated fatty acids. Fish oil supplementation during 
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pregnancy and lactation have demonstrated the benefits of omega-3 PUFAs to the offspring 

which is associated with immunologic changes[81-83]. These studies indicated the clinical 

effects of early fish oil provision including reduced sensitization to food allergens and reduced 

severity and prevalence of atopic dermatitis in the first year. In Australia, a study on around 700 

infants proved that high-dose (900mg/day) omega-3 PUFAs intake during pregnancy did not 

reduce the IgE associated food allergy in the first 12 months of life, although omega-3 PUFAs 

supplementation lowered egg sensitization[84]. Other studies showed that fish oil 

supplementation during infancy or childhood resulted in higher omega-3 PUFAs in infants and 

children and may be associated with immunologic changes in the blood[85-87]. However, the 

clinical implication of these studies are still not clear. 

Western diet is consisted of relative balanced ratio of omega-3 and omega-6 PUFAs that 

was predominantly rich in omega-6 PUFAs, which may suggest a possible cause of high 

prevalence of allergic diseases in the developed countries[88]. Predisposition to allergy disease 

is due to insufficiently balanced types of T help cell, type 1 and type 2 (Th1 and Th2) during fetal 

life[89]. High levels of dietary omega-6 PUFAs has been shown to promote Th2 differentiation of 

immune system during ontogeny and development[88]. In contrast, omega-3 PUFAs may shift T 

helper cell balance by inhibiting production of IL-13, a cytokine related to the induction of 

allergic disease through inducing IgE synthesis in B cells and Th2 differentiation in T cells[90]. 

Therefore, it is very likely that diets high in omega-3 PUFAs may regulate development of IgE 

mediated allergy diseases and the related immune responses[84]. 

There are very few studies focus on effects of other types of FA on allergy disease such 

as saturated FAs, long-chain vs. medium chain FAs or trans-FAs. Since the other types of fatty 

acids comprised the majorities of dietary fats or very hard to avoid, it may be meaningful and 

more relevant to determine the roles of other fatty acids on food allergy. 
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1.3 Reverse Cholesterol Transport 

1.3.1 Prevalence, pathogenesis and therapeutic strategies of atherosclerosis and the related 

heart disease 

In 2011, the mortality of CVD in the U.S. was 229.6 per 100,000 people, indicating more 

than 2150 Americans die of CVD each day and 1 death every 40 seconds on average[91]. Among 

these people, about 155,000 Americans who died of CVD were less than 65 years old. The 

majority of the lethal CVDs are associated with and caused by atherosclerosis[91](Figure 3), a 

disease of vascular intima, in which the whole vascular system is involved from aorta to 

coronary arteries and is characterized by intimal plaque[92]. 

Atherosclerosis is processed from lesion formation and luminal narrowing of arteries, 

which give rise to other diseases like cerebrovascular disease coronary artery disease (CAD). The 

plaque rupture and thrombosis are the signs of acute coronary syndrome (ACS), myocardial 

infection or stroke. The pathology is characterized by a chronic inflammatory process of a 

certain site of arterial wall such as branch points, which affect the normal blood flow[93]. The 

inflammation initiates from endothelial structural alteration and dysfunction which allow 

accumulation of low density lipoprotein (LDL) in endothelial cells. High levels of apolipoprotein 

B100 (apoB100)-containing LDL-derived cholesterol is positively correlated with atherosclerosis 

and cardiovascular disease[94]. Oxidized LDL (oxLDL) and lipids induce the adhesion molecules 

expression and chemokines secretions in endothelial cells, which initiate intimal immune cells 

infiltration together with deposition of platelet-derived chemokines[95]. Early lesions comprised 

of T cells and monocyte-derived macrophage-like lipid loading foam cells. On the site, apoptotic 

cells, debris and cholesterol crystals accumulation form the necrotic core. Fibroatheromatous 

plaques are comprised of collagen and smooth muscle cells (SMCs), which will be replaced by 

macrophages in the thinning inflamed area and induce rupture. The middle area are rich in 
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Figure 1.3. Percentage breakdown of deaths attributable to cardiovascular disease (United 
States: 2011). [91] 
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infiltrated T cells and mast cells that lead to adventitial inflammation of advanced plaques by 

producing proinflammaory mediators and enzymes[96].  

The healthcare systems are heavily burdened by the high incidence of atherosclerosis-

related cardiovascular disease. Current available therapeutics on patients largely focus on 

hypertension, hyperlipidemia alleviation and enhancing reverse cholesterol transport (RCT) from 

lipid-laden macrophages[95]. To achieve this purpose, the most established approach includes 

statin treatment, which yields a pronounced risk reduction due to the effect on LDL-derived 

cholesterol lowering. Also, statins exerts anti-inflammatory functions, improve endothelial 

functions and plaque lipids reductions, which limits and stabilize atherosclerotic plaques[97]. 

High dose of atorvastatin decreased high-sensitivity C-reactive protein (hs-CRP) levels in serum 

and regression of atheromas by lowering LDLc aggressively[98]. Aggressive statin therapy also 

decreased the primary endpoints such as myocardial infarction, benefiting the patients with 

LDLc lowering and CRP both[94]. However, according to the most recent statistics report of 

Management of Atherosclerotic Cardiovascular Disease Risk, the CVD-associated mortality and 

morbidity were not reduced prominently with LDLc lowering with statin therapy[99]. Besides 

LDLc lowering, HDLc elevating therapy had become the promising therapeutic approach due to 

the role of more relevant predictor of HDLc than LDLc for CVD in a great amount population 

studies[100] and their significant roles in RCT by using Niacin or CETP inhibitor. Cholesteryl ester 

transfer protein (CETP) is a protein in plasma that exchange of cholesteryl ester in HDL for 

triglyceride in larger density lipoproteins like LDL or VLDL. Therefore, CETP is always considered 

potential atherogenic[101-103] and CETP inhibitor treatment was found to reduce 

atherosclerosis prominently in animal study[104]. However, besides aldosterone-related 

adverse effects[105], many clinical trials of niacin[106] and cholesteryl ester transfer protein 

(CETP) inhibitor Dalcetrapic[107] have shown the independence of high HDLc levels to the risk of 
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CVD in human beings. The 2013 American College of Cardiology ad American Heart Association 

cholesterol guidelines made no specific recommendation for targeting HDL-C in therapy of 

prevention or treatment of atherosclerosis associated CVD due to the lack of convincing 

data[108]. It was showed that artificial HDL-like apolipoprotein A1 complexes (apoA1-Milano) is 

promising in CVD regression[109] by their abilities in binding oxidized lipids and anti-

inflammatory functions[110]. Likewise, these emerging therapeutic strategies ongoing focus on 

the mimic the structure of natural HDL or replicate their functions such as RCT, vasodilation, 

anti-inflammation, and inhibition of platelet aggregation although they still confront with 

translational challenges[111]. 

Although many studies and clinical trials failed to confirm the protective role and the 

positive correlation of HDLc to atherosclerosis associated CVD, it is still well accepted that 

enhancing process of RCT can prevent or may regress the disease. 

1.3.2 Reverse Cholesterol Transport (RCT) 

Cholesterol can leave the body as neutral sterols (original cholesterol and its 

metabolized products by intestinal bacteria) or bile acids. RCT is to classically define the process 

of cholesterol metabolism from cholesterol efflux from peripheral tissues or macrophages to 

final excretion into feces either as neutral sterol or bile acids[112-114]. 

Hepatobiliary RCT has been considered the main pathway for cholesterol elimination for 

decades. Liver plays a significant role in cholesterol metabolism and cholesterol homeostasis. In 

the hepatocytes, cholesterol from source of diet or synthesis within liver or intestine is 

processed into apoB-containing lipoproteins and secreted back to the circulation basolaterally as 

the supply cholesterol to peripheral tissues[113]. Under certain circumstances, the chemically 

modified lipoproteins are taken up by macrophages which then result in foam cell 

formation[115] which are atherogenic as mentioned above. Cholesterol can be effluxed from 
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macrophages as free cholesterol via either ATP binding cassette transporter A1 (ABCA1) with 

lipidated apoA-I or ABCG1 with more mature HDL as acceptors[114, 116]. Scavenger receptor 

class B type 1(SR-BI) and aqueous diffusion may be responsible for other cholesterol efflux 

capacity[114, 116]. After uptake by HDL, cholesterol is esterified by lecithin-cholesterol 

acyltransferase (LCAT) thus sparing some space on the surface of HDL for additional free 

cholesterol[117]. Cholesterol is transported back to the liver through plasma compartments. 

Hepatocytes uptake HDL selectively by SR-B1 or via a not fully-understand pathway[112]. 

However, some studies showed that mice with extremely low circulating levels of HDL (apoA-I or 

ABCA1 deficient mice) have normal biliary and fecal cholesterol excretion, indicating that the 

levels of circulating HDL cholesterol contribute little to the amount of cholesterol leaving body 

via bile or feces[118-121]. After uptake by hepatocytes, cholesterol is de-esterified and secreted 

into bile via ABCG5/G8[22], a heterodimer transporter expressed in liver and intestine in the 

form of free cholesterol, or through ABCB11, a bile acids transporter in the form of bile 

acids[122]. Recent studies showed that in mice with altered expression of Niemann-Pick C2 

(NPC2, a protein involved in cholesterol intracellular trafficking) indicated that NPC2 might 

positively correlated with biliary cholesterol secretion[123]. This result was confirmed by the 

relationship between NPC2 protein levels and human biliary cholesterol concentration. Secreted 

NPC2 protein can stimulate ABCG5/G8 mediated cholesterol transport which can be explained 

that by binding to cholesterol, NPC2 can accelerate the transfer of cholesterol to micelles 

through ABCG5/G8[123]. In humans, rabbits, hamsters and many other species with expression 

of CETP, cholesterol ester can be transferred to larger size lipoproteins from HDL. Hence 

cholesterol will be either go back to forward cholesterol transport pathway or to the liver 

through apoB-containing lipoprotein receptors, indicating that LDL receptor might also be 
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involved in RCT[124]. However, the role of apoB-containing lipoprotein pathway in humans is far 

unclear. Finally, bile is secreted into intestinal lumen for fecal loss or reabsorption. 

Collectively, the studies in the past decades provide enough evidences that RCT needs 

to redefinition[125]. Elimination of cholesterol may not only be through hepatobiliary pathways, 

but via an alternative pathway, Transintestinal Cholesterol Excretion (TICE).  

1.3.3 Transintestinal Cholesterol Excretion (TICE) 

1.3.3.1 Definition of TICE 

Part of dietary and synthesized cholesterol is absorbed and transported back to 

circulation and the remaining will be excreted as neutral sterol or bile acids. Like mentioned 

above, ABCG5/G8 transporters mediate the process of cholesterol efflux to bile and 

hepatobiliary cholesterol would be dramatically eliminated when this transporter is absent[126]. 

Hence, inhibition of ABCG5/G8 should lead to a drastic lowering of fecal neutral sterol loss. 

Surprisingly, ABCG5/G8 double KO mice with diminished hepatobiliary cholesterol transport did 

not show the expected low levels of fecal neutral sterols[22]. Similar result was observed in 

ABCB4-/- mice. ABCB4 is a phospholipid transporter which located at the canalicular membrane 

of the hepatocytes. Biliary phospholipid is almost undetectable in ABCB4-/- mice and biliary 

cholesterol is absent in these mice as well due to lack of efficient cholesterol acceptor[127]. 

Interestingly, certain amount of intravenously injected radiolabeled cholesterol was recovered 

in feces of ABCB4-/- mice[128]. Niemann-Pick C1-like 1 (NPC1L1) is the protein expressed mainly 

in intestine which is required for cholesterol absorption. Hepatic NPC1L1 localizes to the 

hepatocytes canalicular membrane and allows retention of biliary cholesterol so that mice 

overexpress NPC1L1 have abrogated biliary cholesterol. However, the fecal neutral sterol levels 

were very well maintained compared to WT mice[129]. These findings demonstrated that 

hepatobiliary cholesterol excretion pathway is be the only route for cholesterol elimination. 
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With disturbed biliary cholesterol secretion, there must be an alternative direct pathway for 

cholesterol excretion- Transintestinal Cholesterol Excretion (TICE). 

The existence of TICE has been proposed about one century ago. As early as 1927, 

Sperry reported a surprising finding that dogs with bile fistula excreted much more cholesterol 

into feces than control dogs (Sperry WM. Lipid excretion IV. A study of the relationship of the 

bile to the fecal lipids with special reference to certain problems of sterol metabolism. J Biol 

Chem 1927; 1:351–378.). This result was confirmed about half a century late by Pertsemlidis et 

al. with the similar dog model[130]. Similarly, nondietary originated sterol present in the feces 

of patients with biliary obstruction[131]. However, these findings did not draw much attention 

because these models had incomplete enterohepatic cycle of biliary components. In particular, 

absence of bile acids would affect cholesterol absorption and consequently intestinal 

cholesterol synthesis. This is probably why these observations have been unnoticed for a long 

time in the literature. In conclusion, TICE can be defined as a process of cholesterol efflux 

directly from blood to intestinal lumen for elimination bypassing hepatobiliary pathways. 

1.3.3.2 Cholesterol origin of TICE 

TICE was directed measured in intestinal perfusion studies in which bile was diverted 

and bile duct was ligated. Van der Velde et al. proved that TICE occurs primarily and 

quantitatively most at the proximal part of intestine although the rest part of intestinal also 

excrete cholesterol to some extent. 

It is worth noting that intestinal cell cholesterol synthesis does not account for the 

secreted cholesterol and TICE route plays an even more important role than hepatobiliary 

route[132, 133]. Van der Veen et al. demonstrated this by quantification of cholesterol efflux 

from bile and plasma to feces by using isotope methodology in vivo[133]. The increased fecal 
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neutral sterol loss of these animals could not be explained by increased fecal loss of de novo 

synthesized cholesterol but could be directly from blood via intestinal mucosa[133]. However, 

which lipoproteins, if any, contribute to this route is currently unknown. 

1.3.3.2 Transport of cholesterol from blood to intestine 

TICE is a specific process for cholesterol elimination from the body and may involve 

transport protein activity from both basolateral and apical surface of enterocytes. 

SR-B1 is known very well as an acceptor for cholesterol uptake from lipoproteins and 

HDL, in particular, appears to be the more effective ligand[134, 135]. SR-B1 localizes both 

basolateral and apical membranes in Caco-2 cells, suggesting a potential involvement in 

intestinal lipoprotein uptake[136]. Mice fed with Western-diet or a high fat diet have 

upregulated TICE rates, in which intestinal SR-B1 mRNA levels and protein levels are positively 

correlated with TICE[137]. Unexpectedly, SR-B1 deficient mice have significantly increased TICE 

compared to controls[137]. In addition, mice overexpressed SR-B1 specifically in small intestine 

have increased TICE compared to WT mice when treated with ezetimibe to block cholesterol 

absorption. However, these mice have similar fecal neutral sterol levels to their WT littermates 

when treated with ezetimibe[138]. When crossed with NPC1L1LiverTg mice, which have 

increased TICE, these double transgenic mice had similar biliary cholesterol concentration, 

cholesterol absorption and fecal neutral sterol levels[138]. From these findings, it can be 

concluded that SR-B1 overexpression is not positively correlated with increased TICE. 

Furthermore, TICE may not be stimulated by increasing SR-B1 in the gut. Thus, the role of HDL as 

cholesterol donor for intestine remains questionable. 

Another potential efficient lipoprotein receptor is LDLr due to the fact that LDL may also 

involve in RCT[124]. In a recent study, Le May’s group found that in the mice that LDLr 

expression was conditionally deficient by continues injection of PCSK9, TICE was accordingly 
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decreased. Similarly, when LDLr expression was conditionally increased by PCSK9 deficiency, 

reduced TICE was detected consistently. Surprisingly, they also detected an increased TICE in 

LDLr-/- mice[139]. Moreover, LXR activation was shown to increase TICE significantly, yet the 

intestinal LDLr protein levels were nearly abrogated due to the E3 ubiquitin ligase Idol 

action[128, 133]. These results indicate that the role of LDLr and probably LDL in stimulating 

TICE may need further studies. 

As to the lipoprotein donor for TICE, it had been previously reported that whole body 

ABCA1-/- mice which have abrogated circulating HDL levels maintain normal biliary and fecal 

cholesterol levels[120, 121]. Recently, Vrins and colleagues also showed that ABCA1-/- mice 

have unchanged TICE compared with WT littermates[140]. Current data suggest that raising HDL 

may not be a potential therapeutic target to increase TICE. In contrast, apoB-containing 

lipoproteins seem to enhance TICE. It has been reported that mice with liver specific knockdown 

of acyl-CoA:cholesterol acyltransferase (ACAT2) have normal biliary cholesterol secretion but 

increased fecal neutral sterol excretion, indicating a potential contribution to TICE[141]. In the 

same study, this liver specific ACAT2 knockdown mice accumulated a large amount of 

cholesterol originating from nascent VLDL in the small intestine compared to control mice[141]. 

In a follow-up study, ACAT2 liver specific knockdown mice fed with cholesterol containing diet 

had rapidly increased fecal neutral sterol levels accompanied with accordingly increased 

circulating apoB lipoproteins, but had no change on biliary cholesterol levels[142]. Microsomal 

triglyceride transfer protein (MTP) is required for apoB lipoprotein secretion. Hepatic 

knockdown of MTP in mice would decrease hepatic triglyceride secretion yet the biliary 

cholesterol levels was not affected[143]. However, fecal neutral sterol levels was significantly 

decrease in MTP and NPC1L1 liver specific knockout mice[143]. In conclusion, these results 

indicate that VLDL secretion is necessary for TICE. 
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Currently many questions related to the intestinal receptors and cholesterol donors 

involved in TICE remain unanswered. Defining the TICE lipoprotein donor and intestinal receptor 

systems has potential therapeutic significance. 

1.3.3.3 Transport of cholesterol from enterocyte to intestinal lumen 

In the process of cholesterol transport from enterocyte to intestinal lumen, cholesterol 

efflux protein ABCG5/G8 are thought to be the good candidate mediating cholesterol efflux. 

Transgenic mice overexpressing ABCG5/G8 had significantly increased fecal neutral sterol 

levels[23]. However, this increased excretion was inhibited by Mdr2 deficiency in the transgenic 

mice, suggesting that biliary cholesterol secretion contribute mostly in their fecal neutral sterol 

loss[144]. Moreover, ABCG5 and/or ABCG8 deficiency leads to mild[22, 145] or no[21] 

decreased fecal neutral sterol levels. Besides, both mRNA and protein levels of ABCG5/8 were 

not relevant to TICE rate in the same intestinal segments. In addition, with intestinal perfusion 

tool, TICE was directly measured in ABCG8-/- mice and found no differences compared to 

control mice[132]. Wang and colleagues recently highlighted the possible role of intestinal 

ABCG5/G8 in TICE. In the study, to determine the role of hepatic and intestinal ABCG5/G8 in RCT, 

liver (L-G5G8-/-), intestinal (I-G5G8-/-) and whole body (G5G8-/-) knockout mice were injected 

with 3H-cholesterol and they found that the percentage of 3H-cholesterol was in found highest 

in the WT and I-G5G8-/- mice, then the L-G5G8-/-, G5G8-/- had the least. Compared to WT mice, 

I-G5G8-/- mice had decreased fecal 3H-cholesterol excretion which was explained by reduced 

TICE[146]. Collectively, ABCG5/G8 are very likely to contribute to TICE particularly intestinal 

expressions. But their roles seem to strongly depend on the conditions and need more 

elucidation.  

ABCB1 is a multidrug transporter, locating at apical surface of enterocytes, which can 

pump cholesterol as a cholesterol floppase[147]. Mice with deficiency of ABCB1 for both 
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isoforms spontaneously develop hepatic steatosis, obesity, diabetes mellitus and increase HDL-C. 

Le May and colleagues reported that the mice with deficiency of ABCB1 had about 26.5% 

decreased TICE compared to WT mice, indicating a contributive role of ABCB1 in TICE[139]. 

1.3.3.4 Regulation of TICE 

Although the mechanisms for TICE have not been clear yet, it is found that TICE can be 

stimulated or inhibited by some factors. 

