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Abstract

Background: Early changes in acid/base and electrolyte concentrations could provide insights 

into the development of neuropathology at the onset of stroke. We evaluated associations between 

acid/base and electrolyte concentrations, and outcomes in permanent middle cerebral artery 

occlusion (pMCAO) model.

Methods: 18-month old male and female Sprague-Dawley rats underwent pMCAO. Pre-, post- (7 

minutes after occlusion), and at 72 hours of pMCAO venous blood samples provided pH, carbon 

dioxide, oxygen, glucose, hematocrit, hemoglobin, and electrolyte values of ionized calcium, 

potassium and sodium. Multiple linear regression determined predictors of infarct and edema 

volumes from these values, Kaplan-Meier curve analyzed morality between males and females at 

72 hours, and a Cox regression model was used to determine predictors for mortality.

Results: Analysis indicated significant differences in acid/base balance and electrolyte levels in 

aged rats not dependent on sex between the three time points in the pMCAO model. Changes in 
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pH (from pre- to post and post- to 72 hours) and changes in sodium and ionized calcium (from 

post- to 72 hours) were predictors of infarct volume and edema volume, respectively. Cox 

Regression revealed there is a 3.25 times increased risk for mortality based on changes in 

bicarbonate (pre- to post-MCAO).

Conclusions: These early venous blood changes in acid/base balance and electrolytes can be 

used to predict stroke outcomes in our rat model of stroke. This study provides potential 

biomarkers to be examined in the human condition that could provide profound prognostic tools 

for stroke patients.

Keywords

acid base; electrolytes; aged male/female rats; stroke; infarct/edema volume

INTRODUCTION

Stroke remains the leading cause of death and disability worldwide (Go et al., 2014). Edema 

and electrolyte imbalance contribute to brain swelling, dysfunction, and death. Currently, 

there are no early serum tests to predict risk of death from stroke-induced edema. While 

MRI will show large infarcts early, it is no longer typically used in the emergent presentation 

due to delaying urgent treatment. Therefore, identifying an easily obtainable clinical marker 

to predict cerebral edema and death would be a major advancement in stroke care. Many 

strokes are emergent large vessel occlusion (ELVO), in which there is an acute occlusion of 

one of the vessels of the Circle of Willis. Accounting for 20–40% of ischemic strokes, it is 

the most disabling form (Smith et al., 2009). The permanent MCAO model best represents 

the natural history of emergent large vessel occlusion (ELVO) stroke that is untreated with 

thrombolytic therapy or mechanical thrombectomy (McBride & Zhang, 2017). Most patients 

with ELVO currently do not receive either of these treatments, which results in a high 

mortality rates or severe disabilities (Bhole et al., 2017; Messe et al., 2016).

Blockage of the large vessel artery reduces cerebral blood flow (CBF) below functional 

levels depriving neurons of oxygenated glucose and blood. The penumbra, the brain area 

adjacent to the infarction, is at risk of infarction if reperfusion does not occur (Borgens & 

Liu- Snyder, 2012). Oxygen (O2) and glucose are reduced in the blood downstream of the 

occlusion. A deprivation in O2 and glucose contribute to the failure of adenosine 

triphosphate (ATP) production and cerebral ischemia occurs when O2 supply fails to meet 

metabolic demand (Kristian & Siesjo, 1997). Cells are forced into anaerobic glycolysis 

which leads to lactic acid accumulation, which lowers the pH (Back et al., 2000; Casey, 

Grinstein, & Orlowski, 2010). Carbon dioxide (CO2) builds up and accumulates in 

extracellular and intracellular spaces leading to decrease in pH (Traystman, Kirsch, & 

Koehler, 1991). The acidic pH impacts electrolyte concentrations such as sodium (Na+), 

calcium (Ca2+) and potassium (K+) which regulate cellular structure and function (Kristian 

& Siesjo, 1997). Increased concentration of intracellular Na+ causes cytotoxic edema. 

Additionally, the disruption of the Na+/Ca2+ pump results in an increased concentration of 

intracellular Ca2+ which initiates apoptosis, causes mitochondrial dysfunction, and generates 

free radicals and reactive oxygen species (ROS) (Mifsud, Zammit, Muscat, Di Giovanni, & 

Valentino, 2014). These acid/base and electrolyte changes are associated to the severity of 

Martha et al. Page 2

J Neurosci Res. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the stroke (Martha et al., 2018), a greater understanding of the blood gas parameters allows 

us further insight into how these factors influence stroke outcomes.

Previously, we have reported a change in blood gases and electrolytes within a few minutes 

of focal ischemia in young male rats and these changes predict infarct volume (Martha et al., 

2018). This study uses aged male and female rodents that are better aged-matched to the 

typical age of the human stroke patient. Therefore, we aimed to examine venous blood gas 

values between male and female aged rats at three time points: (1) pre-permanent middle 

cerebral artery occlusion (pMCAO), (2) post-pMCAO, and (3) at 72 hours before 

euthanization; and to determine whether venous blood gas values predict infarct volume, 

edema volume, and/or mortality in pMCAO in aged male and female rats. This study 

identifies early changes in blood gases/electrolytes that predict stroke outcomes in an 

experimental rodent model of stroke.

