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ABSTRACT OF DISSERTATION 

PROTOCOLIZED VOLUME DE-RESUSCITATION IN CRITICALLY ILL PATIENTS 

While early fluid resuscitation may be a necessary component to decrease mortality in 
the majority of critically ill patients admitted to the intensive care unit, the benefit of continued 
administration after the first 24 hours is less clear. Paradoxically, a positive fluid balance 
secondary to intravenous fluid receipt has been associated with diverse and persistent 
perpetuating detriment on a multitude of organ systems. Continued clinical harm has been 
demonstrated on pulmonary and renal function as well as patient outcomes such as rates of 
mortality and length of stay. Despite the growing body of evidence supporting the potential 
adverse aspects of positive fluid balances, fluid overload remains common in patients during the 
early days of critical care admission. 

One approach to correcting fluid balance is shifting focus onto the post- or de- 
resuscitation period with appropriate fluid removal with diuresis once hemodynamic stability is 
achieved. However, diuresis is often ineffective due to a lack of standardization in identification of 
fluid-overloaded patients. Further, optimal transition times between fluid resuscitation and fluid 
removal are not clear and physical signs of fluid overload are delayed relative to onset of organ 
damage. While administration of diuretics has shown to decrease net volume and improve clinical 
outcomes in the critically ill, current practice does not reflect clinical trial findings. Most 
treatment regimens are often inadequate both by nature of time and dosing intensity. Further, as 
de-resuscitation occurs once the initial instability has resolved, precedence is usually given to 
other acute or critical needs rather than follow-up for diuresis effectiveness. Additionally, frequent 
apprehension for medication side effects is seen, despite the preponderance of adverse event data 
found only in non-critical care populations, frequently non-translatable to patients within the 
intensive care unit. 

Optimization of diuresis in critically ill patients is primed for clinical pharmacy 
intervention. Clinical pharmacists are experts in the delivery of pharmaceutical care, utilizing 
specialized therapeutic knowledge, experience, and judgment to ensure optimal patient outcomes. 
Pharmacist-driven protocols for other conditions have shown improved patient outcomes, 
reduced adverse events and improved target attainment in before and after studies. A pharmacist- 
driven diuresis protocol to facilitate de-resuscitation implemented within the multidisciplinary 
critical care team has the potential to improve patient care by optimizing pharmacotherapy 
selection, while potentially reducing adverse events, days on mechanical ventilation and length of 



intensive care unit stay. Such a protocol rightfully places pharmacist accountability on 
medication-related outcomes while potentially decreasing critical care resource utilization. 

The work within this dissertation aims to accomplish the development of a pharmacist- 
driven diuresis protocol for implementation in the medical intensive care unit, with national 
pharmacy organization sponsorship. Further, the protocol aims to be adopted as an innovative 
practice change for de-resuscitation of critically ill patients to improve clinical outcomes while 
advancing the pharmacy profession. 

KEYWORDS: fluids, critical illness, diuresis, volume status, de-resuscitation, mechanical 
ventilation 
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

This chapter provides an introduction to both the physiologic and clinical concerns 

regarding fluid administration and volume status in the intensive care unit (ICU) which motivate 

the work within this dissertation. This dissertation discusses a protocolized approach to the 

administration of diuretics for volume removal within the critically ill population. 

1.1 Pathophysiology of Shock and Fluid Rationale 

1.1.1 Parameters of Perfusion 

Shock, by definition, is a profound circulatory failure in which the body remains in an 

overall critical state of low organ perfusion threatening survival. (1) Shock can be secondary to 

inadequate supply of oxygen as well as impaired oxygen use, either of which may lead to 

insufficient oxygen delivery (DO2) relative to oxygen consumption (VO2). When in balance, the 

body maintains aerobic metabolism, utilizing energy efficiently to perform bodily functions. When 

the circulation, consisting of the blood vessels throughout the body, is impaired, tissues and 

organs can increase oxygen extraction from the blood to compensate. Once a critical threshold is 

reached, however, the body converts to anaerobic metabolism, a less efficient process for the 

production of energy, leading to accumulation of breakdown products. If the balance is not 

restored, organ injury begins. Perfusion of organs and tissue is driven by the DO2. The amount 

of oxygen circulating in the blood supply to organs is determined by several key factors, including 

hemoglobin and the hemoglobin affinity for oxygen, the actual supply of oxygen within the blood, 

and cardiac output (CO). Once blood supply reaches the tissue level, the amount of delivered 

oxygen is dependent on perfusion pressure. Perfusion pressure is the energy required to overcome 

resistance and allow oxygen exchange at the tissue level and is mathematically defined as the 

difference between the arterial pressure, termed mean arterial pressure (MAP), and the amount 

of blood flow resistance within the vessel. MAP is the blood flow from the heart to the organs and 

is the sum of the central venous pressure (CVP) in addition to the mathematical product of 
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CO multiplied by systemic vascular resistance (SVR). The CVP is the pressure measured in the 

vena cava prior to right atrium. As the CVP physiologically is typically near 0 mmHg, the 

calculation is often simplified to MAP = CO × SVR. The SVR is the level of resistance that must 

be overcome to push blood through the circulatory system and create flow. 

1.1.2 Resuscitation Targets in Shock 
 

MAP is most frequently used as a monitoring parameter during the treatment of shock 

as, while a certain organ-specific autoregulatory range allows small, relatively insignificant 

fluctuations in MAP, organ perfusion significantly and linearly drops once the MAP is below a 

critical threshold. Four major types of shock are described, with septic shock found to be the most 

common in those admitted to the emergency department. (2) In septic shock, both oxygen delivery 

and consumption may be impaired. Regarding decreased oxygen delivery, a predominant decrease 

in SVR results in a decrease in MAP, secondary to capillary leak, resulting in extravasation of 

blood volume from the vascular space to neighboring body cavities. While all organs depend on 

autoregulation to maintain perfusion pressure, major organs which are most susceptible to these 

changes include the brain, heart, and kidney. For this reason, studies target increases in SVR 

utilizing MAP as a surrogate marker and have demonstrated that a MAP between 60-65 mmHg 

best correlates with survival, resulting in a guideline recommendation for targeted resuscitation 

in sepsis of a MAP of 65 mmHg. (3, 4) CO, the other key determinant of MAP, is directly 

correlated with a patient’s stroke volume (SV), or the volume of blood pumped from the left 

ventricle of the heart per beat, as well as heart rate (HR). SV can be increased via contractility of 

the ventricle, the muscular ability of the heart to contract, or via an increase in left ventricular 

end-diastolic volume (EDV) just before systole, the phase of the heartbeat when contraction 

occurs and pumps blood to the arteries and subsequent organs. Hence, intravenous crystalloid 

fluids remain the hallmark of initial hemodynamic resuscitation in shock, particularly septic shock, 

within the critically ill via their anticipated impact on EDV, termed preload. This treatment 

approach has its roots in the rationale of what is termed the Frank-Starling Curve, which 
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Figure 1.1 Postulated Preload-Stroke Volume Relationship (5) 
 
 

 
demonstrates that optimizing preload, notably under normal physiologic circumstances, with the 

administration of fluid, could in turn return stroke volume to normal and increase cardiac output 

until the optimal preload is achieved, after which stroke volume will remain stagnant (Figure 1.1). 

1.1.3 The Venous System 
 

Delving further, when the venous system is evaluated, blood flow is primarily determined 

by the pressure gradient between the venous periphery, termed mean systemic filling pressure, 

and the right atrium, the critical back pressure for venous return to the heart. (6) For cardiac 

output to occur, right atrial pressure should be as low as possible to optimize the pressure 

gradient. The CVP has been historically used as a surrogate for right atrial pressure. The venous 

system itself is the primary reservoir for blood flow within the body, holding approximately 70% 

of the plasma volume. 

Theoretically, the venous consists of both stressed and unstressed volume. Unstressed 

volume is the volume which keeps the vessels minimally open and is the major contributor to total 

volume, roughly 60-70%. This volume is, however, of decreased significance given minimal 
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Figure 1.2 Effect of Fluid Bolus on Stressed and Unstressed Volume (7) 
 

 
contribution to the mean systemic pressure. In sepsis, the unstressed volume increases given the 

increased dilation of the vascular system (and decreased SVR). It is important to denote the 

difference in mean systemic pressure and mean arterial pressure. Mean systemic pressure is the 

pressure in the vascular system that would occur without cardiac output after complete 

redistribution of pressure, usually 7-10 mmHg. The mean systemic pressure is an indicator of the 

fullness of the circulatory system and when there is zero flow, the CVP is equal to the mean 

systemic pressure. (8) The stressed volume does contribute however given its pressure exertion 

against the vascular walls. The stressed volume is responsible for venous stretch, corresponding 

to an increase in intravascular pressure, and venous return. In sepsis, as the unstressed volume 

increases, mean systemic pressure decreases with stressed volume shift and fluid extravasation, 

given the leakiness of the vasculature at the center of sepsis pathophysiology. Once the unstressed 

volume maximum is reached, the stressed volume increases, therefore distending vessels to 

increase intravascular volume. Fluid bolus administration has the potential to increase stressed 

volume, preload, and therefore cardiac output, but also the CVP (Figure 1.2). In order to improve 

CO with the administration of fluid, the stressed volume must not only increase, but also this 
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pressure gradient for venous return must exceed a rise in CVP from such bolus. MAP minus CVP 

becomes the hallmark equation to determine overall organ blood flow and perfusion pressure, 

with rising MAP equating to improved organ perfusion and an increased CVP resulting in 

impeded venous return, stroke volume, and therefore cardiac output. In the situation of septic 

shock, once the fluid bolus temporizing MAP through CO augmentation is completed, leakiness 

of the vasculature will allow movement of fluid quickly into the tissue compartments. This results 

in a practice of continued administration of additional fluid boluses for transitory CO 

improvement with sustained extravasation. 

1.2 Evidence Supporting Fluid Administration 
 

As part of their bundled approach to management, the Surviving Sepsis Campaign 

recommends aggressive fluid resuscitation with crystalloid therapy of 30 mL/kg minimum in 

patients presenting in septic shock. (4) Intriguingly, the origin of this recommendation is 

controversial, with potential derivation from a pediatric study of 34 patients within a single center 

cohort. This study, performed 30 years ago, demonstrated that children who received 40 mL/kg 

compared to 20-40 mL/kg and <20 mL/kg of crystalloid therapy within the first hour had 

improved survival and decreased rates of persistent hypovolemia. (9) Unfortunately, the 

administration of 30 mL/kg intravenous (IV) fluid versus alternative dosing recommendations 

has never been studied in prospective adult human models. 

1.2.1 Fluid Administration in Landmark Trials 
 

In a study of septic shock patients admitted to a single-center emergency department, 

administration of 30 mL/kg crystalloid fluid within 30 minutes of presentation compared with 

31-60 or 61-180 minutes improved mortality and hospital length of stay. (10) A two-year 

retrospective cohort study of 594 patients in septic shock demonstrated that the median fluid 

volume within the first 3 hours was 2058 mL versus 1600 mL in survivors and non-survivors, 

respectively. (11) Most recently, three large, multinational studies evaluating the aforementioned 
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bundle-based sepsis therapies failed to demonstrate any benefit with protocolized sepsis 

interventions versus unguided control arms. (12) What is most notable about these studies, 

however, is that patients in all groups received roughly 5 liters of fluid within the first 6 hours of 

arrival. Between group differences in fluid administration was considered a small clinical 

difference, ranging from -452 mL to 667 mL, and no difference in mortality was seen. These 

studies oppose a much earlier, smaller single-center study that prompted the adaption of sepsis 

bundles which compared protocolized therapy versus standard of care. (13) This study showed a 

dramatic decrease in mortality of 16% (Risk Ratio [RR] 0.58, 95% Confidence Interval [CI] 0.38- 

0.876) however between-group fluid administration was 1.48 liters, with survivors receiving 

higher cumulative fluid volumes. While all four of these studies evaluated the end-result of 

multifaceted protocols, authors argue that the dissimilarity in between-group differences in fluid 

administration may have resulted in the mortality benefit seen with the older cohort. (14) 

1.3 Physiologic Concerns with Fluid Administration 
 

Despite theoretical benefits, excess volume receipt during and following the initial shock 

stabilization phase may have detrimental effects. CVP elevation from fluid administration not only 

deleteriously influences cardiac output, but may also increase interstitial pressure of encapsulated 

organs, which may result in a decrease of microcirculatory blood flow. (5) Particularly with large 

fluid boluses, volume administration may exceed the heart’s ability to compensate and overly 

rapid increases in filling pressures may counteract compensatory mechanisms within shock 

resulting in cardiovascular collapse. (15) Despite this evidence, clinical trials demonstrate the 

majority of hemodynamically unstable patients are not fluid responsive, hence may not benefit 

from further bolus administration for ongoing shock. (5) 

1.3.1 Cardiac Dysfunction and Fluid Administration 
 

Studies specifically examining cardiac function show systolic, diastolic, and combined 

diastolic and systolic dysfunction occurring in 9-50%, 40-84%, and 14.1% of patients presenting 
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with septic shock, respectively. (16, 17) Such diastolic dysfunction can align with a decrease in left 

ventricular compliance which impairs the ability of the left ventricle to subsequently dilate and 

augment SV in response to fluid loading. (18) Excessive fluid loading to a non-compliant left 

ventricle may aggravate pulmonary congestion and non-cardiogenic pulmonary edema, 

potentially leading to pulmonary hypertension, dysfunction of the right ventricle, and a further 

decrease in left ventricular volumes. (19) In a dilated right ventricle, even a small increase in 

volume can cause a major increase in end diastolic pressure. A dilated right ventricle also has the 

ability to result in septal displacement which further impede left ventricular filling and therefore 

decrease cardiac output. (20) 

1.3.2 Effects of Fluid Administration on the Vasculature 
 

Frequent, large volumes of fluid resuscitation have also shown to increase cardiac filling 

pressures abruptly, increasing the release of natriuretic peptides. These hormones, primarily 

secreted from cardiac tissue mostly for their natriuretic properties and sodium regulation, cleave 

proteoglycans and glycoproteins from the endothelial glycocalyx (EGL). The glycocalyx is the 

inner lining of the vascular endothelium, the key barrier between the intravascular and interstitial 

spaces. The EGL allows this vascular bed to maintain its patency and function to prevent large 

molecules and fluid moving out of the vascular system and into the interstitial area. (21, 22) This 

EGL is damaged in multiple pathophysiologic states, including septic shock, predisposing poor 

endothelial barricade at baseline. Natriuretic peptides also inhibit the lymphatic system 

propulsion preventing overall drainage. This results in increased fluid extravasation into the 

interstitial space and subsequently poor elimination from the tissues. 

1.3.3 Effects of Fluid Administration on the Macrocirculation 
 

One cannot forget the basics of hemodynamic physiology in which the rationale of fluids 

are derived, MAP = CO × SVR. If fluid bolus administration seeks to improve MAP via an 

increase in cardiac output, a compensatory decrease in SVR may occur, worsening or masking the 
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actual underlying shock state. Additionally, while a paradoxical increase in CO during shock, 

termed hyperdynamic cardiac output, has been shown to be associated with improved survival 

rates compared to low cardiac output states, forced augmentation of the cardiac output via 

pharmacologic measures has failed to show similar survival benefit as spontaneous rises do. (23, 

24) Fluid bolus administration has the potential to decrease SVR via hemodilution, or the 

lowering of the overall blood concentration. Fluid expansion of blood volume is not synonymous 

with true plasma expansion which means blood viscosity may decrease leading to decreased 

vascular resistance with the arterioles. (25) It is plausible that the expansion of circulating volume 

may only increase distribution of cytokines and worsen organ damage. 

1.3.4 Effects of Fluid Administration on the Microcirculation and Oxygen Delivery 
 

While most discussion regarding fluid administration surrounds its hemodynamic effects 

and the macrocirculation, consisting of systemic pressures and stroke volume responsiveness, less 

consideration has been made for effects on the microcirculation. Via the augmentation of cardiac 

output, fluid bolus administration in shock seeks to improve oxygen delivery to the tissues. The 

microcirculation, the blood flow circulation within the capillaries, the smallest vessels in the 

organs, responsible for direct exchange with organ tissue, is typically regulated by the 

macrocirculation. However, in the critically ill, a lack of hemodynamic correlation between macro- 

and microcirculation is found. Excess fluid extravasation into the interstitial space has the 

potential to decrease the density of the microvasculature. As a result, an increase in tissue diffusion 

distance from oxygen carriers is possible. Hemodilution may also worsen oxygen delivery by 

decreasing availability of oxygen. Further, if the microcirculation is disturbed, local matching of 

oxygen supply and demand may be altered, resulting in a shunt of microcirculatory flow.(26) 

1.4 Evidence Surrounding Fluid Administration 
 

It has been previously stated that absence of evidence is not evidence of absence. Stated 

simply, if there is no evidence to evaluate harm of a particular therapy, one cannot imply that the 
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particular therapy has no harm. Fluid administration in the critically ill aligns with this aphorism. 

This therapy is so ingrained within the management of the critically ill under the assumption of 

benefit that few have sought clinical repercussions of such. To date, the only evidence critiquing 

fluid administration versus placebo arises from two African studies. The first, Fluid Expansion as 

Supportive Therapy (FEAST), evaluated rates of mortality in pediatric patients presenting with 

fever and impaired perfusion. Patients who received a fluid bolus had a 50% higher risk of 

mortality versus those who did not (RR 1.45, 95% CI 1.13-1.86), however the population limits 

generalizability. (27) In a second study, the Simplified Severe Sepsis Protocol (SSSP), adults with 

sepsis-related organ dysfunction received usual versus protocolized care. (28) Protocolized 

patients received significantly higher rates of fluid, 2.7 versus 1.7 liters of fluid in the first 6 hours 

with other therapies equal. The study was stopped early given high mortality rates of those with 

respiratory failure assigned to protocolized therapy at which point in-hospital mortality was 

significantly higher with fluid administration (RR 1.05, 95% CI 0.79-1.41). However, as SSSP 

included patients with nonspecific markers of tissue hypoperfusion rather than only patients with 

sepsis and overt hypotension for whom the benefit of early intravenous fluid bolus and 

vasopressor administration may be greatest, a follow-up study, SSSP-2, sought to reconcile these 

differences. This study demonstrated that patients in protocolized therapy received 1.5 liters more 

fluid on average in the first 6 hours after presentation to the emergency department and had a 

higher risk of mortality (RR 1.46, 95% CI 1.04-2.05). (29) Outside of this evidence, no large 

randomized clinical trials have directly evaluated the impact of fluid therapy compared to placebo 

for management of shock. 

1.5 Monitoring Tools for Fluid Administration 
 

1.5.1 The Utility of Central Venous Pressure for Evaluation of Volume Status 
 

Given concerns for potential error in regards to under or over-administration of 

crystalloids for septic shock, clinicians have sought invasive and non-invasive tools to optimize 

fluid administration. Historically, direct measurement of CVP was utilized as a proposed guide to 
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fluid administration, a practice which dates back to 1959. (30) These authors proposed that right 

atrial pressure was reflective of an effective circulating blood volume. From these data and because 

the central venous pressure is the most proximal intravascular pressure obtained proximal to the 

myocardium, CVP has been proposed as an indicator of right ventricular end-diastolic volume and 

therefore preload. Previous guidelines for the management of septic shock recommended fluid 

administration of crystalloid fluid to target a CVP of 8 mmHg. (31) This practice, however, came 

with assumptions subsequently disproved. The relationship between ventricular pressure and 

volume is nonlinear. The correlation is reduced in times of diastolic dysfunction and ventricular 

compliance fluctuations, such characteristics which are frequent in the critically ill. The CVP can 

also be influenced by thoracic, pericardial, and abdominal pressures, namely positive pressure 

ventilation. (32) CVP has also shown to have large interpatient variation. Further, as mentioned 

previously, increases in CVP at times may have the potential to actually decrease venous return 

and therefore decrease cardiac output. For this reason, CVP without concomitant evaluation of 

actual cardiac output is now much less often recommended for septic shock. Further, later studies 

suggest that the CVP is a poor predictor of fluid responsiveness. (33-39) Expanding on notion of 

poor clinical utility of CVP-drive shock resuscitation, a group of trials comparing the utilization 

of CVP in the resuscitation versus no use of CVP, found no benefit of CVP use on clinical 

endpoints and the pontifical for worsened organ function. Conflictingly, CVP-driven patients had 

increased length of ICU stay and higher cost in protocolized approaches. (40) Evidence concludes 

that CVP is a poor predictor of volume responsiveness in the critically ill. 

1.5.2 Alternative Monitoring Parameters to Guide Fluid Administration 
 

Without clinical support for CVP and decreased recommendation of CVP use from 

guideline panels, clinicians continue to search for more dynamic measures for monitoring during 

fluid administration. (4) The concept of fluid responsiveness argues that fluid bolus 

administration, through increased venous return and augmentation of myocardial stretch, 

increases contractile force and stroke volume. This practically means fluid responsiveness is 
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defined a rise in stroke volume by roughly >15% after a fluid challenge, typically of 6 mL/kg, or 

250-500 mL. (41) Fluid responsiveness measures include pulse pressure variation, stroke volume 

variation, inferior vena cava diameter (IVC) variation, superior vena cava variation, passive leg 

raising, and end-expiratory occlusion testing. (42) Unlike the CVP, these measurements are 

considered to be dynamic assessments rather than static measurements which focus on point 

prevalence, demonstrating a single value within one time frame rather than with physiologic 

change. Fluid responsiveness markers are multifaceted and an exhaustive evaluation is beyond 

the scope of this chapter, however the key results of the literature evaluating this parameter 

broadly have demonstrated that roughly 50% of patients are responsive to fluid administration. 

1.5.3 Evidence Surrounding Fluid Responsiveness Measures 
 

When fixating on preload-dependence, a study of 60 septic shock patients allocated two 

groups to either preload dependence indices-guided or CVP-guided fluid administration. Patients 

in the preload-guided fluid administration group received less daily net volume protocolized fluids 

compared to the other (917 vs 383 mL, total 1.7 vs 0.9 liters). Of note, patients in this study had 

already received 25 mL/kg of fluid prior to enrollment; however, no difference was seen in clinical 

outcomes, including mortality or time to shock resolution. (43) Mortality was numerically, 

although not statistically, higher in the group of patients who received a higher number fluids, 

47% versus 23%. Despite its theoretical appeal, no clinical intervention optimizing fluid 

responsiveness-directed crystalloid administration has been associated with an improvement in 

patient outcomes. Another group of authors attempted to stratify fluid administration based 

purely on fluid responsiveness. A single-center randomized control trial in 82 patients receiving 

vasoactive support after initial fluid resuscitation randomized patients to usual care or targeted 

fluid minimization, the latter of which restricted fluid management to those patients who were 

fluid responsive. (44) Fluid responsiveness was tested via a passive leg raise or administration of 

a 500 mL bolus. A patient was considered responsive if pulse pressure variability decreased > 

13%, the IVC distension index decreased to > 18%, or the stroke volume index difference 
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increased by > 10%. In those who received targeted fluid minimization, day three and five fluid 

balances were 1.17 liters and one liter more negative, respectively. However, differences in total 

volume were not significant nor were clinical outcomes including ventilator days, in-hospital 

mortality, incidence of renal replacement therapy, or days receiving vasoactive support. (44) 

1.5.4 Fluid Responsiveness in the Critically Ill 
 

It is believed only 20% of crystalloid boluses remain intravascular even in healthy 

humans. Due to fluid redistribution, most fluid boluses even in the responsive patient lose their 

effect within 30 to 60 minutes. (45) In the critically ill, less than 5% of a total fluid bolus remains 

in the vascular system after 90 minutes. (46) When evaluated in surgical populations, blood 

volumes evaluated pre- and post-operatively show net decreases even with positive intraoperative 

net volume input and output. Fluid responders themselves have large patient-dependent 

responsiveness. A 1500 mL bolus of balanced crystalloid, 500 mL hydroxyethyl starch, and 1000 

mL of hydroxyethyl starch resulted in a change in blood volume of 0-10%, 5-13%, and 15–25%, 

respectively, demonstrating large interpatient variability with all forms of fluid therapy. (25) To 

emphasize the potential harm of fluid boluses in critically ill shock patients, even when the 

expected short-term MAP rise is demonstrated, fluid administration of 500 mL has been shown 

to decrease the SVR by 10% after infusion. Even with the evolution of optimized monitoring 

parameters for fluid administration, the totality of evidence still does not provide clarity on how 

such translates to clinical benefit. 

1.6 Current Recommendations Regarding Fluid Administration 
 

Despite the ongoing concerns with fluid administration and increased understanding of 

potential harms, multiple national guidelines recommend resuscitation with crystalloid fluids 

immediately upon admission to the intensive care unit. (4, 47) This practice is commonplace, such 

that one billion liters of 0.9% sodium chloride, only one of the two key formulations of crystalloid, 

are purchased in the United States annually. (48) Over 5 million intensive care unit admissions 
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occur per year, almost all are suspected to expose patients to intravenous fluids. (49) Recently, 

the scientific community has re-evaluated historical standards of care. (50) Recent publications 

evaluating compliance with sepsis bundles requiring fluid administration versus non-protocolized 

resuscitation have shown no difference in mortality rates. However no large clinical trials have 

specifically evaluated the role of early fluid administration versus no fluids, and therefore 

utilization remains standard. (20, 51) Current clinical trials addressing this question are ongoing, 

but given a mean trial duration of 5-10 years in recent septic shock publications and the average 

17 year lag between evidence publication and translation to clinical practice, the clinician is 

currently without timely foreseeable answers. (50, 52-55) 

1.7 Late Physiologic Responses to Fluid Resuscitation 
 
 

Ideally, patients presenting in shock resolve capillary leakage and restore 

microcirculatory blood flow at 72 hours. In patients who overcome shock, homeostasis of 

inflammatory cytokines, closure of the capillary leak, normalization of microcirculatory flow and 

subsequent hemodynamic stabilization with restoration of plasma oncotic pressure have been 

demonstrated in some patients on day 3 after septic shock. (56) At this time, diuresis, or an 

augmentation of urine, begins and extravascular fluid mobilizes, resulting in hopefully a more 

negative fluid balance. This is the optimal progression, however, many patients fail to successfully 

achieve this augmentation, resulting in global increased permeability syndrome (GIPS). (57) 

GIPS is an ICU phenomenon first coined by Cordemans and colleagues, consisting of a high 

capillary leak index (calculated via the laboratory values of c-reactive protein: albumin ratio), 

failure of achievement of an even-to-negative fluid balance, and progressive organ failure after the 

first week of ICU stay. The theory behind GIPS is characterized by high capillary leak, excess 

interstitial fluid, and polycompartment syndrome producing lack of fluid mobilization. For these 

individuals, it is suspected that fluid increased edema and venous resistance impeding capillary 

blood flow and oxygen diffusion, resulting in decreased organ perfusion pressure and increased 

potential for organ failure. 
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Figure 1.3 ROSE Concept of Fluid Management (57) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Phases of Organ Damage 
 

One model of fluid resuscitation is ROSE consisting of Resuscitation, Optimization, 

Stabilization, Evacuation, and a potential fifth stage, hypoperfusion. ROSE was conceived to 

demonstrate this restoration of normal flow throughout what authors describe as ebb and flow 

states (Figure 1.3). The ebb state occurs from time of septic shock onset to days into acute illness. 

