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ABSTRACT OF DISSERTATION 

DIETARY SELENIUM SUPPLEMENTATION:  
EFFECTS ON NEURODEGENERATION FOLLOWING TRAUMATIC BRAIN 

AND SPINAL CORD INJURY 

Traumatic brain and spinal cord injury continue to be substantial clinical problems 
with few available treatment strategies. Individuals who are at a greater risk for 
sustaining a central nervous system (CNS) injury, such as professional athletes and 
military personnel, may benefit from a prophylactic supplement that would intervene 
in the neurodegenerative pathways immediately following injury. The high demand 
for selenium within the central nervous system, as well as the synthesis of 
selenoproteins by neurons and astrocytes suggests a critical role of selenium within 
the brain and spinal cord. Studies were designed to test the efficacy of enriched 
dietary selenium status in providing neuroprotective benefits in rodent models of 
spinal cord and traumatic brain injury. Levels of selenium storage within the CNS are 
increased relative to the amount of selenium present in the diet, indicating that 
selenium compounds effectively cross the blood brain barrier.  

In a model of moderate severity spinal cord contusion injury, dietary selenium 
supplementation reduced the number of days until recovery of independent bladder 
function following injury. These benefits did not translate to improvements in 
locomotor function during open field testing or reduction in overall lesion volume in 
the injured animal groups. Examination of gene expression changes 24 hours after 
spinal cord injury revealed that dietary selenium enrichment increased expression of 
genes involved in DNA repair, mitochondrial respiration, and transcriptional 
regulation. By expanding the scope of these studies to include models of traumatic 
brain injury, these data show the importance of selenium in the cortex as well. In 
particular, when compared to diets deficient in selenium, higher levels of dietary 
selenium improve spatial memory performance and mitochondrial respiration. The 
results of this dietary study show modest improvements following both traumatic 
brain and spinal cord injury and suggest that while selenium enrichment may not have 
a profound effect on the secondary injury cascade immediately following injury, the 
presence of adequate dietary selenium is critical for mitochondrial respiration. 



Together the results of these studies suggest that dietary supplementation may play a 
subtle role in injury mechanisms within the CNS and warrant further investigation. 

KEYWORDS: Brain Injury, Spinal Cord Injury, Selenium, Gene Expression, 
Mitochondrial Respiration 
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CHAPTER 1 
Introduction and Background 

 
1.1 Overview of Selenium 

 
1.1.1 Selenium supplementation 
Selenium in its elemental state is a non-metal element with the same valency as 

sulfur, allowing for it to be incorporated in place of sulfur in certain amino acids. 

Selenium is also an essential nutrient for human health and must be obtained through 

dietary sources. Natural intake occurs predominately through grains and meat1. 

Selenium is present in the soil in varying levels, dependent upon climate and specific 

soil composition.  Plants take up selenium directly from the soil as either the 

inorganic salt, selenite, or as selenate, a more readily incorporated form of selenium. 

Plant species incorporate soil selenium as the amino acids selenomethionine and 

selenocysteine, or as selenate. Following uptake and incorporation in plants, 

herbivores receive their necessary levels of selenium from plants grown in 

agricultural areas rich in selenium. Within mammalian tissues, elemental selenium is 

stored in the form of different selenoamino acids within specific selenoproteins. The 

approximately 25 characterized selenoproteins all possess different cellular 

localization specific to that particular selenium species2. 

 

In modern times, selenium deficiency is somewhat rare due to increased transport and 

consumption of foods from various regions. However, isolated cultures that 

predominately eat plant and animal species grown locally can be at risk for selenium 
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deficiency if the regional soil lacks adequate selenium levels. One of the first 

clinically documented cases of selenium deficiency occurred in the 1970s in an 

isolated, rural area of China with selenium deficient soil conditions. Keshan disease is 

characterized as a cardiomyopathy linked to deficient selenium dietary conditions, 

and initiated by a high viral load of the coxsackie virus (CVB3). Increasing dietary 

selenium levels raises immunity and reverses the clinical pathology3. Keshan disease 

is still prevalent in certain areas of China4. While most countries do not have high 

incidences of selenium deficiency, certain populations may be receiving a sub-

optimal nutritional dose. The minimum dietary intake required to prevent disease and 

maintain selenoprotein activity is estimated to be between 20-50µg/day, with 

supranutritional protective levels estimated to be around 120µg/day5. Deficient 

conditions are typically measured using plasma selenium concentrations, however 

some clinicians also use activity of certain selenoproteins as a more accurate measure 

of selenium status in humans6. During dietary deficient conditions, the brain and 

spinal cord prioritize the need for selenium7, suggesting a critical role within the 

central nervous system (CNS). Even though the current recommended dietary 

allowance (RDA) is 55µg/day for adults8, a reference dose (RfD) that allows for a 

larger intake still within safe ranges indicates total safe selenium consumption as high 

as 350µg/day9. Some studies suggest that selenium deficiency may contribute to 

disease susceptibility. Deficient conditions result in difficulty in processing viral load, 

specifically by regulating expression of cytokines and chemokines with influenza 

infection10, while supplementation with selenium decreased overall HIV viral load11.  
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Toxicity, or selenosis, is characterized by brittle nails and hair loss, but may also 

result in skin lesions, nausea, fatigue, and a distinct garlic-like odor on the breath12. 

The tolerable upper intake level (UL) set by the Food and Nutrition Board of the 

Institute of Medicine for selenium consumption in adults is 400µg/day8. However, 

toxicity is largely dependent upon the form of selenium. Some residents in a region of 

high selenium soil content in South Dakota were reported to consume up to 

700µg/day from locally raised livestock high in selenium with no adverse 

consequences13. A commonly known form of selenium, selenium disulfide in anti-

dandruff shampoos, utilizes cytotoxic properties as an anti-fungal agent topically to 

control the scalp issues. However, taken orally, selenium disulfide has an average 

lethal dose (LD50) lower than that of the selenium present in multivitamins14. Natural 

forms of selenium, such as selenomethonine and selenocysteine, show a significantly 

smaller level of toxic potential when compared to inorganic selenium salts, such as 

sodium selenite or selenate15. Selenized yeast, which incorporates inorganic selenium 

as selenomethionine and selenocysteine, also has higher bioavailability and decreased 

toxicity issues. The brand of selenized yeast utilized in these studies, Sel-Plex®, has a 

lower level of both acute and subchronic toxicity in mouse, rat, and canine models 

when compared to inorganic sodium selenite16. Specifically, the LD50 of acute 

administration of Sel-Plex is ≥2500mg/kg in rats and the overall no observed adverse 

effect level (NOAEL) is 30mg/kg/day whereas similar levels of inorganic sodium 

selenite resulted in occasional mortality and clinical chemical changes. The 

predominate form of selenium used to supplement infant formulas, as well as 

mutlivitamins on the market, are typically either sodium selenite or sodium selenate. 
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Thus, it is critically important to consider the average lethal dose and the tolerable 

upper intake level of selenium formulations before utilizing them in clinical studies.   

 

Selenized yeast has also come to the forefront of supplementation studies as an 

effective method for delivering high levels of bioavailable selenomethionine. Yeast is 

grown in the presence of selenium-enriched media. Selenized yeast incorporates 

inorganic selenium (selenite) from supplemented media into the cell wall of the yeast 

and converts it into the seleno amino acids, selenomethionine and selenocysteine17. 

Along with selenomethionine and selenocysteine, selenized yeast has a unique 

chemical profile of other selenoproteins and selenometabolites. Selenized yeast is 

composed of approximately 70-90% L(+)selenomethionine, 10% selenocysteine, and 

a small percentage each of selenocystathionine, γ-glutamyl-Se methylselenocysteine, 

and potentially other predicted selenospecies (Figure 1.1)18, 19.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

 

 

 
 

 
 

Figure 1.1: Chemical structures of selenium compounds. Different components of 
both selenized yeast (A) and inorganic selenium compounds (B). Selenized yeast is 
composed of a unique chemical profile of different selenium containing compounds 
including the amino acids selenocysteine and selenomethionine, as well as various 
derivatives such as selenocystathionine, and γ-glutamyl-Se methylselenocysteine. 
Inorganic selenium compounds are typically supplemented into multi-vitamins or 
livestock diets in the form of sodium selenite or selenate. 
 

 

 

 

 

 

A 

B 
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1.1.2 Selenium metabolism 
Once selenium sources reach the digestive system, transport systems for seleno-

amino acids utilize Na+ dependent transport, much like is utilized for other amino 

acid absorption20. Selenite diffuses directly through the endothelial membrane of the 

small intestine. These differences in absorption may explain the critical differences 

observed in toxicity between these two formats. Selenoprotein P (SelP) is the primary 

transporter for selenium in the plasma for delivery to tissues throughout the body21. 

Once selenium reaches the target tissue, it can either be converted into selenide, the 

precursor for selenoprotein biosynthesis or, in the case of selenomethionine, 

incorporated in place of methionine in normal body proteins (Figure 1.2). The transfer 

RNA for methionine (tRNAMet) cannot distinguish between methionine and 

selenomethionine. This allows for selenomethionine to be stored in high levels in 

tissues and thus readily available for conversion back into selenide for selenoprotein 

synthesis as needed. In particular, the brain stores large amounts of selenomethionine, 

emphasizing the importance of selenium within the CNS22.  

 

When selenium is needed from tissue stores, selenomethionine is converted into the 

intermediate selenocystathione, and then into selenocysteine. Selenocysteine, either 

from conversion of selenomethionine or from dietary sources, is converted into 

selenide by selenocysteine β-lyase or bacterial methionase in the intestine23. Selenide 

is then made into selenophosphate and through the selenocysteine synthetase can be 

attached to the selenocysteyl-tRNA (tRNASec) for selenoprotein biosynthesis. The 

SECIS must be present upstream (within the 3’ UTR) of the of the UGA codon for 

translation to occur. Mutations present in the SECIS are detrimental for incorporation 
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of selenium into selenoproteins. The SECIS binding protein (SBP2) has been found 

through different cross-linking studies to be critical for selenoprotein synthesis, in 

addition to the selenocysteyl-tRNA and the SECIS24. By binding to the SECIS, SBP2 

prevents the translational machinery from reading the UGA as a stop codon and 

translation of Sec can proceed. 
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Figure 1.2: Selenium metabolism. Selenium is typically obtained from dietary 
sources in one of three formats, selenomethionine, selenocysteine, or the inorganic 
selenite (can also be in the form of selenate).  Selenomethionine can be easily 
incorporated into bodily tissues in place of methionine, as tRNA(Met) does not 
distinguish readily between methionine and selenomethionine. This serves a store for 
selenium in tissues in cases of deficiency. Selenomethionine can also be converted to 
selenocysteine or broken down by γ-lyase into methyl-selenol (CH3SeH), which can 
then be converted into selenide. Selenocysteine is converted into selenide by the 
enzyme selenocysteine β-lyase. Selenite is converted into the intermediate 
selenoglutathione by thioredoxin reductase and then into selenide. Selenide (H2Se) is 
the precursor for all selenoprotein synthesis. Adapted from Schrauzer GN19. 
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1.1.3 Selenoproteins 
Selenoprotein biosynthesis requires dietary intake of selenium. Certain 

selenoproteins, such as selenoprotein P (SelP), transport selenium in the plasma to 

tissues for protein synthesis. Once converted to the precursor compound selenide, 

protein synthesis can then begin. The mRNA sequence of a selenoprotein utilizes a 

UGA codon, which normally functions as a stop codon, and also requires a 

selenocysteine (Sec) insertion sequence (SECIS). This insertion sequence is a stem-

loop structure that is coded in the 3’ untranslated region upstream of the coding 

mRNA25. Synthesis also requires the presence of a special tRNA, tRNA-Sec. In the 

amino acid cysteine, the sulphur atom is replaced by selenium. The selenocysteine 

residue functions as the crucial component in oxido-reductase activity in 

selenoprotein enzymes26. Based on genome searches using both the UGA codon and 

the upstream SECIS, approximately 25 selenoproteins have been identified2. 

Selenoproteins function as antioxidant enzymes, in redox signaling, thyroid hormone 

metabolism, transport and storage of Se, and putative protein folding27. While some 

groups of selenoproteins have well characterized functions, many need further study 

and these may play a role in cellular response to oxidative stress. 

 

One of the predominant selenoprotein families critical for human health are the 

glutathione peroxidase (GPx) enzymes. Of the 7 characterized GPx enzymes, 5 are 

selenium dependent27. Glutathione peroxidase enzymes have potent antioxidant 

capability by catalyzing the reduction of hydroperoxides. GPx1, considered to be the 

classic glutathione enzyme, is found in the cytosol of cells, and has been shown to be 

protective against oxidative stress28. The other seleno-specific glutathione enzymes 
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include GPx2 (intestinal GPx), GPx3 (highly expressed in plasma), GPx4 

(ubiquitously expressed and critical for sperm formation), and GPx6 (olfactory 

specific)29. As discussed, selenium is an essential component of several antioxidant 

enzymes and the glutathione peroxidase family enzymes are critical components of 

the human antioxidant response.  

 

The group of thioredoxin reductases (TrxR) also plays a major role in the antioxidant 

defense system in human health. These enzymes can affect cell survival and apoptosis 

by scavenging reactive oxygen species 1. The thioredoxin system acts on lipid 

hydroperoxides, a damaging by-product that is formed following brain and spinal 

cord injury. TrxRs play a crucial role in redox signaling by regulating thioredoxin, a 

central molecule in the redox pathway. 

 

Selenoprotein P is another selenoprotein of importance in human health. SelP has up 

to 10 SeCys residues, allowing it to bind multiple selenium molecules at a time. Thus, 

SelP is the predominate transporter of selenium to peripheral tissues, including the 

central nervous system, and thus is highly expressed in the plasma21. Due to the high 

levels in plasma, SelP protein levels have been used frequently as a biomarker for 

selenium status30. SelP has dual functions and also has antioxidant properties, 

providing protection in the plasma from oxidation and nitration31. SelP knockout mice 

exhibit neurological deficits including axonal degeneration, impaired spatial learning, 

and altered hippocampal synaptic function32, 33. Additionally, SelP expressed in 

astrocytes is a unique membrane bound protein, distinct from the glycosylated and 
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secreted forms of SelP recognized in the plasma and extracellularly in other tissues34. 

This membrane bound SelP helps to protect astrocytes from oxidative damage, even 

selectively retaining selenium levels in cases of deficiency.  

 

Selenoprotein S (SelS) has been identified as an important protein in protein folding 

and is localized within the endoplasmic reticulum35. SelS is also associated with 

inflammatory response. When examined in models of TBI, SelS was upregulated in 

astrocytes in response to injury. Prior to injury, expression of SelS protein is noted in 

naïve neurons, but not in astrocytes. This increase in SelS after injury suggests a 

potential protective role of this selenoprotein in response to induction of harmful 

inflammation that occurs after CNS injury36.  

 

Additionally, selenoprotein O (SelO) has been recently characterized as another 

selenoprotein that plays a role in redox signaling37. However, this particular protein is 

unique in that it appears to localize specifically to mitochondria. SelO expression was 

preserved under selenium deficient conditions, suggesting that this protein is critical 

for cellular function and must be maintained even in deficient conditions37, 38. The 

implications of a selenoprotein that functions as a mitochondrial specific redox 

regulator are particularly interesting in models of CNS trauma. Mitochondrial 

dysfunction generally precedes cellular death following injury and is thus an 

important target for investigation. 
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Table 1.1: Currently identified selenoproteins. Many selenoproteins have been 
identified and the function of these proteins has been identified and largely has been 
identified with antioxidant mechanisms and redox signaling in the cell. However, the 
function of several selenoproteins remains to be elucidated. Additional putative 
selenoproteins have been identified but are not yet characterized. 
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1.1.4 Selenium and modulation of gene expression 
Selenium acts as a micronutrient that is an essential component for multiple different 

selenoproteins. In addition to being incorporated as altered amino acids into the active 

site of antioxidant enzymes, different levels of dietary selenium also have an effect on 

overall gene expression39-42. Changes in mRNA expression can be tissue specific, 

with suboptimal conditions decreasing expression levels of selenoproteins in different 

tissues, driven by post-transcriptional modifications. Regulation allowing translation 

of tRNA(Sec), and thus synthesis of selenoproteins, instead of reading the UGA 

sequence as a stop-codon is dependent upon the SECIS, located in an intron 

immediately upstream of the Sec codon43. Mutations within the SECIS will result in 

the Sec mRNA (UGA) being read as a termination codon instead of the Sec amino 

acid44. 

 

Selenium may also play a role in transcriptional regulation. In particular, the 

selenoproteins in the Trx family control cell signaling pathways via transcription 

factors45. TrxR enzymes are also part of the oxidoreductase family and can reduce 

oxidized Trx, selenite, and lipid hydroperoxides27. 

 

Several studies have examined the effect of different forms of selenium on overall 

gene expression. Studies examining specific selenoglycoproteins in tumor 

progression, showed that selenized yeast induced changes in gene expression in NF-

κB and associated pathways, implying a larger role of selenium in transcriptional 

regulation46. Barger et al. also showed differential effects specific to the form of 

selenium supplementation in mouse models39. Selenium supplementation, regardless 
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of form, reduced the mRNA expression of Gadd45b, and reduced protein levels 

specifically in animals receiving selenized yeast. Expression of Gadd45b is associated 

with the onset of DNA damage and thus decreased expression is evidence of a 

protective response. Treatment with selenium, concurrent with the addition of lead, an 

environmental toxin, altered specific expression patterns40. Gene regulatory pattern 

analysis showed specific effects with organic selenium (selenized yeast and 

selenomethionine) in pathways associated with DNA repair, particularly those 

involved with base excision repair. These changes in gene expression also carried 

over to afford protection of cells from DNA damage after supplementation with 

organic forms of selenium. 

 

1.1.5 Selenium and immune system function 

Selenium is a critical component for healthy immune function. However, the exact 

mechanism is currently unknown. It is hypothesized that the antioxidant activities 

exert protective effects over immune function as well as in response to certain 

injuries47. Increasing levels of dietary selenium, when compared to selenium 

deficiency, help to improve the two components of adaptive immunity, humoral and 

cell-mediated immunity48. A study examining adults with selenium deficiency (below 

1.2µmol/L) showed impaired immune function in response to an injection of a live-

attenuated poliovirus. Selenium supplementation, in the form of sodium selenite, 

restored plasma selenium levels, cytosolic GPx activity, and increased production of 

cytokines49. The increase in selenium levels improved overall viral handling in these 

subjects. Different sources of selenium also improve the overall response against 
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certain forms of cancer. In particular, selenized yeast was used in a large scale clinical 

trial examining cancer prevention (Nutritional Prevention of Cancer Study Group) 

and has been shown to improve outcomes in carcinoma patients50.  Selenium may 

function as an antioxidant through protection of DNA51 or through cell cycle 

mediation52. Studies have also established the interaction of selenium with neutrophil 

function. Selenium deficiency leads to decreased GPx1 activity in neutrophils53.  

 

1.1.6 Selenium and the central nervous system 

The well-studied antioxidant and immune functions of selenoproteins establish a 

crucial role in the central nervous system. While many studies have examined the 

therapeutic efficacy of selenium as preventative against cancer, other sources have 

laid the groundwork for the importance of selenium in central nervous system tissues. 