MATERIALS and METHODS

Ethics Approval and Animals

Aged male and female rats (18-month old Sprague-Dawley rats (ENVIGO, Indianapolis, IN) 

were used for all procedures. The aged female rats on average weighed between 245 and 425 

grams, and aged male rats approximately weighed between 505 to 705 grams. The study was 

conducted in accordance with the National Institutes of Health (NIH) Guide for the Care and 

Use of Laboratory Animals and study protocols were approved by University of Kentucky’s 

(UK) Institutional Animal Care and Use Committee (IACUC). Animals were housed in a 

climate controlled room on a 12-hour light and dark cycle (0700 – 1900) with access to food 

and water. Per Division of Laboratory Animal Resources (DLAR) cage requirements at 

UK’s vivarium facility, the animals can be paired in one cage if the animal weight is under 

650 grams. We typically house two animals (males or females) per cage upon arrival to 

DLAR. Once the rats are over 650 grams, they are then split into a separate cage by 

themselves. Animals were administered vehicle of sterile filtered phosphate buffered saline 

(PBS) of pH 7.4, at 6, 24, 48, and 72 hours after permanent middle cerebral occlusion 

(pMCAO). The rats that survived to 72 hours (n = 16) underwent Magnetic Resonance 

Imaging (MRI) for Diffusion Tensor Imaging (DTI) images and T2 weighted images to 

measure infarct and edema volumes and then euthanized.

Permanent Middle Cerebral Artery Occlusion

During the pMCAO procedure, as previously described, (Ajmo et al., 2008) animals were 

placed in an induction chamber and anesthetized with 5% isofluorane/oxygen. During the 

procedure, a constant flow of 3% isofluorane in 100% oxygen at a rate of 1 L/min was 

maintained. A midline vertical neck incision occurred to collect an internal jugular blood 

draw. Glass rods were used to separate the large muscle pad and the sternocleidomastoid 

muscle (SCM). Retractors were placed to pull musculature of the SCM and skin tightly 

away from the targeted area. Dissection of the omohyoid muscle, fat, and connective tissues 

were made to isolate and expose the right common carotid artery from the vagus nerve. 

Blunt dissection with glass rods occurred around the internal carotid artery (ICA) with 

removal of lymph nodes and fat surrounding the internal/external cerebral artery (ICA/ECA) 
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bifurcation to expose the pterygopalatine/middle cerebral artery (MCA) bifurcation. The 

first clamp was placed on the ICA prior to the pterygopalatine/MCA bifurcation, while the 

second clamp was placed on the common carotid artery (CCA). The placement of the second 

clamp further in the posterior direction allows more room for manipulation during the 

embolus insertion. The ECA was isolated, and used to access the arterial system. A 40mm 

nylon monofilament was fed distally into the ECA and advanced through to the ICA at 

approximately 25mm until it reached the ICA clamp. The monofilament was loosely sutured 

in place, the first clamp was removed, and the embolus was advanced then sutured in place 

to obtain permanent occlusion of the middle cerebral artery (MCA), M1 segment. The 

second clamp was removed with careful observation of minimal blood, then the removal of 

the retractors. Before the neck incision closure, a post- MCAO blood draw occurred from the 

internal jugular vein.

Post-Surgical Fluid Management and Pain Control

Immediately post-operatively the animals received 2ml of sterile saline (0.9%) 

subcutaneous. An additional 1ml of saline will be given if extra blood loss occurred during 

surgery. The animals were scheduled to be injected with sterile filtered PBS pH 7.4 at 6, 24, 

48, and 72 hours post-MCAO. The animals are weighed every morning post-MCAO to 

determine dehydration. Hydration status was checked by pinching up or “tenting” the skin 

over the nape of the neck. The skin should immediately relax into its normal position. If the 

skin remains tented longer than normal, the rat was deemed dehydrated and saline was 

given. Per DLAR guidelines, rats can receive up to 10ml at a time and no more than 2ml at 

any one location per 6 hours. If warranted, additional saline (1–2ml) will be given in 

addition to 6, 24, 48, and 72 hours. Also, we add an additional water bottle in each cage to 

allow more availability to free water for the rats to consume and moist food is provided to 

encourage feeding and additional water intake.

Post-surgical pain control is managed with carprofen, which is based on weight of the 

animal. Animal weights are taken prior to surgery (pMCAO) and daily until animals are 

euthanized at 72 hours (post MRI). The animals receive dosage of carprofen 5mg/kg prior to 

surgery and every 24 hours for three days post-pMCAO until 72 hours when they are 

euthanized (post MRI).

Termination of survival criteria include that all animals will be weighed and monitored, 

especially for dehydration and pain, each morning post surgery. This includes specific 

attention to surgery and injection sights. If symptoms such as pain, fatigue, loss of energy, 

excess energy, ruffled hair coat, reluctance to move, failure to groom or feed, hypoactivity, 

hyperactivity, restlessness, self-trauma, aggressiveness, ataxia, pale mucous membranes, 

cyanosis, rapid, shallow and/or labored breathing, cachexia, porphyria, soiled anogenital 

area, inactivity, failure to respond to stimuli, lack of inquisitiveness, vocalization, and/or 

hunched posture are observed, the research team will obtain advice from the vivarium 

veterinary staff on how best to intervene to alleviate discomfort; if that is not possible the 

animal will be euthanatized. Additional checks are made in the afternoon if there is any rat 

of concern.
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The animal will be removed from the study if adverse signs persist despite carprofen and 

treatment past 24 hours. If the signs fail to resolve, the vivarium veterinarian will be 

consulted and decide the time course when such animals will be euthanized. Additionally, 

weight loss greater than 20% (emaciated appearance, rapid weight loss over two days) is 

considered an endpoint. Rapid weight loss is considered greater than 10% a day for two 

days.