Ebb is characterized by the need for fluid administration during relative hypovolemia and then 

normovolemia after fluid resuscitation. There is the possibility for subsequent fluid overload 

toward the end of the Ebb phase as shock stabilizes. As initial resuscitative measures are made in 

the ebb phase, organ failure is proposed to decrease. However, continued unnecessary fluid 

administration as well as failure of subsequent decrease in fluid balance may result in a second 

potential detriment to organ damage. The latter flow state correlates with the spontaneous 

resolution of fluid overload, with a decrease in organ damage seen with volume removal. Those 

patients who do not auto-evacuate fluid, or those with GIPS, may require diuretic augmented 

diuresis and fluid removal in order to prevent possible worsening of organ failure. The latter 

portion of this model, when fluid status becomes net negative, demonstrates the potential for a 

final injury to organ perfusion due to excessive diuresis which harms due to hypoperfusion. This 

model highlights the critical, time-dependent period in which excess volume is no longer helping 

and should be removed. The mechanism of removal should be cautious given the potential for 

additional organ damage with excessive fluid removal and return to a relative hypotension state. 
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1.8 Clinical Outcomes in the ICU Population Associated with Fluid Overload 
 

Current opinion depicts excess volume receipt during and after the resuscitation phases 

of shock as potentially detrimental. Some authors have defined fluid overload as 10% fluid 

accumulation from time of admission. (58) Fluid accumulation is calculated by dividing the 

cumulative fluid balance by the patient’s baseline body weight and multiplying by 100%. Studies 

dating back to the early 21st century have implicated worse outcomes for patients with persistent 

positive fluid balances. In 2000, a retrospective review of 36 medical ICU patients with septic 

shock evaluated patients with at least one day of a negative fluid balance, defined as net volume 

≤-500 mL, by day three. In patients which achieved this endpoint, there was an increased chance 

of survival (RR 5.0, 95% CI 2.3-10.9). (59) Six years later, a prospective multi-center observational 

study demonstrated an increased risk of ICU mortality with each additional liter of cumulative 

fluid balance (OR 1.1, 95% CI 1.0–1.1). (60) Ten years later, a strict fluid restriction protocol was 

studied in patients with septic shock who had already received 30 mL/kg. Despite limiting fluid 

resuscitation to only 250-500 mL in cases of severe hypoperfusion in the first 2 hours, patients in 

the fluid restricted group were still 1.7 liters positive after 5 days, compared to 2.7 liters positive 

in the usual care group. Patients receiving protocolized care had decreased risk of acute kidney 

injury (OR 0.46, 95% CI 0.23-0.92). (61) A review of a previous randomized controlled trial 

evaluated clinical outcomes relating to fluid overload in consideration with CVP values. The 

authors of this study demonstrated that at 12 hours, a CVP <8 mmHg was associated with the 

lowest mortality and that 3 liters net positive fluid balance was most optimal for survival. (62) In 

2017, a multicenter retrospective cohort study of eight medical-surgical ICUs evaluated 18,084 

patients and found that a positive fluid balance was associated with increased risk of mortality, a 

risk sustained up to 178 days after ICU admission. A positive fluid balance was defined as a >4% 

cumulative fluid balance, calculated as cumulative net fluid volume in liters (L) divided by 

admission body weight (kg) times 100. Of note, while a negative fluid balance in this cohort was 
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found to have a decrease in short-term mortality (HR 0.81, 95% CI 0.68-0.96), an increase in long- 

term mortality was found relative to a net even volume. (63) 

 
A recent meta-analysis evaluated observational or randomized controlled trials of 

critically ill patients in the intensive care unit receiving an intervention with a target negative or 

neutral fluid balance after day three of ICU stay. (46) The studies selected looked at intra- 

abdominal hypertension or mortality as a primary outcome and the comparator group must have 

not been targeted to a negative fluid balance. The meta-analysis demonstrated that in the 47 

studies evaluated including 19,902 patients, non-survivors had a more positive fluid balance by 

day 7 of their ICU stay compared to survivors, an average of 4.5 ± 3.6 liters more positive. In 

patients treated with a more conservative strategy, mortality decreased from 33.2% to 24.7% (OR 

0.42, 95% CI 0.32−0.55) irrespective of actual fluid balance. In an even more recent meta-analysis, 

English cohort studies specific for adult patients with severe sepsis or septic shock were included. 

The studies selected included high or positive fluid volume/balance compared to low/negative 

fluid volume/balance after the first 24 hours in the ICU. The resulting literature search found 15 

studies comprised of 31,443 patients. (64) A higher fluid balance was associated with a 70% 

increase in mortality (RR 1.70, 95% CI 1.20-2.41). The average fluid balance after 24 hours in this 

analysis was 2.3 ± 0.8 liters in survivors and 3.8 ± 0.8 liters in non-survivors. Five of 8 studies 

looking specifically at mortality based on fluid balance found fluid status to be an independent 

predictor of mortality. Interestingly, survivors in this cohort had on average a 500 mL higher 

volume of fluid in the first 3 hours of care compared to non-survivors. This higher fluid receipt 

early on in ICU admission was associated with improved in-hospital mortality (OR 0.34, 95% CI 

0.15–0.75). 

The largest observational study to date looking at fluid volume correlation with clinical 

outcomes was a multinational study of 730 intensive care units of 84 different countries over a 

one week period. The resulting cohort of 1808 patients was stratified into quartiles based on fluid 
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Table 1.1 Fluid Quartiles in Study Population 
 

Quartile Fluid Balance (mL) Mortality (%) Length of Stay (days) 
 24 hour 72 hour ICU ICU Hospital ICU Hospital 
First 2252 -3714 -5375 15.3 25.8 5 16 
Second 2444 456 187 21.1 20.5 4 12 
Third 3709 3241 3050 32.6 40.8 4 12 
Fourth 5398 7904 8307 40.2 50.6 7 14 

 
balance at 24 hours (Table 1.1). While the cumulative fluid balance at 24 hours was not associated 

with increased mortality, in a multivariable analysis including geographic region, ICU and 

hospital organizational characteristics, age, sex, comorbidities, severity at ICU admission, type of 

admission, referring facility, site of infection, and the type of colloid fluid administered, 72-hour 

fluid balance was significantly higher in the second, third, and fourth quartile in all patients 

(Hazard Ratio [HR] 1.36, 95% CI 1.03–1.80; 1.47, 1.12–1.92; 1.63, 1.25–2.12, respectively). 

Intriguingly, cumulative fluid input was similar in survivors and non-survivors; however, fluid 

output was lower in non-survivors. (65) Evidence continues to accumulate which suggests a 

correlation between clinical harm and volume status. Of consideration, with the current literature 

base it is not possible to discern whether increased volume receipt has been secondary to increased 

severity of illness. Cause and effect analyses are not available and there is the possibility that 

larger volume of resuscitation cohorts were sicker than those in low volume resuscitation cohorts. 

1.9 Pulmonary Dysfunction and Fluid Overload 
 

Blood supply to the pulmonary system is essential for carbon dioxide extraction and back 

to the body with oxygenated blood. Innervation from the body’s nervous system, both 

sympathetic and parasympathetic, allows for physical control of all pulmonary lobes. Pulmonary 

blood flow is the blood supply which carries deoxygenated blood to right atrium and subsequently 

the right ventricle and then lungs via the pulmonary artery. This blood continues until it reaches 

the pulmonary capillaries, the smallest blood vessels and terminal point of the circulation. Here it 

circulates within this permeable, pressurized capillary network surrounding bronchial and 

alveolar ducts containing air circulation, where it undergoes gas exchange with alveolar air. (66) 
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This blood supply from the right ventricle is a large volume, equal to that of the left ventricle, 

and different than the bronchial circulation, which is the minute blood supply either direct or 

indirectly from the aorta, which delivers oxygen to the lungs. (67) Many authors have described 

the impact of fluid overload on pulmonary physiology. Pulmonary edema occurs when fluid within 

the lung outside of the vascular system and blood supply begins to accumulate. This fluid first 

fills up the interstitial space and eventually the alveoli, impairing gas exchange. Pulmonary edema 

can be caused by particular disease states, insufficient lymphatic drainage, decreased interstitial 

hydrostatic pressure, increased capillary permeability, increased hydrostatic pressure within the 

capillaries, and decreased colloid osmotic pressure, with the latter influencers having direct 

correlation with fluid administration and volume overload. If this volume finds its way into the 

pleural space, the membrane which surrounds the lungs, it can result in pleural effusions. Pleural 

effusions, states of excess of fluid within the pleural sac, can result in decreased oxygen in the 

blood known as hypoxia, potentially by lung collapse. Cardiac tamponade, compression of the 

heart secondary to continued fluid buildup, specifically within the pericardial space, can prevent 

cardiac filling and cardiac compliance. (68) 

1.9.1 Evidence of Pulmonary Function in Fluid Overload 
 

One of the first studies to trigger the need for consideration of volume status in those 

with decreased pulmonary function was a 1987 study of 113 patients with acute respiratory 

distress syndrome (ARDS), also known as acute lung injury. This study showed that patients who 

lost at minimum 3 kg of body weight, presumably from volume, had a significantly higher rate of 

survival than those who did not (67% vs 0%). (69) A study of 3147 patients with acute lung 

injury/acute respiratory distress syndrome evaluated outcomes over a two-week period in 98 

European ICUs. A multivariable logistic regression analysis for mortality demonstrated that a 

higher mean fluid balance was an independent risk factor for death (OR 1.5, 95% CI 1.1-1.9), after 

accounting for patient acuity and parameters on the mechanical ventilator. (70) In a retrospective 

study looking at 212 patients with acute lung injury secondary to septic shock, a multivariate 
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analysis adjusting for illness severity and other markers of acuity, failure to achieve conservative 

late fluid management, defined as even-to-negative fluid balance for two consecutive days in the 

first 7 days after septic shock onset, was associated with an increase in hospital mortality (OR 

6.13, 95% CI 2.77-13.57). (71) Conservative late fluid management was defined as an even-to- 

negative fluid balance for 2 consecutive days during the first 7 days after onset of septic shock. 

However, failure to achieve adequate initial fluid resuscitation, at least 20 mL/kg of fluids within 

6 hours of vasoactive therapy, was also associated with increased mortality in the same model (OR 

4.94, 95% CI 1.41-4.47). In totals, studies within a population with predominant respiratory 

failure in the ICU have shown similar result to the general population, with worsened outcomes 

seen in those patients with higher fluid volumes. 

One of the largest indicators of potential impact of fluid on pulmonary function came from 

a large multicenter study of 1000 patients who had acute lung injury. (72) Acute lung injury was 

defined as the receipt of positive-pressure ventilation, with a ratio of the partial pressure of arterial 

oxygen (PaO2) to the fraction of inspired oxygen (FiO2) <300 and bilateral infiltrates on chest 

radiography consistent with the presence of pulmonary edema without evidence of left atrial 

hypertension. Patients in this cohort were randomized to liberal versus conservative fluid 

management, with the liberal group targeting a CVP >14 versus a target of >8 in the patients in 

the conservative group. By study day 7, patients in the liberal group had a cumulative fluid balance 

of 6.9 liters while those in the conservative group were net -136 mL. No difference was seen in 

the rate of 30-day mortality, however a significant increase was seen in ventilator-free days (14.6 

vs 12.1 days, p<0.001) and ICU-free days (13.4 vs 11.2 days, p<0.001) in those in the conservative 

group. Acute lung injury, a frequent finding in the ICU, is characterized by direct permeability of 

the capillaries of the lung, which combined with systemic influences on water balance, increases 

lung water. (73) 

1.10 Monitoring Tools for Pulmonary Complications of Fluid Overload 
 

The extravascular lung water (EVLW) is the water within the lungs outside the 
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pulmonary circulation and is the summation of interstitial, intracellular, alveolar, and lymphatic 

fluid excluding pleural effusions. (74). It is the difference between the amounts of water within 

the blood versus the lung. EVLW is separate from the pulmonary blood supply and typically 

contains a small amount of fluid, manipulated by either transpulmonary hydrostatic pressure, 

pulmonary capillary permeability, endothelial changes, or oncotic pressure. Regardless of its 

cause, an increase in EVLW is directly correlated with the presence of pulmonary edema, with 

increased lung water correlating to a higher risk of alveolar edema. EVLW accumulation impairs 

respiratory gas exchange, resulting in worsening respiratory distress. (75) Decreasing blood or 

plasma intravascular pressures and increasing oncotic pressures via conservative fluid 

management are believed to decrease the development of pulmonary edema in patients with septic 

shock and acute respiratory distress syndrome. The pulmonary-artery occlusion pressure (PAOP) 

is a direct measure of intravascular volume. The PAOP is believed to reflect left ventricular end 

diastolic volume. Even small volume-induced increases in PAOP can increase EVLW. In patients 

presenting with congestive heart failure, pulmonary edema can occur secondary to an increase 

left ventricular end diastolic pressure. Patients with acute respiratory distress syndrome have 

injured lung capillaries secondary to inflammation which results in the potential for extravasation 

when intravascular volume is elevated. Regardless of cause, increased pulmonary edema has the 

potential to worsen outcomes in the ICU population. 

1.10.1 Extravascular Lung Water and Clinical Outcomes 
 

EVLW in the critically ill has been shown to correlate with worsened clinical endpoints. 

In a retrospective study of 373 ICU patients, mortality was 67% in patients with increased EVLW 

(>15 mL/kg) compared to 33% in those without (<10 mL/kg, p=0.001). (76) In a study of 81 

surgical patients, an increased EVLW (>9 mL/kg) was associated with a mortality rate of 80% 

compared to 30% in those with much lower EVLW (9 mL/kg). (77) In another cohort of 48 

critically ill patients with targeted management of EVLW, higher EVLW (>14 mL/kg) was 

associated with a mortality rate of 87% compared to a lesser EVLW, with a mortality rate of 41% 
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(p<0.05). (78) A 2008 study of 19 patients with sepsis-induced respiratory distress syndrome 

demonstrated that a three-day average EVLW exceeding16 mL/kg was 100% specific and 86% 

sensitive for in-hospital mortality while another of 200 patients with acute respiratory distress 

syndrome demonstrated 73% specificity and 54% sensitivity with an EVLW over 21 mL/kg. (79, 

80) When looking specifically at septic shock, an EVLW greater than 7.5 mL/kg demonstrated 

53.8% specificity and 83.3% sensitivity for mortality in a cohort of 50 patients. (81) Oxygenation, 

as measured by a ratio of PaO2 to FiO2, was shown to be significantly correlated with lower 

EVLW (R2 0.27, p< 0.001) in a prospective study of 29 medical ICU patients with severe sepsis, 

11 patients receiving mechanical ventilation (r2 0.33, p<0.0001), and 20 patients admitted with an 

Acute Physiology and Chronic Health Evaluation (APACHE) II score over 20 receiving 

mechanical ventilation (p=0.0004). (82-84) A prospective study of 101 patients protocolized an 

approach directed at specifically decreasing EVL. This protocol was associated with less ICU days 

and duration of mechanical ventilation. (85) The largest compendium of evidence comes from a 

2012 meta-analysis of 11 studies which demonstrated a significantly higher EVLW in non- 

survivors within the ICU, with a mean difference of 5 mL/kg and a diagnostic odds ratio of 8.84, 

however heterogeneity was significant at 90%. (86) A separate study suggested that the change 

in EVLW may be most indicative of clinical outcomes, showing that a decrease of EVLW of at 

least 2.8 correlated with significantly higher survival (p = 0.008). (87) 

1.10.2 Limitations to Extravascular Lung Water Monitoring 
 

While a practical approach would be to take the EVLW and its monitoring to bedside, 

several limitations exist. EVLW requires a transpulmonary thermodilution (TPTD) device. In 

essence, TPTD relies on venous injection of a cold fluid which then mixes with cardiac blood and 

is then ejected into the arterial circulation. A resistance thermometer within the arterial system 

then measures blood temperature changes and, through such, is able to give various hemodynamic 

measurements, including EVLW. EVLW has multiple limitations as it is influenced by the 

amount of EVLW itself, the PaO2/FiO2 ratio, and specific parameters dictated by the mechanical 
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ventilator. It is also unreliable in cases of pulmonary embolism, lung resection, heterogeneous 

forms of acute respiratory distress, and pleural effusions. (88) Additionally, because the TPTD 

itself requires its own system, added adverse events from its placement may occur. (89) 

Unfortunately, other attempts at measuring EVLW, such as chest radiography, fail to 

show the correlation with mortality that is seen with thermodilution methods and have much 

lower positive predictive values as well as specificity. (90) Alternatively a group of authors 

attempted to stratify survival via goal directed fluid removal specifically based on PAOP during 

acute respiratory distress syndrome. (91) They demonstrated that a 25% reduction or more in 

PAOP was associated with improved survival (75% vs 29%, p<0.02), even after stratification for 

age and severity of illness. A decrease in ICU length of stay of 6 days was also demonstrated, 

however no statistical significance was found. Measurement of a PAOP, nevertheless, requires a 

pulmonary arterial catheter (PAC), an even more invasive device as its placement requires direct 

cardiac entry. Given its increased rates of complications, including but not limited to arrhythmias, 

misplacement, knotting, valve rupture, perforation, infarction, infection, and thromboembolism, 

utilization rates in the mechanically ventilated have steadily decreased. (92) Utilization rates have 

dropped by 2% per year, with only 1% of heart failure patients actually receiving a PAC when last 

reported in 2012. (93) 

1.10.3 Additional Monitoring Tools for Pulmonary Edema and Lung Water 
 

Further, even physical exam findings are difficult to translate into predictions for 

meaningful outcomes. One study demonstrated a sensitivity of 81% and specificity of 80% 

regarding the presence of jugular venous distension (a bulge which may occur in the neck 

secondary to increased pressure within the vena cava) and its correlation to a PAOP >17 mmHg 

in the heart failure population. Another prospective study combined the measurement of PAOP 

with rales and edema on physical exam. (94) The latter study found that such physical exam signs 

were absent in nearly 42% of patients with a PAOP >21 mmHg. (95) On chest radiography, fluid 

overload can be seen as dilated upper lobe vessels, cardiomegaly, interstitial edema, enlarged 
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pulmonary artery, pleural effusion, alveolar edema, prominent superior vena cava, and Kerley 

lines which represent thickened, edematous interlobular septa. (58) However, multiple 

confounding factors impact chest radiography has a low sensitivity for capture of volume 

overload. (96) Additionally, pleural effusions can be missed in a patient who is in supine position. 

Sensitivity and specificity of the chest radiography for intubated patients with pleural effusions 

have been reported at 60% and 70%, respectively. (97) However, the frequency of volume overload 

demonstrated on radiography has been shown to increase with severity of fluid overload. (98) 

Other bedside approaches to visualization of fluid status surround the use of ultrasonography, 

either through measurement of vena cava diameter or evaluation of sonographic artifacts, both of 

which require specialized training. (58) 

1.11 Incidence of Respiratory Failure and Mechanical Ventilation 
 

With over 50 percent of ICU patients receiving mechanical ventilation (MV), or positive 

pressure ventilation, within the first 24 hours of ICU admission, this intervention is one of the 

most common treatment modalities utilized in the intensive care unit. (99) MV is the delivery of 

air into the central airways with flow to alveoli from an external device. MV can be utilized for 

the treatment of patients with hypoxia or hypercarbia while also allowing respiratory muscle 

relaxation. The machine allows for pulmonary gas exchange without normal respiratory work. 

(100) There are several methods and modes in which mechanical ventilation can be delivered, well 

beyond the scope of this chapter. While mechanical ventilation is only utilized during 2.8% of all 

hospital admissions, patients with mechanical ventilation account for over four times the amount 

of all hospital costs, not limited to ICU care. (99) Adverse events, such as ventilator-associated 

lung injury, barotrauma, ventilation/perfusion mismatch, hemodynamic instability, muscle 

weakness, and several others, can occur in these patients. Alarmingly, 19% of adverse events 

secondary to mechanical ventilation cause serious residual disability or death. (101) 
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1.11.1 Mechanical Ventilation Weaning and Fluid Status 
 

Weaning from mechanical ventilation does not have a definitive strategy within the 

literature. (102) However, patients with a longer time to wean from mechanical ventilation have 

been associated with increased mortality. (103) For this reason, spontaneous breathing trials, a 

mode of mechanical ventilation which switches from positive-pressure ventilation to allow 

negative inspiratory pressure, are utilized to test for a patient’s readiness for extubation. (104) 

When protocols for initiation of spontaneous breathing trials are used, a decrease in mechanical 

ventilation days and decreased rates of complications may be demonstrated. Importantly, 

ventilator-associated pneumonia risk can increase by 3% every day a patient remains on the 

ventilator. (105) Once a patient is converted to negative inspiratory pressure, however, 

hemodynamic changes may occur. Venous return to the right heart may increase as well as central 

blood volume and left ventricular afterload. In some patients the right ventricle may enlarge, 

impeding left ventricular filing. (106) This decrease in left ventricular size has the potential to 

worsen cardiorespiratory function in patients with cardiac dysfunction or those with volume 

overload. (107) 

Studies have attempted to evaluate the impact of fluid balance on timing of successful 

wean from mechanical ventilation. (106) In an observational study of 87 patients receiving 

mechanical ventilation, cumulative net negative fluid balance and net negative balance within the 

24- or 48-hours prior to breathing trial were associated with success of wean. (108) In another 

observational study of 900 patients, re-intubation rates were higher in patients with a preceding 

24-hour fluid balance prior to extubation (OR 1.70, 95% CI 1.15-2.53). (109) In a third study of 

250 patients, a positive fluid balance in the preceding 48-hours was only associated with 

spontaneous breathing trial failure in patients with chronic obstructive pulmonary disease 

(OR1.77, 95% CI 1.24 -2.53). (106) Overall, evidence suggests that increased fluid balances in 

those receiving mechanical ventilation may be associated with a slower wean time. 
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1.12 Renal Physiology and Pathophysiology 
 

While one of the most obvious detriments of abnormally high fluid status is its effect on 

the pulmonary dynamics and implications for prolonged mechanical ventilation, the lungs are far 

from an independent system. In ICU patients with high fluid status, many complex pulmonary- 

renal interactions occur. Such interactions have been studied in ICU patients, particularly when 

abnormally high fluid states exist. (110) 

The kidney, while accounting for only 1 percent of the entire mass of the body, is a vital 

organ which has a wide array of functions. Blood flow to the kidneys starts from the renal artery, 

originating from the abdominal aorta. Blood travels throughout the arteries to the afferent 

arterioles, the primary providers of blood to the glomerulus. The glomerulus is responsible for 

the initial filtration of the blood. Here, the glomerular capillaries filter blood into the glomerulus 

and then unfiltered blood continues to the efferent arterioles until blood makes its way into the 

renal vein, back to the vasculature. Glomerular filtration rids the blood of excess water, nitrogen 

waste products, and other nutrients, and glomerular filtration is determined by a balance between 

the difference of the hydrostatic and osmotic pressures. Hydrostatic pressures are those pressures 

from the blood vessel which drive filtrate from the blood vessels into the nephron, the individual 

unit of the kidney, while the osmotic pressure is the intraluminal pressure which counters the 

hydrostatic pressure and is exerted by large proteins, such as albumin. The glomerular filtration 

rate (GFR) is increased by vasoconstriction of the efferent arterioles and vasodilation of the 

afferent arterioles. In order to estimate glomerular filtration, several methods exist. Most 

commonly, creatinine clearance, measures the amount of creatinine cleared via the kidney. 

Creatinine is considered to be one of the optimal endogenous substrates for estimation of 

glomerular filtration as it has less than 10% variability in stable renal function and is freely filtered 

at the glomerulus with no reabsorption. (111) The renal system, however, does not stop there. A 

filtered substance, such as creatinine, then travels through the renal tubules, the proximal 
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convoluted tubule, the loop of Henle, the distal convoluted tubule, and then the collecting duct 

before it progresses to the ureters through the renal pelvis and finally is expelled via urine output. 