Several studies have emphasized the importance of antioxidants in the brain and 

spinal cord, particularly following neurotrauma54. Additionally, ebselen, a selenized 

yeast supplement provides neuroprotective effects in rodent cerebral artery occlusion 

and Alzheimer’s Disease models55-57. Yeo et al. showed selenium provided 

neuroprotection in vitro from reactive oxygen species (ROS) induced damage in both 

traumatic brain and spinal cord injury58, 59. However, these studies used an injection 

of sodium selenite directly onto the epicenter of injury, immediately following injury. 

Sodium selenite, as discussed previously, has a high risk of toxicity. The form of 

selenium used, as well as the method of drug delivery, makes translation of these 

findings to the clinical setting unreasonable.  
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Selenium levels are also associated with various neurodegenerative pathologies. 

Patients with Alzheimer’s disease (AD) have consistently lower selenium levels in 

the temporal lobe60. Additionally, supplementation with selenized yeast reduces 

overall amyloid plaque deposition and DNA/RNA oxidative damage in a mouse 

model of AD34. In neurons located in the substantia nigra in patients diagnosed with 

Parkinson’s disease, expression of SelP is reduced61. SelP plays dual roles in 

transporting selenium to the CNS (and other tissues) and as an integral membrane 

protein in astrocytes36, 62, suggesting a critical role for SelP in neuronal function. 

Additionally, recent studies have shown that selenium is protective against neuronal 

DNA damage in a rodent model of induced Parkinson’s disease63. Other 

selenoproteins, such as GPx4, also protect the CNS from oxidative damage. Increased 

expression of GPx4 protects cortical neuronal cultures from cell toxicity induced by 

oxidative injury64. 

 

While the brain only contains approximately 2% of the total body selenium storage, 

in cases of selenium deficiency, the central nervous system prioritizes selenium 

retention over other tissues in the body7. Selenium levels are affected by ApoER2 

expression. The major selenium transport protein, SelP, binds to ApoER2. In an 

ApoER2 knock-out model, mice without this transport protein exhibit lower brain and 

testicle selenium levels65. Once mice were kept on a selenium deficient diet, severe 

neurological dysfunction and death resulted. These studies further emphasize the 

importance of appropriate selenium levels for optimal function of the CNS.  
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1.2 Traumatic Brain Injury and Spinal Cord Injury 
 

1.2.1 Overview of Traumatic Brain Injury 

Traumatic brain injury (TBI) continues to be a prevalent clinical problem, with young 

adult males as the most vulnerable population due to their active lifestyle and a higher 

prevalence of military service66. Due to the diverse types of TBI presentations, 

confounding patient symptoms, and a complex secondary injury cascade, there have 

not been any successful pharmacological interventions for TBI to date. Attempts to 

target individual components of the multifactorial secondary injury cascade have 

resulted in only modest improvements in experimental animal studies and lack of 

significant results in clinical trials67. It is increasingly recognized that a treatment to 

intervene in the progression of the secondary injury cascade will need to have a broad 

spectrum approach.  

 

In response to the initial mechanical injury of a TBI, the secondary injury cascade is 

activated in the following first hours and days. While it is difficult to prevent the 

initial injury, the molecular events that eventually lead to neuronal death provide a 

viable target for pharmacologic intervention. Mechanisms involved in the secondary 

injury cascade following TBI include hypoxia, Ca2+ dysregulation, mitochondrial 

dysfunction, free radical production, lipid peroxidation, and eventual cell death.  

Many studies have examined antioxidants and free radical scavengers as potential 

pharmacologic interventions68.  Oxidative damage following injury has a significant 

effect on mitochondrial respiration.  
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As the location of the electron transport chain and the site for the manufacture of the 

main form of energy, ATP, mitochondria are considered the powerhouse of the cell. 

Over 90% of cellular ATP is synthesized in the electron transport chain (ETC). 

Damage to CNS mitochondria leads to a host of cellular problems, including a halt in 

ATP production, calcium dysregulation, and an increase in ROS production that 

ultimately leads to neuronal cell death. In the secondary injury cascade, degradation 

of the cellular membrane results in an influx of intracellular calcium. This calcium is 

typically buffered by mitochondria, which function as a calcium sink for neurons. 

However, an overload of calcium within the mitochondria leads to cellular membrane 

break down and the opening of mitochondrial permeability transition pore (MPTP)69. 

These events will eventually result in neuronal cell death. To further understand the 

interaction between injury and mitochondrial respiration, methods have been 

developed to examine the different components of the ETC. Endogenous and 

exogenous substrates are added directly to isolated mitochondria and the resulting 

consumption of oxygen in the system is measured. In normal conditions, the ETC 

utilizes a proton electrochemical gradient to drive the phosphorylation of ADP into 

ATP. Electrons are passed down the different complexes of the ETC, beginning with 

either complex I or complex II, and then subsequently transferred to complex III and 

finally complex IV. Complex IV will ultimately pass the electrons to oxygen, thus 

consuming oxygen in the system and allowing for a measurable readout of ETC 

function (Figure 1.4)70, 71. The electrochemical gradient is created by the flux of 

protons out of the mitochondrial matrix and into the intermembrane space. Energy 
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release from electron transfer between complexes of the ETC creates the necessary 

drive to move protons against their concentration gradient.  
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Figure 1.3: Electron transport chain. A representative diagram outlining the 
movement of electrons, oxygen consumption, and ultimately phosphorylation of ADP 
into ATP in the electron transport chain (ETC). Electrons are passed between the 
different complexes of the ETC and eventually transferred to oxygen by complex IV. 
Electrons can be passed into the ETC through either complex I or complex II. Each 
transfer of electrons to the subsequent complex releases energy that is used to drive 
protons against their concentration gradient and into the intermembrane space. The 
movement of protons across the mitochondrial matrix membrane creates the 
electrochemical gradient critical for ATP production. Protons eventually pass back 
into the mitochondrial matrix through the ATP synthase (F0/F1), driving the 
phosphorylation of ADP into ATP. Assays designed to measure the efficiency of 
mitochondrial respiration utilize endogenous and exogenous substrates added to 
isolated mitochondria to manipulate different complexes of the ETC. With this data, 
pathologies in specific steps within the ETC can be studied directly. Adapted from 
Sullivan et al, 200772. 
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1.2.2 Overview of Spinal Cord Injury 
Spinal cord injury (SCI) is a prevalent clinical problem, with approximately 270,000 

patients living with SCI in the United States alone73. A neuroprotective intervention 

that functions as a pretreatment paradigm may prove especially interesting for high 

risk groups of people. The primary mechanical injury results in either a contusion, 

complete transection of the spinal cord, or a compression injury. The severity of the 

primary injury, along with the spinal level of the injury, determines the clinical 

outcome for the patient. The financial and psychological costs are extreme for 

patients surviving with spinal cord injury. Much like the secondary effects described 

in traumatic brain injury, a similar cascade of neurodegeneration begins after the 

primary mechanical injury. Many of the molecular events associated with the 

secondary injury cascade, in particular free radical production, are common pathways 

between traumatic brain and spinal cord injury. Despite differences and difficulties 

with each injury paradigm, the similar aspects of the secondary injury cascade are of 

particular interest for pharmaceutical intervention.  

 

1.2.3 Antioxidants and neurotrauma 

The initial mechanical trauma in traumatic brain and spinal cord injury is followed by 

a wave of neurodegenerative events that eventually lead to pathological dysfunction. 

In particular, oxidative stress is a key contributor to neurodegeneration following 

injury. Antioxidants have frequently been a target of efforts to use pharmaceutical 

intervention as a treatment strategy for neurotrauma54. Antioxidant therapies can 

function to sequester reactive oxygen and nitrogen species or inhibit their production. 

Traditional endogenous antioxidants play an important role in regulating free radicals 
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after injury. Antioxidant enzymes, including superoxide dismutase (SOD), catalyze 

the conversion of oxygen radicals into hydrogen peroxide (H2O2). Glutathione 

peroxidase (GPx), a well-characterized family of selenoproteins, then converts 

harmful hydrogen peroxides into non-harmful by products. Some of the pathological 

outcomes of oxidative damage include mitochondrial dysfunction74, neuronal death, 

and damage of synaptic proteins in the hippocampus75.  

 

Because of the high level of polyunsaturated fatty acids (PUFA) in the CNS, neurons 

are highly susceptible to damaging to lipid peroxidation. As free radicals attack these 

PUFAs, cellular membrane integrity is disrupted and will eventually lead to cytotoxic 

effects. Lipid peroxidation results in production of the two aldehydic compounds, 

acrolein and 4-hydroxynonenal. Levels of 4HNE, and thus evidence of lipid 

peroxidation, have been shown to peak at 24 hours following spinal cord injury76. 4-

HNE is evident as early as 1 hour after traumatic brain injury with sustained levels as 

far as 96 hours post injury77. Antioxidant therapies have shown success in pre-clinical 

trials and limited efficacy in clinical trials54. The development of reactive oxygen 

species and resulting damage following injury, suggest that modulation of the 

antioxidant system may prove a valuable target for neuroprotection following 

traumatic brain and spinal cord injury.  
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1.2.4 Nutriceuticals in the treatment of neurotrauma 

The use of dietary supplementation in the treatment or prevention of 

neurodegenerative disorders has been investigated in a limited fashion in previous 

studies. The Institute of Medicine published a report detailing the importance of 

proper nutrition in traumatic brain injured patients78. While energy requirements are 

critical following injury, levels of micronutrients are also important. In particular, this 

review of nutritional status in TBI patients emphasizes the value of supplementation 

with creatine, N-3 fatty acids, flavonoids, progesterone and vitamin D. In a rodent 

model of traumatic brain injury, creatine was shown to protect against tissue damage 

and deficits in mitochondrial membrane potential in injured animals79. In a weight-

drop model of traumatic brain injury, N-acetylcysteine (NAC) when combined with 

selenium treatment increased protective cytokine levels as well as decreased harmful 

lipid peroxidation80. In a patulin induced brain damage model, selenium 

supplementation was also shown to be neuroprotective by reducing protein carbonyl 

levels, reactive oxygen species generation, and by increasing both the activity and 

expression of several GPx proteins81.  

 

Following brain injury, selenoproteins may play a role in providing critical selenium 

to neurons and astrocytes at the blood brain barrier. As discussed, Burk et al. showed 

that a knockout of apolipoprotein E receptor-2 (ApoE2) results in dysfunction of 

selenoprotein levels in the brain65. Further studies show that both SelP and 

apolipoprotein E receptor-2 mediate selenium uptake at the blood brain barrier, 

especially in conditions of selenium deficiency62. Another selenoprotein, 
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selenoprotein S (SelS) is secreted from astrocytes and expression of SelS is greatly 

increased in reactive astrocytes after brain injury36. Overexpression of SelS influences 

the inflammatory markers in astrocytes. Additionally, Yeo et. al, also established 

through several studies that sodium selenite injections are neuroprotective in both 

traumatic brain and spinal cord injury58, 59. However, these studies present limitations, 

including the risk of toxicity in treatments with inorganic formulations of selenium.  

 

These various studies lay the foundation for the importance of examining the 

neuroprotective effects of dietary selenium in models of traumatic brain and spinal 

cord injury. While a few studies have investigated the potential protective properties 

of selenium as an important component of antioxidant systems and as a regulator of 

gene expression, no work has been done to date with dietary organic selenium 

supplementation in neurotrauma models. Due to the vast spectrum of 

neurodegenerative events that occur as a part of the secondary injury cascade, 

traumatic brain and spinal cord injury have proven very difficult diseases to target 

with pharmacological intervention. While unconventional in the field, a dietary 

pretreatment with selenium may be able to provide multiple benefits in the event of 

an injury. Selenized yeast should increase tissue storage of selenomethionine, 

allowing for a readily available source of selenium for selenoprotein synthesis 

following injury. It also may be able to modulate gene expression patterns, as those 

involved with DNA repair40, transcriptional regulation39, and inflammation41 thus 

providing neuroprotection following injury. While the functions of many identified 

selenoproteins remains unknown, the critical need for selenium and beneficial effects 
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with supplementation support further investigation into its effects within the CNS 

following injury.   
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CHAPTER 2 
Dietary supplementation with organoselenium following spinal cord injury 

2.1 Introduction 
Spinal cord injury (SCI) is a prevalent clinical problem, with approximately 273,000 

patients living with SCI in the United States alone73. Young adults represent a 

particularly vulnerable population due to their active lifestyle and a higher prevalence 

of military service. A prophylactic supplement to help protect in the event of acute 

neurotrauma may be particularly beneficial to this high risk group. 

We investigated selenium supplementation as a prophylactic treatment for reducing 

damage and improving functional outcomes following spinal cord injury.  Selenium is 

essential for the formation of selenoproteins throughout the body, particularly in the 

CNS. However, different forms of selenium are associated with varying toxicity 

levels82. Organic selenium supplements have much lower levels of toxicity and fewer 

of the pathogenic effects that are commonly associated with high levels of inorganic 

selenium in the body83, 84, 85, 86. The diets utilized in this study were formulated with 

selenized yeast to provide an organic form of selenium supplementation. The 

selenium is present in the form of two amino acids, selenomethionine and 

selenocysteine, as well as a variety of other seleno-compounds giving this supplement 

a unique chemical fingerprint18. Selenomethionine can be incorporated in place of 

methionine in tissues, allowing for storage of selenium in the event of a dietary 

deficiency. 
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The brain and spinal cord prioritize the retention of selenium when dietary levels are 

deficient87, utilizing the selenium transporter in the body, selenoprotein P (SelP), to 

supply physiological selenium to the brain88, 89.  Selenoproteins are well characterized 

for their role in redox regulation2, 90, 91 and anti-inflammatory pathways92, 93.  In 

particular, several antioxidant enzymes, including glutathione peroxidases and 

thioredoxin reductases, are selenoproteins which require the presence of 

selenocysteine for protein production. Reactive oxygen species initiate lipid 

hydrolysis, breakdown of cellular membranes, mitochondrial dysfunction, and thus 

perpetuate the damaging secondary injury cascade.94 Increasing levels of selenium 

available in tissues prior to injury may prepare the CNS to quickly synthesize 

selenoproteins to mitigate this series of damaging events.  

 

The objective of this study was to examine the effect of supplementation with 

selenized yeast on functional and pathological endpoints following SCI. Dietary 

selenium supplementation increased selenium tissue storage in the CNS, with no 

aberrant weight gain or other adverse physiological changes between treatment 

groups.  This increase in selenium levels did not translate to a visible improvement in 

locomotion or lesion volume in the injured tissue, but resulted in more rapid recovery 

of autonomous bladder expression.   

 

 

 

 

 

 



 28 

2.2 Methods 
 
2.2.1 Animal care and diet 
Female Sprague-Dawley rats were obtained from Harlan at weaning and placed 

immediately on either a control diet or on a selenium enriched diet (Se-yeast, Sel-

Plex, Alltech, Nicholasville, KY). The control diet of normal rat chow contained 

standard dietary levels of selenium (0.3ppm selenium, approximately 4.5µg per day) 

and a yeast additive to account for any variation that may be seen due to the selenized 

yeast in the other diet. Caloric content was appropriately adjusted in diet composition 

after the addition of the supplements. The selenium enriched diet also used a standard 

rat chow as the diet base and incorporated a selenized yeast preparation (1.3ppm total 

selenium, approximately 19.5µg per day) in which the yeast is grown in the presence 

of selenium.  The selenium, in the form of selenized yeast (Sel-Plex®), is 

supplemented at levels well below tested toxicity levels.  Animals were fed their 

respective diets (n=20 per diet) ad libitum for 4 months.  Throughout the trial, 

animals were weighed weekly, and immediately prior to receiving the injury, to 

monitor health statuses of the rats as well as to check for any significant differences 

in body weight of the animals at the time of injury.  Animals were housed and 

handled within regulation, as a part of an approved protocol with University of 

Kentucky Institute of Animal Care and Use Committee (IACUC). 

 

2.2.2 Spinal cord injury and post-surgical care 

Following 4 months of dietary supplementation, rats were subjected to a moderate 

contusive SCI. Contusive SCI surgeries were performed as previously described95. In 
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brief, rats were anesthetized with an intraperitoneal injection of ketamine (80mg/kg) 

and xylazine (10mg/kg).  The spinal cord was exposed via a T10 laminectomy.  The 

rats received a moderate (150kdyn) contusive thoracic SCI using the Infinite 

Horizons SCI injury device (Precision Systems and Instrumentation).  Sham animals 

received only anesthetics and the laminectomy procedure.  Following injury (n=12) or 

sham surgery (n=8), the musculature and skin are closed with sutures and wound 

clips, respectively. As part of routine post-surgical care, bladders were manually 

expressed twice daily using the Credé maneuver96 until the animal recovered 

autonomous bladder control.  Bladder function following injury was recorded as 

either non-functional (full bladder) or functional (empty to half-full bladder) prior to 

manual voiding by the investigator97. The number of days until each animal exhibited 

autonomous bladder functional recovery was recorded.  The rats also received 

injections of Buprenorphine (0.05 mg/kg) twice daily to manage pain and Baytril (5-

10mg/kg) twice daily during this time to prevent development of post-surgical 

infection. Animals were maintained on their respective diets until the time of 

euthanasia.  

 

2.2.3 Spinal cord and cortical selenium levels 

A separate cohort of animals was also maintained on the two different diets for 4 

months under the conditions as described above.  Animals were fed ad libitum for 4 

months (n=5 per dietary group).  Immediately following the feeding regimen animals 

received the moderate contusive spinal cord injury described above.  24 hours post 

injury, fresh tissue from spinal cord sections both rostral and caudal to the injury site 
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and cortical samples were removed and flash frozen in liquid nitrogen.  Selenium 

levels were then analyzed by liquid chromatography-mass spectroscopy (LC-MS). 

Values rostral and caudal to the injury site were averaged for each animal. One value 

was removed from spinal cord dataset due to being an extreme outlier (greater than 3 

standard deviations from the mean). 

 

2.2.4 Behavioral assessment 

At three days following SCI, two investigators blinded to treatment groups assessed 

open field locomotor functional recovery using the Basso, Beattie, and Bresnahan 

(BBB) locomotor rating scale98. Locomotor testing was then repeated once weekly for 

6 weeks following injury. At 3 days following injury there is a substantial injury 

effect. With a moderate injury (1.50kdyn) animals lose motor control of their 

hindlimbs. Over 6 weeks, rats typically demonstrate a gradual improvement in 

locomotion that typically plateaus around a score of 13, indicating that animals have 

frequent to consistent weight support in plantar stepping and frequent coordination.   

When discrepancy occurred between observers, the lower score was assigned to the 

animal’s performance.  

 

2.2.5 Tissue histology 

Following the final behavioral testing, animals received a thoracotomy followed by 

transcardial perfusions.  Animals were given an intraperitoneal injection of a fatal 

overdose of sodium pentobarbital and then perfused with ice-cold phosphate buffered 

saline (PBS), followed by fixation with a 4% paraformaldehyde/PBS solution.  Spinal 
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cord tissues were kept at 4°C in a 4% paraformaldehyde solution for 4 hours and then 

transferred to a 30% sucrose solution overnight at 4°C for cryopreservation.  The 

fixed tissues were transferred into OCT medium for cryosectioning at -25°C.  

