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ABSTRACT OF THESIS

 

 
 

INVESTIGATION OF CHIP-FORM AND TOOL-WEAR  
IN TURNING OF HARDENED AF9628 ALLOY UNDER  

VARIOUS COOLING AND LUBRICATION CONDITIONS 
 

Next generation defense and commercial applications for structural steels require new 
alloys that eliminate or reduce critical elements from their composition to lower cost and improve 
manufacturability, while maintaining or exceeding high strength and toughness requirements. A 
new alloy, denoted as AF9628, has recently been developed for this purpose and its manufacturing 
characteristics and the material response in component manufacturing must be fully understood.  

In the present study, hardened AF9628 alloy was turned with a coated carbide cutting tool 
under fixed cutting speed, feed rate, and depth of cut parameters. This work focuses on chip-form 
and tool-wear analysis to understand, for the first time with AF9628, these fundamental aspects of 
the turning process and their relationship to productivity and part quality. Current industry standard 
practice of flood-cooled machining for AF9628 was used during machining experiments. Dry, 
minimum quantity lubrication (MQL), and cryogenic machining were investigated as alternative 
cooling and lubrication conditions.  

High-speed imaging during AF9628 turning experiments provides a new insight into the 
chip formation process, while the use of optical microscopy and scanning white light interferometry 
allowed for further characterization of chip-form and tool-wear. Chip-form is favorable as short, 
arc-shaped chips with new tools under all of the tested cooling and lubrication conditions. As a 
result of rapid wear at the end of the tool-life in all of the experimental conditions, chip-form 
evolves to unfavorably long, snarled ribbon-like chips and the resultant cutting force increased by 
as much as 64% under flood-cooled conditions.  

Tool-wear types that were observed during experiments include a combination of nose 
wear, built-up edge, plastic deformation, and groove wear on the rake face. Due to the fixed cutting 
parameters and cutting tool selected for this study, which were designed for flood-cooled 
machining in a prior study, undesirable failure of the cutting tools under dry, MQL, and cryogenic 
machining occurred. Future work requires experimentation across a wider processing space, and 
with different cutting tools, to thoroughly evaluate alternative cooling and lubrication techniques 
for machining AF9628.  

KEYWORDS: Chip-form, Tool-wear, Machining, High-strength Low-alloy Steel, Cooling and 
Lubrication 
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CHAPTER 1 

INTRODUCTION 

We speak in strange terms: of harnessing the cosmic energy;  

of making winds and tides work for us; of creating unheard synthetic  

materials to supplement or even replace our old standard basics; 

- General Douglas MacArthur, “Duty, Honor, Country” 

1.1 Introductory Remarks 

The work described in this thesis is focused on chip-form and tool-wear during 

machining of a hardened steel. The machining process of choice is turning, in which work 

is performed on a machine tool called a lathe. A workpiece is held in a rotating work-

holding device, called a chuck, while a cutting tool traverses along the machine’s axes to 

remove material in a controlled manner. This thesis is concerned with understanding how 

chips are formed during the cutting process and, just as importantly, why the cutting tool 

of choice wears away over time in the manner that it does. The greater aim of this work is 

to provide valuable insight towards more productive manufacturing of the steel of choice 

and other related materials. 

1.2 Historical Context and Motivation 

The story of materials is very much like the story of civilization. Throughout 

history, ages have been defined by the materials that were discovered, or created, and 

consequently played a critical role in shaping civilizations’ development. As a result of the 

importance of materials throughout our history, most have heard of the Stone Age, the 

Bronze Age, and the Iron Age. The Iron Age is commonly believed to have begun around 

1200 BC near the Middle East and southeastern Europe. By 1000 BC, the knowledge of 

iron metallurgy had begun being rapidly exported to other regions of the world. During this 

time, many people began fashioning the necessary weapons and tools for survival out of 
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iron and steel. Many scholars consider the Iron Age to have ended around 550 BC. 

However, iron and steel continue to play a critical role in modern day life.  

Next generation defense and commercial applications for structural steels require 

new alloys that eliminate or reduce critical elements from their composition to lower cost 

and increase ease of manufacture, while maintaining or exceeding high strength and 

toughness requirements. Prior art compositions of high-strength, high-performance steels 

have included high weight percentages of expensive elements, such as nickel and cobalt, 

which contribute to the high overall cost and difficulty of processing the final steel product. 

A new steel alloy, denoted as AF9628, has been developed for the purposes of lowering 

cost, increasing the ease of manufacture, and eliminating tungsten from the material waste 

stream. The rise of this new material requires that its manufacturing characteristics and the 

material response in component manufacturing are fully understood to reduce the risk of 

the material’s adoption by industry for various applications. 

Like materials, manufacturing processes have also shaped civilization and changed 

over time as new materials have been created and the desire for more control during 

manufacturing to produce more complex-shaped products has risen. Of these processes, 

machining plays a critical role in component production in both the commercial and 

military industries. As new materials are developed to meet cost and performance demands, 

the need for research rises to ensure that affordable and effective manufacturing processes 

are employed. Machining is particularly important since it is often the last process of a 

manufactured component, thus making it high value. Moreover, since machining is often 

the final process for a finished manufactured component, the final component quality is 

highly dependent upon it.  

1.3 Problem Statement 

Since AF9628 was developed within the last few years, little research has been 

conducted with regard to machining this steel and characterizing its manufacturability. In 

metal cutting, tool-wear is an important, fundamental aspect of the process as it has 

significant implications on the stability of a process, the quality of the final product, and 

manufacturing costs. Therefore, one aspect of this thesis is focused on investigating tool-
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wear to better understand the manufacture of AF9628 and move towards better processing 

conditions and cutting tool recommendations for finish machining in a hardened state.  

Another important aspect of metal cutting processes is the means of chip-form 

during the process. Since the chips being formed from a metal cutting process are a bi-

product and generally considered waste, many people do not consider this to be important 

with regard to overall machining performance. However, the manner in which chip-form 

occurs has an impact on the cutting forces generated during metal cutting, the temperatures 

generated near the workpiece and tool interfaces, and how the tool may wear over time. 

Much of the energy put into the machining process is used to form the chip so from an 

economic and practical view, understanding chip-form is important. As such, 

understanding chip-form, like tool-wear, can provide valuable insight into the cost and 

stability of the process and therefore the quality of the final product and manufacturing 

costs.  

A variety of laboratory tools are used to qualitatively and quantitatively 

characterize the type of chip-form and tool-wear produced from the cutting process, all 

with the aim of contributing to the risk reduction for industry adoption of AF9628. The 

industry standard for many metal cutting applications is to use a flood of coolant during 

the cutting process to cool down the tool-workpiece interaction zone, provide some amount 

of lubrication between the tool and workpiece, and carry away the resulting metal chips 

from the process. Many alternative cooling and lubrication techniques to flood-coolant 

have been used successfully for other materials and material removal and/or finishing 

processes. However, these alternative cooling and lubrication techniques have not yet been 

performed for AF9628 machining and are therefore also investigated in this work. 

Chip-form and tool-wear have not been specifically investigated during the turning 

process of hardened AF9628 alloy. This thesis will investigate these two phenomena to fill 

the knowledge gap around this aspect of machining performance. Further, the 

interrelationship between how chip-form effects tool-wear and how tool-wear 

consequently effects chip-form will be discussed. 
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1.4 Outline of this Work 

This thesis is organized into 6 chapters. Chapter 1 provides introductory remarks 

and general background to the present study. The general scope and objectives of this 

research is described. Chapter 2 presents a brief historical background of steel making and 

more recent air force alloy development. A discussion of the relevant science and literature 

to a) metal cutting fundamentals, b) cooling and lubrication techniques in machining, c) 

chip-form and d) tool-wear are presented. Chapter 3 describes the experimental methods, 

instrumentation, and materials employed in this work to accomplish the stated objectives. 

The laboratory equipment used and their utility for qualitatively and quantitatively 

characterizing various aspects of chip-form and tool-wear is presented. Chapter 4 outlines 

and discusses the chip-form observations and analysis. Chapter 5 outlines and discusses 

the results of the tool-wear observations and analysis. Chapter 6, the final chapter of the 

thesis, provides a summary of the major conclusions from this study. Recommendations 

for future work specific to the machining of AF9628 are presented as well as future needs 

for broader, more pervasive machining technology capabilities.  
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW  

We always want to create something new out of nothing, and without research, and 

without long hard hours of effort. But there is no such things as a quantum leap. There is 

only dogged persistence—and in the end you make it look like a quantum leap. 

- James Dyson 

2.1 A Brief History of Steel Making 

Mankind has a long history with the presence and use of iron. Early records show 

that iron was used as early as 2500 BC. However, it is believed that the first uses of iron 

are not from intentional production but rather it was obtained from more naturally provided 

resources such as meteorites. It wasn’t until after 2000 BC that the use of coal as a fuel in 

small furnaces led to the intentional development of iron. The Iron Age would be later 

defined around 1200 BC. Fast-forwarding several centuries, larger-scale industrial melt 

processes for steel production such as the Electric Arc Furnace (EAF) were first used in 

the early 1900s. However, it wasn’t until the last three or four decades that this particular 

steel making technology expanded into wider use.  

In addition to primary melt processes like EAF, there are secondary remelt 

processes, which first came around in the U.S. during the World War II era. Secondary 

melt processes further refine alloys for tighter composition control, improved 

microstructure, cleaner material by removing inclusions, and good solidification control 

[74, 97]. Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) are examples 

of secondary refining processes that can follow a primary melt process such as EAF. 

However, due to the relatively higher cost of secondary melt processes, applications are 

typically limited to low-volume specialty alloys [100].  

According to [11], the growth of EAF usage can be attributed to the lower capital costs 

of the technology and the reduced energy required to produce steel. EAF technology is a 
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batch process where each batch, or heat, begins with charging ferrous scrap into the 

furnace. Scrap is generally layered according to size and density to facilitate the initial melt 

pool and protect the furnace walls from electric-arc radiation. Graphite electrodes are 

lowered just above the top of the scrap before power is turned on and a short arc is created. 

The arc starts the melting cycle as a small pool of molten steel develops under the electrode 

then is maintained by lowering the electrodes further into the scrap until the electrodes 

reach the bottom of the furnace and a large pool of liquid has accumulated.  

When alloying elements are incorporated into a steel melt, many chemical and 

physical properties affect this process. Density, for example, can influence whether an 

addition floats, sinks, or becomes entrained within the melt. Alloy size and melting point 

can also influence dissolution rates. Alloy oxidation is a primary factor in poor or 

inconsistent recovery of alloys in industrial steel melting processes. Methods to deoxidize 

steel after melting can include ladle refining or degassing to remove nonmetallic inclusions 

and provide a cleaner steel product [50, 51, 94].  

During the melting process, many nonmetallic inclusions such as hydrogen, 

nitrogen, and oxygen find their way into the molten steel. More detailed reviews of vacuum 

degassing and other secondary refining processes are found in literature [52, 62] but a brief 

overview of the salient points of vacuum degassing follows. Vacuum degassing occurs 

after the molten steel leaves the furnace but before it’s poured into ingots. Degassing 

systems use argon to lift or stir the molten steel and promote the removal of hydrogen 

and/or nitrogen. The vacuum system then removes the hydrogen and/or nitrogen bubbles 

as they are lifted to the surface similar to the way boiling water creates bubbles that float 

to the surface of water to escape. Vacuum degassing increases the quality of the steel 

without the need of a remelt process. Benefits of vacuum degassing include the reduction 

of hydrogen, which helps to avoid common embrittlement issues in steel, improving 

distribution of alloying elements, and better control of the steel composition within tighter 

chemistry ranges [50, 94]. 

Despite the poorer control, relatively speaking, of EAF furnace technologies over 

composition ranges, compared to secondary remelting processes, its usage and capacity 

has been rapidly growing over recent decades. According to [11], the world steel 
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production from EAFs in 1975 was 20%, and by 1996 this production had grown to 39%. 

Emi [24] highlights significant developments in EAF technology in the last few decades, 

shown in Figure 2-1, such as reductions in electric energy consumption, tap-to-tap time, 

and electrode consumption.  

 

 

 

 

 

 

 

 

 

Figure 2-1. Development of Electric Arc Furnace steelmaking [24] 

Controlling alloy content during melting and subsequent heat-treat processes is a 

crucial aspect of steel making and will, to a large degree, determine the success of other 

processes downstream, such as machining, as well as the final product performance. Steel 

can exhibit numerous properties depending on composition. Steel properties also depend 

on the phases and microconstituents that are present, which are dependent on the heat 

treatment process. Most alloys generally have three steps to the heat treating process, which 

include a normalizing step, an austenitizing step with quenching, and a tempering step. 

AF9628 alloy is no exception from this general practice of heat treating [3]. 

The role of the normalization step is to relieve internal stresses that form during the 

forging process and evens out the grain size and distribution. Normalizing is performed by 

heating an alloy to a temperature above the transformation range and then air-cooling to a 
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temperature substantially below the transformation range. The role of the austenitizing step 

is to develop an austenite structure in the material by heating the alloy into the 

transformation range for partial austenitizing or above the transformation range for 

complete austenitizing. The role of the tempering step is to decrease hardness and increase 

toughness of the alloy and is done by reheating hardened steel to some temperature below 

the eutectoid temperature [6].  

2.2 Air Force Alloys 

Steel alloys, such as HP 9-4-20 and Aermet100 alloy, having high compositions of 

cobalt, nickel, and/or tungsten have been used for decades in commercial and military 

industries. The combined high-strength and toughness properties make these alloys ideal 

for structural components, such as weapons casings, pressure vessels, and armor plate. 

Traditionally, these high-strength alloys, exhibit relatively high cost as a result of the high 

alloy content and expensive manufacturing processes that accompany such high-strength 

steels. In 2009, U.S. Air Force researchers at Eglin Air Force Base along with Ellwood 

National Forge Company developed a new steel alloy, called Eglin Steel. The composition 

of Eglin Steel has a reduced nickel content yet maintains high performance characteristics 

of steel compositions containing higher levels of nickel. Eglin Steel also avoided the 

relatively higher production costs associated with high-alloy steels [23].  

In 2016, a research scientist at the Air Force Research Laboratory (AFRL) patented 

a new steel alloy to replace prior art steels, such as Eglin Steel, that have similar material 

properties but is easier and cheaper to produce. This new alloy, designated AF9628, with 

a low carbon content and low nickel content was been invented and can be produced at 

lower costs using current state-of-the-art melting techniques such as EAF [3]. Static 

strength is often a measure of performance in many alloys. However, in the case of the 

applications for AF9628, “both high strength and dynamic toughness at flight temperatures 

(e.g. -40°C) must be achieved” to be considered a good performing alloy [3]. The following 

typical values can be obtained for AF9628: an ultimate tensile strength of 245 ksi; yield 

strength at 0.2% offset of 187 ksi; elongation to failure of 13%; and an impact toughness 

measured with a Charpy V-notch test @ -40°C of 30 ft-lb. Obtaining this combination of 
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performance often requires steels to contain relatively high weight percentages of cobalt, 

nickel, and/or tungsten in its composition. These alloying elements are amongst the most 

expensive and tungsten is difficult to process and complicates the waste streams [102]. 

As with most alloys, the combinations of alloying elements are important to 

produce the desired effects in the alloy composition. While Eglin Steel resolved some 

issues with traditional high-strength, high-performance steels related to relatively high cost 

and difficult processing, it still contained tungsten. AF9628 contains no cobalt or tungsten 

and can be produced using EAF technology, further reducing the cost and ease of 

manufacture compared to prior alloys. Table 2-1 shows typical composition ranges of 

AF9628 and other prior art high-strength alloys. 

Table 2-1. Composition ranges for HP 4-9-20 [82], Eglin Steel [23], and AF9628 [3] 
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2.3 Machining (or Metal Cutting) Fundamentals 

The terms machining and metal cutting will be used interchangeably throughout 

this work and no useful purpose would be served by attempting to precisely define the two. 

However, as Trent and Wright [92] describe it, “the term is intended to include operations 

in which a thin layer of metal, the chip or swarf, is removed by a wedge-shaped tool from 

a larger body.” Machining is a term frequently used by engineers and practitioners to cover 

chip-forming operations. Trent and Wright [92] use the term metal cutting “because 

research has shown certain characteristic features of the behavior of metals during cutting 

which dominate the process and, without further work, it is not possible to extend the 

principles…to the cutting of other materials.”  

Of the many manufacturing processes used to shape metals, the operating 

conditions of machining are quite possibly the most varied. Machining, on its own, is a 

broad set of processes that includes, but is not limited to, turning, drilling, milling, 

broaching, shaping and planing, boring, and sawing. One of the most commonly employed 

processes in machining research, and heavily used in industry application, is turning. 

Turning is a process that is performed on a machine called a lathe and is the focus of this 

thesis. In the turning process, a workpiece, typically cylindrical, is held and rotated in a 

work holding device called a chuck. For turning, single point cutting tools are used, as 

opposed to multi-point cutting tools that are used in milling or drilling for example. The 

cutting tool for turning operations is rigidly held in a tool holder, which is rigidly mounted 

on a carriage that can traverse along the axis of rotation, thereby removing material from 

the work piece to create a cylindrical or other complex shape.  

Three parameters of particular relevance to turning operations are cutting speed, 

feed, and depth of cut. Cutting speed is the relative speed at which the cutting tool travels 

across the workpiece surface. The feed is the distance that the cutting tool traverses in an 

axial direction per revolution of the workpiece. The depth of cut is the thickness of material 

removed from the workpiece as measured in a radial direction [92].  