1.12.1 Acute Kidney Injury in the Intensive Care Unit 
 

Abrupt insult to native renal function and glomerular filtration is known as acute kidney 

injury (AKI), or acute renal failure, and occurs in 50-60% of all critically ill patients, with reported 

mortality up to 80%. (112) This syndrome may be caused by pre-renal, post-renal, or direct renal 

insult. Pre-renal causes are those most frequently seen in the ICU, accounting for 50-70% of all 

cases. Examples include cardiac failure, sepsis, hypotension, and intravascular depletion, all 

resulting in decreased renal blood flow and perfusion. Post-renal causes are the least common in 

the ICU, consisting of up 15% of cases, and include obstructive causes such as a kidney stone, 

tubular precipitation, or a blocked catheter. Renal-specific causes of renal injury account for the 

other 10-30% of patients with AKI in the ICU, consisting of pure renal injury such as tubular 

necrosis, nephrotoxin damage, namely medications, hepatorenal syndrome, interstitial nephritis, 

sepsis, and others. (113) In the ICU, if AKI develops to the extent that patients have persistent 

anuria, or zero urine output, continuous renal replacement therapy (RRT) is often used. RRT use 

is common, with reported rates of use over 50 percent in the critically ill. (114) The continuous 

method is often preferred over alternative methods, particularly in patients presenting with shock, 

given its slow nature of fluid removal and decreased rates of hemodynamic instability. (115, 116) 

Acute renal failure is defined via the Kidney Disease Improving Global Outcomes (KDIGO) 

classification criteria. (117) AKI is defined by an increase in the serum creatinine level of at least 

0.3 mg/dL within 48 hours or that has increased by at least 1.5 times the baseline value within 

the previous 7 days, or a urine output of less than 0.5 mL/kg/hour for a minimum of 6 hours. The 

definition and understanding of AKI, however, continues to evolve. Over 30 definitions of AKI 

have been used in the literature, making comparisons challenging. (118) 
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1.13 Monitoring Tools for Renal Dysfunction 
 

1.13.1 Introduction to Serum Creatinine 
 

Despite guidelines defining AKI via its trend and studies showing a correlation with 

overall survival, creatinine is known to have many limitations. (119-121) Serum creatinine levels 

do not only fluctuate with GFR, but creatinine is also secreted by the tubules and variation in 

secretion can be altered by medications. (122) Further, while serum creatinine is impacted by 

changes in the kidneys, serum concentrations can also vary based on patient age, gender, race, 

nutritional status, muscle mass, dietary protein intake, and even volume status itself. Many 

estimates or measures of body fluid volume are considered more inaccurate in critically ill patients 

who have AKI. Some authors recommend 20% increases in estimates for dialysis prescriptions 

based on the lack of correlation. (123) Estimates of total body water with anthropometric 

measurements have demonstrated over 8 liters of volume difference compared to bioelectrical 

impedance analysis. (124) Even more perplexing, multiple studies have shown a correlation of 

improved outcomes with higher serum creatinine values, potentially secondary to a less dilute 

plasma in patients who have received less volume administration. (125) In one cohort’s 

multivariate analysis evaluating several clinical variables, Mehta and colleagues found that lower 

creatinine concentrations were associated with an increased risk of death (OR 0.71, 95% CI 0.62- 

0.80). (126) Uchino and colleagues prospectively looked at the relative impact of serum creatinine 

for AKI scoring on 1742 patients in a multinational study of those admitted to the ICU with renal 

failure. They studied six different scoring systems for renal-specific organ failure and general 

organ failure. All scoring systems included higher serum creatinine values as a predictor for 

worsened clinical outcomes. A higher creatinine failed to accurately discriminate or calibrate to 

predict mortality accurately. (127) In a cohort of 134 critically ill patients with AKI requiring 

initiation of continuous renal replacement therapy, higher serum creatinine was associated with a 

higher chance of survival in three different multivariate analyses (OR 1.44, 95% CI 1.03-1.99; OR 
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1.39, p5% CI 0.98-1.96; OR 1.30, 95% CI 0.91-1.86). In the same model, an increase in volume 

status was associated with a nonsignifcant decrease in chance of survival. (125) 

1.13.2 Alternatives to the Use of Serum Creatinine 
 

Given the frequency of fluid overload in the intensive care unit, concomitant influencers 

of serum creatinine, and evidence pointing to a lack of utility of creatinine to estimate renal 

function in this population, traditional models of AKI and estimation of GFR are likely not 

optimal within the ICU setting. The severity of acute kidney injury is affected largely by the urine 

output which correlates with the degree of injury. Oliguria, defined as a urine output of less than 

0.5 mL/kg/hour or less than 500 mL per 24 hour, is at times the body’s attempt to conserve salt 

and water with sympathetic, renin angiotensin aldosterone system (RAAS), and antidiuretic 

hormone activation as a response to critical illness. (128) Early studies demonstrated when the 

urine output dropped below 0.5 mL/min, a linear reduction in GFR was seen. (129, 130) However, 

physiologic oliguria may quickly become pathologic. Requiring oliguria for at least 6 hours to be 

a criterion for AKI, assists in reporting of transient oliguria appropriately. (131) The 6 hour time 

frame has been associated with need for renal replacement therapy, mortality, and true AKI. 

Patients who meet urine output in combination with serum creatinine criteria to meet the 

definition of AKI have decreased rates of hospital survival and increased rates of need for renal 

replacement therapy than either method alone. Even without a rise in serum creatinine, oliguria 

is associated with a decrease in long-term survival. (132) 

In a multivariate analysis of 2164 patients with AKI, a combination of creatinine and urine 

output criteria was the strongest predictor of ICU mortality. (133) In a prospective observational 

study of 317 critically ill patients, urine output alone as a criterion for AKI had more frequent 

association for dialysis, longer length of ICU stay, and higher mortality rate than patients without 

AKI. (134) Sensitivity for AKI was further increased compared to utilization of serum creatinine 

alone with the incidence of AKI increasing from 24% based on serum creatinine values to 52% 

with the addition of urine output. Monitoring of urine output has additionally led to earlier 
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diagnoses of AKI, with a decrease of time to detection seen from 24 hours with serum creatinine 

to 12 hours with urine output monitoring. (134) In the largest study of 15,274 patients in the ICU 

over an 8 year period, intensive urine output monitoring was associated with improved rates of 

survival in patients experiencing AKI. Such urine output monitoring was additionally associated 

with decreased rates of fluid overload and overall decreases in cumulative fluid volume (p<0.001 

for all outcomes). (135) For this reason, some authors have advocated that making the definition 

of AKI as it relates to urine output to be more stringent. It has been reported that a urine output 

rate of 0.3 mL/kg/hr was best associated with need for dialysis and mortality, as well as 

predicting both hospital and one-year mortality rates. (131) Of course, urine output monitoring 

does not come without its limitations. Some types of AKI, such as tubular dysfunction, can lead 

to increased urine output despite low glomerular filtrate rates. As well, constant urine output 

monitoring in the ICU requires nursing documentation and monitoring. Several studies have 

advocated for the use of biomarkers for AKI diagnosis and an exhaustive review can be found in 

prior publications, however limited studies are available. Bedside applicability is limited, as most 

methods of monitoring are not readily available. (130) For this reason, authors have suggested 

the evaluation of 4-6 hour measurements of urine output with consideration for baseline overall 

volume status and body weight in the ICU as monitoring parameters for renal function. (136) 

1.14 Renal and Pulmonary Interactions 
 

The need for mechanical ventilation has been associated with increased risk of acute 

kidney injury (OR 3.58, 95% CI 1.85-6.92) versus critical illness without mechanical ventilation. 

Renal dysfunction has associates with prolonged mechanical ventilation and the presence of 

increased mortality rates. (137) In a study of 63 patients receiving mechanical ventilation, a serum 

creatinine value greater than 2.5 mg/dL was associated with prolonged ventilation (p<0.001). In 

a study looking at greater than 47 thousand patients in Taiwan receiving positive pressure 

ventilation, presence of AKI-dependency during admission was associated with prolonged 

mechanical ventilation days and ICU stay (p=0.01, p<0.001). (138) A recent 3-year retrospective 
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cohort study with 167 patients in a long-term care facility showed that a creatinine clearance of 
 

<90 mL/min was associated with a significantly higher wean time when compared to a creatinine 

clearance of >90 mL/min (p=0.04). (139) 

1.14.1 Cellular Effects of the Renal and Pulmonary Relationship 
 

At a physiologic level, the lung and kidney have similar cell surface channels for the 

transport of water and salt. Pulmonary edema is associated with chloride secretion from lung 

epithelial cells with influx of fluid into the alveolar space via Na+-K+-2Cl− (NKCC) cotransporter 

1. This receptor is also found extensively within the kidney which aids in the transport of sodium, 

potassium, and chloride within the tubules as well. (140) 

1.14.2 Oxygenation Parameters and Renal Injury 
 

Certain ventilator strategies such as permissive hypercapnia or low tidal volume 

strategies may also negatively impact renal function. Potential mechanisms include 

neurohormonal dysregulations, alterations of cell signaling pathways, remote oxidative stress, 

and hemodynamics. (110) Acid-base fluctuations and hypoxemia may impact the kidneys. The 

kidneys, specifically glomerular filtration processes, are high consumers of oxygen. (141) For this 

reason, the renal system is susceptible to injury in periods of hypoxia resulting from lung injury. 

Through stimulation of the adrenergic, or sympathetic system and alterations of nitric oxide 

metabolism, hypoxia has been shown to reduce renal blood flow in a dose-dependent manner. 

(142, 143) Decreased availability of nitric oxide may impair autoregulation and tubuloglomerular 

feedback. (144) Hypoxia may alter avidity of the kidney for sodium which may increase renal 

oxygen consumption and susceptibility to renal tissue dysfunction. (110) However, effects of 

hypoxia are not always consistently reported as negative, as in a study of ARDS patients receiving 

mechanical ventilation, short-term mild hypoxemia was associated with increased creatinine 

clearance and diuresis. Hypercapnia, excess carbon dioxide, will result in reduced renal blood flow 

and glomerular filtration secondary to direct or indirect renal vasoconstriction and decreased 
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sodium excretion. Further, if hypercapnia results in increased pulmonary vascular resistance, 

right ventricular dysfunction can occur. Excess carbon dioxide is likely the more significant 

determinant of renal function as hypercapnia has been shown to worsen renal function even in 

states of hyperoxemia. (142) When mechanical ventilation is required, it often is in settings of 

several of the above factors which can be associated with a worsening of renal function. 

Mechanical ventilation can disturb systemic hemodynamics, inflammatory mediators, and renal 

blood flow. (145) 

1.14.3 Renal Influence on Pulmonary Function 
 

Contrastingly, renal injury can also have an impact on lung physiology through several 

mechanisms. Changes in renal function can modulate production or clearance of mediators of 

pulmonary disorders. (110) Specifically, increased cytokine production, decreases in factors 

responsible for alveolar water clearance, unbalanced nitric oxide metabolism, increased vascular 

permeability, and pulmonary hemorrhage are all potential mechanisms in which kidney 

dysfunction may precipitate worsening of pulmonary function. 

1.14.4 Cardiorenal Syndrome and its Implications 
 

Further, the development of cardiorenal syndrome can result in pulmonary congestion 

and hypertension. Cardiorenal syndrome by definition is a disorder primarily of the heart and 

kidneys in which acute or chronic dysfunction in one organ may induce acute or chronic 

dysfunction of the alternative. (146) Five key types of cardiorenal syndrome exist, with types 1 

and 2 demonstrating cardiac dysfunction leading to renal injury, acutely and chronically 

respectively. Types 3 and 4 are instead renal disorders resulting in cardiac dysfunction, similarly 

divided into acute versus chronic processes. Type 5 includes secondary cardiorenal syndromes in 

which systemic disorders result in both dysfunction of the cardiac and renal systems 

simultaneously. As earlier mentioned, cardiac dysfunction is a frequent finding in septic shock as 

well as other etiologies. Historically, decreases in renal function in the setting of cardiac 
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dysfunction were thought to be a product of decreased renal blood flow secondary to low cardiac 

output. However, given the autoregulatory range of the renal system, mild decreases in cardiac 

index (cardiac output divided by an individual’s body surface area) have little impact on renal 

perfusion. Alternatively, renal function is rarely impacted until the MAP drops below 70 mmHg, 

with dysfunction resulting from a decrease in systemic pressure rather than poor cardiac output. 

(147) 

1.14.5 Evidence of Hemodynamic Impact on Renal Function 
 

One study of over 500 patients with heart failure demonstrated a weak correlation 

between cardiac index and glomerular filtration rate and such was actually inverse relationship, 

demonstrating that a higher cardiac index paradoxically decreased the glomerular filtrate rate (p 

= 0.02). (148) In several other tests to evaluate nonlinear, threshold, and longitudinal 

relationships between cardiac and renal function, no effect was seen. Alternatively, renal 

congestion has become increasingly cited for precipitating decreases in renal function. Renal 

blood flow is dependent on a pressure gradient between the arterial and venous sides. (149) High 

pressure on the arterial side supplies the glomerulus while low pressure on the venous side allows 

for a pressure gradient permitting tubule perfusion. In the circumstance of elevated pressure on 

the venous side of the kidneys, such as what is most commonly seen with a rise in central venous 

pressure, tubule perfusion pressure decreases. Animal models have shown that reduced urine flow 

is strongly correlated with renal venous pressure and that increased venous pressure decreases 

renal blood flow more so than decreases in arterial pressure. (150) Increases in venous pressure 

are associated with sodium and water retention. Elevated venous pressure-induced decreases in 

renal blood flow and glomerular filtration pressure may be injury mechanisms independent of 

decreased mean arterial pressure and cardiac output. (151) Because an elevated right atrial and 

central venous pressure interrupts salt excretion, more sodium retention occurs. Subsequent 

volume expansion and renal congestion can occur, resulting in cyclical organ damage via volume 

retention. 
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1.15 Renal Dysfunction and Fluid Overload 
 

While its utility for fluid responsiveness and guidance of fluid administration has been 

disproven, the CVP remains a marker of overall venous congestion. Elevated CVP as a surrogate 

for RV impairment remains an important hemodynamic factors for AKI development and has been 

associated with high mortality. Right ventricular dysfunction has been shown to be significantly 

associated with venous congestion (p=0.009) and to be predictive of renal outcomes. 

(152) Studies examining central venous pressure as a surrogate for volume status have shown a 

higher CVP to be independently associated with progression of AKI (OR 1.09, 95% CI 1.02-1.16). 

(153) In 2005, a single-center one year study of patients with sepsis and a serum creatinine less 

than 2 mg/dL upon admission looked at the relationship between fluid status and development of 

acute renal failure. Patients who developed renal failure had a higher CVP on day 1 and 2 than 

those without as well as a higher dose of colloid fluid administration and a lower net diuresis. 

(154) In heart failure, a high CVP has been inversely associated with glomerular filtration or 

worsening renal function (p<0.001) and directly related to mortality. (149, 155) 

1.15.1 Implications of Congestion for Acute Kidney Injury 
 

Intra-abdominal hypertension (IAH) is the state of elevated pressure within the 

abdominal cavity. (156) Grade 1 includes an abdominal pressure of at least 12 mmHg, with 

progression of grades occurring with increased pressures. Abdominal compartment syndrome 

results when there is a combination of intra-abdominal pressure >20 mmHg with new organ 

dysfunction. While traditionally IAH is more classically associated with surgical and trauma 

diseases involving abdominal pathology, such can occur in any patient with systemic inflammation 

who has received large volume resuscitation. (157) In a 2007 prospective study of 40 medical ICU 

patients with sepsis resuscitation resulting in a minimum net positive fluid balance of 5 liters in 

the prior 24 hours, 85% developed intra-abdominal hypertension. Of the entire cohort, 25% 

developed abdominal compartment syndrome. (158) Eight years later, in a study of 53 patients 

admitted to the medical ICU with at least 2 risk factors for IAH, only 32% of 
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patients did not develop intra-abdominal hypertension. (159) A prospective review of 81 patients 

who developed septic shock within a medical-surgical ICU broadened this observation to a mixed 

population. Surgical patients had a higher incidence of IAH than medical patients (93% vs 73%, 

p<0.009), however 82.7% of the entire cohort developed IAH based on maximal intra-abdominal 

pressures (IAP) values over a 72 hour time frame. These authors also demonstrated multiple 

impacted clinical outcomes, including lower abdominal perfusion pressure, survival, and diuresis 

in patients with IAH, as well as higher lactate, creatinine, norepinephrine doses, and rates of 

mechanical ventilation (p<0.05). (160) Likely secondary to the resulting compression of renal 

veins and ureters, intra-abdominal pressure is inversely related to renal blood flow. (161-163) A 

prospective study of general critically ill patients showed that in a cohort of 123 individuals, 30.1% 

developed IAH and 19% developed renal failure. IAH was associated with renal failure (p=0.002), 

and an IAP of 12 mmHg predicted renal failure with a sensitivity of 91.3% and a specificity of 

67%. (164) In an additional cohort study, a multivariate analysis demonstrated that only 24-hour 

fluid balance and airway pressures were associated with the development of abdominal 

compartment syndrome. (165) 

1.15.2 Significance of the Splanchnic Blood Supply 
 

The splanchnic vascular system, the key source of blood supply for the abdominal cavity, 

including gastrointestinal blood vessels, receives roughly one-quarter of cardiac output. 

Splanchnic blood flow is dependent on regulation from endocrine and paracrine systems, but also 

vasoactive mediators and the sympathetic system. Given the high percentage of the total blood 

volume that exists within these splanchnic venous vessels, they are often referred to as splanchnic 

capacitance veins. (162) This specialized vasculature is able to store and release blood volume as 

effective blood volume changes, optimizing preload at all times. When arterial blood flow 

decreases, the elastic recoil ability of the splanchnic veins mitigates the arterial pressure decrease 

acting as a driving force for forward movement into the systemic circulation. The sympathetic 

system has receptors on all of the vasculature. However, because the venous splanchnic system 
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contains almost ubiquitously α-receptors, when the sympathetic system is activated, venous 

constriction occurs. This α-stimulation results in an increase in the circulatory blood volume and 

a decrease in splanchnic capacitance. (162) The increase in circulatory blood volume based on 

splanchnic activation by the adrenergic system alone may approximates 2 units of whole blood. 

(166) It has been widely accepted that the changes to splanchnic circulation decreases gut 

perfusion during septic shock states; however, a wide range of variability has been demonstrated 

within patients in sepsis. (167, 168) Very few methods exist to measure splanchnic-related gut 

perfusion with difficult interpretation of even the most readily available methods, making the 

interpretation of intra-abdominal pressures as a predictor of outcomes difficult. (169) However, 

compromised splanchnic vasculature and poor lymphatic flow within the abdominal cavity can 

worsen interstitial edema within the renal system, adding as another precipitating factor to both 

increased cardiac filling pressures and renal dysfunction. Increased interstitial pressure can reflect 

on perfusion changes within the entire capillary bed. Increases in pressure within the tubules can 

further reduce the transglomerular pressure gradient. Tubular compression will increase the 

pressure within the tubules which can then add to worsening of the pressure gradient and decrease 

glomerular filtration. 

1.15.3 Hormonal Influencers of Renal Function 
 

Once kidney perfusion pressure decreases, kidney injury progresses via activation of both 

the sympathetic nervous and RAAS occurs. Further, intra-abdominal hypertension significantly 

upregulates activation of RAAS. A key RAAS component, angiotensin II (AT-II), and 

catecholamines vasoconstrict glomerular arterioles, decreasing renal blood flow. (170) AT-II 

predominately vasoconstricts the efferent arteriole, preserving GFR despite reduced renal blood 

flow. (171) Initially in kidney injury, filtration and GFR are preserved but eventually diffuse 

neurohormonal activation of the RAAS system, sympathetic nervous system, ADH, and 

endothelin system, results in preglomerular vasoconstriction, increased water retention and 

decreased GFR. (172) The increased reabsorption of both sodium and water by the proximal 
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tubule leads to more increased widespread and pulmonary congestion, pulmonary hypertension, 

and RV overload impacting left ventricular filling. 

1.15.4 Inflammation and Renal Dysfunction 
 

Systemic inflammation, the hallmark of septic shock, also has a cyclical effect on renal 

congestion. Common inflammatory mediators, including c-reactive protein (CRP), tumor necrosis 

factor (TNF)-α, and interleukin-6 (IL-6), have been associated with progression of chronic kidney 

disease. TNF- α in conjunction with oxidative stress results in intravascular volume rise by the 

reduction of sodium excretion by the kidneys. The neurohormonal activation from fluid retention 

can further increase pro-inflammatory cytokines. TNF-α and IL-6 promote inflammatory cell 

accumulation within the interstitium of the tubules. These cells can then activate proximal tubule 

cells which respond by further secreting inflammatory mediators. CRP in the renal tubules has 

been correlated with severity of interstitial fibrosis as well as worsened renal function. (162, 173) 

1.16 Evidence Regarding Fluid Overload and Renal Injury 
 

The evidence correlating acute kidney injury and volume overload in the critically ill is 

vast. The Program to Improve Care in Acute Renal Disease (PICARD) group demonstrated in a 

prospective cohort of 618 critically ill AKI patients at different medical centers, that the adjusted 

odds ratio for mortality was 2.07 (95% CI 1.27–3.37) in patients with fluid overload versus 

patients without fluid overload. Fluid overload was defined as a 10% increase in body weight from 

baseline, at initiation of renal replacement therapy. (174) In non-dialyzed patients, the percent 

fluid accumulation was lower in survivors versus those who died (OR 3.14, 95% CI 1.18-8.33). 

Importantly, there was an increased risk of mortality in patients with a higher proportion of days 

with fluid overload after AKI diagnosis (p<0.0001). In a separate cohort of 1453 critically ill 

patients requiring renal replacement therapy for AKI within a multicenter randomized control 

trial, a negative mean daily fluid balance was associated with improved 90-day survival (OR 0.318, 

95% CI 0.24-0.43) Survivors had a lower mean daily fluid balance, weight-adjusted mean-daily 
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Table 1.2 Clinical Outcomes and Volume Overload in Acute Kidney Injury 
 
 

Author Population Outcomes 

 
 
 
Payen 2008 
(175) 

 
 
Post-hoc analysis 
of patients with 
AKI in the SOAP 
study 

• Mean fluid balance was significantly higher in those 
with AKI throughout the first 7 days of the ICU 
(p<0.05) 

• Multivariable analysis showed mean fluid balance was 
associated with 60-day mortality (HR 0.21 per L/day, 
95% CI 1.13-1.28) 

• Patients requiring renal replacement therapy had a 
higher mean fluid balance (p<0.01) 

 
 
Fülöp T 
2010 (176) 

Single center 
prospective 17 
month cohort of 
ICU patients 
requiring CRRT 

• Volume-related weight gain (VRWG) VRWG 
≥10% and VRWG ≥20% significantly associated with 
30-day mortality (p=0.049) 

• In multivariate analysis accounting for severity, 
VRWG ≥10% (OR 2.71, 95% CI 1.05-6.99) was 
associated with mortality 

 
 
Grams 2011 
(177) 

 
Post-hoc analysis 
of patients with 
AKI in the 
FACTT trial 

•  Significant increase in CVP (p<0.001) and average 
daily fluid balance (p<0.001) in non-survivors at 60 
days 

• Multivariable analysis showed significant association 
of positive fluid balance and 60 day mortality (OR 
1.61 per liter/day, 95%CI 1.29-2.0) 

 
 
Heung 2012 
(178) 

Single center 
retrospective 
cohort of 170 
patients with 
RRT 

• Patients with renal recovery had significantly less fluid 
overload at RRT initiation (p=0.004) 

• In multivariate Cox hazard regression, rise in percent 
fluid overload (FO) at RRT start was a significant 
negative predictor of failed renal recovery (HR 0.97, 
95% CI 0.95-1.00) 

 
Vaara 2012 
(179) 

Multicenter 
observational 
study of 296 ICU 
patients receiving 
CRRT 

• 90-day mortality higher in patients with fluid overload 
at RRT initiation (p<0.001) 

• In a multivariate analysis, FO in RRT was associated 
with a higher risk of death at 90 days (OR 2.6, 95% CI 
1.301-5.299) 

 
 
Bellomo 
2012 (180) 

 
Post-hoc analysis 
of 1453 adult ICU 
patients requiring 
CRRT 

• Negative mean daily fluid balance decreased 90-day 
mortality (OR 0.318, 95% CI 0.24-0.43) 

• Negative mean daily fluid balance associated with 
increased RRT-free days (p=0.0017), ICU-free days 
(p<0.001), and hospital-free days (p=0.01) after 
adjusting for confounders 
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Table 1.2 (continued) 
 
 

 
 
Teixeira 
2013 (181) 

 
Post-hoc analysis 
of 601 patients 
from the 
NEFROINT 
study 

• Mean fluid balance (MFB) higher in patients with AKI 
(p = 0.008) 

• Non-survivor patients with AKI had significantly 
higher MFB than survivors (p<0.001) 

• In the multivariate analysis, MFB (HR 1.67 per 
liter/day, 95%CI 1.33-2.09) was an independent risk 
factor for 28-day mortality 

 
 

Raimundo 
2015 (182) 

 
Single center 
retrospective 2- 
year cohort of 210 
ICU patients with 
AKI stage I 

• Patients with >1 liter/day gain had significantly lower 
urine output (UOP) (p=0.02), MAP (p=0.01), and 
higher lactate (p<0.001), Sequential Organ Failure 
Assessment (SOFA) score (p=0.002), and increased 
risk of AKI progression or ICU mortality (p=0.001) 

• Multivariable analysis showed fluid intake 
independently associated AKI progression (OR 1.8 per 
liter, 95% CI 1.1-8.8) 

 
Wang 2015 
(183) 

Post-hoc analysis 
of 2526 patients 
from the BAKIT 
trial 

• Fluid overload increased incidence of AKI (OR 4.508, 
95 % CI 2.900–7.008) 

• In a multivariate Cox regression cumulative 72 hour 
fluid balance was associated with 28-day mortality (HR 
1.041, 95% CI 1.01-1.07). 

 
Neyra 2016 
(184) 

Retrospective 
study of 2632 
septic ICU 
patients 

• Independent association between hospital mortality 
with every liter increase in 72-hour cumulative fluid 
balance (OR 1.06, 95% CI 1.04-1.08) 

Thongpra- 
yoon 2016 
(185) 

Retrospective 
study of 7696 ICU 
patients 

• The risk of 60-day mortality in patients who met 
criteria after adjustment for fluid balance but not fever 
was significantly higher than no AKI (OR 2.0, 95 % CI 
1.25-3.11) 

 
Salahuddin 
2017 (186) 

Single center 
observational 
study of 339 ICU 
patients 

• Fluid balance significantly higher in AKI (p<0.001) 
• In multivariate regression, net fluid balance in first 24 

hours (OR 1.02, 95% CI 1.01-1.03) and percentage of 
fluid accumulation adjusted for body weight (OR1.009, 
95% CI 1.001-1.017) associated with AKI 

 

fluid balance, mean cumulative fluid balance, and weight-adjusted mean fluid balance (p<0.0001). 

