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ABSTRACT OF THESIS 

 

 

 

 

MYOSIN-XVA IS KEY MOLECULE IN ESTABLISHING THE ARCHITECTURE OF 

MECHANOSENSORY STEREOCILIA BUNDLES OF THE INNER EAR HAIR 

CELLS 

 

Development of hair cell stereocilia bundles involves three stages: elongation, thickening, 

and supernumerary stereocilia retraction. Although Myo-XVa is known to be essential for 

stereocilia elongation, its role in retraction/thickening remains unknown. We quantified 

stereocilia numbers/diameters in shaker-2 mice (Myo15
sh2

) that have deficiencies in 

“long” and “short” isoforms of myosin-XVa, and in mice lacking only the “long” 

myosin-XVa isoform (Myo15
∆N

). Our data showed that myosin-XVa is largely not 

involved in the developmental retraction of supernumerary stereocilia. In normal 

development, the diameters of the first (tallest)/second row stereocilia within a bundle  

are equal and grow simultaneously. The diameter of the third row stereocilia increases 

together with that of taller stereocilia until P1-2 and then either decreases almost two-fold 

in inner hair cells (IHCs) or stays the same in outer hair cells (OHCs), resulting in a 

prominent diameter gradation in IHCs and less prominent in OHCs. Sh2 mutation 

abolishes this gradation in IHCs/OHCs. Stereocilia of all rows grow in diameters nearly 

equally in Myo15
sh2/sh2 

IHCs and OHCs. Conversely, ΔN mutation does not affect normal 

stereocilia diameter gradation until ~P8. Therefore, myosin-XVa “short” isoform is 

essential for developmental thinning of third row stereocilia, which causes diameter 

gradation within a hair bundle. 

 

KEYWORDS: MYO-XVa, Auditory Hair Cells, Stereocilia Diameter Gradation, 

Postnatal Development, Shaker-2 
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SECTION 1: BACKGROUND  

1.1 The Anatomy and Physiology of the Ear  

The mammalian ear is divided into three distinct parts that orchestrate the organism’s 

ability to hear. The outer ear, the most external part, which receives sound wave stimuli; 

it is medially followed by the (3 cm) ear canal that serves as a bridge to transverse the 

sound waves to the middle ear and, therefore, resulting into the mechanical movement of 

the downstream tympanic membrane or the eardrum (Lehnhardt and Lehnhardt 

2003).The tympanic membrane, which is approximately 85mm
2
, is a structural mixture of 

collagen, epithelial, and connective tissues, in addition to neural axons and capillaries 

(Harrison 1988).  The mechanical vibrations of the tympanic membrane by the sound 

stimulus causes the movement of three bones known as the auditory ossicles: the malleus, 

the incus, and the stapes; ultimately, the movement of these bones, mainly the stapes, 

transverses into the inner ear through an opening called the oval window, where the 

stapes is attached (Harrison 1988; Lehnhardt and Lehnhardt 2003). The three main ear 

parts are illustrated in Fig.1.1-1 below: 

 

   Figure 1.1-1 Anatomical overview of the mammalian ear 

This figure is modified from (Frolenkov, Belyantseva et al. 2004). 
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The inner ear encompasses both the vestibular system, which allows us to maintain 

balance, and the cochlear system that is necessary for our auditory function (Fig.1.1-1). 

Both the vestibular and the cochlear organs are surrounded by a membrane that is 

encapsulated by a bony structure that well-fits into the temporal bones on both sides of 

the organisms’s head (Lehnhardt and Lehnhardt 2003). The cochlear and the vestibular 

organs are exposed to a unique extracellular fluid with high amounts of potassium (K
+
) 

and  low amounts of sodium (Na
+
), known as the endolymph (Kazmierczak, Harris et al. 

2015) (Fig.1.1-2). The ionic composition of the endolymph is somewhat similar to that of 

the cytosol. In contrast, the other fluid-filled spaces in the inner ear contain the 

perilymph, which has high amounts of sodium (Na
+
) and low amounts of potassium (K

+
), 

just like the interstitial fluid in our body (Kazmierczak, Harris et al. 2015)(Fig1.1-2). The 

curled 35mm structure known as the cochlea encompasses three compartments: a middle 

compartment called the Scala media, which houses the hearing sensory organ (the organ 

of Corti is filled with endolymph, a top and bottom compartments known as the Scala 

vestibuli and Scala tympani, respectively, that are filled with perilymph (Harrison 1988), 

as shown in Fig1.1- 2 below:  

 

Figure 1.1-2: Fluids of the cochlea 

This Figure is modified from (Harrison 1988; Kazmierczak, Harris et al. 2015). 
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Inside the cochlea, the organ of Corti tissue is comprised of the sensory auditory hair 

cells: one row of inner hair cells (IHCs) that detect the sound, and three rows of outer hair 

cells (OHCs) that amplify the sound (Fig.1.1-3) and (Fig.1.1-4). Additionally, other non-

sensory cells, such as the supporting, Dieters, and pillar cells, provide mechanical support 

and stability for the hair cells (Harrison 1988). 

 

Figure 1.1-3: The sensory cells within the organ of Corti 

This figure is modified from (Frolenkov, Belyantseva et al. 2004). 

 

 

Figure 1.1-4: Scanning electron microscopy showing row arrangement of the hair cells 

This figure is modified from (Schwander, Kachar et al. 2010). 

 

The inner ear mechanosensory auditory IHCs and OHCs are characterized by their apical 

microvilli-like structures known as stereocilia (Fig.1.1-4). In mature mammalian hair 

cells, these stereocilia display three distinct rows that are graded in length forming a 

hallmark staircase hair bundle (Tilney and Saunders 1983). The length of rows/bundles 



4 
 

stereocilia is established in accordance with the frequency that is detected by these cells; 

for example, cells that detect high frequency sounds, (located at the base of the organ of 

Corti), have short stereocilia;  in contrast, stereocilia in cells that detect low frequency 

sounds, (located at the apex), are long (Tilney and Saunders 1983). Mechanosensitive 

stereocilia are supported by parallel actin filaments that are connected by cross-bridges 

stabilizing the actin core (Tilney, Egelman et al. 1983). Running along the shaft of the 

stereocilia, these filaments turn into compact rootlets as they intercalate the cuticular 

plate at the tapered base (Fig.1.1-5). Around this tapered base, stereocilia are ultimately 

deflected by a mechanical stimulus (Tilney, Egelman et al. 1983), see (Fig.1.1-5).  

The organ of Corti is confined between two acellular structures (Fig.1.1-3); on the top of 

the organ of Corti (covering the IHCs and OHCs) is the tectorial membrane, which 

physically contacts the first row of stereocilia in the OHC bundles (Fig.1.1-3). 