Transverse spinal cord sections (20µm thick) were collected every 100µm and 

mounted onto slides.  Sections were stained according to a modified protocol utilizing 

eriochrome cyanine RC and cresyl violet stained myelin and differentiated between 

white and gray matter99, 100.  Lesion volume and tissue sparing were measured and 

calculated for sections extending 0.7mm on either side of the injury epicenter.  Lesion 

and healthy tissue were measured using Scion Imaging analysis software (Scion 

Corporation, Frederick, MD).  Utilizing the Cavalieri method101, the total volume of 

tissue in the lesion or in spared tissue was calculated.  The investigator was blinded to 

treatment groups until all parameters had been measured and calculated. 

 

2.2.6 Statistical Analysis 

Data represented in each figure are shown as mean±standard deviation. Using 

GraphPad Prism 6.0, differences in weekly weight gain were evaluated by repeated 

measures, one-way ANOVA encompassing the 16 week feeding period.  

Additionally, to ensure that there were no significant differences between the two diet 

groups immediately before surgery, Student’s t-test (significance at p<0.05) was used 

to compare final weights.  Differences in behavioral assessment between treatment 

groups were assessed by repeated measures, one-way ANOVA with significance 

assigned at p<0.05.  Tissue selenium content, separately in spinal cord and cortex, 

was compared using Student’s t-test between control and selenium enriched diets 
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(p<0.05). Bladder functional recovery between animals on the control and selenium 

enriched diets was assessed using a Student’s t-test (significance at p<0.05). 

Differences between injury and control in lesion volume were calculated using a two-

way ANOVA (significance at p<0.05).  
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2.3 Results 

2.3.1 Weekly Weights  
To ascertain the effect of the selenium-enriched and control diets on body weight 

throughout the course of the study, animals were weighed weekly as described above 

(n=25 for each diet). Weight gain showed no significant differences between rats 

maintained on the control (+yeast) rat chow and the yeast-selenium enriched diet 

(Figure 2.1).   
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Figure 2.1: Dietary selenium enrichment does not affect overall weight gain.  
Rats were weighed weekly. No differences in body weight were seen between 
selenium enriched rats and rats maintained on control diet. 
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2.3.2 Selenium levels in the central nervous system 
Data from liquid chromatography mass spectroscopy (LC-MS) showed that dietary 

enrichment with selenium increased tissue storage of selenium. In the cortex, 

selenium levels increased by approximately 2-fold between the control diet and 

selenium enriched diet (p<0.0001) (Figure 2.2A). Supplementation also increased 

selenium levels in the spinal cord (p<0.0001) (Figure 2.2B).  
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Figure 2.2: Dietary selenium enrichment increases selenium tissue storage. CNS 
selenium levels were analyzed by LC-MS. These results indicate that supplemented 
selenium is able to cross the blood-brain barrier and is available for incorporation into 
cortical (A) and spinal cord (B) tissue.  Values are mean±SEM, p<0.001. 
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2.3.3 Bladder function 
Animals (n=12 per diet) maintained on selenium enriched diets regained bladder 

function by 3±0.4 days after injury as compared to rats on a control diet, at 5±0.5 

days (mean±SD p<0.05) (Figure 2.3).  Animals that received sham surgeries did not 

lose autonomous bladder control and thus did not require manual emptying by the 

investigator. 
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Figure 2.3: Dietary selenium supplementation improves the time to recovery of 
bladder function. Rats receiving selenium supplementation recovered bladder 
function in an average of 3 days±0.4 as compared to rats on a control diet, which 
recovered bladder function in 5 days±0.5.  Recovery of bladder expression is an 
additional functional marker for improvement.  Values are mean±SEM, p<0.05. 
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2.3.4 Locomotor functional recovery 
Sham animals in both dietary groups showed no loss of function following sham 

surgery.  Injured animals in both groups had a complete loss of hindlimb locomotor 

function immediately following surgery, confirming that the contusion injury was 

effective.  Three days after injury, all rats exhibited slight motor recovery, as evident 

from the BBB scores, which reflect slight movement of two joints and extensive 

movement of the third joint.  Over the course of the 6 week behavioral testing, all 

injured animals showed a steady improvement in locomotor function, plateauing 

around the second week with overall function that included consistent stepping, 

occasional to frequent coordination, and occasional correct paw placement.  In the 

injured animals, there was no significant difference in locomotor functional recovery, 

over time or during the final behavioral testing, between those fed the control diet and 

animals fed the selenium-enriched diet (Figure 2.4).   
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Figure 2.4: Dietary selenium supplementation does not improve locomotor 
functional recovery.  Recovery was evaluated weekly after injury using the BBB 
scale.  No difference in improvement was seen between the two diets in the injured 
rats. Sham animals showed no change in performance after laminectomy.  Values are 
mean±SEM. 
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2.3.5 Tissue lesion volume measurements 
Following the final behavioral testing, spinal cord tissue from each animal was fixed 

and cryopreserved. Staining for myelin and neuronal cell bodies showed no 

significant difference between the two injured groups in total lesion volume, or in the 

total amount of gray matter and white matter sparing after injury (Figure 2.5). Sham 

injured animals showed no tissue lesion. 
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Figure 2.5: Dietary selenium supplementation does not reduce lesion volume 
following SCI. Spinal cords sections (20µm) were stained for cell bodies and myelin.  
Total lesion volume (A) and total tissue sparing (B) revealed a significant injury 
effect (**p<0.01) between sham and injured.  No significant difference in lesion 
volume or tissue sparing was seen between the control injured and the selenium 
injured group. Additionally, there were no significant differences between grey matter 
sparing and white matter sparing. 
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2.4 Discussion 

Dietary selenium supplementation may be particularly beneficial for CNS disorders, 

as the CNS maintains a high priority for selenium storage in deficient conditions87, 102- 

104. This has been examined previously for metastatic brain tumors105, Alzheimer’s 

Disease106, ischemia107, and Parkinson’s Disease108. One previous study examined the 

effects of selenium on SCI109, although the experimental conditions differed 

markedly. Yeo and colleagues injected sodium selenite (10-50ng/kg) mixed with 

matrigel directly into the lesion site immediately following a dorsal hemisection 

injury. This study observed a reduction in apoptotic cell death, decreased GFAP 

positive cells, and a dramatic improvement in locomotor function in selenium over 

vehicle treated rats.  

Pre-injury dietary supplementation in this study showed increased CNS tissue levels 

of selenium, implicating increased bioavailability of seleno-amino acids for the 

production of selenoproteins. However, the increased selenium levels did not result in 

improved pathological outcomes and only minimal improvement in functional 

outcomes. Additionally, these effects were not evident through histological analysis 

of tissue sparing. In behavioral tasks, the rats receiving a selenium enriched diet did 

not exhibit significant improved locomotor function post-injury as compared to 

animals whose diet consisted of normal rat chow.  

Rats in the selenium enriched diet group were able to regain autonomous control of 

bladder expression following spinal cord contusion injury more quickly than rats 

maintained on the control diet. Initiation of autonomous micturition has been 
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examined as a marker for recovery of sensory-motor function in previous spinal cord 

contusion studies110, 111. Neurological control of bladder function is controlled 

through splanchnic parasympathetic nerves (located in the sacral spinal cord S2-S4), 

pudendal nerves (also in the sacral spinal cord S2-S4), and thoracic sympathetic 

nerves (cell bodies originating at T10-L2 spinal cord levels). Sympathetic innervation 

of the bladder plays a crucial role in closing the internal urethral sphincter and of 

blood vessels in the detrusor muscle of the bladder. Although histological 

examination did not show an overall improvement in total lesion volume, it is 

possible that sympathetic neurons present at the site of injury (thoracic level T10) 

were protected with selenium treatment. Additionally, because selenoproteins are 

found highly expressed in astrocytes, the supporting glial cells may have protected 

neuronal cell bodies in the epicenter of injury. In rat contusion (incomplete injury) 

models of SCI, rats spontaneously recover voluntary bladder control in the days to 

weeks following injury. Human patients with incomplete SCI do not exhibit recovery 

of voluntary bladder control. Disruptions in bladder and bowel function are very 

important clinical pathologies to SCI patients, however, disconnect between clinical 

outcomes and those found in experimental models may limit the translation of bladder 

functional recovery in preclinical models to patient application.  

Overall, the results do not support our hypothesis that selenium supplementation 

would result in improved outcomes following SCI. However, the studies that have 

also observed bladder functional recovery without associated improvement in 

locomotor behavioral tasks suggest that these improvements in bladder function may 
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be important markers for functional recovery112, 113. Shunmugavel et al. suggest the 

crucial importance of inflammatory pathways in mediating bladder dysfunction 

following SCI114. The involvement of selenium in modulating the inflammatory 

response92, 93 may be responsible for the improvement in recovery of bladder function 

observed in the present study.  

Current studies are examining effects of selenium-enriched and selenium-deficient 

diets on levels of selenoproteins and related enzyme activities in both naïve and 

traumatic brain injured animals. The antioxidant natures of many of the 

selenoproteins in the CNS, along with the results from this study suggest, that while 

selenium’s effects may be modest in this SCI model, examining various levels of 

selenium to attenuate neurodegenerative pathways warrants further research. 
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CHAPTER 3 
Dietary selenium supplementation alters gene expression following spinal cord 

injury 

3.1 Introduction 
The initial contusion of the spinal cord brought on by a mechanical injury, triggers a 

host of neurodegenerative molecular events, commonly referred to as the secondary 

injury cascade. While it is difficult to anticipate or prevent the contusion itself, the 

subsequent cellular and molecular changes are common targets for pharmaceutical 

intervention. The secondary injury cascade is characterized by lipid peroxidation115, 

cytotoxic influx of calcium, mitochondrial dysfunction116, production of reactive 

oxygen species, and inflammatory response. These events ultimately result in 

neuronal cell death and the clinical pathologies associated with spinal cord injury 

(SCI). In addition to these early markers of injury, spinal cord trauma also results in 

extensive changes in the gene expression profile as early as 4 hours and continuing 

through at least 24 hours post injury117-119. Gene ontologies associated with spinal 

cord injury include inflammatory cytokines, transcriptions factors, regulation of 

immune response, and response to oxidative stress120. These changes in gene 

expression help to complete the understanding of the secondary injury cascade and 

how changes in mRNA are triggered in response to injury. 

With the limited success thus far with clinical treatments targeting spinal cord 

pathology following injury, innovative approaches that target the secondary injury 

cascade may be beneficial for future patients with SCI. As an essential component of 

several antioxidant enzymes and other selenoproteins in the body, increased dietary 
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selenium represents a potential strategy to combat neurodegeneration following SCI. 

Low tissue selenium levels or changes in selenoprotein levels are also associated with 

other diseases of the central nervous system (CNS) including Alzheimer’s Disease34,

60 and Parkinson’s disease61.  

In addition to altering selenoprotein levels, selenium also impacts gene expression 

patterns, making it an interesting target for modulating gene expression in spinal cord 

injury models. Selenized yeast decreases expression of Gadd45b, a gene known to 

increase in response to DNA damage, as well as several gene ontology groupings 

associated with mitochondrial damage39. These shifts in DNA repair pathways are 

supported further by McKelvey et al40 in which organic formulations of dietary 

selenium, including selenized yeast and selenomethionine, induce gene expression 

shifts in pathways associated with DNA damage. These gene expression changes also 

translated to protection against lead-induced DNA damage in cell culture. 

Additionally, specific selenoglycoproteins, extracted from selenized yeast, impact 

transcriptional regulation through modulating expression of nuclear factor-κβ (NF-

κβ)46. 

While gene expression changes following spinal cord injury are well documented and 

studies have shown differential pathway shifts with formulations of selenium, the 

impact of selenium on mRNA expression patterns following spinal cord injury has yet 

to be investigated. Neuroprotective effects have been proposed for selenium in 

different neurodegenerative diseases but gene expression changes may provide more 
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of an indication through which selenium is providing neuroprotection in vivo. It is 

expected that the injury will cause vast changes in gene expression. Additionally, 

these studies tested the hypothesis that dietary selenium would drive additional 

changes in gene expression and potentially modulate expression of genes associated 

with pathologies of the secondary injury cascade. 
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3.2 Methods 
3.2.1 Diet supplementation  
Selenized yeast (Sel-Plex®, Alltech, Nicholasville, KY) was added to rat chow at a 

concentration of 1ppm selenium. Normal rat chow contains 0.3ppm of selenium, 

giving the selenium enriched diet a final concentration of 1.3ppm selenium (19.5µg). 

The control diet containing 0.3ppm of selenium (4.5µg) was representative of normal 

dietary levels. Yeast was also added to the control diet to account for any differences 

that may be seen due to the addition of yeast in the selenium enriched diet. Diets were 

formulated to contain otherwise similar caloric and nutritional content (Harlan 

Laboratories). Female Sprague-Dawley rats were obtained at weaning (21 days) and 

placed on either the control or selenium enriched diets (n=10 per diet). Animals were 

fed ad libitum for 16 weeks prior to receiving spinal cord injury. Throughout the 

study, weights and health status were monitored to check for any adverse 

consequences due to dietary differences. The animals were maintained on their 

respective diets until the terminal data collection. 

3.2.2 Spinal Cord Contusion Injury and Post-Surgical Care 

Rats received either a moderate (150kdyn) contusive thoracic spinal cord injury via 

the Infinite Horizons (IH) SCI injury device (Precision Systems & Instrumentation) 

or a sham laminectomy after 16 weeks on their respective diets (n=5 injured, n=5 

sham within each diet). Female rats received an intraperotineal injection of 

ketamine/xylazine (80mg/kg and 10mg/kg, respectively). Once significant depth of 

anesthesia was confirmed an incision was performed at approximately T10 (thoracic 

spinal cord level). The exact location of T10 spinal cord level was determined and a 
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laminectomy removed the overlying vertebra. The animal was secured using clips on 

either side of the vertebral column. IH impactor was set to 150kdyn force injury and 

was allowed to impact the exposed spinal cord tissue. Animals were sutured and 

allowed to recovery on warming pads. Buprenorphine (0.05mg/kg) was administered 

for control of pain every 12 hours following surgery. Loss of bladder control is a 

typical symptom following a contusion injury of this severity. Bladders were 

manually expressed 2-3 times daily until rats recovered the ability to express their 

bladder autonomously. Additionally, animals were given baytril (5-10mg/kg) to help 

prevent urinary tract infection twice daily following surgery until the recovery of 

bladder function and urine is clear. The rats also received injections of Buprenorphine 

(0.05 mg/kg) twice daily to manage pain. Animals were maintained on their 

respective diets until the time of euthanasia at 24 hours post injury. 

3.2.3 Sample Preparation and RNA Isolation   

A 7mm section of spinal cord tissue directly surrounding and including the injury 

epicenter was dissected at 24 hours post injury. Samples were flash frozen in liquid 

nitrogen to preserve RNA quality. Due to the high quantity of lipids within the spinal 

cord white matter, total RNA was isolated using RNeasy Lipid Tissue Mini Kit 

(Qiagen). Approximately 50mg of tissue was homogenized and processed according 

to the recommended protocol, including the optional DNase digestion. Final samples 

were eluted from columns with 30µL of RNase-free water. RNA quantity and quality 

were determined using the Nanodrop spectrophotometer and Bioanalyzer (Agilent), 

respectively. All samples used for microarray analysis had an RNA integrity number 
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(RIN) of at least 8, as is recommended for the sample purity necessary for 

reproducible results with the Affymetrix platform.  

3.2.4 Affymetrix Gene Array  

Affymetrix reagents and protocol were utilized (3’ IVT Expression kit) for all steps. 

RNA samples (200ng) were thawed on ice and assembled with other reagents to 

synthesize 1-strand cDNA. Second strand cDNA synthesis created aRNA which was 

purified using magnetic beads. aRNA was then labeled with a biotinylated probe and 

15µg of aRNA was added to fragmentation buffer. Samples were hybridized over 

night to a species-specific microarray chip (Rat 230 2.0 array, Affymetrix). This array 

chip represents over 30,000 transcripts from the rat genome. Affymetrix fluorescent 

scanner measures fluorescence emitted from hybridized RNA and translates this 

information into raw signal intensity. Software within the scanner assigns each signal 

intensity reading a numerical value, allowing for quantitative evaluation of gene 

expression levels. 

3.2.5 Statistical Analysis and Template Design  

The original data set included a total of 31,097 genes. From this list, the initial 

filtering process removed genes based on presence/absence calls, redundant gene 

symbols, and a lack of gene annotation. A gene is considered absent from a chip if an 

insufficient amount of signal intensity is detected. Expression values for a particular 

gene were removed from the entire data set if there are more than 17 “absent” calls 

out of all 20 microarray gene chips, regardless of injury/diet group. Among those 
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genes with redundant gene symbols, the expression data with the strongest expression 

across all groups was selected. Additionally, genes that do not have any annotation 

data were eliminated. While potentially interesting, with no annotation data available, 

little can be learned from these genes at the current time. This pre-statistical filtering 

generated a list of 14,907 genes.  

Using 2-way ANOVA, a list of genes that met p≤0.017 (Bonferroni correction for 3 

tests) was generated. This list included a total of 9,533 statistically significant gene 

expression changes. To analyze such an extensive list, templates of potential gene 

expression patterns were designed. Additionally, due to the concern that the extensive 

changes resulting from the injury effect may mask potentially subtle changes due to 

diet, templates pulled out gene expression changes due only to injury, exposing the 

dietary changes. Genes from the statistically filtered list were assigned to one of 8 

constructed templates based on their expression patterns in all 4 treatment groups. 

These templates represent overall directions that expression could take between 

different groups. Genes in each of these groups were analyzed using DAVID 

Bioinformatics Resource (http://david.abcc.ncifcrf.gov/) to generate functional 

annotations of gene lists. Affymetrix probe set IDs within each template were loaded 

into the Functional Annotation tool, utilizing the statistically filtered list (9,533 

genes) as the background for this search. Gene ontologies were selected based on the 

number of potential genes in that pathway, relative to the probe sets from that 

particular template with the pre-determined p≤0.05. The resulting gene ontologies 

were compiled and duplicate pathways combined to simplify analysis. Due to the 
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stringency of the α at each stage of statistical analysis, the final gene pathways are 

unlikely to be due to the large amount of multiple testing that occurs with 31,000 data 

points. 
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3.3 Results 

3.3.1 Significant gene selection and template design 
Analysis of gene array data began with probe sets representing 31,097 genes (Figure 

3.1). Genes were selected for further analysis based on presence or absence of signal 

intensity in all 20 microarray chips. Genes were eliminated from further analysis if no 

annotation data was available or data represented a duplicate gene annotation. This 

initial screening yielded a list of 14,907 genes. From this list, genes were further 

filtered based on statistical significance. Two-way ANOVA with Bonferroni post-hoc 

correction indicated a p-value cut off of 0.017. Using p≤0.017, expression of 9,533 

genes significantly changed in the current study. 