Van der Velde and the colleagues found that TICE increased two-fold in mice receiving 

Western type or a high fat diet. This results were positively correlated with the increased fecal 

neutral sterol levels in these mice as well. However, high cholesterol diet did not upregulate 

TICE as the other two types of diets. The authors concluded from these results that TICE rate is 

not dependent on cholesterol content in the diet but only fat content[137]. The increased fecal 

neutral sterol levels in mice when fed with high fat diet were demonstrated by de Vogel-van der 

Bosch at el, whereas all known cholesterol transporters expressions were decreased in these 

mice[148]. According to the authors, this results could not be explained by increasing TICE 

rather than decreasing cholesterol absorption. Connor and colleagues recruited male subjects 

with characteristic serum cholesterol concentrations without known metabolic disorders to 

investigate the effect of dietary fat on fecal neutral sterol levels. They found that poly-

unsaturated fats affect RCT by increasing fecal neutral sterol levels two-fold higher than 

cholesterol calculated to leave plasma[149]. This results were confirmed later by Nestel[150] 38 

and Oh and Monaco39. Since polyunsaturated fatty acids are natural ligands for peroxisome 

proliferator-activated receptors (PPARs), their findings may explain the study that PPARδ 

activation in mice led to increased TICE[151].  

Recently, two studies reported if ezetimibe, a clinically approved drug used to treat 

hypercholesterolemia through blocking NPC1L1 to decrease cholesterol absorption, increases 
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RCT through TICE pathway. Uto-Kondo et al. and colleagues found that Ezetimibe increased fecal 

macrophage-derived 3H-neutral sterol levels in bile duct-ligated hamsters[152]. However, this 

increase is not as significant as in sham-operated hamster. The authors concluded that 

ezetimibe can stimulate TICE and the effect will be maximized by the existence of hepatobiliary 

cholesterol secretion120. Overall, it can be concluded that fat content in the diet can increase 

TICE. Furthermore, blocking cholesterol absorption by ezetimibe can promote TICE but is likely 

to require hepatobiliary cholesterol secretion pathway to maximize the effects. 

Plosch and colleagues showed that liver X receptor (LXR) activation led to increase fecal 

neutral sterol excretion, which could not only be attributable to hepatobiliary cholesterol 

secretion. This result suggested a potential contribution in intestine to total cholesterol 

elimination[153]. This result was demonstrated by Kruit and colleagues who showed that LXR 

activation induced increased fecal neutral sterol loss was independent of biliary cholesterol 

secretion[128]. With a kinetic approach to measure cholesterol efflux rates, Van der Veen et al. 

reported that LXR activation stimulated TICE as well[133]. Collectively, these findings suggest 

that LXR is involved in TICE. 

It was reported that the intracellular vesicle transport proteins, Rab9 and LIMPII were 

upregulated when TICE was enhanced[151]. However, to determine their role in TICE, more 

studies with intestinal specific knockout mice for these proteins are required. 

In conclusion, there are many factors that can significantly stimulate TICE, suggesting a 

promising approach to consider TICE acceleration as a potential effective therapy particularly in 

patients with deficient biliary cholesterol excretion. 

1.3.3.5 TICE in humans 

Early in 1959, fecal sterols from nondietary cholesterol origin was found in feces of 

patients with biliary obstruction[131], which may be the first evidence suggesting the existence 
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of TICE in human. However, it remains unclear if TICE presents in normal healthy conditions and 

whether it can be stimulated. In 1967. Simmonds et al. performed intestinal perfusions in 

humans and detected significant cholesterol secretion in intestine yet the amount of secreted 

cholesterol was not quantified[154]. Based on the average total estimated cholesterol secreted 

from body per day (1g)[155, 156], average daily cholesterol intake amount (400 mg)[157] biliary 

cholesterol secretion amount (1000mg)[158] and cholesterol absorption rate (50%)[155], Van 

der Velde and colleagues calculated the possible amount of cholesterol secreted from intestine 

in human per day[159] which is about 300mg/day. Given 70kg body weight, this amount is 

about one-third of the biliary cholesterol secretion amount. However, studies on quantification 

of this amount need to be performed in humans. 

If this data can be confirmed, stimulation of TICE in human may suggest a new 

therapeutic approach to reduce hypercholesterolemia especially in the patients with deficient 

biliary cholesterol secretion. TICE has never been tested to predict plasma cholesterol. The 

measurement of cholesterol kinetics in humans by stable isotype studies may provide new view 

of regulation of plasma cholesterol, which will also provide foundation of new therapeutic 

strategies to treat hypercholesterolemia and atherosclerosis associated CVD in humans. 
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CHAPTER II. Dietary medium-chain triglycerides promote oral allergic sensitization and orally 

induced anaphylaxis to peanut protein in mice. 

2.1 Introduction 

Peanut allergy affects about 2% of the Western population, and its prevalence is rising [160-163]. 

The condition is rarely outgrown and there is no cure. To stem the rise of food allergies, it is 

important to unravel mechanisms that lead to allergic sensitization. Peanuts and many 

allergenic foods contain significant amounts of triglycerides (“fat”) or are most likely ingested 

with a fat-rich meal, especially in Western societies, which are also more affected by food 

allergies. However, little is known about the effect of dietary fat in allergic sensitization or 

immune responses to dietary proteins.  

Recent work has demonstrated that the intestinal epithelium plays a key role in immune 

responses to dietary antigens. Intestinal epithelial cells control access of luminal antigenic 

material to the lamina propria and beyond, and it has been suggested that increased intestinal 

permeability could be a risk factor for allergic sensitization [164, 165]. On the other hand, 

properly controlled intestinal absorption of small amounts of dietary antigen may protect 

against food allergies by promoting oral tolerance [166]. However, the mechanisms involved in 

soluble antigen absorption are poorly understood.  

Fatty acids, released in significant amounts from dietary triglycerides in the upper gastro-

intestinal tract, have potent detergent properties and may induce transient mucosal damage 

and gut leakiness [167] which could enable translocation of dietary antigen. The type of dietary 

fat might determine antigen absorption. We recently observed that dietary long-chain 

triglycerides (LCT), which contain fatty acids that have more than 12 C-atoms and are absorbed 

via mesenteric lymph as part of chylomicron particles, promoted the absorption of the dietary 
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antigen ovalbumin (OVA) into lymph and blood [168]. In contrast, dietary medium-chain 

triglycerides (MCT; fatty acids with 12 or fewer C-atoms), which are absorbed via portal blood, 

promoted less antigen absorption [168]. This would suggest that MCT should differ from LCT in 

their effects on allergic sensitization and anaphylaxis. 

Fatty acids of different chain length may also differ in pharmacological properties, especially in 

their effects on the intestinal epithelium with which they interact in large numbers. Intestinal 

epithelia not only control antigen absorption, but also secrete factors that significantly affect 

nearby immune cells. For example, the intestinal epithelial cytokine TSLP (Thymic Stromal 

Lymphopoietin) promotes the induction of Th2- responses through multiple mechanisms [169]. 

Interestingly, TSLP has been implicated in allergic diseases, including experimental food allergy 

[170]. Other Th2-biasing cytokines, such as IL-25 (IL-17E) and IL-33, are also expressed in the 

intestinal epithelium, and support Th2-mediated expulsion of parasitic worms[171, 172]. Fatty 

acids are known to affect intestinal epithelial cytokine expression [173, 174], although it is 

unclear how epithelial cytokines relevant to food allergy are regulated. 

Based on these putative immune-modulating effects of dietary fat, we evaluated how dietary 

fats affect oral sensitization in naïve mice and immune responses to oral antigen challenges in 

sensitized mice. We decided to compare LCT with MCT, based on their different effects on OVA 

absorption. As model system for oral sensitization we slightly modified a recently reported, 

adjuvant-free model[175]. This model and a classical systemic sensitization model were also 

used to test the effect of triglycerides during oral antigen challenges. To acutely block 

chylomicron formation during LCT feeding, a small amount of the chylomicron secretion 

inhibitor PL81 was added in some experiments[168, 176, 177].  
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Interestingly, when we replaced LCT in peanut butter with MCT or gavaged OVA with MCT, we 

observed marked allergic sensitization, which was associated with a significant induction of 

intestinal epithelial Th2 cytokine expression in the jejunum, a reduction of antigen absorption 

into blood, and an increase in antigen absorption into Peyer’s patches. LCT did not induce 

sensitization unless PL81 was added. Moreover, our data suggest that chylomicron formation 

during antigen ingestion may promote oral tolerance and may protect against allergic 

sensitization.  

2.2 Methods 

2.2.1 Animals 

Experiments with peanut protein were performed with male C3H/HeJ mice. Experiments with 

OVA used male C3H/HeJ mice, female BALB/c mice and DO11.10 mice (BALB/c background) of 

both genders, and female Sprague-Dawley (SD) rats. Approximately 70% of CD4 T-cells of the 

transgenic DO11.10 strain express a T-cell receptor for an OVA peptide (residues 323-339) [178]. 

The mice, ordered at 5 weeks of age from The Jackson Laboratory, were housed three per cage 

in a room of a specific pathogen-free animal facility with a 12h light / dark cycle, and were used 

at 6 weeks of age. Rats were purchased from Taconic. Unless indicated otherwise, the animals 

received standard rodent diets and filtered tap water ad libitum. All animals were handled in 

strict accordance with good animal practice as defined by the relevant national and local animal 

welfare bodies, and all animal work was approved by the Institutional Animal Care and Use 

Committee of the University of Kentucky (Animal Welfare Assurance Number of the University 

of Kentucky A3336-01; U.K. IACUC protocol 2008-0306). 

2.2.2 Gavage suspensions and diets 
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Gavages: Jif-brand peanut butter or grade V OVA (Sigma Aldrich Corp.) were used for gavage 

studies. Peanut butter was diluted with two volumes of MCT oil (distilled coconut oil, Nestle 

Nutrition Corp.) and passed through a sieve with a 70 µm pore size to prevent clogging of the 

feeding tube. The filtrate was centrifuged (4 minutes; 16,800xg) and the supernatant replaced 

with triglycerides or water to reconstitute the initial volume of peanut butter. Triglycerides 

consisted of MCT oil or LCT (food grade peanut oil; “Hollywood” brand). In some cases, PL81 was 

added at 3% by volume to LCT to block chylomicron secretion into lymph [168, 176, 177]. We 

found this quantity to completely block chylomicron formation without toxic side effects [168, 

177].  

Diets: All diets were from Harlan Teklad Corp. Their standard rodent diet, with casein as protein 

source and soybean oil as fat source, was considered the LCT diet. The MCT diet differed only in 

fat source (partially hydrogenated coconut oil instead of soybean oil). In OVA studies, 10% of 

casein was replaced with egg-white solids (Deb-El brand). In peanut feeding studies, 10% of 

casein was replaced with defatted peanut flour (Byrd Mill brand) and soybean oil was replaced 

with peanut oil. 

2.2.3 Allergic sensitization  

By acute feeding: Mice were fasted for 4h, then gavaged once with 0.3 ml of antigen 

suspensions in various vehicles (~80 mg peanut protein or 60 mg OVA). An 18G 38mm 

polypropylene feeding tube with rounded tip (Harvard Apparatus Corp.) was used to avoid injury. 

Mice were returned to standard diets and blood was drawn 18 to 21 days later for antibody 

measurements. In some instances (as indicated), mice received a second oral sensitization one 

week after the first. By chronic feeding: Mice were fed MCT- or LCT- based peanut or control 

diets for 4 weeks, with weekly blood sampling. By systemic sensitization: Mice received two 
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intraperitoneal (I.P.) injections with 10 µg OVA in 0.2 ml alum (Accurate Chemical and Scientific 

Corp.), with one week between injection. One week later, blood was tested for anti-OVA IgE. 

Rats were sensitized by a single subcutaneous injection with 0.1 mg OVA and 1 mg alum in saline 

and their blood was obtained two weeks later after euthanasia. Serum was also obtained from 

non-sensitized animals. 

2.2.4 ELISA for antigen-specific IgE and IgG 

To detect antigen-specific IgE and IgG, we developed an ELISA, which involved coating 96 well 

BD Falcon ELISA plates with 20 µg peanut butter protein or 20 µg OVA in carbonate buffer (pH 

9.6). Washed plates were treated with blocking solution (“NAP blocker”, GBiosciences Corp.), 

and mouse serum, diluted 1:500 in blocking solution for IgG measurements and 1:10 for IgE 

measurements, was added for 1 h at room temperature. Unbound antibody was washed with 

Tris-Buffered Saline containing Tween 20 (TBST). Alkaline-phosphatase conjugated rabbit anti-

mouse IgG (1:5000; A1902, Sigma-Aldrich.) or goat anti-mouse IgE (1:800; SouthernBiotech 

Corp.) were added in blocking solution, and incubated for 60 min or longer at room temperature 

in complete darkness (in case of IgE sometimes several hours). After washing unbound antibody, 

AP substrate (femto-ELISA-AP Substrate; GBiosciences) was added and the absorption at 450 nm 

(A450) was read after addition of 50 µl stop solution (3 M NaOH).  

2.2.5 In vitro splenocyte stimulation assays 

Spleens were aseptically removed, gently minced, and passed through a 70 µm mesh into 

culture medium (Dulbecco’s Modified Eagle’s Medium:F12 (1:1; Lonza Corp.) with 10% heat-

inactivated fetal calf serum (Gibco Corp.) and antibiotics (Gibco)). Cell viability was assessed 

with Trypan Blue staining. Splenocytes were seeded in 96-well plates at 1 x 106 live cells/cm2 and 

kept in an incubator maintaining 100% humidity, 37ºC, and 5% atmospheric CO2. Cells were 
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pulsed with homogenized peanut butter (50 µg protein / ml) or 1 µg / ml OVA peptide 323-339 

(Invivogen Corp) or vehicle (control), and medium obtained 4 days after the pulse was analyzed 

for cytokine content (ELISA kits from eBiosciences). 

2.2.6 In vitro basophil stimulation assays 

RBL-2H3 cells, a rat leukemia line with basophil and mast-cell characteristics, were obtained 

from American Type Culture Collection and grown till confluency in 96 well tissue culture plates 

in Eagle’s Medium with 10% heat-inactivated serum and antibiotics. They were exposed to 

serum from OVA-sensitized rats (1:1 dilution) or naïve rats for two hours, washed twice with PBS 

containing 0.1% BSA, then incubated with 0.1 ml of serial dilutions of OVA in PBS/BSA, for 1h. 

Included with the OVA was an emulsion with chylomicron-like composition and physiological 

properties [Robinson, 1979 #886] (Intralipid 20%; Baxter Healthcare) at 1:1000 or 1:500 dilution. 

One hour after the incubation, 30 µl medium was mixed with 30 µl 4-nitrophenyl-N-acetyl-β-D-

glucosaminide (Sigma Aldrich; 1 mg / ml in citrate buffer, pH 5) and the coloring reaction was 

stopped after 1h with carbonate buffer (pH 10.5). p-Nitrophenol was subsequently quantified by 

measuring the optical density at 405 nm. OD405 values of OVA-free solutions were subtracted 

to correct for light absorption by emulsion particles. The emulsions were non-toxic at the 

indicated dilutions as reflected by lack of stimulation of spontaneous hexaminidase release and 

the cells’ appearance after incubation was identical to controls (not shown). 

2.2.7 In vivo antigen challenges 

For systemic challenges, mice received 30 mg peanut butter protein I.P. in 0.3 ml sterile 

PBS[175]. Body temperature was measured telemetrically immediately before and every 5 

minutes after the challenge, using subcutaneously placed micro transponders (Bio Medic Data 

Systems Corp.), and mast cell histamine release was estimated by measuring mouse mast-cell 
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protease 1 (mmcp-1) serum levels 90 minutes after the challenge [175] (eBioscience ELISA). 

Signs of anaphylaxis were estimated with a semi-quantitative scoring, with “0” being assigned to 

mice with no symptoms, “1” to mice which were stationary but moved when provoked, “2” to 

mice which remained immobile even when provoked, and “3” to mice lying on their side. 

In some experiments, mice were injected ip 16h before the challenge with rat-monoclonal 

blocking antibodies against IgE (clone EM-95; 0.1 mg/mouse) or-FcJRII/III (clone 2.4G2; 0.5 

mg/mouse), to determine whether anaphylaxis was IgE- or IgG- dependent. These antibodies 

have been described elsewhere [179, 180].  

For oral challenges with peanut protein, 80 mg peanut butter protein was resuspended in 0.3 ml 

vehicle. For oral challenges with OVA, 50 mg OVA was suspended in 0.15 ml water and mixed 

with 0.15 ml triglycerides.  

2.2.8 Effect of triglycerides on epithelial Th2 cytokine expression 

To study acute effects of dietary fat on intestinal epithelial cytokine expression, fasted mice 

were gavaged with 0.3 ml MCT or LCT (with or without PL81) and jejuna were obtained 5 h later. 

To study chronic effects, mice were fed 3 wks with MCT or LCT diets and intestines were 

obtained from non-fasted mice in the morning. Epithelia were isolated by treating washed 

sections with 1 mM dithiothreitol and 30 mM Ethylenediaminetetraacetic acid as described 

elsewhere [181]. Epithelial RNA was isolated with an EZRNA kit (Omega-Biotech Corp.) and 

reverse-transcribed into cDNA with a Q-script kit (Quansys Corp.). The cDNA was analyzed for 

abundance of TSLP, IL-25 and IL-33 mRNA relative to GAPDH with primer pairs ACG GAT GGG 

GCT AAC TTA CAA / AGT CCT CGA TTT GCT CGA ACT (TSLP), ACA GGG ACT TGA ATC GGG TC / 

TGG TAA AGT GGG ACG GAG TTG (IL-25), ATT TCC CCG GCA AAG TTC AG / AAC GGA GTC TCA 
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TGC AGT AGA (IL-33) and CCA GGT TGT CTC CTG CGA CTT / CCT GTT GCT GTA GCC GTA TTC A 

(GAPDH) using a Bio-Rad CFX-96 realtime quantitative polymerase chain reaction machine.  

2.2.9 Effect of triglycerides on Th2 responses 

To test the effect of MCT on Th2 responses to dietary antigen, DO11.10 mice were fed egg 

protein-containing MCT or LCT diets (or corresponding egg-free diets) for one week and spleen 

cells were challenged ex vivo with OVA peptide or not. Cytokines in the culture supernatants 

were quantified by ELISA (eBioscience). 

2.2.10 Effect of triglycerides on antigen absorption 

Peanut butter protein was labeled with 125I according to a slightly modified iodine monochloride 

procedure [182]. Prior to protein labeling, the peanut butter was delipidated with hexane - 

isopropanol (2:1), resuspended in phosphate-buffered saline (PBS), dialyzed against PBS, and 

concentrated with a 10 kDa ultra filter. Fasted C3H/HeJ mice were gavaged with 80 mg peanut 

butter protein spiked with radiolabeled protein, suspended in 0.3 ml triglycerides. Plasma 125I 

levels 30 minutes after gavage were measured in a gamma counter. Absorption was expressed 

as percentage of gavaged material. Absorption of OVA was studied using DQ-OVA (Invitrogen), 

which only emits fluorescence when degraded in lysosomes. For this, fasted BALB/c mice 

received gavages of 1 mg DQ-OVA in water, MCT, LCT, or LCT + PL81, and were then deprived of 

food for at least another hour. The next day, single cell suspensions from mesenteric lymph 

nodes (MLN), Peyer’s patches and spleen were stained with Alexa 647 anti-CD11c (Biolegend 

Corp.) and analyzed by flow cytometry (FACScalibur, Becton Dickinson corp.).  

2.2.11 Statistics 
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Results were analyzed with Graphpad Prism version 5 and are displayed as average ± S.E.M. 

ANOVAs were followed by between-group post-hoc analyses (Newman-Keuls). Anaphylaxis 

scores were compared with Mann–Whitney U tests. Temperature data were analyzed by 

comparing maximum temperature drop or area under the curve. Columns in graphs that do not 

share letter labels differ significantly from each other (P<0.05).  All figures show representative 

results of at least two repeats per experiment. 
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2.3 Results 

2.3.1 MCT and LCT differentially affect antigen absorption and dissemination 

MCT were previously found to decrease absorption of dietary OVA into blood compared to LCT 

[168]. To test whether this also applies to peanut protein, radiolabeled peanut protein was fed 

to fasted mice together with MCT, LCT, or LCT + PL81, and blood was collected 30 min later. As 

shown in Fig 2.1A, gavage with MCT resulted in significantly reduced antigen absorption 

compared with LCT. However, addition of PL81 to LCT (which trapped chylomicrons within 

jejunal epithelial cells; Fig 2.1B) reduced absorption to levels seen with MCT (which does not 

cause chylomicron release).  