Conversely, at the bottom of the organ of Corti is the basilar membrane that specifically 

determines the location/hair cells that detect a certain sound frequency (Békésy 1960),  

see (Fig.1.1-3). As sound comes into the inner ear, its vibrations cause the movement of 

the tectorial membrane, the basilar membrane, as well as the endolymph; thus, this 

mechanical vibration causes the deflection of the mechanosensitive stereocilia in the 

positive direction (Fig1.1-5). 
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Figure 1.1-5: Stereocilia displacement during hair bundle stimulation 

This figure is modified from (Peng, Salles et al. 2011). 

 

Stereocilia displacement is produced by the stereocilia direct attachment with the 

vibrating tectorial membrane, such as in the OHCs, or through the vibration of the 

surrounding fluid, such as in the IHCs (Fig.1.1-3). Because of the large difference in 

electrical potential between the cytosol of the hair cells, (-70mV to -55mV) (Pujol, 

Nouvian et al. 2016) and the outside endolymph (+80mVto +100mV) (Pujol, Nouvian et 

al. 2016), see Fig1.1-2, deflection of the hair bundle in the positive direction allows the 

flow of positive ions into the cell (depolarization), through mechanosensitive channels 

that are located at the tips of transducing second and third row stereocilia (Beurg, 

Fettiplace et al. 2009), see Fig.1.1-5.Therefore, the mechanical signal of sound turns into 

electrical signal that is transmitted to the brain, predominantly from the inner hair cells, 

which are largely innervated by afferent nerve fibers (Harrison 1988). In contrast, the role 

of OHCs is different– they amplify the sound-induced vibrations in the organ of Corti in 

order for the IHCs to be able to detect them (Fettiplace and Hackney 2006). 
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1.2 Development of the Auditory Cells in the Inner Ear  

The growth of stereocilia bundles into a sophisticated hallmark staircase-like structure is 

a relatively quick process, which primarily occurs within a maximum of 20-22 days, in 

both the mammalian and non-mammalian inner ear (Tilney, Tilney et al. 1986; 

Kaltenbach, Falzarano et al. 1994). With the interest of how the auditory cells form their 

unique architecture, Lewis Tilney and colleagues studied the embryonic development of 

hair cells using the chick organ of Corti (Fig.1.2-1). Similarly, James Kaltenbach and 

colleagues used hamsters to study the mammalian hair cell development to complete the 

understanding of critical developmental stages that are conserved, and therefore are 

fundamental for hearing (Tilney, Tilney et al. 1986; Kaltenbach, Falzarano et al. 1994).  

Using chick embryos, Tilney demonstrated the organ of Corti maintains an average of 

10,500 hair cell bundles that seem to be already developed by an embryonic age of 8 days 

(ED8) and are maintained throughout life (Tilney, Tilney et al. 1986). Tracking the 

development of bird inner and outer hair cells shows that most dramatic developmental 

events in the organ of Corti occur within the hair cells (Fig1.2-1).  

According to Tilney et al., at an embryonic age of 9 days (ED9), development of the hair 

cell bundle in chicks starts when the previously grown kinocilium moves towards the 

outside of the developing bundle in order to determine the polarity of the future hair cell 

(Tilney, Tilney et al. 1986; Frolenkov, Belyantseva et al. 2004). At around (ED 10), the 

stereocilia on the cuticular plate are short (about half a micron long), and then they start 

to continuously elongate for the next 2-3 days as the staircase becomes prominent by 

ED11 (Fig1.2-1). All stereocilia in the entire chick auditory organ ( from base to apex) 

grow to about 1.5 µm long by ED12, which would be the height of stereocilia in mature 
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hair cells at the base (Tilney, Tilney et al. 1986). When stereocilia height growth stops by 

around ED12, all stereocilia begin to increase in diameter up to ED17 (Tilney, Tilney et 

al. 1986). As the stereocilia thickening process end, stereocilia in the apical hair bundles 

start increasing in height again up to about 2.2-2.8 µm;  therefore, hair cells at the base of 

the organ the organ of Corti mature before those in the apex,  and the two are 

distinguished by their difference in stereocilia heights (Tilney, Tilney et al. 1986). The 

developmental stages described by Tilney are shown the Fig1.2-1 below:  

 

Figure 1.2-1: Embryonic development of the hair bundle in birds  

This figure is reproduced by (Frolenkov, Belyantseva et al. 2004) from (Tilney, Tilney et 

al. 1986) (modified) 

 

Likewise, Kaltenbach observed analogous events during the postnatal development of 

stereocilia in the mammalian hair cell bundles (Fig.1.2-2). At postnatal day 0 (P0), hair 

bundles have similarly short and condensed stereocilia in addition to the kinocilium 

(Kaltenbach, Falzarano et al. 1994). During the time period between P2-6, stereocilia 

grow in length and width to form a “crescent” or a “W”-like staircase as in inner hair 

bundles or outer hair cells, respectively (Kaltenbach, Falzarano et al. 1994). Furthermore, 

during this period, stereocilia form their tip links at P4 (see Fig.1.1-5), and the extra 

stereocilia in the bundle start to retract (Kaltenbach, Falzarano et al. 1994). By P12-14, 

the cell’s kinocilium also retracts, and P14 outer hair cell bundles become mature 

(although they have already stopped thickening and elongating by P4); on the other hand, 
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inner hair cells continue to grow to become mature at P16-18 (Kaltenbach, Falzarano et 

al. 1994).  Just like in birds (Tilney, Tilney et al. 1986), mammalian hair cells at the base 

of the organ of Corti, ie. the ones that respond to high frequencies, mature before those at 

the apex (Kaltenbach, Falzarano et al. 1994). The described developmental events are 

shown in Fig.1.2-2 below: 

 

Figure 1.2-2: Electron microscopy of the hamster hair cell bundles during postnatal           

development. This figure is reproduced by (Frolenkov, Belyantseva et al. 2004) from 

(Kaltenbach, Falzarano et al. 1994) (modified). 

 

1.3 Deafness Diseases in Humans 

Following the most current statistics on deafness within the United States, the National 

Institute on Deafness and Other Communication Disorders (NIDCD) reports that 2-3 out 

of 1000 babies are born deaf (congenital hearing loss) (NIDCD 2016). Moreover, the 

Center for Disease Control and Prevention (CDC) states that “about 1 out of 2 cases of 

hearing loss in babies is due to genetic causes” (CDC 2015). The majority of deafness 
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cases are classified as “sensorineural” as they originate from the organ of Corti, 

specifically due to some form of physiological abnormality in the auditory hair cells or 

their neural connection with the brain (CDC 2015). Additionally, hearing loss can be 

progressive, which means the patient may hear at the beginning of his/her life and loses 

hearing over time, or congenitally profound, if the patient does not have the ability to  

hear from birth (CDC 2015). It is worth mentioning that, in contrast to birds and other 

non-mammalian species, mammalian auditory hair cells do not regenerate (Corwin and 

Cotanche 1988; Roberson and Rubel 1994). Therefore, they have to be maintained 

throughout life in order to maintain hearing. 