Venous Blood Gas Collection

Blood gas samples were collected and analyzed pre- and post-MCAO, and prior to 

euthanization at 72 hours. An internal jugular line was inserted, prior to MCAO 

monofilament placement and an approximately 100μl of venous blood sample was collected 

(representing the pre-MCAO sample, Figure 1). These venous systems of the brain drains 

into the confluence of the sinuses that separates and empties into the right and left internal 

jugular veins before returning to the heart (Meder et al., 1994). The majority of the venous 

blood samples were drawn on the ipsilateral side (affected MCAO side) of the animal. When 

the blood samples at the affected MCAO site were unable to be collected, the contralateral 

side (unaffected MCAO side) was used. It takes approximately 30 minutes to obtain the pre-

pMCAO blood sample given the details of the MCAO procedure and anesthesia induction 

(represented by the shaded box for the variable time points, Figure 1). The venous blood 

sample was analyzed using iSTAT Portable Clinical Analyzer (Abbott Laboratories, Abbott 

Park, IL). Post-MCAO (approximately taken within seven minutes of occlusion), rats 

remained anesthetized on the operating table and venousblood sample was again collected 

(representing the post-MCAO sample) and analyzed with the iSTAT.

The animals that survived to 72 hours underwent MRI for brain imaging and prior to 

euthanization, the third venous blood sample was collected from the right atrium and 

analyzed with the iSTAT (Figure 1). Before we perfuse our animals with saline, they are 

opened and the third blood sample is taken from the right atrium. The right atrium provides 

a venous blood sample that is convenient to obtain (we are working in a time window and to 

expose the IJ would exceed this) and it is downstream from the IJ. Acid/base and electrolyte 

parameters collected included: pH, carbon dioxide (pCO2), oxygen (pO2), bicarbonate 

(HCO3
−), base excess of extracellular fluid (Beecf), glucose, hematocrit, hemoglobin, and 

serum electrolytes, including ionized calcium (iCa2+), potassium (K+), and sodium (Na+).

Occasionally during iSTAT blood sample collection we received individual readings errors 

and these errors were excluded from statistical tests. Reasons for failure of blood gas 

analysis reading include iSTAT errors (air bubbles in the blood sample, insufficient blood 

drawn from the animal, micro blood clots (heparinized tubes are used but it still occurs), 

faulty blood cartridge, or we could not obtain blood pre-, post-, at 72 hours pMCAO from 

the animals (vessel collapsed, insufficient amount of blood drawn for the cartridge reading, 

and/or our surgeons are handling post-operative period in a timely fashion and we try to 

minimize time closing up the animal post-MCAO.
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Magnetic Resonance Imaging

MRI images were acquired on a 7T Bruker Clinscan horizontal bore system (7.0T, 30cm, 

300Hz) equipped with a triple-axis gradient system (630 mT/m and 6300 T/m/s) with a 

closed cycle. Diffusion Tensor Imaging (DTI) images were acquired coronally with a fat 

saturated, double refocused echo planar sequence: 0.297 × 0.297 × 0.7 mm3, TR/TE 

2200/34, 128 × 128 matrix, 3 av, 12 slices, four b=0 volumes, 256 directions with b=800, in 

28:23 minutes (Figure 2a). T2 weighted images were acquired coronally with a fat saturated, 

turbo spin echo sequence: 0.125 × 0.125 × 0.4 mm3 resolution, TR/TE 6000/27, 192 × 192 

matrix, 44 slices, is 9:03 (Figure 2c).

Male rats were anesthetized with an average of 2.25% isoflurane in oxygen, while female 

rats were anesthetized with an average of 1.75% isoflurane in oxygen using an MRI 

compatible CWE Inc. equipment (Ardmore, PA). They were held in place on a Bruker 

scanning bed with a tooth bar, ear bars, and tape. Body temperature, heart rate, and 

respiratory rates were continuously monitored throughout the MRI scans (SA Instruments, 

Inc., Stony Brook, NY). The animals were maintained at 37°C with a water heating system 

built into the scanning bed. The scanning procedure took approximately 40 minutes per 

animal. Rats needed to survive to 72 hours for both T2 and DTI imaging, but there were 

several occasions we euthanized animals early (mid-MRI) due to gasping breathing and 

some animals passed during scans (i.e we were able to collect T2 imaging but not DTI 

imaging).

MRI Processing for Infarct Volume and Edema Volume

The DTI and T2 MR images were analyzed by a blinded neuroradiologist who identified 

infarct volume and edema volume. These volumes were counted and this number was 

normalized to the number of images counted to provide a per section count. The volume of 

brain parenchyma demonstrating restricted diffusion (infarct volume) visibly affected were 

calculated by manual segmentation using ITK-SNAP software (www.itksnap.org, version 

3.6, Figure 2b) (Yushkevich et al., 2006). The volume of brain parenchyma visibly affected 

by cerebral edema (edema volume) were calculated in a similar fashion (Figure 2d). The 

data are given as absolute volume in cubic millimeters. The calculation was based on all 

slices from each MR sequence.