Templates were designed based on possible directional changes in gene expression 

across the four groups (Figure 3.2). Template based analysis provides the unique 

benefit for this study of allowing for the separation of certain patterns of expressional 

changes. In the case of this study, and has been established by previous works, spinal 

cord injury creates a massive change in mRNA expression levels117-119. The injury has 

a large fold change, potentially overwhelming expression changes due to diet. 

Template analysis allows us to detect more subtle gene expression changes, especially 

those due to dietary influences. All possible changes in gene expression have been 

considered, however, some templates are of more interest to the current investigation 

than others. An algorithm assigned each gene based on its pattern of expression to a 

template. The first two templates (Figure 3.2 A, B) represent the overall changes 

either up or down regulated following injury alone. Of the total filtered list, 4301 

genes were placed into the template in which all the genes were down regulated 
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following injury. 4812 genes were assigned to the up regulated template following 

injury. Two other templates that are of particular interest are those genes that are 

increased in the selenium injured group, suggesting a potential protective role of the 

dietary enrichment (Figure 3.2 I, 111 genes) and those genes that are restored to sham 

levels in the selenium supplemented group (figure 3.2 J, 78 genes).  
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Figure 3.1: Total genes represented in microarray analyses in SCI animals. Each 
gene chip begins with 31,097 genes represented. Filtering for presence/absence of 
signal across all chips. 2-way ANOVA run for remaining genes to generate p-value 
for diet, injury, and interaction. Bonferroni multiple comparison correction brought 
significant p-value to ≤0.017 and a total of 9,533 genes. 
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Figure 3.2: Templates representing expression patterns from microarray 
analysis. A) Gene expression changes representative of genes that are down regulated 
following spinal cord injury, regardless of diet (4301 genes). B) Gene expression 
changes representative of gene that are up regulated following injury, regardless of 
diet (4812 genes). C) Genes that are upregulated with selenium supplementation, 
regardless of injury (16 genes). D) Genes that are down regulated with selenium 
supplementation, regardless of injury (30 genes). E) Genes that are upregulated only 
in control injured animals (55 genes). F) Genes that are upregulated only in selenium 
sham animals (95 genes). G) Genes that run in opposition (7 genes). H) Genes that 
group into pattern analysis of opposition (28 genes). I) Genes upregulated in animals 
that were selenium supplemented with SCI (111 genes). J) Genes in this list are 
representative of 78 total genes that are down regulated in injured animals maintained 
on the control diet. Selenium enrichment in injured animals restores expression levels 
of these genes to sham levels. 
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3.3.2 Gene changes with injury  
SCI causes a large change in gene expression with the majority of the genes that were 

a part of the final filtered list sorted into one of the two injury based templates (Figure 

3.3 A, B). Figure 3.3 assigns a color relative to the amount of gene expression 

change. Blue indicates down regulation of gene expression and red indicates up 

regulation of gene expression changes. Each animal is represented by one column, 

each row is representative of one gene. This heat map clearly shows the strong shift in 

expression that is created by injury. Each heat map is coupled with its respective 

template for reference.  

When examining the lists for assignment into specific functional annotations, the p-

value cut-off was adjusted slightly for these gene lists. DAVID Bioinformatics 

Database only allows submission of a probe set list of 3000 genes. Therefore, the 

stringency was increased to p≤0.0001 to generate a list of appropriate size for 

analysis. This database characterized the genes into an extensive list of functional 

ontologies (Table 3.1). Genes that are down regulated post-injury in the current study 

include those involved with synaptic transmission, mitochondrial respiration and 

membrane integrity, ATP production, and ion transport. Genes that are up regulated 

post-injury include those associated with translational machinery and mRNA 

processing, cell cycle, nuclear transport, and lymphocyte mediated immunity.  
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Figure 3.3: Representative heat maps and related templates for gene expression 
changes associated with injury. In the heat maps shown, expression values indicated 
by a red color are up regulated and expression values indicated by a blue color are 
down regulated. These images clearly show the relative gene expression changes as a 
result of injury. 
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Table 3.1 Gene ontologies from genes down regulated post-injury 

Down regulated post-injury 
synaptic transmission 
neuron projection/cytoskeleton 

mitochondrial inner membrane 

integral to membrane 

mitochondrial part (matrix) 

ion transport 

adult behavior (locomotor) 
ATPase activity, coupled to transmembrane movement of substances 
mitochondrial respiratory chain 

neurotransmitter transport 

regulation of neuron differentiation (neurogenesis) 

NAD or NADH binding (cofactor binding) 

cellular component maintenance 

peroxisome 

ion binding 

sulfur metabolic process (glutathione metabolic process) 

calmodulin binding 
cellular chemical homeostasis (regulation of membrane potential) 
glutamate signaling pathway 

acetyl-CoA metabolic process (cellular respiration) 

cation-transporting ATPase activity 

regulation of catecholamine secretion 

(negative) regulation of adenylate cyclase activity 

homophilic cell adhesion 

carbohydrate catabolic process 

vesicle-mediated transport 

hydrogen ion transporting ATP synthase activity, rotational mechanism 

carboxylic acid transport (amino acid transport) 

Ras guanyl-nucleotide exchange factor activity 

microtubule motor activity 

cyclic nucleotide metabolic process 

activation of protein kinase A activity 

phosphoinositide metabolic process 

regulation of action potential 

phosphoric diester hydrolase activity (lipase activity) 
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Table 3.2: Gene ontologies from genes up regulated post-injury 

Up regulated post-injury 
translational elongation 

nuclear lumen 

intracellular non-membrane-bounded organelle 

RNA/mRNA processing 

ribonucleoprotein complex biogenesis 
positive regulation of I-kappaB kinase/NF-kappaB cascade 
nuclear pore 

proteasome complex 

chromosome 

ribosomal small subunit biogenesis 

macromolecular complex assembly 

DNA metabolic process 

nucleotide binding 

lymphocyte mediated immunity 

helicase activity 

positive regulation of transcription factor activity 

mitotic cell cycle 

regulation of endopeptidase activity 

positive regulation of programmed cell death 

chaperonin-containing T-complex 

nucleotide-excision repair 

positive regulation of cell migration 

vasculature development 

response to amino acid stimulus 

nuclear-transcribed mRNA catabolic process 

nuclear transport 

'de novo' protein folding 

erythrocyte homeostasis 

peptidyl-asparagine modification 

actin cytoskeleton 
positive regulation of tumor necrosis factor production 
regulation of RNA stability 

positive regulation of myeloid cell differentiation 

negative regulation of protein kinase activity 

tissue remodeling 
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Table 3.2 (continued) 
hydrolase activity, hydrolyzing N-glycosyl compounds 

transition metal ion transmembrane transporter activity 
biopolymer methylation 

epithelial to mesenchymal transition 



63 

3.3.3 Genes up regulated in injured animals that were maintained on a selenium 
enriched diet 
A total of 111 genes were differentially up regulated in injured animals that were 

maintained on the selenium diet. A heat map of these gene changes clearly shows that 

the animals in the selenium injured group had increased gene expression as compared 

to those on the control diet (Figure 3.4). Animals in the control injured group 

exhibited a moderate amount of increase in expression as compared to sham levels. 

Animal 2 in the control injured group exhibited a marked decrease in expression in 

the genes that filtered into this template. However, since the remainder of this 

sample’s expression profile follows the patterns of the other templates, this data set 

could not be eliminated without bias. 

The complete gene list of genes that filtered into this particular template is shown in 

Table 3.3. There are many interesting genes that are filtered into this particular 

template, including those associated with mitochondrial function, protein turnover, 

transcriptional regulation, and cell differentiation.  

This complete list of genes was uploaded to DAVID Bioinformatics Software to 

assess any patterns in genes that were present. Only one functional annotation was 

returned as statistically significant (p≤0.05). Genes upregulated within the selenium 

injured group were associated with pathways of DNA repair and included genes such 

as polymerase (DNA directed) beta (Polb) and poly (ADP-ribose) polymerase 1 

(Parp1).  
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Figure 3.4: Heat map representing genes up regulated in the selenium injured 
group. A representative heat map from the template in which genes in animals from 
the selenium-enriched, injured group show increased expression. In this heat map, 
blue color for a gene indicates decreased expression and red indicates increased 
expression. Each column represents an animal in the study and each row represents a 
gene within this template grouping. 
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Table 3.3: Representative list of genes increased with selenium following injury. 
A functional annotation search on DAVID Bioinformatics Software indicated that 
there is a statistically significant alteration in expression in pathways involved with 
DNA repair. A complete list of the 111 genes that filtered into the increased 
expression in selenium-enriched template is also included (Appendix B). 

Injury in diet (+), p<0.017, total of 111 genes 
Gene Description Gene Ontology Information 

Svil Supervillin Regulation of actin filaments 
Tgfb3 transforming growth factor, beta 3 Cell differentiation 
Anxa3 annexin A3 Cell growth and signal transduction 

Hspa12b heat shock protein 12B Cellular chaperone 

Gtf2h4 
general transcription factor II H, 
polypeptide 4 DNA repair 

Recql RecQ protein-like (DNA helicase Q1-like) DNA repair/function 
Polb polymerase (DNA directed), beta DNA repair/function 

Parp1 poly (ADP-ribose) polymerase 1 DNA repair/function 
Casp12 caspase 12 Inflammatory caspase 
Mrpl12 mitochondrial ribosomal protein L12 Mitochondrial function 

Acbd6 
acyl-Coenzyme A binding domain 
containing 6 Mitochondrial function 

Tfb1m transcription factor B1, mitochondrial Mitochondrial transcription 
Snx33 sorting nexin 33 Protein sorting/targeting 

Psmc4 
proteasome (prosome, macropain) 26S 
subunit, ATPase, 4 Protein turnover 

Ubap2 ubiquitin-associated protein 2 Protein turnover 
Ubfd1 ubiquitin family domain containing 1 Protein turnover 

Btbd12 BTB (POZ) domain containing 12 Protein turnover (substrate for ubiquitin) 
Duoxa1 dual oxidase maturation factor 1 Redox regulator 

Atf6b activating transcription factor 6 beta Transcription 
Foxj2 forkhead box J2 Transcriptional activator 
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3.3.4 Genes down regulated in injured animals maintained on the control diet.  

The template designed to examine changes in which genes are down regulated with 

injury but restored to sham levels with selenium enrichment resulted in a total of 78 

genes sorted into this pathway. The heat map (Figure 3.5) shows a visual 

representation of the expression patterns of genes in this template. The animals in the 

injured, selenium-enriched group have expression patterns for these genes that are 

close to sham levels. 

A total of 78 genes filtered into this template (Table 3.3) and include genes with 

functions associated with transcriptional regulation, mitochondrial proteins, and NF-

κβ activation signaling. This gene list was uploaded to DAVID Bioinformatics 

Software for analysis of functional annotation. Analysis resulted in two significantly 

(p≤0.05) altered functional annotations, including regulation of transcription and cell 

cycle arrest.  
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Figure 3.5: Heat map representing genes down regulated in injury and restored 
to sham levels with selenium supplementation. The heat map presents a visual 
representation of changes in gene expression in which blue indicates down regulated 
gene expression and red indicates up regulated gene expression. 
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Table 3.4: Representative list of genes down regulated in injury and restored to 
sham levels with selenium supplementation. Analysis of this list in DAVID 
Bioinformatics Software indicated 2 significant functional annotations for these 
genes, including transcriptional regulation and cell cycle arrest. A complete list of the 
78 genes that filtered into the increased expression in selenium-enriched template is 
also included (Appendix C). 

Injury in control (-), p<0.017, total of 78 genes 
Gene Description Gene Ontology Information 

Aven apoptosis, caspase activation inhibitor Anti-apoptotic 
Solh small optic lobes homolog (Drosophila) Calpain 15 

Dmtf1 cyclin D binding myb-like transcription factor 1 cell cycle regulation 
Mkks McKusick-Kaufman syndrome developmental dysfunction 

Trmt12 
tRNA methyltransferase 12 homolog (S. 
cerevisiae) epigenetic regulation 

N6amt2 
N-6 adenine-specific DNA methyltransferase 2 
(putative) epigenetic regulation 

Mmp15 matrix metallopeptidase 15 extracellular matrix 

Mrpl50 mitochondrial ribosomal protein L50 
Formation of mitochondrial 
proteins 

Mrpl48 mitochondrial ribosomal protein L48 
Formation of mitochondrial 
proteins 

Tomm40b 
translocase of outer mitochondrial membrane 40 
homolog B (yeast) mitochondrial translocation 

Sharpin SHANK-associated RH domain interactor NFK-b activation - signaling 
Efha1 EF-hand domain family, member A1 transcription 

Zswim3 zinc finger, SWIM-type containing 3 transcription 
Zfp422 zinc finger protein 422 transcription 
Zdhhc8 zinc finger, DHHC-type containing 8 transcription 
Zfp444 zinc finger protein 444 transcription 

Zfp322a Zinc finger protein 322a transcription 
Zzef1 zinc finger, ZZ-type with EF hand domain 1 transcription 
Zhx2 Zinc fingers and homeoboxes 2 transcription 

Zfhx3 zinc finger homeobox 3 transcription 
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3.4 Discussion 
SCI affects approximately 273,000121 patients every year and creates millions of 

dollars worth of health care costs. With relatively few effective treatments, a new 

neuroprotective strategy is needed. Transcriptional changes with selenium 

supplementation following injury explored some pathways that may be able to 

provide a small amount of neuroprotection following spinal cord injury.  

Mechanical trauma to the CNS induces a sequence of molecular events known as the 

secondary injury cascade. Eventually, these neurodegenerative events result in 

neuronal cell death and pathologies associated with SCI. In addition, SCI produces a 

robust change in gene expression beginning as early as 4 hours post-injury and 

continuing into the days and weeks following the initial injury117-120.  

The gene ontologies represented in the templates for increased/decreased gene 

expression following SCI closely match gene ontologies observed in other studies 

looking at transcriptional changes after SCI. In particular, Aimone et al., showed 

significant changes in synaptic vesicle transport119 in relation to disruption in synaptic 

plasticity. The current study supports this finding through functional pathways down 

regulated after injury including synaptic transmission, neurotransmitter transport, and 

vesicle-mediated transport (Table 3.1).  

The similarities between the current study and other published studies support the 

methods used for performing the contusion SCI as well as the analysis of gene array 

data. However, the gene expression changes induced by injury alone were not the 
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main focus of this study. The importance of selenium for an optimally functioning 

CNS and previous publications that show the role selenium plays in modulating gene 

expression support the original hypothesis of this study that selenium will drive gene 

expression changes associated with the secondary injury cascade.  

Template design as utilized in this analysis of microarray data provides both great 

benefit and a potential caveat. In the case of this study, when one particular 

overwhelming shift in gene expression is expected, more subtle changes in expression 

can be lost in the analysis. Even a moderate SCI produces pronounced changes in 

gene expression, with high fold changes, while the more subtle effects of diet are 

difficult to determine. These templates filter out all genes that are changed 

predominately by injury. This leaves smaller groups of genes that may show a subtle 

shift in gene expression, but represent significant changes due to dietary treatment in 

this injury model and may have been otherwise difficult to detect with traditional 

pathway analysis. This design, does however, limit the scope of the analysis of genes 

that are expected with selenium supplementation. Changes in selenoproteins, such as 

glutathione peroxidase for example, are expected to increase with selenium 

supplementation. These genes are predominately changed with injury and thus are 

included in the injury alone templates. Despite the caveats, this method provides an 

unbiased analysis of genes with subtle expressional pattern shifts, which is critical 

when evaluating such a large data set. 



71 

The two templates discussed in detail here are those genes with expression patterns 

that are upregulated in selenium enriched animals following injury and those that are 

down regulated in control injured animals, but brought back to sham levels with 

selenium treatment. Several genes associated with mitochondrial function upregulated 

with selenium dietary enrichment following SCI. These genes are particularly 

interesting in a model of CNS trauma due to the critical importance of mitochondria 

following injury. Mitochondrial dysfunction occurs as the result of membrane 

damage and calcium dysregulation in the cell and is an important trigger for apoptotic 

pathways following SCI. An increase in synthesis of mRNA for these mitochondrial 

proteins may provide neuroprotection following CNS trauma. Additionally, genes 

associated with transcriptional changes, NFK-b regulation, cell cycle regulation and 

mitochondrial proteins are down regulated following injury, but restored to sham 

levels with selenium supplementation. The changes in mitochondrial genes support 

the genes up regulated with selenium supplementation and the improvement in 

transcriptional regulation suggests a potential role in selenium restoring normal 

protein production following injury. 

Further studies are needed to determine the exact mechanism through which 

selenoproteins are modulating expression of these different pathways. Changes in 

mRNA levels of these genes provide only a small picture of the cellular changes that 

this particular form of selenium is creating within the CNS. Selenium has been shown 

to activate the transcriptional regulator, NF-κβ46, as well as modulate histone 

acetylation in controlling inflammatory gene expression41. These targeted changes of 
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transcriptional machinery may provide a clue as to how different seleno compounds 

are regulating shifts in gene expression patterns. 

Another important caveat to consider when examining gene expression data in spinal 

cord injury models is the well characterized response to injury that involves an influx 

of cells into the site of primary injury122. In future experiments, performing cell-

sorting with samples to specifically choose neuronal or glial specific cells, may 

provide interesting information and allow for distinction of gene expression changes 

from invading macrophages or leukocytes.  
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CHAPTER 4 
Long term dietary selenium supplementation may provide neuroprotective 

benefits for mitochondrial respiration 

4.1 Introduction 
The neurological devastation brought on by traumatic brain injury (TBI) is costly 

both financially and in terms of quality of life for the estimated 3.17 million patients 

with long term disabilities associated with TBI every day123. Certain groups of 

individuals run a higher risk for sustaining a traumatic brain injury. In particular, with 

recent military involvement in conflicts in Iraq [Operation Iraqi Freedom (OIF)] and 

Afghanistan [Operation Enduring Freedom (OEF)], soldiers are increasingly 

returning from deployment with combat injuries classified as TBIs66. The prevalence 

of mild traumatic brain injuries among athletes in contact sports has also become a 

focus of growing concern, with as many as 3.8 million sports concussions occurring 

each year124. This substantial incidence of TBIs, particularly in high-risk groups, 

emphasizes the importance of developing novel therapies to combat the 

neurodegeneration and pathologies following TBI. In the hours and days after a 

mechanical injury to the CNS, a host of secondary molecular events occur, which, if 

unchecked will lead to neuronal cell death. This secondary injury cascade includes 

molecular problems such as calcium dysregulation, mitochondrial dysfunction, 

oxidative damage, lipid peroxidation, and excitoxicity. As an essential dietary 

nutrient, critical for the function of several antioxidant enzymes, dietary selenium 

enrichment may serve as an effective pretreatment to minimize CNS damage in the 

event of trauma.  
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Selenium modulates neurodegeneration in many other disorders of the CNS, making 

it an interesting therapeutic target for TBI. Increased dietary selenium levels reduced 

RNA and DNA oxidative damage in an Alzheimer’s Disease model34 and decreased 

DNA damage and movement disorders in mouse models of Parkinson’s Disease63. A 

form of selenium yeast, ebselen, has also proven neuroprotective following ischemic 

stroke in rodents56. Selenium functions as a co-factor for several antioxidant 

selenoproteins, including glutathione peroxidase. Additionally, other selenoprotein 

families have important immune modulating and antioxidant effects49, thereby 

providing potential for these neuroprotective effects to extend into neurotrauma as 

well. 