Further, after adjustment for clinically relevant variables, mean daily fluid balance was also 

associated with decreased renal replacement free-days at 90 days (p=0.0017). (180) Multiple other 

post-hoc analyses and prospective trials have tried to evaluate clinical outcomes associated with 

fluid overload and volume status (Table 1.2). In the largest study to date, a prospective study of 

1734 patients admitted to 21 international ICUs demonstrated that not only were the odds of 
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hospital mortality increased in patients for every 1% increase in fluid overload, but also the speed 

of fluid accumulation was significantly associated with ICU mortality and fluid accumulation 

increased significantly in the 72 hours prior to the diagnosis of AKI with a peak 72 hours 

following. A meta-analysis including 12 cohort studies looking at fluid overload in AKI with 5095 

patients showed a positive association between fluid overload and mortality in patients with AKI 

(OR 3.40, 95% CI 2.50-4.63). (187) Data correlating degree of fluid overload with outcomes in 

AKI extend to a pediatric patient population. (188-192) In a recent pediatric meta-analysis of 44 

studies, fluid overload was associated with an increase in acute kidney injury (OR 2.36, 95% CI 

1.27-4.38) and a 6% increase in odds of mortality was seen for every 1% increase in percentage fluid 

overload (OR 1.06, 95% CI 1.03-1.10). (193) 

1.17 Other Implications of Fluid Overload on Organ Dysfunction 
 

While the pulmonary and renal systems are perhaps the most visibly affected by fluid 

overload, excess volume has been associated with a multitude of effects on other organ systems 

(Table 1.3). A study of 86 critically ill patients receiving mechanical ventilation and early enteral 

nutrition showed that the volume of intravenous fluids directly correlated with increased caloric 

and protein deficits, the latter of which demonstrated a higher rate of mortality. (194) Volume 

accumulation alters normal immune function homeostasis. (195) In a model of venous congestion 

to mimic hypervolemia within 24 healthy subjects, IL-6, endothelin-1 (ET-1), AT-II, vascular cell 

adhesion molecule-1 (VCAM-1), and chemokine (C-X-C motif) ligand 2 (CXCL2) all significantly 

increased during venous congestion. (196) Similarly, in a model of 20 healthy patients, an increase 

in venous congestion was correlated to an increase in ET-1. (197) Regarding endothelial function, 

the glycocalyx may be damaged with vascular congestion. As aforementioned, a volume load of 

20 mL/kg colloid has shown to release atrial natriuretic peptides while increasing hyaluronan 

and syndecan 1 in the serum, components specific to the glycocalyx. (198) Such degradation can 

occur as soon as within 30 minutes of ischemia. In animal models, this has correlated to an increase 

in vascular permeability, issue swelling, and further decrease of intravascular volume. (199) 
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While the majority of this evidence has focused on general ICU patients or those presenting 

septic shock, surgical and trauma literature has demonstrated similar results. Liberal fluid 

resuscitation compared to conservative fluid resuscitation has proven to be associated with higher 

mortality in randomized controlled trials (RR 1.25, 95% CI 1.01-1.55) and observational studies 

(Odds Ratio [OR] 1.14, 95% CI 1.01-1.28) of trauma populations. (200) In perioperative literature, 

liberal fluid therapy was associated with an increased risk of pneumonia (RR 2.2, 95% CI 1.0-4.5), 

pulmonary edema (RR 3.8, 95% CI 1.1-13), longer hospital stay (mean difference 2 days, 95% CI 

0.5-3.4), and an increased length of hospital stay (mean difference 4 days, 95% CI 3.4-4.4). (201) 

Intra- operatively, restrictive fluid volumes are associated with decreased post-operative hospital 

stay and improved return of bowel function. (202) A positive fluid balance resulting in at least 3 

kg weight gain specifically delayed gastric emptying time, stool passage, time to flatus, and 

hospital day in patients with elective colonic resection. (203) In cardiac surgery, fluid overload 

was associated with mortality post-operatively and was a more important role in the length of 

intensive care stay than changes in serum creatinine. (204) Independent from other factors, 

increased fluid balance post-operatively correlates with an increase need for RRT. (205) A 

restricted intravenous fluid regimen has shown to significantly reduce postoperative 

complications including cardiopulmonary and tissue-healing complications in a cohort of elective 

colorectal resection patients. (206) Additional studies in the cardiac population have correlated a 

positive volume with the development of acute kidney injury. (207, 208) 

Regardless of the organ system, the relationship between fluid accumulation, mortality 

and clinical outcomes is multifaceted. It is possible that fluid balance does not always affect 

outcome independently, but instead is a frequent confounder in severity of illness. Frequently, the 

response to hypotensive episodes within the intensive care unit is the prompt administration of a 

bolus. In an 8-week prospective study of 235 patients in 5 intensive care units, fluid boluses were 

administered 65% of the time for the sole purpose of hypotension. (209) It is therefore possible 

that patients with higher severity of illness may be predisposed to higher fluid administration in 
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Table 1.3 Physiologic Effects of Volume Overload 
 

Organ System Pathophysiologic Effect 
 Increased Decreased 

 
Abdominal 

Tissue edema 
Microcirculatory derangements 
Pressure ulcers 
Skin edema 

Lymphatic drainage 
Wound healing 
Abdominal compliance 

 
 
 
Cardiovascular 

Myocardial edema 
Diastolic dysfunction 
Central venous pressure 
Pulmonary artery occlusion pressure 
Pericardial effusion 
Global end-diastolic volume index 
Myocardial depression 
Cardio-abdominal renal syndrome 

 
Contractility 
Venous return 
Stroke volume 
Cardiac output 
Ejection fraction 
Conduction normality 

 
 
Central nervous 
system 

Cerebral edema 
Delirium 
Intracranial pressure 
Intraocular pressure 
Intracranial hemorrhage 
Intracranial compartment syndrome 
Ocular compartment syndrome 

 
 
Cerebral perfusion pressure 
Cognition 

Endocrine Pro-inflammatory cytokines  

 
 
 

Gastrointestinal 

Ascites formation 
Gut edema 
Malabsorption 
Ileus 
Intra-abdominal hypertension 
Intra-abdominal pressure 
Abdominal compared syndrome 
Intestinal permeability 
Bacterial translocation 

Abdominal perfusion pressure 
Bowel contractility 
Abdominal perfusion pressure 
Success of enteral feeding 
Splanchnic microcirculatory 
flow 
Regional blood flow 
Excretory capacity of liver 

 
Hepatic 

Hepatic congestion 
Hepatic compartment syndrome 
Cholestasis 

Cytochrome P450 activity 
Synthetic function 

 
 
 
Renal 

Renal interstitial edema 
Renal venous pressure 
Interstitial pressure 
Uremia 
Renal vascular resistance 
Salt retention 
Water retention 
Renal compartment syndrome 

 
 
Renal blood flow 
Glomerular filtration 

 
 
 
Respiratory 

Pulmonary edema 
Pleural effusions 
Alterations of pulmonary and chest 
wall elastance 
Hypercarbia 
Extravascular lung water 
Ventilation 
Work of breathing 

 
PO2/FiO2 ratio 
Gas exchange 
Lung volumes 
Compliance 
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the ICU. What can be confirmed reasonably is that control of fluid balance and prevention of fluid 

overload may help improve clinical outcomes and that a threshold may exist beyond initial 

resuscitation measures in which additional fluid administration may cause harm. 

1.18 Incidence of Fluid Overload in the Intensive Care Unit 
 

One group of investigators sought to stratify outcomes by fluid administration in a 

retrospective cohort of 405 adults admitted to the medical ICU with severe sepsis or septic shock. 

(210) Fluid overload was defined as evidence on physical exam, chest radiography on day one. 
 

Patients that retained these symptoms on day 3 were considered to have persistent overload. Of 

these patients, 67% developed fluid overload and 48% went on to develop persistent fluid overload. 

Patients who had overload and persistent overload had a higher BMI, on average. Patients with 

chronic kidney disease and liver disease were more likely to have overload and persistent overload, 

respectively. Increased illness severity as determined by the APACHE IV was associated with 

increased rate of overload and persistent overload, as well. Persistent overload was associated 

with increased length of stay (2.4 vs 1.9 days in placebo) while both fluid overload and persistent 

fluid overload were associated with increased rates of mortality (29.6% and 27%, respectively vs 

those without overload of 13.5%). Most notable from this study was that the day one fluid balance 

was 4.9 liters in the fluid overload group versus 5.8 liters in the group without evidence of fluid 

overload. On day 3, patients with fluid overload had a 6.9 liter net fluid balance compared to 7.1 

liter in the group without. This difference in resuscitation volume highlights a key issue of fluid 

status evaluation in critically ill patients. While most studies have quantitatively evaluated 

numerical differences in volume receipt and net fluid status, such an approach has shown to, at 

times, not always correlate with actual signs of fluid overload. In a multivariate analysis, the 

incidence of persistent fluid overload was associated with a significantly higher need for medical 

interventions, including ultrafiltration, thoracentesis, and diuretics. Persistent fluid overload was 

also associated with a significantly higher rate of hospital mortality (OR 1.92, 95% CI 1.16-3.22) 

once adjusted for APACHE IV, initial lactate, and admission weight. 
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1.18.1 Non-Resuscitation Fluid Contributors to Volume Status 
 

Unfortunately, careful monitoring of fluid boluses with careful monitoring of fluid 

resuscitation is not always adequate to predict volume overload. In a recent single-center cohort 

of 14,654 ICU patients, a self-reported strategy for the reduction of maintenance fluids was 

utilized. Despite this strategy, maintenance and replacement fluids accounted for a significantly 

higher portion of the total daily fluid volume compared to resuscitation fluids (24.7% vs 6.5%, 

respectively). “Fluid creep”, defined as the cumulative volumes of administered electrolytes, 

volumes to keep venous lines open, and volumes administered as part of medication 

administration, accounted for 32.6% of the mean daily total fluid volume. (211) In a prospective, 

open-label, sequential period pilot study of 426 patients admitted to the Medical ICU, medication 

diluents accounted for 63% of the total intravenous volume over the observation period. (212) 

Fluid overload has been reported frequently, both based on overall net volume status as well as 

clinical signs and symptoms of overload, showing a lack of perfect synchrony in objective and 

subjective measures of volume status. Regardless of the measure utilized, volume overload has 

continued to be associated with worsened clinical outcomes. 

1.19 Approaches for the Prevention of Fluid Overload and De-Resuscitation 
 

The World Society of the Abdominal Compartment Syndrome recommends the 

avoidance of a positive cumulative balance in critically ill patients, particularly those at risk for 

intra-abdominal hypertension, after completion of acute resuscitation and the rousing insult has 

been resolved, i.e. incidental fluid administration (Grade 2C). (213) Other authors have taken this 

thought further, suggesting a zero to negative fluid balance achieved on day three with a day 

seven fluid balance as low as possible (Grade 2B). These authors recommend the utilization of 

diuretics or renal replacement therapies for fluid mobilization in patients with a positive 

cumulative fluid balance once the inciting disease has been addressed and hemodynamic stability 

has been achieved (Grade 2D). (46) These authors further suggest that de-resuscitation is 

mandatory when a positive cumulative fluid balance coincides with poor oxygenation (P/F ratio 
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< 200), increased capillary leak (defined as a pulmonary vascular permeability index >2.5 and 

EVLW >12 mL/kg), IAP >15 mmHg and abdominal perfusion pressure < 50 mmHg, or a 

capillary leak index >60. (46) De-resuscitation, the achievement of a net-even to net-negative fluid 

balance, can be accomplished in three ways: spontaneously, through pharmacologic diuresis, or via 

the use of mechanical renal replacement therapies or filtration. Other authors suggest clinically 

evaluating for hemodilution via complete blood counts or signs of worsening right ventricular 

function on echocardiogram. (214) 

1.19.1 Timing of De-Resuscitation 
 

Optimally, the initiation of fluid de-resuscitation would occur before any clinical signs or 

symptoms present to avoid detriment to organ function. (56) Increased capillary leak, increased 

intra-abdominal pressure, increased pulmonary lung water, and peripheral edema correlate with 

the volume or degree of fluid overload, already present. For this reason, some authors suggest 

that de-resuscitation should be started once a patient is no longer fluid responsive during shock. 

(215) However, while several fluid responsiveness measures are becoming increasingly 

encouraged, all have multiple limitations. (42) The most common fluid responsiveness measures, 

pulse pressure and stroke volume variations have limited applicability in instances of cardiac 

arrhythmias and the utilization of low tidal volumes during mechanical ventilation. 

Unfortunately, low tidal volumes have become increasingly utilized in the ICU given evidence 

supporting that this ventilator strategy consistently improves mortality and decreases time on 

mechanical ventilation in acute respiratory distress syndrome compared to large tidal volume 

strategies. (216) In studies which have sought to decrease fluid balance, enrollment was typically 

not initiated until 12 hours after the discontinuation of vasoactive therapy in order to ensure 

hemodynamic stability. In a study of diuresis in patients with moderate to high risk kidney injury 

with 10% fluid overload, fluid removal was started 12 hours within meeting inclusion criteria. 

(217) 
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A recent retrospective cohort study of 10 European ICUs, however, attempted to 

characterize fluid balance and de-resuscitation in a time-dependent manner. (218) In 400 patients 

receiving mechanical ventilation for at least 24 hours, 276 patients survived. Within the univariate 

analysis, there was no difference in use of renal replacement, renal replacement with fluid removal, 

use of furosemide, or total furosemide dose between survivors and non-survivors. Further, 

average daily fluid balance was significantly greater for non-survivors on day 3 (0.98 liters, 95% 

CI 0.57–1.37). In the univariate analysis for 30-day mortality, 72 hour fluid balance had the 

strongest association with mortality per liter of fluid (OR 1.32, 95% CI 1.17-1.50) versus any 

other day fluid balance or cumulative day fluid balance in the first week of ICU stay. When the 

group was broken into quartiles based on day 3 fluid balance, a mean fluid balance of 3.1 liters when 

compared to -1.5 liters was associated with roughly triple the rate of 30-day mortality. When 

several relevant factors were placed into a multivariate analysis, day 3 fluid balance again had the 

highest association with 30-day mortality (OR 1.26, 95% CI 1.07-1.46). Of note, this association 

was even higher than that of severity markers and comorbidities. Further, day 1-2 fluid balance 

was not significantly associated with mortality. In the ternary regression with the same variables, 

a fluid balance between -500 mL to 500 mL on day 3 was shown to decrease mortality (OR 0.40, 

95% CI 0.21-0.80) as well as a negative fluid balance less than -500 mL (OR 0.17, 95% CI 0.07-

0.40). Regarding ICU length of stay and duration of mechanical ventilation in survivors, day 3 

fluid balance was also as significant predictor after adjustment for other factors (OR 1.13, 95% CI 

1.08-1.19; OR 1.13, 95% CI 1.06-1.20). When evaluating spontaneity of day 3 fluid balance in 

relation to 30-day mortality, both spontaneously achieved negative fluid balance (OR 0.21, 95% 

CI 0.08-0.56) and a negative fluid balance achieved with de-resuscitation measures (OR 0.29, 95% 

CI 0.12-0.69) were associated with decreased mortality. When evaluating day 3 fluid balance as 

an outcome variable, day 1-2 fluid balances (Coefficient [COEF] 0.14, 95% CI 0.07-0.20) were 

associated with a higher net volume status while furosemide dose per 10 mg (COEF -0.13, 95% 

CI -0.18- -0.08) was associated with decreased fluid balance on day 3. Renal 
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replacement therapy was not associated with a decrease in day 3 fluid balance. Despite a strong 

correlation demonstrated between day 3 fluid balance and clinical outcomes in this study, no trials 

have prospectively evaluated the appropriate time to initiate de-resuscitation with pharmacologic 

measures. More evidence is needed to evaluate augmented de-resuscitation with pharmacotherapy 

for the achievement of a negative fluid balance 72 hours following shock resolution. 

1.19.2 Further Considerations for De-Resuscitation Timing 
 

The timing of furosemide administration may depend upon the underlying fluid balance 

of the patient, the rate of fluid removal desired by the clinical team, and the patient’s current 

kidney function. (219) In the Fluids and Catheters Treatment Trial (FACTT) trial, therapy was 

started on average 43 hours after ICU admission and roughly one day after the diagnosis of acute 

lung injury. Others have suggested that a conservative approach for those in shock may be less 

beneficial compared to those without. (73) However, based on the rationale that resolution of 

hemodynamic and inflammatory abnormalities should resolve on day three in most patients with 

ARDS or shock and evidence proposing a significance of day three fluid balance on clinical 

outcomes, initiation of de-resuscitation at 72 hours is a logical approach to volume management 

after resolution of shock in the ICU. 

1.20 Introduction to Loop Diuretics 
 

Diuretics, by definition, are medications which induce diuresis, reducing both sodium and 

free water in the body. Loop diuretics, compared to alternative classes, including potassium- 

sparing diuretics and thiazide diuretics, are the most effective for free water removal. Loop 

diuretics, including furosemide, bumetanide, and torsemide, act on the NKCC cotransporter on 

the thick ascending limb on the loop of Henle. Loop diuretics prevent reabsorption of 25% of 

sodium and chloride filtered from the glomerulus. In the distal tubule, loop diuretic action on the 

macula densa results in suppression of negative feedback for glomerular filtration and renin 

secretion. Other NKCC receptors can be found in other organ systems, including the ears, lungs, 
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vascular smooth muscle, and others. These other receptor sites result in dose-limiting side effects, 

such as ototoxicity or hypotension. Because loop diuretics are anions and bound to serum proteins, 

these molecules do not filter through the glomerulus. Organic anion transporters within the 

proximal tubular cells allow for transportation of the drug into the tubules. (220) Experimental 

data have shown that loop diuretic use may attenuate metabolic demand within the Loop of Henle 

via its impairment of tubular sodium reabsorption. (221) Other studies support its role in 

prostaglandin production resulting in improved oxygen supply and demand as well as the 

attenuation of apoptosis induced by ischemia-reperfusion injury and gene transcription. (221-224) 

However, mixed evidence demonstrates an improvement on oxidative stress in acute kidney 

injury, with some studies showing it may actually worsen such. (225, 226) In normal subjects, an 

intravenous dose of 40 mg of furosemide results in a maximal urine output response within 3-4 

hours, excreting 200-250 mmol of sodium and 3 to 4 liters of free water. (227) However, based on 

its mechanism, resistance to furosemide can occur. After prolonged drug administration, 

adaptation within the distal loops of Henle and tubular hypertrophy, results in increased sodium 

reabsorption after the site of action of the loop. This results in tolerance to the diuretic and 

diminished effect. (227) Further, the direct stimulation of renin release in the afferent arteriole 

promotes sodium retention as well. The braking effect demonstrates that continued 

administration of the same dose of loop diuretic will, overtime, result in less naturiesis. 

Reportedly, the response to furosemide may fall by as much as 40% by the third day of treatment, 

depending on the degree of volume depletion. (228) This is potentially caused by an overall 

decreased extracellular volume, removal of excess sodium, or neurohormonal activation of the 

sympathetic system and RAAS. Loop diuretics have several probable benefits in the augmentation 

of renal function in the critically ill, however limitations to use must be considered. 
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1.21 Comparison of Loop Diuretics 
 

1.21.1 Bumetanide Therapy 

Furosemide is the most frequently used diuretic of the loop diuretic class, representing 

the diuretic of choice in 98% of ICU clinicians. (229, 230) Bumetanide is similar to furosemide in 

regards to its pharmacodynamic and pharmacokinetic parameters however its chemical structure 

slightly differs and its potency is 65 times greater. Given its potential secretion into the lumen by 

a different receptor from furosemide, the organic base transport system, bumetanide was once 

theorized to be more effective in times of renal injury given that this system is not inhibited in 

renal injury. However, in a study comparing its use to an equipotent dose of bumetanide, IV 

furosemide was shown to have a 52% greater effect on naturiesis in patients with renal 

insufficiency. (231) Authors of this study hypothesized that the nonrenal clearance of bumetanide 

was double that of furosemide, resulting in its decreased effect. Studies comparing the two agents 

in the heart failure population have shown no difference in clinical effect or improvement in edema. 

(232, 233) Of important consideration, intravenous bumetanide has been on shortage since May 

2017, limiting its use for a broad ICU population. (234) 

1.21.2 Torsemide Therapy 
 

Torsemide has been suggested as a potentially more beneficial loop in the setting of heart 

failure given its increased bioavailability, hepatic clearance, and prolonged half-life relative to 

furosemide. In chronic heart failure, torsemide was shown to improve New York Heart 

Association class while also decreasing readmission and decreasing mortality compared to 

furosemide, however both studies comparing these cohorts where in a non-critically ill, outpatient 

setting. (235, 236) In a study of 29 cardiac surgery patients receiving diuresis after continuous 

renal replacement therapy, furosemide and torsemide were shown to both be efficacious in 

improving urine output, with torsemide showing a more dose-dependent effect and furosemide 

demonstrating less pronounced elimination of creatinine and blood urea nitrogen. (237) Of note, 

while urine output was not significantly different between groups, intragroup urine output was 
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significantly higher after 6 hours in the furosemide group, however not with the torsemide 

population. The lack of statistically significant difference in the torsemide group could have been 

secondary to inadequate dosing. In a separate prospective study of 92 patients with acute renal 

failure, both torsemide and furosemide resulted in greater diuresis than patients who did not 

receive diuresis. No between-drug differences were reported, but increase in urine flow was seen 

in 57% and 48% of torsemide and furosemide groups, respectively. Renal recovery was seen in 

28% of patients receiving furosemide and 17% of patients with torsemide. (238) Regardless, the 

intravenous formulation of torsemide was discontinued by its manufacturer, resulting in no 

administration form outside of oral tablets. (239) 

1.22 Predictors of Loop Diuretic Response 
 

Urine output response to loop diuretics is dependent on underlying renal function. After 

the creatinine clearance drops below 15 mL/min, 10-20% of the loop diuretic is actually secreted 

into the tubules. (240) It is noteworthy that a drop in renal function only limits the excretion of 

the diuretic and not its response. Functioning nephrons still have responsiveness to furosemide 

administration with decreasing creatinine clearance, but the limitation is in achieving sufficiently 

high enough tubule concentrations of drug to demonstrate an effect. For this reason, larger doses 

are utilized in periods of either chronic or acute renal injury. Maximum doses of furosemide via 

bolus administration have been cited to be between 160-200 mg, however doses as high as 2000 

mg have been administered. (231, 241) Despite many studies’ efforts, furosemide 

pharmacokinetics and pharmacodynamics are still poorly understood in the critically ill 

population. Outside of evaluations in healthy human volunteers, studies of these agents have 

primarily been performed on patients with chronic renal failure, renal transplants, or those with 

nephrotic syndrome. One pharmacokinetic study, evaluating 30 critically ill patients without 

previous renal impairment or diuretic exposure, evaluated urinary output responses to furosemide 

in patients meeting criteria for acute kidney injury. In a linear mixed model of several predictors 

of furosemide response, a creatinine clearance of <20 mL/min/1.73m2 was an independent 
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predictor of decreased response to furosemide. With a creatinine clearance greater than 40 

mL/min/1.73 m2, the urine output response was primarily determined by the amount of 

furosemide excreted into the urine. Between 20-40 mL/min/1.73m2, a significant interaction was 

found between creatinine clearance and urinary furosemide excretion. (242) 

Urea, a nitrogenous waste product eliminated by the kidneys, can potentially interact with 

the secretion of furosemide into the tubules via organic anion transport. (243) Further, acute 

tubular necrosis results in necrosis in all tubules, particularly where furosemide is active. (242) 

Ischemic-reperfusion and inflammation both decrease NKCC. (244, 245) This is an important 

factor in considering diuretic use in the broad ICU population. While this study was purely limited 

to AKI, an occurrence found in over half of all ICU patients, it cannot be applied to the totality of 

critically ill patients. Notably, however, even when adequate perfusion exists, sepsis can result in 

impairment of tubular function. Specifically, downregulation of the NKCC can occur secondary to 

inflammatory products. (246) 

 
A small study of 21 critically ill patients evaluated the pharmacodynamic profile of 40 mg 

IV furosemide administration. (247) In a multivariable linear regression model, MAP and patient 

age were both significant predictors of urinary output response to furosemide administration. 

Serum albumin and serum creatinine were significant predictors of a decreased renal response. 

However, a large interpatient variability was seen. Within the cohort, 28.6% of patients had an 

increase in urine output of exceeding 1000 mL within 6 hours while 42.8% had less than 500 mL. 

Six-hour urine output ranges from 240 mL to over 3 liters. Peak effect was seen within 1-2 hours 

following furosemide administration with a taper close to baseline occurring after 6 hours. Other 

significant differences after furosemide administration included higher serum bicarbonate and 

base excess. However, the small sample size limits generalizability of these results to a broad 

population. 
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Table 1.4 Furosemide Titration Table per Urine Output in the High BNP Arm 
 

Urine Output Subsequent Furosemide Dose 
<4.5 mL/kg/3 hours 30 mg 
4.5–6 mL/kg/3 hours 20 mg 
6–7.5 mL/kg/3 hours 15 mg 
7.5–9 mL/kg/3 hours 10 mg 

>9 mL/kg/3 hours 0 mg 

1.23 Evidence-Based Diuretic Dosing in the Critically Ill 

Similar to the literature’s limitation regarding the timing of de-resuscitation, a paucity of 

evidence exists to suggest how to pharmacologically achieve volume removal in the general ICU 

population. Dessap and colleagues randomized 304 patients on mechanical ventilation requiring 

minimum support to B-type natriuretic peptide (BNP) guided fluid management. (248) Patients 

were randomized to fluid management driven by serum BNP, requiring diuresis administration 

for a BNP ≥200 pg/mL, or usual care if BNP was <200 pg/mL. BNP is one of three main types 

of natriuretic peptides within the body and its release is stimulated by cardiac ventricular stretch. 

It has been shown to be strongly correlated with left-ventricular dysfunction, elevated left- 

ventricular filling pressures, and an elevation in BNP is an independent risk for failure of weaning 

of mechanical ventilation (OR 1.90, 95% CI 1.40–2.62).(249, 250) In the group with BNP-guided 

management, furosemide was administered every 4 hours according to urine output. The first 

dose administered was 20 mg followed by a urine output assessment every 3 hours which would 

dictate the subsequent dose 3 hours following the preceding dose (Table 1.4). The majority of 

patients received a dose of diuretic, with 72.4% of control patients and 83.6% of BNP-guided 

therapy having documented pharmacologic de-resuscitation. Patients with BNP-guided therapy 

had a shorter time to first extubation and successful extubation with a decrease in ventilator-free 

days at 14, 28, and 60 days. Patients in the BNP-driven group received a median of 40 mg 

(Interquartile Range [IQR] 9-78) furosemide compared to 14 mg (IQR 0-40) in the control group. 