Statistical Analysis

Data analysis began with a descriptive examination of all variables, including frequency 

distribution, means, and standard deviations. The power analysis was completed using 

G*Power software (Faul, Erdfelder, Buchner, & Lang, 2009; Faul, Erdfelder, Lang, & 

Buchner, 2007). Given a desired power of 0.8 and a significance level for between-group 

comparisons set at p < 0.05, the required sample size was calculated to be 14 animals (i.e., n 

= 7 per group). All variables in the study were transformed to meet assumptions of 

normality. The transformation procedures began with Shapiro-Wilks and for measures with 

p < 0.05, natural log with a constant of 10 added to measure. Data from the aged male and 

female rats were analyzed using SPSS, version 24 software (IBM, Armonk, NY).
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A repeated-measures analysis of variance (ANOVA) was used to examine between-group 

differences of blood gas parameters of the sexes at three time points, pre-MCAO, post-

MCAO, and at 72 hours-MCAO. Paired samples t-test were used to compare venous blood 

gas mean values between pre- and post-MCAO for the animals that died prior to 72 hours, in 

addition to an independent t-test to compare venous blood gas mean values between pre-

MCAO animals that survived versus died prior to 72 hours. A multiple linear regression with 

backward variable entry was performed with magnitude of change data from aged male and 

female rats to determine whether venous acid/base and electrolyte changes predicted infarct 

volume and/or edema volume. The variables were entered into the regression model in one 

step. The adjusted R2 was used to determine the variance explained in infarct volume and/or 

edema by each variable. An assessment of multicollinearity was performed by inspecting 

correlation coefficients and tolerance/variance inflation factor values. Inspecting the 

coefficients table and if tolerance values are less than 0.10 or VIF is above 10, collinearity is 

present and was not found in final model. The P-to-P plot was used to assess the changes in 

pH, iCa2+, and Na+ data sets for normal distribution. A Kaplan-Meier curve using Mantel-

Haenszel log-rank test analysis was performed to compare survival curves between aged 

male and female rats. A Cox regression curve was used to assess the relationship of event-

free survival in aged male and female rats using predictors of acid/base and electrolyte 

concentration parameters. A p-value of 0.05 was set a priori to determine statistical 

significance.

Sample Size

The total sample size from the permanent MCAO model were 31. These animals are 

furthered categorized into those that survived to 72 hours (n = 16; males = 7 and females = 

9), and those that died prior to 72 hours (n = 15; males = 8 and females = 7).

RESULTS

Acid/Base and Electrolyte Values for Survival

Venous Blood Gas Differences Between Aged Male and Female Rats—A 

repeated-measures analysis of variance (ANOVA) was used to examine between-group 

differences of blood gas parameters of the sexes at three time points, pre-pMCAO, post-

MCAO, and at 72 hours-MCAO (Table 1). Mauchly’s test indicated that the assumption of 

sphericity had been violated for each blood gas parameter therefore degrees of freedom were 

corrected with Greenhouse-Geisser estimates of sphericity (Table 2). There was not a 

significant interaction effect between the three time points of blood gas parameters and sex 

(Table 3).

Acid/Base and Electrolyte Values for Death

We did not see any baseline differences between males and females for those rats who died 

prior to 72 hours, so we combined male and female animals together. There were significant 

differences in blood gas analysis seen from pre- to post-MCAO in animals that died prior to 

72 hours (n = 15, Table 4). Among animals that died, decreases in pH (p = 0.026) and Na
+ (0.039) were observed from pre- to post-MCAO. Increases were seen in blood values pre- 

to post-MCAO for pCO2 (p = 0.015), HCO3− (p = 0.001) and glucose (p = 0.014). There 
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were no significant differences seen in baseline (pre-MCAO) values from those animals that 

survived and those that died prior to 72 hours (Supplemental Table 5).

Predictors for Infarct Volume and Edema Volume

Blood gas and electrolyte changes from male and female rats were combined together for 

multiple linear regression analyses. Multiple regression analysis (n = 15) showed that the 

changes in pH from pre- to post-MCAO and in pH from post to 72 hours-MCAO were 

predictors for infarct volume (F (2,14) = 14.77, p = 0.030). These variables explained 81% 

of the total variance in the model, as predictors of infarct volume (Table 6).

Multiple regression analysis (n = 16) revealed that the changes in iCa2+ from post to 72 

hours-MCAO and Na+ post to 72 hours-MCAO were predictors for edema volume (F (2,15) 

= 12.32, p = 0.015). These variables explained 75% of the total variance in the model, as 

predictors of edema volume (Table 7). The mean infarct size is 203.64 ± 61.41, while the 

mean edema volume is 124.04 ± 41.39. There is no significant difference (p = 0.524) in 

infarct size between aged male (n = 6) and female rats (n = 9) or in edema volume (p = 

0.730) between aged male (n = 7) and female rats (n = 9).