The surface, or face, of the cutting tool over which metal chips flow is commonly 

referred to as the rake face. The rake face intersects with a flank face and this intersection 

forms the cutting edge. Cutting tools are designed in such a way that the flank face provides 
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enough clearance during machining so that it does not rub against the newly generated 

workpiece surface. Single point cutting tool geometry also contains major and minor flank 

faces that when intersected with the rake face form major and minor cutting edges, 

respectively. The major cutting edge (and major flank face) is the edge that leads in the 

direction of tool travel during cutting while the minor cutting edge (and minor flank face) 

trails in the cut direction. The intersection of the rake face, major flank face, and minor 

flank face forms the nose of the cutting tool. While the nose can theoretically come to a 

nearly perfect sharp point, it is often designed with a nose radius for increased mechanical 

strength. 

In reality, cutting tool design includes a seemingly infinite number of different 

shapes making the specifications and vernacular very complex to the reader that lacks 

practical machining experience. It should also be noted that cutting tool performance is 

highly dependent on the shape and features that they exhibit. As such, these simple 

descriptions are intended to only provide the reader with a basic understanding of the 

common cutting tool features that will be described through the rest of this work. 

Figure 2-2 illustrates some of the more common cutting tool terms that will be used 

later in this work. Other terms will be illustrated and discussed in corresponding figures 

and tables at the time of discussion. It should also be noted, that in Figure 2-2, the 

workpiece travel direction, relative to the cutting tool, is from left-to-right and at some 

velocity, Vc. The chip can be seen forming in an upward manner along the rake face. 
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Figure 2-2. Common cutting tool terminology. 

2.3.1 Metal Cutting Theory 

Metal cutting has roots that can be traced back to the Industrial Revolution. By the 

mid-1800s, many manufacturing processes had relatively robust machine tools capable of 

performing various machining operations. It wasn’t until the late-1800s when specific 

focus and attention would be placed on the practice and art of metal cutting. In 1906, 

Frederick W. Taylor published a notable paper entitled “On the Art of Cutting Metals”, 

which was a compilation of experimental investigations that started 26 years earlier [86]. 

Taylor sought to answer very fundamental metal cutting questions that machining 

practitioners must still ask themselves today, such as “What tool shall I use?”, “What 

cutting speed shall I use?”, and “What feed shall I use?” 

By the late 19th century and mid-20th century, many pioneers in metal cutting, were 

publishing more proper, quantitative understandings of metal cutting mechanics and chip 

formation [25, 56, 57, 65, 66]. Metal cutting can be basically classified into orthogonal 
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(two-dimensional) and oblique (three-dimensional) cutting processes shown in Figure 2-3. 

The simpler of the two metal cutting classifications is orthogonal cutting where the 

inclination angle of the cutting tool edge is perpendicular to the direction of the cutting 

action. As a material removal process that is characterized by chip formation due to plastic 

deformation, metal cutting consists of a wedge-shaped cutting tool that exerts compressive 

stress with high strain rates (~103-106 s-1) and continuous material flow. Ignoring more 

complex features of the cutting tool geometry and geometrical relationship to the 

workpiece and cutting direction makes the orthogonal cutting model an ideal, simplified 

model to describe the mechanics of the cutting process. However, it should be noted that 

in most practical metal cutting applications, oblique cutting is the general case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-3. Orthogonal cutting model (a) on left and oblique cutting model (b) on right; 

adapted from [49] 
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Many metal cutting historians contribute the work by Piispanen [65] to be the first 

paper to use the so-called “stack of cards” model for understanding shear plane and chip 

formation shown in Figure 2-4. The card model depicts the workpiece material as a stack 

of cards inclined at an angle that corresponds to the shear plane angle, φ. As the cutting 

tool moves relative to the workpiece, it engages one card at a time and causes it to slide 

over the neighboring card. Merchant also describes the card model in his early work [56], 

where the card-like elements are assumed to have a finite thickness, ΔY, however in actual 

cutting, ΔY is approaching zero. Each card-like element is then displaced a distance, ΔS, 

with respect to its neighboring card-like element along a plane extending from the cutting 

edge of the tool to the surface ahead of the tool, called the shear plane. The material’s 

crystal structure, represented by the “bubbles” drawn along the sides of the card-like 

elements in Figure 2-5, is elongated in the direction of the major axis of the ellipses 

produced in the resulting chip from the cutting process.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4. Stack of cards model for understanding concept of shear plane and chip 

formation. Adapted from [56] 
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Figure 2-5. Stack of cards model, with bubbles, illustrating the mechanism of continuous 

chip formation and the resulting deformation of the workpiece material crystal structure. 

Adapted from [56] 

Ernst and Merchant describe three types of chip-form from metal cutting processes, 

see Figure 2-6. The type of chip that is formed during the metal cutting process can depend 

upon a number of variables related to the cutting tool geometry, process parameters (i.e. 

cutting speed, feed, and depth of cut), and workpiece material. Type 1 is a discontinuous 

or segmented chip more common in brittle materials that don’t undergo continuous plastic 

deformation, but rather exhibit more of a fracture behavior. Type 2 is a continuous chip 

formed by continuous deformation of the workpiece material more common is steels and 

alloys with more ductile behavior. Type 3 is also a continuous chip but includes a so-called 

“built-up edge” between the chip and cutting tool, near the cutting edge. Built-up edge 

(BUE) is the adhesion, and growth of, workpiece material onto the cutting tool near the 

cutting edge, commonly resulting from low-to-intermediate cutting speeds, which can vary 

depending on workpiece material [92]. 
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Figure 2-6. The three basic chip types according to Ernst: (left to right), Type 1 (a), 

discontinuous or segmental chip; Type 2 (b), continuous chip without built-up edge; Type 

3 (c), continuous chip with built-up edge. Adapted from [25] 

Technically speaking, this background analysis of metal cutting [56] is primarily 

based on the type 2 (continuous) chip and confines the shear in chip formation along a 

single-shear plane, when in fact shearing takes place in a shear zone close to this plane [33, 

64]. Furthermore, many practical limitations exist within the cutting models discussed, due 

to numerous assumptions. Amongst these assumptions are [63, 78]: 

• perfectly sharp cutting edges, 

• the chip does not flow to either side (no side flow), only up along the rake face,  

• depth of cut is constant,  

• a continuous chip with no built-up edge is generated, and 

• shear occurs on a perfectly plane surface extending from the cutting edge. 

Despite the limitations in early metal cutting models, the single-shear plane model has 

survived time and remains the go-to as a basic foundation for understanding metal cutting 

theory. This is because it is easy to teach, and simple numerical examples for various 

cutting parameters can be easily calculated with basic geometric and trigonometric 

understanding, as will be seen later in this section [7]. In more recent years, more realistic 
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slip-line models have been developed by Jawahir and colleagues [37, 39]. The development 

of the universal slip-line model, based on rigid-plastic and plane-strain assumptions used 

in classic slip-line theory, accounts for curled chip formation and chip back-flow 

phenomena while incorporating previously developed slip-line models [26]. Moreover, 

these models consider grooved tool geometries with finite rounded cutting edges [95].  

However, back to the basics. It is common in machining research to define a term 

called the chip thickness ratio, r, which is the ratio of the undeformed chip thickness, t1, to 

that of the deformed chip thickness, t2. Since chip thickness is related to the tool rake angle 

and shear plane angle, we can use this to derive a formula for the shear plane angle. 

Additionally, these angles, along with other geometric features of the cutting tool and chip-

form, provide the basis in the derivation of equations for velocity vectors and cutting force 

components during the cutting process. From Figure 2-7, it can be shown that,  

𝐴𝐴𝐴𝐴 =
𝑡𝑡1
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
𝑡𝑡2

𝑐𝑐𝑐𝑐𝑠𝑠(𝑠𝑠 − 𝛼𝛼)  

and given that r = 
𝑡𝑡1
𝑡𝑡2

, we can rearrange to obtain 

𝑡𝑡1
𝑡𝑡2

=
𝐴𝐴𝐴𝐴 sin𝑠𝑠 

𝐴𝐴𝐴𝐴 cos(𝑠𝑠 − 𝛼𝛼)  

Solving for φ, 

𝑠𝑠 =  𝑡𝑡𝑡𝑡𝑠𝑠−1
𝑟𝑟 cos𝛼𝛼

1 − 𝑟𝑟 sin𝛼𝛼
(2-1) 

The three velocity vectors at play in the cutting process can also be seen in Figure 

2-7. The cutting velocity (or cutting speed), Vc, is the velocity of the workpiece relative to 

the cutting tool. The shear velocity, Vs, is the velocity of the chip relative to the workpiece 

along the shear plane. The chip velocity, Vf, is the velocity of the chip relative to the cutting 

tool along the rake face. Therefore, from the velocity-vector diagram on the right side in 

Figure 2-7, it can be shown that, 
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𝑉𝑉𝑓𝑓 =  𝑉𝑉𝑐𝑐  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

cos(𝑠𝑠 − 𝛼𝛼)
(2-2) 

𝑉𝑉𝑠𝑠 =  𝑉𝑉𝑐𝑐  
𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼

cos(𝑠𝑠 − 𝛼𝛼)
(2-3) 

 

 

 

 

 

 

 

 

Figure 2-7. Velocity-vector diagram showing the relationship between shear angle, chip 

thickness, and velocities. 

 Another important aspect of metal cutting theory are cutting force components that 

can be calculated by understanding geometric and trigonometric relationships as well as 

directly measured from the cutting process. One of the most widely used descriptions of 

forces in metal cutting is that of the pioneering work by Merchant in 1945 [56], although 

in his publication, Merchant mentions a similar force diagram developed by Piispanen a 

few years earlier [65]. Merchant’s two-dimensional force model for orthogonal cutting 

depicts a number of force components acting on the cutting tool and chip.  

The free body diagram in Figure 2-8 shows that when the chip is isolated, only two 

forces need to be considered – the force, R, between the workpiece and the chip along the 

shear plane and the force, R′, between the tool’s rake face and the chip. When the forces in 

Figure 2-8 are rearranged and applied at the tool’s cutting edge, this condensed force 

diagram shows the relationships between force components, known as Merchant’s circle, 

in Figure 2-9. 
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𝐹𝐹𝑠𝑠 =  𝐹𝐹𝐶𝐶 cos𝑠𝑠 −  𝐹𝐹𝑇𝑇 sin𝑠𝑠 (2-4) 

𝐹𝐹𝑁𝑁 =  𝐹𝐹𝑇𝑇 cos𝑠𝑠 + 𝐹𝐹𝐶𝐶 sin𝑠𝑠 (2-5) 

𝐹𝐹 =  𝐹𝐹𝑇𝑇 sin𝛼𝛼 +  𝐹𝐹𝐶𝐶 cos𝛼𝛼 (2-6) 

𝑁𝑁 =  𝐹𝐹𝐶𝐶 cos𝛼𝛼 −  𝐹𝐹𝑇𝑇 sin𝛼𝛼 (2-7) 

The ratio of a force in the direction of sliding, to the force normal to the sliding 

interfaces is known as the coefficient of friction. In looking at the rake face of the cutting 

tool, in which the chip is sliding across, the coefficient of friction, µ, can be found using 

components F and N as follows.  

𝜇𝜇 =  
𝐹𝐹
𝑁𝑁

=  
𝐹𝐹𝑇𝑇 sin𝛼𝛼 +  𝐹𝐹𝐶𝐶 cos𝛼𝛼
𝐹𝐹𝐶𝐶 cos𝛼𝛼 −  𝐹𝐹𝑇𝑇 sin𝛼𝛼

=  
𝐹𝐹𝐶𝐶 + 𝐹𝐹𝑇𝑇 tan𝛼𝛼
𝐹𝐹𝐶𝐶 −  𝐹𝐹𝑇𝑇 tan𝛼𝛼

(2-8) 

This method assumes that the force components, F and N, are uniformly distributed 

across the tool-chip interface. However, in the reality of metal cutting, this is far too simple 

of an analysis to adequately describe the more complex tribological interactions of sticking, 

slipping, and seizure that occur at the interface. For the purposes of this basic background, 

it remains a sufficiently useful way to think about the energy required for metal cutting and 

how the resulting workpiece material deformation will take place.  
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Figure 2-8. Free body diagram of chip-form during 2D metal cutting [56] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9. Combined force diagram, Merchant circle [56] 
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2.4 Cooling and Lubrication Techniques in Machining 

Brinksmeier [15] defines metalworking fluids (MWFs) “as liquids, which are 

supplied to a manufacturing process in a way that allows for increased productivity based 

on lubricating and cooling effects.” In this section and other parts of this thesis, commonly 

used terms such as coolant and lubricant are summarized as MWFs. Two main functions 

in metal cutting are served by the application of MWFs. First, is to provide cooling at 

relatively high cutting speeds where temperatures are likely to be higher. Under relatively 

high cutting speed conditions, MWFs have practically no time to infiltrate the tool-chip 

interface or the wear land on the tool in order to provide lubrication. Second, is to provide 

lubrication at relatively low cutting speeds where cooling is generally insignificant. MWFs 

are employed to achieve many objectives, including to reduce friction between the tool and 

the workpiece, increase tool life, improve surface finish, facilitate chip removal from the 

cutting area, and to prevent the tool, workpiece, and machine from overheating [92]. It 

should be noted that chip removal is another primary function served by the application of 

MWFs. These objectives help a manufacturer achieve the primary desired outcome of 

either reducing per-part costs or increasing production rates. Considerations for MWF 

selection must also consider cost, health and safety of the operator, and to inhibit workpiece 

corrosion or rust [78].  

Many challenges are presented during the metal cutting process. Heat in a cutting 

process is primarily generated on the primary shear plane and at the tool-workpiece 

interface, especially in the flow-zone on the tool rake face [92]. In most cutting processes, 

this generated heat will be mostly removed in the chip and a smaller portion is conducted 

into the workpiece. Coolants typically cannot gain direct access to the primary heat source 

zones, however, they can efficiently reduce temperatures on the surfaces of the workpiece, 

chip, and cutting tool.  

In machining processes, effective material removal is a primary objective. Thus, 

cooling and lubrication techniques play a major role in helping the engineer or machine 

operator to control chip-form and chip-flow over the cutting tool, obtain predictable tool-

wear and tool-life, provide the necessary chip removal from the cutting area, and provide 

adequate quality of the finished surface. As such, several cooling and lubrication 
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techniques have been developed over the years and are available to manufacturers. The 

selection of the right cooling and lubrication technique can vary based on the material being 

machined, cutting tool materials, and processing parameters. Needless to say, the future 

role of MWFs in machining operations will remain an important topic of discussion [81]. 

Brinksmeier et al. [15] provide an extensive summary of metalworking fluids and 

present the current state of the art regarding the working mechanisms and performance of 

MWFs. The multi-disciplinary interrelationships and complexity of MWFs discussed 

include tribological (physical and chemical) aspects, effects of MWF-composition and 

concentration on machining performance, and advanced approaches for more sustainable 

application of MWFs. Brinksmeier et al. provide historical context to the evolution of 

MWFs over time including the drivers for change and effect on MWF-composition. Figure 

2-10 summarizes the MWF development chronology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10. Chronological development of MWFs [15] 
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2.4.1 Flood-coolant in Machining 

One common cooling technique used in many industrial machining processes is the 

application of flood coolant. In 1906, F.W. Taylor investigated the effect of cooling the 

tool by a “heavy stream of water” at the point of tool engagement to increase cutting speeds 

by 40 percent [86]. In the 20th century, with the progress of industrialization, the addition 

of many natural and synthetic substances have been made to MWFs. Nowadays, coolants 

are commonly emulsions of mineral oil concentrates that can effectively dissolve in water 

and contain added emulsifiers, biocides, corrosion inhibitors, and antifoaming agents [87]. 

These emulsions typically have oil-to-water ratios between 1:10 and 1:60 [92].  

It has already been stated that coolants are relatively effective at reducing 

temperatures on the surfaces of the workpiece, chip, and cutting tool. It should also be 

stated that this effectiveness depends significantly on the location and method of the 

coolant delivery. Proper placement is one such that the coolant is directed towards 

accessible surfaces of the cutting tool where temperatures are the highest. In cutting 

conditions where temperatures are more evenly distributed over a larger area of the cutting 

tool surface, a flood of coolant, hence the term flood-coolant, can be applied at the rake 

face of the tool, allowing coolant to provide consistent cooling action over the rake and 

flank face surfaces. In cutting conditions where temperatures may be hottest near the 

cutting edge, a high-pressure jet of coolant can be applied as close to that heat source zone 

as possible. In this thesis, flood-coolant under relatively lower pressure is used in the 

experiments discussed in future chapters. 

It is well known that the constant use and exposure to certain coolants can have 

adverse health impacts ranging from minor skin irritations to respiratory problems. Over 

the last couple decades, environmental protection and occupational health regulations have 

restricted the use of certain chemical substances found in MWFs. Guidelines, such as “The 

European Union REACH Regulation for Chemicals: Law and Practice” [12] and 

“Prevention of Metalworking Fluid Pollution: Environmentally Conscious Manufacturing 

at the Machine Tool” [80] are amongst these guidelines and regulations. Some fear that 

more serious skin conditions and potentially different types of cancer can result from long-

term exposure. Tolbert [87] reviews the epidemiologic evidence on the relationship 
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between mineral oil exposure and cancer in metalworking. Additionally, the costs 

associated with coolant and coolant delivery systems, as well as waste management costs 

and environmental concerns has driven a trend towards alternative cooling and lubrication 

strategies.  