Selenium was enriched at different levels in rat diets prior to injury to examine a 

potential neuroprotective role for dietary selenium. In the present study, dietary 

selenium enrichment was present in the form of selenized yeast. The formulation of 

selenium is critical when considering increasing selenium levels in both animal 

models and in translation to human clinical trials. Inorganic forms of selenium, such 

as sodium selenite and selenium sulfides, common in most over the counter 

multivitamins and anti-dandruff shampoos, respectively, can cause toxicity in high 

concentrations14. Selenium was incorporated into the diets in the form of selenized 

yeast (Sel-Plex®, Alltech, Nicholasville, KY), which like other organic forms of 

selenium, has a lower risk of toxicity issues than the inorganic salt forms15, 16. 

Selenized yeast has been used previously in studies examining the cancer 

preventative properties of selenium50, as well as in rodent ischemic stroke models55. 
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In this formulation, yeast is grown in the presence of elemental selenium and results 

in the presence of several different selenium species. When analyzed by mass 

spectrometry selenized yeast contains approximately 20% selenomethionine125, 20% 

selenocystine and Se-methylselenocysteine, and 40-50% of other unique selenium 

compounds126. By adding selenium in the form of seleno-amino acids, selenium can 

be stored easily in tissues as selenomethionine (in place of methionine) and provide a 

readily available source of selenium for the formation of selenoproteins. The unique 

selenium compounds specific to selenized yeast may be crucial to defining the 

neuroprotective benefits over other formulations of selenium18. 

In the secondary neurodegenerative cascade of events that follow the initial 

mechanical trauma, mitochondrial dysfunction is one of the primary pathologies that 

precipitates neuronal death127. As the primary site for ATP production in the neuron, 

mitochondrial damage results in a loss of critical energy production as well as failure 

to buffer intracellular calcium levels. A dysregulation of calcium buffering within the 

neuron can inhibit ATP synthesis, lead to the release of the apoptotic signaling factor, 

cytochrome c, increase production of reactive oxygen species (ROS), and eventually 

lead to cell death128, 129. Through work with isolated mitochondria, endogenous (and 

exogenous) substrates can be added directly to cortical mitochondrial to mimic 

various states of electron transport chain (ETC) respiration (Figure 4.1). These assays 

measure oxygen consumption rate (OCR) and can provide information about overall 

mitochondrial health following injury. The Seahorse Bioscience system measures 

oxygen levels within a closed chamber was modified to allow for multiple sample 
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testing in one plate (Seahorse Bioscience®). Because they are crucial for energy 

production and dysfunction can trigger cell death, mitochondria are a particularly 

attractive target for intervention after traumatic brain injury.  
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Figure 4.1: Representative trace of oxygen consumption in isolated 
mitochondria. Oxygen consumption is measured in response to various endogenous 
and exogenous substrates (Seahorse Bioscience). Isolated mitochondria are kept in a 
chamber with a controlled level of oxygen. Oxygen consumed is representative of the 
efficiency of the electron transport chain (ETC). Adding the substrates pyruvate and 
malate, along with ADP, allow the ETC to consume oxygen through the production 
of ATP from ADP (III or State III respiration). Oligomycin is then added to 
artificially stop the ATPase, thus effectively halting ATP production, the ETC, and 
oxygen consumption (IV or State IV respiration). Following that, the protonophore, 
FCCP, is added (V-C I or State V-complex I respiration) which allows for free 
passage of H+ ions across the membrane and thus maximally driven respiration. 
Finally, rotenone, a Complex I inhibitor, and succinate, the endogenous substrate for 
respiration through Complex II, are added to test respiratory capacity through 
Complex II of the ETC (V-C II or State V-complex II driven respiration). Changes in 
rates of oxygen consumption in response to these different substrates correlate 
directly to problems with these specific components of the ETC, pinpointing the 
location of mitochondrial damage following injury. 

O
xy

ge
n 

co
ns

um
pt

io
n 

ra
te

 
(p

m
ol

es
/m

in
)

Ba
se
lin
e

PM
/A
DP

Ol
igo
my
cin

FC
CP

Ro
ten
on
e+
Su
cc
ina
te

0

200

400

600

800

1000 III

IV

V-CI

V-CII



78 

The detrimental impact of the secondary injury cascade typically results in neuronal 

death. Ultimately, this neuronal death leads to pathological functional changes. 

Improving these functional deficits is crucial in the lives of patients living with TBI 

and thus is also an important parameter to investigate. Different animal models of 

TBI have been linked to spatial memory deficits130, 131. As this is also a common 

clinical symptom, the Morris Water Maze task was developed and used in a wide 

variety of studies to test cognitive problems in various rodent models132. In addition, 

memory deficits have been linked to development of cortical lesion, particularly in 

the controlled cortical impact (CCI) injury model. 

This study examines the potential for increased dietary selenium to protect various 

states of mitochondrial respiration in the injured cortex, prevent neuronal cell death, 

and ultimately improve memory deficits following TBI. 
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4.2 Methods  

4.2.1 Animal care and diet 
Male Sprague-Dawley rats were purchased from Harlan and placed immediately on 

one of four diets. Selenized yeast was formulated within the rat diet for a final 

concentration of either 1.3ppm selenium (approximately 19.5µg/day) or 2.3ppm 

selenium (approximately 34.5µg/day). Normal rat chow containing 0.3ppm of 

selenium (4.5µg/day) was utilized as the control diet. The control diet is comparable 

to a normal rat chow with a yeast additive to account for any differences caused by 

the yeast in the selenium compound. The selenium enriched diets are labeled as 1ppm 

(SP1) or 2ppm (SP2) of additional selenium in the form of selenium yeast. Yeast was 

grown in the presence of selenium; allowing selenium to be taken up into the cell 

walls of the yeast and incorporated as the amino acids selenocysteine and 

selenomethionine, as well as other small seleno-compounds. The selenium deficient 

diet is formulated using a torula yeast base. Because selenium is present in most plant 

sources, normal plant-based rodent diets will contain a small amount of selenium. By 

using torula yeast as a base for the diet, this controls the growing environment and 

ensures the diet will be completely deficient in selenium. Animals were fed ad libitum 

for 2, 4, 8, or 16 weeks, depending on the length of feeding required for each 

experiment. Diets were formulated by Harlan and selenized yeast, in the two different 

concentrations, was supplied to Harlan as Sel-Plex® (Alltech, Nicholasville, KY). 

4.2.2 Selenium tissue levels 
Diets were fed ad libitum to male Sprague-Dawley rats for either 2 weeks, 4 weeks, 8 

weeks, and 16 weeks prior to tissue collection. Naïve cortex samples were collected 
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for tissue analysis. Prior to sampling, animals were transcardially perfused with 

approximately 250mL of phosphate buffered saline to eliminate selenium 

contamination from blood in the tissues. Selenium levels were analyzed (Alltech) by 

liquid chromatography-mass spectrometry (LC-MS) in samples taken from the left 

cortex (n=6 per diet). Animal weights and caloric content consumed were also 

monitored for significant changes due to the different dietary formats.  

4.2.3 Controlled cortical impact injury 
After being maintained on their respective diets for 16 weeks, rats received a 

moderate (1.75mm depth) unilateral, controlled cortical impact (CCI) injury133 or a 

sham craniotomy. In the second major cohort of animals tested, the dosage period 

was shortened to 4 weeks of dietary supplementation (or deficiency) and animals 

received a severe (2.2mm depth) unilateral, CCI or a sham craniotomy. Animals were 

first anesthetized with 3% continuous isoflurane, followed by shaving the scalp, and 

securing the animal in a stereotaxic frame. After sterilizing the scalp, an incision was 

made over the site of the intended craniotomy. A 6mm craniotomy was created using 

a hand trephine, lateral to the central suture, centered between lambda and bregma, 

and positioned directly over the left parietal cortex. The injury was performed with a 

pneumatically controlled impactor with an intended depth of either 1.75mm or 2.2mm 

(depending on the experimental paramaters), a dwell time of 500msec, and a velocity 

of 3.5m/s as previously described129 (Precision Systems and Instrumentation, Fairfax 

Station, VA). Immediately following the injury, the craniotomy was covered, the 

scalp sutured, and the scalp injected with bupivicaine/epinephrine to minimize 
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discomfort due to the incision. Sham controls received a craniotomy, anesthesia, and 

bupivacaine/epinephrine solution without the cortical contusion injury. 

4.2.4 Behavioral assessment of functional deficit  
Spatial memory after injury was assessed using the Morris Water Maze task. The 

Morris Water Maze (MWM)132 was developed as an open field behavioral task 

designed to test spatial and working memory in rodent models. Since its development, 

the MWM is a widely utilized and highly cited method to determine cognitive deficits 

in the trauma field. This task is an open-field swimming task in which a sunken 

platform is placed in a particular quadrant of the testing pool. To discover the location 

of the platform, animals must rely on spatial memory and visual cues on the walls 

surrounding the pool. Testing in the water maze began at 10 days post-injury. This 

lapse of time after injury is necessary for sufficient recovery following surgery. 

Animals underwent 4 trials each day for 4 consecutive days. During each trial, 

animals had 60 seconds to find a sunken platform. If the platform was not discovered, 

rats were led to the platform. The fifth day consisted of a probe test in which the 

platform was removed and the number of times the animal crossed the location of the 

(now) missing platform were recorded. Both time and distance (path length) to the 

platform were recorded as functional measures of spatial memory over the testing 

days and the number of times to cross the platform location during the probe trial.  

4.2.5 Mitochondrial respiration 
Mitochondria were isolated from a separate cohort of animals using a differential 

preparation method at 24 hours after injury, with slight alterations from Patel et al72,
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134. Animals were euthanized with CO2 inhalation and the brain was rapidly removed. 

Following a brief rinse of the surface of the cortex with ice cold isolation buffer (1 

mM EGTA, 215 mM mannitol, 75 mM sucrose, 0.1% BSA, 20 mM HEPES, pH 7.2 

adjusted with KOH), a cortical punch was taken from the area immediately 

surrounding the injury epicenter in the ipsilateral cortex. A cortical punch was also 

taken from either the sham cortex or the contralateral cortex. The sham or 

contralateral cortices were utilized to control for any plate-to-plate differences within 

the assay. The tissue was homogenized in 1mL of cold isolation buffer using a downs 

homogenizer. Isolation buffer was added to samples to a total of 2mL and spun at 

1300 x g for 3 minutes at 4°C. Supernatant was transferred to new tubes and filled to 

2mL with isolation buffer. The pellet was resuspended in 500µL of isolation buffer 

and spun again at 1300 x g for 3 minutes at 4°C. The resulting supernatant was 

transferred to a new tube and filled to 2mL with isolation buffer. The two sets of 

supernatants from the two different spins were then spun at 13,000 x g for 10 

minutes. The supernatant was discarded and the resultant pellet was resuspended in 

400µL of isolation buffer. Samples were then placed in a cell disruption nitrogen 

bomb to release mitochondria contained within synaptosomes at 1200 psi for 10 

minutes. Total mitochondria were then spun at 10,000 x g for 10 minutes. The 

resulting pellet was resuspended in 100µL of isolation buffer without EGTA (as listed 

above without EGTA added).  

Mitochondrial viability was assayed by measuring respiration rates using the 

Seahorse XF Extracellular Flux Analyzer (Seahorse Bioscience). Each plate contains 
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24 wells, allowing for up to 8 samples to be run in either duplicate or triplicate on 

each plate. To control for plate-to-plate variation in signal by the Seahorse 

Bioscience, each sample was normalized to the sham control within the same plate. A 

total of 15µg of isolated mitochondria was added to each well in the plate. Any 

preparations that resulted in a respiratory control ratio (RCR) of <5 for the 

contralateral or sham samples were not included in further analysis. The RCR is the 

ratio of State III/State IV oxygen consumption rates.  

4.2.6 Immunohistochemistry 
Animal cohorts that were used in behavioral testing were euthanized after the final 

behavioral assessment at 15 days post injury. Animals were injected with an overdose 

of sodium pentobarbital (150mg/kg, i.p.). Once an appropriate depth of anesthesia 

was determined based on a non-response with toe-pinch, a thoracotomy was 

performed. Animals were transcardially perfused with ice-cold 1X phosphate-

buffered saline (PBS) (approximately 200mL), followed by cold 4% 

paraformaldehyde (approximately 250mL). Following perfusion, whole brain was 

removed and placed into a post-fixative solution of 4% PFA for 24 hours at 4°C. 

Then brains were transferred to 30% sucrose for 3 days for cryoprotection. Brains 

were sectioned using a sliding microtome in 50µm sections in the coronal plane. 

Sections were kept in a series of 10, ensuring that each set of sections was 

representative of tissue at 500µm apart. Sections were stored in a cryoprotective 

solution (30% ethylene glycol, 30% sucrose in 1X PBS) until staining. Sections were 

mounted to slides (Fisher SuperFrost Plus, Fisher Scientific) and dehydrated first with 

chloroform + 95% ethanol (EtOH). Sections were then rehydrated using increasing 
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dilutions of EtOH with water. Slides were then stained with cresyl violet stain and 

serially dehydrated with increasing concentrations of EtOH, followed by Citrisolv. 

Slides were cover slipped with Permount (Fisher Scientific) and allowed to dry 

overnight prior to imaging. Spared tissue was evaluated as a percentage of the healthy 

tissue on the contralateral side.   

Tissue sections analyzed for the presence of gluial fibrillary acidic protein (GFAP), a 

marker of astrocytic activation, were transferred from cryoprotectant solution into 

TBS. Free floating sections were blocked for 1 hour with 1% normal horse serum at 

room temperature and then incubated in the primary antibody for GFAP (Mouse anti-

GFAP, 1:50,000, Millipore) overnight at room temperature. After washes in Tris-

buffered saline (TBS), anti-GFAP was bound to the secondary antibody conjugated to 

biotin (1:5000 Jackson Immunoresearch) for 1 hour at room temperature. Slices were 

treated with peroxidase conjugated streptavidin (1:1000, Jackson Immunoresearch) 

and then detected using 3,3’-diaminobenzidine (DAB, Jackson Immunoresearch) for 

5 minutes. Slides were allowed to dry overnight and then dehydrated with increasing 

concentrations of EtOH, then xylene, and cover slipped with Permount (Fisher 

Scientific). 

4.2.7 Glutathione peroxidase activity 
Glutathione peroxidase (GPx) enzyme activity was determined using a glutathione 

peroxidase assay kit (Cayman Chemical). In naïve animals, the left cortex was 

homogenized in 1mL of ice-cold buffer (50mM Tris-HCL, pH 7.5, 5mM EDTA, 

1mM DTT). In injured animals, a portion of the ipsilateral and contralateral cortex 
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homogenized for mitochondrial analysis was set aside for GPx activity. These 

samples were further homogenized with the homogenization buffer buffer containing 

(1mM DTT). The samples were then centrifuged at 10,000 x g for 15 minutes at 4°C. 

Samples were loaded onto a 96-well plate along with other buffers provided with the 

kit. The assay was activated with cumene hydroperoxide and immediately read for 

absorbance at 340nm every minute for 5 total minutes. The assay measures the 

oxidation of NADPH to NADP+, which results in a decrease in absorbance at 340nm. 

Each sample was run in duplicate or triplicate on the plate. The overall rate of change 

in absorbance values were calculated using the following equation (A indicates 

absorbance): 

∆𝐴/min =   
𝐴 𝑇𝑖𝑚𝑒  2 − 𝐴(𝑇𝑖𝑚𝑒  1)

𝑇𝑖𝑚𝑒  2 𝑚𝑖𝑛. − 𝑇𝑖𝑚𝑒  1  (𝑚𝑖𝑛. )

The change in absorbance was averaged across all wells for each sample. The rate of 

change (ΔA/min) for the background wells was then subtracted from values for the 

samples. The following formula was used to calculate the GPx activity:  

𝐺𝑃𝑥  𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =   
∆𝐴/𝑚𝑖𝑛

0.00373𝜇𝑀!! 𝑥
0.19𝑚𝐿
0.02𝑚𝐿 𝑥  𝑠𝑎𝑚𝑝𝑙𝑒  𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 =

𝑛𝑚𝑜𝑙
𝑚𝑖𝑛 /𝑚𝐿 

The constant (0.00373µM-1) is the NADPH extinction coefficient and was applied to 

all samples according to the above formula. After the GPx activity was calculated for 

each sample, the activity was also adjusted for protein concentration of the sample.  
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4.2.8 Statistics 
Data presented in each figure are shown as mean±standard error of the mean (SEM). 

For all experiments, significance was set as α=0.05. Using GraphPad Prism 6.0, 

differences between mitochondrial respiration data were calculated using either a 

Student’s t-test (Figure 4.1) or a one-way ANOVA (Figure 4.6) depending on the 

number of variables being tested. Each state of mitochondrial respiration was 

analyzed separately as each is a separate measure, using distinct substrates. Data 

generated from MWM behavioral testing was evaluated using either a 2-way, 

repeated measures ANOVA when examining the time and distance to the platform 

over the 4 training days or a 2-way ANOVA when analyzing the significance in the 

4th day of training and probe test data (Figure 4.2 and Figure 4.8). Differences in 

cortical tissue sparing and GFAP between control and SP1 animals were calculated 

using a Student’s t-test (Figure 4.3). Tissue selenium content was analyzed using a 

repeated measure, one-way ANOVA for the time course supplementation data, or a 

one-way ANOVA for the selenium levels for each diet after 4 weeks of 

supplementation (Figure 4.4). A one-way ANOVA was used to analyze differences 

between overall caloric content and final weight gain of animals maintained on the 4 

different diets, with multiple comparisons to the selenium deficient diet (Figure 4.5). 

Significance of data on GPx activity was calculated using either a one-way ANOVA 

for naïve animals and for samples taken from injured isolated mitochondrial 

preparations (Figure 4.7A, B). No statistical analysis was performed on data for GPx 

activity in the injured cortex as the sample size was too small to accurately run 

statistics (Figure 4.7C, D). 
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4.3 Results 

4.3.1 Mitochondrial respiration (16 weeks of dietary supplementation) 
When examining mitochondrial respiration 24 hours post-injury, those animals on the 

selenium enriched diet showed improvement in the different states of respiration 

tested. When the endogenous substrates, pyruvate/malate and ADP, were added to 

isolated injured mitochondria a significant improvement in OCR in mitochondria 

isolated from animals maintained on the selenium enriched diet (Figure 4.2A). 