Relationship Between MCAO and Mortality

A Kaplan-Meier curve with Mantel-Haenszel log-rank test was used to analyze event-free 

survival between aged male and female rats. There was no difference between male and 

female rats based on mortality (p = 0.321, data not shown). While no significant results were 

seen between males and females based on mortality, a Cox regression modeling was used to 

assess the relationship of event-free survival in aged male and female rats using predictors of 

acid/base and electrolyte parameters. There is a 3.25 times (or 325%) greater risk for 

mortality based on change in HCO3− (pre- to post-MCAO), after controlling for change in 

Na+ and sex (p = 0.025). Aged rats within −2.00 to −7.00 cut-off range for HCO3− 

experienced an increased risk for mortality (Figure 3).

DISCUSSION

Previously, we have reported that changes in venous blood gas parameters of pH and ionized 

calcium (pre- to post-MCAO) predicts infarct volume in young male rats (Martha et al., 

2018). We now extend our findings to aged male and female rats after pMCAO. The venous 

blood gas profile after pMCAO significantly differs between the young and aged. Our aged 

rats (18 months equivalent to approximately 55–65 years old in humans (Quinn, 2005)) are a 

better age match for human stroke patients. A major issue in stroke research is the lack of 

translating findings from the rodent to the human patient. The almost uniform use of young 

male rats in stroke research is one of the contributing factors for this problem. Our 

expectations are that data acquired using aged rats should be more successful in translation 

to the human condition. While we did not see any differences in the venous blood between 

the sexes, we are still using both sexes in order to match the human population. Gender-

specific responses to stroke therapies are well-documented, and most recently exemplified in 

the experience with the clinical trial showing that uric acid is effective with females but not 

male stroke patients (Llull et al., 2015).
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Carbon dioxide and water is catalyzed by carbonic anhydrase, which results in the 

generation of bicarbonate and H+ (Hamm, Nakhoul, & Hering-Smith, 2015). The H+ proton 

facilitates transport of Na+ across membranes. Other electrolytes and water follow the 

transport of Na+ during ischemia, causing malignant cerebral edema. Bicarbonate 

production is low in blood under alkaline conditions, and is high in acidic conditions found 

in ischemia. Its purpose is to regulate pH homeostasis, and to facilitate anion/water 

transport. In heart ischemia reperfusion, the presence of bicarbonate causes increased 

oxidative damage (Queliconi et al., 2013), which leads to increased inflammation. While 

ELVO causes significant injury to the affected brain, the associated malignant edema injures 

surrounding otherwise unaffected brain, caused herniation and death (Dostovic, Dostovic, 

Smajlovic, Ibrahimagic, & Avdic, 2016). These early changes in bicarbonate predict 

mortality of aged rats of both sexes and provides a potential biomarker to be explored in 

human stroke patients.

The pH is tightly regulated in the blood and other tissues to maintain homeostasis. The 

accumulation of lactic acid and CO2 in ischemic brain disrupts the normal pH balance (Back 

et al., 2000). Our study showed significant changes of pH as a predictor of infarct volume, 

but interestingly, a predictor that varies depending on the time point at which pH is 

measured. At the first timepoint (from pre- to post- MCAO), our results demonstrate that as 

changes in pH increased, infarct volume increased. At the second timepoint (from post-

MCAO to 72 hours), as changes in pH increased, infarct volume decreased. These changes 

in pH taken together are predictors that affect infarct volume. The importance of this finding 

occurring in the post-MCAO to 72-hour mark is important for translational studies, because 

this period would be the most applicable as a prognostic tool for the human patient.

In addition to finding predictors related to infarct volume, we have also identified predictors 

related to edema, which can be a lethal consequence of cerebral infarction. Our results 

indicate that changes in ionized calcium and sodium post-MCAO to 72 hours were found to 

be predictors for edema volume. We found an inverse relationship with changes in ionized 

calcium and sodium (post-MCAO to 72 hours) to edema volume, as ionized calcium and 

sodium increases, edema volume decreases. To our knowledge neither ionized calcium, nor 

sodium are explored in the literature on edema volume as a stroke outcome. They are, 

however, discussed in connection with infarct volume, patient functional outcomes, and 

mortality. In human stroke patients, severe clinical presentation was seen after stroke onset, 

as was worsening of functional outcomes, and the potential for hemorrhagic conversion 

post-thrombectomy; these were associated with lower total serum calcium concentrations in 

peripheral venous blood (Guo et al., 2015; Guven, Cilliler, Koker, Sarikaya, & Comoglu, 

2011; Ishfaq, Ullah, Akbar, Rahim, & Afridi, 2017). Conversely, better functional outcomes 

and decreased infarcts were associated with higher venous total serum calcium levels (Buck 

et al., 2007; Ovbiagele et al., 2006; Ovbiagele et al., 2008). These findings link positive 

stroke outcomes to increased serum calcium levels. Yet, also seen in human stroke patients 

were inconsistent results of associations between serum Na+ levels and stroke severity. 

Patients with increased stroke severity and mortality exhibited associations with 

hyponatremia or lower Na+ levels (Rodrigues, Staff, Fortunato, & McCullough, 2014; Soiza 

et al., 2015). While others found associations between increase stroke incidence and 

neurological worsening with higher venous serum Na+ concentrations (Christensen & 
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Boysen, 2002; Farahmand, Choobi Anzali, Heshmat, Ghafouri, & Hamedanchi, 2013; Fofi 

et al., 2012). However, these studies relied on univariate analyses so multivariate analyses 

appear to add more understanding of the associations of biomarkers with functional or 

neurological outcomes.