No significant differences in adverse events were seen. (248) Worth noting, while high levels of 

BNP can be seen in patients with volume overload, other clinical conditions may also increase 
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Table 1.5 FACTT Protocol for Volume Resuscitation 
 

  Intravascular Pressure  MAP <60 
mmHg or 

dopamine >5 
mcg/kg/min 

MAP >60 mmHg off vasopressors 
CVP PAOP UOP <0.5 mL/kg/hr UOP > 0.5 mL/kg/hr 

Group 
A 

Group 
B 

Group 
A 

Group 
B 

Ineffective 
Circulation 

Effective 
Circulation 

Ineffective 
Circulation 

Effective 
Circulation 

Range 1  
Vasopressor 
Fluid Bolus 

Dobutamine 
Furosemide 

Furosemide 
Dobutamine 
Furosemide 

Furosemide 
>13 >18 >18 >24 

Range 2 Dobutamine Furosemide Dobutamine Furosemide 
9-13 15-18 13-18 19-24 

Range 3  
Fluid Bolus 
Vasopressor 

Fluid Bolus Fluid Bolus Fluid Bolus 
Group A: 

Furosemide 4-8 10-14 8-12 14-18 
Range 4 Fluid Bolus Fluid Bolus Fluid Bolus 

Group B: 
Fluid Bolus <4 <10 <8 <14 

 
BNP values such as chronic heart failure without fluid overload, renal failure and pulmonary 

embolism. Obese patients may have a low level of BNP. (58) 

One of the hallmark studies evaluating fluid status in acute lung injury, known as the 

FACTT trial, was published in 2006. (72) The study population was randomized to conservative 

(group A) versus liberal (group B) fluid therapy, with a complex protocol in both groups 

consisting of furosemide administration, inotropic therapy, fluid administration, or vasopressors 

depending on signs of circulatory efficacy or safety, pulmonary artery occlusion pressures, or 

central venous pressures (Table 1.5). Furosemide dosing was started at 3 mg/hr or as a 20 mg 

bolus if the last effective dose of furosemide was unknown. If urine output remained less than 3 

mL/kg after four hours and diuresis was still indicated, the dose was doubled and reassessed in 4 

hours continued up to a maximum of 24 mg/hour for 12 hours of 3 doses of 160 mg bolus. Patients 

in the conservative-strategy group received furosemide more frequently than patients in the 

liberal-strategy group (41% vs 10%, p<0.001), with a total daily dose ranging between 127 mg- 

167 mg in 24 hours within the conservative group. When evaluating those patients only with 

AKI, a total of 562 mg was given in the restrictive group compared to 159 mg in the liberal group 

on average cumulatively (p<0.001). (177) Day 7 fluid balance in those patients randomized to the 

conservative arm was -136 mL compared to a positive 6.9 liters in the liberal arm. Patients in the 
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Table 1.6 FACTT Lite Protocol 
 

CVP PAOP MAP >60 mmHg off Vasopressors 
UOP <0.5 mL/kg/hr UOP >0.5 mL/kg/hr 

>8 >12 Furosemide; assess in 1 hour Furosemide; assess in 4 hours 
4-8 8-12 Fluid bolus; assess in 1 hour Furosemide; assess in 4 hours 
<4 <8 Fluid bolus; assess in 1 hour Assess in 4 hours 

conservative group had a significant increase in ventilator-free days and ICU-free days compared 

to the liberal group. 

 
1.23.1 Application of the FACTT Trial to Clinical Practice 

 
 

Unfortunately, several limitations to this protocol prohibit its quick implementation to 

every day practice. The complexity of the multiple boxes guiding treatment recommendations 

limit its ability to be taken bedside. Further, a study specifically evaluating the signs of ineffective 

circulation utilized in the FACTT trial, found that such are not useful for predicting low cardiac 

index or mixed venous oxygen saturation given an overall low sensitivity and low positive 

predictive value. (251) Because of the complexity of the FACTT protocol, the investigators 

developed a simplified protocol for future studies involving acute respiratory distress syndrome, 

termed FACTT-LITE, meant to replace the conservative protocol of the latter. (252) Furosemide 

dosing remained the same, however the signs of ineffective circulation were removed. When 

compared to FACTT, this protocol resulted in a significantly higher cumulative fluid balance 

without a change in clinical outcomes (Table 1.6). Even so, as the CVP was in subsequent years 

following quickly determined to be an inadequate predictor of fluid status and the PAOP, 

requiring the pulmonary arterial catheter for measurement, became an infrequently used measure 

within the ICU, this protocol quickly lost applicability to everyday practice as well. 

 
1.23.2 Diuresis Protocols for Treatment and Prevention of Acute Kidney Injury 

 

The remaining evidence, and the majority of evidence validating specific furosemide 

dosing in the critically ill, is limited to those patients presenting with acute kidney injury. Its use 
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Table 1.7 Selected Furosemide Dosing in Studies of Acute Kidney Injury 
 

Reference Route Furosemide Dosage 
Beroniade (253) Unknown 60–480 mg 
Berthelsen (217) IV infusion 40 mg bolus then 40 mg/hour 

Borirakchanyavat (254) IV 500 mg/day 
Brown (255) IV or oral 2 mg/min or 1000 mg three times daily 

Cantarovich (256) IV infusion 600–3200 mg progression over 30 min-10 hours 
Cantarovich (257) IV infusion 2000 mg/day 
Cantarovich (258) IV or oral 25–35 mg/kg/day 

Chandra (259) IV infusion 200–2000 mg/day 
Hager (260) IV infusion 1 mg/hour 

Karayannopoulos (261) Unknown 1000 mg increased to 3000 mg based on response 
Kleinknecht (262) IV infusion 150-1200 mg 

Lassnigg (263) IV infusion 2.5 mg/hour 
Lumlertgul (264) IV 200 mg every 6 hours 

Mehta (265) Unknown 80 mg 
Minuth (266) IV 40-500 mg 
Shilliday (238) IV 3 mg/kg every 6 hours decreased to 1 mg/kg 
Uchino (267) Unknown 240 mg/day on average 

van der Voort (268) IV infusion 0.5 mg/kg/hour 
Vargas Hein (237) IV infusion 80 mg bolus with 40 mg/hour to 15 mg/day 

 
in this population highlights the ambiguity of diuretic role in the ICU. Early observational studies 

showed a potential worsening of outcome with the administration of furosemide and acute kidney 

injury, however confounding by indication often induced uncertainty in interpretation. (269) 

Within a prospective study of 132 patients admitted to a single center ICU in Brazil, the use of 

furosemide was a significant predictor of acute kidney injury, with the highest odds ratio in 

univariate analyses (3.27, 95% CI 1.57-6.80). (373) However, once adjusting for other factors, the 

statistical significance of this value was lost (OR 2.67, 95% CI 0.89-8.00). Additionally, while 

others have found furosemide to increase urine output and decrease need for renal replacement 

therapy in acute kidney injury, mixed results have been seen for overall clinical outcomes such as 

overall mortality. (230, 270-272) In the previous cohort of 132 patients with AKI in 10 Italian 

ICUs, diuretic use was associated with better survival in this population (HR 0.25, 95%CI 0.12- 

0.52). (181) A retrospective observational study of 86 critically ill patients with continuous renal 
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replacement demonstrated 58.4% of patients received furosemide with weaning of renal therapy. 

No difference was seen in the number of patients receiving diuresis (56.7% vs 61.8%, p=0.67) or 

the dose of furosemide utilized (0.5 mg/kg vs 0.6 mg/kg, p=0.52) in those who were successfully 

weaned versus those who were not. However, urine output for the 6 hours following cessation of 

CRRT was found to be the main risk factor for lack of successful weaning. The use of furosemide 

strengthened this association as demonstrated by improved sensitivity and specificity of the area 

under the receiver operating characteristic curves. Some studies have even shown increased rates 

of acute kidney injury with utilization of loop diuretics. (273) Doses associated with avoidance of 

acute kidney injury have included 1-2.5 mg/hour or intermittent doses of 80 mg IV. In the 

treatment of acute kidney injury, studies have utilized wide ranges of doses, giving total daily 

doses of up to 3200 mg (average daily dose of 1240 mg) and 3400 mg (Table 1.7). (238, 256) 

However, in a meta-analysis of studies looking and prevention of treatment of acute kidney injury 

with furosemide, high doses ranging between 1-3.4 grams per day were associated with increased 

risk of temporary deafness and tinnitus (RR 3.97, 95% CI 1.00-15.78). (272) 

 
The SPARK study was multi-center randomized controlled study in patients within three 

intensive care units who experienced early stages of AKI. (229) Patients received 0.2 mg/kg 

loading dose of furosemide followed by 0.05 mg/kg/hour continuous infusion increased by 0.05 

mg/kg/hr every 2 hours up to a maximum of 0.4 mg/kg/hour based on ideal body weight to 

maintain a urine output of 1-2 mL/kg/hour for at least 24 hours. After enrolling 73 patients, this 

trial was stopped early. Early termination of the study was reportedly due to feasibility of 

recruitment given trial interruptions secondary to an influenza pandemic and furosemide shortage 

in addition to funding limitations. Authors concluded the study was underpowered which likely 

contributed to the lack of between-group differences seen in clinical outcomes. Notably, protocol 

deviations occurred in 76% of patients in the furosemide treatment group and 81% of patients in 

the placebo group, mostly due to deviation from the study algorithm. Further, 10.8% and 30.6% 

of patients received supplemental furosemide dosing in the furosemide and placebo groups, 
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respectively. There was no difference in the number of patients who developed an adverse reaction 

to furosemide infusion compared to placebo, however those that did have side effects had frequent 

side effects, predominately increases in serum sodium, sodium bicarbonate, or decreases in serum 

potassium (p<0.001). 

 
1.23.3 Furosemide for Assessment of Acute Kidney Injury 

 
 

Researchers have extended research utilizing furosemide beyond prevention and 

treatment of acute kidney injury to testing native renal function with high doses as a method of 

identifying early renal injury. Chawla and colleagues utilized furosemide as an early assessment 

of tubular function in acute injury, although tubular injury may account for only up to one-third 

of patients with acute kidney injury. (273) Given its lack of filtration through the glomerulus and 

tubular secretion as well as tubular mechanism of action, administration of this loop diuretic was 

hypothesized to be a clinical assessment tool of tubular function. In one trial, patients were 

included on the basis of early acute kidney injury after resuscitation. Furosemide was 

administered at 1 mg/kg or 1.5 mg/kg if the patient had a known previous furosemide exposure. 

Urine output response was noticeably highest in the first 2-3 hours and the cumulative urine 

output in the first 2 hours was shown to best predict development of worsened AKI and continued 

to be associated with progression after adjusting for multiple parameters. (274) 

 
1.23.4 Furosemide Administration Strategies 

 

Beyond the specific dosing of furosemide, the frequency or rate is often debated as well. 

Continuous infusion furosemide is hypothesized to have a more predictable and constant urine 

output given minimal fluctuations in serum concentrations relative to intermittent dosing 

regimens. Consistent serum levels may eliminate instances of compensatory sodium retention 

possible with intermittent doses. This is hypothesized to prevent large hemodynamic fluctuations 

as well, decreasing adverse events rates. Early evidence suggests that the duration of furosemide 

exposure to the tubular receptors has a greater impact on urine output that the route or the total 
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amount of drug administration. (275) Additionally, the risk of diuretic resistance is believed to 

decrease with the use of continuous infusion via the prevention of a drop below therapeutic 

thresholds. The continuous titration, in theory, allows for easier dose adjustments tapered or 

titrated based on urine output response, however continuous infusion is less convenient, requiring 

more frequent assessments and constant intravenous access. A prospective study compared the 

two regimens for the treatment of fluid overload in 59 patients within the ICU. Intermittent 

furosemide was dosed every 3 hours with escalated mg/kg doses based on urine output response 

while continuous infusion rates were also escalated every 3 hours based on urine output response. 

No difference was seen in total urine output, however patients in the intermittent dose group 

required higher doses to achieve such. (276) A 2018 meta-analysis sought to demonstrate a 

therapeutic benefit of continuous infusion, evaluating all studies involving continuous infusion 

compared to bolus furosemide within the intensive care unit. (277) In the 9 studies evaluated, 

continuous infusion was associated with a total greater urine output (OR 811.19, 95% CI 99.8- 

1522.5), but also a longer length of hospital stay (OR 2.84, 95% CI 1.74-3.94). No difference was 

seen in rates of mortality, estimates of renal function, or other safety parameters. However, it is 

important to note that in the data pool, only a cumulative 464 patients were available for 

evaluation and the dose ranges varied between groups. Doses of furosemide via intermittent 

dosing ranged from 25 mg in 24 hours to 24 mg every hour. Continuous infusion dose ranges 

reported fluctuated from 59.4 mg in 24 hours to 329 mg in 24 hours. Some studies did not report 

dosing ranges for either group. In a 2018 retrospective study of 1176 patients receiving CRRT, 

the effect of furosemide on CRRT discontinuation was evaluated. No protocol was specified for 

dosing however continuous infusion or bolus administration was allowed for a target urine output 

of at least 0.5 mL/kg/hour. In this study, continuous infusion recipients received a greater dose 

of furosemide and tended to have a greater urine output on day 3, however a higher increase of 

serum creatinine was demonstrated if utilized for greater than one day. Multivariable regression 

analysis identified urine output on the day prior and use of diuretics as significant predictors of 
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Figure 1.4 Protocolized Furosemide Dosing Strategy (278) 
 
 

 

successful discontinuation of CRRT. In a study of 20 patients admitted to the ICU with acute 

respiratory failure secondary to cardiogenic pulmonary edema, the use of a continuous infusion of 

0.1 mg/kg/hour after a 1 mg/kg bolus compared to intermittent doses of 1 mg/kg resulted in a 

higher hourly urine output (p<0.05). (279) In a landmark randomized controlled trial of 308 

patients admitted with acute decompensated heart failure, continuous infusion furosemide did not 

produce any significant benefit on improvement of symptoms, changes in kidney function, or urine 

output when compared to intermittent dosing. (280) 

 
1.23.5 Protocolized Furosemide Administration 

 

What is likely most proven to be beneficial, and unaccounted for in the aforementioned 

meta-analysis, is the utilization of goal-directed diuresis compared to standard of care. In a case- 
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control study of 55 patients, a protocolized continuous infusion furosemide protocol compared to 

intermittent boluses outside of protocol showed improved net 24 hour fluid balance (p=0.026) and 

cumulative urine output (p<0.001). (281) Protocolized bolus administration compared to a 

protocol of continuous infusion resulted in no difference within clinical outcomes. (282) Specific 

protocols were not reported here, however the authors mention a goal of -1 mL/kg/hour with a 

maximum dosing allotted of 0.75 mg/kg/hour in the continuous infusion group and 320 mg per 

dose in the bolus group. In their prospective study of 90 patients, Shah and colleagues randomized 

patients to three groups, one with intravenous furosemide bolus 100 mg/24 h in two divided doses 

and two groups of intravenous furosemide continuous infusion 100 mg/24 h with one of these 

two including dopamine use. The intermittent dosing protocol correlated with a greater rate of 

diuresis (p=0.002) and a shorter hospital stay (p=0.023) compared to continuous infusion. 

(283) Schuller and colleagues evaluated 33 patients with pulmonary edema or fluid overload and 

enrolled to either goal directed bolus or continuous infusion furosemide, adjusted based on hourly 

fluid balance (Figure 1.4). No difference was found in the achievement rates of net hourly fluid 

balance (0.78) or overall in-hospital mortality. When compared to a nonrandomized cohort, the 

patients on goal-directed protocol had more diuresis as well as a shorter length of hospital and 

ICU stay. (278) 

Evidence surrounding the utilization of pharmacologic diuresis for de-resuscitation in the 

ICU is limited, however data does exist evaluating its use in several specific disease states. 

Evidence suggests that a protocolized approach is likely most efficacious, however a study 

evaluating a diuresis protocol within the broad ICU population is necessary. 

1.24 Diuretic Resistance in the Intensive Care Unit 
 

As eluded thus far, the potential for resistance to loop diuretics may limit their use. 

Resistance to a loop diuretic is usually termed when a patient does not have adequate clinical 

response to maximal doses of furosemide, however recommendations for maximum dosing do not 

agree. (220) Regardless, a patient who receives only 6-8 days of chronic loop therapy can have a 
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blunted response. For this reason, several adjunct options have been considered in order to 

improve urine output with the administration of furosemide. 

1.24.1 Adjunctive Diuretic Therapy with Albumin 
 

Albumin has been frequently evaluated as an adjunct to furosemide dosing for suspected 

diuretic resistance. Furosemide delivery to the proximal tubules is dependent on its binding of 

serum albumin. The ebb phase of the shock state demonstrates increased albumin extravasation 

out of the intravascular space secondary to increased capillary permeability. When albumin 

concentrations are low, furosemide binding decreases and its volume of distribution expands. 

Therefore, the amount of furosemide left within the serum decreases and less drug is able to reach 

the tubules and site of action. In a study of hypoalbuminemic patients receiving mechanical 

ventilation for at least 48 hours, patients were randomized to placebo versus albumin and 

furosemide combination therapy. The addition of albumin did not affect days of mechanical 

ventilation and total doses of furosemide were not reported. The mean starting rate of furosemide 

in the both groups was 3.5 mg/hr with a titration up to 4.9 mg/hr in the combination group 

versus 6.7 mg/hr in the monotherapy group, correlating to a total daily dose of 84-117 mg. (284)‘ 

A meta-analysis in 2014 attempted to pool data regarding albumin and furosemide co- 

administration in a broad cohort. (285) A large variation in furosemide dosing regimens were 

utilized, with a range between 30-220 mg. Studies using smaller furosemide doses were the only 

protocols resulting in a benefit in combination with albumin therapy, highlighting the importance 

of adequate furosemide dosing and likely lack of benefit of albumin when optimal furosemide doses 

are utilized. Of course, this population was very broad, including patients with cirrhosis and 

nephrotic syndrome, limiting precise interpretation as it relates to the general ICU population. 

In a 2014 meta-analysis which limited its data pool to only randomized controlled trials 

evaluating albumin in addition to furosemide in the critically ill, insufficient evidence exists to 

perform analyses (two eligible trials). (286) Another meta-analysis the same year with less 

stringent criteria evaluating co-administration of albumin with loop diuretic therapy, significant 
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heterogeneity was demonstrated in the 10 included trials. A significant increase in 8-hour urine 

volume was found with albumin use (difference of 231 mL, 95% CI 135.5-326.5) as well as sodium 

excretion but such differences were not significantly different after the first day. (285) 

A 2018 trial evaluating feasibility of albumin addition to clinician-driven diuresis for the 

treatment of edema secondary to volume overload in hypoalbuminemic ICU patients failed to 

produce feasibility and furosemide doses went unreported. (287) A recent study utilized what was 

termed PAL-treatment in patients admitted to the intensive care unit with acute lung injury 

receiving mechanical ventilation. The first step of this protocol was a 30-minute application of 

positive end-expiratory pressure to counterbalance an elevated intra-abdominal pressure. After 

the pressures were equal, albumin 20% solution was administered (twice on day one, then titrated 

in an attempt to achieve a serum albumin of 3 g/dL). Thirty minutes after the first albumin dose 

was administered, 60 mg of IV furosemide was administered followed by a continuous infusion of 

60 mg/hour for the first four hours then 5−20 mg/hour pending if no shock occurred. For those 

patients without adequate urine output, continuous renal replacement therapy was used with 

ultrafiltration in order to obtain either a net-even or negative fluid balance. Patients receiving 

this therapy showed improvement in ELVW, intra-abdominal pressures, and decreases in 

cumulative fluid balance; however, the placebo group did not contain furosemide, therefore 

limiting the interpretation of benefit to albumin alone. (288) 

1.24.2 Adjunctive Diuretic Therapy with Thiazide Diuretics 
 

Another potential therapeutic modification to diuresis is the addition of thiazide diuretics 

to loop therapy within the ICU. Thiazide-type diuretics block the sodium reabsorption in the 

distal tubules, succeeding the mechanism of action of the loop diuretic therapies. This can result 

in sequential nephron blockade and may have a synergistic effect with loop diuretic 

administration. Metolazone, through additional potential action on the proximal tubule, is 

postulated to have even greater synergy; however, such has never been proven in clinical studies. 
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(289) The majority of the evidence to support the synergistic effect between metolazone and loop 

diuretics comes from primarily small observational studies in the acute heart failure population 

with a reported response rate of up to 90%. (290) In a retrospective study of 242 hospitalized 

patients receiving diuresis for acute heart failure, the combination of metolazone and intermittent 

furosemide was more effective than continuous infusion furosemide and bumetanide, 

demonstrating a mean hourly urine output of 109 mL/hour compared to 48 mL/hour and 90 

mL/hour, respectively (p<0.0001). (291) Metolazone is available only as an oral form while an 

alternative thiazide-like diuretic, chlorothiazide is an intravenous option. Given the potential for 

decreased drug absorption with surrounding gastrointestinal edema, chlorothiazide has been 

hypothesized to have a greater action in those with refractory edema, such as the critically ill. A 

group of 45 patients who received chlorothiazide for acute decompensated heart failure after 

determined to be refractory to metolazone and resistance to diuresis were retrospectively 

evaluated in a single center study. (292) Chlorothiazide 500 mg IV did not significantly increase 

urine output compared to metolazone in a heart failure population. One author also demonstrated 

non-inferiority when metolazone was compared to chlorothiazide. (293) A third study also 

demonstrated similar responses in urine output between the two options however patients 

receiving chlorothiazide received higher thiazide and loop diuretic doses (p<0.01). (294) Only one 

study has sought to specifically evaluate metolazone compared to chlorothiazide in the general 

ICU population. (295) In this retrospective cohort of several ICU types, 122 patients were 

included. Compared to furosemide monotherapy, chlorothiazide resulted in a significantly higher 

change in urine output at 6 and 24 hours (1463 mL vs 796 mL, p<0.01; 2405 vs 1646 mL, p+0.01). 

However, patients receiving chlorothiazide also required more potassium supplementation and 

also had a significantly higher cost of therapy ($97 vs $8, p<0.01). Further, patients in the 

chlorothiazide group received a significantly higher amount of furosemide via continuous infusion 

as well as a numerically higher furosemide receipt with intermittent dosing. No differences were 

found in renal replacement therapy, ICU length of stay, or survival to discharge. 
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1.24.3 Adjunctive Diuretic Therapy with Acetazolamide 
 

The final potential adjunct agent for loop diuresis is acetazolamide, a carbonic anhydrase 

inhibitor whose mechanism relies upon inhibition of the proximal convoluted tubule sodium 

bicarbonate reabsorption. Via its action, sodium delivery to the NKCC is improved therefore 

improving loop diuretic efficacy. Thiazide efficacy also improves as it downregulates pendrin, a 

sodium-independent chloride/iodine transporter, in the distal nephron. Pendrin compensates for 

sodium and chloride loss in the distal convoluted tubules. Acetazolamide has minimal evidence in 

the critically ill population, with studies evaluating its use for metabolic alkalosis or mechanical 

ventilation weaning demonstrating suboptimal results. (296, 297) One single study evaluated 

acetazolamide in 24 edematous patients, secondary to heart failure, cirrhosis, or nephrotic 

syndrome. Acetazolamide was shown to improve diuresis in patients with a low fraction excretion 

of sodium prior to diuretic treatment and when resistance was seen to both thiazides and loop 

diuretics, however none of these patients studied were critically ill. (298) 

1.25 Discrepancies in Approaches to Diuresis 
 

Studies including the administration of furosemide within the ICU show a broad range in 

the frequency of use, 70%, with equipoise demonstrated in the totality of evidence. (229, 299) In a 

2015 survey of 146 intensivists in Australia and New Zealand, concerns regarding current diuretic 

approaches were raised. (300) Over 60% of the respondents had worked in an ICU for at least 10 

years and utilized a positive fluid balance, acute pulmonary edema, or acute lung injury as 

indications for the administration of a loop diuretic. A minimal number of respondents considered 

acute kidney injury or elevated central venous pressure to be an indication for volume removal. 

For all indications, an IV bolus was the preferred route over 60% of the time and several clinicians 

had no preference in comparison to continuous infusion. Regardless of the indication, the majority 

started administration of loop diuretics with a 40 mg IV dose or 10 mg/hour infusion, except when 

acute kidney was present, then physicians stated that at least half of the time an 80 mg IV bolus 

and 50 mg/hour infusion would be their selection. Most notably, when prompted 
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about the expected clinical responses to loop therapy based on the clinical indication, the majority 

of physicians had no set target specified for acute kidney injury, acute pulmonary edema, increased 

central venous pressure, or acute lung injury. While more physicians did state they most 

commonly had a set goal in mind when treating positive fluid balance and oliguria, a significant 

portion of these groups did not, with 27.7% and 11.5% having no goal for the management of fluid 

balance or oliguria, respectively. 

An even larger survey encompassed physicians across 16 countries surveyed diuretic 

therapy in acute kidney injury specifically. (301) Loop diuretics were administered in 67% of 

patients most frequently intravenously. Most respondents reported that several considerations 

were important in the decision for initial dosing regimen, including serum creatinine, urine 

output, blood pressure, central venous pressure, and toxicity risk. Only 5% of respondents had a 

protocol to dictate diuretic therapy. Pulmonary edema was a large indicator for diuretic need; 

however, serum creatinine, oliguria, and metabolic acidosis were not. The use of diuretics for 

abdominal compartment syndrome was infrequent or almost never in 65.5% of respondents. Use 

was more common in AKI associated with rhabdomyolysis, major surgery, and cardiogenic shock 

with respondents reporting 'sometimes' or 'frequently' in 55.6, 56, and 56.2%. Clinicians 

responded that septic AKI was ‘infrequently’ or ‘almost never’ an indication for diuresis in 49.6% 

of respondents. Most respondents did not believe that diuretics would reduce mortality or 

improve renal function in this population however roughly 25% were still uncertain about diuretic 

impact on outcomes. The majority had a set target urine output as their goal for diuresis, but 17% 

did not have a target fluid balance. Interestingly, 85% of the respondents expressed willingness 

in the participation of a potential randomized controlled trial evaluating the use of diuretics in 

patients who are critically ill with acute kidney injury. 

Loop diuretics, in general, have been shown to have a large inter-patient variability in 

urine output response and the standard dose of 40 mg IV has been shown to improve urine output 

volumes, but does not consistently improve cumulative fluid balances, demonstrating that likely 
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higher doses are needed in some populations. Multiple patient-specific parameters may need to be 

considered for optimal outcome. 