Mitochondrial samples were then manipulated with oligomycin and FCCP. These 

substrates mimic maximal mitochondrial respiration, State V complex I driven 

respiration. When normalized to sham controls, animals maintained on the selenium 

enriched diet showed significant increase in oxygen consumption as compared to 

control animals (Figure 4.2B). Substrates rotenone and succinate were then added to 

the samples. Rotenone acts to inhibit complex I in the electron transport chain, 

allowing succinate to supply complex II (mitochondrial respiration as State V, 

complex II). Mitochondria isolated from animals maintained on the selenium 

supplementation showed improved State V, complex II respiration following injury 

when compared to control animals (Figure 4.2C). 
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Figure 4.2:  Mitochondrial respiration following injury in animals maintained on 
different dietary levels of selenium. Animals were fed diets for 16 weeks (n=4 for 
all injured/sham). OCR is expressed as a percentage of sham levels within the same 
plate to account for plate-to-plate variability. A) Dietary enrichment with selenium 
(SP1) improved State III mitochondrial respiration following the addition of ADP and 
pyruvate/malate. B) Increased selenium improved State V-complex I driven 
mitochondrial respiration following the addition of FCCP. C) Animals with increased 
selenium exhibited improved mitochondrial respiration through complex II in State 
V-complex II respiration after the addition of rotenone and succinate. Error bars 
represent SEM, *p≤0.05 
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4.3.2 Spatial memory following injury (16 weeks of dietary supplementation) 
Behavioral training began 10 days following injury and included 4 days of training 

followed by a probe test on the 5th day. Both the time and distance to the sunken 

platform were recorded as a measure of spatial memory and learning within the 

Morris Water Maze (MWM) task. Sham animals showed no difference in spatial 

memory between different dietary levels of selenium. Injured animals on the selenium 

enriched diet (SP1) showed an overall trend over the four days towards shorter time 

and distance to platform discovery when compared to the control diet injured group 

(Figure 4.3A and 4.3B). When examining the final day of training (Day 4), the 

selenium enriched group had a significantly shorter distance to platform discovery 

(Figure 4.3D). While the time to the platform was not significantly shorter between 

injured animals on the selenium diet and control diet injured animals, the data shows 

a trend toward improvement in the selenium enriched group (Figure 4.3C). On the 

fifth day of MWM testing, the platform was removed as part of the probe test. The 

total number of times the animal crossed the original location of the platform was 

recorded as a final measure of spatial memory. The data presented represents the total 

number of platform crossings within the first 15 and 30 seconds after being placed in 

the pool. Probe data indicates a trend towards improvement after injury in animals 

supplemented with selenium after both 15 and 30 seconds but does not reach 

statistical significance (Figure 4.3E and 4.3F).  
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Figure 4.3: Selenium improves performance in behavioral testing after injury. 
Overall performance on MWM task during four training days and final probe test 
(n=7 control injured group, n=8 SP1 injured group, n=6 sham groups). One animal in 
control injured group was euthanized due to complications from surgery. A, B) Sham 
animals showed no difference in the time or distance to the platform over the four 
training days. In injured animals, those supplemented with selenium exhibited an 
overall improvement in the time and distance to discovery of the platform over the 
four training days. C) On day 4, the time to the platform discovery appeared to 
improve in injured animals supplemented with selenium, however did not reach 
significance. D) On day 4, the distance to the platform was improved in injured 
animals with the enriched selenium diet when compared to injured animals on the 
control diet. Sham animals did not show any differences between dietary groups. E, 
F) During the probe test, animals on the selenium enriched diet found the location of
the platform similar to sham animals within 15 and 30 seconds of being placed in the 
testing pool. However, due to variability, this did not reach statistical significance. 
Error bars represent SEM, *p≤0.05. 
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4.3.3 Tissue histology 
Brain tissue collected from animals that were utilized for MWM testing was 

examined for overall lesion volume and astrocyte activation following injury. At 15 

days after the initial CCI injury, cell death begins to occur and typically a lesion 

results in the area of the impact. In this data, selenium enrichment did not provide any 

protection from cell loss leading to a lesion in the cortex (Figure 4.4A). Additionally, 

astrocyte activation following injury is not significantly different between the animals 

maintained on the two different diets (Figure 4.4B). 
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Figure 4.4: Selenium does not improve cortical tissue sparing or astrocyte 
activation following injury. Overall cortical tissue sparing and astrocyte activation 
shown in coronal sections (50µm) in the injured cortex. A) Animals maintained on 
the selenium enriched diet (SP1) did not show any improvement in cortical tissue 
sparing. Additionally, the moderate injury (1.75mm impact depth) did not result in a 
large amount of lesion in the cortex. B) Astrocyte activation, as measured by GFAP 
staining, did not show any significant differences between the two dietary groups. 
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4.3.4 Different time periods and supplementation dosages 
Due to the promising results seen after 16 weeks of selenium enrichment, the time 

course and dietary dosage were examined to determine the shortest length of 

supplementation time necessary for protective effects. Shortening the 

supplementation time frame helped to simplify the time constraints for laboratory 

experiments and may potentially be beneficial for translation of this supplement in the 

clinical setting. LC-MS analysis showed that selenium levels increased significantly 

in the CNS as early as 2 weeks following dietary enrichment (Figure 4.5A and 4.5B). 

For further experiments, the 4 week supplementation time period was selected. To 

expand the scope of our studies, we added two additional dietary dosage levels for 4 

week dietary supplementation (selenium deficient and increased selenium, SP2). The 

selenium deficient diet decreased overall tissue storage of selenium in the cerebral 

cortex and the SP2 diet further increased cortical selenium levels (Figure 4.5C).  

The diets were adjusted so that caloric content was similar among the different diets. 

However, upon close examination of the nutritional content, the selenium deficient 

diet contained a large difference in different micronutrient content. In order to 

formulate the diet into pellets, a large amount of corn oil was added to the torula yeast 

based diet. Additionally, high levels of choline are present in this diet (Appendix H). 

While the caloric content consumed by the animals was relatively equal, the 

differences in micronutrients within the diet as well as the large amount of corn oil 

confound any potential conclusions that can be drawn from this data. 
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The slightly different composition of the selenium deficient diet may be of concern 

when considering specific components, but the overall weight gain and calories 

consumed by animals on these diets showed no significant differences (Figure 4.6A 

and 4.6B).  
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Figure 4.5: Selenium tissue levels are altered relative to time of dietary 
supplementation and level of selenium in the diet. A) Cerebral cortex levels at 
different time points of supplementation in naïve animals. (n=5) As early as 2 weeks 
of supplementation with increased selenium (SP1), tissue selenium levels were 
increased in cortex. This level continued to increase over 16 weeks of 
supplementation. B) Spinal cord selenium levels at different time points of 
supplementation in naïve animals. (n=5) Selenium tissue levels were increased at 2 
weeks and continued to increase over 16 weeks of supplementation with SP1 diet. C) 
The time point of 4 weeks of supplementation was selected for further dietary 
supplementation studies. (n=6) Studies were widened to include additional dietary 
levels of selenium, including a diet deficient in selenium and one increased level of 
selenium. Tissue levels of selenium were altered relative to the amount of selenium 
present in the diet. The tissue levels in animals on the control, SP1, and SP2 diets 
were increased relative to those maintained on the selenium deficient diet. Error bars 
represent SEM, *p≤0.05, **p≤0.001 
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Figure 4.6: Dietary composition did not significantly alter the caloric intake, but 
did change weight gain. A) Average number of kcal consumed per cage, per week (2 
animals housed in each cage). (n=3 cages, calories representative of calories for 2 
animals) The different diets did not have a significant effect on the total number of 
calories the animals consumed. B) Final weight of animals prior to surgery (n=6). The 
weights of animals in the selenium deficient diet group were significantly different 
from animals in the control, SP1, and SP2 groups. However, because the weight 
difference was less than 20% of animals in the other group, the difference was not a 
concern for animal care and surgical techniques. Error bars represent SEM, *p≤0.05 
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4.3.5 Mitochondrial respiration (4 weeks of supplementation) 
To examine the effects of the 4 different levels of dietary selenium over 4 weeks of 

supplementation on mitochondrial function, following injury we utilized a more 

severe injury (2.2mm impact depth). Due to modest mitochondrial protective effects 

seen at a less severe injury (1.75mm) in previous experiments, the injury severity was 

increased in these studies and similar parameters were tested in an effort to 

demonstrate a more robust effect of selenium treatment. At 24 hours following injury, 

cortical mitochondria isolated from the area immediately surrounding the injury 

(ipsilateral) showed damaged mitochondrial respiration in comparison to the 

contralateral side. In these experiments the contralateral cortical mitochondria was 

used as an in-plate control. The ipsilateral mitochondria, when expressed as a 

percentage of the contralateral side did not replicate the protective effects of selenium 

enrichment seen previously from the 16 week supplementation time period (Figure 

7A, B, C). While it is clear that the selenium deficient diet exacerbated the injury 

effect, the additional levels of selenium did not provide additional protection from 

injury. The increased detriment to respiration in animals on the selenium deficient 

diet does, however, emphasize the importance of selenium in the CNS following 

injury. Interestingly, this effect persisted throughout the three different states of 

respiration tested (Figures 7A, 6B, 6C).  
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Figure 4.7: Mitochondrial respiration in injured cortex following 4 weeks of 
dietary supplementation. OCR is expressed as a percentage of the contralateral 
cortex samples within the same plate to account for plate-to-plate variability. (n=7 for 
all injured/sham) A) Selenium enrichment did not improve mitochondrial respiration 
through State III driven respiration (A), State V-Complex I driven respiration (B), or 
State V-complex II driven respiration (C). There is a clear trend exhibiting 
exacerbation of the injury effect in animals maintained on the selenium deficient diet. 
However, this was not statistically significant (α=0.05). Error bars represent SEM. 
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4.3.6 GPx activity with different levels of selenium supplementation 
After being maintained on 4 different levels of selenium supplementation for 4 

weeks, naïve cortex samples showed no significant changes in glutathione peroxidase 

(GPx) activity (Figure 4.8A). Animals receiving the selenium deficient diet, exhibited 

a slight decrease in GPx activity, but deficient conditions were not sufficient to 

impact overall GPx activity.  

Following severe (2.2mm impact depth) TBI, GPx activity in crude mitochondrial 

preparations had very little difference in activity levels between the dietary groups 

(Figure 4.8B). The dietary source was not enough to drive a change in GPx activity or 

potentially the sample utilized for these studies did not represent total cellular GPx 

activity and thus is not conclusive of the effect on overall GPx activity within the 

injured cortex. 

In a small cohort of animals, we also tested GPx activity following injury in isolated 

cortical samples from both the ipsilateral injured cortex as well as the contralateral 

cortex. Due to limitations of available diet, the number of animals included in this 

experiment was not large enough to run statistical analysis. These animals did 

however demonstrate a trend towards a rise in GPx activity following injury (Figure 

4.8C). Additionally, when examining only the ipsilateral cortex, it is clear that the 

first level of enriched dietary selenium (SP1) increases GPx activity at the highest 

level in comparison to other dietary levels of selenium (Figure 4.8D).  
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Figure 4.8: Glutathione peroxidase activity in both naïve and traumatic brain 
injured animals. A) Naïve animals showed no changes in overall GPx activity 
despite 4 weeks of differing dietary levels of selenium (n=6). B) Samples from 
isolated crude mitochondria following injury showed no changes relative to dietary 
selenium content. (n=5) C) All 4 dietary sources show a distinct injury effect. There 
is an increase in GPx activity in the ipsilateral cortex at 24 hours after TBI. Ipsilateral 
(ipsi) and contralateral (contra) cortical tissue levels are shown for each dietary 
group. (n=2) D) Within the cerebral cortex data (C), the ipsilateral cerebral cortex 
showed an increase specifically with the first level of enriched selenium dietary level 
(SP1). Due to a small number of animals within each group, no statistics were run on 
this data. (n=2)  
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4.3.7 Spatial memory following injury (4 weeks of supplementation) 
Due to a lack of effect in comparison to the SP1 diet in mitochondrial and GPx data, 

the highest level of selenium enrichment (SP2) was eliminated from the behavioral 

studies. After 4 weeks of dietary supplementation and a severe CCI injury, animals 

showed an injury effect during testing in the Morris Water Maze task (Figure 4.9A, 

B). The selenium deficient and SP1 groups exhibited the expected injury effect in the 

time and distance to platform discovery. The confounding results in these behavioral 

studies are that the control sham group performed poorly in the 4 days of MWM 

training and testing. Additionally, these animals showed the lowest number of 

platform crossings out of all sham animals during probe testing (Figure 4.9E, F). The 

previously observed improvements in time and distance to platform discovery in 

animals maintained on the selenium enriched diet were not replicated in this current 

study (Figure 4.9C, D). While an injury effect is apparent between the selenium 

deficient and SP1 groups, any significant improvements in spatial memory between 

injured animals on these diets were not apparent. 
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Figure 4.9: Selenium supplementation over 4 weeks does not improve spatial 
memory following injury. Overall performance on Morris Water Maze task is shown 
following TBI and 4 weeks of dietary supplementation (n=10 all injury groups, n=5 
selenium deficient sham, n=6 control and SP1 shams). One animal in the selenium 
deficient sham group was euthanized due to complications from surgery. A, B) Sham 
animals showed an overall improvement in comparison to injured animals. The sham 
animals maintained on the control diet were an exception, however, and did not show 
improvements over the 4 days of training in the time or distance to platform 
discovery. C, D) On day 4, the time and distance to platform discovery showed a 
significant injury effect but no differences due to diet within the injured group. 
Control sham animals did significantly worse in locating the sunken platform on day 
4. E, F) Number of times animals crossed the platform location within 15 and 30
seconds with probe testing showed an injury effect but no significant differences due 
to diet. Error bars represent SEM. 
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4.4 Discussion 
Selenoproteins play a critical role in several different pathways essential for human 

health. Of the approximately 25 selenoproteins that have been currently identified, 

these proteins have roles in immune function47, antioxidant systems2, and selenium 

transport to tissues21. The CNS prioritizes storage of selenium in deficient conditions, 

underlining the importance of maintaining selenium levels in the brain and spinal 

cord7. These findings, along with many studies that have emphasized the role of 

selenium in neurological diseases such as AD, Parkinson’s disease, and spinal cord 

injury, support our original hypothesis that enriching dietary selenium levels prior to 

injury will protect mitochondria and improve pathological outcomes following TBI, 

while a deficiency in dietary selenium would exacerbate observed injury effects. 

Animals that were fed the selenium enriched diet (SP1) for a long supplementation 

period of 16 weeks showed modest improvements in both mitochondrial respiration 

and spatial memory deficits. The improvements in mitochondrial respiration, in 

particular, are suggestive of neuroprotection provided by enriched level of selenium 

in the diet. These effects were carried over and also seen in the spatial memory tasks 

at a longer time point after injury. The data indicate that long term dietary selenium 

enrichment may provide neuroprotection in neurodegenerative models.  

To examine the length of time necessary to achieve these neuroprotective benefits, 

the time course studies examined selenium tissue storage over four different lengths 

of supplementation. Selenium levels within the CNS were increased as early as after 2 

weeks of dietary supplementation. The 4-week time period was chosen for future 
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studies. This represents a supplementation period that will simplify future laboratory 

experiments and also shorten the necessary time frame for supplementation in human 

clinical application. Additionally, to further expand the scope examined in these 

studies, two other doses of selenium levels were added. The selenium deficient diet 

and 2ppm selenium diet (SP2), when added to the control and 1ppm selenium diet 

(SP1) provide data on the physiologic response from a variety of dietary doses of 

selenium.  

Animals supplemented with the four different levels of dietary selenium for four 

weeks prior to receiving a CCI injury, unfortunately did not repeat the mitochondrial 

protective effect that was previously observed over the longer (16 week) 

supplementation time frame. While there is a clear trend for the exacerbation of the 

injury effect for animals deficient in selenium, the other groups tested did not show 

any improvements in mitochondrial respiration. These data suggest little 

neuroprotection occurs with short term selenium supplementation and no additional 

protective mechanisms are noted between supplemented animals and those with 

sufficient dietary selenium levels present.  

Due to the critical nature of selenium in the formation of the selenoprotein, 

glutathione peroxidase, we hypothesized that dietary selenium enrichment would 

increase the activity of glutathione peroxidase, particularly following injury. Naïve 

animals on different levels of dietary selenium, including deficient conditions, did not 

show any changes in overall GPx activity. After injury, no changes in GPx activity 
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were observed in isolated mitochondrial preparation. While this preparation was a 

crude mitochondrial sample and may have contained a small amount of other cellular 

fractions, these samples may not have contained enough cytoplasmic GPx to properly 

ascertain how GPx activity was changed in these circumstances. A small cohort of 

animals showed that following TBI, GPx activity is increased in the ipsilateral cortex. 

GPx activity was the highest in animals receiving the SP1 diet, suggesting that this 

dose of dietary selenium improved the function of the antioxidant enzyme, GPx. 

However, due to the small size of this group of animals, further testing is required to 

make definitive conclusions about this data. 

While tissue storage levels were increased significantly in the CNS, the lack of 

mitochondrial protection and behavioral outcomes following four weeks of 

supplementation suggests that this time frame may not be long enough to create the 

physiological changes necessary for neuroprotection. If selenium is modulating gene 

expression, down stream effects may take longer to occur, despite the increase in 

tissue selenium. It is also possible that the method used to measure selenium levels 

(LC-MS), while incredibly precise, may not be sufficient to determine physiological 

activity of selenium in these tissues. Further studies examining the exact speciation of 

selenoproteins in the supplemented central nervous system tissues may be needed to 

ascertain the exact mechanism through which selenized yeast is affecting 

mitochondrial respiration.  
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CHAPTER 5 
Discussion and Concluding Remarks 

Identification of improved treatments for CNS trauma continues to be a clinical issue 

of great significance. With approximately 270,000 people sustaining a spinal cord 

injury (SCI)121 and 3.17 million with a traumatic brain injury (TBI)66 each year in the 

United States, understanding more about the pathology of this disease is critical for 

millions of patients in this country and worldwide. Certain groups of people are at 

higher risk for neurological injuries. With a rise in TBIs among soldiers returning 

from recent conflicts in Iraq and Afghanistan and growing concern surrounding sports 

related concussions, pretreatment strategies in the form of a safe, dietary supplement, 

such as selenium, could be of particular interest for these groups. 

The action of selenium in several antioxidant enzymes, as well as its established role 

in preventing neurodegeneration in other CNS disorders, led to the hypothesis that 

prophylactic dietary selenium treatment would attenuate molecular degeneration and 

provide overall neuroprotection in the event of an injury. The results from the studies 

described herein have only shown modest improvement in the different neurotrauma 

models investigated. Further studies are still warranted to ascertain whether selenium 

is a viable pretreatment for CNS trauma.  

5.1 Pretreatment with Selenium in Spinal Cord Injury 
Following 16 weeks of prophylactic treatment with selenized yeast and a moderate 

contusive SCI, selenized yeast did significantly improve the number of days to 

recovery of bladder function. However, treatment was unable to preserve locomotor 
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deficits or rescue the overall lesion volume normally observed after this injury model. 

Any neuroprotective effects that selenium may have imparted through gene 

expression changes or through alteration of selenoprotein status was not strong 

enough to prevent degradation of spinal locomotor associated neurons, but may have 

prevented cell death in those spinal cord cell bodies or supporting glia responsible for 

innervation of bladder function. 

When expanded to consider the effect of selenium on transcriptional regulation, 

selenized yeast differentially altered gene expression patterns 24 hours after moderate 

contusive SCI. Analysis methods for dealing with the large quantity of data produced 

by microarray gene expression can vary greatly from study to study. The template 

analysis described here recapitulated similar gene pathways changed with injury that 

have been previously published supporting the validity of our analysis method. 