1.4 Myosin-XVa in the Auditory Hair Cells and its Impact on Deafness 

 Cells may express diverse myosin proteins that are necessary for normal function; for 

example, in muscles, cells express the frequently known “conventional myosins” that 

interact with actin filaments allowing for muscle contraction. In contrast to myocytes, in 

the inner ear, auditory hair cells express “unconventional myosins”, which are involved 

in the molecular trafficking of cargo as the myosin protein “crawls” over actin filaments 

(Hasson 1997; Wang, Liang et al. 1998).  In a hair cell bundle, as well as in the actin-rich 

cuticular plate at the apex of a hair cell, different myosin proteins are found along 

stereocilia actin filaments and have different localization patterns that are related to their 

function (Hasson 1997).  

An unconventional myosin that we explore in our study is Myosin-XVa (Myo-XVa or 

Myo-15a). Myosin-XVa is expressed in the organ of Corti IHCs and OHCs as well as 

vestibular hair bundles, specifically at the tips of the stereocilia (Belyantseva, Boger et al. 

2003), in addition to the kidney, the liver, and the pituitary and endocrine glands (Probst, 
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Fridell et al. 1998; Rehman, Bird et al. 2016). Myosin-XVa in humans, or Myosin-XV in 

mice, which we use as a model in our study, is produced by Myo-XVA gene on 

chromosome 17 in humans or Myo-XV on chromosome 11 in mice, respectively (Probst, 

Fridell et al. 1998; Rehman, Bird et al. 2016). Myo-XVA is 66 exon long and through 

alternative splicing during gene transcription, two isoforms of the Myo-XVa protein are 

made: an exceptionally big long isoform 1 and a short isoform 2 (Fig.1.4-1). Each of the 

Myo-XVa long/short isoforms have a motor domain allowing the Myo-XVa molecule to 

climb over actin, three IQ domains, and a tail domain that allows myosin to carry its 

molecular cargo (Fig.4-1) (Hasson 1997; Wang, Liang et al. 1998; Fang, Indzhykulian et 

al. 2015; Rehman, Bird et al. 2016). It is important to note that isoform 1 is named as “the 

long isoform” because of its bulky N-terminus (133 KDa), which is stated as “ N-

terminal extension” by (Fang, Indzhykulian et al. 2015), as illustrated in Fig,1.4-1 below:   

 

Figure 1.4-1: The structure of Myo-XVa and its protein isoforms 

This figure is modified from (Fang, Indzhykulian et al. 2015) 

 

Myo-XVa uses its motor domain to climb over actin filaments carrying necessary 

molecules for stereocilia elongation, such as whirlin (Belyantseva, Boger et al. 2005). 

Fig. 1.4-2 below illustrates actin filaments inside the stereocilia, which are crosslinked by 
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cross-linker proteins; note the localization of Myo-XVa and whirlin at the tips of 

stereocilia:  

 

Figure 1.4-2: Some actin-binding proteins that are known to be necessary for the growth 

of stereocilia. This figure is redrawn from (Frolenkov, Belyantseva et al. 2004; 

Belyantseva, Boger et al. 2005; Krey, Krystofiak et al. 2016; McGrath, Roy et al. 2017) 

 

Myo-XVa long and short isoform are expressed at various time points during hair bundle 

development (Fang, Indzhykulian et al. 2015). During early postnatal days, hair cell 

bundles express only the short isoform in order to develop the proper bundle architecture; 

however, by P6, protein  expression is altered into the Myo-XVa long isoform, which is  

necessary for stereocilia maintenance in hair cells (Fang, Indzhykulian et al. 2015). 

Additionally, Myo-XVa long isoform have different expression patterns within the 

stereocilia hair bundles: it is expressed in all stereocilia rows in the OHCs and only 

second and third row stereocilia in IHCs (Fang, Indzhykulian et al. 2015), i.e. the ones 

that harbor mechanotransduction channels– “transducing” stereocilia (Beurg, Fettiplace 

et al. 2009).  
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Mutations in Myo-XVa long and short isoforms yield to different hair cell abnormalities 

with pronounced disruption in the stereocilia bundles; thus, leading to different deafness 

outcomes in both rodents and humans (Probst, Fridell et al. 1998; Fang, Indzhykulian et 

al. 2015; Rehman, Bird et al. 2016). For example, a point mutation in the motor domain 

of Myo-XVa, through amino acid replacement of Cysteine by Tyrosine in Myo15
sh2/sh2 

(Shaker-2) mice (Probst, Fridell et al. 1998),  Fig.1.4-1, affects both long and short 

isoforms; therefore, impairing the delivery of cargo to the tips of the stereocilia (Probst, 

Fridell et al. 1998; Fang, Indzhykulian et al. 2015). If Myo-XVa cannot climb over actin 

to carry “important” molecules, like whirlin, to the tips of the stereocilia, this can affect 

their normal development and elongation (Probst, Fridell et al. 1998; Belyantseva, Boger 

et al. 2005; Fang, Indzhykulian et al. 2015). Therefore, stereocilia bundles are short in 

Myo15
sh2/sh2 

(Shaker-2) mice (Fig.1.4-3, A). These mice are disoriented, due to vestibular 

dysfunction, and profoundly deaf (Probst, Fridell et al. 1998).  

On the other hand, loss of only the long isoform of Myo15a causes a different phenotype. 

Fang and co-authors introduced a nonsense mutation in the N- terminus of the long 

isoform that generates a stop codon and prevents the translation of the rest of the Myo-

XVa long isoform; therefore, only the short isoform would be functional (Fang, 

Indzhykulian et al. 2015). According to Qing Fang et al., Myo-XVa isoform-specific 

knockout mutation does not affect the elongation of the stereocilia but causes progressive 

second and third row stereocilia degeneration in adult hair bundles, such as that seen in 

myo15
∆N/∆N

 (∆N) mice (Fig.1.4-3). Hair bundles from the two mouse strains (shaker-2 

and ∆N) are illustrated in Fig.1.4-3 below: 



13 
 

 

Figure 1.4-3: Morphological comparison of control heterozygous and homozygous hair 

cell bundles in different Myo15 mouse strains. Panel A: Myo15
sh2

 inner hair cells; note 

short stereocilia in Myo15
sh2/sh2

 bundles; images were acquired by Andrew Alexander in 

our lab. Panel B (top): Myo15
∆N 

inner hair cells; note normal stereocilia in young 

Myo15
∆N/∆N

 bundles; images are modified from  (Fang, Indzhykulian et al. 2015). Panel B 

(bottom): Myo15
∆N 

inner hair cells; note third row stereocilia degeneration in adult  

Myo15
∆N/∆N

 bundles; images are modified from (Fang, Indzhykulian et al. 2015). 

 

Both Myo15
sh2/sh2 

(Shaker-2) mice and Myo15
∆N/∆N

 (∆N) mice are congenitally deaf.   