In a study of 162 patients admitted to the trauma ICU in a single center over a two year 

timeframe, only 27 patients, 31.8%, received furosemide within the first two weeks of stay in the 

intensive care unit. (302) While the first day of diuretic administration was within 72 hours of 

ICU stay, the first day of diuresis in some patients may not have occurred until day 12. The 

majority of patients received a starting dose of 10 mg with a cumulative dose of 60 mg. The range 

of cumulative dosing extended from 20 mg to 610 mg, with the average daily dose highest on day 

11. Patients who received diuretics had a longer ICU stay (9 vs 5 days, p<0.001) as well as longer 

days on mechanical ventilation (7 vs 2 days, p=0.005). It is plausible that the lack of benefit of 

diuresis was secondary to late initiation of furosemide as well as delayed time to optimized dosing. 

These possibilities reemphasize the importance of appropriate dosage as well as the team’s early 

recognition of shock resolution in order to transition to the flow state. (302) 

In a separate study of patients within the respiratory ICU assigned to a nurse-driven 

protocolized furosemide continuous infusion over a one year, 43 patients received treatment and 

were evaluated. (303) Duration of furosemide was widespread, with an average duration of greater 

than one week with a range between 2-25 days. The average total dose received was 2240 mg 

(Standard Deviation [SD] 3340 mg), however the average total daily dose received was 251 mg, 

10 mg/hour. The majority of patients (89%) stopped receiving furosemide secondary to overall 

improvement of edema, with a small portion required discontinuation secondary to hypotension 

(7%). Temporary holds were most frequent for high urine output (44%), with the next highest 

frequency of temporary holds secondary to hypotension. Worsening kidney function was seen 

in13 percent of patients with 6% developing high sodium (hypernatremia) or low potassium 

(hypokalemia), or both. Given the lack of comparator group, no clinical outcomes were compared; 

however, it was noted that albumin was administered on 22% of days during protocol receipt and 

acetazolamide was administered on 5% of the days during furosemide infusion. (303) Even in the 
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prior mentioned multicenter retrospective cohort demonstrating improved mortality with lower 

72 hour fluid balances, which was associated with strength of furosemide dosing, the median dose 

administered on days 1-3 was 0 mg, with an interquartile range extending only to 20 mg. (218) 

A retrospective evaluation of 326 patients with acute kidney injury receiving furosemide 

before consultation of the renal team showed a wide range of diuretic administration and 

responsiveness. (265) The range extended from 20 mg of furosemide resulting in 1000 mL of 

urine output to 240 mg of furosemide resulting in only 114 mL of urine. Notably, a ratio of 

furosemide in mg to urine output in mL on the day of renal consultation ≥1 correlated with a 

significant increase in death or nonrecovery (OR 2.94, 95% CI 1.61-5.36), however researchers 

highlighted some limitations in the interpretation of this data, including the use of odds ratios, 

late nephrology consults, and between-group differences at baseline, including respiratory failure 

and congestive heart failure. (304-308) 

1.25 Expanded Benefits of Diuresis 
 

1.25.1 Potential for Cost Benefit with Diuresis 
 

Beyond improvement in mechanical ventilation, mortality, renal function, and both ICU 

and hospital length of stay, appropriate management of fluid balance has the potential to impact 

functional and economic outcomes as well. Intensive care unit costs are three to five times that of 

stays in alternative hospital floors. One-third of inpatients costs is attributed to the ICU, although 

these beds accounts for under 10% of the total number of hospital beds within the United States. 

Specifically, mechanical ventilation increased hospital costs by an average of $18,643 per 

admission in a retrospective study of 253 United States hospitals, with a mean incremental cost 

of $1,522 per day with the addition of mechanical ventilation. (309) In a recent Canadian study, 

mean direct costs of ICU stay were a median of $148,328 (IQR $114,008–$224,611). Acute 

respiratory failure was associated with the highest costs in multivariate regression (OR 2.44, 95% 

CI 1.88-3.18). (310) A recent observational study of patients admitted to the ICU with vasopressor 
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therapy for septic shock sought to evaluate which outcome improvement may decrease overall 

hospital cost the mot. (311) The median charge for a septic shock hospitalization was $98,583 

(IQR $61,177-$136,672). Decreases in ICU length of stay, mechanical ventilation duration, and 

vasopressor  duration  of  24  hours  were  associated  with  charge  reductions  of  $15,670 (IQR 

$15,023-$16,317),   $15,284   (IQR   $13,566-$17,002),   and   $17,947   (IQR  $16,344-$19,549), 
 

respectively. Avoidance of new renal replacement therapy was associated with a charge reduction 

of $36,051 (IQR $22,353-$49,750). 

1.25.2 Potential of Impact of Diuresis on Long Term Outcomes 
 

Further, in a retrospective study of 247 patients admitted to an academic medical center 

within a three year time frame. Fluid overload was associated with post-discharge outcomes. A 

positive fluid balance was demonstrated in 86% of patients with 35% having volume overload, 

with an increased in weight from admission of at least 10%. Volume overload upon ICU discharge 

was independently associated with an inability to ambulate upon hospital discharge (OR 2.29, 95% 

CI 1.24–4.25) and increased need of discharge to a healthcare facility in those admitted from home 

(OR 2.34, 95% CI 1.1–4.98). Only 42% of patients received at least one dose of a diuretic during 

their hospitalization. Patients with volume overload at ICU discharge had a longer duration of 

mechanical ventilation in the ICU (4.4 days vs 1.8 days, p<0.01), were more frequently readmitted 

to the ICU (14.9% vs 5.6%, p=0.03), had a longer duration of an indwelling Foley catheter after 

ICU discharge (8.3 days vs 3.8 days, p=0.003), while also having a longer hospital stay after ICU 

discharge (9.6 days vs 3.1 days, p<0.01) and having higher risk of death before hospital discharge 

(9.2% vs 1.3%, p=0.01). (312) A secondary analysis of the previously mentioned study utilizing 

BNP for fluid management demonstrated that a fluid depletive strategy was associated with a 

decreased risk of ventilator association pneumonia as well as ventilator associated complications 

in addition to a shorter time to extubation, more successful rates of extubation, and more 

ventilator-free days after adjusting for a competing event of weaning outcome. (313) 
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1.27 The Role of the Pharmacist in Critical Care 
 

According to the Board of Pharmacy Specialties, a Board Certified Critical Care 

Pharmacist “has the advanced knowledge and expertise to quickly assess clinical data and deliver 

direct patient care to the critically ill and injured patient who may require specialized 

pharmacologic or technological interventions to maintain blood pressure, respiration, nutrition 

and other homeostatic functions, in addition to the patient’s primary condition,” as well as 

“reviews, analyzes and frequently reassesses multifaceted clinical and technological data to make 

reasoned decisions for patients with life-threatening conditions and complex medication regimens 

whose pharmacokinetic and pharmacodynamic parameters differ substantially from the non- 

critically ill patient.” (314) In a 2017 study evaluating composition of multidisciplinary teams, 

93.6% of teams had a critical care pharmacist at least part-time within the unit, with 74% having 

a pharmacist always or almost always on the team. (315) A survey specific to the United Kingdom 

surveying 279 units demonstrated that 98.6% of all critical care units had a designated pharmacist. 

(316) Many consider a critical care pharmacist to be a basic requirement in the ICU. (317) 
 

1.27.1 The Definition of the Clinical Pharmacist Role 
 

Almost two decades ago, the Society of Critical Care Medicine (SCCM) and the American 

College of Clinical Pharmacy collaborated to define the fundamental, desirable, and optimal roles 

of critical care pharmacists (Table 1.8). (318) SCCM guidance documents on optimization of 

critical care centers recommend pharmacy services in the highest level of critical care services. 

This organization deems pharmacist services to be essential in the ICU and recommends that 

dedicated ICU pharmacists should be available to “evaluate all drug therapy orders, review and 

maintain medication profiles, monitor drug dosing and administration regimens, evaluate adverse 

reactions and drug/drug interactions, give drug and poison information, and provide 

recommendation on cost containment issues.” Further, SCCM recommends that a pharmacist 

participates on multidisciplinary rounds, provides drug therapy education to other team members, 
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Table 1.8 Roles of a Critical Care Clinical Pharmacist (318) 
 

Grade Definition Example Activities 
 
 
 
 
 
 
Fundamental 

 
 
 
 
 
Vital to safe 
provision of 
pharmaceutical care 

• Dedicated time to critical care patients 
• Prospectively evaluates all drug therapy 
• Identifies adverse drug events and assists in their 

management and prevention 
• Provides drug information 
• Provides pharmacokinetic monitoring and drug 

therapy–related education 
• Implements and maintains departmental policies or 

procedures related to safe and effective use of drugs 
• Collaborates with nursing, medical staff, and hospital 

administration 
• Participates in quality assurance programs 

 
 
 
 
 

 
Desirable 

 
 
 
 

 
Critical care–specific 
pharmacotherapeutic 
services 

• Responds to all resuscitation events in the hospital 
• Rounds with the multidisciplinary team 
• Clarifies previously effective dosages and regimens 
• Provides didactic lectures in critical care 

pharmacology and therapeutics to health professions 
students 

• Coordinates development and implementation of 
drug therapy protocols to maximize drug therapy 
benefits 

• Participates in research design and data analysis 
• Assists in the screening and enrollment of patients 

and by serving as a study coordinator 
• Contributes to pharmacy and medical literature 

 
 
 
 
 
 
 
Optimal 

 
 
Specialized, 
dedicated and 
integrated model of 
critical care that 
aims to optimize 
pharmacotherapeutic 
outcomes via the 
highest level of 
teaching, research, 
and 
pharmacotherapy 
practice 

• Pharmacist provides formal, accredited educational 
sessions 

• Investigates or collaborates with other critical care 
practitioners to evaluate the impact of guidelines 
and/or protocols used in the ICU for drug 
administration and management of common disease 
states 

• Develops residencies and/ or fellowships in critical 
care pharmacy 

• Proactively designs, prioritizes, and promotes new 
pharmacy programs and services 

• Develops and implements pharmacist and pharmacy 
technician training programs 

• Publishes in the peer-reviewed pharmacy and 
medical literature 
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takes part in multidisciplinary quality activity committees, and implements policies and 

procedures to provide safe and effective medication practices within the ICU. (319) The 

therapeutic areas encompassed are ubiquitous, however ACCP specifically recommends expertise 

in renal diseases, including fluid homeostasis, as well as pulmonary disorders and mechanical 

ventilation. (320) A study in 2006 demonstrated how closely these recommendations are followed. 

In a survey of 1034 intensive care units, 43% of ICU pharmacist time was dedicated to patient 

care with another 26.2% in drug distribution and 12.6% in administration. Educational activities 

took 10.9% of the overall work time and 7.3% of efforts were dedicated to scholarly activity. The 

types of services commonly documented included changing drug therapy (90.6%), monitoring 

therapy (81.7%), preventing adverse drug events (77.5%), providing drug information (71.1%), 

cost savings (69.2%), and educational activities (53.2%). (321) The three broad areas in which 

clinical pharmacist workflow can be categorized include pharmacist independent patient review, 

active participation within the multidisciplinary team, and professional support activities. (322) 

1.27.2 Expanding the Role of the Clinical Pharmacist 
 

In the United Kingdom, the role of pharmacy practice is taken even further with the 

allocation of prescribing rights to critical care pharmacists. In one month, pharmacists 

contributed roughly 10% of all individual medicine prescriptions with 65.3% of ICU patients 

receiving at least one medication prescribed by a pharmacist. (323) This was true despite that only 

60% of shifts were actually covered by clinical pharmacists. The error rate of pharmacist 

prescribing in this study was 0.18% compared a provider prescribing error rate of 7-9% in other 

studies. (324, 325) While the range of medications was broad, no data on diuretic regimens was 

reported. The critical care profession continues to expand with an over 200% increase in 

specialized training programs in less than a decade. (326) Rates of acceptance of pharmacist 

recommendations within the intensive care unit on patient care rounds alone exceed 60% in both 

academic and non-academic institutions, with a value of service and severity of intervention most 
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frequently deemed to be significant based on United Kingdom standards. A cost-benefit ratio in 

this study was 3.2-3.3 depending on type of institution. (327) 

1.27.3 Pharmacist-Driven Protocols in the General Population 
 

The benefit of pharmacist-driven protocols is well documented in a multitude of 

populations. In a pre- and post-intervention study looking at the implementation of a pharmacist- 

driven protocol (PDP) for discontinuation of proton pump inhibitors in 101 non-ICU patients, 

pharmacists prospectively evaluated daily lists of hospitalized patients with active medication 

orders for a proton pump inhibitor and evaluated each for appropriateness and as a result 

recommended discontinuation of change to an alternative therapy, as appropriate. This PDP was 

associated with a significantly higher discontinuation rate (absolute risk reduction 24.9%, 

p=0.001). (328) A PDP for perioperative antibiotic selection allowed the initiation of medication 

orders in patients with methicillin-resistance Staphylococcus aureus colonization undergoing 

orthopedic surgery. In the 51 patients evaluated, the PDP improved appropriateness of antibiotic 

selection by 18%. (329) Another study evaluated the use of a PDP for de-escalation of empiric 

broad spectrum antimicrobials based on patient surveillance screening within in 300 patients in a 

single center. Those in the post-implementation group had a 2.1 day reduction in the total 

duration of vancomycin therapy (p<0.0001) while also demonstrating a decrease in the total 

number of drug levels collected. (330) A pharmacist-driven prothrombin complex concentrate 

(PCC) protocol for the reversal of warfarin in warfarin-associated intracranial hemorrhage gave 

pharmacists responsibility in determining the appropriate dose of PCC, preparation, bedside 

delivery, and order entry into the electronic medical record. This PDP when compared to the 

historical cohort demonstrated in 48 patients, who presented to the emergency department, 

decreased time of administration from 70 minutes to 35 minutes, pre- and post-PDP, respectively 

(p=0.034). (331) PDP-managed warfarin has also shown to be of benefit. In 377 patients receiving 

warfarin within a single institution, dosing per PDP increased amount of time within therapeutic 

range (87.8% vs 38.5%), increased total number of patients who received goal therapeutic level 
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(35% vs 40%), decreased number of subtherapeutic internationalized normalized ratios [INR] 

(55.3% vs 39%), and decreased supratherapeutic INR values (3.7% vs 2.6%). Time to appropriate 

INR decreased by 0.5 days. (332) Regarding monitoring of an alternative anticoagulant, 

enoxaparin, a PDP anti-Xa level protocol increased the number of correctly drawn levels by 22% 

and follow up to non-therapeutic levels by 36% (p<0.001). The number of organizations adopting 

PDP approaches to therapy is increasing, with multiple recent publications, both demonstrating 

improved monitoring and increased rates of appropriate therapeutic regimens. (333, 334) 

1.27.4 Pharmacist-Driven Protocols in the Critically Ill Population 
 

In the ICU, evidence supporting PDP is more limited. However, PDPs may arguably be 

more significant regarding total demonstrated impact on clinical outcomes. In a single-center 

retrospective cohort study of a PDP for discontinuation of acid suppressive therapy, incidence of 

inappropriate stress ulcer prophylaxis was reduced from 61% versus 24% with PDP (p<0.0001). 

(335) The authors estimated an annual cost savings of $5496. A PDP for antipsychotic medication 

discontinuation in the ICU led to a significant reduction of antipsychotic medication continuation 

at hospital discharge of 25.3% (p<0.001). (336) In a single-center study of 201 patients with 

suspected pneumonia within the ICU, a PDP protocol decreased average days of treatment (12.3 

vs 15.9 days, p <0.001) without any change in clinical outcomes. (337) Further, in the ICU, 

pharmacist-led interventions have shown to decrease hospital length of stay by 3.7 days (95% CI 

5.2-2.3 days), ICU length of stay by 1.4 days (95% CI 2.3-0.5 days), duration of mechanical 

ventilation by 1.2 days (95% CI 2.1-0.3 days), and overall hospital costs per stay (2560 Euros, 95% 

CI 3728-1392). (338) In a study evaluating the impact of clinical pharmacists in the ICU in 

patients with infections, mortality rates in ICUs that did not have clinical pharmacists were 4.8- 

23.6% higher, ICU length of stay was longer by 7.9-8.1% (p < 0.05) and costs were 12% higher (p 

< 0.001). (339) Specifically in a study of 141,079 critically ill patients presenting with a 

thromboembolic or infarction-related event, mortality rates were higher for both populations 

without pharmacists during events without bleeding (OR 1.41, 95% CI 1.36-1.46). With bleeding 
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the odds ratio was 1.35 (95% CI 1.13-1.61) in ICUs which did not have a clinical pharmacist. ICU 

length of stay was 14.8 to 15.8% longer (p<0.001) and additional charges ranged from $2,610,750 

to 215,397,354 (p<0.001). Bleeding complications were significantly more likely in units without 

clinical pharmacists (OR 1.53, 95% CI 1.46-1.60) with more patients requiring transfusions (PR 

1.47, 95% CI 1.28-1.69) and blood products (p=0.006). (340) Outside of PDP, pharmacist presence 

in the ICU has been associated with a potential cost savings of over $0.5 million per year, reduced 

rates of ventilator associated pneumonia, decreased ventilator days, decreased medication errors, 

improved rates of neuromuscular function recovery and spontaneous ventilation, decreased 

inappropriate serum drug concentrations, and a 66% decrease in adverse events. (341) The only 

study to date evaluating pharmacists’ roles in fluid balance was an evaluation of pharmacist 

interventions in fluid-restricted patients receiving parenteral nutrition. Pharmacist impact 

significantly lowered mean fluid intake, fluid balance, and cumulative fluid balance, the latter by 

over 5.5 liters (p<0.001). (342) 

1.28 Conclusion 
 

Fluid overload remains an overwhelming and detrimental problem in the ICU and 

minimal evidence exists to provide guidance on appropriate utilization of diuretics for volume 

removal. Evidence establishes the detriment of fluid overload; however, current markers for fluid 

overload and potential monitoring parameters for de-resuscitation are initiated only when 

overload is present, potentially worsening clinical outcomes. Several surrogate markers have been 

deemed unreliable, both when monitoring volume status and renal function. Therefore, the 

clinician is left with urine output monitoring as a surrogate for optimization of therapies in order 

to achieve a net negative fluid balance. A urine output of 3-4 mL/kg/hour is postulated to provide 

adequate diuresis without causing intravascular volume depletion given the ability of capillary 

refill to accommodate. (343) While the timeframe for transition from ebb to flow states is also one 

of debate, the majority of evidence agrees that 72 hours after shock resolution is an appropriate 

starting point for the achievement of a net-even to net-negative fluid balance. The approach to 
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such an achievement is even more unclear. A protocolized approach appears to be better than 

current standard of care. Loop diuretics, by nature of mechanism of action and strength of drug 

effect, are likely to be the optimal diuretic for removal of volume, with the potential for adjunct 

agents in special circumstances. However, specific benefit has not been strongly demonstrated 

with one specific loop diuretic or mode of administration. The creation of a diuresis protocol to 

optimize the approach to diuresis is of vital need and is a prime area for pharmacist intervention. 

Pharmacist impact on clinical outcomes in the ICU is well-documented and previous pharmacist- 

driven protocols have proven successful. Given the lack of solid evidence, expert-level 

pharmacotherapy and thorough therapeutic understanding is necessary in order to create, 

evaluate, and utilize a protocolized approach to diuresis. 
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CHAPTER 2. NATIONAL STUDY OF THERAPEUTIC DIURESIS PRACTICES WITHIN 

THE INTENSIVE CARE UNIT 

The following chapter outlines the ”National Study of Therapeutic Diuresis Practices 

within the Intensive Care Unit Survey” which is a national survey led by the primary author, 

Bissell, and colleagues. This survey was distributed to all clinical pharmacists currently practicing 

within the intensive care unit (ICU) through a national database of the American College of 

Clinical Pharmacy Critical Care Practice and Research Network (PRN). This is a product of the 

Critical Care PRN as a network hopes to improve drug therapy outcomes by encouraging 

excellence as well as innovation in clinical pharmacy practice, research, and education. The main 

objectives of the PRN are to: provide timely educational updates to members and other 

pharmacists, participate in multicenter research in partnership with critical care pharmacists, 

facilitate information exchange among critical care pharmacists, and to provide a venue for 

informal networking among critical care pharmacists.(344) 

2.1 Survey Rationale and Purpose 
 

This research is valuable in order to establish a baseline of perceptions and clinical 

approaches to diuresis within the critically ill. Several studies have highlighted an association 

between mortality and fluid balance within the ICU population; however, few have looked at the 

management of volume status in order to correct positive volume status or facilitate mechanical 

ventilation wean in the broad ICU population. What is left unknown is how the best take the 

findings of these baseline evidence base and translate these findings into a truly working practical 

protocol that is feasible at bedside. A large knowledge gap exists in regards to overall utilization, 

timing, and monitoring of diuresis within the ICU population. Guidelines steering fluid de- 

resuscitation within the critically ill do not exist therefore resulting in varied practices. Current 

evidence on diuresis is limited to indirect evidence within a decompensated heart failure (ADHF) 

population or patients presenting in acute respiratory distress syndrome. Delaying the application 

of these studies further is potentially the continued utilization of hemodynamic monitoring 
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parameters no longer routinely recommended in clinical practice. Previous surveys surrounding 

diuresis in the critically ill have specific country limitations in which the standard of practice may 

vary greatly and are limited to very specific patient population subtypes, such as acute kidney 

injury. This survey is essential in order to develop a baseline understanding of current diuresis 

practices then implement research providing a more standardized approach to diuresis. The 

specific aims of this survey were to describe the frequency of pharmacist intervention on ICU 

diuresis and to evaluate perceptions surrounding efficacy of current diuresis process, particularly 

apprehension or barriers to diuresis within the ICU. Lastly the survey’s aim was to collect diuretic 

regimens utilized for diuresis in this population. With such, a standardized fluid de-resuscitation 

protocol after shock resolution could be developed in a multi-center intervention study. 

2.2 Survey Design and Validation 
 
 

A group of individual pharmacists were responsible for item generation and constructed 

sample questions. This group checked for redundancy and grouped of items into similar themes 

based on the survey objectives. The group developed a list of 25 key questions. Given the limited 

question items and group consensus, factor analysis was deemed unnecessary. SurveyMonkey© 

internet platform was utilized for questionnaire construction with automatic electronic data 

exportation to limit inter-rater disagreement. (345) A separate workgroup consisting of 9 

pharmacists went through pilot testing of the penultimate version to optimize question relevance, 

questionnaire flow, and clarity. The first survey was completed September 25, 2018 and the final 

survey submitted was September 30, 2018. The authors requested that participants share the 

questionnaire with colleagues. A total of 29 respondents completed the questionnaire (average 

completion rate of 86%) with a median time of completion of 9.9 minutes (IQR 8.2-25.5 minutes) 

at the time of data exportation from the database. Clinical sensibility testing was submitted via 

respondent email within this time frame. Questions were clarified and the addition of “Unsure” 

responses was included on questions as applicable. Additionally, questions regarding 

demographics (Q22, 23, 25) were clarified for further inclusion 
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Table 2.1 Final Survey Respondent Population Demographics 
 

 
Percentage 

Survey Respondents 
(n=29) 

Current Position 

Pharmacist (Specialist) 86.21% 25 

Pharmacist (Staff) 6.90% 2 

Pharmacist (Decentralized) 3.45% 1 

Resident/fellow pharmacist 3.45% 1 

Current Institution 

Academic medical center 55.17% 16 

Community medical center 41.38% 12 

Government medical center 3.45% 1 

ICU Team 

Teaching team 72.41% 21 

Rounding hospitalist 3.45% 1 

Non-rounding hospitalist 17.24% 5 

Rounding intensivist 58.62% 17 

Non-rounding intensivist 3.45% 1 

Rounding advanced care provider (APP) 27.59% 8 

Non-rounding APP 3.45% 1 

ICU Type 

Medical ICU 55.17% 16 

Non-Trauma Surgical ICU 6.90% 2 

Cardiac or Cardiothoracic ICU 13.79% 4 

Mixed ICU 20.69% 6 

Emergency department 3.45% 1 
 

of a more diverse population. After 2 weeks, the final survey was re-distributed to the same group 

of pharmacists (Appendix One). This time frame was selected to decrease time for confounding or 

maturation between test groups and to allow an appropriate amount of time to test selection 

stability and prevent memorization between cohorts. A total of 6 responses were received with a 

100% completion rate and median time of completion of 9.27 minutes (IQR 6.9-29.3 minutes). The 

first survey in this group was completed October 9, 2018 and the final was completion October 

16, 2018. Due to the limited question number and diverse conceptual processes included, direct 
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Figure 2.1 Study Population Patient Demographics per Day 
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inter-correlation between questions was unanticipated and internal consistency testing was 

deferred. To evaluate between test-retest reliability, a Pearson Correlation technique was utilized. 

(346) Overall, the survey was found to have a correlation of 0.854 (p<0.001), demonstrating 

evidence of test-retest reliability. 

2.3 Survey Results 
 

Among 32 respondents surveyed, 29 completed the instrument (91%) within a one-week 

period. The survey remains open given a current response rate of 1.4%, with 2291 individual 

emails sent via the Critical Care PRN Listserv mailing list in additional to 108 social media 

exposures. The average survey time was 9.1 minutes with population demographics demonstrated 

in Table 2.1 Clinical pharmacists were most frequently available during 8-hour daytime shifts 

(n=20, 69.0%), with 6.9% having 12-hour clinical pharmacy coverage, and another 10.34% having 

extended daytime hours (n=2 and 3, respectively). Of the cohort, 13.8% had pharmacy coverage 

24 hours per day. Exactly half of the population had on-call pharmacy services (n=14), with the 

majority of these call hours 24 hours per day (n=12). Weekend clinical pharmacy coverage was 

available in 20.7% of the cohort, while 24.1% of the cohort had decentralized pharmacy services 
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Figure 2.2 Factors Surrounding Initiation of Diuresis 
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Saturday and Sunday and 35.7% had central pharmacy coverage. These demographics are in 

alignment with previous demographics of the clinical pharmacy services within the ICU 

population. (321) 
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Figure 2.3 Adjunctive Agents Utilized in De-Resuscitation 
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2.3.1 Approach to De-Resuscitation Initiation 
 

As it pertained to the initiation of diuresis, the majority of surveyors did not have a 

protocol or guideline in place for de-resuscitation (68.8%) and the pharmacist was found to not 

frequently be involved as 62.5% of the cohort said the pharmacist was involved never or not 

typically (Figure 2.2) in diuresis initiation. Pharmacist involvement was varied, most frequently 

involving drug dosing, selection, or safety monitoring. Signs of pulmonary and/or peripheral 

edema on physical exam or monitoring devices, difficult mechanical ventilation wean, and positive 

fluid balances were the most frequent reasons for initiation of diuresis. Regimen choice was most 

frequently driven by fluid balance (n=20) as well as active diagnosis, such as AKI, or home diuretic 

regimen (n=19 per variable). Serum creatinine was the next most likely parameter for 

consideration (n=13) followed by nephrology recommendations (n=6). 