Expression patterns in which selenium supplementation increased gene expression as 

compared to control injured groups, included genes involved with mitochondrial 

respiration/function and protein turnover were significantly up regulated following 

injury. Additionally, expression patterns of genes that returned to sham levels with 

selenium supplementation included genes associated with transcriptional regulation, 

as well as cell cycle control. These two particular expression patterns support a 

potential neuroprotective effect of dietary selenium enrichment and agrees with 

current literature in which certain selenoproteins have recently been characterized as 

a redox regulator specific to mitochondria37.  
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5.2 Selenium in Traumatic Brain Injury 
The results from dietary enrichment with selenium prior to SCI were interesting and 

led to further investigation of other models of neurotrauma. In order to eliminate any 

potential confounding neuroprotective effects of estrogen, only male rats were 

contused using the controlled cortical impact (CCI) device133. Following 16 weeks of 

supplementation, selenium provided modest neuroprotection following TBI as 

measured by mitochondrial respiration and behavioral assessment. Selenium 

enrichment improved mitochondrial respiration 24 hours post-injury in testing ADP 

phosphorylation and during maximal electron transport (complex I and II driven) 

respiration, as well as improved spatial memory. Due to the extended 

supplementation period, we wanted to investigate the time course and dosage needed 

to see neuroprotective effects. Selenium levels in the CNS were increased with 

enrichment at 4 weeks following injury. Different dosages of selenium in the diets 

showed changes in selenium levels within the CNS relative to the dose present in the 

diet. Shortening the supplementation period to 4 weeks increased storage of selenium 

in the CNS, however, the modest neuroprotection seen after 16 weeks of 

supplementation did not recapitulate with the shorter time frame of supplementation. 

While the diet deficient in selenium appeared to be detrimental to mitochondrial 

respiration, the neuroprotective effect on injured mitochondria seen after 16 weeks 

with selenium enrichment was not evident after only 4 weeks of supplementation. 

When examining behavioral pathologies at a more chronic time point the deficient 

diet continued to exacerbate the injury effect, but selenium enrichment did not 

provide any improvements in spatial memory as compared to the control injured 

animals.  
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5.3 Future Directions 

These studies indicate that while 16 weeks of selenium supplementation improves 

mitochondrial function and behavioral outcomes in TBI by providing modest 

improvements in SCI models, but 4 weeks may not be long enough to induce 

noticeable neuroprotective effects in animal models of neurotrauma. Transcriptional 

changes can occur quickly within different cellular systems, depending on the 

stimulus driving the change. Supplementation studies indicated increased tissue levels 

of selenium at early time points suggesting potential downstream effects of enriched 

selenium tissue levels may require longer periods of increased tissue levels. It is not 

surprising that SCI induces a vast response of expressional changes soon after injury. 

CNS trauma triggers a host of cellular responses, including influx of different 

inflammatory molecules. The presence of these different cell types is solitarily 

sufficient to create substantial changes in gene expression. Selenium, however, builds 

up in the tissues as short as 2 weeks after supplementation and may require an even 

longer to change enzyme levels or trigger downstream signaling cascades.  

Selenium is typically stored in tissues in the form of selenomethionine and can be 

broken down into the intermediate compound, selenide, for selenoprotein synthesis. 

Uniquely beneficial selenoproteins may take longer to build up within tissues. Exact 

speciation of selenoproteins that are increased within the CNS following dietary 

enrichment may provide critical information in further elucidating this mechanism. 

Further testing is required to determine whether shorter time frames, such as 8 or 12 

weeks of supplementation prior to injury, are sufficient to provide neuroprotective 
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benefits. Other models using various treatments for CNS disorders, such as anti-

depressants, require long-term treatment before patients experience any noticeable 

changes in symptoms. Much like the proposed mechanism for these drugs, selenium 

could be inducing transcriptional changes, but the translational modifications and 

alterations in protein levels within the CNS may take longer to reach levels sufficient 

to confer neuroprotection. 

An alternative hypothesis for the mechanism of action of selenium within the CNS is 

through modulation of gene expression pathways associated with DNA repair. One of 

the significantly upregulated pathways from our microarray analysis indicated that 

selenium enrichment increased expression of DNA repair pathways following injury. 

This data is interesting in light of other experiments that support the role of selenium 

in DNA oxidation. McKelvey and colleagues showed that organic selenium 

compounds (including selenized yeast as used for these studies) protected against 

DNA damage as well as altered expression patterns in DNA damage functional 

pathways40. Additionally, studies using AD mouse models also showed in vvio 

decreases in DNA and RNA oxidation in animals supplemented with increased levels 

of dietary selenium34. Barger and colleagues detected improvements in DNA damage 

gene pathways39. Specifically, selenized yeast reduced the expression of the DNA 

damage inducing gene, Gadd45b. The current study supports these previous findings 

and suggests that selenium may play a role in modulating transcriptional changes in 

gene involved with DNA repair following traumatic SCI. Up regulation of specific 
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genes within this pathway prior to injury could lead to an improved response in the 

secondary injury cascade that follows CNS trauma. 

Long term dietary selenium enrichment provided modest neuroprotection following 

CNS injury, supporting our original hypothesis. However, a shorter supplementation 

time frame did not recapitulate these findings. While it appeared that the presence of 

selenium was beneficial for mitochondrial health in comparison to deficient 

conditions, there was no additional protective effect with increased levels of 

selenium. In shorter time frames, increased levels of selenium may not confer 

additional neuroprotection when compared to normal dietary selenium. Further 

investigation into treatment time frames for use in neurodegenerative disorders may 

still be warranted.  

While the rationale for these studies was well supported by current literature, dietary 

selenium enrichment did not provide overwhelming support for the use of selenium as 

a prophylactic against CNS trauma. The acute nature of a CNS insult may overwhelm 

the potential protective effects gained from selenium supplementation. However, the 

modest neuroprotective role of selenium may be beneficial for chronic models of 

neurodegeneration. Alzheimer’s disease, which is characterized by a slow onset, has 

shown that selenium provides protective effects in preclinical trials34, 57. Currently, a 

clinical trial is underway examining the potential neuroprotective role of selenium 

and vitamin E for Alzheimer’s disease (clinicaltrials.gov: NCT00040378). The 

presence of critical nutrients, such as selenium, is known to be crucial for maintaining 
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normal health and may alter the neurodegenerative pathologies that ultimately lead to 

disease.  
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APPENDICES 

Appendix A: List of acronyms and abbreviations 

3’ UTR 3’	  untranslated	  region	  
AD Alzheimer’s	  Disease	  
ANOVA 	  analysis	  of	  variance	  
ApoE2 apolipoprotein	  E	  receptor	  2	  
BBB Basso,	  Beattie,	  Bresnahan	  locomotor	  score	  
CCI controlled	  cortical	  impact	  injury	  
CNS central	  nervous	  system	  
CVB3 coxsackie	  virus	  
ETC electron	  transport	  chain	  
EtOH ethanol	  
GFAP glial	  fibrillary	  acidic	  protein	  
GPx glutathione	  peroxidase	  
LC-MS liquid	  chromatography	  mass	  spectrometry	  
LD50 average	  lethal	  dose	  
MPTP mitochondrial	  permeability	  transition	  pore	  
MWM Morris	  Water	  Maze	  
NOAEL No	  observed	  adverse	  effect	  level	  
OCR oxygen	  consumption	  rate	  
PUFA polyunsaturated	  fatty	  acids	  
RDA Recommended	  Dietary	  Allowance	  
RfD Reference	  dose	  
ROS reactive	  oxygen	  species	  
SBP2 SECIS	  binding	  protein	  
SCI spinal	  cord	  injury	  
Sec selenocysteine	  
SECIS selenocysteine	  insertion	  sequence	  
SeCys selenocysteine	  (amino	  acid)	  
SeDef selenium	  deficient	  
SelO selenoprotein	  O	  
SelP selenoprotein	  P	  
SelS selenoprotein	  S	  
SEM standard	  error	  of	  the	  mean	  
SeMet selenomethionine	  
SP1 control	  diet	  +	  1ppm	  selenized	  yeast	  
SP2 control	  diet	  +	  2ppm	  selenized	  yeast	  
TBI traumatic	  brain	  injury	  
tRNAMet transfer	  RNA	  for	  methionine	  
UL tolerable	  upper	  intake	  level	  
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Appendix B: Genes increased in expression in injured animals on selenium 
enriched diets 

Affymetrix 
probe set ID Gene ID Description 
1390124_at Fam98b family with sequence similarity 98, member B 
1379254_at Tmem183a transmembrane protein 183A 
1373745_at Gtf2h4 general transcription factor II H, polypeptide 4 
1370225_at Cited4 Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 4 
1369327_at Pdzd2 PDZ domain containing 2 
1382751_at Wfdc10 WAP four-disulfide core domain 10 
1392719_at Mthfs 5,10-methenyltetrahydrofolate synthetase (5-formyltetrahydrofolate cyclo-ligase) 
1372942_at Exosc5 exosome component 5 
1392351_at Fpgt fucose-1-phosphate guanylyltransferase 
1389604_at Hspa12b heat shock protein 12B 
1376145_at Eif2b5 eukaryotic translation initiation factor 2B, subunit 5 epsilon 
1379015_at Foxj2 forkhead box J2 
1396674_at Gpr44 G protein-coupled receptor 44 
1399007_at Cog2 component of oligomeric golgi complex 2 
1395406_at Sbno1 Strawberry notch homolog 1 (Drosophila) 
1399108_at Dis3l DIS3 mitotic control homolog (S. cerevisiae)-like 
1370087_at Rab2a RAB2A, member RAS oncogene family 
1374715_at Wdr70 WD repeat domain 70 
1399092_at LOC100361208 transmembrane protein 39b 
1388506_at Dsp desmoplakin 
1383729_at LOC303566 E2F1-inducible gene 
1392828_at Med12 mediator complex subunit 12 
1388156_at Plcb3 phospholipase C, beta 3 (phosphatidylinositol-specific) 
1373429_at Atf6b activating transcription factor 6 beta 
1377532_at Phf20 PHD finger protein 20 
1377383_at Efs embryonal Fyn-associated substrate 
1369969_at Parp1 poly (ADP-ribose) polymerase 1 
1382151_at Trub1 TruB pseudouridine (psi) synthase homolog 1 (E. coli) 
1369685_at Twist2 twist homolog 2 (Drosophila) 
1371015_at Mx1 myxovirus (influenza virus) resistance 1 
1381816_at Rnls renalase, FAD-dependent amine oxidase 
1398943_at Lage3 L antigen family, member 3 
1368379_at Scarb2 scavenger receptor class B, member 2 
1372494_a_at Hmg20b high mobility group 20 B 
1387605_at Casp12 caspase 12 
1382175_at Wtap Wilms tumor 1 associated protein 
1373138_at Nudt5 nudix (nucleoside diphosphate linked moiety X)-type motif 5 
1368441_at Msln mesothelin 
1378079_at Golga3 golgi autoantigen, golgin subfamily a, 3 
1398944_at Acin1 apoptotic chromatin condensation inducer 1 
1377801_at Btbd12 BTB (POZ) domain containing 12 
1370005_at Cyb5b cytochrome b5 type B (outer mitochondrial membrane) 

-‐1.5	  
-‐1.0	  
-‐0.5	  
0.0	  
0.5	  
1.0	  
1.5	  

CS	   CI	   SS	   SI	  
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1372152_at Alg14 asparagine-linked glycosylation 14 homolog (S. cerevisiae) 
1368355_at Myo5b myosin Vb 
1389061_at Nsun5 NOL1/NOP2/Sun domain family, member 5 
1382083_at Coch coagulation factor C homolog, cochlin (Limulus polyphemus) 
1393745_at Orc3l origin recognition complex, subunit 3-like (yeast) 
1372305_at Copz2 coatomer protein complex, subunit zeta 2 
1387037_at Cubn cubilin (intrinsic factor-cobalamin receptor) 
1393017_at Rhpn1 rhophilin, Rho GTPase binding protein 1 
1385189_at Duoxa1 dual oxidase maturation factor 1 
1374704_at Kdelc2 KDEL (Lys-Asp-Glu-Leu) containing 2 
1372431_at Mrpl12 mitochondrial ribosomal protein L12 
1395325_s_at Mmgt1 membrane magnesium transporter 1 
1390933_a_at Rg9mtd3 RNA (guanine-9-) methyltransferase domain containing 3 
1395881_at Dap Death-associated protein 
1369714_at Dnajc14 DnaJ (Hsp40) homolog, subfamily C, member 14 
1371611_at Ext2 exostoses (multiple) 2 
1387531_at Msra methionine sulfoxide reductase A 
1379949_at Tfb1m transcription factor B1, mitochondrial 
1390105_at B4galt2 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 2 
1371442_at Hyou1 hypoxia up-regulated 1 
1388141_at Cetn3 centrin, EF-hand protein, 3 (CDC31 homolog, yeast) 
1370651_a_at Inppl1 inositol polyphosphate phosphatase-like 1 
1375439_at Wdr18 WD repeat domain 18 
1392116_at Sike suppressor of IKK epsilon 
1380360_at Oma1 OMA1 homolog, zinc metallopeptidase (S. cerevisiae) 
1372323_at Sardh sarcosine dehydrogenase 
1388959_at Ttll12 Tubulin tyrosine ligase-like family, member 12 
1390385_at Glce glucuronic acid epimerase 
1383692_at Prelid2 PRELI domain containing 2 
1374555_at Acbd6 acyl-Coenzyme A binding domain containing 6 
1393317_at Thumpd3 THUMP domain containing 3 
1389089_at Slc39a7 solute carrier family 39 (zinc transporter), member 7 
1391768_at Psmc4 proteasome (prosome, macropain) 26S subunit, ATPase, 4 
1390141_at Mthfd1l methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1-like 
1370941_at Pdgfra platelet derived growth factor receptor, alpha polypeptide 
1374517_at Recql RecQ protein-like (DNA helicase Q1-like) 
1368341_at Polb polymerase (DNA directed), beta 
1394403_at Spata20 spermatogenesis associated 20 
1375042_at Alg8 asparagine-linked glycosylation 8, alpha-1,3-glucosyltransferase homolog 
1376493_at Commd7 COMM domain containing 7 
1383391_a_at C2 complement component 2 
1378178_at Smc6 structural maintenance of chromosomes 6 
1374767_at Npepo aminopeptidase O 
1392033_a_at Pank2 pantothenate kinase 2 (Hallervorden-Spatz syndrome) 
1376192_at Nat9 N-acetyltransferase 9 (GCN5-related, putative) 
1372320_at Msl3 male-specific lethal 3 homolog (Drosophila) 
1388913_at Ppap2c phosphatidic acid phosphatase type 2c 
1372127_at Ubap2 ubiquitin-associated protein 2 
1377787_at Rbm6 RNA binding motif protein 6 
1370835_at Tox4 TOX high mobility group box family member 4 
1373239_at Snx33 sorting nexin 33 
1378150_at LOC100363332 caspase recruitment domain family, member 11 
1383107_at Snrpd1 small nuclear ribonucleoprotein D1 
1367859_at Tgfb3 transforming growth factor, beta 3 
1387233_at Hsd17b7 hydroxysteroid (17-beta) dehydrogenase 7 
1391455_at Zc3h18 zinc finger CCCH-type containing 18 
1386006_at Larp7 La ribonucleoprotein domain family, member 7 
1391004_at Svil Supervillin 
1373000_at Srpx2 sushi-repeat-containing protein, X-linked 2 
1382396_at Ubfd1 ubiquitin family domain containing 1 
1378165_at Twist1 twist homolog 1 (Drosophila) 
1369412_a_at Slc19a1 solute carrier family 19 (folate transporter), member 1 
1370374_at Steap3 STEAP family member 3 
1367974_at Anxa3 annexin A3 
1368571_at Clip2 CAP-GLY domain containing linker protein 2 
1399114_at Gtf2e2 general transcription factor IIE, polypeptide 2, beta 
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Appendix C: Genes down regulated in injury and restored to sham levels with 
selenium supplementation 

Affymetrix 
Probeset ID Gene Description 

1398660_at Slc35f2 solute carrier family 35, member F2 
1387209_at Sec16b SEC16 homolog B (S. cerevisiae) 
1392162_at Pspc1 Paraspeckle component 1 
1370202_at Pla2g16 phospholipase A2, group XVI 
1387083_at Ctf1 cardiotrophin 1 
1382462_at L2hgdh L-2-hydroxyglutarate dehydrogenase 
1369508_at Kcnj15 potassium inwardly-rectifying channel, subfamily J, member 15 
1371590_s_at Ubl5 ubiquitin-like 5 
1374604_at Mfsd9 major facilitator superfamily domain containing 9 
1374328_at C2cd3 C2 calcium-dependent domain containing 3 
1368069_at Sharpin SHANK-associated RH domain interactor 
1390926_at Zswim3 zinc finger, SWIM-type containing 3 
1387105_at Zfp422 zinc finger protein 422 
1386346_at Tmem19 transmembrane protein 19 
1385296_at Trmt12 tRNA methyltransferase 12 homolog (S. cerevisiae) 
1380118_at Fdxacb1 ferredoxin-fold anticodon binding domain containing 1 
1389452_at Zdhhc8 zinc finger, DHHC-type containing 8 
1397284_at Zfp444 zinc finger protein 444 
1374115_at Mzf1 myeloid zinc finger 1 
1385899_at Trim16 tripartite motif-containing 16 
1378092_at Mdp1 magnesium-dependent phosphatase 1 
1373308_at Sgsm3 small G protein signaling modulator 3 
1395820_at Rnf150 Ring finger protein 150 
1384324_at Rbm4 RNA binding motif protein 4 
1369233_at Kcnk10 potassium channel, subfamily K, member 10 
1387137_at Comp cartilage oligomeric matrix protein 
1375666_at Dmtf1 cyclin D binding myb-like transcription factor 1 
1393632_at C1qtnf7 C1q and tumor necrosis factor related protein 7 
1387232_at Bmp4 bone morphogenetic protein 4 
1389433_at Mkks McKusick-Kaufman syndrome 
1394842_at Tmem19 transmembrane protein 19 
1384217_at Zhx2 Zinc fingers and homeoboxes 2 
1388660_at Mcts1 malignant T cell amplified sequence 1 
1376088_at Slc25a19 solute carrier family 25 (mitochondrial thiamine pyrophosphate carrier), member 19 
1374309_at Radil Ras association and DIL domains 
1388760_at Slc35b4 solute carrier family 35, member B4 

-‐1.5	  
-‐1.0	  
-‐0.5	  
0.0	  
0.5	  
1.0	  
1.5	  

CS	   CI	   SS	   SI	  
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1367797_at Men1 multiple endocrine neoplasia 1 
1368159_at Abcb6 ATP-binding cassette, sub-family B (MDR/TAP), member 6 
1376106_at Tmem178 transmembrane protein 178 
1367953_at Tyro3 TYRO3 protein tyrosine kinase 
1371645_at Sdf2 stromal cell derived factor 2 
1374658_at Iqsec2 IQ motif and Sec7 domain 2 
1383668_at Mmp15 matrix metallopeptidase 15 