Myo-XVa was the first unconventional myosin that was discovered to cause hearing loss, 

in the mutant shaker-2 (Myo15
sh2/sh2

) mice, and is responsible for DFNB3 “Non-

syndromic Recessive Deafness 3” in humans (caused by mutation in MYO-XVA) 

(Probst, Fridell et al. 1998). The hallmark abnormally short stereocilia suggests that a 

mutation in Myo-XVa is linked to disruption in the normal development of stereocilia 

A 

B 
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elongation in the shaker-2 hair bundles (Probst, Fridell et al. 1998). In fact, following 

studies have shown that whirler mice (wi/wi) which lack whirlin, a scaffolding protein 

that is carried by Myo-XVa to stereocilia tips (Belyantseva, Boger et al. 2005) (Fig.1.4-

2), are also deaf and have short stereocilia (Belyantseva, Labay et al. 2003; Mogensen, 

Rzadzinska et al. 2007). Since Myo-XVa is needed for the normal elongation of 

stereocilia (Probst, Fridell et al. 1998; Belyantseva, Boger et al. 2003; Belyantseva, 

Boger et al. 2005), we were curious about whether it has a potential dual role in the 

thickening of stereocilia during development.  
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SECTION 2: INTRODUCTION  

During the postnatal development of mammalian auditory hair cells, mechanosensory 

stereocilia arise from the numerous microvilli that originate from the surface of the cell 

(Kaltenbach, Falzarano et al. 1994). Through a series of consequent, but time-varied, 

developmental stages that are conserved in rodents and non-mammalian species, 

stereocilia grow in a region/row-specific graded-height manner forming the hallmark 

staircase (Tilney and Saunders 1983; Kaltenbach, Falzarano et al. 1994). In addition to 

stereocilia lengthening, the microvilli retract and the remaining stereocilia increase in 

thickness forming mature bundles (Tilney, Cotanche et al. 1992; Kaltenbach, Falzarano et 

al. 1994). To the best of our knowledge, although the molecules that may play a role in 

the programmed retraction of the microvilli are obscure, fortunately, the field has 

advanced to discover a number of proteins that are detrimental for stereocilia growth. For 

example, to attain the appropriate stereocilia length, whirlin, a scaffolding protein is 

carried by the tail domain of Myo-XVa to the tips of the stereocilia, where these two 

proteins are co-localized (Belyantseva, Boger et al. 2003; Mogensen, Rzadzinska et al. 

2007). When the two of them arrive to the stereocilia tips, they initiate stereocilia 

elongation (Belyantseva, Boger et al. 2005), refer to (Fig.1.4-2). With their yet unknown 

direct impact on F-actin polymerization, whirlin and Myo-XVa interact with “actin 

bundling protein” eps8, at its N and C- termini respectively, creating a complex that is 

crucial for the elongation of stereocilia(Manor, Disanza et al. 2011). The scientific 

assumptions behind this process entail the hypothesis that whirlin stabilizes F-actin and 

eps8 prevents capping proteins from binding to the barbed (growing) end of F-actin 

(Manor, Disanza et al. 2011). Other actin binding proteins, such as twinflin-2 that is 
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localized to the tips of only transducding shorter row stereocilia, may hinder actin 

polymerization in the shorter rows of stereocilia, forming a characteristic staircase shape 

of the hair cell bundle  (Peng, Belyantseva et al. 2009). In fact, modulating the expression 

of the proteins within Myo-XVa complex in vitro has been shown to alter the 

morphological definition of the staircase through length abnormalities, such as those seen 

in homozygous shaker-2 and whirler stereocilia (Probst, Fridell et al. 1998; Mogensen, 

Rzadzinska et al. 2007; Manor, Disanza et al. 2011). Similarly, proteins like espin-1 

which traffics along the F-actin by Myo-IIIa are also necessary for stereocilia elongation 

(Manor, Disanza et al. 2011). Conversely, molecules like eps8L2 may not contribute to 

stereocilia elongation per se but are responsible for maintaining the proper stereocilia 

height/diameter in mature postnatal bundles, possibly through environmentally driven 

dynamic adjustments in the actin core that is generally stable (Furness, Johnson et al. 

2013) 

Key actin bundling molecules, like espin, plastin-1, and fascin (Krey, Krystofiak et al. 

2016), have been shown to be required for sterecoilia widening and increase in thickness 

during development (Sekerkova, Richter et al. 2011; Krey, Krystofiak et al. 2016), refer 

to (Fig.1.4.-2). For example, Plasin-1, a rich actin cross-linker, determines stereocilia 

diameters through preserving actin filaments from depolymerization and holding them at 

an appropriate spacing gap, about 10nm, to maintain the desired stereocilia thickness 

(Krey, Krystofiak et al. 2016). Likewise, actin-linking espin and glutaredoxin cysteine-

rich 1 (Grxcr1) proteins allow for stereocilia thickening upon increasing the filaments 

within the actin core during development (Odeh, Hunker et al. 2010; Sekerkova, Richter 

et al. 2011). Early studies proposed that the thickness of stereocilia is determined by the 
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number of actin filaments and that the process of stereocilia widening/elongation are 

independent (Tilney, Tilney et al. 1986; Kaltenbach, Falzarano et al. 1994). However, 

past observations of short stereocilia in homozygous shake-2 (Myo15
sh2/sh2

) and whirler 

(wi/wi) thick hair bundles drove our interest to investigate the hypothesis that this process 

may be concurrent. Since Myo-XVa is a “key” molecule affecting stereocilia growth, it 

may be responsible for determining not only stereocilia lengths but also their diameters. 

Myo-XVa produces two structurally similar isoforms of Myo-XVa, with the exception of 

a big N-terminus in the long isoform (Fang, Indzhykulian et al. 2015). Different 

mutations in Myo-XVa long/short isoforms lead to deafness that is associated with 

different bundle abnormalities ─ short stereocilia in shaker-2 bundles that lack both 

isoforms and third row stereocilia degeneration in the long isofrom-specific knockout 

Myo15
∆N/∆N

 mature bundles, confirming their role in elongation and maintenance, 

respectively (Fang, Indzhykulian et al. 2015). Therefore, to track the discrete functional 

role of Myo-XVa isoforms during development, we used Scanning Electron Microscopy 

(SEM) to image young and mature postnatal IHCs and OHCs in control (normal-hearing) 

heterozygous and deaf homozygous Myo15
sh2

 and Myo15
∆N

 mice. We quantified the 

developmental changes in the stereocilia number and thickness. Our study indicates that 

Myo-XVa is not involved in the programmed retraction of the extra stereocilia during 

bundle maturation. Contrarily, we show that Myo-XVa, interestingly only its short 

isoform, indeed regulates stereocilia thickness and is responsible for the diameter 

gradation within the hair cell bundles.  