2.3.2 Diuresis Follow-Up and Modifications 
 

Regarding dosing frequency, every 12 hours and intermittent one-time doses were the 

most commonly utilized (n=19, 16, respectively). Every 8 hours was the 3rd most frequent 
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Figure 2.4 Appropriateness of Diuresis Discontinuation 
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selection with 12 responses. Continuous infusion was utilized less frequently with 6 responses 

and 5 responses with the latter representing those without an IV bolus prior to infusion start and 

the former with bolus. Every 24 hour dosing and every 6 hour dosing were also utilized but 

infrequently (n=2 per variable). The utilization of adjunct therapies is demonstrated in Figure 

2.3, with acetazolamide often utilized for serum bicarbonate, albumin for hepatorenal syndrome, 

and metolazone as a continuation of home regimen, heart failure, or failure to achieve daily goal. 

 
Upon initiation of diuresis, 41.9% of the respondents said the next assessment or regimen 

was change was typically within 6-8 hours, while 22.6% said after 24 hours, and 19.4% stating 

within 12 hours. Diuresis follow-up was assessed daily in rounds in 16.1% and within 2 hours in 

12.9%. Most respondents stated that typically diuresis was not stopped for safety reasons (70.9%) 

while 61.3% stated that diuresis was stopped appropriately about half of time overall (Figure 2.4). 

Despite this, the most common reasons indicated for a decrease in the diuretic regimen occurred 

for safety reasons were hemodynamic safety, excessive diuresis, and metabolic safety with 18,  
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Table 2.2 Frequency of Volume Status Consideration 
 

 Percentage Cohort (n=31) 

Only during initial resuscitation 25.81% 8 

Multiple times per day 29.03% 9 

Daily 54.84% 17 

Every 1-2 days 6.45% 2 

Once prompted 6.45% 2 

Once indicators of volume overload found 51.61% 16 

Possibility of extubation 19.35% 6 

Unsure 3.23% 1 
 

17, and 15 respondents claiming such within their population. Unresponsiveness to diuresis was 

stated to be an indication for decrease in the regimen in 8 respondents and conversion to renal 

replacement therapy was chosen once. Regarding the frequency of volume status monitoring, 

respondents were permitted to choose more than one answer to the question. The majority of the 

respondent group stated that volume status is considered only daily and/or when volume 

overload indicators are displayed (Table 2.2). 

 
2.3.3 Perceptions of Diuresis Efficacy 

 
 

Regarding the overall effectiveness of de-resuscitation, the majority of the cohort felt as 

though goal net fluid balance was achieved most of the time (46.7%) while one-third felt as if goal 

fluid status was achieved only half of the time (36.7%). One respondent each stated that goals were 

met either never or always and another 10% of the respondents felt as though goals were not 

typically met. However, when asked specifically about timeframe following shock resolution, most 

of the respondents felt as though not enough diuresis was given in the first 24 hours following 

shock resolution and over 50% felt as though this remained true for a total of 48 hours following 

shock (Figure 2.5). Further, when specifically asked about the rate of appropriateness in diuresis 

in patients outside of the acute decompensated heart failure population, 36.7% stated that 

appropriateness was only achieved half of the time. Another 30% felt as though appropriateness 

was not typical and 3.3% stated never. The remaining 26.7% stated that they felt 
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Figure 2.5 Appropriateness of Diuresis Quantity Following Shock Resolution 
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Figure 2.6 Perceptions Surrounding Efficacy of Diuresis 
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diuresis was appropriate most of the time and one individual was unsure (3.3%). The most 

frequently cited reason for inappropriate diuresis was underdosing (63.3%), followed by incorrect  
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frequency (40%), incorrect drug (20%), and overdosing (10%). Ten percent of the population felt 

diuresis was always appropriate while 16.7% were unsure and 3% stated other. When asked, 63.3% 

of the population felt that if diuresis was performed appropriately then patient outcomes would 

be improved while another 20% felt outcomes would be significantly approved. The remaining 

16.7% felt there would be no difference. 

2.4 Discussion 
 

This was the first survey to look at a broad perception of de-resuscitation practices by 

pharmacists in the general ICU population. This was a diverse cohort, with a wide range in 

demographic variables as well as patient population and exposure. Most notable is that very few 

centers had a protocol surrounding de-resuscitation measures and those that did were specific to 

disease states such as acute kidney injury or acute decompensated heart failure. Further, very 

limited pharmacy involvement was noted in diuresis initiation; however, pharmacist assistance, 

when performed, was of a broad variety. A large range of rationale was selected regarding lack of 

efficacy of diuresis. The population was split with respondents citing lack of comfort with diuresis, 

lack of understanding of regimens, lack of understanding of fluid overload harms, poor follow-up 

measurers, or inaccurate intake and output records. All of these areas encompass the fundamental 

or desirable roles of a critical care pharmacist, including but not limited to collaboration with 

staff, drug information education, rounding with the multidisciplinary team, and evaluation of all 

drug therapies. One other desirable role of the clinical pharmacist in the ICU worth considering 

is the development and implementation of drug therapy protocols to maximize drug therapy 

benefits. This is a key area in which a pharmacist could assist given the lack of standardized de- 

resuscitation measures as seen in this cohort. (318) Protocol-driven diuresis has been shown to 

improve clinical outcomes both regarding diuresis efficacy as well as decreased length of stay. 

(279) Pharmacy-driven protocols have shown increased rates of target attainment and improved 

monitoring as well as appropriateness of drug therapy. (327,328,331) 

A wide range was also seen in dosing ranges, utilization of adjunctive agents, evaluation 
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of fluid status, and follow up monitoring. Diuresis appeared to be relatively safe given the limited 

number of patients in which de-resuscitative measures were discontinued for safety reasons with 

most patients having appropriate stop times as perceived by the collective group. While 

discontinuation seemed appropriate, questions surrounding appropriate initiation varied. A high 

proportion of respondents felt as though not enough diuresis was administered at 24- and 48- 

hours following shock resolution; however, the respondent group appeared to be confident in 

achievement rates of fluid goals. This survey’s answers highlight two points: the potential for 

inappropriate fluid balance goals as well as overall confusion regarding the appropriateness of 

diuresis initiation before the 72 hour mark after shock resolution. Also alarming, survey 

respondents stated that the most frequent reasons for the initiation of diuresis were signs that 

fluid overload was already present. These included signs of peripheral or pulmonary edema, 

positive fluid balance, and difficult wean from mechanical ventilation. A protocolized approach, 

which would call for inclusion once clinical parameters were met, would assist in timing of 

protocol initiation to avoid waiting for signs of fluid overload and therefore potentially optimizing 

patient clinical outcomes such as weaning from mechanical ventilation. 

In conclusion, a wide variability was seen in diuresis practices in this cohort. This survey 

was limited in sample size; however, it was noted that few of the responding institutions have a 

standardized approach to de-resuscitation and limited pharmacy involvement was noted. The 

development of a standardized approach is a prime opportunity for the inclusion of clinical 

pharmacists given the alignment with standard pharmacy roles in the critically ill population. 
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CHAPTER 3. PROPOSAL FOR FUNDING SUPPORT FOR EVALUATION OF THE 

EFFECTIVENESS OF PHARMACIST-DRIVEN DIURESIS IN THE INTENSIVE CARE 

UNIT 

This chapter provides rationale and aims to support receipt of investigator-driven funding 

from the American Society of Health System Pharmacists Foundation 2018 New Investigator 

Grant. This grant is awarded to new pharmacist investigators to provide funding for specific 

practice-based research related to advancing pharmacy practice initiatives in hospitals and health 

systems and are not intended for long-term support of research programs. The goal of this 

foundation is to support quality research for the advancement of pharmacy practice while 

developing the research skills of new investigators while also fostering mentorship relationships 

with senior investigative partners. (347) 

3.1 Specific Aims and Hypothesis 
 

A positive fluid balance is associated with worsened outcomes in the ICU, including 

increased mortality and length of stay. Despite recent studies demonstrating detrimental effects 

of fluid administration, fluid overload remains prevalent within the ICU. Recently, a shift in 

approach has started emphasizing de-resuscitation after hemodynamic stability with diuresis. 

However, diuresis is often ineffective in many institutions, due to a lack of standardization in 

identification of fluid-overloaded patients, adequate treatment regimens, dysregulated follow-up 

for effectiveness, and concern for adverse events. Pharmacist-driven protocols have proven to 

benefit both clinical and therapeutic outcomes in previous cohorts. A pharmacist-driven diuresis 

protocol implemented in the medical ICU has the potential to optimize clinical- and cost- 

effectiveness, and safety. In line with the Practice Advancement Initiative’s optimal pharmacy 

practice model recommendations from the American Society of Health-System Pharmacists, a 

pharmacist-managed diuretic protocol has the ability to advance the pharmacist’s role through 

development of a specific pharmacist-driven order set designed to support pharmacy resources 

conducted through an existing pharmacist authority policy. Such a protocol may also prevent 
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adverse events through daily medication review and dose adjustments secondary to monitoring 

of patient response while placing pharmacist accountability on medication-related outcomes, such 

as reduction of hospital costs by decreasing ICU resource utilization. 

Our objective is to improve patient care via the implementation of a pharmacist-driven 

diuretic protocol in the medical ICU population and to evaluate the impact on fluid balance 72 

hours following hemodynamic stability within ICU stay, as compared to standard of care. We also 

seek to determine whether the achievement of a net negative fluid status is associated with a 

decreased duration of mechanical ventilation without an increase in adverse events. 

Specific Aim 1: To determine whether a pharmacist-managed diuresis protocol 

significantly decreases net fluid balance 72 hours following resolution of shock in medically 

critically ill patients. 

Hypothesis 1: A pharmacist-managed diuresis protocol will result in a lower cumulative 

fluid balance 72 hours after shock resolution, defined as freedom from vasopressor support or 

bolus crystalloid administration for at least 12 hours, in medically critically ill patients. 

Specific Aim 2: To assess the impact of a pharmacist-managed diuresis protocol on 

mechanical ventilation days in medically critically ill patients. 

Hypothesis 2: Patients receiving protocolized pharmacist-managed diuresis will have an 

increase in ventilator-free days at 28 days, defined as the number of days from day 1 to day 28 in 

which a patient was able to breathe without assistance. 

Specific Aim 3: To address the safety of a pharmacist-managed generalized diuresis 

protocol via rates of adverse events. 

Hypothesis 3: A pharmacist-managed diuresis protocol when compared to standard care 

will have a similar rate of adverse events, defined as incidence of acute kidney injury (serum 

creatinine 1.5 times baseline serum creatinine, serum creatinine increase of at least 0.3 mg/dL, or 
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urine output <0.5 mL/kg/hr for at least 6 hours) and/or the incidence of a severe metabolic 

disturbance (potassium <3 mmol/L, sodium >150 mmol/L, or bicarbonate >40 mmol/L with a 

pH <7.3). (117) 

3.2 Rationale and Significance 
 

Intravenous fluids remain the hallmark of initial resuscitation in the critically ill. National 

guidelines recommend aggressive fluid resuscitation in the first 24 hours of ICU stay, however, 

excess volume receipt during and following the initial shock stabilization phase can be 

detrimental. (4) Ideally, patients presenting in shock will have an appropriate resolution of 

capillary leakage and restoration of microcirculatory blood flow at 72 hours, but patients 

frequently fail to successfully achieve 72 hour resolution, resulting in what some authors refer to 

as the Global Increased Permeability Syndrome (GIPS). (46) GIPS is an ICU phenomenon 

characterized by high capillary leak, excess interstitial fluid, and polycompartment syndrome. 

(288) For these individuals, fluid exposure increases edema impeding capillary blood flow and 

oxygen diffusion, resulting in decreased organ perfusion pressure and increased potential for 

organ failure. (348, 349) The edema incurred by overzealous fluid administration increases risk of 

acute kidney injury, may cause pulmonary edema, and may prolong the need for mechanical 

ventilator support in critically ill patients admitted to the ICU. (350) 

Despite the known consequences of fluid overload, fluid administration in excess 

continues to remain common practice. Over one-third of patients resuscitated by standard care 

are fluid overloaded after 24 hours. (210) Fluid overload has been associated with increased 

ventilator days, mortality and length of stay in the ICU. A large positive fluid balance after the 

first 48 hours of ICU stay has been reported to be an independent predictor of death (HR 1.10, 

95% CI 1.0007-1.022 per mL/kg increase). (351) A recent meta-analysis showed decreased ICU 

mortality with a negative fluid balance compared to a net positive balance (HR 0.25, 95% CI 0.32- 

0.55). (46) To further support these findings, an observational cohort study demonstrated that 

survivors of sepsis had a more negative fluid balance by days 3 and 7 of ICU admission when 
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compared to non-survivors, regardless of whether they originally presented in shock. (65) Even 

more alarming, despite a growing amount of disputing literature and protests from the scientific 

community, a recent mandate from the Centers for Medicare and Medicaid Services (SEP-1) will 

soon recommend that all patients presenting in sepsis, one of the most common diagnoses for ICU 

admission, receive a minimum fluid bolus of 30 mL/kg, further increasing the risk for volume 

overload in this population. (352-354) Our preliminary work in a 4-month prospective 

observational study of 426 patients in our medical ICU confirmed a daily positive fluid positive 

balance through ICU day 7 (+1.45 L ± 7L), with only 15 percent of patients receiving diuresis 

within the first 7 days in the medical ICU. (212) The standard of care, like many institutions, is 

that the initiation of diuresis therapy begins at clinician discretion. 

Protocols for diuresis in a broad medical ICU population have not been extensively 

studied. A protocolized management diuresis strategy in the heart failure population resulted in 

significant volume status improvement with marked weight loss without an increase in kidney 

failure or mortality. (355) However, the most extensive and robust data evaluating a conservative 

fluid management protocol in critically ill patients focused on patients with acute lung injury or 

acute respiratory distress syndrome. This protocol reduced ventilator dependent days (12.1 ± 0.5 

vs 14.6 ± 0.5 days, p<0.0001) and increased ICU-free days (13.4 ± 0.4 vs 11.2 ± 0.4 days, p<0.001) 

without increasing the risk for adverse events. (72) Despite positive results, limitations of this 

protocol that preclude broad implementation include reliance on invasive hemodynamic 

monitoring with the use of central venous pressure (CVP) and pulmonary arterial occlusion 

pressure (PAOP), parameters no longer commonly used nor recommended in current practice. (4) 

The benefits of inpatient clinical pharmacy services, particularly in the ICU, have been 

described in the literature. These include a reduction in adverse drug events and medication 

errors, decreased drug costs, facilitation of timely drug administration, and improvement in 

protocol compliance during medical emergencies. (356) Pharmacist-driven protocols, specifically, 

within other therapeutic areas have increased appropriateness of medication administration while 
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increasing rates and timeliness of goal attainment. To date, the impact of a pharmacist-driven 

diuresis protocol has not been evaluated. A pharmacy-guided protocol for diuretic administration 

in the ICU has the potential to increase achievement of net negative fluid balance and decrease 

duration of mechanical ventilation and ICU length of stay. In accordance with the Practice 

Advancement Initiative recommendations for optimal pharmacy practice models, a pharmacist- 

managed diuretic protocol will: 1) improve patient care by optimizing fluid balance, 2) advance 

the clinical pharmacist role, and 3) reduce hospital costs by decreasing per patient ICU resource 

utilization. 

The goal of this research will be to demonstrate the value of pharmacist intervention on 

fluid balance and duration of mechanical ventilation. This research will lay the framework for a 

larger multi-center study, and provide preliminary data for a competitive NIH application, 

specifically a K23 Mentored Patient-Oriented Research Career Development Award (K23; PA- 

18-375), focused on supporting those with a clinical doctoral degree who are committed to focus 

their research endeavors on patient-oriented research, or the AHRQ Health Services Research 

Demonstration and Dissemination Grant (R18; PA-13-046), focused on improvement of health 

care quality and safety via Patient Center Outcomes Research. 

3.3 Innovation 
 

This study is the first of its kind to provide pharmacist-managed diuresis to patients 

admitted to a medical ICU. Previous studies of diuresis in the ICU have been limited to acute 

respiratory distress or acute lung injury patients. (72) As the body of evidence builds suggesting 

the consequences of volume overload are not limited only to lung injured patients, we plan to 

provide this potentially lifesaving intervention to all eligible patients in our medical ICU. 

This study will advance pharmacy practice by allowing pharmacists to practice on a 

multidisciplinary healthcare team, with interdisciplinary support under a pharmacist authority 

policy. The results of this study will 1) establish a standardized protocol for diuresis after  
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shock resolution, 2) elevate the pharmacist role in management of diuresis, and 3) improve 

outcomes for patients admitted to our medical ICU. 

3.4 Investigators and Environment 
 

This proposal is feasible as the research setting is the University of Kentucky Hospital, a 

900-bed specialty referral academic medical center. The intervention will be applied in our medical 

ICU, which cares for over 2,400 patients a year, with a steady yearly increase of 9% (internal data), 

of which 1,872 (78%) are intubated and eligible for our study. Our institution cares for very 

critically ill patients; our case-mix index is in the 84th percentile as compared to other academic 

medical centers.19 

 
The Medical ICU at this center includes three separate medical ICU rounding teams and 

units (designated Pulmonary 1-3). Pulmonary 1-2 are traditional teaching teams, compromised of 

medical residents, a pulmonary fellow, a clinical pharmacist, all rotating monthly, in addition to 

an attending physician. Pulmonary 3 is an advanced practice practitioner (APP) driven service, 

consisting of two APPs or physician assistants, a clinical pharmacist, and an attending physician. 

Clinical pharmacists are vital members of the medical ICU multidisciplinary healthcare team and 

attend morning rounds in all units. Patients are admitted to each unit on the basis of open beds 

and nursing placement, with equal acuity and standards of care across all teams. The assembled 

research team includes a group of highly capable clinicians for this project. The mentor, Peter E. 

Morris, MD, an R01-funded investigator, is the Chief of Pulmonary, Critical Care and Sleep 

Medicine at the University of Kentucky. Three of the full-time Medical ICU clinical pharmacists 

(Bissell, Flannery, and Bastin) working on this project are current PhD candidates in Clinical and 

Translational Science. All four Medical ICU pharmacists are board certified, with one holding 

double board certifications and three holding critical care board certifications through the Board 

of Pharmacotherapy Specialties. Additional members of our research team include medical ICU 

advanced practice providers, a biostatistician, nursing administration, and additional board 
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certified critical care pharmacists, creating a group that is well-poised to carry out this research. 

This medical ICU-based research team has previously collaborated on outcomes-based research 

and pharmacy-led protocols. This includes most recently the implementation of novel sedation 

protocols and a pilot study evaluating clinical outcomes of a diluent change from 0.9% sodium 

chloride to 5% dextrose. (212, 357) This pilot study enrolled over 400 patients in a 4-month period 

and received a Society of Critical Care Medicine Star Research Achievement Award, awarded to 

the top 64 abstracts across all international submissions at the society’s annual meeting. The 

diuresis protocol itself has been developed with medical ICU and nephrology physicians, along 

with pharmacy and ICU nursing leadership, and will be carried out via the pharmacist authority 

policy currently in place at our institution. 

The current pharmacist authority policy within our institution allows for physician 

requests for pharmacotherapy evaluations via verbal communication or “Pharmacy to Dose 

(PTD)” orders within the electronic medical record (EMR). This policy awards the clinical 

pharmacist the authority to order and adjust medications as well as pertinent laboratory analyses. 

Specific guidelines exist for anti-infectives and medications with therapeutic drug monitoring, 

such as antiepileptic medications and anticoagulation, but PTD orders can be placed for any 

medication, both formulary and non-formulary. Per pharmacy policy, the pharmacist is 

responsible for providing appropriate and cost-effective pharmacotherapy recommendations. 

Daily patient-specific medication review will be performed by the primary pharmacist. The 

pharmacist is responsible for monitoring patient response to medication therapy and making 

suggestions to the team related to adjustment of doses or regimens. Clinical pharmacists who had 

documented competency have the authority to manage assigned patient’s pharmacotherapy 

through monitoring and adjustment of regimens to meet defined therapeutic goals. Regarding 

PTD orders, any physician may request a pharmacist to provide therapeutic dosing or monitoring 

services for any specified medication. Such a request may be made by submitting a pharmacy to 

dose (PTD) order in Sunrise Clinical Manager (SCM) or by giving a verbal order 
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Table 3.1 Study Inclusion and Exclusion Criteria 
 

Inclusion Criteria Exclusion Criteria 

≥18 years old admitted to the pilot 
MICU 

Comfort care decision to limit support or imminent 
death, as decided by MICU team 

Non-pregnant via serum hCG Anuric (zero urine output for at least 12 hours) 

Receiving mechanical ventilation with 
net –positive or net-even fluid balance 
or signs of fluid overload on chest x- 
ray or physical exam 

Nephrology consult for acute renal failure, defined 
as ≤0.3 mL/kg/hr urine output for at least 12 
hours, serum creatinine (SCr) 3 times baseline, a 
SCr ≥4, or receipt of renal replacement therapy 

 
No vasopressor administration or bolus 
crystalloid administration within 12 
hours, unless cardiogenic shock or 
norepinephrine <0.05 mcg/kg/min 

Acute treatment of any of the following: 
1. Diabetic ketoacidosis/Hyperosmolar 

hyperglycemic state 
2. Rhabdomyolysis with a creatine kinase level 

>5000 units/liter 
3. Suspected hepatorenal syndrome 

entered on his/her behalf. Such requests by the physician will result in the pharmacist being 

authorized to write orders for the initial drug dose, laboratory tests relevant to monitoring the 

drug, or subsequent orders for dosing adjustments as deemed appropriate by the pharmacist. 

3.5 Approach 
 

To accomplish these aims, we will implement a sequential period pilot study to evaluate 

a unit level change in diuresis practice. The protocol (Appendix Two) will be piloted in one of the 

three medical ICUs, Pulmonary 3, beginning June 1, 2018. This unit was chosen over Pulmonary 

1-2 service lines given the established clinical pharmacist-APP relationship and increased 

continuity within this unit as APPs do not rotate outside of the medical ICU. Patients admitted 

to the pilot unit receiving mechanical ventilation with a net-positive ICU fluid balance, net-even 

fluid balance, or signs of fluid overload determined via chest x-ray or physical exam will be 

included. Patient identification will occur by the clinical pharmacist, in collaboration with the 

medical team. Inclusion and exclusion criteria are summarized in Table 3.1. 

Protocol implementation will occur in the pilot unit, with the clinical pharmacist 

recommending diuresis based on patient-specific factors: 1) net fluid balance, 2) urine output 3) 

hemodynamic stability, and 4) metabolic parameters. The other two medical ICUs will maintain 



94  

current standard of care, which is diuresis at physician discretion. The pharmacist within both 

groups will also assist in management of electrolyte abnormalities per the medical ICU electrolyte 

replacement protocol already established at this institution. The comparator group (Standard 

Therapy) will be compromised of a retrospective cohort in which we will include all admissions 

to the medical ICU between June 1, 2016 through December 31, 2016 meeting the above criteria 

and compared to those patients receiving protocol (Diuresis Protocol). 

This protocol will allow for pharmacist guidance in the administration of diuretics based 

on urine output and daily net fluid status in those patients receiving mechanical ventilation within 

the medical ICU. After identification of appropriate patients for inclusion during interdisciplinary 

rounds, pharmacists will establish appropriate urine output goals and initial diuretic dosing. 

Initial dosing will be based on estimated renal function via glomerular filtration rate (GFR) or 

previous doses received. Basic metabolic panels will be collected every 6 hours while on protocol 

and a Foley catheter or external catheter in addition to electrolyte replacement orders will be 

required concomitantly. The clinical pharmacist will utilize laboratory results, hemodynamic 

parameters (heart rate, mean arterial pressure), and urine output to titrate diuretic dosing. 

Pharmacists will utilize an order set within the electronic medical record to allow for nursing 

assessments and further titration of diuretics overnight while clinical pharmacists are not 

available for continuity of care (Appendix Three). APPs covering the medical ICU overnight will 

also be notified of protocol enrollment to avoid duplicate diuresis orders. 

This protocol will use a furosemide bolus dosing strategy. Furosemide inhibits 

reabsorption of sodium and chloride in the ascending loop of Henle and proximal and distal renal 

tubules, interfering with the chloride-binding cotransport system, thus causing increased 

excretion of water, sodium, chloride, magnesium, and calcium. (358) Other available loop diuretics 

at our institution include bumetanide and torsemide. Given the lack of advantage of bumetanide 

over furosemide and limited routes of administration for torsemide (oral formulations only), no 

other loop diuretics aside from furosemide will be administered during this study (unless 
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equipotent doses of another loop diuretic are required for furosemide sensitivity and/or 

medication shortage). (359) 

Combination diuretic therapy will be considered once the maximum dose of furosemide is 

reached (200 mg IV) without response, and/or concern for hypernatremia is present, defined as a 

sodium greater than 145 mmol/L. Available options include: 1) Metolazone 10 mg oral and 2) 

Chlorothiazide 500 mg IV in instances when no enteral access is available. 

Indications for continuous infusion diuresis will include: 1) Lack of response to bolus dose 

of 200 mg or 2) Lack of sustained diuretic response between dosing intervals, as evidenced by an 

initial response followed by a decrease in hourly urine output resulting in failure to achieve goal 

fluid balance. Continuous infusions will be started at 10mg/hr and titrated by 5mg/hr every 30 

minutes to goal hourly fluid balance. 