1373020_at Magmas 
mitochondria-associated protein involved in granulocyte-macrophage colony-
stimulating factor signal transduction 

1369113_at Grem1 gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis) 
1396022_at Zfp322a Zinc finger protein 322a 
1372105_at Efha1 EF-hand domain family, member A1 
1390098_at N6amt2 N-6 adenine-specific DNA methyltransferase 2 (putative) 
1367550_a_at Tm2d1 TM2 domain containing 1 
1368891_at Gnpat glyceronephosphate O-acyltransferase 
1372819_at Cog4 component of oligomeric golgi complex 4 
1371548_at Mrps25 mitochondrial ribosomal protein S25 
1372927_at Mrpl50 mitochondrial ribosomal protein L50 
1374020_at Lrrc38 leucine rich repeat containing 38 
1370540_at Nr1d2 nuclear receptor subfamily 1, group D, member 2 
1374188_at Sec62 SEC62 homolog (S. cerevisiae) 
1392189_at Rfx4 Regulatory factor X, 4 (influences HLA class II expression) 
1371586_at Mrpl48 mitochondrial ribosomal protein L48 
1367815_at Slc5a6 solute carrier family 5 (sodium-dependent vitamin transporter), member 6 
1373952_at Prkag2 protein kinase, AMP-activated, gamma 2 non-catalytic subunit 
1389792_at Solh small optic lobes homolog (Drosophila) 
1385810_at Lrtomt leucine rich transmembrane and 0-methyltransferase domain containing 
1397541_at Twsg1 twisted gastrulation homolog 1 (Drosophila) 
1379484_at Aven apoptosis, caspase activation inhibitor 
1389662_at Wnk4 WNK lysine deficient protein kinase 4 
1399125_at Inpp1 inositol polyphosphate-1-phosphatase 
1376909_at Rasl10a RAS-like, family 10, member A 
1383049_at Klhl8 kelch-like 8 (Drosophila) 
1377961_at Zfhx3 zinc finger homeobox 3 
1389703_at Zzef1 zinc finger, ZZ-type with EF hand domain 1 
1389044_at Gbf1 golgi-specific brefeldin A resistant guanine nucleotide exchange factor 1 
1378158_at Brms1 breast cancer metastasis-suppressor 1 
1371979_at Srebf2 sterol regulatory element binding transcription factor 2 
1385473_x_at Tomm40b translocase of outer mitochondrial membrane 40 homolog B (yeast) 
1380641_at Pcdhb6 protocadherin beta 6 
1381783_at Akap3 A kinase (PRKA) anchor protein 3 
1391775_at Zpbp2 zona pellucida binding protein 2 
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Appendix D: Genes increased with injury and restored to sham levels with 
selenium supplementation  

Affymetrix 
Probeset 

ID Gene Description 
1394731_at Csnk1g3 casein kinase 1, gamma 3 
1368866_at Eif2c2 eukaryotic translation initiation factor 2C, 2 
1382523_at Dpm1 dolichyl-phosphate mannosyltransferase polypeptide 1, catalytic subunit 
1384957_at Atf6 activating transcription factor 6 
1393822_at Tmcc3 transmembrane and coiled-coil domain family 3 
1370485_a_at Bcl2l1 Bcl2-like 1 
1393738_s_at Mfhas1 malignant fibrous histiocytoma amplified sequence 1 
1398648_at Mfhas1 malignant fibrous histiocytoma amplified sequence 1 
1397302_at Zmynd11 zinc finger, MYND domain containing 11 
1382103_at Pgm3 phosphoglucomutase 3 
1379409_at Atxn7 Ataxin 7 
1375121_at Smad6 SMAD family member 6 
1395261_at Snrnp70 small nuclear ribonucleoprotein 70 (U1) 
1368961_at Mmp23 matrix metallopeptidase 23 
1375085_at Slc25a35 solute carrier family 25, member 35 
1396078_at Krit1 KRIT1, ankyrin repeat containing 
1384348_at Tcf23 transcription factor 23 
1369347_s_at Prom2 prominin 2 
1391303_at Purb purine rich element binding protein B 
1392542_at Cdc42se2 CDC42 small effector 2 
1389364_at Ndfip2 Nedd4 family interacting protein 2 
1387484_at Tgfbr3 transforming growth factor, beta receptor III 
1377919_at Arhgap10 Rho GTPase activating protein 10 
1395441_at Pcbp4 poly(rC) binding protein 4 
1391787_at Traf3ip3 TRAF3 interacting protein 3 

-‐1.5	  
-‐1.0	  
-‐0.5	  
0.0	  
0.5	  
1.0	  
1.5	  

CS	   CI	   SS	   SI	  
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1395015_at F8 coagulation factor VIII, procoagulant component 
1374021_at Wipi1 WD repeat domain, phosphoinositide interacting 1 
1384050_at Bub3 budding uninhibited by benzimidazoles 3 homolog (S. cerevisiae) 
1371103_at Rab6a RAB6A, member RAS oncogene family 
1387638_a_at Ctla4 cytotoxic T-lymphocyte-associated protein 4 
1387410_at Nr4a2 nuclear receptor subfamily 4, group A, member 2 
1387533_at Pspn persephin 

1394518_at Adamts9 
A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin 
type 1 motif, 9 

1370974_at Vps54 vacuolar protein sorting 54 homolog (S. cerevisiae) 
1389088_at Adnp activity-dependent neuroprotector homeobox 
1393593_at Mar6 membrane-associated ring finger (C3HC4) 6 
1381804_at Bcl6b B-cell CLL/lymphoma 6, member B (zinc finger protein) 
1369912_at Crk v-crk sarcoma virus CT10 oncogene homolog (avian) 
1386721_at Znf503 zinc finger protein 503 
1385502_at Trim21 Tripartite motif-containing 21 
1391128_at Bcl9l B-cell CLL/lymphoma 9-like 
1375228_at Brd2 bromodomain containing 2 
1397473_at Dtnbp1 distrobrevin binding protein 1 
1393843_at Fem1b fem-1 homolog b (C. elegans) 
1382203_at Gdf1 growth differentiation factor 1 
1390531_at Pric285 peroxisomal proliferator-activated receptor A interacting complex 285 
1384773_at Ubtd2 ubiquitin domain containing 2 
1367770_at Degs1 degenerative spermatocyte homolog 1, lipid desaturase (Drosophila) 
1389184_at Rpp30 ribonuclease P/MRP 30 subunit (human) 
1376294_at Smcr7 Smith-Magenis syndrome chromosome region, candidate 7 homolog (human) 

1379668_at Alg11 
asparagine-linked glycosylation 11, alpha-1,2-mannosyltransferase homolog 
(yeast) 

1369571_at Golph3 golgi phosphoprotein 3 (coat-protein) 
1369862_at Pim1 pim-1 oncogene 
1394749_at Atg7 ATG7 autophagy related 7 homolog (S. cerevisiae) 



120 

Appendix E: Genes increased in sham animals on selenium enriched diets 

Affymetrix 
Probeset 

ID Gene Description 
1372243_at Cab39 calcium binding protein 39 
1369179_a_at Pparg peroxisome proliferator-activated receptor gamma 
1388058_at Taf6 TAF6 RNA polymerase II, TATA box binding protein (TBP)-associated factor 
1394838_at Aoc3 amine oxidase, copper containing 3 (vascular adhesion protein 1) 
1389037_at Rit1 Ras-like without CAAX 1 
1369634_at Slc4a1 solute carrier family 4 (anion exchanger), member 1 
1387043_at Lypd3 Ly6/Plaur domain containing 3 
1378435_at Art4 ADP-ribosyltransferase 4 
1368755_at Clec4f C-type lectin domain family 4, member f 
1368102_at Hsd11b2 hydroxysteroid 11-beta dehydrogenase 2 
1371066_at Snrk SNF related kinase 
1384890_at Ezh1 enhancer of zeste homolog 1 (Drosophila) 
1369192_at Cdkn1b cyclin-dependent kinase inhibitor 1B 

1368879_a_at Gnao1 
guanine nucleotide binding protein (G protein), alpha activating activity 
polypeptide O 

1368144_at Rgs2 regulator of G-protein signaling 2 
1396749_at Cabp1 calcium binding protein 1 
1369232_at Kcnk10 potassium channel, subfamily K, member 10 
1398948_at Tax1bp1 Tax1 (human T-cell leukemia virus type I) binding protein 1 
1369510_at Gapdhs glyceraldehyde-3-phosphate dehydrogenase, spermatogenic 
1376953_at Unc5cl unc-5 homolog C (C. elegans)-like 
1372036_at Cd2bp2 Cd2 (cytoplasmic tail) binding protein 2 
1386883_at Gsk3a glycogen synthase kinase 3 alpha 
1370983_at Pou6f1 POU class 6 homeobox 1 
1396711_at Obsl1 Obscurin-like 1 

-‐1.5	  
-‐1.0	  
-‐0.5	  
0.0	  
0.5	  
1.0	  
1.5	  

CS	   CI	   SS	   SI	  
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1368859_at Ppm1a protein phosphatase 1A, magnesium dependent, alpha isoform 
1397866_at Serpinb6b serine (or cysteine) peptidase inhibitor, clade B, member 6b 
1369809_at Htr1a 5-hydroxytryptamine (serotonin) receptor 1A 
1394764_at Lmtk2 lemur tyrosine kinase 2 
1391075_at Rgs17 regulator of G-protein signaling 17 
1395232_at Dcaf6 DDB1 and CUL4 associated factor 6 
1384645_at Toag1 tolerance-associated gene 1 
1398614_at Ptch1 patched homolog 1 (Drosophila) 
1376992_a_at Ccdc84 coiled-coil domain containing 84 
1369660_at Defb1 defensin beta 1 
1370268_at Kcna5 potassium voltage-gated channel, shaker-related subfamily, member 5 
1398289_a_at Crhr1 corticotropin releasing hormone receptor 1 
1369016_at Cdon Cdon homolog (mouse) 
1393337_at Tcfcp2l1 transcription factor CP2-like 1 
1395990_at Srcap Snf2-related CREBBP activator protein 
1370753_at Olr1078 olfactory receptor 1078 
1386280_at Mettl7b methyltransferase like 7B 
1379550_a_at Gtf2ird1 GTF2I repeat domain containing 1 
1384975_at Ermp1 endoplasmic reticulum metallopeptidase 1 
1384933_at Slc18a2 Solute carrier family 18 (vesicular monoamine), member 2 
1393436_at Scgb1c1 secretoglobin, family 1C, member 1 
1375494_a_at Nlgn3 neuroligin 3 
1392340_at Klhl3 kelch-like 3 (Drosophila) 
1397211_at Grb10 growth factor receptor bound protein 10 
1387828_at Agap2 ArfGAP with GTPase domain, ankyrin repeat and PH domain 2 
1382024_at Dnajb6 DnaJ (Hsp40) homolog, subfamily B, member 6 
1397716_at Klhdc2 Kelch domain containing 2 
1369359_at Il9r interleukin 9 receptor 
1369188_at Fbxo32 F-box protein 32 
1369864_a_at Sds serine dehydratase 
1389834_at Nudt8 Nudix (nucleoside diphosphate linked moiety X)-type motif 8 
1398267_at Slc22a7 solute carrier family 22 (organic anion transporter), member 7 
1388613_at Isca1 iron-sulfur cluster assembly 1 homolog (S. cerevisiae) 
1369287_at Syt9 synaptotagmin IX 
1396158_at Rem1 RAS (RAD and GEM)-like GTP-binding 1 
1398314_at Hoxd3 homeo box D3 
1387672_at Gnmt glycine N-methyltransferase 
1379456_at Mcart1 mitochondrial carrier triple repeat 1 
1379203_at Tfdp2 transcription factor Dp-2 (E2F dimerization partner 2) 
1379264_at Znrf2 zinc and ring finger 2 
1392079_at Akap7 A kinase (PRKA) anchor protein 7 
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1392976_at Tpm2 tropomyosin 2, beta 
1368077_at Fbp1 fructose-1,6-bisphosphatase 1 

1387322_at Sema6b 
sema domain, transmembrane domain (TM), and cytoplasmic domain, 
(semaphorin) 6B 

1368788_at Chad chondroadherin 
1368334_at Grb7 growth factor receptor bound protein 7 
1369017_at Kcnh6 potassium voltage-gated channel, subfamily H (eag-related), member 6 
1384978_at Klk1c10 T-kininogenase 
1388238_at Defa24 defensin, alpha, 24 
1393474_at Sult2b1 sulfotransferase family, cytosolic, 2B, member 1 
1376274_at Btbd10 BTB (POZ) domain containing 10 
1387267_at Ntf3 neurotrophin 3 
1393390_at Shd Src homology 2 domain-containing transforming protein D 
1389496_at Akap7 A kinase (PRKA) anchor protein 7 
1387999_at Slc18a1 solute carrier family 18 (vesicular monoamine), member 1 
1372280_at Asb2 ankyrin repeat and SOCS box-containing 2 
1392474_at Ulk2 Unc-51 like kinase 2 (C. elegans) 
1380453_at Zswim5 zinc finger, SWIM domain containing 5 
1371165_a_at Atp2a3 ATPase, Ca++ transporting, ubiquitous 
1368837_at Arid4b AT rich interactive domain 4B (Rbp1 like) 
1385130_at Fezf2 Fez family zinc finger 2 
1387215_at Agxt alanine-glyoxylate aminotransferase 
1370129_at Mgea5 meningioma expressed antigen 5 (hyaluronidase) 
1387512_at Zfp238 zinc finger protein 238 
1387388_at Chp calcium binding protein p22 
1385740_at Lrrc27 leucine rich repeat containing 27 
1384397_x_at Crb3 crumbs homolog 3 (Drosophila) 
1378278_at Pou2f2 POU class 2 homeobox 2 
1369446_at Cry2 cryptochrome 2 (photolyase-like) 
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Appendix F: Genes increased with selenium supplementation, regardless of 
injury  

Affymetrix 
Probeset 

ID Gene Description 
1379197_at Cacna1h Calcium channel, voltage-dependent, T type, alpha 1H subunit 
1369011_at Apoa5 apolipoprotein A-V 
1395026_at Fmo4 flavin containing monooxygenase 4 
1389884_at Ccdc88b coiled-coil domain containing 88B 
1393689_at Ndufaf1 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, assembly factor 1 
1395579_at Dhx32 DEAH (Asp-Glu-Ala-His) box polypeptide 32 
1373313_at Sel1l Sel-1 suppressor of lin-12-like (C. elegans) 
1368205_at Cfi complement factor I 
1368317_at Aqp7 aquaporin 7 
1387250_at Pla2g10 phospholipase A2, group X 
1388478_at Tbl1x transducin (beta)-like 1 X-linked 
1389115_at Evpl envoplakin 
1369385_at Afap1 actin filament associated protein 1 
1374119_at Elf3 E74-like factor 3 

1393651_at Galnt10 
UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-
acetylgalactosaminyltransferase 10 (GalNAc-T10) 

-‐1.5	  
-‐1.0	  
-‐0.5	  
0.0	  
0.5	  
1.0	  
1.5	  

CS	   CI	   SS	   SI	  
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Appendix G: Genes decreased with selenium supplementation, regardless of 
injury  

Affymetrix 
Probeset 

ID Gene Description 
1384133_at Kif1a kinesin family member 1A 
1391625_at Wasl Wiskott-Aldrich syndrome-like 
1399132_at Cul3 cullin 3 
1387117_at Zranb2 zinc finger, RAN-binding domain containing 2 
1388064_a_at Slc1a3 solute carrier family 1 (glial high affinity glutamate transporter), member 3 
1375641_at Arpc5l actin related protein 2/3 complex, subunit 5-like 
1369095_at Ppp1r9a protein phosphatase 1, regulatory (inhibitor) subunit 9A 
1389912_at Ensa endosulfine alpha 
1377798_at Tchp trichoplein, keratin filament binding 
1380121_at Nek7 NIMA (never in mitosis gene a)-related kinase 7 
1369046_at Syt6 synaptotagmin VI 
1391820_at Tanc2 tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 
1369177_at Pi4k2a phosphatidylinositol 4-kinase type 2 alpha 
1368450_at Myo5a myosin VA 
1386547_at Tanc2 tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 
1393324_at Jam2 junctional adhesion molecule 2 
1398533_at Cyfip2 cytoplasmic FMR1 interacting protein 2 
1382981_at Ahi1 Abelson helper integration site 1 
1389874_at Zrsr1 zinc finger (CCCH type), RNA binding motif and serine/arginine rich 1 
1391285_at Zfyve9 zinc finger, FYVE domain containing 9 

1368750_a_at Pde4d 
phosphodiesterase 4D, cAMP-specific (phosphodiesterase E3 dunce 
homolog, Drosophila) 

1376347_at Kdm5b lysine (K)-specific demethylase 5B 
1394626_at Hmbox1 homeobox containing 1 
1376843_at Bmpr2 bone morphogenetic protein receptor, type II (serine/threonine kinase) 

-‐1.5	  
-‐1.0	  
-‐0.5	  
0.0	  
0.5	  
1.0	  
1.5	  

CS	   CI	   SS	   SI	  
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1384376_at Dnajb14 DnaJ (Hsp40) homolog, subfamily B, member 14 
1385970_at Ctr9 Ctr9, Paf1/RNA polymerase II complex component, homolog (S. cerevisiae) 
1376739_at Ddx24 DEAD (Asp-Glu-Ala-Asp) box polypeptide 24 
1369310_at Basp1 brain abundant, membrane attached signal protein 1 
1369008_a_at Olfm1 olfactomedin 1 
1395399_at Zcchc17 zinc finger, CCHC domain containing 17 
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Appendix H: Dietary nutrient information 

Diet	  
Nutrient	   Selenium	  Deficient	   Control	  	   SP1	   SP2	  
Kcal/g	   4.3	   3.1	   3.1	   3.1	  
Protein	  (%	  by	  weight)	   15.3	   16.2	   16.2	   16.2	  
CHO	  (%	  by	  weight)	   57.9	   52.8	   52.8	   52.8	  
Fat	  (%	  by	  weight)	   14.9	   3.6	   3.6	   3.6	  
Selenium	  (ppm)	   0	   0.3	   1.3	   2.3	  

	  Micronutrients	  
(g/kg)	  
Choline	   2.8	   1.03	   1.03	   1.03	  
Niacin	   0.03	   0.075	   0.075	   0.075	  
Pantothenic	  Acid	   0.016	   33	   33	   33	  
Vitamin	  B6	   0.007	   0.018	   0.018	   0.018	  
Vitamin	  B1	   0.006	   0.017	   0.017	   0.017	  
Vitamin	  B2	   0.006	   0.015	   0.015	   0.015	  
Folate	   0.002	   0.004	   0.004	   0.004	  
Biotin	   0.0002	   0.0004	   0.0004	   0.0004	  
Vitamin	  B12	   0.025	   0.00008	   0.00008	   0.00008	  
Vitamin	  E	   0.1	   0.11	   0.11	   0.11	  
Vitamin	  K	   0.003	   0.05	   0.05	   0.05	  

Additional	  additives	   Selenium	  Deficient	  
Sucrose	  (g/kg)	   537	  
Corn	  oil	  (g/kg)	   140	  
Torula	  yeast	  (g/kg)	   300	  
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