 

 



18 
 

SECTION 3: METHODS 

3.1 Animals and Tissue Preparation 

All animal procedures were approved by the University of Kentucky Animal Care and 

Use Committee (protocol# 903M2005). 

We used shaker-2 (Myo15
sh2

) (Beyer, Odeh et al. 2000) and Myo-XVa isoform-specific 

knockout (C57BL6) mice (Myo15
∆N

) (Fang, Indzhykulian et al. 2015), typically by 

breeding heterozygous/homozygous pairs that would generate Myo15
+/sh2

 and Myo15
+/∆N

 

controls as well as Myo15s
sh2/sh2 

 and Myo15
∆N/∆N

 mutants. Ages of interest were during 

postnatal days P0-20. For each postnatal age, 1-4 mice were used for each genotype from 

both mice strains. Mouse temporal bones were carefully dissected in cold Leibovitz (L-

15) solution to extract the cochleae. Cochleae (age <P5) were micro-dissected and organs 

of Corti were fixed with 1ml of ( 3% Formaldehyde/Glutaraldehyde in 0.1M Sodium 

Cacodylate pH. 7.4) with 2mM Calcium Chloride CaCl2( 10 µm of 2M CaCl2 is added to 

fixative prior to use). The tectorial membrane was removed prior to fixation. To prevent 

damage of the hair cells in the basal region of the organ of Corti that become very fragile 

in older animals, whole cochleae (age>P5) were perfused with fixative through the oval 

window and fixed overnight at 4°C. The organs of Corti were dissected in the following 

days. In the following days approximately 4ml of distilled water was added to dilute the 

fixative and prevent sample over-fixation. All organs of Corti were dehydrated with 

graded series of alcohol using 200 proof ethanol and critical point dried with liquid CO2 

using Leica EM CPD300 automated machine. Dried samples were carefully mounted 

over aluminum blots and sputter coated with platinum (5nm thickness) for later SEM 

imaging.  
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3.2 Sample Imaging 

We used S-3400 Hitachi Scanning Electron Microscopy to image inner and outer hair 

bundles in the middle region of the organ of Corti. We imaged at least 6 neighboring 

IHCs and OHCs in control heterozygous and mutant homozygous mouse strains. To keep 

a reasonable compromise between a relatively large field of view with still good 

resolution, typically three hairs cells were included in one image. Images were taken at a 

scale of 2.5- 5µm and a working distance (WD) of 8-18µm. To obtain stereocilia count 

and diameter quantification, the angle of sample in relation to the EM beam did not 

matter as long as the stereocilia were clearly seen within the rows. Therefore, a front and 

top views of the hair bundle were sufficient for data analysis.  

3.3 Data Analysis: Stereocilia Number and Diameter Measurements 

Using ImageJ software (ver.1.51) each SEM image scale was converted to nm/pixel in 

order to obtain stereocilia diameter measurements in nanometers. For all postnatal ages 

(P0-P20), we manually counted total stereocilia/bundle for IHCs and OHCs from shaker-

2 (Myo15
sh2

) and “∆N” (Myo15
∆N

) control and homozygous organ of Corti samples, see 

Fig.3.3-1, A. Then, we calculated the average stereocilia count per bundle of all 

IHCs/OHCs at the particular postnatal age and genotype. Control data from Myo15
+/sh2

 

and Myo15
+/∆N

 mice combined together, since we did not see any significant differences. 

Data were presented as Means±SEM. 

To quantify the diameter of the first, second, and third row stereocilia, using ImageJ, a 

straight line was drawn between the visibly defined edges of each stereocilium, see Fig. 

3.3-1. The stereocilia diameters in each row were averaged in each cell and those 
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averages were further averaged to calculate the average diameter/standard error for all 

cells with same postnatal age and genotype. Control animals were combined together.  

All graphs were generated by OriginPro (ver.2018b). Average number of stereocilia per 

bundle and the average diameters of different rows for both shaker-2 (Myo15
sh2

) and 

(Myo15
∆N

) IHCs and OHCs were plotted as a function of postnatal ages. Data were 

presented as Means±SEM. All statistical analysis was performed with two-sample-t-test; 

with Welch Correction. All figures were constructed using Adobe Illustrator CC 

(2017.1.0 Release). 

 

Figure 3.3-1 Quantification of stereocilia number and diameter in the hair bundles. 

Panel A: Total number of stereocilia in the IHC bundle. Panel B: Stereocilia diameter       

measurement (in nm) in different stereocilia rows in IHC bundle. Note color coded              

stereocilia rows within the bundle staircase. These two preliminary images were 

acquired by Andrew Alexander from our lab 

 

 

 

 

A B 
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SECTION 4: RESULTS 

4.1 Myo-XVa does not regulate retraction of the extranumerary stereocilia in the 

auditory hair cells during their developmental maturation  

A key developmental stage that we hypothesized to be regulated by Myo-XVa is the 

retraction of supernumerary stereocilia. Therefore, we tracked the changes of the total 

number of stereocilia per hair bundle in a presumably critical developmental time period 

during postnatal days (P0-P20). Our data indicate that starting from birth (P0), in all 

control and homozygous Myo15
sh2  

 and myo15
∆N

 inner hair cells, nascent hair bundles 

have a large number of stereocilia, 200-280 per bundle. Later, this number decreases by 

50%-60% through the retraction of the extra microvilli over the course of 6 days (P0-P6) 

(Fig. 4.1-1, D; see decrease in the number of stereocilia in the bundle in SEM images on 

Fig. 4.1-1, A, B, C). The total number of stereocilia remains constant and does not 

significantly change beyond postnatal days 6-8 throughout the adult age in both control 

and Myo15
sh2/sh2

 mice. However, number of stereocilia per bundle continue to decrease in 
 

Myo15
∆N/∆N

 mice due to selective 2
nd

 and 3
rd

 row  degeneration in adult bundles, which 

confirms the previous observations by (Fang, Indzhykulian et al. 2015) (see blue line in 

Fig.4.1-1, D).  Interestingly, there is a slightly smaller number of stereocilia in 

Myo15
∆N/∆N

 bundles at P4-P6 compared to those in control and Myo15
sh2/sh2

 mice.  Yet, 

the overall programmed retraction of stereocilia is not affected in either Myo15
sh2/sh2

 or 

Myo15
∆N/∆N

 mice. Therefore, we conclude that both long and short isoforms of Myo-XVa 

do not regulate the resorption of extra stereocilia in the IHC bundles during postnatal 

development.   
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Figure 4.1-1: Myo-XVa does not affect the retraction of supernumerary stereocilia in 

IHCs. Panel A:  SEM images of Myo15
+/sh2 

and Myo15
+/∆N

 control heterozygous IHC 

bundles (P0-20), B: Myo15
sh2/sh2 

IHC bundles (P0-20), C: Myo15
∆N/∆N

 IHC bundles (P0-

P21), D: total number of stereocilia per bundle in control (black), Myo15
sh2/sh2

 (red), and 

Myo15
∆N/∆N

 (blue) (P0-P20) mice. Asterisk indicates significance (*P<0.05, **P<0.001, 

***P<0.0001). Data are shown as Mean±SEM. 
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Similarly, quantification of total number of stereocilia per hair bundle in control, 

Myo15
sh2/sh2

, and Myo15
∆N/∆N

 OHCs shows a similar retraction of the extra stereocilia 

throughout P10. This reduction in stereocilia seems to be steeper in the OHC since they 

initially have a larger number of nascent stereocilia than that in IHCs. This is illustrated 

during P0-P10 in the IHCs (Fig.4.1-1, D) and OHCs (Fig.4.1-2, D); see also this evident 

stereocilia reduction on SEM images in (Fig.4.1-1,A,B,C) and (Fig.4.1-2, A,B,C). 