To further test the effect of postprandial chylomicron formation on antigen absorption, we 

measured DQ-OVA uptake by antigen presenting cells one day after DQ-OVA gavage in the 

presence of different triglycerides. Surprisingly little signal was found in the MLN of either group 

(<1% positive cells positive), with slightly stronger signal in the spleen (approximately 3%). 

However, there were no significant differences between groups for any of these sites (not 

shown). In contrast, a pronounced difference was observed in the percentage of DQ-OVA 

positive cells in the Peyer’s patches among groups, with significantly more DQ-OVA-positive cells 

after gavage with MCT and LCT + PL81 than after gavage with water or LCT (Fig 2.1C).  Thus, 

prevention or inhibition of chylomicron formation suppressed antigen absorption into the 

circulation while enhancing antigen delivery to Peyer’s patches.  

2.3.2 Dietary MCT promote allergic sensitization  

Because MCT and LCT differed in their effects on antigen absorption, we next evaluated their 

effects on immune responses to dietary antigens. Strikingly, antigen-naïve male C3H/HeJ mice 

gavaged once with peanut protein (80 mg) in MCT produced significantly more IgE and IgG  
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Figure 2.1 Effects of triglycerides on antigen absorption. A, Plasma iodine 125 levels 30 minutes 

after gavage of radiolabeled peanut protein with indicated vehicles (n = 6). B, Features of mice 

intestines and epithelial cells in PBS 30 minutes after gavage with indicated vehicles. PL81 blocks 

LCT absorption, as reflected by increased buoyancy because of lipid entrapment. Tissue was 

obtained 5 hours after gavage. C and D, CD11c+ and DQ-OVA+ cells in Peyer patches 16 hours 

after DQ-OVA gavage in indicated vehicles (n = 4). 
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against peanut protein than mice gavaged with the same amount of protein in LCT or water (Fig 

2.2A, B). Usage of another LCT, soy oil, yielded the same results (Fig 2.2C). The protective effect 

of LCT was abrogated by adding PL81 (Fig 2.2A, B). In addition, splenocytes from mice gavaged 

with peanut protein in MCT produced more IL-13 when stimulated in vitro (Fig 2.2D). The failure 

to induce sensitization with LCT may involve induction of oral tolerance by LCT, since a single 

gavage of peanut protein in LCT prevented subsequent sensitization by antigen in MCT (Fig 2.2E). 

Interestingly, the pro-allergenic effect of MCT was not limited to peanut protein, since a single 

gavage of OVA (60 mg) in MCT or LCT + PL81 also resulted in increased IgE anti-OVA antibody 

production compared to gavage in water or LCT (Fig 2.2F).  

Collectively, these data suggest that dietary MCT promotes allergic sensitization to food 

antigens and that chylomicrons may prevent sensitization. 

2.3.3 Dietary MCT promote intestinal epithelial Th2 cytokine expression and Th2 bias 

Recent reports indicated that intestinal epithelial cells can contribute to allergic sensitization by 

releasing cytokines that promote Th2 responses [170]. To determine whether the sensitizing 

effect of MCT was associated with increased TSLP expression, we measured intestinal epithelial 

TSLP mRNA in jejunal epithelia 5h after gavage with MCT or LCT. As shown in Fig 2.3A, mice 

gavaged with MCT had significantly higher TSLP mRNA in jejunal epithelial cells than mice 

gavaged with LCT, unless PL81 was added (Fig 2.3B). 

We next tested whether chronic MCT feeding also stimulates intestinal epithelial TSLP mRNA 

expression. Indeed, C3H/HeJ mice fed three weeks with the MCT diet had significantly higher 

levels of TSLP mRNA in their duodenal and jejunal epithelia than control mice (Fig 2.4A). TSLP, 

which is more highly expressed in the distal gastrointestinal tract [183], was not upregulated by 

MCT in sites distal from fat absorption. There was also a stimulatory effect of MCT on IL-25 and  
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Figure 2.2. MCT causes allergic sensitization. A-C, Anti-peanut antibodies 18 days after gavage 

with peanut protein (80 mg) in indicated vehicles (n = 6). The LCT was peanut oil in Fig 2, A and B, 

and soybean oil in Fig 2, C. D, Splenocyte IL-13 release (n = 4). ∗P < .05. E, Gavage of peanut 

protein in the LCT (OT) 1 week before gavage with the MCT induces oral tolerance (n = 6). F, 

Anti-OVA IgE levels 18 days after gavage with OVA (60 mg) in indicated vehicles (n = 6). 

OT Oral tolerance 

LCT/P LCT plus PL-81 
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Figure 2.3. Tslp mRNA in epithelial cells of the jejunum 5 hours after gavage of 0.2 mL of the 

MCT, the LCT, or saline (A) or 0.2 mL of the LCT, the LCT plus PL81, or saline plus PL81 (B; n = 6). 
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IL-33 mRNA expression (Fig 2.4B). However, TSLP protein levels were below the level of 

detection by ELISA (not shown). 

The sustained effect of MCT on epithelial cytokine expression prompted us to test whether 

addition of peanut protein to MCT diets would cause sensitization during sustained dietary 

exposre. Indeed, C3H/HeJ mice receiving peanut protein in the context of MCT had detectable 

amounts of anti-peanut IgE in their serum after 4 weeks (Fig 2.4C).Thus, dietary MCT promote 

allergic sensitization, which partially involves upregulation of expression of Th2-biasing 

cytokines in the epithelium of the jejunum. To investigate whether dietary MCT causes a general 

Th2 bias, we fed DO11.10 mice with MCT- or LCT- diets with or without egg-white protein for 1 

week and then stimulated splenocytes ex vivo with OVA peptide. In the absence of OVA peptide, 

none of the splenocyte preparations produced detectable IL-4 or IFN-J (Fig 2.5). In contrast, 

stimulation with OVA peptide resulted in significant production of these cytokines, due to the 

large numbers of OVA-reactive CD4 T-cells in DO11.10 mice. However, splenocytes from mice 

fed MCT diets with OVA produced more IL-4 and less IFN-J�than the LCT/OVA diet, suggesting 

that dietary MCT had indeed promoted Th2 responses to the antigen.  

2.3.4 IgG-dependent anaphylaxis upon systemic antigen challenge 

We next tested whether sensitized mice would develop anaphylaxis upon antigen re-exposure. 

Mice (C3H/HeJ) were gavaged once with peanut protein in MCT, LCT, or LCT plus PL81, then 

challenged I.P. 18 days later with 30 mg peanut protein in 0.2 ml PBS. As shown in Figure 6A and 

B, mice sensitized with peanut protein in MCT or LCT+PL81 released much more mmcp-1 into 

the bloodstream and showed a greater drop in body temperature than mice sensitized by 

gavage with peanut protein in LCT. Semi-quantitative clinical scoring of anaphylaxis (based on 

mouse mobility) in a separate experiment yielded negligible scores in mice sensitized with  
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Figure 2.4. Effect of MCT feeding on intestinal epithelial TH2 cytokine expression. A, TSLP 

mRNA in epithelia from indicated sections 3 weeks after feeding (n = 5). B, IL-25 and IL-33 mRNA 

in jejunal epithelial cells 3 weeks after feeding (n = 5). C, IgE against peanut protein during 4 

weeks of feeding with diets enriched with peanut flour (n = 6). 
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Figure 2.5. Promotion of TH2 responses by dietary MCTs. DO11.10 mice were fed MCT- or LCT-

based diets containing egg white (MCT+egg and LCT+egg) or without egg white (MCT and LCT; 

n = 5 per group). One week later, splenocytes were stimulated ex vivo with OVA peptide, and 

indicated cytokines were measured by using an ELISA. 
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peanut protein in water or LCT, while mice sensitized with MCT or LCT plus PL81 had 

significantly increased scores upon challenge (Fig 2.6C). However, diarrhea or significant stool 

softening was not evident in any group. To determine whether anaphylaxis was IgE- or IgG-

dependent, mice sensitized by gavage of peanut protein in MCT were treated 16h before the 

systemic challenges with rat monoclonal antibodies that block IgE- (EM-95) or IgG- mediated 

pathways of anaphylaxis (2.4G2), or both [184]. As shown in Fig 2.6D, anaphylaxis was 

prevented when the mice were pre-treated with anti-FcJRII/III, but not anti-IgE, suggesting that 

anaphylaxis was IgG-dependent. The mild drop in body temperature in naïve mice may relate to 

complement activation by peanut protein [185]. 

2.3.5 IgE- dependent anaphylaxis upon oral antigen challenge  

Next, we tested whether mice sensitized by gavage of peanut protein in MCT develop 

anaphylaxis when re-exposed to antigen via the oral route. To this end, mice were gavaged with 

peanut protein in MCT on day 1 and 8 (double sensitization), and injected 40 days later with IgE-

blocking antibodies or vehicle. One day later, the mice received a third gavage with peanut 

protein in MCT, and body temperature was monitored. As shown in Fig 2.7A, oral antigen 

challenged mice showed a significant drop in body-temperature, provided that no blocking 

antibody had been injected. In contrast, mice pre-treated with blocking antibodies against IgE 

did not respond to the oral antigen challenge, suggesting that orally-induced anaphylaxis was 

IgE- dependent. It should be emphasized that sensitization in this experiment was enhanced by 

performining two gavages with MCT, separated by one week. In contrast, gavage with peanut 

protein in LCT prior to gavage with MCT led to tolerance (Figure 2.2D). 

Orally induced anaphylaxis is exacerbated when chylomicron formation is inhibited 
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To test how MCT might affect responses to oral antigen challenge, mice sensitized by two 

gavages with peanut protein in MCT were orally challenged 40 days later with peanut protein in 

water, LCT (peanut oil), MCT, or LCT + PL81 (Fig 2.7B). In agreement with the experiment in Fig 

2.7A, mice challenged with peanut protein in MCT showed a significant drop in body 

temperature (Fig 2.7B). On the other hand, mice challenged with peanut protein in water or LCT 

showed no significant response. However, when PL81 was added to LCT, the response was 

similar to that with MCT (Fig 2.7B, C). Chylomicron formation may have protected against 

anaphylaxis, most likely by inhibiting the ability of absorbed antigen to gain access to mast cells 

or basophils. In vitro studies indeed revealed that basophils decorated with anti OVA IgE 

responded significantly less when OVA was added in the presence of chylomicron-like particles 

(Fig 2.7D). Moreover, in an OVA-based model of food allergy it was observed that allergic 

responses were significantly more severe when challenges occurred with MCT or LCT + PL81 

than with LCT alone (Fig 2.7E). In particular, the response of mice challenged with MCT was very 

robust. 
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Figure 2.6. IgG-dependent anaphylaxis upon systemic challenge. Mice were gavaged once 

with peanut butter protein in indicated vehicles and then challenged by means of 

intraperitoneal injection 18 days later (n = 6). A-C, Parameters included plasma mouse 

mast cell protease 1 (mmcp-1) 90 minutes after the challenge (Fig 6, A), body 

temperature (Fig 6, B), and clinical score (Fig 6, C). D, Pretreatment with blocking 

antibodies against IgG receptors (2.4G2) but not against IgE (EM-95) blunted anaphylaxis. 
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Figure 2.7. IgE-dependent orally induced anaphylaxis is aggravated by MCTs. A, Body 

temperature of mice (n = 6-7) challenged with peanut protein in the MCT with or without 

pretreatment with IgE blocking antibody. Sensitization occurred by means of gavage on days 1 

and 8, and challenges were performed on day 48. B, Mice (n = 6) were sensitized as in Fig 7, A, 

but the oral challenge was performed by using gavage of peanut protein in different vehicles. C, 

Plasma mouse mast cell protease 1 (mmcp-1) levels in mice in Fig 7, B. D, Inhibition of basophil 

activation by including Intralipid (2 different dilutions) with OVA added to sensitized basophils 

(n = 4 per group). E, BALB/c mice (n = 9 per group) were sensitized intraperitoneally with OVA in 

alum and then challenged with 60 mg of OVA by means of gavage in the indicated vehicle. All 

experiments were repeated at least twice with similar outcome, except those shown in Fig 7, B 

and C, which were performed once. 
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2.4 Discussion 

In addition to confirming and expanding our previous observation that more antigen is absorbed 

when ingested with LCT than with MCT[168], we have made six novel and important 

observations: 1) antigen delivery to Peyer’s patches is significantly enhanced by MCT; 2) both 

acute and chronic MCT feeding promote allergic sensitization to concomitantly ingested 

antigens, as shown by increased antibody production and anaphylaxis following antigen re-

exposure; 3) ingestion of antigen with MCT promotes the expression of the Th2-biasing 

cytokines TSLP, IL-25 and IL-33 by upper gastrointestinal tract epithelial cells; 4) MCT-based 

diets induce a Th2 bias in the host (probably a result of point 3); 5) MCT promote the ability of 

ingested antigen to induce anaphylaxis in sensitized mice; and 6) almost all MCT effects are 

mimicked by mixing LCT with an inhibitor of epithelial cell chylomicron secretion, suggesting 

that chylomicons inhibit antigen access to mast cells, basophils and dendritic cells that present 

antigen in a stimulatory manner. Each of these points and its relevance is discussed below. 

Antigen absorption: We previously demonstrated that chylomicron formation promotes 

intestinal antigen absorption into the bloodstream [168]. We now additionally demonstrate that 

failure to secrete chylomicrons causes retention of LCT (and presumably, associated antigens) 

within the intestinal mucosa and lamina propria, where they could more readily interact with 

relevant immune cells. A similar mechanism may also explain how feeding MCT instead of LCT 

increases antigen within Peyer’s patches. The role of Peyer’s patches in food allergy is unclear, 

although they are reported to be associated with oral tolerance [186, 187]. We found, however, 

that DQ-OVA was present in a large fraction of Peyer’s patch dendritic cells, when gavaged with 

MCT or LCT plus PL81. In contrast, surprisingly few DQ-OVA positive cells were found in the MLN, 

even when DQ-OVA was gavaged with LCT. The apparent conflict between the latter observation 

and our previous finding of increased OVA in the MLN of OVA/LCT-gavaged mice may be 
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explained by the possibility that chylomicrons traffic through the MLN but prevent the uptake or 

processing of associated antigens by MLN dendritic cells.  

Sensitization by MCT-rich diets and the role of chylomicrons: Our findings demonstrate that 

MCT-based diets promote allergic sensitization to simultaneously ingested antigens in an acute 

and a chronic feeding model. MCT-containing oils are regularly prescribed to patients with fat 

malabsorption or intestinal inflammation, and are added to some infant formulas and 

commercially available peanut butter (Eckhardt, Li, unpublished observations). The amounts of 

MCT required to promote peanut allergy remains to be determined, however. MCT, unlike LCT, 

do not form chylomicrons, which might protect from allergic sensitization. Chylomicron 

induction of macrophage cytokine production [188, 189], for example, may prevent Th2-biasing 

phenotypes in antigen-presenting cells (APC) and may, as suggested by our data, promote oral 

tolerance (Fig 2.3C). This is perhaps because of the high chylomicron content of retinol [190], 

which promotes oral tolerance by stimulating regulatory T-cell development [191-193]. 

Effect of MCT on Th2 cytokine expression in epithelial cells: The first cells to interact with dietary 

fatty acids are intestinal epithelial cells. These play a role in food allergies because of their 

barrier function, and of their active participation in immune responses to microbial and dietary 

antigens. One novel epithelial cytokine, TSLP, was recently shown to be important for the 

induction of experimental food allergy [170]. Interestingly, our studies showed that mice fed 

MCT via acute gavage or via dietary enrichment increase intestinal-epithelial expression of three 

Th2-biasing cytokines: TSLP, IL-25 and IL-33. This effect is greatest in the jejunum, which is the 

principal site of fat absorption. This may explain why MCT feeding also promoted antigen-driven 

IL-4 production and decreased IFN-J production by isolated splenocytes.  
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Chylomicrons and anaphylaxis: Besides their protective role in the sensitization phase of peanut 

and OVA allergy, chylomicrons were also protective in the effector phase of food allergy. Both in 

the peanut protein model and in a classical OVA model, gavage of the antigens with LCT did not 

cause anaphylaxis, unless PL81 was added. In contrast, gavage of antigens with MCT caused 

clinically significant anaphylaxis. This suggests that chylomicrons prevent the access of ingested 

antigens to mast cell- and basophil-associated IgE, and our in vitro basophil activation tests 

support this hypothesis in that the presence of chylomicrons greatly reduced the effect of OVA 

on basophils (Fig 2.7D) to an extent that would more than compensate for the increase in 

antigen absorption that is associated with chylomicron formation. We used Intralipid as proxy 

for chylomicrons, which are similar in size and lipid content but lack Apolipoprotein B48. 

However, they do acquire other apolipoproteins from serum [Robinson, 1979 #886] and show 

similar metabolic clearance rates [Bryan, 1976 #1361]. Nevertheless, we cannot exclude that 

other factors present on chylomicrons in vivo may differently affect mast cells or basophils. 

Moreover, whereas the inhibitory effect is significant, we do not know whether the effect is due 

to OVA sequestration by chylomicrons [Wang, 2009 #1171] or by an inhibitory effect on the 

basophils themselves. Our findings nevertheless suggest that postprandial lipid transport via the 

lamina propria in the upper GI tract, where most mast cells reside, or through the bloodstream, 

could have important effects on the effector phases of food allergies.  

Ingestion of antigen with water, rather than a fat, also failed to induce anaphylaxis. We currently 

cannot distinguish the possibility that antigen ingested with water is poorly absorbed from the 

possibilities that antigen ingested with water becomes associated with chylomicrons or is 

otherwise protected from access to mast cell and basophil IgE.  Regardless of the mechanism 

involved, our finding is still potentially relevant for optimization of oral desensitization, as 

currently attempted in small clinical trials [194]. Feeding antigen with LCT might prevent 
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anaphylaxis during oral treatment while boosting its effectiveness by promoting oral tolerance 

(Fig 2.2D).  

Concluding remarks: Our study suggests that dietary MCT may have a previously unappreciated 

effect on immune responses to dietary antigens, both on sensitization and anaphylaxis, by 

affecting antigen absorption and by promoting a Th2 bias. Although it is premature to vilify MCT, 

they nevertheless could be a novel dietary risk factor for allergies. In this respect, it is important 

to note that considerable MCT is present in breast- and infant formula. On the other hand, the 

Th2-biasing properties of MCT could be exploited to treat or prevent “Th1/Th17 diseases”, such 

as Crohn’s disease and diabetes. Interestingly, most of the effects of MCT could be mimicked by 

adding an inhibitor of chylomicron formation to LCT, which suggests that postprandial 

chylomicron formation plays an important role in immune responses to dietary antigens. This 

intriguing observation suggests that subtle genetic defects in the production, secretion, 

transport and clearance of chylomicrons may be a risk factor for food allergy development. 
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CHAPTER III. Dietary palmitic acid as a potential natural adjuvant in peanut allergy 

3.1 Introduction 

The prevalence of food allergies is rising, including allergies to peanuts, which is one of the more 

persistent and dangerous food allergies and results in numerous emergency room visits and 

approximately 200 deaths per year in the United States[28]. Peanut allergy is also increasing in 

countries with traditionally high peanut consumption, with dynamics that make it highly likely 

that environmental factors may contribute[195]. 

Several environmental factors may increase the risk for food- and other allergies, such as altered 

hygiene, lifestyle, and pollution. However, Western and westernizing societies have also 

undergone significant changes in their alimentation in a rather small time period, and it could be 

that some unsuspected dietary components increase the risk for allergic sensitization. Certain 

dietary components may affect the intestinal mucosal immune system and predispose it to 

develop inappropriate Th2 responses to dietary antigens. In a recent study at the role of one of 

the most common food components, fatty acids, we observed that mice can be made 

spontaneously allergic to peanut protein when force-fed a single dose of peanut butter protein 

in the presence of saturated medium-chain triglycerides (MCT) or when fed peanut protein for 

several weeks in the context of an MCT-rich diet[196]. This was associated with an effect of MCT 

on Th2 cytokine expression in the intestinal mucosa, including the cytokines Thymic Stromal 

Lymphopoietin (TSLP), IL-25, and IL-33. Other oils, such as soybean oil and peanut oil, did not 

appear to induce peanut allergy, unless an inhibitor of chylomicron formation was added. Since 

MCT, in contrast to the other oils, does not require chylomicron formation for its absorption by 

virtue of the short size of its fatty acids, we argued that postprandial chylomicron formation 



62 
 

protects from allergic sensitization, partially by affecting lymphatic absorption of dietary 

antigens[168, 196]. 