In recent machining research, flood-coolant is explored in so far as to serve as a 

baseline in which other MWF techniques are compared against. Much research has been 

done particularly in comparing flood-coolant, often referred to as a “conventional” cooling 

approach, when machining metallic materials of interest to the aerospace industry, such as 

for nickel alloys [35] and titanium alloys [84]. 

The remainder of this section will highlight alternatives to traditional flood-coolant 

methodologies starting with dry machining, then discussing minimum quantity lubrication 

(MQL), and finally cryogenic cooling.  

2.4.2 Dry Machining 

In the effort to remove cutting fluids from machining processes, dry machining is 

perhaps the ultimate goal. Dry machining is the act of machining without the use of an 

applied MWF. However, proper implementation of dry machining cannot be done by 

simply turning off the coolant supply. Previous works have summarized dry machining to 

greater lengths [48, 98] and emphasized this point.  

There have been a number of dry machining approaches to achieving successful 

metal cutting while obtaining sufficient surface finish, geometric accuracy, good chip-

breaking characteristics, and chip removal from the cutting area. Klocke and Eisenblätter 

[48] reviewed dry machining within a wide range of machining of cast iron, steel, 

aluminum, and titanium and superalloys. For cast iron machining, cubic boron nitride 

(CBN) tools are highly suitable for dry machining since their relatively high thermal 

conductivity can efficiently move heat from the cutting edge engagement zone.  

Dry machining is often recommended for many machining processes in so-called 

superalloys, which are typically nickel- or titanium-based alloys, when using ceramic tools. 

The use of flood coolant with ceramic tools, and in some cases with carbide tools, is not 
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typically performed since thermal shock can be induced into the process, causing 

catastrophic tool failure.  However, research continues to investigate dry machining with 

carbide tools since they are also commonly used when machining these superalloys [21, 

31, 61, 70]. Klocke and Eisenblätter conclude that moving towards dry machining requires 

careful consideration and understanding of the complex interrelationships between the 

process parameters, cutting tools, workpiece material, and the machine tool.  

As discussed during the previous section on flood-coolant applications, dry 

machining has been a focus of research for comparative studies with various MWF 

techniques. Kaynak and colleagues [46] compare dry machining to cryogenic cooling and 

MQL techniques in turning operations of a NiTi alloy to compare tool-wear performance. 

Pu et al. [69] employ dry machining and cryogenic cooling of a Mg alloy to investigate the 

effect of tools with various cutting edge radii on the resulting surface integrity. Rotella and 

colleagues [73] compare results of machining a Ti-alloy using coated carbide tools at 

varyious cutting speeds and feed rates under dry, MQL, and cryogenic cooling conditions 

to investigate the effects on resulting surface integrity. 

Weinart and colleagues [98] summarize dry machining technology and the 

machining applications where it can influence future development. Turning processes are 

included in such machining applications. The authors conclude that many machining 

technologies (e.g. tool design, coatings, machining strategies, and machine design) have 

advanced because of the growing interest in dry machining. While high-volume industries 

such as automotive manufacturing have required special solutions to implement dry 

machining, further research activity of dry machining will ultimately expand solutions and 

technologies to the small and medium manufacturers that are especially challenged with a 

huge variety of machining tasks. 

2.4.3 Minimum Quantity Lubrication in Machining 

Minimum quantity lubrication (MQL) is another recent approach in the effort to 

remove, or limit, cutting fluids from machining processes. A normal rate of consumption 

per machine hour for consideration of an MQL system is typically between 10-50 ml of 

the MQL medium (i.e. lubricant). The heightened interest to limit the amount of MWF, 
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known as near-dry machining (NDM), has led many to explore MQL as a solution to also 

combat the relatively high production costs of traditional MWFs, which can be as high as 

16% of an operations cost. 

Astakhov provides a thorough summary of machining using Minimum Quantity 

Lubrication (MQL) as an alternative approach to deal with the costs and health and safety 

concerns of MWF. MQL machining supplies small quantities of lubricant to the machining 

zone where droplet diameters of 1-5 µm are generated “as a mixture of air and an oil in the 

form of an aerosol (often referred to as the mist).” Astakhov emphasizes the need for 

system-level consideration of the machining process when considering NDM as an 

alternative process and technology, particularly the total energy required by the metal 

cutting system to determine if MQL becomes feasible for a particular material and process 

space [8]. 

Maruda et al. study droplet sizes in MQL to determine potential heat exchange and 

find that when the distance of the delivery nozzle from the workpiece increases and 

volumetric air flow increases, the surface wettability decreases. In their work, coefficient 

of droplet deformation and wetting angles were experimentally determined. The authors 

also defined thresholds where droplets do not evaporate completely in one second if droplet 

diameter is greater than 30 µm and the emulsion mass flow is greater than 60 g/h. The 

quantity of dissipated heat from the cutting zone decreases beyond this threshold [55]. Suda 

et al. [83] evaluate synthetic ester’s secondary performance characteristics such as 

biodegradability, oxidation stability, and storage stability. Particle diameters from their 

system are on average about 1 µm and typically under 2 µm. Oil was supplied at a rate 

between 2 and 30 ml/h with the nozzle angle at 60 degrees from the tool rake face and a 

distance of 20 mm from the nozzle to the tool. The authors conclude that synthetic esters 

are optimal lubricants for MQL machining in terms of these secondary performance 

characteristics. 

Dhar [22] conducts turning experiments on AISI 4340 steel under MQL, dry, and 

flood-cooled conditions. Turning was performed with a cutting speed of 110 m/min, feed 

rate of 0.16 mm/rev, and depth of cut of 1.5 mm. The MQL was supplied with an air 

pressure of 7.0 bar at a delivery rate of 60 ml/h for the lubricant. The author found that 
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with MQL, tool-wear was reduced, tool-life increased, and surface roughness improved 

compared to dry and flood-cooled machining. The authors do not mention the hardness of 

the material or other processing conditions of the steel used during experiments, so it is 

assumed to be in an annealed condition based on the resulting tool-life curves. Detailed 

information regarding the orientation (i.e. inclination angle) of the MQL nozzle or distance 

to the tool is also missing in his work. 

As with many manufacturing process technologies, science-based modeling is a 

valuable tool to use for enhancing the understanding and thus further development for 

NDM techniques. Marksberry and Jawahir [54], present a new method to predict tool-wear 

and tool-life performance in NDM by extending a Taylor speed-based dry machining 

equation in an effort to provide a more science-based modeling approach for wider NDM 

consideration and adoption. 

Weinart and colleagues[98] discuss MQL technology as being a central element for 

many applications that are approaching dry, or near-dry, machining. MQL will ultimately 

experience the same challenges as dry machining for successful implementation. That is, 

continued research needs to be performed for continued development in tool design, 

coatings, machining strategies, and machine design. These aspects, which make up some 

of the many variables in a machining system, must be understood for a given machining 

process for successful implementation. With the expansion of MQL technology 

development, similar potential benefits to dry machining exist to significantly reduce total 

machining costs and improve process sustainability.   

2.4.4 Cryogenic Cooling in Machining 

Cryogenic machining involves the application of a cryogenic coolant, typically 

liquid nitrogen (LN2) supplied at -196 ºC (-321 ºF), to the cutting area of the machining 

process. In 1919, the first reported use of a liquified gas, carbon dioxide (CO2), was used 

as a coolant in machining [72]. The term cryogenic processing is believed to have been 

first used in 1966 by the CryoTech Company (Detroit, MI, USA), where they used cryo-

tempering to obtain a 200-400% increase in tool life [38]. 
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Cryogenic machining offers many advantages over the conventional use of flood-

coolants, such as lower potential health and safety issues like skin or respiratory effects 

since nitrogen is an inert gas and is approximately 78% of the air that we breathe. 

Additionally, chip management can be easier since the chips will be dry and less “sticky” 

from the absence of an emulsion-coating from coolants or lubricants. While it seems like a 

minor issue, removing chips from the machining center and processing them for disposal 

can be a major issue for many machine shops. Dry, non-sticky chips make it easier to move 

around a shop and process for disposal. A large amount of time and resources are expended 

in the management of coolant and chips. 

 There have been many technical benefits of cryogenic cooling reported in the last 

couple decades, typically in the area of improved tool-life and desirable surface integrity 

results [34, 45, 84, 93, 96]. Much of the machining research, particularly with cryogenic 

cooling has been done on commonly used aerospace alloys that are titanium- and nickel-

based. Biček et al. [14] compare cryogenic cooling with conventinal flood-coolant and dry 

machining in turning of normalized and hardened AISI 52100 bearing steel. The authors 

conclude that tool life is improved up to 370% in the normalized steel and thermally-

induced residual stresses were reduced in the hardened steel, while tool-life improved.  

 Cryogenic machining has also been explored for biomedical materials 

manufacturing, such as for Ti alloys, Co alloys, and Mg alloys [43]. In the context of 

biomedical implant materials, cryogenic machining provides a cleaner process and 

eliminates potential contaminates that conventional flood-coolant may introduce, while 

providing many of the engineered surface benefits mentioned in previous work. Cryogenic 

machining has also seen application in the manufacture of complex materials such as 

porous tungsten, as an alternative to the traditional practice of machining the plastic 

infiltrated workpieces [76]. More advanced research has gone into understanding the effect 

of depth of cut and pre-cooling when cryogenic cooling is used with porous tungsten [77]. 

Jawahir and colleagues [38] provide an extensive overview and summary of the 

current state-of-the-art regarding cryogenic cooling applications for machining, forming, 

grinding, and burnishing. The authors discuss implications of cryogenic cooling on surface 

integrity characteristics and product performance. Operational performance of cryogenic 
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cooling is compared with conventional flood-cooling and MQL in terms of the 

effectiveness and limitations relating to tool-wear, surface roughness, chip control, etc. 

Analytical and numerical predictive modeling capabilities are discussed, as are safety and 

health related issues. 

A summary of cryogenic cooling and the other cooling and lubrication techniques 

discussed in this section are shown in Table 2-2. The table illustrates the effect of the 

various cooling and lubrication strategies on several primary and secondary interests during 

the machining process. Rankings of either poor, marginal, good, or excellent are given for 

each strategy’s effect on the various items of interest.  

 

Table 2-2. Effectiveness of various cooling and lubrication techniques on primary and 

secondary interests during machining [38] 
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2.5 Machining of AF9628 Alloy 

Little has been published to date on the machining of AF9628 alloy. Primarily 

because it is a relatively new alloy and its use has not been widespread outside of intended 

applications within the United States Armed Services. Limited studies have been 

performed that have looked at fundamental machining performance aspects of AF9628 in 

milling, drilling, and turning in comparison to a surrogate alloy such as AISI 4340. In recent 

years, a couple contracted efforts have been funded and managed by the US Air Force to 

study various aspects of AF9628 machining performance. On such study, under contract 

FA8650-14-C-5517 [44], explored drilling, milling, and turning processes. 

Recently, data from the above contracted effort was presented in a paper [101] on 

milling experiments performed on AF9628 and AISI 4340 under flood-cooled and dry 

conditions. Force measurements were obtained for comparison between the two alloys 

under the same machining parameters. The study also investigated the impact that flood-

coolant would have when compared to dry machining on surface integrity, including 

surface roughness, micro hardness, and sub-surface microstructure evolution. The authors 

found that flood-cooled and dry conditions affect the resulting generated surface as well as 

microstructure. Microhardness was found to be over 9% higher in flood-cooled milling 

than in the dry milling condition. Also, a more refined microstructure resulted from the 

flood-cooled condition. The authors conclude that this is likely due to the rapid cooling of 

the machine-generated surface, which effectively quenches the material, resulting in a more 

refined microstructure and increased hardness near the surface from the formation of 

martensite. 

More recently, a study was performed under Air Force contract FA8650-18-F-5573 

[5] at TechSolve Inc. in Cincinnati, OH, USA to evaluate machining performance in terms 

of tool life, energy consumption, and cost. This effort fundamentally sought to understand 

the processing space for turning AF9628 in a soft and hardened state.  To do so, the study 

evaluated several different carbide and ceramic cutting tool inserts from multiple cutting 

tool manufacturers. Screening tests were performed using the different inserts across 

varying cutting speeds to identify the best performing tools with regard to tool-life as a 

function of cutting speed. Turning tests for AF9628 were performed with these cutting 
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tools along with a commonly known surrogate steel alloy, AISI 4340, so that the resulting 

machining performance could be compared between the two steels. The screening tests 

concluded with two ideal cutting tools for turning operations that demonstrated potential 

for further studies and potential use in a production environment. Of these two tools, one 

is a coated carbide tool (ISO designation CNMG432-MF2) and the other tool was ceramic. 

The TechSolve study made significant findings on what cutting tools perform best 

when using finish machining conditions for AF9628 in a hardened state (51 HRC) and 

quantified this performance in terms of tool-life, energy consumption, and cost. However, 

the number of experimental tests for finish turning experiments were very limited due to 

the scope of work and the extensive number of different tools being evaluated. One test for 

each tool type was performed at various cutting speeds in order to develop the tool-life 

curves. It is well known that tool-life is not always consistent due to a number of factors 

related to the workpiece, cutting tool, and machine tool setup. Moreover, while tool-life 

curves were generated based on the limited experimental tests at various cutting speed, the 

mechanism by which the cutting tools wear was not fully addressed as this was also outside 

the scope of the study. Figure 2-11 shows an example tool-life curve developed during the 

TechSolve study with the recommended carbide insert (ISO designation CNMG432-MF2).  

 

 

 

 

 

 

 

 

Figure 2-11. Tool-life curve developed by TechSolve Inc. illustrating expected 

tool-life in minutes as a function of cutting speed. This figure was generated under Air 

Force contract FA8650-18-F-5573 [5] 
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Following the initial machinability study at TechSolve, several machined 

specimens were identified for surface integrity characterization. A sub-contract was 

awarded to the University of Kentucky to perform characterization of machining-induced 

surface integrity on AF9628. The identified specimens were those that experienced the 

harshest processing conditions during the experiments at TechSolve. Harsh conditions 

were considered those where relatively higher cutting speeds are used, as this will likely 

increase the total temperature generated during the process as well as higher cutting forces. 

Higher temperatures and higher cutting forces have the greatest likelihood of producing 

undesirable surface and sub-surface characteristics, which must be understood. Residual 

stresses and changes in the hardness of the material at the surface and at some measurable 

depth into the sub-surface of the machined component are two such characteristics that can 

be modified by the machining process.  

Machining-induced surface integrity is an area of manufacturing all in itself. Over 

the years, much research has been published on surface integrity of machined surfaces 

under various conditions and the importance of understanding its impact on the functional 

performance of manufactured components [2, 9, 16, 28-30, 32, 40, 60, 69, 75, 85, 99]. 

However, this type of work is only just beginning with AF9628. With the limited 

knowledge of machining AF9628, and the lack of any study diving deeper into chip-form 

and tool-wear mechanisms for this alloy, this thesis will help fill a critical gap in the known 

literature. The contribution of this work, dovetailed with previous machining research with 

AF9628, will provide a more robust foundational knowledge source of information to 

further reduce the risk for industry adoption of the steel.  

2.6 Chip-form 

 Chip control plays a critical role in machining to ensure reliable operation in 

automated machining systems. Understanding and predicting chip-form and chip 

breakability is a challenging task. In turning operations of ductile materials, such as steels, 

the continuous cut can lead to long and unfavorable chips being formed. Therefore, cutting 

tool geometry, chip breaker design, and the cutting parameters play a critical role [98].  
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When hardened steels are machined, a saw-toothed chip is commonly produced. 

The cause of this chip-form has drawn much attention over the years. Shaw and Vyas 

review the hard turning of steels and seek to provide understanding of the events that occur 

in the formation of the saw-toothed chip. The authors discuss two competing theories on 

the origin of the saw-toothed chip and discuss the significance in understanding the 

fundamental chip-form mechanisms [79]. Mabrouki and Rigal [53] look at the thermo-

mechanical effects on chip morphology by modeling the case of (orthogonal) turning of 

hardened AISI 4340 at 47 HRC to explain the effects of chip-form on tool-wear behavior. 

The authors model the saw-tooth formation on the back of the chip due to adiabatic shear 

banding, which also produces a cyclical variation in the cutting force magnitude 

corresponding to chip segmentation. The authors conclude that the oscillation in cutting 

forces due to chip segmentation causes fatigue of the tool and may result in fracture. 

Morehead et al. [59] study the effect of tool-wear and cutting conditions on the saw-toothed 

chip-form while dry turning 52100 bearing steel at 62 HRC to further promote hard turning 

as a viable technology option. 

The growing interest in machining components in a hardened state has led research 

to explore the chip-form mechanisms and the relationship to tool-wear. Poulachon and 

Moisan [67] investigate 52100 steel across a hardness range of 180 to 750 HV10 and across 

various cutting speeds and feed rates. A relationship between the chip geometry and the 

cutting parameters was such that chip morphology was primarily influenced by the material 

hardness and cutting speed. Poulachon et al. [68] use a shear instability criterion to 

understand the major cutting parameters influencing shear localization and perform hard 

turning experiments on AISI 52100 bearing steel to confirm the results. Their study of 

understanding and modeling the chip-form process is in anticipation of growing interest in 

hard turning technologies. 

Prediction of chip-form and chip breakability across a range of machining 

conditions, materials, and with various cutting tools is a challenging task. Developing the 

predictive theories and capabilities that will be suitable for use on the shop floor is even 

more challenging. Fang et al. [27] present an Artificial Intelligence (AI)-based hybrid 

algorithm to characterize various chip shapes and sizes, and to quantify the chip-form/chip 

breakability in the machining of steels. The model uses a reference database developed 
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from machining experiments along with the fuzzy predictive model to achieve a 

quantitative estimate of chip-form/chip breakability. Jawahir and Wang [36] present a 

summary of modeling and optimization developments of machining processes including 

predictive models for 2D and 3D chip formation, and chip-form/chip breakability 

prediction. The authors propose a new modeling approach for predictive evaluation of 

machining performance.  