However, we did observe that Myo15
sh2/sh2 

OHCs maintain a slightly larger number of 

stereocilia in the adult postnatal age (P18) compared to that of the control (P18) and 

Myo15
∆N/∆N 

(P20). Overall, similar to the IHCs, neither short nor long isoforms of Myo-

XVa disrupts the programmed retraction of the extra stereocilia in the OHC bundles. 

Therefore, we conclude that the programmed retraction of supernumerary microvilli 

within the auditory hair bundles is not regulated by Myo-XVa. 
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Figure 4.1-2: Myo-XVa does not affect the retraction of supernumerary stereocilia in 

OHCs. Panel A: SEM images of Myo15
+/sh2 

and Myo15
+/∆N

 control heterozygous OHC 

bundles (P0-20), B: Myo15
sh2/sh2

 OHC bundles (P0-20), C: Myo15
∆N/∆N

 OHC bundles 

(P0-P21), D: total number stereocilia per bundle in control (black), Myo15
sh2/sh2

 (red), and 

myo15
∆N/∆N

 (blue) (P0-P20) mice. Asterisk indicates significance (*P<0.05, **P<0.001, 

***P<0.0001). Data are shown as Mean±SEM. 
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4.2 Myo-XVa is essential to form the differences in stereocilia diameters between the 

rows in the IHC bundles 

Since Myo-XVa is essential for the elongation of stereocilia (Probst, Fridell et al. 1998), 

we were curious whether it is also needed to determine the thickness of stereocilia within 

the hair bundle. Therefore, we measured the diameters of stereocilia in three rows, 

(Fig.3.3-1, B), in all control, Myo15
sh2/sh2

 and Myo15
∆N/∆N 

IHC bundles during P0-P20 

(Fig.4.2-1). Thickness measurements in control IHCs shows that, in order to achieve the 

proper wild type-like architecture, stereocilia of the first (tallest) and second row 

continuously increase in thickness reaching a maximum diameter of approximately 325-

340nm by P18. Both, first and second row stereocilia show no significant difference in 

their diameter growth throughout postnatal development (see red and blue lines in 

Fig.4.2-1, D: control). In contrast to the taller rows, diameter of the third row stereocilia 

behaves differently. There is an initial increase in stereocilia thickness during the first 

postnatal days (P0-P1), which then remains steady up to P4, followed by a continuous 

reduction in stereocilia diameters (see green line in Fig.4.2-1, D: control). This major 

difference in stereocilia growth establishes the diameter gradation within the rows of the 

hair cell bundle (see also SEM images of P0-P20 control bundles in Fig.4.2-1, A).  

Myo15
sh2/sh2

 hair bundles, that lack both Myo-XVa long and short isoforms, are 

characterized by absence of the staircase architecture due to disruption in stereocilia 

length gradation within the rows (Probst, Fridell et al. 1998). In this study, we discovered 

that stereocilia diameter gradation is also largely absent in Myo15
sh2/sh2

 bundles. Our 

striking results come from observing third row stereocilia as they maintain the same 

thickness as first and second row, at least during the first 9 postnatal days (Fig.4.2-1, D: 
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Myo15
sh2/sh2

). In addition, third row stereocilia in Myo15
sh2/sh2

 bundles is significantly 

thicker than that in control bundles (Fig.4.2-1, D: Myo15
sh2/sh2

; see green line for 

homozygous shaker-2 and faint green line in background for control). Note the thick third 

row stereocilia in Myo15
sh2/sh2 

SEM images (Fig.4.2-1, B). We believe that the absence of 

the Myo-XVa short isoform is responsible for the loss of stereocilia diameter gradation in 

the Myo15
sh2/sh2

 bundles, because these abnormalities are not observed in the Myo15
∆N/∆N 

IHC bundles that lack only Myo-XVa long isoform (SEM images in Fig.4.2-1, C). In 

Myo15
∆N/∆N 

IHC, stereocilia increase in diameter in a similar fashion to that in control 

(Fig.4.2-1, D: Myo15
∆N/∆N

). The normal process of stereocilia thinning in the third row is 

maintained and those stereocilia have significantly smaller diameters than the first row 

(See green vs. red line in Fig.4.2-1, D: Myo15
∆N/∆N

). Unlike Myo-XVa short isoform, the 

long isoform is not essential for formation and maintaining the gradation of diameters 

within the IHC bundles. 
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Figure 4.2-1: Myo-XVa regulates stereocilia thickness gradation in IHCs. Panel A: SEM 

images of Myo15
+/sh2 

and Myo15
+/∆N

 control heterozygous IHC bundles (P0-20), B: 

Myo15
sh2/sh2

 IHC bundles (P0-20), C: Myo15
∆N/∆N

 IHC bundles (P0-P21), D: 

quantification of stereocilia diameters (nm) in first (red), second (blue), and third (light 

green) stereocilia rows within the IHC staircase of (P0-P20) mice. Asterisk indicates 

significance (*P<0.05, **P<0.001, ***P<0.0001). All P-values were calculated relative 

to Row 1. Data are shown as Mean ± SEM. 
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Although there is a prominent disruption in the normal diameter gradation in Myo15
sh2/sh2 

stereocilia bundles, we did observe some residual gradation that becomes significant 

during late postnatal period (P18). Yet this gradation was very different. In control 

bundles, first and second rows had similar stereocilia diameters, while the third row 

stereocilia were significantly thinner (refer to SEM images on Fig.4.2-1, A). In contrast, 

Myo15
sh2/sh2 

IHCs had a small but progressive decrease of the diameters from the first to 

the third rows (refer to SEM images on Fig.4.2-1, B).  