However, MCT also differs from soybean and peanut oil in the degree of saturation of its fatty 

acids. While refined MCT is virtually completely saturated, soybean and peanut oils are mainly 

unsaturated. We therefore wanted to test whether a mainly saturated oil with similar fatty-acid 

chain lengths as soybean- or peanut oil, and which is absorbed in a chylomicron-dependent 

manner, would also spontaneously cause allergic sensitization to peanut protein.  As a saturated 

fatty acids component in commercial vegetable oil, palmitic acid is predominantly esterified to 

the sn-1,3 positions of the triglyceride. It is reported that such palmitic-acid increases intestinal 

erosion and mucosal damage by failing to induce immunosuppressive regulatory T cells 

responses[197]. Our results show that palm oil significantly promotes spontaneous allergic 

sensitization to concomitantly ingested allergens, much like MCT. Therefore, chylomicron 

formation and fatty acyl saturation likely are independent risk factors for allergic sensitization. 

The physiological relevance of our findings are discussed. 

3.2 Materials and Methods 

3.2.1 Animals 

Male 5 week old C3H/HEJ mice were ordered from The Jackson Laboratory and were housed 

three per cage in a room of a specific pathogen-free animal facility with a 12h light / dark cycle. 

The mice were allowed to acclimatize for 1 week prior to experimentation. Unless indicated 

otherwise, the mice received standard rodent diet and filtered tap water ad libitum. All animals 

were handled in strict accordance with good animal practice as defined by the relevant national 

and local animal welfare bodies, and all animal work was approved by the Institutional Animal 
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Care and Use Committee of the University of Kentucky (Animal Welfare Assurance Number of 

the University of Kentucky A3336-01; U.K. IACUC protocol 2008-0306). 

3.2.2 Peanut extract preparation 

Jif-brand peanut butter (“To Go; Creamy”) was diluted with two volumes of MCT oil (Nestlé 

Nutrition) to reduce viscosity and then passed through a sieve with a 70 µm pore size to remove 

particles that would clog the gavage needle. The filtrate was then centrifuged (4 minutes; 

16,800xg) and the oily supernatant was completely removed and replaced with the respective 

experimentally used oils. The final volume of the suspensions equaled the initial volume of 

peanut butter. Triglycerides consisted of food grade palm- (Spectrum, PA105), peanut 

(Hollywood brand) or soybean (Kroger) oil. 

3.2.3 Effect of palm oil on acute allergic sensitization to peanut protein 

To determine whether palm oil promotes allergic sensitization to peanut protein, antigen naïve 

and fasted (4h) mice received a single 0.3 ml bolus of peanut butter protein in palm- or other 

oils via intragastric gavage with an 18G 38mm polypropylene feeding tube with rounded tip 

(Harvard Apparatus). The amount of protein per gavage was estimated to be around 80 mg 

using a Bicinchoninic acid (BCA) assay (Pierce). Mice were returned to their cages and kept for 

three more weeks on standard rodent diet before a blood sample was taken for anti-peanut IgE 

measurements.  

3.2.4 Effect of palmitate on jejunal epithelial TSLP mRNA expression 

Fasted mice were gavaged with 0.3 ml palm oil or peanut oil. After 5h, the mice were 

euthanatized and their jejuna were isolated and opened in cold PBS. Mucosal scrapings were 

collected and snap frozen for RNA isolation using the EZRNA kit from Omega-Biotech. RNA was 
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reverse-transcribed into cDNA with a Q-script kit from Quansys. The resulting cDNA was 

analyzed for abundance of TSLP relative to villin (which is restricted to the epithelium) with 

primer pairs ACG GAT GGG GCT AAC TTA CAA / AGT CCT CGA TTT GCT CGA ACT (TSLP) and TAA 

GGC TGC ACT CAA GCT GTA CCA/AGT CCT CAT GCT TGA GCA GGT CTT (villin; a marker chosen to 

normalize expression) using a Bio-Rad CFX-96 realtime PCR machine and SYBR Green-based PCR 

reagent.  

3.2.5 Effect fatty acids on epithelial TSLP expression in vitro  

Effects of fatty acids on TSLP expression in vitro were tested using CMT93 cells. This murine 

rectal epithelial line was obtained from American Type Culture Collection and cultured in an 

incubator at 37ºC, 100% humidity, and 5% atmospheric CO2 in HEPES- and bicarbonate-buffered 

DMEM/Ham's F12 medium supplemented with10% fetal calf serum (FCS) and antibiotics. 

Culture media and reagents were from Hyclone or Gibco. Cells were seeded in 12-well tissue 

culture plates, and when a confluent monolayer was obtained (usually within three days), the 

cells were washed with serum-free medium and incubated overnight with sodium salts of fatty 

acids (0.75 mM of either palmitic-, oleic-, or linoleic acid; highest purity available from Sigma) 

solubilized  with 0.5% fatty-acid-free bovine serum albumin (Sigma) in serum-free medium. After 

overnight incubation, medium was aspirated and RNA isolated and analyzed for TSLP expression 

as with jejunal mucosa, except that TSLP mRNA was normalized for GAPDH mRNA (primer pair 

CCA GGT TGT CTC CTG CGA CTT / CCT GTT GCT GTA GCC GTA TTC A) instead of villin. None of the 

treatments significantly affected cell viability as assessed with Trypan-Blue staining. 

3.2.6 Effect of palmitate on spontaneous allergic sensitization to peanut protein 

To study the effect of dietary triglycerides on allergic sensitization during longer-term feeding, 

male C3H/HeJ mice were fed for up to 6 weeks with custom diets in which 10% of the protein 
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source consisted of partially defatted peanut flour (the other 90% consisted of casein). The diets 

were prepared by Harlan Laboratories, Inc., using 12% dark-roasted peanut flour (Byrd Mill 

brand). As source of fat (20% of calories) served either palm oil (Harlan diet TD.110685) or 

peanut oil (Harlan diet TD.110684).  

3.2.7 Systemically allergen challenge 

 Three weeks after gavage with peanut protein or 4 weeks after chronic feeding of peanut 

protein in the various diets, mice received 30 mg of peanut butter protein intraperitoneally in 

0.3mL of sterile PBS [198]. Body temperature was measured telemetrically immediately before 

and every 5 minutes after the challenge, using subcutaneous transponders (Bio Medic Data 

Systems Inc.) and mast cell degranulation was estimated by measuring serum levels of mouse 

mast-cell protease 1 (mmcp-1) 90 minutes after the challenge by ELISA (eBioscience). Signs of 

anaphylaxis were estimated with a semi-quantitative scoring, with “0” being assigned to mice 

with no symptoms, “1” to mice which were stationary but moved when provoked, “2” to mice 

which remained immobile even when provoked, and “3” to mice which lied down. 

3.2.8 ELISA 

To detect antigen-specific IgE, we used a custom-developed ELISA as described before[196]. In 

short, 96 well BD Falcon ELISA plates were coated with 20 µg/100ul peanut butter protein in 

carbonate buffer (pH 9.6) at 4 ˚C overnight. Washed plates were then treated with blocking 

solution (NAP blocker, GBiosciences) for 1 h at room temperature. Mouse serum, diluted 1:10 in 

“NAP” blocking solution (GBiosciences), was added for 1 h at room temperature. Unbound 

ligand was washed with Tris-Buffered Saline containing Tween 20 (TBST). Alkaline-phosphatase 

conjugated goat anti-mouse IgE (SouthernBiotech) was added at 1:800 dilution in blocking 

solution and incubated for 60 min or longer at room temperature in complete darkness After 
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washing unbound antibody, AP substrate (femto-ELISA-AP Substrate; GBiosciences) was added 

and the absorption at 450 nm (A450) was read after addition of 50 µl stop solution (3 M NaOH).  

3.2.9 Statistics 

We used Graphpad Prism version 5 to analyze the results and the data were displayed as 

average ± S.E.M. One way ANOVAs were used for intergroup analysis following by between-

groups post-hoc analyses (Newman-Keuls). Temperature data were analyzed by comparing 

maximum temperature drop or area under the curve. Statistical significance was assumed at 

P<0.05. All figures show representative results of at least two repeats per experiment. 
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3.3 Results 

3.3.1 Gavage of peanut butter protein in palm oil induces allergic sensitization 

To test whether palm oil can promote oral allergic sensitization to peanut protein in a single 

gavage model similar as seen previously with MCT oil[196], we gavage fed male C3H/Hej mice 

with a single dose of 80 mg peanut protein in 0.3 ml of palm oil, peanut oil, or a 1:1 mixture of 

palm oil and peanut oil. Serum anti-peanut IgE was measured three weeks later. As shown in 

Figure 1A, mice that were gavaged with peanut protein in palm oil alone or palm oil mixed with 

peanut oil had significantly higher anti-peanut protein IgE than the mice gavaged with peanut 

protein in peanut oil only. Using soybean oil instead of peanut oil also did not result in 

significant allergic sensitization (Figure 3.1D). To test the anaphylaxis level of mice sensitized by 

gavage with peanut protein mixed with different oil, they were challenged intraperitoneally with 

30 mg peanut protein in 0.3 ml PBS to determine anaphylaxis. As shown in figure 3.1B and C, 

mice sensitized with peanut protein in palm oil alone or mixed 1:1 with peanut oil released more 

mmcp-1 into the bloodstream and showed a stronger drop in body temperature than mice 

sensitized by gavage with peanut protein in peanut oil only and water. While mice responding 

with a temperature drop and mmcp1 release showed clinical signs of anaphylaxis, such as 

immobility and hunched postures, diarrhea or significant stool softening was not evident as seen 

previously in experiments with MCT[196] (not shown). Similarly, Figure 3.1E and F showed the 

similar protective role of soybean oil as peanut oil in peanut protein sensitization and 

anaphylaxis. 

3.3.2 Feeding peanut flour in palm-oil based diets induces spontaneous allergic sensitization 

We previously reported spontaneous allergic sensitization in mice fed peanut-protein containing 

diets in which the fat source consisted of MCT (refined coconut oil). We tested whether palm-oil  
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Figure 3.1. Palm oil causes allergic sensitization and anaphylaxis. (A)&(D) Anti-peanut IgE 18 

days after gavage with peanut protein (80mg) in indicated vehicles (n=6). All the values are after 

control subtraction. (B)&(E) Body temperature drop after challenge by means of intraperitoneal 

injection 18 days after sensitization (30mg peanut protein in 0.3ml PBS). (C)&(F) Plasma mouse 

mast cell protease 1(mmcp-1) 90 minutes after the challenge. *P<0.05, **P<0.01, ***P<0.001. 

All the data are shown as mean±SEM. 

PA-Palmitic acid 

PO-Peanut oil 
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based diets would have similar effects, and observed indeed that mice fed with peanut flour in 

palm-oil based diets but not peanut-oil based diets developed anti-peanut protein IgE within 3-4 

weeks (Figure 3.2A). Consistent with this, we observed that the mice in the palm oil group, when 

challenged intraperitoneally with peanut protein in MCT as per our previous protocol[196], 

showed signs of anaphylaxis that were also reflected by increased serum mmcp1 levels (Figure 

3.2B). 

3.3.3 Palm oil induces jejunal TSLP expression 

Oral sensitization with dietary antigens may involve stimulation of intestinal epithelial 

expression of cytokines that promote Th2 responses, such as TSLP. To test whether the 

observed allergic sensitization with palm oil involved intestinal mucosal TSLP expression, we 

gavaged mice with palm oil or peanut oil (0.3 mL each) and isolated the jejuna 5h later. TSLP 

expression in mucosal scrapings was measured by RT-PCR and appeared to be significantly 

increased by palm oil compared with peanut oil or water. We next investigated whether palmitic 

acid, the major fatty acids derived from palm oil, is able to stimulate TSLP expression in vitro. To 

this end, CMT93 cells were incubated with PBS, palmitic, oleic-, or linoleic acid (as sodium salts; 

the major fatty acids in palm oil, peanut oil, and soybean oil, respectively), and TSLP mRNA was 

quantified by realtime PCR the day after. As shown in Figure 3.3B, palmitic acid significantly 

increased TSLP expression compared to the other fatty acids  Thus, it appears as if allergic 

sensitization through palm oil gavage is associated with upregulation of TSLP expression in the 

jejunum. 
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Figure 3.2. Effects of palm oil feeding on peanut sensitization and anaphylaxis. (A) Anti-peanut 

IgE during 4 weeks of feeding with diets enriched with peanut flour in which oil was replaced as 

indicated. (B) Plasma mouse mast cell protease 1(mmcp-1) 90 minutes after intraperitoneally 

challenge (30mg peanut protein in 0.3ml PBS). *P<0.05, **P<0.01, ***P<0.001. All the data are 

shown as mean±SEM.  
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Figure 3.3. Effects of palm oil intestinal epithelial TH2 cytokine expression in vivo and in vitro. 

(A) TSLP mRNA in epithelia from jejunum 4 hours after indicated vehicle gavage (n=6). (B) TSLP 

mRNA fold change in CMT93 cells 12hrs after incubating with 0.75mM of either palmitic-, oleic- 

or linoleic acid solubilized with 0.5% fatty-acid free bovine serum albumin in serum-free medium 

(n=3). *P<0.05, **P<0.01, ***P<0.001. All the data are shown as mean±SEM.  
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3.4 Discussion 

The main finding in this study is that acute or chronic palm oil feeding promoted allergic 

sensitization to concomitantly ingested antigens, as evidenced by increased antibody production 

and anaphylaxis following antigen re-exposure. This may be explained by our second finding 

that palmitate oil can induce the expression of novel Th2-biasing cytokines in the epithelium of 

the upper gastrointestinal tract. In the following, we will discuss each of these findings and 

address their potential relevance. 

Not only for cooking, palm oil existed broadly in the products around us such as body lotion, 

detergent, butter and other food products. Based on the evidence that Angiopoietin-like protein 

4 (Angptl4), an important modulator of LPL activity, can protect against severe proinflammatory 

effects characterized by severe mesenteric lymphadenitis of saturated fat  by inhibiting fatty 

acid uptake into macrophages in mesenteric lymph nodes[199], we believe saturated fatty acids 

have inflammatory effect on different tissues as refer to their pharmacological properties. 

Furthermore, Lu and his colleagues found that the palmitic-acid esterified to the sn-1,3 positions 

of the glycerol backbone, the main form of palmitic acid in vegetable oil, leads to intestinal 

erosions and morphological damage in Muc2-/- mice by failing to induce immunosuppressive 

regulatory T cells [197]. We previously demonstrated that acute or chronic MCT (medium chain 

triglycerides, which contains C8 and C10 mostly) feeding promoted allergic sensitization to 

concomitantly ingested antigens, as evidenced by increased antibody production and 

anaphylaxis following antigen re-exposure. The results were significantly different if we used LCT 

(long chain triglycerides, which contains mainly oleic and linoleic-acid.)[196]. MCT fatty acids 

that are from coconut oil are notably known as “saturated fatty acids”, this most likely gives us a 

hint of the different pharmacological properties on food allergy both in sensitization and 

anaphylaxis phases of saturated fatty acids and unsaturated ones. Interestingly, the palm oil we 
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used had much similar effects on promoting peanut protein allergy (Figure 3.1 and 3.2) as MCT 

that we reported. 

We then liked to investigate whether saturated fatty acids differ from unsaturated fatty acids in 

terms of immune responses to dietary antigen. The first cell barriers to interact with dietary 

fatty acids are the intestinal epithelial cells. It is now becoming increasingly clear that intestinal 

epithelial cells not only play a role in food allergies because of their barrier function, but also 

because of their active participation in immune responses to microbial and dietary antigens. 

TSLP, one novel epithelial cytokine was recently proved to be important for the induction of 

experimental food allergy[200]. Interestingly, our study showed that mice gavaged with palm oil 

had a significant increase in intestinal-epithelial expression of TSLP (Figure 3.3). The effect was 

biggest in the jejunum, which is the principal site of fat absorption. Then we got the same result 

in vitro when we used CMT 93 cells and different free fatty acids (Figure 3.3). 

In conclusion, our study suggests that dietary saturated fatty acids (Palm oil) may have a 

previously unappreciated effect on immune responses to dietary antigens, both on sensitization 

and anaphylaxis, by promoting a Th2 bias. Thus we have reasons to suspect the risk role of 

saturated fatty acids on some Th2 responses induced disease such as food allergy, pollen allergy, 

eczema and etc since Palm oil exists in a lot of daily necessities including baby products. This 

finding may explain why food allergy has regional properties. It also inspired us to expand our 

research targets to other saturated fatty acids to further prove our findings and to study TSLP 

involved JAK/STAT pathway. 
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CHAPTER IV. Materials and Methods of Chapter V and VI 

4.1 Animals and diets 

C57BL/6J (Stock #000664) mice were obtained from The Jackson Laboratory (Bar Harbor, ME). 

Mice were housed individually ventilated cages with free access to food and water and 

maintained in a temperature-controlled room under negative pressure with a 14h/10h light:dark 

cycle. Mice homozygous for the ABCG5 and ABCG8 mutant alleles (G5G8 KO) and their WT 

littermates were obtained from trio breeding of male and female hemizygous mice as 

described[201]. G5G8 KO mice and their WT littermates were weaned between 18 and 21 days 

onto a pellet plant sterol free diet (PSF diet, Research Diet, D10040301) to prevent STSL[201]. 

Plasma levels of phytosterols were barely detectable compared with G5G8 KO mice on chow 

diet[202]. 

To induce STSL, G5G8 KO mice and their WT littermates were transferred to PSF diet after 

weaning for two weeks followed by standard chow diet for 10 weeks until the plasma levels of 

phytosterol reach steady statues (Figure 4.4A). 

Mice carrying the human CETP minigene (B6.CBA-Tg(CETP)5203Tall/J) were obtained from The 

Jackson Laboratory (Stock number: 003904). Mice were housed individually ventilated cages 

with free access to water and food. The colony was maintained in a temperature-controlled 

room under negative pressure with a 14h/10h light/dark cycle. Male hemizygous and female WT 

(C57BL/J) mice were bred by trio. Male CETP transgenic (Tg) and their WT littermates were 

weaned between 18 and 21 days onto standard rodent chow diet. 

To induce expression of transgene, mice analyzed between 10-12 weeks of age were transferred 

to high fat, high cholesterol Western diet (41% kcal fat, 1.5% w/w cholesterol, Research Diets 

Inc., New Brunswick, NJ. Product number: D12079B) for two weeks. 
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4.2 Plasma, bile and intestinal perfusate analysis 

Biliary and intestinal perfusate total cholesterol content were measured by commercial 

colorimetric-enzymatic assays (Wako Chemicals, Richmond, VA). Plasma phytosterol 

concentration was measured by GC-MS, using modifications of previously published 

methods[203]. Plasma CETP activity was determined by using commercial CETP activity assay kit 

(Roar CETP Activity Assay Kit, Cat. No. RB-CETP). Bile flow was determined gravimetrically 

assuming a density of 1 mg/mL. 