2.7 Tool-wear 

 Tribology is the study of the interaction between two or more bodies in relative 

motion with one another, particularly the friction, wear, and lubrication phenomena 

associate with the interaction. Machining is a tribological problem at its core. Friction and 

wear of cutting tools have a detrimental effect on the performance limit in any cutting 

process. Tool-wear can be any one, or combination, of the following, but not limited to: 

flank wear, crater wear, nose wear, notching, chipping, and plastic deformation of the 

cutting tool tip. Multi-pass operations, which are most real-world applications, require the 

same tool to be used for multiple passes across a workpiece. Therefore, the need for 

understanding tool-wear as it relates to product quality is critical. Industry and researchers 

have had interests in understanding tool-wear and tool-life as long as metal cutting has 

been around.  

Early work by F. W. Taylor [86] made major discoveries that related tool-wear rate 

to the temperatures at the tool cutting edge. Over the years, many others have continued to 

study the fundamental aspects of tribology in metal cutting [10, 71, 91]. De Melo et al. 

provide a nice summary of different wear types and damage that can occur in carbide tools. 

Using numerous examples from literature, the authors highlight tool-wear types including 

plastic deformation, crater wear, attrition wear, notch wear, abrasion and built-up edge, 

mechanical fracture and chipping, and thermal and mechanical fatigue [17]. In the last 

couple decades, more sophisticated measurement techniques have become available that 

allow for more advanced qualitative and quantitative analysis of tool-wear. Devillez et al. 

[20] successful measure crater wear developed during orthogonal cutting of a steel material 

with an uncoated carbide tool using white light interferometry.  
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The increasing interests in the application of various cooling and lubrications 

techniques during machining have led many to investigate tool-wear performance under 

these techniques. Marksberry and Jawahir [54] present a model to predict tool-wear/tool-

life performance in near-dry (MQL) turning operations. Kaynak et al. [47] investigate 

progressive tool-wear of a Ni/Ti alloy under dry, MQL, and cryogenic cooling conditions. 

The authors find that progressive tool-wear is enhanced by cryogenic cooling, which was 

applied by two nozzles from the rake face and the flank face. However, after four minutes 

of cutting, all of the conditions obtained similar surface roughness results. Sun et al. [84] 

investigate cryogenic cooling during turning operations on Ti-5533 alloy and compare tool-

wear to similar experiments under flood cooling and MQL. Two tool-wear types found 

under all conditions were abrasion and built-up edge, although cryogenic cooling applied 

to the rake face of the tool resulted in less nose wear due to reduced material adhesion.  

Grooved cutting tools have become more common over the last several decades 

and much research has been performed to assess the chip-flow and tool-wear associated 

with these tools. Grooved tools often produce three-dimensionally curled and broken chips. 

It has been found through experimentation with grooved tools that flank wear is often not 

the most dominant factor. Jawahir et al. [42] present a methodology for evaluating tool-

wear for a typical grooved tool. By observing variations in the chip-groove interaction by 

changing the cutting speed, feed rate, and depth of cut, a chip-groove effect factor was 

developed for new tool-life relationships. Additional work on grooved tools have identified 

tool failure resulting from improper groove utilization by the chip as a result of either poor 

chip-groove design or inappropriate cutting conditions for the chip-groove. Mechanical 

action of the chip-flow can cause tool-wear in grooved tools more so than adhesion or 

diffusion wear [41].  
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 At the conclusion of this literature review, it is clear that despite all of the prior 

research that has been conducted to understanding chip-form and tool-wear, no work has 

been done to understand these aspects of machining for the recently invented AF9628 

alloy. With an understanding of this gap in the known literature, this thesis seeks to fill a 

knowledge gap in the following areas: 

• Perform chip-form analysis for turning of hardened AF9628 alloy with a coated 

carbide tool. 

•  Perform tool-wear analysis for turning of hardened AF9628 alloy with a coated 

carbide tool. 

• Provide an understanding of the interrelationship between chip-form and tool-wear 

for turning of hardened AF9628 alloy with a coated carbide tool. 

It is the desired goal that filling this knowledge gap will provide a foundation for continued 

research in machining of AF9628 alloy. In addition, the data that is generated from this 

work is expected to merge with the other limited existing data from prior machining studies 

on AF9628. By doing this, a more robust data set will be of immediate interest and potential 

value for industry’s consideration of adopting AF9628 alloy for industrial applications. 

The following chapter will discuss the experimental methods and instruments used for 

analysis as well as the workpiece and cutting tool materials. 
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CHAPTER 3 

EXPERIMENTAL METHODS AND MATERIALS 

As the true method of knowledge is experiment, the true  

faculty of knowing must be the faculty which experiences. 

- William Blake 

3.1 Turning Setup for Flood and Dry Machining 

Various cooling and lubrication techniques were explored in this study of turning 

the outside diameter (O.D.) of AF9628 in a hardened state. The experimental setup in 

Figure 3-1 shows a Haas TL-2 CNC lathe with a bar of AF9628 alloy setup for machining.  

Due to the length of the AF9628 bars, and the necessity for a rigid setup, the bars were 

prepped to be supported by a three-jaw chuck on the left-hand side and a live center on the 

right-hand side of the bar. More detail on the AF9628 bar stock preparation for the 

experiments is described later in the chapter.  

For flood-cooled experiments, a soluble oil emulsion type coolant, Trim® E206, 

was mixed with water to a 9.0% -10.0% concentration for all flood-cooled experiments. 

An American Optical model 10440 hand refractometer was used to measure the coolant 

before flood-cooled experiments. Figure 3-2 shows the typical flood-cooled machining 

setup for a turning operation and the position of the coolant nozzle relative to the cutting 

tool and workpiece. In these experiments, the coolant nozzle was positioned such that there 

would be a constant flow of coolant, at a rate of 2 l/min, directed at the rake face of the 

cutting tool, near the cutting edge. This allows the coolant to flood the cutting tool surfaces 

while also contacting the workpiece near the tool-workpiece interface.  

Dry machining, or machining in the absence of any cooling or lubrication medium 

was also performed. The setup for dry machining is identical to that shown in Figure 3-1. 
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Figure 3-1. Haas TL-2 CNC lathe used for experimental tests under various cooling and 
lubrication conditions.  

 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 3-2. Experimental setup for flood-cooled machining on Haas TL-2 showing the 

position of the coolant nozzle relative to the cutting tool and workpiece. The cutting tool 

traverses along the axis of rotation from right to left. 
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3.1.2 Turning Setup for Minimum Quantity Lubrication Machining 

 A Unist Coolubricator™ MQL system was used for experiments along with 

Coolube® 2210EP lubricant, which is based on vegetable oils and natural esters. The Unist 

Coolubricator™ system has an adjustable, pneumatic displacement pump to control the 

pump cycle rate and a pump stroke adjustment knob to control the volume of fluid delivered 

per stroke. For experiments, the MQL system was adjusted to deliver 0.01 ml of oil per 

cycle at 84 cycles per min, resulting in a flow rate of approximately 50 ml of oil per hour. 

The MQL system also has an adjustable pressure regulator that can adjust the delivery 

pressure of the oil lubricant through the system. The pressure was adjusted to 0.38 MPa 

(55 psi), which is comparable to prior machining research with MQL to investigate 

progressive tool-wear during turning experiments on nickel-rich NiTi alloys. The Unist 

Coolubricator™ system is shown in Figure 3-3 below. 

 

 

 

 

 

 

 

 

 

Figure 3-3. Unist Coolubricator™ MQL system on Haas TL-2 CNC lathe 

The MQL system shown in Figure 3-3 operates pneumatically. From the figure, the 

bubble with the letter F is the pressure regulator for controlling the incoming pressure from 

the air supply. Bubble A is an air filter, bubble B is a pneumatic pulse generator used to 

control the rate at which the system pulses to releases a mist of lubricant. Bubble C points 

to the pump stroke adjustment knob, which controls how much lubricant is effectively 
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dispensed with each pulse. A fluid reservoir can be seen at bubble D and bubble E shows 

an output port where the lubricant travels through a tube to the application zone. 

The experimental setup for MQL is shown in Figure 3-4. In that figure, the MQL 

delivery nozzle can be shown near the cutting tool, where it is directed at the rake face of 

the cutting tool and near the cutting edge. The end of the nozzle, where the lubrication 

exits, is positioned 8.9 mm (0.350 in) from the cutting edge at approximately 40° relative 

to the rake face.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3-4. Experimental setup for MQL machining on Haas TL-2 showing the position 

of the MQL delivery nozzle relative to the cutting tool and workpiece. The cutting tool 

traverses along the axis of rotation from right to left. 

3.1.1 Turning Setup for Cryogenic Machining 

 To reduce the cutting temperature during cryogenic machining experiments, liquid 

nitrogen, which has an approximate temperature of -196°C (-321°F), was delivered as a 

coolant. A 3mm diameter copper tube was used to deliver the liquid nitrogen from a 
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standalone dewar beside the lathe to the metal cutting zone. The dewar was maintained at 

a pressure of 200 psi during tests. Figure 3-5 shows the cutting tool on the right side of the 

figure, with the copper nozzle directed at the rake face of the tool to deliver LN2. The 

copper nozzle was also positioned along the flank face of the tool during one experiment. 

This position was explored in an attempt to deliver the LN2 more directly into the cutting 

zone during machining by delivering it from the underside of the chip being formed. This 

was attempted since LN2 delivery from the top of the tool has potential to be blocked out 

from the cutting zone by the chip forming on top of the tool. 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 3-5. Experimental setup for cryogenic machining on Haas TL-2 showing the 

position of a 3mm nozzle for liquid nitrogen delivery relative to the cutting tool and 

workpiece. The cutting tool traverses along the axis of rotation from right to left. 

3.2 AF9628 Bar Stock 

 Several bars of AF9628 material were used to conduct the turning experiments 

under various cooling and lubrication conditions. Figure 3-6 shows three (3) bars that were 

remnants from a machining study performed by TechSolve. These bars were electric arc 

furnace melted, forged, and rough turned at Superior Forge & Steel (SF&S) to an O.D. of 

140 mm (5.5 inch). The bars were also heat treated at SF&S to a hardness of 51 HRC using 
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a standard heat treat procedure starting with a normalization step, followed by an 

austenitization step with a water quench, then finished with a tempering step. It should be 

noted that since these bars were remnants from the TechSolve study, the effective O.D. for 

machining in the current study was closer to 70 mm (2.75 in). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-6. AF9628 remnants from TechSolve machinability study 

 

An additional bar, produced by Timken Steel that was electric arc furnace melted, 

forged rolled, and rough turned in an annealed condition to an O.D. of 101.6 mm (4.0 in), 

was used for turning experiments. Material compositions are shown in Table 3-1 for both 

the SF&S- and Timken-produced material. Before performing experiments, the bar in 

Figure 3-7, was heat treated to a hardness of 49 HRC using a standard heat treat procedure 

starting with a normalization step, followed by an austenitization step with a water quench, 

then finished with a tempering step. The exact heat treat specifications cannot be described 

here since the furnace charts for the heat treatments are not available. However, from 

comparing the outcome of final hardness of the two bars machined in this study to hardness 

values measured in prior heat treatments for AF9628, it is assumed that the following heat 

treat procedure is representative of what was used for the material in the current study. A 
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typical heat treatment procedures is as follows: normalize at 633 ºC for 4 hours followed 

by air cooling, austenitize at 1015 ºC for 1 hour (+30 minutes per inch thickness) followed 

by a water quench, then finally normalize at 227 ºC for 4 hours followed by air cooling. 

Table 3-1. Composition for AF9628 steel bars used in turning study 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7. Timken-produced AF9628 bar after heat treatment 
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The Timken bar, since it was heat treated prior to initial machining at the University 

of Kentucky, had a decarburization layer that is typical of heat-treated steel. To prepare the 

bar for experiments, one end was mounted in the lathe chuck so the opposite end could be 

turned down in diameter on the lather across a length of 70 mm until the bar was visually 

“cleaned up” to produce a new, clean surface that is concentric to the lathe spindle. Then, 

the bar was flipped around with the newly generated surface (70mm long) being held in 

the chuck, and the face of the bar on the opposite end, perpendicular to the axis of rotation, 

was center drilled and countersunk to accommodate a live center to support the size and 

weight of the bar during experiments and provide rigidity. Once the bar was supported with 

the live center, the O.D. was turned down by an amount of 2 mm per side with a sacrificial 

insert that was not used to study tool-wear, to remove the decarburization layer that results 

from the heat treatment process. This is a critical step in sample preparation for 

experimental work since the decarburization layer is a layer at, and near, the surface of the 

steel that becomes depleted of carbon during heat treating and is consequently of lower 

hardness to some depth from the surface. 

The depth of the sacrificial layer was determined by taking a slice off of the end of 

the bar before preparing it to be mounted for tool-wear experiments. This slice was roughly 

13 mm thick. The bar was then setup on a surface grinder to grind and produce two flat, 

parallel, and relatively smooth surfaces on the cross-section of the sliced bar. The 

decarburization layer was found to be about 1.4 mm in depth from the surface, which was 

observed by grinding the surface incrementally and taking hardness measurements of the 

ground surfaces until the final, expected hardness was reached.  

The final hardness was measured for both AF9628 bar products (SF&S and 

Timken) and graphed in Figure 3-9. As can be seen, the SF&S bar had a measured bulk 

hardness of 51 HRC while the Timken bar had a measured bulk hardness of 49 HRC. The 

differences in the resulting harnesses of the two AF9628 bars are minor and could come 

from the fact that they are two different “products”, melted at different times, in different 

locations by different suppliers, and have slightly differing compositions, but are both 

within the acceptable composition ranges. Additionally, the bars were heat treated at 

different times, but at the same location under similar heat treatment conditions for AF9628 

as previously described. 
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Bulk material hardness measurements were performed on a Future-Tech FR-3 

hardness tester using ASTM E18 procedures for obtaining hardness Rockwell C (HRC) 

values. A 120º diamond indenter was applied at 150 kgf for HRC measurements. The bar 

slices, as previously described, from each of the SF&S and Timken bars were measured a 

total of five times on each slice to obtain an average hardness value. The five measurement 

locations on each bar included one in the center of the bar, two more locations about half-

way to the outside of the bar in the radial direction and 90 degrees from each other, and 

two more near the outside of the bar and 90 degrees from each other. The measurement 

locations are illustrated in Figure 3-8. The O.D. of the bar slices were either 70 mm (2.75 

in) or 101.6 mm (4.0 in) depending on which bar was being measured for bulk hardness. 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 
 

Figure 3-8. Measurement locations on bar slice for bulk hardness (HRC) 
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Figure 3-9. Bulk hardness graphs for AF9628 bars. Top: actual measured values at five 

locations on each bar. Bottom: average bulk hardness for each bar 
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3.3 Cutting Tools 

 
 The coated carbide cutting tools, often referred to as inserts, used during this work 

were manufactured by Seco. The insert type used is designated as a CNMG432-MF2 using 

Seco’s TH1000 grade carbide. Insert designations describe many aspects of the cutting tool 

such as shape, clearance or relief angle, tolerance, cutting edge length, thickness, nose edge 

radius, and chip breaker type. Chapter two alluded to the complexity of cutting tool design 

that includes a seemingly infinite number of combination of shapes, sizes, and geometric 

features that make the specifications and vernacular very complex. Resources from cutting 

tool manufacturers and standards such as the ANSI B212.4-2002, attempt to provide a 

standard description of the tools for use by the process engineer and end-user. 

 It is worth noting that the selection of the CNMG432 carbide insert during this work 

was motivated by the aforementioned machining study on AF9628 performed by 

TechSolve. In an effort to extend the knowledge gained during TechSolve’s study of 

turning AF9628 in a hardened state, and eventually merge all of the available AF9628 

turning data into a more comprehensive data set, as many variables in the experiments 

presented in this thesis were kept constant with the conditions from the TechSolve study. 

Therefore, as the TechSolve turning study used this insert, so does this work. Moreover, 

other machining variables selected in this work such as cutting speed, feed rate, and depth 

of cut were kept the same as in the TechSolve study. Furthermore, the tool holder and flood 

coolant type were also kept the same.  

Figure 3-10 shows an illustration of the Seco CNMG432-MF2 insert on the left, 

and an actual insert image on the right. The golden color of the insert illustration (left) can 

be easily misled for a common TiN coating found on cutting tools. However, this is an 

illustrative misrepresentation from the cutting tool manufacturer’s website. In reality, the 

cutting insert is a TiAlN coating, which appears closer to black in color to the human eye, 

shown on the right side of Figure 3-10. From the illustration in Figure 3-10, RE = 0.8 mm 

(0.031 in), IC = 12.7 mm (0.500 in), L = 12.9 mm (0.508 in), EPSR = 80º, D1 = 5.16 mm 

(0.203 in), and S = 4.75 mm (0.187 in). The tool holder used was Kennametal’s DCLNR-

164D. While there is little value in illustrating the tool holder, and describing its geometric 

characteristics at length, it is most important to reiterate that the tool holder used in this 
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work is identical to the tool holder used in the TechSolve study. The selection of the tool 

holder is to ensure that the overall machining performance of this work has the greatest 

probability of replicating the machining performance from the prior study.  