Additionally, we also found that, the second row stereocilia in Myo15
∆N/∆N

 IHCs lacking 

long isoform of Myo-XVa become significantly thinner around P10 (see blue line in 

Fig.4.2-1, D: Myo15
∆N/∆N

)- note the relative decrease in diameter ratio between 

first/second row stereocilia that becomes very prominent at P10-P20 in Myo15
∆N/∆N

 SEM 

images (Fig.4.2-1, C) compared to that of control (Fig.4.2-1, A) and Myo15
sh2/sh2

 hair 

cells (Fig.4.2-1, B). This is consistent with the previous report by (Fang, Indzhykulian et 

al. 2015), demonstrating thinning of the second row transducing stereocilia in the 

Myo15
∆N/∆N

  IHCs that begins at P8 (Fang, Indzhykulian et al. 2015). Diameter 

quantification of second row stereocilia in Myo15
∆N/∆N 

IHCs also revealed that at P0 these 

stereocilia are thicker than the stereocilia first row (note significant difference of first and 

second rows at P0 in Fig. 4.2-1, D: Myo15
∆N/∆N

) and thicker than control.  We speculate 

this can be due to the fact that Myo15
∆N/∆N 

bundles have smaller number of nascent 

stereocilia than control and Myo15
sh2/sh2

 IHCs (Fig.4.1-1, D).    

4.3 Myo-XVa regulates the differences in stereocilia diameters in the OHC bundles 

We hypothesized that, similar to the IHCs, Myo-XVa may also affect thickness gradation 

of stereocilia in the OHC bundles. We measured the diameters of stereocilia in all three 
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rows, (Fig.3.3-1, B), in control, Myo15
sh2/sh2

, and Myo15
∆N/∆N 

OHC’s (P0-P20) (Fig. 4.3-

1, D). In control bundles, stereocilia diameters in all rows increase throughout postnatal 

development and, thickness gradation becomes significantly prominent only late in 

development (Fig.4.3-1, D: Control). First and second row steroecilia were not 

significantly different in thickness until (P18), unlike third row which is significantly 

thinner than taller rows by P6 (Fig.4.3-1, D: control).  As we expected, in Myo15
sh2/sh2  

OHCs that lack both long/short Myo-XVa isoforms, the gradation of stereocilia diameters 

in different rows largely disappeared up  to around P18, (SEM images in Fig.4.3-1, D 

Myo15
sh2/sh2 

)-note the non-significant change in diameter within the rows relative to row 

1 in Fig.4.3-1: D, Myo15
sh2/sh2

. Third row stereocilia is significantly thicker in 

Myo15
sh2/sh2 

OHCs than in control OHCs and these stereocilia are almost as the thick as 

first and second row in Myo15
sh2/sh2

 OHC - see SEM images in Fig.4.3-1, A, B at P20). 

Similar to IHCs, stereocilia diameter gradation is not affected in Myo15
∆N/∆N

 OHC 

bundles that lack only Myo-XVa long isoform (Fig.4.3-1, D: Myo15
∆N/∆N

). In these 

bundles, taller first and second row behave similar to control rows, and third row 

stereocilia is significantly thinner starting from P0, forming an evident gradation in 

diameter within the bundle. Thus, we conclude that the Myo-XVa short isoform, but not 

the long one, maintains thickness gradation within the rows in OHCs.  

It is important to mention that, similar to IHCs, we did observe some subtle gradation of 

stereocilia diameters between different rows in Myo15
sh2/sh2 

OHCs (Fig.4.3-1: D, 

Myo15
sh2/sh2

), but it is very different from that in control.  
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Figure 4.3-1: Myo-XVa regulates stereocilia thickness gradation in OHCs. Panel A:  

SEM images of Myo15
+/sh2 

and Myo15
+/∆N

 control heterozygous OHC bundles (P0-20), 

B: Myo15
sh2/sh2

 OHC bundles (P0-20), C: Myo15
∆N/∆N

 OHC bundles (P0-P21), D: 

quantification of stereocilia diameters (in nm) in first (red), second (blue), and third (light 

green) stereocilia rows within the OHC staircase of (P0-P20) mice. Asterisk indicates 

significance (*P<0.05, **P<0.001, ***P<0.0001). All P-values were calculated relative 

to Row 1. Data are shown as Mean±SEM. 
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SECTION 5: CONCLUSION 

1) Myosin-XVa is not involved in the programmed retraction of supernumerary 

stereocilia during developmental maturation of the auditory hair cell stereocilia 

bundles. 

2) “Short” isoform of myosin-XVa is essential for the programmed thinning of the 

third row stereocilia, which results in the formation of stereocilia diameter 

gradation in the stereocilia bundles of the auditory hair cells.   
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SECTION 6: DISCUSSION 

6.1 Programmed resorption of supernumerary stereocilia is not affected by Myo-

XVa deficiency 

The retraction of supernumerary stereocilia in development is accompanied by wide-

spread reduction in the number and heights of microvilli in all neighboring supporting 

cells (see SEM images on Fig. 4.1-1, A, B, C and Fig. 4.1-2, A, B, C).  This observation 

suggests that auditory hair cells seem to have a conserved mechanism that favors 

systemic elimination of the supernumerary stereocilia within the organ of Corti and 

protecting “true” stereocilia. The mechanisms that determine the fates of stereocilia and 

microvili are indeed linked to the differences in their actin dynamics (Gorelik, Shevchuk 

et al. 2003; Drummond, Barzik et al. 2015; Narayanan, Chatterton et al. 2015). In 

contrast to the initial findings that postulated that stereocilia F-actin is dynamically 

“treadmilling” and  the whole stereocillium core is replaced within 48 hours (Schneider, 

Belyantseva et al. 2002; Rzadzinska, Schneider et al. 2004), recent findings indicated that 

stereocilia are in fact very stable in normal physiological conditions (Zhang, Piazza et al. 

2012; Drummond, Barzik et al. 2015; Narayanan, Chatterton et al. 2015). Mass 

spectrometry analysis of newly incorporated proteins at the EM level and the live cell 

imaging studies to trace transfected β-actin-GFP molecules within stereocilia have 

confirmed that the actin core is susceptible to slow and partial turnover only at the tips of 

the stereocilia (Zhang, Piazza et al. 2012; Drummond, Barzik et al. 2015), see Fig.1.4-2. 

Concurrent studies validated this observation and additionally suggested that while the 

actin core is continuously polymerizing at the tips of the stereocilia, other “actin-

severing” proteins assist in “cutting” downstream filaments within the shaft to encourage 
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monomers removal through actin depolymerization and prevent stereocilia overgrowth 

(Narayanan, Chatterton et al. 2015).Velez-Ortega et al. have recently discovered that the 

stability of actin within the auditory stereocilia depends on the sustained influx of Ca
2+ 

through partially open at rest mechano-electrical transduction (MET) channels. After 

blockage of this influx with chemical blockers of MET channels or tip link disruption, 

Velez-Ortega and colleagues observed significant retraction of  second and third row 

transducing stereocilia in the auditory hair cells in rats and mice as well as reshaping of 

stereocilia tips (Velez-Ortega, Freeman et al. 2017). Thus, the staircase architecture of the 

auditory hair cell stereocilia bundles is stable in normal physiological conditions but can 

be easily disrupted through the disruption of the MET current.  