4.3 Intestine perfusion procedures 

Mice were anesthetized with 2mg urethane/g body weight intraperitoneally and placed in a 

temperature-controlled moist chamber (HUGO SACHS ELEKTRONIK HARVARD APPARATUS 

GmbH D79232, Germany) with steady temperature of 37°C to maintain body temperature. A 

longitudinal cut was made from the lower abdominal incision site along the midline to the 

sternum. Two hemostatic forceps were used to separate the skin and expose the peritoneum. A 

sterile cotton- tipped applicator wetted in sterile PBS was used to push aside the liver lobes and 

intestine to expose the common bile duct and gall bladder. The bile duct was ligated with a 3cm 

length silk suture and the gall bladder cannulated with a 10cm length of PE-tubing. The tubing 

was secured to the gall bladder with a 3cm length silk suture. Diverted bile was collected every 

10 or 15 minutes for 90 minutes and stored on ice. The tail vein was cannulated with a Tail Vein 

Catheter (Braintree Scientific, INC. No. MTV-01) attached to a syringe pump containing 20mM  
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Figure 4.1. Perfusion assay for measurement of biliary and intestinal cholesterol secretion 
rates simultaneously. 
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Figure 4.2. Bile acid content in mice bile and intestinal perfusate. The red dash line indicates 

the bile acids content in intestinal perfusate. Data were determined by two-tailed t-test. 
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tauracholate. Taurocholate was infused at a rate of 100nmol/min to maintain biliary lipid 

secretion. (Figure 4.1)  

Perfusion of the proximal (first 10 cm) small intestine where highest TICE rate was observed 

[132] were performed simultaneously. An inflow catheter attached to a peristaltic pump was 

inserted in the small intestine just below the fundus of stomach and an outflow catheter was 

fitted 10 cm distal to the inflow catheter for perfusate collection. Both catheters were fixed with 

intestine with 3cm length silk sutures. The proximal intestine was flushed with 5 mL PBS (37°C) 

to remove the lumenal contents and fill with perfusate (37°C, see fluid composition below). 

Perfusions were performed at a fixed flow rate (3 mL/h) over the 90 minute period. Perfusate 

fractions were collected every 10 or 15 minutes and stored on ice simultaneous to bile collection. 

At the end of the perfusion period, blood was collected by cardiac puncture and serum was 

obtained by means of centrifugation (12,000rpm, 2.5 min). (Figure 4.1) 

The rate of bile acid transit is 0.5 µmol/min and is similar to the rate of hepatic bile acid output 

(Figure 4.2) and allows for a comparison of the relative rates of biliary vs. intestinal cholesterol 

secretion. 

To examine HDL-mediated cholesterol delivery to bile vs. intestine, mice were injected with 

0.6µCi/mouse [3H]-cholesteryl oleate HDL retro-orbitally 30 minutes before the perfusion 

procedure.  

4.4 Perfusion fluid composition 

Perfusions were carried out with a modified Krebs solution (119.95 mmol/L NaCl, 4.8 mM KCl, 

1.2 mM KH2PO4, 1.2 mM MgSO4 · 7H2O, 15 mM HEPES, 1.3 mM CaCl2 · 2H2O and 10 mM L-

glutamine; final pH 7.4) supplemented with 10 mM bile salt and 2mM phospholipid (10 mM 

taurocholate [TC]: 2mM phosphatidylcholine [PC]). Mixtures were made as follows:  
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taurocholate (Sigma) was dissolved in methanol and egg yolk L-α-phosphatidylcholine (Sigma) 

was dissolved in chloroform. Two preparations were mixed in a volume ratio of 1:1 and solvents 

were evaporated under a mild stream of nitrogen at 45°C. The residue after evaporation was 

lyophilized overnight. Lyophilized samples were sealed and stored -80°C until the day of the 

intestine perfusions. Before the start of the intestine perfusions, the films were dissolved in 

perfusion buffer (room temperature).  

4.5 Mouse estrogen replacement treatment 

Ovariectomy was performed on WT female mice (C57BL/6, 8weeks age) and 2 weeks later these 

mice were assigned to groups to receive estradiol(E2, 0, 36, 200 or 600ug/ml, n=5 mice/group) 

via silastic tubing capsules for one month. A group of intact female mice (n=5) without drug 

treatment were included for control comparison. All of the surgery work was done by Dr. Lisa 

Cassis group, University of Kentucky. 

4.6 Immunoblot and Quantitative and Real-time PCR 

The preparations of proteins, SDS-PAGE, and immunoblotting were conducted as previously 

described[201]. STAT-60 (Tel-Test, Inc.) was used in total RNA extraction from liver and intestine 

and reversely transcripted into cDNA with iScript cDNA Synthesis Kit (BIO-RAD, Hercules, CA). 

The relative abundance was determined by RT-PCT using SYBR Green detector on Applied 

Biosystem 7900HT fast-Real Time PCR System (Carlsbad, CA)[201]. 

4.7 Isolation and labeling of lipoproteins 

Mouse HDL and human HDL (ρ = 1.063–1.21 g/ml) was isolated from fresh plasma from healthy 

human volunteers or male WT and CETP transgenic mice at age of 12 weeks by density gradient 

ultracentrifugation as described. All isolated fractions were dialyzed against 150 mM NaCl and 
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0.01% EDTA (saline-EDTA), and stored under nitrogen gas at 4°C. Protein concentrations were 

determined by the method of Lowry et al. HDL was labeled with 3H-Cholesteryl oleate as 

described previously[204]. Briefly, 3H-Cholesteryl oleate in acetone (15 μCi/mg protein) was 

added dropwise with swirling to 2 ml lipoprotein deficient serum (LPDS) in a glass tube at room 

temperature. The acetone was then evaporated under nitrogen gas for 45 min. 5 mg HDL in 2 ml 

saline-EDTA was added to the labelled LPDS and was incubated at 4°C for 2 h The density of the 

labelled lipoprotein was adjusted by solid KBr to 1.21 g/ml , then the labeled lipoprotein was 

recovered by ultracentrifugation for 11.5 h at 55000 rpm, dialyzed against saline-EDTA, and 

stored under nitrogen gas at 4°C. All procedures were performed under sterile conditions[205]. 

4.8 Statistical analysis 

All Data were presented as mean±S.E.M. and analyzed using GraphPad Prism. Data shown in 

were analyzed by two-tailed t-test, two-way ANOVA and linear regression. Significance was set 

at *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.  
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CHAPTER V. Sexually dimorphic adaptive responses maintain cholesterol elimination in the 

absence of ABCG5 and ABCG8 

5.1 Introduction 

ABCG5 and ABCG8 encode a pair of ATP-binding cassette half-transporters that form a complex 

(G5G8) promoting the elimination of neutral sterols and cholesterol[206] through hepatobiliary 

secretion. The expression of G5G8 is restricted in the liver and intestine. Mutations in either 

ACBG5 or ABCG8 result in sitosterolemia (STSL), a monogenic recessive disorder characterized 

by the accumulation of phytosterols in plasma, tendon, and tuberous xanthomas; elevated low 

density lipoprotein (LDL) cholesterol; and premature coronary artery disease[207]. Genetic 

ablation of G5G8 in mice disrupted cholesterol homeostasis[208], caused infertility and 

lipoatrophy[209], and liver abnormalities and cardiac lesions[210]. Disruption of both ABCG5 

and ABCG8 in mice leads to extremely low biliary cholesterol concentrations yet biliary 

phospholipids and bile acid concentrations are not altered[22].  Similar results are got from mice 

lacking either ABCG5 or ABCG8[21, 211]. Conversely, overexpression of ABCG5 and ABCG8 in 

mice leads to 5-fold increase in biliary cholesterol concentrations[23]. Besides, accelerating 

biliary cholesterol secretion by administration of adenoviral vectors encoding ABCG5 and ABCG8 

(AdG5G8) restores glycemic control and reduces plasma triglycerides in obese db/db mice[212]. 

It is also worth noting that G5G8-independent biliary cholesterol excretion has been found 

under some circumstances which needs further studies[213, 214]. 

With the exclusive function in cholesterol elimination, G5G8 plays a significant role in reverse 

cholesterol transport (RCT), the process consists of delivery of cholesterol from peripheral tissue 

and macrophages to liver, followed by secretion into bile by G5G8 and its final fecal elimination. 

This hepatobiliary pathway is considered to be the classic and sole route for cholesterol 
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secretion from body, playing a critical role in cardiovascular disease (CVD) prevention my 

mediating the cholesterol transferring to liver for disposal. However, it is found that some 

animal models which hepatic cholesterol metabolism were genetically altered still maintained 

certain amount of fecal neutral sterol levels[22, 128, 129, 141, 215, 216]. In ABCB4-/- mice with 

abrogated biliary phospholipid and cholesterol secretion that intravenously injected free 

cholesterol partly ended up in the feces as neutral sterol [128], suggesting a direct route from 

blood to intestinal lumen. This pathway was known as Transintestinal Cholesterol Excretion 

(TICE) [132], an important pathway for cholesterol elimination in mice. It was further proved 

that the cholesterol secreted into intestinal lumen originated from blood directly rather than 

intestine itself. Of importance of G5G8 in classic RCT, it is crucial to determine the role of G5G8 

in TICE. It was reported that the G5G8 KO still maintained certain amount of fecal neutral sterols 

loss[22]. Furthermore, when intestine perfusion was performed on G8 KO mice, no significant 

effect of lack of ABCG8 on cholesterol secretion from intestine was observed[132]. In another 

hand, in a mouse model with increased TICE induced by PPARδ agonist, intestinal G5G8 mRNA 

levels were found no significantly different[151]. Therefore, the role of G5G8 in TICE remains 

undetermined and needs further exploration. 

Like mentioned above, mutations in either ACBG5 or ABCG8 result in sitosterolemia (STSL) 

marked with elevated circulating phytosterol levels[208]. It was reported that circulating levels 

of sitosterol and campesterol are correlated with fractional and absolute absorption of dietary 

cholesterol positively, but are related to whole body cholesterol synthesis inversely. Therefore, 

accumulation of non-cholesterol sterols may account for the very low rates of cholesterol 

synthesis in STSL[217]. Yu et al. found there is approximately 50% decline in cholesterols in the 

livers and plasma of G5G8 KO mice due to low hepatic cholesterol synthesis relative to WT 
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mice[218]. Therefore, to better understand the role of G5G8 in RCT and TICE, it is necessary to 

exclude the effect of sitostrolemia.  

Among previous studies on cholesterol homeostasis such as biliary cholesterol secretion and 

transintestinal cholesterol efflux (TICE), male animals were the prevalent subjects to study on 

and gender differences were frequently neglected in the past. However, the rates of gallstone 

disease happen in women two to three times higher than men[219, 220]. One possible 

mechanism suggests that estrogen increases biliary cholesterol secretion causing cholesterol 

supersaturation of bile[221]. Besides, female mice expressed more ABCG5 and ABCG8 at mRNA 

levels stimulated by high cholesterol synthesis or dietary intake via LXRs[222] in the absence of 

cholesterol[223]. Therefore, it is rational to study cholesterol homeostasis on both genders. 

We speculated, on the basis of the above findings, that the role of G5G8 in TICE and whole body 

cholesterol homeostasis is underestimated due to the effects of STSL. It is also important to 

know the effect of STSL in whole body cholesterol homeostasis. Female and male mice were 

both used to study the sex-related difference in cholesterol elimination in this manuscript.  
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5.2 Results 

5.2.1 Female mice have higher biliary and lower intestinal total cholesterol secretion rates 

than male mice 

To determine if sex would affect the biliary and intestinal cholesterol secretion rates and the 

relationship between them, we use both male and female WT mice to perform perfusion assay 

described in Methods and Materials. Not surprisingly, we found the female mice had higher bile 

flow rates and bile cholesterol concentration than male mice (figure 5.1A&B). Similarly, we 

found higher biliary total cholesterol secretion rates in female mice than males in a time window 

of 90 minutes as expected (figure 5.1C&E). Interestingly, we found that female mice had lower 

intestinal total cholesterol secretion rates than male mice (figure 5.1D&F). Furthermore, It is 

worth noting that the sum of total cholesterol secreted from both hepatobiliary and 

transintestinal pathways remained similar in both genders (figure 5.1G). These data may suggest 

that female mice may prefer hepatobiliary pathways to eliminate cholesterol rather than 

transintestinal pathway compared with males. It also confirmed a complimentary relationship 

between hepatobiliary and transintestinal cholesterol secretion routes to maintain whole body 

cholesterol elimination that we found previously. 

5.2.2 Female mice adapt to G5G8 deficiency by increasing TICE 

To determine the impacts of G5G8 in TICE, we compared both biliary and intestinal cholesterol 

excretion rates in WT and G5G8 KO mice of both sexes. All mice were maintained on a PSF diet 

beginning at weaning to prevent the development of STSL. We found no differences on bile flow 

rate between either genotypes or sexes (figure 5.2A). No surprisingly, G5G8 KO mice had lower 

bile cholesterol concentration and biliary cholesterol excretion rates compared to their WT 
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littermates (figure 5.2B, C&E) as previously reported[201]. However, this difference is 

significantly  

 

Figure 5.1. Female mice have higher biliary and lower transintestinal cholesterol secretion 

rates than males. (A) Bile flow rate. (B) Biliary cholesterol concentration. (C-D) average biliary 

and intestinal cholesterol secretion rates. (E-F) Cumulative biliary and intestinal cholesterol 
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secretion rates. (G) Sum of cholesterol secretion. ****p<0.0001. Data were analyzed by T test 

(upper) and linear regression (bottom). All data are shown as mean±SEM. 
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greater in females compared with males (figure 5.2B, C &F). The differences of biliary 

cholesterol concentration we found in male mice between genotypes were not as prominent as 

what was reported before[224]. The possible reason might be the effect of plant sterol in the 

diet that would inhibit cholesterol synthesis[208] that our experimental mice did not have 

access to yet was ingested by the mouse model used previously. Interestingly, intestinal total 

cholesterol excretion was increased in female KO mice compared with their WT littermates, 

indicating a possible G5G8 independent cholesterol elimination. The difference not observed in 

males (figure 5.2D, G&H). Besides, no differences of the genes implicated in RCT were found 

different between genotypes (figure 5.3). It is worth noting that NPC2 expressions are high in 

females than males in both liver and intestines in both genotypes (figure 5.3). 

5.2.3 G5G8 KO male mice showed pronounced decrease in biliary cholesterol secretion when 

fed with PS containing diet (chow diet) 

G5G8 KO male mice have about 90% lower biliary cholesterol levels compared to their WT 

littermates fed with chow diet[201]. We found that G5G8 KO mice had lower bile cholesterol 

concentration and biliary cholesterol excretion rates compared to their WT littermates yet this 

difference is significantly greater in females compared with males fed with PSF diet (figure 5.2B, 

C &F). To check if the plant sterol is the factor that affect the cholesterol secretion in G5G8 KO 

mice, we transferred male G5G8 KO mice and their WT littermates from PSF diet back to chow 

diet and monitor the development of STSL. About 10 weeks later, the plasma plant sterol levels 

of G5G8 KO mice reached a steady state and were more than 120-fold than WT littermates 

(figure 5.4A). Perfusion assay was performed on these mice and we detected more pronounced 

difference in biliary cholesterol secretion rates between G5G8 KO and WT mice (figure 5.4B) 

than what was found in mice fed with PSF diet (figure 5.2F). When maintained on chow diet, 

accumulation of non-cholesterol sterols may lead to the very low rates of cholesterol synthesis  
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Figure 5.2. Female mice adapt to G5G8 deficiency by increasing TICE. (A) Bile flow rates. (B) 

Biliary cholesterol concentration. (C-D) average biliary and transintestinal cholesterol secretion 

rates of G5G8 KO mice and WT mice in both sexes during surgery. (E-F) Cumulative biliary 

cholesterol secretion of G5G8 KO and WT mice in both sexes during 90 minutes. (G-H) 

Cumulative intestinal cholesterol secretion of G5G8 KO and WT mice in both sexes during 90 

minutes surgery. ****p<0.0001. Data were analyzed by two way ANOVA (upper) and linear 

regression (middle and bottom). All data are shown as mean±SEM. 
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Figure 5.3. Relative mRNA expression in the livers and intestines. mRNA expressions were 
determined by real-time PCR. n=4~5 per group. Data were analyzed by two-way ANOVA. 
***p<0.001, ****p<0.0001 
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in STSL[225] and that may accounts for the low cholesterol levels in bile of G5G8 KO mice fed 

with PS containing diet. This result also indicated that the exclusive role of G5G8 in biliary 

cholesterol secretion in male mice may be overestimated.  

5.2.4 Estrogen can manipulate G5G8 expression in female mice 

To determine the possible mechanism accounts for the greater dependence on hepatobiliary 

cholesterol secretion in female mice, we test liver G5G8 protein and mRNA levels of both sexes 

and female mice underwent estrogen replacement treatments. Ovariectomy was performed on 

WT female mice (C57BL/6, 8weeks age) and 2 weeks later these mice were assigned to groups 

to receive estradiol(E2, 0, 36, 200 or 600ug/ml, n=5 mice/group) via silastic tubing capsules for 

one month. A group of intact female mice (n=5) without drug treatment were included for 

control comparison. As expected, we found bare G5G8 expression in G5G8 KO mice in both 

sexes. And we also found that in WT groups, females had much more G5G8 expressions in the 

livers than males (figure 5.5A), which is consistent with the finding that female tend to secrete 

more cholesterol into bile than males[221]. Accordingly, we found E2 treatment upregulated 

liver ABCG5 expressions compared to intact control mice (figure 5.5B) that may explain why 

females express more G5 than males. Interestingly, the G5G8 mRNA expressions of livers were 

the opposite of their protein levels (figure 5.5C&D). There might be a post-translational protein 

manipulation mechanism that needs to be further determined.  
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Figure 5.4. Biliary cholesterol secretion rate was recovered in male ABCG5/G8 KO mice when 

transferred back to chow diet for 10 weeks. (A) plasma plant sterol levels of male WT and G5G8 

KO mice three weeks after transferring to chow diet. (B)  Cumulative biliary cholesterol 

secretion of WT and G5G8 KO mice during 90 minutes. ****p<0.0001. Data were analyzed T test 

(left) and linear regression (right). All data are shown as mean±SEM. 
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Figure 5.5. Estrogen upregulate ABCG5 expression in mRNA levels in the livers. (A-B) Western 

blot of ABCG5 and SR-B1 protein levels in livers of ovariectomized female mice treated with 

different doses of estrogen. (C-D) Relative mRNA expression for livers of ovariectomized female 

mice treated with different doses of estrogen. Data were analyzed by T test. All data are shown 

as mean±SEM. *p<0.05, **p<0.01, ***p<0.001.  
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5.3 Discussion 

We made several findings within the present study: 1) Female mice preferentially eliminate 

cholesterol through the biliary pathway, whereas male mice depend on intestine. 2) Estrogen 

increases G5G8 that may account for this difference. 3) Female mice adapt to G5G8 deficiency 

by increasing TICE. 4) In the absence of sitosterolemia, male G5G8 KO mice maintain biliary 

cholesterol secretion with an unknown mechanism.  

TICE is a specific pathway that accounts for up to 70% of daily total body neutral sterol secretion 

in mice[140]. However, the possible transporters that accounts for cholesterol delivery to 

intestinal lumen remains unknown. The sterol efflux proteins ABCG5/ABCG8 seem to be good 

candidates for the mediation of cholesterol secretion from enterocytes to the intestinal lumen. 

However, many studies disagree on the relevance of G5G8 to TICE[132, 151, 208], making its role 

unclear.  

However, there are three points that are worth noting in the previous studies. Firstly, male mice 

are the most prevalent subjects in cholesterol homeostasis and TICE studies, and gender 

differences were frequently neglected in the past. However, the rate of gallstone disease in 

women is two to three times higher than in men[219, 220], due to the cholesterol supersaturation 

of bile[221] caused by increased biliary cholesterol secretions. In addition, female mice express 

much more ABCG5 and ABCG8 at mRNA levels, stimulated by high cholesterol synthesis or 

dietary intake in the absence of cholesterol[223]. We also found that female mice express more 

G5 protein in livers than male mice fed with a PSF diet (figure 5.5A). It is rational to research 

cholesterol homeostasis in both sexes. Secondly, in previous TICE studies, intestinal perfusion 

assays were widely used to measure the average rate of transintestinal cholesterol secretion. In 

some of the studies, bile was cannulated for 15 minutes to measure the basal bile flow and the 
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cholesterol concentration, yet hepatobiliary cholesterol secretion rates were not measured at 

the same time as TICE[137, 151]. We developed an assay that allowed us to compare the 

relationship between the rates of hepatobiliary and transintestinal cholesterol secretion and 

how they cooperate in whole body cholesterol homeostasis. Lastly, mutations in either ACBG5 

or ABCG8 result in STSL marked with elevated circulating phytosterol levels[208] and 

accumulation of non-cholesterol sterols may account for the very low rates of cholesterol 

synthesis in STSL[217]. Most of the previous studies were based on G5G8 KO mice fed with a 

chow diet. It is important to understand the role of G5G8 in cholesterol homeostasis exclusive of 

STSL. In our experiment, we measured and compared both biliary and intestinal cholesterol 

secretion rates on G5G8 KO mice and their WT littermates in both sexes. These mice were 

maintained on PSF diet to prevent STSL after weaning. Thus, we can determine the effects of sex 

and STSL on the cholesterol elimination process. 