 

 

 

 

 

 

Figure 3-10. Seco CNMG432-MF2 carbide insert [1] 

 
One feature of cutting tools that is not generally reported by cutting tool 

manufactures is the cutting edge radius, which is different that the radius of the nose edge, 

RE, from Figure 3-10. Cutting edge radius can have a significant effect on chip-flow and 

tool-wear. It also has other critical implications of the machining performance such as the 

temperatures generated during machining and the mechanical strength of the tool. To 

measure cutting edge radius, a scanning white light interferometer at the University of 

Kentucky was used. The scanning white light interferometer will be discussed in more 

detail in a later section.  

In this work, several inserts were used during experiments. Each insert has four 

cutting edges that can be indexed in the tool holder. Inserts were numbered 1, 2, 3…N and 

the four cutting edges on each insert were identified as either A, B, C, or D. As such, inserts 

are identified as 1A, 1B, 1C, 1D, 2A, 2B… and so on. Figure 3-11 shows the resulting 

measurements for various cutting edges used during experiments in this work and it can be 

seen there is an average cutting edge radius of 37 µm. Also, measurements range from 

about 30 µm to about 45 µm, which is a fairly tight spread of measurements for production 

inserts that have not been custom made and honed to a specific size.  

It should be noted that the inserts used in the TechSolve study were not measured 

prior to machining and therefore cannot be compared to the inserts used in this work. 

However, since the inserts were of the same type, it is fair to assume that the measurements 
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would fall within the range measured in this work. Finally, it should be noted that 

measuring edge radius as a single value is too simplified. This is because rarely is the radius 

on the cutting edge a constant value if one where to look at a cross-section of the edge. 

Instead, edge geometry profiles can have varying radii and sometimes even flat regions. 

Discussion on a more proper characterization of cutting edge prep geometry will occur in 

the conclusions and future work chapter of this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11. Cutting tool edge radius measurements for inserts used in experiments 

3.4 Cutting Force Data Acquisition 

 There are certain observations that must be made before, during and after the metal 

cutting process to perform quantitative analysis.  However, there exist limited observations 

that can be made during metal cutting. A common measurement made during machining 

experiments is that of cutting force components. Cutting forces were measured with a 

Kistler type 9257B three-channel dynamometer. The dynamometer is mounted on the tool 

post of the lathe with a custom fixture to accommodate the cutting tool, shown in Figure 

3-12. While cutting forces are not a major focus of this work, it can provide value for other 

studies, and the only time to obtain this data is during experiments. Therefore, the data was 

captured and will be discussed minimally in this thesis. As such, it is worth introducing the 

cutting force data acquisition setup here.  
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Figure 3-12. Kistler type 9257B three-channel dynamometer mounted on Haas TL-2 lathe 

3.5 Characterization of Chip-form and Tool-wear 

 Since the major focus of this work is investigating chip-form and tool-wear, it is 

important to be able to qualitatively and quantitatively measure these aspects of the 

machining process. Industry experience with AF9628 is extremely limited at the present 

date, therefore little is known about tool-life and chip-form under various cutting 

conditions. To investigate chip-form and tool-wear from turning AF9628 in a hardened 

state, the following characterization instruments were utilized.  

3.5.1 Optical Microscopy 

 Optical microscopy was performed using a Nikon SMZ800 stereo microscope in 

conjunction with a Leica DFC 425 digital camera for capturing images, see Figure 3-13. 

The Nikon SMZ800 is equipped with a 0.5x objective, 10x eyepiece, and 1x-6.3x zoom 

range. These attributes, along with providing great contrast of features and sufficient depth 

of field, made it ideal for capturing the relatively larger feature sizes (> 0.1 mm) on the 

cutting tools and chips from the machining process. An AmScope MR095 stage 
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micrometer, Figure 3-14, was used at various zoom magnifications to “calibrate” length 

scales that would later be used with an image processing program, ImageJ, to measure tool-

wear and chip features from experiments.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-13. Nikon SMZ800 stereo microscope with Leica DFC 425 digital camera 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-14. AmScope MR095 stage micrometer at 5x zoom 
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3.5.2 Scanning White Light Interferometry 

 
 Optical microscopy is a powerful tool that can provide a large amount of significant 

data in research. However, a more detailed understanding of the surface features and 

defects that often occur on cutting tools and machined surfaces at the micron- and sub-

micron-levels require tools that can capture this information with greater resolution. 

Additionally, optical microscopy is an ineffective method for characterizing features such 

as a built-up edge or crevices that may be present on a surface where the necessary line-of-

sight cannot be obtained, or the feature sizes make it difficult to obtain measurements 

confidently. Furthermore, many surface characterization tools contain probes and can be 

destructive to features that may be sensitive to contact with another body. Features that are 

smaller than the tip of the probe cannot be effectively measured. Therefore, a non-contact 

technique can overcome the limitations with optical microscopy for characterizing surface 

features that may be present and of interest during chip-form and tool-wear analysis. 

 For this purpose, a Zygo NewView 7300 scanning white light interferometer 

(SWLI) was used. The SWLI is equipped with a 20x and 50x objective to obtain 3D profiles 

of surface topography and roughness of samples. This is done with a white light source 

projected towards the surface of interest, and the interferometer scans through some 

vertical height range, along which light intensity interference fringes are produced. By 

analyzing the intensity fringing, a 3D contour map at nanometer-length resolution can be 

produced that is representative of the surface that was scanned. These 3D contour maps 

can be used for characterization of chip-form and tool-wear features with higher fidelity 

than optical microscopy.  

The utility of SWLI for characterizing tool-wear is well served for studies such as 

in this work. Zygo can be used for obtaining different types of measurements depending 

on the user’s interest. For this study, two measurements of particular interest were cutting 

edge radius and surface topography profiles of the rake face of the cutting tool. Each of 

these measurements can be obtained on the Zygo instrument with the use of different 

applications within the Zygo software. Figure 3-15 shows the Zygo instrument with 

representations of the data that can be generated for cutting edge radius and rake face 

surface profiles using an image stitching technique. 
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Figure 3-15. Zygo scanning white light interferometry instrument 

3.5.3 High-speed Imagery  

 During the machining process, chips are formed so quick that it is impossible to 

observe and understand what is happening with any detail by the naked eye. To better 

understand how chip-form occurs in this work, a high-speed camera was used. The Photron 

FASTCAM SA-Z type 2100K-M-34GB high-speed camera is capable of providing 

megapixel resolution up to 21,000 frames per second and reduced resolution at frame rates 

up to 2.1 million frames per second. In order to provide the necessary continuous light at a 

sufficient intensity to capture images at higher frame rates, a Thorlabs HPLS345 light 

source was used with a 5mm liquid-cooled light guide. Figure 3-16 shows the high-speed 

imaging setup used during the turning experiments. High-speed imagery was only captured 
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during dry machining to keep the coolant or lubricant used during the other tests from 

obstructing the view of chip-formation due to the close proximity of the camera to the 

machining process. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-16. High-speed camera setup during dry machining experiments 
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CHAPTER 4 

CHIP-FORM ANALYSIS  

We shape our tools and afterwards our tools shape us. 

- Marshall McLuhan 

4.1 Introduction 

 In everyday life, most people are familiar with the process of cutting relatively soft 

matter, such as butter or bread, with tools such as a knife. The knife-edge is formed by two 

faces that meet at a small included angle that can then be forced into the matter being cut. 

Sharp tools provide a clean cut, and require minimal effort, into the matter causing the one 

body to split into two pieces by the faces of the cutting tool. Metals and alloys are much 

harder than butter or bread and therefore cannot be cut in this manner. They are so hard 

that no tool material, with knife-like cutting edges can withstand the high stresses and heat 

generated during a metal cutting process. 

 Considering this, it becomes necessary for proper metal-cutting tools “to take the 

form of a large-angled wedge, which is driven asymmetrically into the work material, to 

remove a thin layer from the thicker work material body.” [92] When the metal-cutting tool 

is driven into the work material to remove a relatively thin layer, this thin layer is called 

the chip. Since the primary objective of machining is to generate a new surface on the 

workpiece that will become the final part, the chip simply becomes a waste product. For 

this reason, many do not pay much attention to the chip. However, there are many reasons 

why chip-form is arguably an important aspect of machining performance. 

 The consumption of energy during the machining process occurs primarily in the 

overall form and movement of the chip. Since the chip is formed by shear fracture at high 

strains near the newly generated workpiece surface, knowledge of the chip-form process is 

necessary for a deeper understanding of the accuracy and quality of a final product. There 

is also a unique interaction between the chip being formed and the tool that is forming the 
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chip. Therefore, this interaction should be considered for a deeper understanding of how 

the chip-form process effects tool-wear and also how tool-wear, in return, effects chip-

form during a turning process. As such, many practical and economic problems regarding 

the machining process should be concerned with chip-form. 

4.2 Results and Discussion 

Before jumping into the results, this section of Chapter 4 is split up into two 

separate topics of discussion, cutting forces and chip-form. Cutting forces are of relatively 

little significance during this work, however that is not to say that they are insignificant to 

machining. The utility of capturing, interpreting, and applying the cutting force data is 

limited and will be discussed more in the following section. 

In Chapter 2, the commonly used terms cutting speed, feed, and depth of cut were 

introduced. The cutting speed, Vc, used during all of the turning experiments performed in 

this work was 122 m/min. The feed rate, f, used during all turning experiments was 0.38 

mm/rev. The depth-of-cut, ap, used during all experiments was 0.51 mm.  

These fixed conditions were motivated from an identical set of turning conditions 

used in the TechSolve study mentioned earlier in this thesis. A specimen that was machined 

under this same set of experimental conditions during the TechSolve turning study was 

also later evaluated for machining-induced surface integrity. As such, it was the authors 

goal during this work to replicate this same set of machining conditions. Doing so would 

best ensure that the additional knowledge acquired from this work could be integrated with 

the findings obtained in the previous efforts, thereby providing a robust data set for 

understanding of turning AF9628 steel in a hardened condition. Finally, careful planning 

was taken to replicate as many other variables such as the cutting inserts, flood-coolant 

emulsion type and concentration, tool holder, and workpiece material. 

Table 4-1 shows a representation of the test parameters used during experiments. 

In this table, multiple passes were performed at the fixed processing parameters for cutting 

speed, feed rate, and depth of cut under dry machining conditions. This particular set of 

experiments was for high-speed imagery tests using insert 3A. The full set of experimental 

tables are much longer and repetitive and are therefore not shown in their entirety.  
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4.2.1 Cutting Forces 

 While this chapter is primarily concerned with chip-form, it is necessary to first 

discuss experimental results that were obtained for cutting forces during the machining 

experiments. While cutting forces will not be presented nor discussed to great length, they 

are an important aspect of the machining process. The utility of cutting forces in 

conjunction with chip-form sheds an interesting light to the process of turning AF9628 

alloy that has previously never been seen to the author’s knowledge. To this end, cutting 

forces are included in this work. 

 Using the dynamometer set up described in Chapter 3, force profiles can be 

obtained from the cutting process. Figure 4-1 is an example of cutting force profiles, in this 

case during dry machining, for each of the three machine axes shown in Figure 3-12. From 

the figure, the top force profile is representative of the force component in the y-axis, Fy, 

which is referred to as the tangential force that acts downward onto the rake face of the 

tool. The middle force profile is representative of the force component in the x-axis, Fx, 

which is referred to as the radial force. The bottom force profile is representative of the 

force component in the z-axis, Fz, which is referred to as the axial force. 

 From looking at the force plots in Figure 4-1, it can be observed that the magnitude 

of each force profile is fairly consistent with respect to the time. This is because a new 

cutting tool was used and over the relatively short duration of the test, no noticeable tool-

wear has occurred. As a tool wears, especially during a significant wear event such as the 

chipping of a cutting edge, the cutting force measurements will noticeably change. Cutting 

force profiles can be used meaningfully during machining to inform the operator of tool-

wear during machining. It should be noted that the force profiles in Figure 4-1 have been 

filtered within Kistler DynoWare software with a low-pass filter at 5 Hz to eliminate noise 

that is typical when acquiring such data.  

 It should also be noted that for research that is focused on obtaining a ground-truth 

measure of the cutting forces, more advanced signal analysis must be performed. For the 

purposes of this work, in which the use of cutting force data is more qualitative than 

quantitative, the cutting force analysis presented here is sufficient. 
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Figure 4-1. Example force plots during dry machining using a new tool (insert 7C). top: 

Fy, tangential force; middle: Fx, radial force, bottom: Fz, axial force 
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4.2.2 Chip-form Classification 

 The resulting chips from the machining process can be widely varied in size and 

shape. Not all materials can withstand the strain that is induced within the cutting region 

during machine. Some materials such as gray cast iron produce chips that are always very 

fragmented. Materials that are more ductile can produce chips in larger segments. 

However, workpiece material is only one factor that determines how the chip may form 

and a number of other cutting conditions influence chip-form. Chip-form can be classified 

into two different categories, those are discontinuous chips and continuous chips. 

Generally, in industrial operations, discontinuous chips are more favorable as they can be 

easily cleared from the cutting area and managed for disposal. Both discontinuous and 

continuous chips can take on many different shapes such as ribbon-like, in the shape of an 

arc, or a number of different helix types. Table 4-2 illustrates the various chip-form types 

that can be produced during turning operations with a single-point cutting tool. 

 During machining operations, chips are formed at extremely high speeds and the 

region within which they are forming is of relatively small scale. This makes the study of 

chip formation very difficult at an industrial level. However, in the laboratory, high-speed 

imaging technology gives us the opportunity to overcome the challenges generally 

associated with the study of chip formation. Due to the nature of the machining process 

and the high-speed camera technology, the camera must be positioned very close to the 

machining process so that it is with in the field of view to capture high-quality images. 

When operating at 40,000 fps, the camera has enough storage to capture only one-second 

worth of real-time chip-form phenomenon during machining. 
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Table 4-2. Chip-form classifications adapted from ISO 3685:1993 (Annex G) [78] 
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 Figure 4-2 shows five image tiles at the top of the figure. Each of the images are 

taken 0.250 ms apart from each other in real-time. To help orient the reader as to what is 

happening, starting with the left-most image in the figure, the workpiece material is rotating 

such that the surface being machined is moving from the top of the image towards the 

bottom of the image as indicated by the arrow and the “workpiece travel direction” label. 

The cutting tool is traveling from right to left in the image as indicated by the other arrow 

and the “cutting tool travel direction” label. The orange-colored bubble with the number 

one inside represents the position number in the image sequence of the chip-form process. 

We can see that position one is at the tool-workpiece interface, where the chip formation 

process begins. 

 Moving now to the image second-from-the-left, we can see that time has advanced 

by 0.250 ms. During this time, the orange-colored bubble, now with the number two inside, 

has advanced away from the workpiece surface and along the rake face of the tool. In the 

middle image, position three, we see that the chip is in the process of curling. This curling 

action is a result of the cutting tool geometry. More specifically, the chip breaker design 

and the groove just behind the cutting edge influences the chip to flow into the groove and 

across the rake face until the flowing material contacts a bump which encourages the 

upward curling action. It is difficult to observe from the still images, but the high-speed 

video shows that the chip is primarily up-curl dominated with a little contribution of side-

curl in the direction of the cutting tool travel.  

 Moving now to the image second from the right, we can see (position four) that the 

chip has continued to curl upwards and is making its way back towards the workpiece 

surface. Finally, in the right-most image (position five), the chip has continued to curl 

upwards and has made contact with the workpiece surface. Due to the cyclical nature of 

the chip formation process during machining in these experiments, one could start back at 

the left most picture (position one) and follow the chip-form process over and over again. 

 Before moving onto the next topic of discussion, there are more observations that 

can be made from the images in Figure 4-2. It is obvious that chips are being formed into 

an arc shape. Why doesn’t the material continue to curl around itself into a long, continuous 

curly mass? When the chip curls and eventually makes contact with the workpiece (position 

five) there is a force at position five from that contact. This force is believed to develop a 
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moment at position one. That moment at position one induces enough strain to sufficiently 

fracture the chip. This fracture in the chip first becomes visually obvious in the middle 

image (position three). This cyclical chip-form behavior continues as long as the tool is 

engaged at a sufficient depth of cut in the material. It should also be noted that the cutting 

tool used in obtaining these images is new or has minimal wear. 

 Another interesting observation from Figure 4-2 can be made if we incorporate a 

corresponding force measurement for this dry machining condition. The magnified insert 

of the force profile with the five orange-colored bubble positions overlaid on top of the plot 

shows how the force measurements can capture the fine details of chip-form. It is 

interesting to note the oscillatory behavior of the force profile. It is also difficult to 

understand from the images why the chip at position three would correspond to the peak 

of the force profile. This can be more easily understood from observing the high-speed 

video footage. In the video footage, it can be seen that as the chip is approaching position 

three there is sliding contact of the chip across the rake face of the tool such that the chip 

slides away from the workpiece momentarily before sliding back towards the workpiece 

before making contact with the workpiece at position five. When this sliding contact 

occurs, there is an increase in the chip-tool contact area. This increase in the chip-tool 

contact area consequently results in an increase in the force applied to the tool, which 

explains why the chip at position three is placed at the peak of the force profile, where the 

instantaneous force is at a maximum. 

The utility of observing both the high-speed images and corresponding force 

profiles can help us gain an appreciation for the chip formation process and some potential 

implications this may have on the cutting tool. First, it can be observed from the high-speed 

images that one (1) half-arc chip formation event takes approximately 1 millisecond to 

occur. This means that in one second of machining, approximately 100 half-arc chips are 

formed. The cyclical impact from the frequency of chip formation on the tool, coupled with 

the sliding contact along the rake face, should be a consideration in tool-wear mechanisms 

to be discussed in the following chapter. Also, understanding how force profiles can relate 

to chip-form may be of additional benefit for understanding chip formation in processes 

when high-speed camera technology is unavailable or inaccessible to the process like in 

many industrial settings. 
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At this point, we have looked at the chip-form process under a dry machining 

condition with a new tool. Now, we will look at chips produced using the other cooling 

and lubrication conditions.  