Changes in bicarbonate levels were also found to be important predictor for increased risk 

for mortality. Our results from the Cox regression model indicated there is a 3.28 times 

greater risk for mortality based on magnitude of change in bicarbonate levels (range −2.00 to 

- 7.00) from pre- to post-MCAO. Bicarbonate is important for pH, electrolyte, and water 

balance, which is disturbed during ischemic stroke. Bicarbonate levels change rapidly after 

inserting the embolus into the internal carotid artery to block the middle cerebral artery, 

approximately within 7 minutes. Our data shows that the physiological buffering response of 

the rats is impaired post- pMCAO; they are unable to adjust their blood homeostasis, leading 

to mortality. To our knowledge, this is the earliest change in bicarbonate measurement after 

experimental stroke to be reported. Moreover, this finding shows that there are two rat 

subpopulations in which one is able to regulate bicarbonate and survive. The other group 

cannot regulate bicarbonate and the levels are significantly enhanced, which increases 

probability of death by 328%. If translated to humans, this would show that early 

bicarbonate levels would dictate treatment for the patient after stroke.

There is, however, some distinction between the pMCAO model in young and aged rats in 

acid/base balance and electrolyte concentrations as predictors of infarct volume. In our 

previous paper, we discovered as changes in pH and ionized calcium (from pre- to post-

MCAO) increased, infarct volume decreased in young male rats (Martha et al., 2018). This 

finding is inverse from what we posit in our current results related to aged rats, which show 

that as changes in pH (from pre- to post-MCAO) increase, infarct volume increases. We also 

previously found that as changes in ionized calcium (from pre- to post- MCAO) increased, 

infarct volume decreased. These changes were not found in aged rats, rather there was an 

association with changes in ionized calcium at a different time point (post-MCAO to 72 

hours) with an increase in edema volume. The differences between young and aged rats 

demonstrate that some blood gas and electrolyte parameters are age dependent, while others 

are not. Translation of findings from rodent to human has been problematic in stroke 

research with the almost exclusive use of young male rats. As demonstrated by this study, 

differences in the response to stroke arise between young and aged rats. These aged rats are 

a closer age match to human stroke patients and could be a better model for translation to 

humans.

The physiological significant of this study is that the response to ischemia is rapid within 

minutes. Water movement is associated with transport of electrolytes, primarily with 

sodium. Our data indicates that if the brain is able to maintain the electrolytes, ionized 

calcium and sodium, within the blood then edema is reduced. This study indicates that if 

buffering in the blood is unable to adjust their blood homeostasis then infarct volume and 

death will occur. This maintenance of pH is essential as acidosis will result in neural cell 

death to expand the infarct volume (Sherwood, Lee, Gormley, & Askwith, 2011; Ying, Han, 

Miller, & Swanson, 1999; Yushkevich et al., 2006). Bicarbonate, as discussed above, plays a 
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critical role in maintaining blood homeostasis and the dysregulation of bicarbonate. In fact, 

serum bicarbonate is associated with heart failure and mortality (Kendrick et al., 2017).

Studies investigating the effects of acid base balance in anesthesia are scarce, and to our 

knowledge, this is the first study analyzing blood gas parameters in aged rats under 

anesthesia. Others have evaluated young female rats that were subjected to three different 

types of anesthesia (pentobarbital, ketamine/xylazine, or zoletil) and after 20 minutes of 

administration, acid base balance and electrolyte concentrations were examined. All three 

groups blood samples were in a state of acidosis and hypoxia. Under pentobarbital the young 

rats experienced hypercapnia with elevated bicarbonate levels. While the rats exposed to 

ketamine/xylazine ranged from normocapnia to hypercapnia and a wide range of bicarbonate 

values, and the rats under zoletil were hypercapnic and normal levels of bicarbonate (Svorc, 

2018). The pentobarbital findings are in congruence with our results. We also noticed the 

longer our animals were under isoflurane (at 72 hours during MRI procedure) they 

experienced severe levels of hypoxia or pO2.

In conclusion, this study shows that blood chemistry in the systemic circulation responds 

rapidly to an ischemic event in the brain. We demonstrate the importance of identifying early 

significant changes in blood gases and electrolyte concentrations after induction of the 

permanent middle cerebral artery occlusion stroke, particularly as it relates to infarct 

volume, edema volume, and mortality. We found pH (pre- to post-MCAO and post-MCAO 

to 72 hours) was predictive of infarct volume; changes in ionized calcium and sodium (post-

MCAO to 72 hours) were predictive of edema volume; and the changes of bicarbonate 

within the range of - 2.00 to −7.00 increased the risk for mortality. Of the three time points 

used, the post-MCAO and 72-hour time points would be most applicable to the human 

stroke patients since they receive treatment hours after having a stroke. Finally, bicarbonate 

stands out as the most promising indicator from our study, providing us with a predictive 

range for mortality but must be examined in the context of the human patient. Overall, these 

studies will provide acid/base and electrolyte concentrations as potential predictive 

biomarkers for stroke outcomes. These studies need be verified in human patients an at 

appropriate time points in patient care. However, the use of multivariate analyses appears to 

be more appropriate approach in determining predictive biomarkers.
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SIGNIFICANCE STATEMENT:

By evaluating acid/base balance and electrolyte levels, we can identify prognostic 

indicators that assist in predicting the severity of stroke outcomes. Cerebral infarction 

produces edema and electrolyte imbalances, factors that contribute to brain swelling, 

dysfunction, and mortality in stroke patients. Our findings reveal that acute changes in 

acid/base balance and electrolytes occur in aged rat model of stroke pMCAO. Changes in 

pH, ionized calcium, and sodium were predictive of infarct and edema volumes, while 

changes in bicarbonate indicated an increased risk of mortality. Further studies should 

examine if the interplay of acid/base and electrolyte levels relates to the pathophysiology 

in the human stroke condition.
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Figure 1: 
Permanent Timeline

The first venous blood sample collection (represented by 1st iSTAT) to MCAO takes 

approximately 30 minutes (represented by the shaded box). The post-MCAO sample was 

taken approximately seven minutes after induction of the MCAO (represented by 2nd 

iSTAT). The MRI scans and 3rd iSTAT collection were obtained before euthanization at 72 

hours.
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Figure 2. 
A-D: MRI Images of Infarct and Edema Volumes

2a: Representative permanent-MCAO Diffusion Tensor Imaging (DTI) image of infarct 

volume.

2b: Representative permanent-MCAO T2-weighted image of edema volume.

2c: DTI imaging revealed the volume of brain parenchyma demonstrating restricted 

diffusion of infarct volume visibly affected after pMCAO. Shading indicates the calculation 

made by manual segmentation.

2d: T2 weighted imaging revealed the volume of brain parenchyma demonstrating restricted 

diffusion of edema volume visibly affected after pMCAO. Shading indicates the calculation 

made by manual segmentation.
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Figure 3: 
Cox Regression and Mortality

Cox regression model analysis revealed a 3.25 times greater risk for mortality based on the 

magnitude of change in bicarbonate levels (range −2.00 to −7.00) from pre- to post-MCAO.
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Table 1:

Repeated Measures ANOVA results of sex and blood gas parameters at three time points.

Parameters
All Rats

Mean ± SD
Male

Mean ± SD
Female

Mean ± SD P-value

pH

pre-MCAO 7.30 ± 0.04 7.32 ± 0.04 7.29 ± 0.03 0.125

post-MCAO 7.23 ± 0.07 7.27 ± 0.04 7.20 ± 0.06

72 hours 7.24 ± 0.04 7.26 ± 0.03 7.23 ± 0.04

pCO2 (mmHg)

pre-MCAO 60.11 ± 6.29 58.38 ± 6.58 61.27 ± 7.23 0.213

post-MCAO 77.08 ± 6.77 71.05 ± 6.94 81.10 ± 6.06

72 hours 74.68 ± 7.62 73.83 ± 7.66 75.24 ± 7.58

pO2 (mmHg)

pre-MCAO 125.33 ± 13.87 127.00 ± 11.24 123.22 ± 15.56 0.409

post-MCAO 103.33 ± 14.72 102.50 ± 16.67 103.89 ± 12.21

72 hours 9.93 ± 1.76 9.17 ± 1.48 10.44 ± 1.96

Beecf (mmol/L)

pre-MCAO 3.33 ± 0.49 4.50 ± 0.64 3.56 ± 0.35 0.612

post-MCAO 4.80 ± 0.27 5.33 ± 0.36 3.78 ± 0.20

72 hours 5.00 ± 0.62 6.83 ± 0.81 3.76 ± 0.45

HCO3- (mmol/L)

pre-MCAO 29.95 ± 1.59 30.35 ± 1.26 29.69 ± 1.83 0.317

post-MCAO 31.65 ± 2.03 32.27 ± 1.43 31.23 ± 2.34

72 hours 32.47 ± 2.84 34.18 ± 2.88 31.33 ± 2.80

Na+ (mmol/L)

pre-MCAO 137.60 ± 1.51 137.17 ± 1.72 137.89 ± 1.36 0.774

post-MCAO 136.00 ± 1.56 135.67 ± 1.37 137.22 ± 1.72

72 hours 144.20 ± 3.35 143.33 ± 3.23 144.78 ± 3.58

K+ (mmol/L)

pre-MCAO 3.73 ± 0.34 3.97 ± 0.21 3.57 ± 0.32 0.871

post-MCAO 3.87 ± 0.30 4.03 ± 0.31 3.77 ± 0.27

72 hours 4.59 ± 0.48 4.77 ± 0.66 4.45 ± 0.30

iCa2+ (mg/dL)

pre-MCAO 1.01 ± 0.16 1.01 ± 0.11 1.02 ± 0.19 0.673

post-MCAO 1.03 ± 0.13 1.07 ± 0.15 1.01 ± 0.12

72 hours 1.22 ± 0.13 1.27 ± 0.10 1.18 ± 0.14

Glu (mg/dL)

pre-MCAO 223.67 ± 22.67 237.67 ± 19.52 214.33 ± 24.81 0.712

post-MCAO 346.87 ± 36.26 357.67 ± 33.87 339.67 ± 38.36

72 hours 156.67 ± 16.19 158.50 ± 18.63 155.44 ± 14.89
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Parameters
All Rats