Not surprisingly, we found that female mice had high biliary cholesterol concentration and 

secretion rates than male mice (figure 5.1), which is consistent with the phenomenon that 

females tend to secrete more cholesterol into bile than males[221]. Furthermore, females 

express higher G5 in the liver than male mice, and estrogen upregulated the G5 expression in 

female mice livers (figure 5.5A). In addition to estrogen induced biliary cholesterol saturation, 

these results may also explain why patients of any gender who underwent hormone 

replacement therapy tend to have increased risk for gallstone formation[221]. But we did not 

find a consistent expression of G5G8 at mRNA levels (figure 5.5B). There might exist a 

posttranslational mechanism that accounts for it. However, the female mice had lower total 

cholesterol secretion rates in the intestine than male mice (figure 5.1D&F), and the sum of the 

total cholesterol secreted from both hepatobiliary and transintestinal pathways remained 

similar in both sexes (figure 5.1G). This data suggests that female mice defaults hepatobiliary 
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pathways to eliminate cholesterol, rather than transintestinal pathways as compared with males. 

The results also confirmed a complimentary relationship between hepatobiliary and 

transintestinal cholesterol secretion routes to maintain whole body cholesterol elimination, a 

finding that posited in another study.  

As expected, we found that G5G8 KO mice have lower cholesterol concentration than WT mice 

in both sexes, a finding which was widely reported (figure 5.2B&C). However, this difference is 

significantly greater in females compared with males (figure 5.2B, C &F). The differences in male 

mice between genotypes were not as prominent as what was reported before[224], which 

means that the G5G8 KO mice maintained a certain level of biliary cholesterol secretion in the 

absence of plant sterol. These mice were maintained on a PSF diet, thus explaining the plant 

sterol’s effects on cholesterol secretion that our experimental mice did not have access to, 

unlike the previous models. Based on the mechanism that was mentioned in the second 

paragraph, it is very likely that blockage of cholesterol synthesis induced by accumulation of 

plant sterol made the role of G5G8 in RCT overestimated. Furthermore, deficiency in plant sterol 

may stimulate some possible G5G8 independent pathways in male G5G8 KO mice for biliary 

cholesterol elimination.  

In addition, we found that the total cholesterol excretion in the intestine was increased in 

female KO mice compared with their WT littermates, indicating another possible G5G8 

independent cholesterol elimination pathway. Two possible G5G8 independent cholesterol 

elimination pathways were reported before. Annemiek Groen at el. reported that the ATP8B1 

deficient mice maintained a high cholesterol output as WT mice did independent of G5G8 

activity. The possible cause for this phenotype is due to the direct extraction of cholesterol from 

the canalicular membrane by hydrophobic bile salts caused by an ATP8B1 deficiency[214].  

Donna at el. reported a G5G8 independent mechanism for basal biliary cholesterol secretion in 
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rats during lactation, but a dependence on G5G8 for maximal biliary cholesterol secretion[213]. 

The possible transporter responsible for increased TICE in female G5G8 KO mice needs to be 

further explored. 

 In summary, the present studies demonstrate sexually dimorphic cholesterol elimination in 

mice. Female mice preferentially eliminate cholesterol through the biliary pathway, whereas 

males depend on the small intestine with the possible mechanism that estrogen increases G5G8 

expression in the liver. Female mice adapt to G5G8 deficiency by increasing TICE by an unknown 

G5G8 independent cholesterol elimination mechanism. In the absence of STSL, male G5G8 KO 

mice maintain biliary cholesterol secretion by an unknown mechanism, and the role of G5G8 

may be overestimated in mice with STSL. 
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CHAPTER VI. CETP alters route of total and HDL cholesterol elimination 

6.1 Introduction 

Cardiovascular disease (CVD) is the leading cause of death globally and account for approximate 

one-third of all deaths in the United States[226].  Plasma concentration of LDLc is thought to be 

one of the primary predictors of CVD incidence and lowering LDLc has been the primary 

therapeutic target for preventing and treating CVD for decades [226]. However, CVD-associated 

mortality and morbidity were not reduced prominently with LDLc lowering with statin therapy 

[227], HDLc elevating therapy has become the promising therapeutic target because HDLc was 

shown to be the even more relevant predictor than LDLc for CVD in a great amount population 

studies [100]. HDLc’s cardioprotective role was explained by many mechanisms, but functioning 

in facilitating Reverse Cholesterol Transport (RCT) is widely accepted. 

The classic RCT pathway starts from the efflux of cholesterol from peripheral tissues and from 

macrophages in the arterial wall through the cholesterol transporter adenosine triphosphate-

binding cassette transporter ABCG1 and ABCA1 [228, 229]. The cholesterol carried by 

lipoproteins is transported to the liver for uptake by the specific receptors SR-BI on the 

hepatocyte surface. HDL, although some findings on transgenic mice indicate that LDL was also 

involved [124], is widely accepted as the main lipoprotein that mediates this process. The 

cholesterol is transferred to bile through canalicular membrane of hepatocyte after uptake at 

the basolaterol side by cholesterol transporter ABCG5 and ABCG8[22]. Biliary cholesterol is 

secreted to intestinal lumen where a certain amount of reabsorption of cholesterol occurred 

[230]. Remaining of cholesterol is eliminated through feces. 

This hepatobiliary pathway is considered to be the classic and only route for cholesterol 

secretion from body. However, it is found that some animal models which hepatic cholesterol 
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metabolism were genetically altered still maintained certain amount of fecal neutral sterol levels 

[22, 128, 129, 141, 215, 216]. It was reported that in ABCB4-/- mice with abrogated biliary 

phospholipid and cholesterol secretion that intravenously injected free cholesterol partly ended 

up in the feces as neutral sterol [128], suggesting a direct route from blood to intestinal lumen. 

This pathway was known as Transintestinal Cholesterol Excretion (TICE) [132], an important 

pathway for cholesterol elimination in mice. It was further proved that the cholesterol secreted 

into intestinal lumen originated from blood directly rather than intestine itself. Which 

lipoproteins are involved in this transport remains controversial. Several receptors mediate 

hepatic uptake of cholesterol from circulating lipoproteins for cholesterol elimination. Scavenger 

receptor B1 (SR-B1) preferentially binds to ApoA1 and mediates the uptake of esterified 

cholesterol mainly from HDL [134]. Unexpectedly, TICE was increased about two-fold in SR-B1-

deficient mice [137]. Similarly, ABCA1-/- mice that lack normal HDL content secreted 

radiolabeled cholesterol from plasma into intestinal lumen at a similar rate as WT mice did and 

TICE was unaltered between two mice models [140]. Low density lipoprotein receptor (LDLR) 

plays an important role in the classic hepatobiliary route and clears apolipoprotein (apo)B-

containing LDL particles or apoE lipoproteins [231]. However, contrary to liver, Cédric Le May at 

el. found that the acute repression of TICE was dependent on the LDLR yet LDLR-/- mice tended 

to have increased TICE [139].  Thus the findings on the lipoproteins contributed to TICE remains 

unclear and needs to be explored. 

Cholesteryl ester transfer protein (CETP) is a 74kDa glycoprotein to transfer cholesteryl ester 

from HDL to larger lipoprotein like LDL or VLDL, and to exchange triglyceride from larger 

lipoproteins to HDL concomitantly [232]. CETP transgenic mouse strains have shown higher 

cholesterol levels of VLDL and LDL and lower levels of HDL than normal WT mice [233]. In this 

study, we investigated the roles of different lipoproteins in TICE by using CETP transgenic mouse 



99 
 

model with varied plasma lipoprotein pools. We also evaluated the role of HDL in TICE by 

injecting tritium labeled HDL particles to mice of two genotypes. Data indicated that CETP 

enhanced hepatobiliary cholesterol secretion in mice yet which was not contributed by HDL. In 

contrast, CETP modified HDL particles favored TICE for cholesterol elimination. 
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6.2 Results 

6.2.1 CETP had no effects on physiological features and plasma lipoprotein profile in mice 

maintained on Rodent Chow Diet 

To define if CETP changed physiological features on mice under basal conditions, male WT and 

CETP Tg mice were transferred to Rodent Chow Diet after weaning until 12 weeks for 

experimental use. As expected, we found that the plasma CETP activity was barely detected in 

WT mice, but was much abundant in transgenic mice and was comparable to what is in human 

plasma (Figure 6.1B). Interestingly, body weight and plasma cholesterol concentration seemed 

not affected by this and did not differ between two genotypes (Figure 6.1 A&C). Similarly, FPLC 

analysis did not show plasma lipoprotein distribution differences between genotypes (Figure 

6.1D). CETP genes facilitates the transport of cholesteryl esters and triglycerides between 

lipoproteins in plasma. The inefficiency of CETP in transgenic mice fed with Rodent Chow Diet 

may be due to the lacking of sufficient triglycerides pool as substrates for CETP to work with in 

these mice. 

6.2.2 CETP had no effects on either biliary or transintestinal total cholesterol secretion rates 

in mice maintained on Rodent Chow Diet 

To determine if CETP has effects on biliary and tranintestinal cholesterol secretion rates under 

basal conditions, we performed perfusion assays described in Materials and Methods on male 

CETP and WT mice at age of 12 weeks to compare biliary and transintestinal cholesterol 

secretion rates simultaneously. We found that CETP does not affect bile flow rates and bile 

cholesterol concentrations in mice maintained on Rodent Chow Diet (Figure 6.2A&B). Similarly, 

we did not detect a difference on biliary and transintestinal cholesterol secretion rates in a 
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period of 90 minutes between genotypes either (Figure 6.2C-F). Interestingly, compared to the 

relative  
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Figure 6.1. CETP had no effects on mice body weights, plasma cholesterol concentration and 

plasma lipoprotein distribution in mice fed with Rodent Chow diet. (A) Mice body weights, (B) 

plasma CETP activity, (C) cholesterol concentration and (D) FPLC fractions analysis of 12-week 

male WT and CETP transgenic (Tg) mice fed with rodent chow diet.  n=3~4 per genotype. Data 

are mean ± S.E.M. Panel (A-C) were determined by two-tailed t-test. ****p<0.0001 
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low biliary cholesterol secretion rates (Figure 6.2E), both genotypes performed a compensatory 

increased intestinal cholesterol secretion rates (Figure 6.2F). But when cholesterol secretion 

rates were compared within genotypes, we found that the both male WT and CETP mice favored 

intestine to eliminate cholesterol when maintained on chow diet (Figure 6.8A&B). (Female mice 

were the opposite, unpublished data) Furthermore, the sum of total cholesterol secreted from 

both hepatobiliary and transintestinal pathways remain similar in both genotypes (Figure 6.8C). 

These data may suggest a complimentary relationship between hepatobiliary and transintestinal 

cholesterol secretion routes to maintain whole body cholesterol elimination.  

6.2.3 CETP upregulated mice body weights, liver weights and plasma cholesterol levels and 

altered HDL and LDL cholesterol contents predominantly in response to two-week high 

fat, high cholesterol Western Diet feeding 

It is known that cholesterol upregulates CETP activity and hepatic CETP gene expression in 

transgenic mice expressing human CETP, and high fat content diet further enhance this effect 

[234]. To make the physiological features of CETP transgenic mice more prominent, 8 weeks 

CETP transgenic mice and WT littermates were transferred to high fat, high cholesterol Western 

Diet for two weeks. As expected, CETP activity was predominantly elevated by 2 weeks Western 

Diet feeding (Figure 6.3B). Different from mice fed with Rodent Chow Diet, the body weights 

and plasma cholesterol levels were higher in CETP transgenic groups compared to WT controls 

accordingly (Figure 6.3A & C).  Furthermore, CETP predominantly reduced HDL and elevated LDL 

content according to mice plasma FPLC analysis (Figure 6.3D). 
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Figure 6.2.  CETP had no effects on either biliary or transintestinal total cholesterol secretion 

rate in mice fed with rodent chow diet. (A) average bile flow rates, (B) Biliary cholesterol 

concentration, (C) average biliary cholesterol secretion rates and (D) average transintestinal 

cholesterol secretion rates of male WT and Tg mice at age of 12 weeks in a period of 90 minutes. 

(E) Cumulative biliary cholesterol secretion rates and (F) Cumulative intestinal cholesterol 

secretion rates of 12 weeks male WT and Tg mice throughout 90 minutes. n=3 per genotype. 

Data are mean ± S.E.M. Panel (A-D) were determined by two-tailed t-test. Panel (E&F) were 

determined by linear regression. P value less than 0.05 is considered to be significant. 
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Figure 6.3.  Tg mice had higher mice body weights, plasma cholesterol concentration and had 

altered plasma lipoprotein distribution in response to two weeks western diet feeding. Mice 

body weights (A), Plasma CETP activity (B), cholesterol concentration (C) and FPLC fractions 

analysis (D) of 12-week male WT and Tg mice fed with Western Diet for two weeks.  n=6 per 

genotype. Data are means ± S.E.M. Panel (A-C) were determined by two-tailed t-test. *p<0.05, 

**p<0.01, ****p<0.0001 
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6.2.4 CETP altered hepatobiliary and transintestinal total cholesterol secretion rates in mice 

maintained on Western Diet for two weeks 

Similar as described above, we performed perfusion assay on 12-week male mice maintained on 

Western diet for two weeks. Bile total cholesterol concentrations, but not bile flow rates of CETP 

group were higher compared to WT mice (Figure 6.4A&B), which indicated both increased 

average and cumulative biliary cholesterol secretion rates in a period of 90 minutes (Figure 

6.4C&E). In contrast, CETP mice showed a decreased intestinal total cholesterol secretion rates 

compared to WT group (Figure 6.4D&F). Similarly, when cholesterol secretion rates were 

compared within genotypes, we found that when maintained on Western Diet, WT mice did not 

have differences between biliary and intestinal total cholesterol secretion rates yet CETP mice 

had much lower intestinal cholesterol secretion rates compared to their biliary pathway (Figure 

6.9A&B). Interestingly, when cumulative biliary and intestinal cholesterol secretion rates were 

added up, there were no differences between two genotypes on sum of cholesterol secretion 

rates (Figure 6.9C). Combine with the results in mice fed with chow diet, this results may further 

illustrate that the hepatobiliary and intestinal cholesterol secretion routes are compensatory to 

each other in cholesterol elimination independent of genotype. Furthermore, CETP may 

facilitate cholesterol to hepatobiliary route for elimination when stimulated by Western Diet. 

Most of genes involved in cholesterol homeostasis were not found significantly different 

between genotypes in both liver and intestine (figure 6.5). 

6.2.5 CETP altered hepatobiliary and transintestinal HDL-derived cholesterol secretion rates in 

mice fed with Western Diet for two weeks 

By knowing that CETP would alter hepatobiliary and transintestinal total cholesterol secretion 

rates when stimulated with Western Diet, we next want to illustrate if this alteration was due to  
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Figure 6.4.  CETP upregulated biliary and downregulated intestinal total cholesterol secretion 

rates in mice fed with western diet for two weeks. Unlike bulk cholesterol secretion, HDL-

derived cholesterol were preferentially delivered to the intestine in Tg mice. (A) average bile 

flow rates, (B) Bile cholesterol concentration, (C) average biliary cholesterol secretion rates and 

(D) average intestinal cholesterol secretion rates throughout 90 minute. (E) Cumulative biliary 

cholesterol secretion rates and (F) transintestinal cholesterol secretion rates throughout 90 

minutes. n=6 per genotype. Data are means ± S.E.M. Panel (A-D) were determined by two-tailed 

t-test. Panel (E&F) were determined by linear regression. *p<0.05, **p<0.01, ****p<0.0001. 
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Figure 6.5. Gene expression in both protein levels and mRNA levels in liver and intestines of 

WT and CETP transgenic mice. (A) Western blot of ABCG5 and SR-B1 protein levels in livers of 

WT and CETP transgenic mice. (B) Relative mRNA expression of genes for livers of WT and CETP 

transgenic mice. (C) Relative mRNA expression of genes for intestines of WT and CETP transgenic 

mice. Data were analyzed by T test. All data are shown as mean±SEM. *p<0.05. 
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the different routes that lipoprotein-derived cholesterol went through in the presence of CETP. 

In another study, we injected 12 weeks male CETP and WT mice fed with both Rodent Chow and 

Western Diet with 0.6µCi/mouse [3H]HDL-cholesterol ester retro-orbitally 30 minutes before 

perfusion assay. Similar to total cholesterol secretion patterns, when maintained on Chow diet, 

CETP has no effects on HDL-derived cholesterol secretion rates from both routes (Figure 

6.6A&B). Interestingly, we found that HDL-C secretion patterns of both biliary and intestinal 

routes were the opposite to total cholesterol secretion rates when the mice were fed with 

Western Diet for two weeks. CETP mice showed decreased hepatobiliary and increased 

intestinal HDL-C secretion rates compared to WT controls (Figure 6.6C&D). These results suggest 

that under Western Diet feeding condition, HDL-derived cholesteryl esters were preferentially 

delivered to the intestinal lumen directly rather than bile in CETP transgenic mice for cholesterol 

elimination. Therefore, the increased bulk biliary cholesterol secretion rates we observed in 

CETP Tg mice were not mainly contributed by HDL. 

6.2.6 CETP-modified HDL favored intestine for cholesterol elimination 

It was reported that treatment with CETP may delay the clearance of rat HDL cholesteryl ester 

from blood and its uptake by the liver[235]. This finding may explain why HDL-derived 

cholesteryl ester in CETP mice preferentially delivered to the intestinal lumen directly rather 

than bile for cholesterol elimination. To further explore if CETP-modified HDL altered the 

pathway for HDL-derived cholesteryl ester elimination, we extracted and labeled HDLs from 

both 12 weeks WT and CETP male mice maintained on western diet for two weeks with [3H]-

cholesteryl ester. 0.6µLCi/mouse labeled WT and CETP HDLs were injected back to two groups 

of male WT mice retro-orbitally respectively 30 minutes before perfusion assay. We did not 

detect differences between biliary WT HDL and CETP HDL derived cholesterol secretion rates 

(Figure 6.7A), which is consistent to what was reported [235]. However, intestinal CETP HDL-C 
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secretion rates were higher than that of WT HDL-C, which indicated that CETP modified HDL 

preferentially delivered cholesterol to intestine for cholesterol elimination (Figure 6.7B). 
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Figure 6.6. CETP altered hepatobiliary and intestinal HDL-derived cholesterol secretion rates in 

mice fed with Western Diet but not Chow Diet. 0.6 µCi/mouse of human [3H]-cholesteryl 

oleate HDL was injected into 12 weeks male WT mice 30 minutes before surgery. (A) 

cumulative biliary [3H]-cholesterol secretion rates in mice fed with chow diet. (B) cumulative 

intestinal [3H]-cholesterol secretion rates in mice fed with chow diet. (C) cumulative biliary [3H]-

cholesterol secretion rates in mice fed with Western Diet. (D) cumulative intestinal [3H]-

cholesterol secretion rates in mice fed with Western Diet.  n=4~5 per genotype. Data are 

means±SEM. Data were analyzed by linear regression.  ****p<0.0001. 
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Figure 6.7. CETP-modified HDL favored intestine for cholesterol elimination. 0.6 µCi/mouse of 

[3H]-cholesteryl oleate HDL extracted from WT and Tg mice fed with Western Diet for two 

weeks was injected into 12 weeks male WT mice 30 minutes before surgery. (A) Cumulative 

biliary [3H]-cholesterol secretion rates. (B) Cumulative intestinal [3H]- cholesterol secretion rates. 

n=6 per genotype. Data are means±SEM. Data were analyzed by linear regression.  *p<0.05. 
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Figure 6.8. Both Tg and WT mice have higher intestinal than biliary total cholesterol secretion 

rates when maintained on chow diet. (A) Cumulative total cholesterol secretion rates in WT 

mice. (B) Cumulative total cholesterol secretion rates in Tg mice. (C) Sum of biliary and intestinal 

total cholesterol secretion rates in both genotypes. n=3 per genotype. Data are means±SEM. 