First, let’s look at chips produced under a flood-cooled condition when the cutting 

tool is new and when the cutting tool is at the end of its useful life. On the left of Figure 4-

3, we can see the familiar arc formation in the chip that was seen during dry machining. 

What this image shows us, however, that we did not see very clearly from the images in 

Figure 4-2 is that the arc chips are connected. Generally, these arc chips connect to form a 

strand of 7 to 10 arcs before the strand is separated and flung away from the cutting area 

during the machining. The material that connects each arc is very thin and very brittle. If 

you take a handful of these chips and close your hand, the arcs will break from each other 

into smaller, loose arcs. Therefore, one may classify these chips as loose, connected arcs. 

On the right of Figure 4-3, we see a much different chip-form produced. Here we 

have long, snarled ribbon chips that are a result of severe wear of the tool. These ribbon 

chips are certainly not ideal and indicative of a tool that is beyond its useful life. It is not 

shown in Figure 4-3 but as a tool wears, the arc length of chips can be visibly longer, and 

radius of curvature can increase. This was not directly measured, but may indicate that as 

the cutting edge wears, the material flows at a lower point relative to the tool and at a 

different angle before hitting the bump in the chip breaker design. Thus, the arc length and 

curvature can change as a result of tool-wear. 

 

 

 

 

 

 

Figure 4-3. Chips produced under flood-cooled conditions with a new tool (left) and a 

worn tool (right) 
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Now, let’s look at the chips produced with MQL when the cutting tool is new and 

when the cutting tool is at the end of its useful life. On the left of Figure 4-4, we also see 

the familiar connected-arc formation in the chip that was seen during dry and flood-cooled 

machining. On the right of Figure 4-4, we see long, snarled-ribbon chips similar to those 

from the flood-cooled condition. The snarled-ribbon chips are certainly not ideal and 

indicative of a tool that is beyond its useful life. 

 

 

 

 

 

 

Figure 4-4. Chips produced under MQL conditions with a new tool (left) and a worn tool 

(right) 

 Finally, let’s look at the chips produced with cryogenic cooling when the cutting 

tool is new and when the cutting tool is at the end of its useful life. On the left of Figure 4-

5, we can see something different has occurred. Instead of the usual connected-arc chip 

that was observed in the other conditions, we see a more tubular shape of the chip. One of 

the reasons for this could be due to the way that the cryogenic coolant, LN2, is being applied 

to the cutting area. The LN2 is delivered through a copper tube that is directed at the top of 

the rake face of the tool. This delivery location is aimed at the chip as it is being formed 

during cutting. It is possible that the pressure from of the LN2 delivery is causing the chip 

to lift slightly off of the bump on the tool that is encouraging the typical chip curl observed 

in the other conditions. Instead of the chip curling upwards and making contact with the 

workpiece, the chip continuously curls off to the side of the tool, resulting in continuous, 

tubular-shaped chips. Figure 4-6 shows this chip-form behavior as it occurred during the 

cryogenic machining process. As was seen in the flood-cooled and MQL machining 

conditions, when the tool is worn past its useful life with cryogenic machining snarled-

ribbon chips result. This can be seen on the right side of the Figure 4-6. 
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Figure 4-5. Chips produced under cryogenic conditions with a new tool (left) and a worn 
tool (right) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4-6. Chip formation during cryogenic machining with up-curl and side-curl flow 

resulting in a continuous tubular-shaped chip 

 
 

Another observation that can be made from chip observations is that of the “saw-

toothed” chip morphology on the inside of the chip and evident near the edge of the chip. 

This is quite a common phenomenon observed in machining as well as in other material 

science research areas. n the machining, when a chip is formed so rapidly that the heat 

generated has no time to flow away from the chip this heating causes the metal to soften, 

often referred to as thermal softening. Also, during machining, plastic strain caused during 
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the cutting process in certain conditions can cause a strain hardening effect. A common 

theory is that if the generated heat causes enough softening of the metal to overcome the 

strain hardening, shearing becomes localized in a very narrow band of this increasingly 

high temperature region of the metal. This narrow band is often referred to as shear 

banding. Under shear banding, periodic localization of plastic flow results in a “saw-tooth” 

chip morphology. This shear banding can be seen in the chip morphology of a titanium 

alloy in Figure 4-7. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-7. Microstructure of chip morphology for Ti-6Al-4V at Vc = 4.07 m/s. [104] 

 
 

Table 4-3 summarizes the chips produced under flood, dry, MQL, and cryogenic 

machining conditions at varying stages of tool-wear without describing the actual time or 

length of cut that the tool was in service. Tool-wear and tool-life under the various cooling 

and lubrication conditions will be discussed more in the following chapter.  In Table 4-3 
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chips produced using a new tool are on the left and as the chips move to the right, the tool 

is progressing towards the end of life. Analyzing the various shapes and sizes of chips from 

Table 4-3, it can be seen that favorable chips are formed in the image tiles a, b, d, g, and k, 

as compared to the chip classifications in Table 4-2. The chips in image tile j could also be 

considered favorable if the case were that the tubular chips are broken into shorter, more 

manageable lengths. Since there was a mix of short (< 10 mm) and long, continuous chips, 

it be considered unfavorable overall. 

 Up to this point, we have seen the variability of the shape and size of chips produced 

in a turning operation under various cooling and lubrication conditions. We can also 

observe the color of the produced chips to try and interpret something else about the 

process. Table 4-4 is identical to Table 4-3 with the exception of a few select images that 

are displayed in color. In the table, it was the author’s intent to reproduce the non-color 

images with some degree of transparency so as to draw more attention to the colored 

images. Starting with the flood-cooled chips, a brownish color can be seen in the chip. 

During the machining process temperatures can reach into the hundreds of degrees Celsius. 

When steel is subjected to increases in temperature, a thin oxide layer forms on the surface. 

Time and temperature have a relationship with the oxide layer thickness that is produced. 

Different oxide layer thicknesses will reflect different wavelengths of light and therefore 

affect the color that we see on the surface of the steel. In the case of the flood-cooled chips, 

despite the application of flood-coolant to the process, the temperature rises enough to 

produce this brownish, perhaps even auburn-like color. 

 In the case of the dry machining chips, we can see blue and purple colors dominant 

in the chip, which is indicative of the higher temperatures that we would expect in this 

process with the absence of a coolant. Likewise, MQL is considered a technique providing 

more of a lubrication effect than a cooling effect. As such, we see blue and purple here as 

we did in the dry machining condition.  

The chips produced with cryogenic cooling are much different. They appear more 

white or faint yellow, which is a result of the chip experiencing lower induced 

temperatures. Recall from Chapter 3 during the discussion of the cryogenic machining 

setup. The cooling medium used is liquid nitrogen, which has an approximate temperature 
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of -196°C (-321°F). The application of this low temperature medium helps explain how 

heat could be more effectively kept out from the chip. 

 

 

Table 4-3. Summary of chips produced from flood, dry, MQL, and cryogenic conditions 
at various stages of tool-wear 
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Table 4-4. Chip colors produced from flood, dry, MQL, and cryogenic conditions 
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4.3 Concluding Remarks 

It has been stated already that since the primary objective of machining is to 

generate a new surface on the workpiece that will become the final part, the chip simply 

becomes a waste product. However, chip-form can tell the engineer or machine operator a 

lot about a process. This chapter analyzed chip-form and classified resulting chips by 

shape, size, and color under different cooling and lubrication conditions. With new carbide 

tools, each of the cooling and lubrication conditions demonstrated an ability to produce 

short chips. Also, each condition demonstrated that as tools progressively wear, the chips 

can become longer, snarled, and less ideal for an industrial setting.  

Other practical considerations regarding chip size and shape that was not previously 

discussed has to do with part quality and operator safety. A primary reason why long, 

snarled chips are unfavorable has to do with chip management. With the turning process in 

mind, long chips can very easily get wrapped up around the rotating workpiece and quickly 

grow into an uncontrollable mess of hot, sharp metal chips spinning around, ready to grab 

anything in its path. This poses a great safety risk to the operator and the machine. Not to 

mention the great likelihood of the occasional chip getting caught between the tool and the 

workpiece, causing the chip to be extruded and redeposited onto the machined surface, 

leaving a poor surface quality. Chips that do not clear the work area can also scratch a 

machined surface. For critical, high-value components used in the aerospace or medical 

industries, these quality issues must be considered and managed. 

The consumption of energy during the machining process occurs largely in forming 

a chip. The primary shear zone, where a chip is formed by deformation, is where a major 

part of the energy is converted to heat. Since the chip is formed by shear deformation at 

high strains near the newly generated workpiece surface, knowledge of the chip-form 

process is necessary for a deeper understanding of the accuracy and quality of a final 

product. Something to keep in mind before moving into the following chapter is that, while 

the higher temperatures generated during machining are evident in the resulting chips, the 

machining induced temperatures may also have an impact on the cutting tool. 
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CHAPTER 5 

TOOL-WEAR ANALYSIS 

You look closely enough, and you’ll find everything has a  

weak spot where it can break, sooner or later. 

- Anthony Hopkins, “Fracture” film 

5.1 Introduction 

Wear is generally an undesirable trait that occurs when two bodies interact by 

moving relative to one another. Most people are familiar with wear in the case of writing 

with a pencil on a piece of paper. A sharp, pointy stick of graphite quickly wears down and 

becomes dull as you write across the page. This may not always be undesirable, but if the 

goal is to produce consistently crisp lines throughout a written work, then wear is a 

phenomenon that must be managed by constant re-sharpening. Much like the pencil, 

cutting tool-wear during machining results in a change in the desired geometry of the 

machined part. Depending on the geometric tolerances required in the final machined part, 

the amount of acceptable tool-wear can vary. Regardless, tool-wear must be understood 

before it can be managed. 

With regard to single-point turning tools, wear can be classified into the following 

major wear mechanisms:  

1. Abrasion 

2. Adhesion 

3. Diffusion 

4. Chemical 

5. Oxidation 

Any one, or combination, of the above wear mechanisms can lead to several types 

of tool-wear. Attrition is a type of wear associated with adhesion, when workpiece material 

adheres to the cutting tool as the material flows over the tool creating a built-up edge. When 
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this built-up edge is overcome with enough force, it will break off the tool taking some of 

the tool material along. This process repeats many times over resulting in an attrition wear. 

Diffusion wear at high surface temperatures causes a type of wear called cratering. Carbon 

atoms and metal from the tool material diffuse into the work material that it sees at the rake 

face surface. This chemical reaction causes the atoms to be carried away in the chip leaving 

a crater on the rake face. Abrasive wear can occur when isolated small particles of hard 

carbides in the workpiece material, or even broken from the tool, are dragged across the 

tool, consequently ploughing grooves into the tool material. A summary of common tool-

wear types, with possible causes and remedies, is listed in Table 5-1. 

Table 5-1. Common tool-wear types with possible causes and remedies. Adapted from 
[58] 

 
Tool-Wear Possible cause Remedy 

Flank and notch wear 

(a) Rapid flank wear causing 
poor surface texture or 
inconsistency in tolerance. 

(b) Notch wear causing 
surface texture and risk of 
edge breakage. 

 

(a) Cutting speed too high or 
insufficient wear resistance. 

(b) Oxidation. 

(b) Attrition. 

 

 

Reduce cutting speed. 

Select a more wear resistant 
grade. 

Select an aluminum oxide grade 
for steel machining. 

For work-hardening materials, 
select a larger lead angle or a 
more wear resistant grade. 

Reduce the cutting speed. 

Crater wear 

Excessive crater wear causing 
a weakened edge. Cutting 
edge break-through on the 
trailing edge causes poor 
surface texture. 

Diffusion wear due to too high 
cutting temperatures on the 
rake face. 

Select an aluminum oxide 
coated grade. 

Select positive insert geometry. 

First, Reduce the speed to 
obtain a lower temperature and 
secondly, the feed. 

Plastic Deformation 

Plastic deformation (Edge 
depression (a) or flank 
impression (b)) leading to 
poor chip control and poor 
surface texture. Risk of 
excessive flank wear leading 
to insert breakage. 

Cutting temperature too high 
combined with a high pressure. 

Select a harder grade with better 
resistance to plastic 
deformation.  

(a) Reduce cutting speed 
(b) Reduce feed 
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Tool-Wear Possible cause Remedy 

Built-up Edge 

Built-up edge causing poor 
surface texture and cutting 
edge frittering when the BUE 
is torn away 

Smearing workpiece material 
is welded to the insert due to: 

Low cutting speed. 

Negative cutting geometry. 

Very sticky material, such as 
certain stainless steels and 
aluminum.  

 

Increase cutting speed or change 
to coated, tougher P35 grade. 

Select a positive geometry. 

Increase cutting speed 
considerably. 

If tool-life turns out to be short, 
apply coolant in large quantities. 

Mechanical fatigue cracking 

Cracks running mainly 
parallel to cutting edge 

Excessive load variations on 
edge. 

Heavy shock or vibrations at 
start of cut. 

Select a tougher grade. 

Reduce feed rate. 

Change tool approach 

Improve stability 

Chipping 

Small cutting edge chipping 
causing poor surface texture 
and excessive flank wear 

Grade too brittle. 

Insert geometry too weak. 

Built-up edge. 

Select tougher grade. 

Select an insert with a stronger 
geometry. 

Increase cutting speed or select 
a positive geometry. 

Reduce feed at beginning of cut. 

Improve stability. 

Thermal cracks 

small cracks perpendicular to 
the cutting edge causing 
chipping and poor surface 
texture 

Thermal cracks from excessive 
temperature variations caused 
by: 

Intermittent machining. 

Varying coolant supply. 

Select a tougher grade with 
better resistance to thermal 
shocks. 

Coolant should be applied 
copiously or not at all. 

Fracture 

Insert fracture that damages 
not only the insert but also the 
shim and workpiece 

Grade too brittle. 

Excessive load on the insert. 

Insert geometry too weak. 

Insert too small. 

Reduce feed and/or depth of cut. 

Select a thicker/larger insert. 

Improve stability. 

Chipping from chip 
hammering 

Cutting edge, not in cut, is 
damaged through chip 
hammering. Both the top side 
and the support for the insert 
can be damaged. 

The chips are of an excessive 
length and directed in the 
wrong direction against the 
cutting edge. 

Change the feed slightly.  

Select an alternative geometry. 

Select a tougher grade. 

Change the lead angle. 
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Over the last few decades, several groups have worked to develop standard test 

methods for tool-life testing and produce standards such as the ISO 3685(E) and ASME 

B94.55M [88, 89]. Tool-life criteria are provided in such standards and various methods 

exist for the specification of tool-life, such as actual cutting time or volume of material 

removed. Wear criteria are also used for determining when a cutting tool has reached the 

end-of life. Most common is the use of data by performing lathe turning tests in continuous 

cutting and measuring the width of the flank wear land. However, depending on the 

dominant wear type, other dimensions such as a crater formed on the rake face, for 

example, can also be measured. In Figure 5-1, a typical crater wear is shown inside the 

orange outline and a flank wear and notch wear type is shown inside the blue outline.  

The summary of tool-wear types in Table 5-1 is more complex, however, and as 

such, “judgement is required by the investigator on what is significant and what can safely 

be ignored since tool-wear is seldom as even and clearly defined as is implied by simple 

models” [92] like the two shown in Figure 5-1. Ideally, the change in shape of a tool will 

be small and gradual enough that the naked eye cannot accurately discern changes and the 

use of a microscope will be justified. However, the skill of the machine operator is valuable 

for determining the end-of-life criterion as it often happens in the real world. That is to say 

that the criterion can vary from “when the temperature begins to rise and fumes are 

generated; when the operation becomes excessively noisy or vibration becomes severe; 

when dimensions or surface finish of the workpiece change” [92] or when the tool shape 

has changed by some specified amount. 
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Figure 5-1. Some types of wear on turning tools. Crater wear (left) and flank wear (right). 

Adapted from [89] 

5.2 Flood-coolant Results and Discussion 

 The following section will focus on the results from flood-cooled machining 

experiments, particularly on aspects relating to tool-wear. First, tool-life results from 

several experiments will be presented. Several types of observed tool-wear will be 

presented and discussed. Then, the following section will focus on dry, MQL, and 

cryogenic machining experiment results relating to tool-wear. 
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5.2.1 Tool-life 

Common standards for tool-life testing with single point turning tools offer 

guidelines in accordance with the ISO 3685 standard. The tool-wear criterion, which was 

discussed briefly in the previous section, was established as being satisfied when the 

maximum width of the flank wear land, known as VBmax, is equal to or greater than 0.30 

mm (0.012 in), or if the tool appears to catastrophically fail. VBmax is illustrated in the blue 

outline of Figure 5-1 and the criterion used for this work is consistent with the ISO 3685.  

Tool-wear experiments were conducted at fixed parameters for cutting speed, Vc = 

122 m/min, feed rate, f = 0.38 mm, and depth of cut, ap = 0.51 mm. Continuous passes, or 

cuts, were made on the outside of the bar at cut lengths for each pass varying from 300-

350 mm. The length of continuous cut is limited by the length of the available bars and 

machine setup. It should be noted that each successive pass is shortened by 0.25 mm than 

the previous one to avoid making contact at the shoulder, or wall, of material that is created 

over time as each pass is made. If the cut length was kept constant for each pass, then the 

hard contact of the tool against this shoulder would cause unnecessary damage to the tool. 