In contrast to the stereocilia, short unspecialized microvilli at the surface of most 

epithelial cells are constantly forming and disassembling (Gorelik, Shevchuk et al. 2003). 

Cochlear epithelium seems to have a global program that reduces “unneeded” microvilli 

coat during development. According to our observations, this retraction is not restricted 

to the hair cells but extends also to the microvilli in the rim borders of neighboring 

supporting cells, as also observed by (Gorelik, Shevchuk et al. 2003)- see SEM images of 

IHC/OHC bundles starting from P10 and beyond in (Fig.4.1-1) and (Fig.4.1-2). 

According to our data, this unnecessary supernumerary microvilli retraction is present in 

Myo15
sh2/sh2 

and Myo15
∆N/∆N

 bundles; therefore is independent of Myo-XVa (see Fig.4.1-

1, D and Fig.4.1-2, D).  

As mentioned earlier, inhibition of the resting MET current disturbs the stability of actin 

that is required to sustain lifelong stereocilia height and hair bundle architecture (Velez-

Ortega, Freeman et al. 2017). In homozygous Shaker-2, mice that lack all isoforms of 
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Myo-XVa in their stereocilia, hair bundles are abnormally short and mutant animals are 

profoundly deaf. However, young postnatal auditory hair cells have prominent tip links 

and nearly normal MET current  with the exception of loss of fast adaptation in IHCs  

(Stepanyan, Belyantseva et al. 2006; Stepanyan and Frolenkov 2009). For this reason, 

Myo15
sh2/sh2

 stereocilia probably do not degenerate for quite a while in development 

(Stepanyan, Belyantseva et al. 2006). It is also important to note that Myo-XVa isoform-

specific knockout Myo15
∆N/∆N

 mice do show some decline in MET current and therefore 

selective degeneration of shorter row stereocilia that is already initiated by P11(Fang, 

Indzhykulian et al. 2015). Quantification of stereocilia in the adult Myo15
∆N/∆N

 bundles 

indeed shows a significant decrease in the number of stereocilia (Fig.4.1-1), which 

confirms this degeneration and does explain the link between the necessity of hair cell 

machanotransduction and the stability of the actin core. 

6.2 “Short” Isoform of Myo-XVa is essential for stereocilia thickness gradation 

within the auditory hair cell bundles  

It has been established that myosin-XVa is essential for the programmed elongation of 

stereocilia in development by delivering its cargo, whirlin and other components of 

stereocilia elongation complex to the tips of the stereocilia (Belyantseva, Boger et al. 

2005). However, the role of Myo-XVa in the control of other features of hair cell 

architecture, such as the diameter of stereocilia, has not been yet investigated. Our study 

not only demonstrated the effect of Myo-XVa dysfunction on the thickness of stereocilia 

in hair cells, but also provided a quantitative evidence of diameter regulation within the 

wildtype staircase bundle during postnatal development.  
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Building the actin core requires the assembly of thousands actin monomers that form the 

parallel actin filaments inside the stereocilia (Tilney, Egelman et al. 1983; Krey, 

Krystofiak et al. 2016). To maintain the structure this of parallel actin “reservoir”, 

thousands of actin cross-linker proteins connect these filament to keep the stereocilia 

stable (Tilney, Egelman et al. 1983; Rzadzinska, Schneider et al. 2004; Drummond, 

Barzik et al. 2015; Krey, Krystofiak et al. 2016). In the mammalian auditory hair cells, 

those proteins are known to be different isoforms of: espin, plastin, and Fascin (Krey, 

Krystofiak et al. 2016), Fig.1.4-2. During development, the thickness of stereocilia is 

essentially determined by two key principles 1) the number of actin filaments inside the 

stereocilium 2) the number of actin associated cross-linker molecules (Tilney, Egelman et 

al. 1983). In fact, mice that lack plastin or plastin and fascin together are deaf and their 

stereocilia bundles have thinner diameters due to a decrease in their actin filaments and 

modifications in their packing (Krey, Krystofiak et al. 2016).  

Previous immunolabeling experiments have shown that cross-linker proteins, espin, 

plastin, and fascin, are localized only to the shaft of the stereocilia (Krey, Krystofiak et 

al. 2016). These proteins are absent at the base of the stereocilia, which allows for 

flexibility during bundle deflection (Tilney, Egelman et al. 1983; Krey, Krystofiak et al. 

2016). Interestingly, none of these proteins localizes to the tips of the stereocilia (Krey, 

Krystofiak et al. 2016). Yet, Myo-XVa is the first molecule to be detected at the tips 

(Belyantseva, Boger et al. 2003). According to our data, myosin-XVa is controlling the 

developmental thinning of third row stereocilia (Fig.4.2-1, D: Control). Therefore, it 

cannot simply bring some sort of “thickening” molecules to the stereocilia tips. More 

likely, Myo-XVa interacts with some yet unknown molecules that are expressed more 
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prominently at the tips of the third row stereocilia and control the number of actin 

filaments. One protein that we hypothesize to interact with Myo-XVa, specifically the 

“short” isoform, is “calcium and integrin-binding protein 2”, CIB2, which has been 

shown to be fundamental for hair cell mechanotransduction and calcium signaling 

(Riazuddin, Belyantseva et al. 2012). Immunocytochemistry studies have demonstrated 

CIB2 localization at the tips of the third row stereocilia, and CIB2 mutant hair bundles 

have growth abnormalities such as increased height of the transducing stereocilia, 

occasional degeneration, and increased diameters of the IHC third row stereocilia (Giese, 

Tang et al. 2017).(Note: we also observe more prominent thickening of third row 

stereocilia in Myo15
sh2/sh2

 IHCs (Fig.4.2-1, B, D: Myo15
sh2/sh2

 ) and OHCs (Fig.4.3-1, B, 

D: Myo15
sh2/sh2

). CIB2 also interacts with whirlin (Fig.6.2-1) (Giese, Tang et al. 2017) 

and the latter has been shown to regulate stereocilia heights (i.e. length of actin filaments) 

(Belyantseva, Boger et al. 2005). 

Although in the absence of CIB2, whirlin is still carried by Myo-XVa to the tips of the 

stereocilia (Belyantseva, Boger et al. 2003; Giese, Tang et al. 2017), it is still possible 

that CIB2 cannot make it to the tips of the stereocilia without Myo-XVa. Since CIB2 

labeling is also found along the actin filaments of the third row stereocilia (Giese, Tang et 

al. 2017), the alternative hypothesis is that it interacts directly with cross-linker proteins 

and serves as a “liaison” molecule between Myo-XVa and those cross-linkers.  In 

conclusion, more studies are needed to confirm CIB2 co-localization with Myo-XVa at 

the tips of the stereocilia or even with cross-linker proteins in the shaft. 
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Figure 6.2-1: CIB2 interaction with Myo-XVa cargo whirlin. Figure is modified from 

(Geise et al., 2017) 
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