Data were analyzed by linear regression.  **p<0.01.  
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Figure 6.9. Tg but not WT mice had higher biliary than intestinal total cholesterol secretion 

rates in response to two-week Western Diet feeding. (A) Cumulative total cholesterol secretion 

rates in WT mice. (B) Cumulative total cholesterol secretion rates in Tg mice. (C) Sum of biliary 

and intestinal total cholesterol secretion rates in both genotypes. n=5~6 per genotype. Data are 

means±SEM. Data were analyzed by linear regression.  ****p<0.0001. 
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6.3 Discussion 

We made several findings within the present study: 1) CETP upregulated biliary and 

downregulated intestinal total cholesterol secretion rates. 2) HDL-derived cholesterol ester in 

CETP transgenic mice favored the intestine for cholesterol elimination. This can be explained by 

the fact that CETP-modified HDL favored intestine for cholesterol elimination. 3) Active 

cholesterol secretion pathways in both liver and intestine appear to work corporately to 

maintain cholesterol excretion routes. 

Firstly, we reported a method for simultaneous measurement of intestinal and biliary 

cholesterol secretion for at least 90 minutes to compare cholesterol elimination rates between 

hepatobiliary and transintestinal pathways. In previous TICE studies, intestinal perfusion assays 

were widely used to measure the average rate of transintestinal cholesterol secretion. In some 

of the studies, bile was cannulated for 15 minutes to measure the basal bile flow and cholesterol 

concentration, yet hepatobiliary cholesterol secretion rates were not measured at the same 

time with TICE[137, 151]. We developed an assay that allowed us to compare the relationship 

between the rates of hepatobiliary and transintestinal cholesterol secretion. During intestine 

perfusion, we ligated the bile duct and cannulated gall bladder for bile collection in 90 minutes 

period. Because the intestine is the main site for bile salt reabsorption, the bile duct ligation in 

the classic intestine perfusion assay cut off the enterohepatic circulation of bile salts and other 

non-lipid components found in bile. As amphipathic molecules with hydrophobic and hydrophilic 

regions, conjugated bile salts function as cholesterol acceptor in cholesterol secretion process 

[236]. To solve the bile salts exhaustion issue during the assay, we infused the mice with 

taurocholate through the tail vein to supplement exogenous bile salts to maintain normal biliary 

cholesterol secretion. To mimic the rate of physiological bile acids secretion to the intestinal 

lumen, the bile acid amount in the intestinal perfusate we used was at the similar range of what 
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is in the real bile (Figure 6.10). Thus, this assay allows us to compare the hepatobiliary and 

transintestinal cholesterol secretion rates simultaneously so that we can have an idea of the 

potential relationship between the two pathways and how they cooperate in whole body 

cholesterol homeostasis. 

TICE is a specific pathway that accounts for up to 70% of daily total body neutral sterol secretion 

in mice[140]. However, the possible lipoproteins that deliver cholesterol to this pathway remain 

controversial. It was reported that HDL does not mediate TICE based on the evidence that 

ABCA1-/- mice did not show altered TICE rates as compared to WT mice[140]. Furthermore, TICE 

increased about two-fold in SR-B1-deficient mice[137]. However, contrary to the liver, Cédric Le 

May at el. found that the acute repression of TICE was dependent on the LDLR when PCSK9 was 

present, yet LDLR-/- mice tended to have increased TICE[139]. Thus, the extent on the 

lipoproteins contributed to TICE remains unclear and needs to be explored. Mice lack CETPs and 

have much lower biliary cholesterol relative to bile salt secretion as compared with 

humans[237]. CETP transgenic mice overcame the issue and humanized the biliary lipid 

secretion. CETP transgenic mouse strains have shown altered plasma lipoprotein pool 

composition[233], and plasma CETP activity can be further stimulated by high fat diet (Figure 

5.3D). Therefore, CETP transgenic mice are proper models to study the role of the contributions 

of different lipoproteins to TICE.  

In the first study, we did not see many differences in physiological features of CETP transgenic 

mice fed with chow diet, following no difference in both hepatobiliary and transintestinal 

cholesterol secretion rates as compared with WT mice (Figure 6.1&6.2). Although CETPs were 

highly expressed in the plasma of transgenic mice, HDLs are still the main components in the 

plasma lipoprotein pool[232]. Indeed, studies with the human hepatoma cell line HepG2 show 

that the efficiency of CETP on the uptake of HDL cholesteryl ester is high only in the presence of 
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LDL[238]. Therefore, the results we saw from mice fed with chow diet may be due to the lack of 

a certain amount of proper substrate (LDL) and triglycerides pool (Figure 6.1D) for CETP to work 

with. Secondly, LDLR is ubiquitously expressed in mammals and plays an important role in 

maintaining cholesterol homeostasis[239]. LDLR recognizes ApoB-100 of LDL particles through a 

stoichiometry of a single copy of apoB-100 per one LDL particle per receptor monomer[239]. 

The low content of plasma LDL might be due to the efficiency of LDLR uptake in transgenic mice.  

It is known that cholesterol upregulates CETP activity and hepatic CETP gene expression in 

transgenic mice expressing human CETP, and a high fat content diet further enhances this effect 

[234]. We found that the CETP transgenic mice had lowered HDLs and increased LDLs and other 

altered prominent physiological features when stimulated with a 2-week Western Diet feeding 

(Figure 6.3). Under this condition, CETP transgenic mice showed increased biliary total 

cholesterol secretion rates and decreased transintestinal cholesterol secretion rates compared 

to WT mice (Figure 6.4). This result might be explained by the different favored pathways of 

lipoproteins for cholesterol elimination as a result of the various lipoprotein pools that the two 

groups of mice have (Figure 6.3D). Interestingly, if the cholesterol secretion amount from both 

biliary and transintestinal pathways were added up, the total cholesterol secretion rates 

remained the same between two genotypes (figure 6.8). This result indicated that both liver and 

intestine active cholesterol secretion pathways appear to work corporately to maintain the 

cholesterol excretion route. This finding is consistent with many reports that the patients or 

mammals which experienced deficiency in normal biliary cholesterol secretion maintained 

normal levels of fecal neutral sterol[128, 130]. This finding further illustrates the importance of 

the intestine as a potential therapeutic target for cholesterol elimination when this function of 

the liver is deficient.  
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However, it is still not clear if the increased biliary and decreased transintestinal cholesterol 

secretion rates in CETP transgenic mice were caused by the increased plasma LDL content in 

transgenic mice. Compared to LDLs, HDLs are still the main components of the lipoprotein pool 

in the plasma of transgenic mice (Figure 6.3D). Next, human HDLs labeled with 3H-Cholesteryl 

oleate were used to determine the role of HDL in biliary and transintestinal cholesterol secretion 

pathways. Interestingly, we found decreased biliary and increased transintestinal HDL-derived 

cholesterol (HDL-C) secretion rates in CETP transgenic mice, which are in contrast to the total 

cholesterol secretion rate trends (Figure 6C&D). According to this result, it is likely that HDL-C 

did not contribute to the increased biliary cholesterol secretion rates as much as to the 

transintestinal ones. Additionally, this result is consistent with the finding that the HDL features 

were modified by CETP and hepatic uptake of HDL-ester is delayed after treatment with CETP in 

rats[235]. Therefore, we hypothesized that HDL from transgenic mice was modified by the 

plasma CETP and favored the intestine rather than the liver for cholesterol elimination. HDL 

from both WT and transgenic mice (untreated HDL and CETP modified HDL) were collected and 

labeled with 3H-cholesteryl oleate and injected back into WT mice retro-orbitally to track their 

elimination pathways. We found no differences in biliary HDL-C secretion rates from two 

treatments (Figure 6.7A), which is in agreement with the finding that the biliary HDL-C secretion 

was not different between CETP-treated and untreated HDL administration in rats[235]. Not 

surprisingly, the mice had higher transintestinal CETP modified-HDL-C secretion rates as 

compared to untreated HDL-C (Figure 6.7B). This is consistent with our previous finding that HDL 

favored the intestine for cholesterol elimination in transgenic mice (Figure 6.6D). We can 

assume that some remodeling took place on HDLs in the plasma which affected their uptake by 

liver and intestine. 
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The findings showed that CETPs upregulated biliary and downregulated intestinal cholesterol 

secretion rates, but HDL-derived cholesterol ester favored intestine for cholesterol elimination 

in CETP transgenic mice. This can be explained by the fact that CETP-modified HDL favored 

intestine for cholesterol elimination. More importantly, the perfusion assay we developed 

allowed us to compare the biliary and intestinal cholesterol secretion rates simultaneously, by 

which the relationship between the two pathways were studied for the first time. Both liver and 

intestine active cholesterol secretion pathways appear to work corporately to maintain 

cholesterol excretion routes. 
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CHAPTER VII. Summary and General Discussion for chapter II and III 

7.1 Summary 

The purpose of this study is to determine the hypothesis that fatty acids with different 

chain lengths and saturabilities affect allergic sensitization and anaphylaxis. We demonstrated 

that the absorption pathways of food allergens are varied by absorbing together with different 

fatty acids, leading to different sensitization and anaphylaxis statues. Our findings demonstrated 

that MCT diets promote allergic sensitization to ingested antigen in both acute and chronic 

feeding model whereas LCT played a suppressive role. Similarly, this result can be repeated 

when a chylomicron inhibitor, PL-81, when added to LCT. Unlike LCT, MCT do not form 

chylomicrons that might play a protective role in allergen sensitization and anaphylaxis phases. 

Formation of chylomicron induces macrophage cytokine production that may prevent Th2-

biasing phenotypes in antigen-presenting cells (APC) and may promote oral tolerance. Instead of 

processing antigen into chylomicrons, we found that MCT promote antigens into Peyer’s 

Patches, in particular, the local dendritic cells, more compared to LCT. The role of Peyer’s 

Patches in food allergy is unclear although some studies suggested their roles in oral 

tolerance[240, 241]. Interestingly, LCT promote antigen to Peyer’s Patches more than MLN, 

despite less than MCT. This result may be explained by the possibility that chylomicrons traffic 

through the MLN but prevent the uptake or processing of associated antigens by MLN dendritic 

cells. Besides the protective role in sensitization phase, chylomicron formation also plays a 

suppressive role in anaphylaxis phase of food allergy. Gavage of antigen with LCT in sensitized 

mice did not cause anaphylaxis, unless PL81 was added. In contrast, gavage of MCT in sensitized 

mice caused clinically significant anaphylaxis. The possible explanation is that chylomicrons 

prevent the access of ingested antigens to IgE associated with mast cells and basophils. This 
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hypothesis is proved by in vitro basophil activation tests that the presence of chylomicrons 

reduced the effects of antigen on basophils significantly. 

Besides the effects on antigen absorption pathway, LCT and MCT have different 

pharmacological effects on intestinal epithelial cells, which play important roles in food allergy 

because of their barrier function and active participation in immune responses to microbial and 

dietary antigens like mentioned in section 1.1.2.. We found that MCT via acute gavage or via 

chronic dietary enrichment increased intestinal-epithelial expressions of three Th-2 biasing 

cytokines: TSLP, IL-25 and IL-33, among which, TSLP was shown to be important for the 

induction of experimental food allergy11. The effect is greatest in the jejunum, the major site for 

fat absorption. This may explain why MCT exacerbate food allergy in both sensitization and 

anaphylaxis phases in another way. MCT is one type of saturated fatty acids. Likewise, we found 

that other saturated fatty acids have the similar effects on intestinal epithelial cells. We found 

that acute palmitate oil feeding promoted allergic sensitization to concomitantly ingested 

antigens, as evidenced by increased antibody production and anaphylaxis following antigen re-

exposure. This result may also be explained by the finding that palmitate oil can induce the 

same Th-2 biasing cytokines in the intestinal epithelium, which was confirmed by our in vitro 

experiment. 

In conclusion, our study suggested that MCT may have a previously unappreciated effect 

on immune responses to dietary antigens, both on sensitization and anaphylaxis, by affecting 

antigen absorption and by promoting a Th2 bias. Other saturated fatty acids have similar effects 

as MCT due to the pharmacological effects on intestinal epithelial cells. 

7.2 Insights of effects of fatty acids on food allergy and role of MCT 

7.2.1 The importance of altering antigen absorption pathway by fatty acids 
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Our diet contains great amount of potentially antigenic proteins. Most of those proteins 

are going through enzymatically degradation, yet a small fraction of them escape from the 

degradation and enter body through largely unclear mechanisms. In healthy individuals, the 

escaped allergen (small amount) usually leads to systemic immunological tolerance (“oral 

tolerance”). However, in sensitized individuals, these allergens absorption usually cause 

significant morbidity such as celiac disease or food allergies. Apparently, two questions coming 

from this phenomenon become interesting and important: What happen after escaped allergens 

were absorbed? Is this process the key step to determine the immune system to go to direction 

of oral tolerance or allergy? Our findings that LCT play a protective and suppressive role and 

MCT play an exacerbated role in both sensitization and anaphylaxis phases successesfully 

answer the first question, which is the first time to propose the idea that other dietary 

components other than food antigen itself, fatty acids with different chain lengths, determine 

the induction of food allergy through altering the absorptions of food antigens. Like mentioned 

in 1.2.2, MCT is absorbed into the portal circulation, passing through the liver and then 

immediately into systemic circulation. In contrast, LCT is absorbed via chylomicron formation 

and enters lymph circulation first and then systemic circulation, suggesting that LCT spend 

approximately 4 hours in contact with mesenteric immune system before reaching the systemic 

circulation through the thoracic duct[242]. Based on that, our finding that MCT, instead of LCT, 

decreases systemic allergen absorption but increased Peyer’s Patches absorption and IgE 

formation establishes a foundation for the future researches on locating where the antigens are 

“seen” by APC and how they “choose” to induce Th1 or Th2-bias immune responses. Besides, 

this is also a further confirmation for our previous finding[168]. 

7.2.2 Pharmaceutical effects of fatty acids on intestinal epithelial cells- from the angle of 

evolution of physiological system 
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Our findings of the pharmacological effects of fatty acids on intestinal epithelial cells 

also illustrate the importance of fatty acids in food allergy induction. MCT and other saturated 

fatty acids such as palmitate oil induce production of Th2 cytokines in intestinal epithelial cells, 

which put the individuals and animals in a “ready state” for being sensitized when food antigen 

is present. Besides, fatty acids released in large amounts from dietary triglycerides in the upper 

gastro-intestinal tract have potent detergent properties and may induce transient mucosal 

inflammation, damage and gut leakiness[74] which, theoretically, would allow ingested soluble 

food antigens to enter the body. It was reported that in mice lacking Angptl4, a lipoprotein 

lipase inhibitor, saturated fat induces a severe phenotype characterized by fibrinopurulent 

peritonitis, ascites, intestinal fibrosis, and cachexia[80], which further demonstrated the 

inflammatory effect of fatty acids itself on intestinal epithelial cells. These findings led to an 

important concerning about food industrialization. It has been said, “Nothing in biology makes 

sense except in the light of evolution”[243]. In that light, the digestive, metabolic, and immune 

systems of humans and animals have evolved over millions of years and would be affected by 

the sudden changes in the energy source. Only around 600 years ago, most of human 

population was still living in hunter-gathered societies and consuming the “Paleolithic diet”[244]. 

However, the current Western diet contains most of the calories from seeds, dairy products, 

refined plant oils and refined sugar[244]. None of which were available and consumed during 

the majority of human evolution. The mechanical processing of foods has occurred from around 

100 years ago and greatly accelerated in the last 50 to 60 years. This phenomenon probably 

induce the inadaptation of the physical system that experienced slowly evolution, thus leading 

to some new emerging diet-induced diseases. 

Instead of the human evolutionary diet, in which foods were consumed whole, the 

vegetable-derived cooking oils are separated from seeds, nuts and other plants by mechanical 
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extraction or screw-press or by organic solvent extraction[245]. The intake of such oils has 

increased in the past century, and exponentially since 1950, to more than 50 lb per person 

yearly (figure 7.1[245]). It is worth noting the negative effects of solid hydrogenated (to make 

the oil more stable due to the improvement of saturability) trans-fatty acids. About 25% of 

dietary essential fatty acids are not intake as refined oils rather than in whole foods. Simply 

speaking, corn oil does not equal corn and olive oil does not mean olives[245]. Therefore, the 

pro-inflammatory effects of oil on intestinal epithelial cells are likely due to the food processing 

rather than food itself. As to peanut products, peanut butter consumption has dramatically 

increased since 1950 as well, with the average child in the U.S. eating 1500 peanut butter 

sandwiches through high school. A study from 30 years ago reported that fecal fat excretion 

decreased when changing from ingesting whole peanuts to an equal weight of peanut butter, 

suggesting the peanut butter consumption result in a hyperabsorption of fat[246]. Combined 

with our findings, the role of fatty acids in food allergy induction appears to be more significant 

when consuming peanut products instead of whole peanuts. Another example is baby food. 

MCT is easier to be digested and absorbed compared to LCT and is the main component of fat 

(60%) in breast milk during lactating, based on which, MCT is also used as the majority fat 

source in baby formula processing. However, different from formula, breastmilk is a mixed 

supply of both nutrients and immune protection in terms of the immunoglobulin A levels. 

Besides, very small amount of food antigens would transfer from mom to babies which possibly 

induce oral tolerance to protect the baby instead of being sensitized. According to our finding, 

lactating is very likely the key time window for induction of certain food allergy in babies which 

may become their lifelong burden. That’s to say, without immune protection, consumption of 

MCT only is likely the reason for some babies to induce development of certain food allergy 

which may last the whole life. More evidences need to be provided to test this hypothesis. 
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7.3 The insight of MCT oral sensitization mice model 

7.3.1 Significance of the model in food allergy studies 

In researches of food allergy, several strains including C3H/HeJ, BALB/c mice have be 

investigated as murine animal models for food allergy[247]38. These animals have more 

capacities to produce the anaphylactic antibodies such as IgE and/or IgG1 than others, and 

strains can be divided into high or low IgE responders39. One of the most challenging obstacles 

is to develop murine model of ORALLY induced food allergy due to the tendency for the immune 

system to develop oral tolerance to ingested antigens[248]. We have the similar find that the 

gavage mice with combination of peanut protein and water would not induce sensitization. 

Several rodent models have been developed by using distinct sensitization routes, such as 

intraperitoneal[248, 249] or subcutaneous[250, 251] injection of allergen or genetically modified 

bacteria expressing food antigens[252]. Apparently, these models have several limitations that 

they do not reflect the pathogenic mechanism that induces food allergy, and thus could 

underestimate the importance and involvement of mucosal immune system. With the regard, 

the ideal food allergy rodent model should mimic human food allergy by inducing food 

hypersensitivity by oral ingestion. To achieve this goal, it is necessary to bypass the tendency of 

mice to develop oral tolerance and to ensure the induction of a Th2 response by antigen after 

administration. It is found that toxins such as cholera toxin (CT) have the capability to orally 

stimulate Th2 response and the production of IgG1 antibodies[253, 254]. Recently, other 

bacterial toxins such as staphylococcal enterotoxin B[255] or some approaches based on anti-

acid treatment[256, 257] are developed as well. However, these orally sensitization models still 

have drawbacks. The adjuvants of toxins are used to disrupt the tolerogenic potential of the oral 

route which could underestimade the natural Th2 immune response by food antigen and which 

cannot truly reflect how individuals are sensitized by food antigen in the daily lives. Based on the 
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food allergy models, our finding that MCT, a common dietary fatty acids, would induce 

sensitization successfully without intentionally disruption of tolerogenic potential of immune 

system, which is an oral food allergy model that is truly reflect how Th2 response is induced by 

food antigen itself and is the model most close to the induction of human food allergy by pure 

food components. 

7.3.2 Significance of the model in development of oral vaccination 

The idea of “sensitization” is the similar idea as “vaccination”, the purpose of both of 

which are to generate great amount of antibodies with stimulation of proteins or peptides. As 

early as 900 years ago, the bedousin of the negev desert were reported to feed a dog-bitten 

person the liver of a rabid dog to cure rabies for several days. In ancient China, physicians there 

prescribed the medicines made from fleas collected from sick cows to prevent smallpox. With 

full evidences, in 1900, the Nobel laureate, Charles Richet, demonstrated that the raw meat 

feeding can cure tuberculous dogs which he termed as zomotherapy[258]. Today, most of the 

vaccines are administered by injection with limitations that recipients especially children hate 

needles. In the current times, there are very few licensed oral vaccines and more candidates are 

under development[258]. Based on that, our MCT oral sensitization model may provide a new 

insight of developing oral vaccination by using food-borne component only. 