After every two passes, the tool is removed from the tool holder and examined 

under a Nikon stereo microscope to capture images of the rake face, flank face, and nose 

region of the tool. Images are also captured using the Zygo NewView 7300 scanning white 

light interferometer (SWLI) for higher fidelity, 3D contour maps of the tool. For tool-life 

measurements, images from the stereo microscope were analyzed in an image processing 

software, ImageJ, to measure flank wear as shown in Figure 5-1. While the wear type being 

measured here is typically considered flank wear, it will be referred to in this work as nose 

wear, N, which is adopted from the work by Jawahir et al. [42]. The reason for calling it 

nose wear instead of flank wear is because the nose radius of the cutting tools is 0.8 mm 

(0.0313 in), and the depth of cut used in the experiments is 0.51 mm (0.02 in). Since the 

depth of cut is smaller than the nose radius of the tool, the nose is the primary recipient of 

direct contact with the workpiece during cutting and consequently the primary recipient of 

tool-wear. Therefore, it is technically more accurate to describe this wear as nose wear.  

The nose wear measurement is taken by measuring the widest part of the wear land 

produced on the nose region of the tool. As the nose wear is measured every couple of 
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passes, the evolution of nose wear can be plotted with respect to time. Plotting the measured 

change in nose wear with respect to time generates a tool-life curve. An example 

measurement of nose wear is shown in Figure 5-2.  

In Figure 5-3, it can be seen that images from various stages of the machining 

experiment have been measured for nose wear and plotted with respect to time. The plot in 

this figure shows the tool-wear measured along the y-axis and the cumulative cut time 

along the x-axis. The orange line running horizontal at 0.30mm represent the tool-life 

criteria established for these experiments. The green curve on the plot is the resulting tool-

life curve for a single tool-wear/tool-life experiment. This is an ideal tool-wear curve based 

on its general profile.  

On the tool life curve in Figure 5-3, there are two vertical lines, one placed near the 

four-minute mark along the x-axis and another placed around the fifteen-minute mark. 

These vertical lines help distinguish three stages of wear that occur in the idealized tool-

wear curve. The initial wear stage starts at the beginning of the test, time equal to zero, and 

spans the length of time that the tool is in a so-called “break-in” period where it receives a 

relative quick initial wear. Next, the steady-state wear stage describes the duration of the 

tool-life in which wear is fairly steady and may increase with time but does not generally 

make any rapid changes. Finally, the rapid wear stage is where the tool is approaching its 

end-of-life and quickly breaks down, often times before catastrophically failing. Ideally, 

tool-wear will be consistent and predictable for a given process so that tool-wear can be 

managed, and catastrophic failure does not occur during a critical pass along the workpiece, 

which can have undesirable effects on the quality of the workpiece. 

The plot in Figure 5-4 shows the green tool-life curve from the previous figure as 

well as two more curves from separate tests performed in this work. A similar profile (a 

result of the three stages of wear) can be seen in all three curves albeit the time until the 

nose wear reaches the tool-life criteria has shifted to the left slightly. This is not too 

surprising as tool-life can vary to some degree depending on a number of factors including 

the machine setup, workpiece material, tool, cutting conditions, etc. The black “X” mark 

on the plot around the thirteen-minute mark represents the tool-life obtained during the 

TechSolve study under the same machining conditions. There is excellent agreement in the 
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measured outcome between the TechSolve data point and the tests performed in this work, 

particularly the gray and yellow curves, which are less than 10% variance from the 

TechSolve data. The green curve varies 28% from the TechSolve data point albeit it 

exhibited a longer tool-life. 

It is worth noting that the green curve and the TechSolve data point were both 

obtained using the AF9628 bar stock at a hardness measurement of 51 HRC. The gray and 

yellow curves were both obtained using the AF9628 bar stock at a hardness measurement 

of 49 HRC. The difference in hardness measurement between the two bars is only two 

points and any significant difference in tool-life would not be expected. If anything, one 

might expect the harder material to have a worse tool-life.  

Another very interesting observation has to do with the tool-life curves and the 

inserts that were used in each study to generate the curves. The curve with the lowest 

cumulative cut time before reaching the tool-life criteria is the gray curve with which insert 

3D was used during experiments. The curve with the next highest cumulative cut time 

before reaching the tool-life criteria is the yellow curve with which insert 4A was used 

during experiments. The curve with the highest cumulative cut time before reaching the 

tool-life criteria is the green curve with which insert 2A was used during experiments. 

Referring back to Figure 3-11, the measured edge hone radius for inserts 3D, 4A, and 2A 

were 40 µm, 37 µm, and 30 µm respectively. This is interesting because it would be 

expected that the larger edge radius would provide better mechanical strength and therefore 

have a greater likelihood of lasting longer. However, the opposite is observed. The largest 

edge hone radius obtained the lowest tool-life and the smallest edge hone radius obtained 

the highest tool-life.  

While it may be tempting, one should not jump quickly to the conclusion that a 

smaller edge hone radius (i.e. sharper tool) will experience a longer tool-life. A number of 

reasons could explain this event. First, measuring the edge hone radius in the manner done 

in this work is a gross over-simplification for characterizing the edge hone. It is assumed 

that there is a constant radius at any given cross-section and that the radius is consistent at 

different points along the cutting edge. Both of these assumptions are likely not true and 

so it would be meaningful to exploring a better edge preparation characterization technique 
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and to what degree does the edge preparation have on machining performance such as tool-

life. More on this general topic will be discussed in the future work section in the following 

chapter. Next, two different bars were used between these three tests and while both bars 

were AF9628 steel and of relatively similar hardness, subtle differences in the chemistry 

and primary processing conditions (e.g. melt process or forging) could be resulting in 

different tool-life results. Also, the bars were slightly different diameters at the beginning 

of the tests, with the 51 HRC bar around 55 mm (2.17 in) and the 49 HRC bar around 92 

mm (3.62 in). The difference in bar diameter could likely have some effect on how and 

where the bar, when rotating, contacts the cutting tool including the stability of the cut and 

effective cutting angles with the rake face and other clearance surfaces on the tool. It should 

be noted that no chatter or other indication of instability was observed either visually or 

audibly during any of the experiments. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 5-2. Representative measurement of nose wear during flood-cooled machining. 
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5.2.2 Built-up Edge 

 So far, nose wear and tool-life have been discussed, but as has been mentioned 

previously, more than one type of wear generally occurs during most machining processes.  

Moving further into the analysis of various tool-wear types, the phenomena of a so-called 

“built-up edge” will be discussed. When workpiece material flows over the tool, sometimes 

the work material adheres to the tool and separates from the rest of the flowing chip. As 

more material continues to flow over the tool, more material adheres the initial layer of 

adhered workpiece material creating a built-up edge (BUE). As the BUE grows in size, it 

becomes unstable and breaks off. Generally, BUE occurs at relatively lower cutting speeds. 

The reason for this is because increasing cutting speed will increase the temperature 

induced into the process. Higher temperatures increase thermal softening of the work 

material and this lowers flow stress, allowing the chips to more easily flow over the tool 

without seizing. As such, at lower temperatures, flow stress is higher and work material is 

more likely to seize or stick to the tool by a sort of pressure welding. BUE is more likely 

to occur in “sticky” materials such as aluminum, stainless steel, and other low carbon steels. 

 When BUE breaks off, it often gets extruded between the very tight gap of the tool-

workpiece interface and becomes redeposited onto the workpiece surface. Evidence of this 

redeposited material onto the workpiece surface is shown in Figure 5-5. This image was 

taken during high-speed camera tests under dry machining conditions, however BUE 

occurs in flood-cooled machining as well. The redeposition of workpiece material onto the 

workpiece surface was confirmed during a machining-induced surface integrity study at 

the University of Kentucky under Air Force contract FA8650-18-F-5573 [5]. The 

machining-induced surface integrity study was performed on machined specimens using 

flood-coolant that were produced during the machining study at TechSolve. The 

investigators of the machining-induced surface integrity study observed evidence of 

material redeposition during analysis with various microscopy techniques looking at the 

finish machined surface. 

 During flood-cooled experiments within this thesis work, evidence of BUE was 

also captured using the SWLI. From Figure 5-6, BUE can be seen on the cutting edge and 

was measured to have a peak height of 17 µm (0.0007 in). However, when the BUE 



 

   88ABW-2019-5923 85 

material is redeposited, it gets squeezed between the tool and workpiece as previously 

stated. Since that gap is very small, the redeposited layer thickness is likely on the order 

on nanometers. Interestingly, BUE was more likely to be found on newer tools than on 

tools that were nearing the end of useful life. This needs to be investigated further as it is 

not well understood what causes this. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-5. Redeposited material, shown as shiny “spots”, on the workpiece surface as a 

result of built-up edge break off 
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5.2.3 Plastic Deformation and Deep Groove Wear 

 It has been stated many times already that machining can generate high 

temperatures that effect the cutting tool, chips, and workpiece. When materials reach a 

certain temperature, they are prone to thermal softening. Carbide tool materials are no 

exception to this. The combination of thermal softening and compressive stresses from 

material flow over the cutting tool, results in plastic deformation. Tungsten-carbide 

cuttings tool are inherently brittle and will therefore chip or fracture due to the low 

tolerance for bending or plastically deforming to any significant degree.  

 The cutting tool insert (insert 3D) in Figure 5-7 had a cumulative cut time of 10.4 

min when the image was taken. The top-left image in Figure 5-7 shows plastic deformation 

of the cutting edge as a result of high temperatures and compressive stress. The yellow 

dotted line represents the original geometry of the cutting tool before plastic deformation 

occurred. Trent [90] observed similar plastic deformation behavior in carbide tools and 

found that cracks can generate on the rake face of the tool as a result of the surface being 

stressed in tension as the edge is depressed.  

 Deep groove wear can also be observed on the rake face of the carbide tools used 

in flood-cooled machining experiments. A surface profile of the grooves near the cutting 

edge shows that the grooves are as wide as 0.1 mm (0.004 in) and as deep as 22 µm (0.0009 

in). These grooves are likely to have been formed as a result of the initial cracking from 

plastic deformation. When the material cracked, small carbide particles from the tool 

become loose and were dragged across the rake face surface by flow of workpiece material. 

The combination of nose wear, built-up edge, plastic deformation, and deep groove wear 

can lead to the ultimate weakening of the tool, causing catastrophic failure. 

  



 

   88ABW-2019-5923 88 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fi
gu

re
 5

-7
. U

pp
er

 le
ft:

 o
pt

ic
al

 m
ic

ro
sc

op
e 

im
ag

e 
of

 c
ut

tin
g 

to
ol

 (i
ns

er
t 3

D
) r

ak
e 

fa
ce

. M
id

dl
e:

 z
yg

o 
im

ag
e 

of
 ra

ke
 fa

ce
 w

ith
 

su
rfa

ce
 p

ro
fil

e 
(b

ot
to

m
 ri

gh
t) 

qu
an

tif
yi

ng
 d

ee
p 

gr
oo

ve
 w

ea
r n

ea
r t

he
 c

ut
tin

g 
ed

ge
. U

pp
er

 ri
gh

t: 
qu

al
ita

tiv
e 

zy
go

 im
ag

e 
sh

ow
in

g 
de

ta
il 

of
 d

ee
p 

gr
oo

ve
 w

ea
r o

n 
ra

ke
 fa

ce
 n

ea
r c

ut
tin

g 
ed

ge
. 



                                                                                               88ABW-2019-5923 89 

5.2.4 Worn Tool and Cutting Forces 

 Insert 3D can be seen after catastrophic failure in Figure 5-8. The images on the 

top-right and bottom-right show the rake face and nose region respectively. Using the 

dynamometer set up described in Chapter 3, force profiles were obtained for insert 3D 

under flood-coolant. Figure 5-9 shows the cutting force profiles when the tool was new. 

From the figure, the top force profile is the tangential force Fy, which acts downward onto 

the rake face of the tool. The middle force profile is the radial force, Fx. The bottom force 

profile is the axial force, Fz. It should be noted that the force profiles in Figures 5-9 and 5-

10 have been filtered in the Kistler DynoWare software with a low-pass filter at 5 Hz to 

eliminate noise that is typical when acquiring such data. 

It can be observed that the magnitude of each force profile it is fairly consistent 

with respect to the time because a new cutting tool is used, and no noticeable tool-wear has 

yet occurred. However, Figure 5-10 shows the cutting force profiles when the tool was 

approaching catastrophic failure. This is evident by the irregular profiles that start 

approximately around time equal to 15 seconds according to the x-axes of the plots. Around 

this time, the profiles change magnitude abruptly. This is likely from a major tool-wear 

event occurring at that time, such as chipping of the cutting edge. Several other abrupt 

changes in the force magnitude occur due to other major wear events as time moves 

forward, this is especially clear in the middle plot, which represents the radial force, Fx, 

perpendicular to the tool travel direction. 

The resultant cutting force is calculated by taking the square root of the sum of the 

squares of each of the three force components. For the new tool, the mean forces for Fx, Fy, 

and Fz are 310.2 N, -576.5 N, and 162.5 N respectively. Therefore, the resultant cutting 

force for the new tool is 674.5 N. For the worn tool that is approaching catastrophic failure, 

the mean forces for Fx, Fy, and Fz are 733.0 N, -732.9 N, and 386.9 N respectively. 

Therefore, the resultant cutting force for the worn tool is 1106.4 N. The resultant cutting 

force of the worn tool increased by nearly 64% from when it was new under flood-cooled 

conditions.  
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Understanding the interconnectedness between tool-wear and cutting forces can 

provide significant value to industry. Having insight to the tool-wear during a machining 

process without having to stop the process to physically measure the wear on a tool, would 

be a huge time and money saver in a production environment. Imagine for a moment, a 

scenario where an operator can be informed precisely when the cutting tool is getting too 

worn out based on the cutting forces being measured from the machine. Processes could 

be optimized to get the most life out of the tool while producing a part that is within 

geometric specifications. This would save machined components from having to be 

reworked or worse, scrapped because of a ruined surface from a tool that catastrophically 

failed during machining. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

Figure 5-8.  Insert 3D images of the rake face and nose before dry machining (top-left 

and bottom-left respectively); images of rake face and nose after catastrophic failure (top-

right and bottom-right respectively). 
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Figure 5-9. Force plots during flood-cooled machining using a new tool (insert 3D).  

top: Fy, tangential force; middle: Fx, radial force, bottom: Fz, axial force 
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Figure 5-10. Force plots during flood-cooled machining using a worn tool (insert 3D). 

top: Fy, tangential force; middle: Fx, radial force, bottom: Fz, axial force 
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5.3 Dry, MQL, and Cryogenic Cooling Results and Discussion 

This section will begin with tool-wear results from dry machining, followed by 

MQL and then cryogenic machining. Investigative tool-wear experiments under dry 

machining were conducted in a similar manner as the flood-cooled experiments in the 

previous section. That is to say, experiments were conducted at fixed parameters for cutting 

speed, Vc = 122 m/min, feed rate, f = 0.38 mm, and depth of cut, ap = 0.51 mm. Multiple 

passes with the cutting tool would be made across the length of the workpiece and after 

every other pass, the tool would be measured for various tool-wear types until catastrophic 

failure occurred. 

The first test was performed using insert 8A. The two images on the right-hand side 

of Figure 5-11 show catastrophic failure after approximately one (1) minute of total cut 

time. Only two passes were made during the test when this occurred. Due to the nature of 

failure and short life of the tool, tool-wear measurements were not able to be performed 

properly. It should be noted that the edge hone radius on insert 8A was not measured before 

the tests.  

Due to the unexpected results with insert 8A, three other inserts (3A, 3B, and 3C) 

were tested under dry conditions. These tests, however, were performed with the high-

speed camera setup. The main difference with the high-speed camera setup and the other 

experiments is that the high-speed camera tests required significantly shorter lengths of cut 

for each pass to remain in view of the camera. As such, several more passes were able to 

be made. Regardless, inserts 3A, 3B, and 3C also lasted one to two minutes of cumulative 

cutting time and experienced the same catastrophic failure. Rather than describing the tool-

wear type that occurred during the dry machining, it is more accurate to describe the insert 

as having experienced catastrophic failure. 

The failure of these tools under dry conditions is likely the result of the high cutting 

temperatures produced during machining without a cooling agent. These high 

temperatures, as was also seen in the flood-cooled experiments, were enough to cause 

thermal softening of the tool. The high temperatures combined with high stresses near the 

cutting edge result in plastic deformation, cracking, and ultimately catastrophic failure of 

the tool by gross fracture and chipping of the tool. It is also reasonable to expect that a chip 
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hammering effect due to the cyclical chip-form process caused fatigue in the tool, leading 

to fracture. 

 Dry machining experiments with the high-speed camera setup offer interesting 

insight of the chip-form process at different stages of tool-wear. Plastic deformation can 

be seen on the tool in the top-left image of Figure 5-12. Despite this, the bottom-left image 

of that figure shows the chip formation while using the insert in that condition. It is 

interesting to see the familiar arc shape in the chip. The cumulative cut time on the tool 

when the two images on the left were taken was 100 seconds. 

 The two images on the right of Figure 5-12 show the same tool after 104 seconds 

of cumulative cut time. Catastrophic tool-wear, in the form of mechanical fracture and 

chipping of the cutting edge, can be seen on the top-right image. The corresponding chip-

form can be seen in the bottom-right image. The resulting chip, only four seconds later, is 

a long ribbon. 