Mean ± SD
Male

Mean ± SD
Female

Mean ± SD P-value

Hct (% PCV)

pre-MCAO 40.13 ± 2.13 42.33 ± 2.07 38.67 ± 2.24 0.268

post-MCAO 41.23 ± 2.65 42.67 ± 2.80 39.45 ± 2.42

72 hours 35.27 ± 1.20 37.17 ± 1.31 33.44 ± 1.13

Hbg (g/dL)

pre-MCAO 13.65 ± 0.76 14.40 ± 0.71 13.14 ± 0.77 0.158

post-MCAO 13.65 ± 0.68 14.53 ± 0.57 13.07 ± 0.72

72 hours 11.99 ± 1.48 13.63 ± 1.20 10.90 ± 1.63

Data are presented as mean ± standard deviations. Total sample size N = 16; n = 7 male rats, n = 9 female rats. P values represent the interaction of 
3 time points x gender. Blood gas and electrolyte parameters: pCO2: Partial pressure of carbon dioxide (mmHg); pO2: partial pressure of oxygen 
(mmHg); HCO3-: bicarbonate (mmol/L); BD: base deficit (mmol/L); BE: base excess (mmol/L); sO2: oxygen saturation (%); Na+: sodium 

(mmol/L); K+: potassium (mmol/L); iCa2+: ionized calcium (mmol/L); Glu: glucose (mg/dL); Hct: hematocrit (% PCV); and Hbg: hemoglobin (g/
dL).
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Table 2:

Mauchly’s test indicated that the assumption of sphericity had been violated for each blood gas parameter 

therefore degrees of freedom were corrected with Greenhouse-Geisser estimates of sphericity.

Variable Approximate Chi-Square df Greenhouse-Geisser Estimate of Sphericity Significance

pH 22.26 2 ε = 0.678 p <0.001

pCO2 23.49 2 ε = 0.791 p <0.001

pO2 20.45 2 ε = 0.550 p <0.001

HCO3- 15.61 2 ε = 0.579 p <0.001

Beecf 17.75 2 ε = 0.564 p <0.001

Na+ 13.64 2 ε = 0.596 p <0.001

K+ 11.05 2 ε = 0.517 p <0.001

iCa2+ 12.26 2 ε = 0.502 p <0.001

Glu 8.31 2 ε = 0.667 p = 0.016

Hct 15.98 2 ε = 0.569 p <0.001

Hbg 17.06 2 ε = 0.572 p <0.001
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Table 3:

There was not a significant interaction effect between the three time points of blood gas parameters and sex.

Variable F df Significance

pH 2.27 2 p = 0.125

pCO2 1.64 2 p = 0.213

pO2 1.17 2 p =0.409

HCO3- 1.12 2 p = 0.317

Beecf 0.31 2 p = 0.612

Na+ 0.12 2 p = 0.774

K+ 0.14 2 p = 0.871

iCa2+ 0.39 2 p = 0.673

Glu 0.22 2 p = 0.712

Hct 1.75 2 p = 0.268

Hbg 1.39 2 p = 0.158
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Table 4:

Acid/base and electrolyte values for animals who died prior to 72 hours, time points include pre- and post-

MCAO.

Died Prior to 72 hours

Parameters n Pre-MCAO Mean ± SD Post-MCAO Mean ± SD P-value

pH 15 7.31 ± 0.05 7.19 ± 0.12 0.026

pCO2 (mmHg) 15 58.54 ± 4.80 91.13 ± 6.09 0.015

pO2 (mmHg) 15 121.29 ± 14.41 119.57 ± 13.72 0.686

Beecf (mmol/L) 15 3.50 ± 0.52 3.52 ± 0.55 0.919

HCO3- (mmol/L) 15 29.50 ± 2.24 35.67 ± 2.36 0.001

Na+ (mmol/L) 15 137.19 ± 1.60 134.00 ± 1.67 0.039

K+ (mmol/L) 15 3.81 ± 0.47 4.11 ± 0.43 0.151

iCa2+ (mg/dL) 15 1.02 ± 0.11 1.04 ± 0.13 0.657

Glu (mg/dL) 15 259.86 ± 31.99 360.00 ± 34.04 0.014

Hct (% PCV) 15 41.84 ± 2.48 42.86 ± 3.19 0.522

Hbg (g/dL) 15 13.99 ± 0.83 13.90 ± 1.10 0.589
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Table 6:

Multiple linear regression variables predicting infarct volume in aged rats (n = 15)

Variable β P-value

ΔpH (pre- to post-MCAO) 0.667 0.031

ΔpH (post- to 72 hours-MCAO −0.683 0.034

R2 = 0.862, adjusted R2 = 0.813, df = 2, F = 14.77, p = 0.030

Durbin-Watson = 1.35
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Table 7:

Multiple linear regression variables predicting edema volume in aged rats (n = 16)

Variable β P-value

ΔNa+ (post- to 72 hours-MCAO) −1.355 0.011

ΔiCa2+ (post- to 72 hours-MCAO) −0.973 0.018

R2 = 0.813, adjusted R2 = 0.745, df = 2, F = 12.32, p = 0.015

Durbin-Watson = 2.13
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