7.4 Experimental limitations 

 We recognize that our studies have some limitations. In study of protective role of 

chylomicron in effector phase of food allergy, we did an in vitro experiment using intralipid as a 

substitute of chylomicrons. The emulsions contain particles with similar size and lipid content as 

chylomicron but lack Apolipoprotein B48 although intralipid particles would acquire other 

apolipoproteins from serum [259] and have similar metabolic clearance rates as 
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chylomicrons[260]. Using chylomicron separated from mice as carrier might be more relevant to 

physiological conditions. 

Secondly, in the same experiment, we did not determine if the inhibition effect on 

activation of basophils is due to chylomicron particles or their sequestration function for 

antigens. Nevertheless, we demonstrated from this experiment that postprandial lipid transport 

via lamina propria has important effects on the effector phases of food allergies. 

We also found that ingestion of antigen with water rather than fat fail to induce 

anaphylaxis. We currently cannot distinguish the possibility that antigen ingested with water is 

poorly absorbed from the possibilities that antigen ingested with water becomes associated 

with chylomicrons or is otherwise protected from access to mast cell and basophil IgE. 

Regardless of the mechanism involved, our finding is still potentially relevant for optimization of 

oral desensitization, as currently attempted in small clinical trials[261].  

7.5 Clinical implications 

Besides the significance on food industrialization discussed in 7.2 and on development 

of oral vaccination discussed in 7.3, our finding that feeding antigen with LCT might prevent 

anaphylaxis can be an alternative approach during oral treatment while boosting its 

effectiveness by promoting oral tolerance. Please refer to 1.2.1.3 for the introduction of clinical 

treatment on food allergy by inducing oral tolerance. 

7.6 Future directions 

7.6.1 Peyer’s Patches role in food allergy induction 

Peyer’s patches have been studies as a major site for mucosal IgA responses yet less in 

oral tolerance. The results of present study provide direct evidence for the role of Peyer’s 

patches in the induction of oral tolerance. It was reported that ovalbumin (OVA) transgenic mice 



128 
 

had significant increase in transgenic T cells in Peyer’s Patches of mice tolerized by OVA, 

indicating the importance of Peyer’s patches in the development of oral tolerance[262, 263]. 

Peyer’s patches were also found essential for the induction of systemic hyporesponsiveness to 

ingested antigen. We found that both LCT and MCT promote antigen to Peyer patches more 

than MLN, among which MCT would enhance the effect more. It is well accepted that APC, such 

as dendritic cells, macrophages and MHC II B cells, play major roles in the induction of mucosal 

immune responses. Therefore, it is worth determining the role of functioning immune cells in 

Peyer’s patches and how they direct the immune response to oral tolerance or sensitization 

responses. 

7.6.2 Studies on chylomicrons and anaphylaxis 

Chylomicrons are large, spherical triacylglycerol-rich lipoproteins which surface is 

covered with phospholipid monolayer and contains free cholesterol surrounded by a large 

protein, apoB48. Besides, several exchangeable apolipoproteins can be found on the surface of 

the chylomicron, in cluding apoAI, apoAIV, and apoCs. Like discussed in 2.4, to investigate the 

role of chylomicron in shielding epitopes of food antigen, it is more closed to physiological 

conditions by using chylomicrons separated from animals for the in vitro experiments. 

Secondly, chylomicron assembly begins with apoB48 translation. The insufficient supply 

of lipids or microsomal triglyceride transfer protein (MTP) induce degradation of the nascent 

polypeptide. MTP can interact with and transfer lipids to the nascent apoB physically[264]. With 

help from MTP, apoB fold into a configuration which can accept more lipids[265]. Therefore, 

MPT plays an important role in assembly and secretion of chylomicrons. To know better about 

the role of chylomicrons in sensitization and anaphylaxis phases, MTP deficient mice model will 

be good approach to study on. 

7.6.3 Mechanism studies by using TSLP deficient mouse model 
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As discussed in 2.3, the effects of MCT and saturated fatty acids on intestinal epithelial 

cells include stimulating expression of Th2 bias cytokines, TSLP and IL-33 in particular. TSLP and 

IL-33 are critical cytokines responding at the interface between the environment and the body 

with local and systemic immune responses, most of which are thought to be Th2 type[266]. 

Mast cells are distributed everywhere and particularly abundant in epidermis, epithelial cells 

and endothelial cells where TSLP and IL-33 are produced most. Besides, mast cells respond to IL-

33 and TSLP rapidly due to the high expression of the receptors like ST2[267]. In addition, TSLP 

and IL-33 affect other cell biology of mast cells such as growth, development and attachment 

which affect the inflammatory response and probably of significant for the pathology of 

different diseases that is regulated by IL-33/TSLP-mast cell link. To better understand the 

hypothesized link of MCT/Saturated FA-TSLP/IL-33-mast cell-sensitization, TSLP deficient mice 

are worth using by determining the effects of MCT and saturated FA on induction of 

sensitization in this mice model. 

CHAPTER VIII: Summary and discussion for chapter IV and V 

8.1 Summary 

In this study, we want to determine the role of cholesterol transporter ABCG5/G8 in 

TICE and the possible cholesterol donors in TICE based on CETP transgenic mice models. 

In the first study, we found a sexually dimorphic cholesterol elimination in mice that 

females have higher biliary cholesterol concentration and biliary cholesterol secretion rate but a 

lower intestinal cholesterol secretion rates than male mice. This finding suggested that female 

mice preferentially eliminate cholesterol through biliary pathway where male mice depend on 

intestine. Our finding is consistent with the clinical phenomenon that females tend to secrete 

more cholesterol into bile than males[221]. Furthermore, we confirmed that female mice have 

more liver ABCG5 protein expression than male mice fed with PSF diet, which might explain the 
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result above from the angle of cholesterol secretion. Interestingly, the sum of total cholesterol 

secreted from both biliary and transintestinal pathways, suggesting a complimentary 

relationship between these two pathways. Secondly, we found that the differences of biliary 

cholesterol levels between WT and G5G8 KO mice were greater in females than in males when 

fed with PSF diet. The difference between genotypes in male mice was recovered when 

transferred to chow diet (plant sterol-containing diet). These data suggest that accumulation of 

plant sterol may be partially responsible for the blockage of cholesterol secretion in G5G8 KO 

mice due to its effect of inhibiting cholesterol synthesis[217]. Simultaneously, we found that 

female KO mice have increased transtintestinal cholesterol secretion rate compared to their WT 

littermates, indicating a possible G5G8 independent cholesterol elimination. However, the 

possible transporter responsible for that need to be further explored. 

In the second study, we used CETP transgenic mice as models which have altered 

plasma lipoprotein profile to determine the role of HDL in TICE. When fed with western diet, we 

found that CETP mice had increased biliary total cholesterol secretion rates and decreased 

transintestinal cholesterol secretion rates compared to WT mice. This result might be explained 

by the different favors of different lipoproteins for cholesterol elimination. In addition, we also 

found the same result that sum of total cholesterol secreted from biliary and transintestinal 

pathways were the same between genotypes, which further confirmed out finding in the first 

study that these two pathways work corporately with each other for cholesterol elimination. 

Secondly, we found that HDLs did not contribute to increased biliary cholesterol secretion rate 

as much as TICE. This result may be explained by the finding that uptake of CETP modified HDL 

was delayed in the rats[235]. We next collected and labeled HDLs from both WT and CETP mice 

and injected them back to WT mice retro-orbitally to track their elimination pathways. We 

found that mice had higher transintestinal CETP modified HDL-C secretion rates compared to 
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untreated HDL-C and we did not detect any difference of those in bile. We assumed that some 

remodeling took place on HDL in the plasma that affect their uptake by liver and intestine. 

In conclusion, we found sexually dimorphic cholesterol elimination in mice and 

ABCG5/G8 independent cholesterol secretion pathway in female TICE and male biliary pathway 

when fed with PSF diet. Plant sterol is the possible factor to affect biliary cholesterol secretion 

rate in ABCG5/8 KO mice. Based on CETP transgenic model, we found that CETP transgenic mice 

have higher biliary cholesterol secretion rate, which is not contributed by HDL. Furthermore, 

HDL modified by CETP may favor intestine for cholesterol elimination. 

8.2 Cross-talk between liver and intestine on cholesterol metabolism 

In our studies on TICE, the most prominent finding is that no matter that either biliary or 

transintestinal cholesterol secretion pathway was altered, the sum amount of cholesterol 

secreted from both pathways remained similar, which happened in almost all of our mice model 

such as between female and male mice, WT and G5G8 KO mice and between WT and CETP 

transgenic mice. These findings suggested that liver and intestine work corporately with each 

other on cholesterol elimination, illustrating and further confirming the cross-talk between liver 

and intestine on cholesterol metabolism. 

As discussed in 1.3.2, the liver controls plasma cholesterol levels via a complete 

metabolic network of a series of lipoprotein receptors, sterol transporters and nuclear receptors, 

which can translates the signals by cholesterol levels alteration into transcriptional regulation of 

gene expression. Among these factors, LDLR, SR-B1, LXR- and SREBP-targeted pathways that 

functioning significant this network have been extensively reviewed[239, 268-271]. Linked to 

liver by bile duct, the intestine, which is the main site for cholesterol absorption and excretion, 

is important in regulation of cholesterol metabolism (see 1.1.3). Therefore, it is important to 

point out that the balance of cholesterol uptake, synthesis and excretion requires extensive 
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cross-talk between liver and intestine.  It is known from chapter 1.3.2 that RCT is delivery of 

cholesterol from peripheral cells or macrophages to the liver and eliminated in feces from the 

body. After uptake by liver, some cholesterol is used to synthesis of BS through the process of 

addition of a hydroxyl group on position 7 of the steroid nucleus by the enzyme CYP7A1 as 

neutral sterols or bile acids (BS). Intestine would absorb certain amount of cholesterol and BS 

that is secreted into intestinal lumen as described in 1.1.3. It is interesting that the complete 

absence of cholesterol absorption does not have any symptoms. However, the absence of 

intestinal bile can cause deficiencies of essential lipids, leading to clinical symptoms such as 

increased fecal fat loss, malnutrition and a retardation of growth and development in 

children[272]. Therefore, the conversion of cholesterol to BS have considerable significances. 

For one thing, BS is one of the major route for sterol removal from the body and is the 

important cholesterol acceptor for cholesterol transport assistance. Another thing is that BS 

have been found to play an important role in signal transduction pathways. 

8.2.1 BS and signaling 

BS may play a role in regulation of energy homeostasis through the activation of nuclear 

bile acid receptor FXR[273, 274] and the membrane-bound G-protein coupled receptor 

TGR5[274]. In the recent years, it has become clear that BS are not only the major constitution 

of bile and facilitation of dietary fats absorption, but also involved in energy metabolism in both 

genomic and non-genomic ways. BS are the natural ligands of FXR, which regulate BS synthesis 

and transport downstream genes within enterhepatic circulation directly, or by induction of 

FGF15/19 in intestinal epithelial cells. FGF15 and FXR are indicated in control of energy 

metabolism. Furthermore, BS signal through another pathway in peripheral tissues and 

intestinal L cells involving activation of TGR5, which is reported to stimulate energy expenditure 

in brown adipose tissue and skeleton muscle. In colon, TGR5 activation stimulate GLP-1 
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secretion from L-cells which promotes pancreatic insulin secretion, thus improves hepatic and 

peripheral insulin sensitivity[275]. 

8.2.2 BS and cholesterol 

The connection between cholesterol and BS metabolism including some other 

important processes are manifold. It is believed in the literature that BS excretion reflects the 

main route for cholesterol removal from the body. However, in other species including humans, 

this opinion is not quite true. It was reported the ratio of fecal neutral sterol/BS excretion of 2:1 

in humans[276-279] and closer to 1 in rodents yet with largely variations between strains and 

depending on different experimental conditions[280]. It is demonstrated that fecal BS loss 

contributes to cholesterol turnover significantly due to the physiological functions related to the 

amphiphatic nature of the BS molecules, but 95% of BS showed up in the intestinal lumen is 

reabsorbed so that BS pool is maintained in the enterohepatic circulation[281, 282]. From these 

findings, it is clear that removal of excess cholesterol is not the main role of BS synthesis in 

cholesterol metabolism in the whole body. There is still 5% of BS pool lost in the feces per cycle 

and humans have 4-5 cycles per day. Quantitatively, the BS loss is compensated by hepatic 

synthesis from cholesterol to maintain BS pool size, which is a significant way to maintain whole 

body cholesterol homeostasis. 

8.2.3 FGF15/19 and BS synthesis 

Fibroblast growth factor 15 (FGF15) is highly expressed in the terminal ileum and is the 

target for FXR. FGF15 protein was demonstrated to suppress BS synthesis in the liver by 

regulating the expression of the genes involved including CYP7A1. It was shown that the 

upregulation of hepatic BS synthesis was associated with low levels of circulating FGF19 in 

humans[283] and an absence of ileal FGF15 mRNA in mice. However, the concentration of this 

protein in the circulation is very low that it is likely that FGF15/19 may not reach the central 
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zone of liver acini. A recent study failed to prove a relation between FGF15/19 levels in 

circulation and CYP7A1 gene expression in rats or rabbits[284]. Therefore, the contribution of 

FGF15/19 to regulation of BS synthesis is still debated compared to other classic pathways (FXR-

SHP mediated suppression of CYP7A1, LXR, insulin) and may vary in different physiological 

conditions. However, in rats with bile duct ligation induced cholestasis model, absence of FGF15 

might explain the upregulation of hepatic CYP7A1 gene expression[285]. But based on the 

reports that in intestine-specific FXR null mice, only slight upregulation of hepatic CYP7A1 

expression was detected at the specific time window during day-light cycle[286], this question is 

still argued. Therefore, it should be appreciated that the regulation of BS synthesis do not by 

definition represent the opposite sides of the same coin but may actually reflect separate other 

processes[275]. 

8.2.4 Summary 

Collectively, in BS and cholesterol homeostasis, liver is always been considered as a 

central place in maintenance. Actually, its role is significant but not without intensive cross-talk 

with other organs. Our findings that liver and intestine work together and cooperatively in 

cholesterol elimination reflect part of this point. The mechanism of how they are functioning 

together needs further exploration. It is largely ignored here because of the space constraints 

that other potentially relevant organs like brain, adrenals also function significantly in lipid 

homeostasis. Hopefully the development of technology will allow the detailed mapping these 

connections. Therefore, working on the cross-talk between liver and intestine on cholesterol 

elimination will be one of the future directions of our studies. 

8.3 Limitations 

To directly measure the cholesterol amount secreted from intestine, TICE measurement 

model is prevalently used in current TICE studies. In this model, bile duct was ligated to cut off 
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bile secretion in order to measure the net cholesterol secretion from intestine. However, as 

discussed in 8.2, many components in the bile including BS is of great importance in regulating 

signals in maintenance of lipid metabolism both in liver and intestine. Cutting off bile secretion 

path would break the enterohepatic circulation of BS and other lipids, and more importantly, 

the cross-talk between the two organs. It is true that in intestine perfusion assay, “man-made” 

cholesterol acceptor including BS (taurocholate) was added for normal cholesterol secretion. 

However, compared to the BS added into intestinal perfusate, the BS constitution in the natural 

bile is significantly more extensive. In humans, the major bile acids are cholic acid (CA) and 

chenodeoxycholic acid (CDCA), which in mice include CA, CDCA and 6-hydroxiylated bile acids, 

mainly muricholic acid (MCA)[287, 288]. And then they are converted to secondary bile acids, 

which in human refer to deoxycholic acid (DCA), ursocholic acid (UCA), ursodeoxycholic acid 

(UDCA) and lithocholic acid (LCA), and in mice include DCA, UCA, UDCA, murideoxycholic acid 

(MDCA) and hyodeoxycholic acid (HDCA).  

The emerging work showed that these transformations are importantly contribute to 

bile acid signaling and even gut microbiota-induced changes in whole body physiology[289-291]. 

For example, compared with mice raised conventionally, the bile acids pool in germ-free mice is 

less “FXR agonistic” because the content of tauro-β-murocholic acids, an endogenouse mouse 

bile acid functioning as FXR antagonist) increased in the bile and intestinal lumen of these 

mice[289, 292]. Based on these, the simple Taurocholate in intestinal perfusate cannot 

represent the bile acids pool that the intestinal lumen are supposed to in normal physiological 

conditions.  

In addition, because of the important host bile acids species difference, it is 

questionable how to translate many of the recent findings including TICE studies from mouse 

models to humans. For example, humans do not synthesize 6-hydroxylated bile acids such as 
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MCA, which makes the mechanisms whereby gut microbiota alterations generated bile acid pool 

with less FXR activation inoperative in humans. 

Therefore, lacking of sufficient and translational bile acids pool in mice models of TICE 

studies is one limitation, which also point out the future direction on the alteration of intestinal 

perfusate. 

8.4 Future direction 

8.4.1 Future directions of experiments 

We found that intestinal total cholesterol excretion was increased in female KO mice 

compared with their WT littermates, indicating another possible G5G8 independent cholesterol 

elimination. Two possible G5G8 independent cholesterol elimination pathways were reported 

before. Annemiek Groen at el. reported that the ATP8B1 deficient maintained a high cholesterol 

output as WT mice did independent of G5G8 activity. The possible mechanism for this 

phenotype is due to the direct extraction of cholesterol from the canalicular membrane by 

hydrophobic bile salts caused by ATP8B1 deficiency[214].  Donna at el. reported a G5G8 

independent mechanism for basal biliary cholesterol secretion in rats during lactation but a 

dependence on G5G8 for maximal biliary cholesterol secretion[213]. The possible transporter 

responsible for increased TICE in female G5G8 KO mice need to be further explored. To achieve 

this goal, we plan to use Microarray at the University of Kentucky Microarray Core Facility as the 

approach to detect the possible transporters or other proteins expressed in the intestinal 

epithelial cells that are involved in accelerating cholesterol efflux in female ABCG5/G8 KO mice. 

Secondly, we found that the differences of biliary cholesterol secretion in male mice 

between genotypes were not as prominent as what was reported before[224] which means that 

the G5G8 KO mice maintained certain level of biliary cholesterol secretion in the absence of 

plant sterol. We maintained our mice on PSF diet instead of chow to protect the mice from 
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sitosterolemia. Thus the possible reason might be the effects of plant sterol accumulation that 

our experimental mice did not have access to on cholesterol secretion. It was reported that 

circulating levels of sitosterol and campesterol are correlated with fractional and absolute 

absorption of dietary cholesterol positively, but are related to whole body cholesterol synthesis 

inversely. Therefore, accumulation of non-cholesterol sterols may account for the very low rates 

of cholesterol synthesis in STSL[217]. Yu et al. found there is approximately 50% decline in 

cholesterols in the livers and plasma of G5G8 KO mice due to low hepatic cholesterol synthesis 

relative to WT mice[218]. Thus it is very likely that blockage of cholesterol synthesis induced by 

accumulation of plant sterol made the role of G5G8 in RCT overestimated. Plant sterol is also 

known as the LXR agonist and FXR antagonists. To figure out the role of plant sterol in the 

ABCG5/G8 independent pathway is one of our future directions. 

We also found a sexually dimorphic cholesterol elimination in both biliary and 

transintestinal pathways. It was reported that the rates of gallstone disease happen in women 

two to three times higher than men[219, 220]. One possible mechanism suggests that estrogen 

increases biliary cholesterol secretion causing cholesterol supersaturation of bile[221]. Besides, 

female mice expressed more ABCG5 and ABCG8 at mRNA levels stimulated by high cholesterol 

synthesis or dietary intake via LXRs[222] in the absence of cholesterol[223]. Therefore, it is 

rational to study the role of estrogen on cholesterol metabolism. 

8.4.2 Future directions of projects 

Like discussed in 8.2 and 8.3, to study the cross-talk between liver and intestine will be 

our overall direction. To achieve this goal, development of a TICE measurement model that is 

more close to the real physiological conditions is required, including to mimic the constitution of 

the real bile. Since biliary cholesterol is also present in intestinal lumen and the role of which on 
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TICE is not known. Therefore, to study the effects of cholesterol content itself in TICE is also a 

significant concern in our future studies. 
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