Figure 5-11. Insert 8A images of the rake face and nose before dry machining (top-left 
and bottom-left respectively); images of rake face and nose after catastrophic failure (top-

right and bottom-right respectively). 
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Figure 5-12. Dry machining with high-speed camera. Worn tool (left), forming an arc-

shaped chip. Tool after failure (right) forming a ribbon chip 

Investigative tool-wear experiments under MQL machining were conducted in a 

similar manner as the flood-cooled and dry experiments. Cutting speed, Vc = 122 m/min, 

feed rate, f = 0.38 mm, and depth of cut, ap = 0.51 mm. Multiple passes with the cutting 

tool would be made across the length of the workpiece and after every other pass, the tool 

would be measured for various tool-wear types until catastrophic failure occurred. The first 

insert used in MQL tests was 2C, and during the first pass, it was obvious, due to the chips 

being formed and the sound of the process, that the tool was not going to hold up for long. 

The tool reached catastrophic failure around one minute of cutting as seen in Figure 5-13. 

To be sure that this was not an unlikely occurrence, another insert (8C) was used under 

MQL conditions. This insert also did not perform well and catastrophically failed after one 

minute of cutting. 
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Since MQL is primarily a lubrication technique, with little cooling effect, failure 

was very similar to that in the dry machining tests. High temperatures, combined with high 

stresses near the cutting edge, likely resulted in plastic deformation, cracking, and 

ultimately catastrophic failure of the tool by mechanical fracture and chipping of the cutting 

edge. Since MQL tests were very short lived, and observations were not made at shorter 

time intervals, it is difficult to say what other wear types may have been involved. The 

obvious wear types are mechanical fracture and chipping, which can be observed after each 

pass of the tool across the workpiece.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5-13. Tool (insert 2C) used during MQL machining. Top-left and bottom-left: new 

tool, before machining. Top-right and bottom-right: tool after catastrophic failure 
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Investigative tool-wear experiments under cryogenic cooling using LN2 were 

conducted in a similar manner as the flood-cooled, dry, and MQL experiments. Cutting 

speed, Vc = 122 m/min, feed rate, f = 0.38 mm, and depth of cut, ap = 0.51 mm. Multiple 

passes with the cutting tool would be made across the length of the workpiece and after 

every other pass, the tool would be measured for various tool-wear types until catastrophic 

failure occurred. 

 Insert 1C was used for the initial tests with cryogenic LN2 applied on the rake face 

of the tool. After two minutes of cutting, the tool catastrophically failed as shown in Figure 

5-14. The wear type from cryogenic machining looks fairly similar to that observed in the 

case of dry and MQL, where mechanical fracture and chipping of the cutting edge occurred. 

While this similar wear behavior is observed in the case of cryogenic machining, it is worth 

considering the super-cool medium being applied to the tool. With an LN2 application 

temperature near -196 ºC (-321 ºF), it is plausible that the tool became more brittle and this 

caused the onset of failure so quickly. To be sure that tool failure under cryogenic 

conditions was not an unlikely occurrence, another insert (1A) was used under cryogenic 

conditions with the LN2 applied on the rake face of the tool. This insert also did not perform 

well and catastrophically failed after two minutes of cutting. 

 Previous research in cryogenic machining has applied cryogenic LN2 in different 

locations relative to the cutting tool. The first two experiments in this work applied the LN2 

to the rake face of the tool, which is a common application area. Another application area 

is along the side of the tool flank face, such that the stream of LN2 is directed at the under-

side of the chip as it’s being formed. This makes sense as an approach to apply the LN2 

closer to the tip of the cutting tool since there may be less obstruction by the chip that is 

forming on top of the rake face. Insert 8D was used for this additional test with LN2 applied 

along the flank face. After one minute of cutting in this manner, the tool catastrophically 

failed. Images of inserts 1A and 8D can be seen in Figure 5-15. From the images in Figure 

5-15, it can also be seen that workpiece material severely adhered to the tools. This suggests 

that adhesion could also be a failure mechanism for this tool under cryogenic conditions. 

It was stated earlier that adhesion, which is associated with BUE, generally occurs 

at lower cutting speeds, where temperatures are lower and flow stress is higher. Since 
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cryogenic LN2 is artificially lowering the temperature near the cutting zone, this could have 

encouraged a similar material flow behavior, leading to the sever adhesion and ultimate 

failure.  

 

 
Figure 5-14. Tool (insert 1C) used during cryogenic machining. Top-left and bottom-left: 

new tool, before machining. Top-right and bottom-right: tool after catastrophic failure 
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Figure 5-15. Tools used during cryogenic machining showing presence of workpiece 

material adhesion 

 
 
 
 
5.4 Concluding Remarks 

This chapter discussed major wear mechanisms that influence tool-wear during 

machining. Different tool-wear types, stemming from these major wear mechanisms, were 

observed during the turning experiments with AF9628. In the case of flood-cooled turning, 

tool-wear included nose wear, built-up edge, plastic deformation, and groove wear on the 

rake face of the tool. Nose wear is the result of gradual abrasion of the workpiece material 

on the nose of the tool. The formation of built-up edge results in the redeposition of material 

onto the workpiece surface. The temperatures induced during the turning process were high 

enough to soften the tool material and this, in combination with high compressive stress 

near the cutting edge, resulted in plastic deformation of the cutting tool. It is believed that 

this plastic deformation also initiated cracks on the rake face, which may have loosened 
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carbide particles from the tool material and caused grooves to form on the rake face as they 

were dragged across the rake face by flowing workpiece material. The combination of nose 

wear, built-up edge, plastic deformation, and deep groove wear lead to the ultimate 

weakening of the tool, causing catastrophic failure. 

Turning of hardened AF9628 with flood-coolant was the most stable condition 

explored from a tool-wear perspective. Tool-life curves were generated, and these were 

ideal. Eventually, chipping of the cutting edge due to mechanical failure resulted in 

catastrophic failure of the tool. However, in the cases of dry, MQL, and cryogenic 

machining, sever and rapid tool failure occurred. Tool failure under dry and MQL 

conditions are likely the result of the high cutting temperatures produced during machining 

without a cooling agent. These high temperatures, combined with high stresses near the 

cutting edge, cause thermal softening and result in plastic deformation. As was seen in the 

flood-cooled tool-wear analysis, cracks likely initiated from the plastic deformation with 

gross fracture and chipping of the tool following closely after. A chip hammering effect 

from the cyclical chip-form process may also cause fatigue in the tool, resulting in fracture. 

 While a similar ultimate tool failure is observed in the case of cryogenic 

machining, it is worth considering that the tool may became brittle from the super-cool 

LN2 being applied. This may have encouraged the onset of mechanical failure such as 

chipping and fracture. Adhesion of workpiece material on the tool was also observed with 

cryogenic cooling.  

It has been said before that the parameters chosen for chip-form and tool-wear 

investigation in this study were based on a previous turning study, which only performed 

flood-cooled machining with carbide tools. Therefore, it is fair to state that the parameters 

are, to a large degree, designed for flood-cooled turning. As such, the tool-wear results for 

dry, MQL, and cryogenic cooling under the parameters of this study, and the cutting tool 

used, are understandably poor. Subsequent studies ought to focus on further investigation 

of various cutting speeds, feed rates, and depths of cut to determine if turning parameters 

can be optimized for better tool-life under these alternative cooling and lubrication 

conditions. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

If I have seen further, it is by standing upon the shoulders of giants. 

- Isaac Newton 

6.1 Conclusions  

While this work is the first to investigate chip-form and tool-wear in turning of 

hardened AF9628, there have been many others whom have come before to lay the 

foundation in understanding these fundamental aspects of machining. This work filled a 

knowledge gap that existed in classifying chip-form and tool-wear during the turning 

process of hardened AF9628 alloy and furthermore, discusses the interrelationship to show 

how chip-form affects tool-wear and how tool-wear consequently affects chip-form. 

With regard to chip-form classification, all of the cooling and lubrication conditions 

explored in this work demonstrated an ability to produce short chips when a new carbide 

cutting tool is used. Chips were mostly up-curl dominated with new inserts due to the 

influence of the chip breaker geometry. With regard to tool-wear, flood-cooled turning was 

the most stable condition investigated under the specific cutting speed, feed rate, and depth-

of-cut. Under the flood-cooled turning condition, abrasion and adhesion tool-wear 

mechanisms were noticeable. Built-up-edge was present on the cutting edge with tools that 

were relatively new. This was observed with the scanning white light interferometer and 

during high-speed imaging tests from the appearance of shiny spots, which indicate 

redeposition of the built-up edge onto the machined surface. 

As the flood-cooled tool showed progressive nose wear, the resulting chip-form 

remained largely unchanged from the mostly up-curl-dominated, arc-shaped chips. 

However, after several minutes of cutting and chip-flow over the tool, the increasing 

temperature near the cutting edge caused thermal softening of the tool material. This 

increase in temperature, along with high stress from the workpiece material flow over the 

tool, resulted in plastic deformation of the cutting edge. This plastic deformation likely 
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initiated small cracks on the rake face of the tool. These cracks would loosen carbide 

particles on the rake face of the tool that the flowing workpiece material could drag across 

the rake face to create groove wear. The plastic deformation likely increases the tool-chip 

contact area during turning, which increases the generated heat due to increased friction.  

Chip-form appeared largely unchanged once plastic deformation occurred. This 

was observed in the resulting chips from flood-cooled conditions when plastic deformation 

occurred in the tool, as well as in dry machining conditions, observed with the high-speed 

imaging. Since the arc-shaped chips are formed in a cyclical manner, with up to 100 arc-

shaped chips being formed every second, this cyclical material flow can cause fatigue near 

the cutting edge of the tool. This, in combination with the other tool-wear types, resulted 

in the catastrophic failure of the tool by edge chipping. Cutting force measurements 

obtained around the time of catastrophic failure of a worn tool (insert 3D) under flood-

cooling show that the resultant force increased 64% compared to the resultant force of a 

new cutting tool under the same condition. 

With regard to tool-wear under the alternative conditions of dry, MQL and 

cryogenic cooling, machining performance was less than desirable. Tool-life in these 

conditions lasted anywhere from one to two minutes, which is only about one-tenth of the 

tool-life under flood-coolant. Each cooling and lubrication condition that was investigated 

in this work, demonstrated that as tools reach the end-of-life due to catastrophic failure, the 

chips become longer and snarled, which is unfavorable for machining in an industrial 

setting. The short tool-life experienced under the alternative conditions resulted in limited 

tool-wear analysis and as such, it is more accurate to describe the tools as having 

experienced catastrophic failure. 

In summary, chip-flow and tool-wear, and the relationship between them, have 

been investigated, analyzed and discussed under flood-cooled conditions for turning of 

hardened AF9628. Alternative cooling and lubrication conditions were also investigated, 

but it was shown that tool-life was less than ideal for practical consideration in an industrial 

setting. Based on the chip-form and tool-wear observations, further work could be done to 

investigate different carbide tool grades, coatings, and tool geometry including the chip 

breaker configurations, etc., which may experience more gradual wear and less likelihood 

of catastrophic failure. A wider process parameter window could be explored to investigate 
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how the alternative cooling and lubrication conditions perform under different cutting 

parameters that may be more properly designed for them. Since tool-wear directly impacts 

the final geometric tolerances and surface characteristics of the machined workpiece, 

limiting the types of tool-wear is critical for enhancing final product quality and functional 

performance of machined components.  

6.2 Future Work 

The following sub-sections will discuss future work that is related to turning 

AF9628 and will build upon the findings from this study. As a result of this study and 

innumerable other prior studies relating to machining performance, future work that need 

to address much larger machining performance challenges will also be discussed. 

6.2.1 Experimentation in a Wider Process Parameter Space 

This thesis found that flood-cooled machining is the most effective method for 

turning AF9628 in a hardened state when compared to dry, MQL, or cryogenic machining 

under the machining conditions tested with the selected cutting tool. However, it is 

important to note that machining is a complex process influenced by several factors, many 

that have not been explored within the scope of this work. A previous machining study 

performed by TechSolve had varied some of the machining parameters for cutting speed, 

feed rate, and depth-of-cut, whereas a fixed set of parameters was selected for the current 

investigation. Also, the parameters during the previous study had only been designed for, 

and performed under, flood-cooled conditions. As such, it is not a major surprise that flood-

cooled machining performed the best in this study. 

It is necessary for an extended subsequent work to explore a wider range of these 

processing parameters (cutting speed, feed rate, and depth-of-cut) that may be better suited 

for dry, MQL, and cryogenic machining, and using different cutting tools. However, 

changes to the cutting speed, feed rate, and depth-of-cut will have an effect on productivity 

and this must be kept in mind. For example, the feed rate used during this study is nearly 

twice as high as what is used typically in most finish turning operations. Reducing the feed 

rate by a factor of two will also decrease the productivity (i.e. material removal rate) by a 
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factor of two. While changing feed rate may improve the tool-life under different 

conditions, an increased cost due to lost productivity may not outweigh the cost to replace 

tools twice as often. Experimentation across a wider process parameter space will provide 

a more complete understanding of the potential benefits of the alternative cooling and 

lubrication techniques. 

6.2.2 Effect of Cutting Tool Edge Geometry on Chip-flow and Tool-wear 

The catastrophic failure that was observed during this study was a result of several 

tool-wear types that ultimately led to chipping of the cutting edge of the tool. In this work, 

unlike many other machining studies, the cutting tool edge hone radius of several cutting 

tool edges were measured using scanning white light interferometry prior to experiments 

to better understand this variable in the cutting tools being used. However, the obtained 

edge hone radius measurements were an oversimplified characterization since the radius 

was assumed to be constant, which is rarely the case in reality. Cutting tool geometry, more 

specifically the cutting edge preparation method and hone geometry that contributes to the 

overall mechanical strength of the cutting edge, is believed to be an area of tool design that 

can greatly influence machining aspects such as tool-wear [13, 19] As such, cutting edge 

geometry characterization has been an area of high interest in the machining research 

community during the last decade [18, 103]. A robust, high-speed edge geometry 

characterization technique has recently been developed at the University of Kentucky and 

this capability should be leveraged in future work [4]. 

In future work, more advanced characterization of edge hone size and geometry 

should be performed. To further explore the effect of cutting tool edge geometry on chip-

flow and tool-wear in turning AF9628, there exists an alternative cutting tool with the same 

geometry and chip breaker style as the cutting tool used in this work but with a different 

carbide grade and coating method and material. The coating method of the alternative tool 

is chemical vapor deposition (CVD) as opposed to a physical vapor deposition (PVD) 

coating that was used on the tools in this study. CVD coatings are known to generally be 

applied to relatively larger edge radii than PVD coatings due to the nature of the coating 

process. As such, it is hypothesized that the CVD-coated tool, with a larger edge hone 
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geometry, will exhibit more preferred gradual nose wear and be less likely to experience 

chipping due to the increased mechanical strength from the larger cutting edge geometry. 

6.2.3 Integrated Machining Performance 

In 1906, F. W. Taylor published a notable paper entitled “On the Art of Cutting 

Metals” [86]. In this work, which was the compilation of 26 years of metal cutting 

experiments by F. W. Taylor, he identified three questions that every machinist who is 

running a metal-cutting machine must answer every day in the machine shop, namely:  

• What tool shall I use? 

• What cutting speed shall I use? 

• What feed shall I use? 

This thesis and the innumerable prior machining studies that have been conducted, 

clearly demonstrate the need for significant effort and resources. It is common practice 

when starting a machining research effort to consult with one of many cutting tool 

manufacturers for recommendations and guidance on proper tool and cutting parameter 

selection. Then, a process engineer and/or a machine operator spend time on the shop floor, 

evaluating the many different inserts across a range of cutting speeds, feed rates, depths of 

cut, and maybe even cooling and lubrication conditions. Eventually, it is determined which 

cutting tool, and processing parameters work the best based on the application. 

As new materials, such as AF9628, are invented and introduced, cutting tool 

manufacturers develop new tools with more unique geometries that are marketed as being 

improved versions for the specific application.  However, the matter of cutting tool and 

process parameter selection is complicated and presents a major challenge for industry due 

to a lack of knowledge on the cutting tool performance for a specified range of machining 

conditions including coolant/lubrication application. To add to the complexity, many 

variables that make up a machining system, such as the workpiece material properties, 

shape and size; the cutting tool material (and coating) properties, runout error, and 

geometry characteristics, including chip breaker configurations; the machine tool 

dynamics, power, torque, feed and speed limitations, and the cooling and lubrication 

medium applied to the process make it more difficult to identify the correct and/or optimal 
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use of conditions for a given operation. While numerous research groups spend enormous 

effort into understanding possibly one, or a couple of these basic elements, a serious 

knowledge gap exists in the ability to understand the total effects of the complex, 

interconnectedness of these machining system elements.  

Interestingly, after over 100 years of machining research, F. W. Taylor’s same three 

questions are still being asked regularly by every process engineer and machinist on the 

shop floor. Unfortunately, just as these three questions have remained unchanged, the trial-

and-error method to answering them has also remained unchanged. Herein lies the 

problem.  

No robust capability exists to help process engineers and machine tool operators 

identify what insert would be ideal to cut a particular material and under what cutting 

conditions. A solution to this problem is admittedly very complex. However, even a 

capability that could provide the 80% solution for determining a good starting place for 

cutting tool and machining parameter selection would provide immeasurable value to 

industry and its customers. Therefore, it is of great interest to explore the concept of an 

integrated machining performance approach that considers the various elements of a 

machining system.  

 What will be the answer to Taylor’s fundamental, yet complex, questions to move 

toward a more advanced, future state of machining? It is here that the next chapter is 

waiting to be written. 
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