 
Clinical pharmacy specialists within our institution are available from 7 am to 10 pm 

within the medical ICU. In order to ensure appropriate management between the hours of 10 pm 

and 7 am, an order set has been created requiring nursing evaluation of urine output at the 

designated intervals and conditional medication orders based on individual patient response and 

pharmacist-driven goal parameters. Diuresis hold parameters will also be placed to guarantee 

safety monitoring outside of clinical pharmacy hours. The pilot ICU has registered nurses 

designated as research nursing champions who will facilitate the nursing education for the 

protocol implementation as well as monitoring of adherence to protocol and overall compliance. 

Bedside nurses in this unit are familiar with research procedures similar to this one, including 

sedation and analgesia, diabetic ketoacidosis, and anticoagulation. Attending physician education 

will occur via the clinical pharmacy team in collaboration with the Chief of Pulmonary and Critical 

Care Medicine. Following implementation of the protocol, clinical pharmacists on all teams will 

prospectively monitor fluid status and clinical outcomes throughout the ICU stay of patients in 

the pilot group. Data points are summarized in Table 3.2. 
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Table 3.2 Data Collection Points 
 

Data Point Baseline Hourly 24h 48h 72h Discharge 
Demographics ×      
KDIGO class(117) ×  × × × × 
Nephrotoxin use ×  × × ×  
Electrolyte/labs ×  × × ×  
Diuretic doses ×    ×  

Fluid intake ×  × × ×  
Urine output × × × × ×  
RRT Use   × × × × 
ICU Length of Stay      × 
Hospital Length of Stay      × 
Mortality      × 

 
Demographics include age, gender, race, APACHE II score, Vizient mortality risk score, SOFA 

score, Elixhauser Comorbidity Index, and Charlson Comorbidity Index. Nephrotoxins include 

intravenous contrast, calcineurin inhibitors, aminoglycosides, amphotericin B, beta-lactam 

antibiotics, foscarnet, sulfamethoxazole/trimethoprim, ganciclovir, acyclovir, and vancomycin. 

 
The primary outcome of this study will be the net fluid balance 72 hours following 

resolution of shock, defined as freedom from vasopressor administration or bolus crystalloid 

administration for at least 12 hours. Secondary outcomes collected will include ICU mortality, 

ICU length of stay, hospital length of stay, and ventilator-free days (defined as the number of days 

from day 1 to day 28 in which a patient was able to breathe without assistance). Additional safety 

outcomes will include incidence of acute kidney injury (defined by KDIGO criteria: serum 

creatinine 1.5 times serum creatinine prior to diuresis initiation, serum creatinine increase of at 

least 0.3 mg/dL, or urine output <0.5 mL/kg/hr for at least 6 hours) and the incidence of a severe 

metabolic disturbance including hypokalemia, hypernatremia, or a new metabolic alkalosis, 

defined as a potassium <3 mmol/L, sodium >150 mmol/L, or bicarbonate >40 mmol/L with a 

pH of <7.30, respectively. (117) 
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3.6 Data Management 
 

Retrospective data will be pulled from the University of Kentucky Medical Center 

Allscripts based EMR, Sunrise Clinical Manager. This EMR has specific documentation 

standards which providers uphold and electronic triggers to fill in missing data points. The unit- 

based quality improvement leadership nurse and coders periodically monitor the daily 

documentation by the medical team, and errors or omissions are identified. The data is then 

extracted from the EMR by the UKMC data analytic group. 

Data is stored within the Center for Health Services Research/UKMC data management 

system, which has several quality checks to ensure accuracy. Data extraction analysts ensure data 

quality and integrity and built-in validation rules ensure reliability. The data are checked for 

trends, unexpected deviations from previously recorded data and missing data, which then alerts 

the data analyst for investigation. Subjective data points such as coding and clinical indication are 

approximately 95% accurate. 

Data for the pilot group will be collected prospectively after patient enrollment into the 

study. A case report form will be created for each patient. The study data will be stored on the 

REDCap server. (360) REDCap is an encrypted, password protected, online data server 

(Appendix Four). Only members of the research team will have access to the data, and all 

protected heath information will be de-identified once a study number is assigned to the patient. 

The data obtained for this study will be reliable, accurate and safely stored. 

3.7 Statistical Analysis 
 

The research team’s biostatistician will analyze the data. From our previous study of 

diluent change in the medical ICU, the average fluid balance in our patients at 72 hours is positive 

2.4 ± 5.1 liters (internal data). Based on this figure, we calculate a sample size of 104 patients in 

each cohort to achieve a decrease in net fluid balance at 72 hours by at least 2 liters, maintaining 

an 80% power and an alpha of 0.05. On average, patients remain 1.45 liters net positive after the 
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first week of ICU stay and only 15% receive any type of diuretic within the first 7 days in the 

intensive care unit. Fluid intake and continuous outcomes will be tested for normality and will be 

evaluated via t-test or Mann-Whitney U, as appropriate. Chi-square will be utilized for categorical 

variables and baseline demographics. Protocol-receiving and standard care groups will be 

matched utilizing end distance matching on parameters including: the net fluid balance of the 

length of stay prior to furosemide start, the most recent serum creatinine prior to furosemide 

administration, time from mechanical ventilation to initiation of furosemide (assuming the first 

record available for those arriving on mechanical ventilation), patient intake source, history of 

chronic obstructive pulmonary disease (COPD) or pulmonary hypertension, age, use of vasoactive 

therapy prior to furosemide start, gender, Sequential Organ Failure Assessment score, and 

diagnosis-related group (DRG) weight, as characterized by the Center for Medicare and Medicaid 

Services. The primary aim will be evaluated by utilizing multivariable linear regression to account 

for potential confounders. 

3.8 Human Subjects Inclusiveness and Privacy 
 

This study protocol has been approved through the institutional review board at the 

University of Kentucky. This study presents no more than minimal risk as it is an observational 

study of a quality improvement initiative within the institution. Legal ramifications of information 

dissemination will be less than minimal secondary to protection of personal health information 

PHI) by the members of the research group in a manner conducive with the University of 

Kentucky and Office of Research Integrity (i.e. compliance with the Health Insurance Portability 

and Accountability Act). Information will not be removed from the Medical Center in the form of 

paper or electronic media nor transmitted to non-study personnel. A master list of medical record 

numbers and assigned IDs will be retained on the password protected computer of the primary 

investigator in a locked office. All other information will be stored electronically as de-identified 

data. Patients will not be excluded on the basis of gender, race, or ethnicity. Prisoners will not be 

excluded as this research is intended to include a broad population and will only incidentally 
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Figure 3.1 Proposed Study Timeline 
 

 

 
include members of this population. Pregnant women and children are not routinely treated 

within our medical ICU, therefore their inclusion will not be applicable. 

3.9 Scope and Timeline 
 

Institutional Review Board approval has been obtained for this study. Additionally, the 

protocol has been vetted through several members of the medical ICU team, including the Chief 

of Pulmonary and Critical Care, additional attending physicians, APPs, nursing administration, 

the information technology (IT) clinical decision support committee, and the clinical pharmacy 

group. An order set for the institution’s electronic medical record has been constructed and is 

currently under approval for EMR integration by IT administration. With an estimated 200 

monthly admissions to the medical ICU who will be applicable for inclusion into this study based 

on current monthly reports, the timeline is feasible (Figure 3.1). 

3.10 Potential Pitfalls 
 

Although highly unlikely, we may see slow enrollment for our prospective data collection. 

As stated prior, our MICU treats over 200 patients a month, for an average of approximately 

2,400 patients/year. Thus, it is highly unlikely we will struggle with slow enrollment. If this were 

to happen, we would implement this protocol and collect prospective data in other units of our 
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medical ICU. Additionally, we could extend the data collection period beyond the initial proposed 

6 months. Further, given that this study follows a pre-post methodology, there is the potential 

for confounders and between-group differences affecting interpretation of the final results. For 

this reason, an end distance matching approach was utilized, matching for multiple parameters 

that may be potential influencers of fluid balance. Further, joint models of longitudinal and 

survival data as well as competing risks regression analyses will be utilized for evaluating of 

secondary outcomes, as appropriate. External generalizability may be decreased given 

demographic differences. The predominant racial class in the state of enrollment is Caucasian. 

Racial differences may occur in drug response, however such should be accounted for via the 

utilization of baseline estimated glomerular fraction. The Modification of Diet in Renal Disease 

equation (MDRD) is an equation which estimates baseline renal function and includes a race 

coefficient that raises the calculated eGFR in all Blacks by approximately 21% compared with 

non-Black persons with the same serum creatinine, age, and sex. (361) Finally, the lack of control 

group in this prospective trial could contribute to regression toward the mean. It is possible that 

any changes which may be seen are secondary to chance rather than the treatment itself secondary 

to awareness and evaluation of volume status in a prospective manner. To prevent this limitation, 

chosen outcomes measures are objective and will still be recorded retrospectively, meaning chart 

review will still be utilized even in the prospective group for accuracy. Further, clinical data will 

be verified by the data analyst for both groups as well as a secondary analyst. 
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CHAPTER 4. EFFECTIVENESS OF PHARMACIST-DRIVEN DIURESIS IN THE 

INTENSIVE CARE UNIT INTERIM ANALYSIS 

This chapter provides the results of an interim analysis proposed by the doctoral degree 

advisory committee after successful completion of the qualifying examination, with further 

request for protocol expansion pending safety results. The independent statistical committee 

(ISC) and clinical investigators involved in this study opted for an interim analysis with potential 

for sequential adaption given the paucity of generalizable protocols to the broad critically ill 

population. Such would allow for re-evaluation of the protocol at the pre-specified time point and 

allow optimization of relevant therapeutic or monitoring standards with continuation of its use. 

A data monitoring committee (DMC) was formed, consisting of the chair of the doctoral advisory 

committee, ISC, and non-committee ICU physicians, pharmacists, and nursing services. After 50% 

of chronologic study completion, 6 months from study initiation, the ISC performed data 

extraction and statistical analyses which was brought forward to the DMC. The statistical 

analyses of the trial remained blinded to the DMC. As the protocol initiation pilot was a quality 

improvement initiative within the institution, stopping rules were not defined and clinical 

expertise regarding protocol stop, continuation, modification, and expansion was requested. 

4.1 Protocol Assessment and Adherence 
 

After a six month period following protocol implementation, data was extracted from the 

trial database as well as the electronic medical record and analyzed by the designated study 

statisticians. Upon extraction, it was found that a total of 139 patients met inclusion criteria. Of 

these patients, 109 were excluded, most commonly for ongoing vasopressor support or fluid 

resuscitation for shock (29%), for an active nephrology consult guiding continuous renal 

replacement or specific diuretic recommendations in the setting of hepatorenal syndrome and/or 

acute kidney injury (28%), for treatment of rhabdomyolysis (21%), or secondary to intubation 

solely perioperatively with an excepted ventilator duration of <48 hours (17%). Patients were 
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Table 4.1 Baseline Characteristics for Selected Matching Variables 
 

 Standard Therapy 
(n=63) 

Diuresis Protocol 
(n=21) 

Mean Net Fluid Balance (mL) 2508 2493 

Pressors prior to Furosemide 50.8% 47.6% 

Mean Time MV prior to Furosemide (hours) 36.01 36.47 

Mean DRG Weight 5.73 5.95 

Mean Age (years) 57.6 57.6 

Mean Prior SCr (mg/dL) 1.06 1.12 

Mean SOFA Score 7.71 7.67 

History of COPD 23.8% 19.0% 

From Emergency Department (ED) 20.6% 19.0% 

From Outside Hospital 31.7% 42.9% 

From Outside Hospital via ED 23.8% 19.0% 

From Other Intensive Care Unit 1.6% 0.0% 

Other Admission Source 22.2% 19.0% 

Male Gender 54.0% 57.1% 
 

additionally excluded given terminal care or withdrawal of life sustaining support (3%) or 

treatment of diabetic ketoacidosis or diabetic hyperglycemic hyperosmolar syndrome. 

The most frequent reason for admission in those patients in the diuresis protocol group 

(n=30) was primarily secondary to respiratory failure, with 41% of the cohort admitted for this 

indication. Septic shock was the second highest admission reason, accounting for 20% of the ICU 

admissions with altered mental status and acute kidney injury rounding off the most frequent 

reasons for admission with 11% and 7%, respectively. In the protocol group, 26.7% had been on 

furosemide as an outpatient and 43.3% had received furosemide at least once during the hospital 

stay prior to the initiation of the study protocol. Hours since shock resolution were also collected 

for those patients receiving the diuresis protocol. Almost half of patients, 46.7%, were non- 

applicable, given no vasoactive therapy was received during the admission. Another 43% received 

the protocol 12 hours from the completion of hemodynamic support and 13% received less than 

12 hours from achievement of hemodynamic stability, despite protocol inclusion criteria. A total 
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Table 4.2 Selected Clinical Outcomes of Interim Population 
 

 Standard Therapy 
(n=63) 

Diuresis Protocol 
(n=21) 

72 Hour Fluid Balance (mL) +139 -1739 

Mean Ventilator Days 9.25 8.43 

Median Ventilator Days 8 7 

Mean ICU Days 9.81 9.34 

Median ICU Days 8.10 7.76 

Mean Ventilator Free Days ± SD 15.10 ± 9.54 18.71 ± 5.54 

Median Ventilator Free Days 20 21 

Range Ventilator Free Days 0-26 0-24 

Mean ICU Free Days 14.16 ± 9.11 17.57 ± 5.25 

Median ICU Free Days 16 20 

Range ICU Free Days 0-26 0-23 

In-Hospital Mortality 22.2% 4.8% 

72 Hour Fluid Balance (mL) +139 -1739 

Mean Vent Days 9.25 8.43 

Any Adverse Event 33.3% 38.1% 

Acute Kidney Injury 23.8% 28.6% 

Hypokalemia 0% 0% 

Hypernatremia 14.3% 14.3% 

Metabolic alkalosis 1.6% 0% 

 
of 18 protocol violations were noted in the protocol-receiving group, 10 of which were secondary 

to a change in furosemide dosing frequency. Furosemide was inappropriately held in 2 instances, 

while one incorrect administration based on safety goals met, and 5 patients had a noted deviation 

without a documented rationale. In the majority of patients, n=28, there was at least one hold of 

furosemide during protocol administration with 80% appropriateness based on protocol. The 

majority of holds (66.7%) were performed as daily fluid balance goal had been met or mechanical 

ventilation was discontinued, or both. Pertinent safety holds included: rise in serum creatinine 

(7.1%), excessive urine output (9.5%), elevated serum sodium (2.4%), mean arterial pressure < 65 

mmHg (19.1%), increase in heart rate (21.4%), and the others for unknown reason (14.3%). 
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4.2 Results of the Interim Analysis 
 

Baseline matching criteria are listed in Table 4.1 Due to incomplete coding at time of 

evaluation, the total number included from diuresis protocol group for between-group comparison 

in the interim analysis was narrowed to 21. Tests of significance were not performed given lack 

of sample size attainment, however the DMC found the groups to be well matched based on 

clinical experience. Notably, both groups had over half of patients admitted as transfers from 

outside hospitals. 

 
For the primary outcome of 72 hour fluid balance, patients receiving the diuresis protocol 

were on average 1878 mL more net negative on day 3 compared to those receiving standard care 

(Table 4.2). Clinical outcomes, including ventilator days, ICU length of stay, ventilator-free days, 

and ICU-free days appeared similar between groups. The only notable difference between groups 

was a higher rate of mortality in the control group, potentially secondary to chance given the 

early analysis relative to anticipated study duration. For safety outcomes, less than 5 percent 

difference was seen in any occurrence between groups. Acute kidney injury was slightly more 

frequent in the protocol group and the control arm had a higher incidence of metabolic alkalosis 

while receiving furosemide therapy. 

4.3 Protocol Modification and Rationale 
 
 

Upon interim analysis and completion of statistical analysis per request of the doctoral 

committee, the DMC was asked to evaluate the data accumulated while also providing decisions 

regarding protocol dosing and monitoring parameters while evaluating overall safety. Decisions 

regarding protocol modification were made by majority vote upon group discussion (Appendix 

Five) and brought to the primary investigator. Protocol revisions were approved by the 

Institutional Review Board, institutional nursing practice council. Subsequent education was 

completed for physicians, advanced practice providers, nurses, and pharmacy personnel prior to 

implementation, one month following the completion of interim analysis. All attending physicians 
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in the respective ICUs were permitted time for feedback and suggestion before final execution of 

protocol change. 

4.3.1 Standardization of Monitoring Parameter Frequency 
 

Upon survey of the pilot nursing unit, registered nursing personnel expressed frequent 

misunderstanding of target urine output goal and the first urine output assessment at 2 hours. 

The electronic medical record at this institution auto-calculates 8-hour shift fluid balances, 

including net input, net output, and net volume status for the 8 hours, computed at the hours of 

00:00, 08:00, and 16:00 per day. In order to rid the protocol of potential error in urine output 

calculation and/or evaluations, the committee modified the hourly urine output goal to become 

an 8-hour shift fluid balance goal, rather than the six hour nursing observation. Further, the 

additional workload of every 6 hour basic metabolic panels was noted to be a significant addition 

in time requirements for the nursing staff. Given the lack of clinically important difference in 

adverse events rates seen within the interim analysis and the relatively constant 24 hour 

production of serum creatinine in normal physiologic states, the committee further opted to 

modify the basic metabolic panel collection to an every 8 hour frequency as requested by hospital 

laboratory administration. (362, 363) The committee still found this uphold a cautious approach 

as previous trials have utilized daily monitoring of such assessments. (72) Additionally, time to 

serum creatinine change in the incidence of acute kidney injury has wide patient variability, 

ranging from 4 to 27 hours based on baseline renal function. (364, 365) As nursing staff within 

this institution enter the room at a standardized times, 06:00, 14:00, and 22:00, in order to 

document net intake volume for the shift, the basic metabolic panels were timed in correlation 

with room entry at these interval points in order to decrease workload. For the initial urine output 

monitoring at 2 hours, it was deemed that the clinical pharmacist was most frequently the primary 

medical professional taking responsibility for this follow-up evaluation step in the interim phase, 

therefore the protocol was modified to reflect such. 
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4.3.2 Modification of Furosemide Dosing Frequency 
 

When assessing protocol adherence, 55.6% of patients had a protocol violation secondary 

to a change in furosemide frequency from every 6 hours to every 8 hours, with the population still 

remaining net negative at 72 hours despite non-adherence. Given the proportion of protocol 

violations, standardization of aforementioned monitoring parameters, and efficacy of every 8 hour 

dosing found within those, patients included in the interim analysis, furosemide administration 

times were standardized to 00:00, 08:00, and 16:00. The standard administration times were 

selected to further facilitate nursing workflow and to allow for activation of higher doses as 

applicable in circumstances in which 8-hour shift fluid balance goals were not met. Given that 

protocol initiation could happen outside of these times, the new protocol’s first dose defaulted to 

STAT-level administration time, with the next dose to follow the schedule above. In 

circumstances in which there was less than 4 hours (half the dosing interval) between the STAT 

medication administration and the next scheduled dose, the first administration after the STAT 

dose would be omitted. Given the wide range of furosemide dosing frequency in the literature, 

ranging from a continuous infusion to once daily dosing, the committee supported the dosing 

frequency change. 

4.3.3 Modification of Safety Parameters 
 

Protocol furosemide hold rules were two additional sources of uncertainty for nurses. 

There was a hold for a heart rate percentage increase and a 10 mL/kg/hour urinary output hold 

parameter. Upon further investigation of the daily maximum heart values, there were 31 instances 

in which a heart rate met stopping criteria of at least a 25% increase if the difference between 

minimum heart rate and maximum heart rate was calculated. However the dose was given based 

on patient clinical stability. In comparison to the 9 patients who received a hold for heart rate in 

the cohort, none of these patients actually developed hemodynamic instability or a new 

tachyarrhythmia secondary to this heart rate change. For ease of monitoring and clarification, the 

committee deemed a heart rate of greater than 150 bpm to be an appropriate stopping parameter 
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to replace the percentage change rule. Additionally, given the shift away from urine output goals 

for nursing tasks within the protocol, the committee further simplified the stopping criterion of 

10 mL/kg/hour to a daily net volume that exceeded greater than 1 liter negative beyond goal. 

The net volume status for the 24 hour period is also calculated within the electronic medical 

record, easing evaluation of the safety parameter. 

4.3.4 Expansion of Protocol to Additional Medical Intensive Care Units 
 

Upon analysis of the interim data, the more negative net volume status was deemed to be 

a clinically important difference by the DMC. Supporting rationale included previous studies 

demonstrating 1) at least one day of a negative fluid balance, ≤-500 mL, by day three was 

associated with increased survival, and 2) increased rates of ICU mortality occur with each 

additional liter of cumulative fluid balance during ICU stay. (59, 60) The committee proposed 

expansion of the protocol to the other medical ICUs, including the Pulmonary 1 and Pulmonary 

2 service lines. Given that attending physicians, nurses, advanced practice providers, and 

pharmacy equally rotate among ICUs, this expansion was deemed feasible and found to likely 

benefit achievement of timeline goals. Education was provided, however, to fellow-level 

physicians, resident-level physicians, and additional nursing staff who had limited presence within 

the Pulmonary 3 ICU. Expansion was approved by the aforementioned parties and initiated one 

month following interim analysis completion. 

4.3.5 Clarification of Exclusion Parameters 
 

Based on previous clinical trials and clinical experience, the following additions were 

made to the exclusion criteria per request of the attending ICU physicians: 1) Chronic restrictive, 

obstructive, neuromuscular, chest wall or pulmonary vascular disease resulting in severe exercise 

restriction, secondary polycythemia, severe pulmonary hypertension (mean PAP > 40 mmHg), or 

respirator dependency preventing further mechanical ventilation wean and 2) neuromuscular 
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disease that impairs ability to ventilate spontaneously, such as C5 or higher spinal cord injury, 

amyotrophic lateral sclerosis, Guillain-Barre Syndrome, and myasthenia gravis. (72) 
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CHAPTER 5. EFFECTIVENESS OF PHARMACIST-DRIVEN DIURESIS IN THE 
INTENSIVE CARE UNIT 

The final chapter provides results for the completion of the study at the end of the study 

timeline, considerations in the evaluation of these endpoints and the study methodology, and such 

implications for practice. 

5.1 Study Methods 
 

In order to approximate an experimental design using observational electronic medical 

record data, each protocol patient visit was matched to three patient visits from the pre-protocol 

time period of January 2016 through December 2017 admission. The same inclusion and exclusion 

criteria used to enroll patients in the protocol were applied when developing this pre-protocol 

group of potential control patient visits. Mahalanobis distance matching was used as the similarity 

measure to assess how similar each patient visit in the control group was to each protocol patient 

visit. Age, gender, insurance type, home county classification, admission source, DRG weight, 

SOFA score, baseline creatinine, pre-furosemide fluid balance, time from ventilator to furosemide 

administration, pre-furosemide vasopressor administration, COPD diagnosis, and ARDS 

diagnosis were used as matching variables in the distance calculation. Nearest neighbor matching 

was then used to select the three control visits ‘closest’ to each protocol visit, based on the distance 

calculation. This resulted in a control group of patient visits that were balanced with the protocol 

group on the variables used in the matching algorithm (Table 5.1). Further, we utilized used linear 

regression analysis to test for an interaction between treatment group and pre- versus post- 

protocol modification in order to determine whether there was a differential effect on 72 hour 

fluid balance. 

 
5.2 Study Results 

 

This was a quasi-experimental pre-post single center pilot study of a pharmacist-driven 

multidisciplinary protocol within the medical intensive care unit over a 12 month period. Within 

that time frame, 672 met criteria for inclusion, while 598 met exclusions criteria (Figure 5.1). 
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5.2.1 Baseline Characteristics and Concomitant Therapies 

Figure 5.1 Study Flow Diagram 

 
 

The 77 patients who met criteria for inclusion without an exclusion (Diuresis Protocol) 

were matched 3:1 from the retrospective cohort (Standard Therapy, n=231) for a total of 308 

patients within study. Matching criteria showed no statistically significant difference between 

groups (Table 5.1). Further, no major difference in other baseline criteria were found with the 

exception of a higher arterial pH at baseline in the protocol group as well as a higher incidence of 

rhabdomyolysis upon admission. No difference was demonstrated in the utilization of concomitant 

nephrotoxic medications between groups for any therapy other than a higher incidence of use of 

intravenous anti-viral medications in the protocol group compared to the historical cohort 
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Table 5.1 Baseline Characteristics 
 

 Standard Therapy 
(n=231) 

Diuresis Protocol 
(n=77) 

p-Value 

Matching Criteria 
Net Fluid Balance (mL)* 2291 (0-5537) 1784 (-17-4438) 0.199 

Vasopressors prior to Furosemide† 106 (45.8) 41 (53.2) 0.263 

Time MV prior to Furosemide (hours)* 46.9 (24.2-84.0) 52.3 (30.5-107.4) 0.319 

DRG Weight* 5.3 (2.3-6.1) 5.3 (2.4-6.3) 0.414 

Age (years)* 59 (48-69) 60 (48-71) 0.564 

Prior SCr (mg/dL)* 1 (0.75-1.31) 0.96 (0.77-1.44) 0.685 

SOFA Score* 6 (4-8) 5 (4-7) 0.726 

History of COPD† 57 (24.6) 21 (27.3) 0.650 

From Emergency Department (ED)‡ 51 (22.1) 13 (16.9)  
 
 

0.729 

From Outside Hospital‡ 80 (34.6) 32 (41.6) 

From Outside Hospital via ED‡ 54 (23.4) 20 (25.9) 

From Other Intensive Care Unit‡ 5 (2.1) 1 (1.3) 

From floor‡ 41 (14.8) 11 (14.3) 

Male Gender† 119 (51.5) 42 (54.6) 0.645 

Medicare Payer‡ 121 (52.4) 35 (45.5)  
 

0.716 
Medicaid Payer‡ 78 (33.8) 31 (40.3) 

Commercial Payer‡ 25 (10.8) 8 (10.4) 

Self-Pay or Government Payer‡ 7 (3.0) 3 (3.9) 

Rural County† 26 (11.3) 9 (11.7)  

0.309 Urban Area† 91 (39.4) 23 (29.9) 

Urban Cluster† 114 (49.4) 45 (58.4) 
Past Medical History 

Chronic Kidney Disease† 37 (16.0) 11 (14.3) 0.717 

Cirrhosis† 34 (14.7) 7 (9.1) 0.208 

Chronic Respiratory Failure† 80 (34.6) 25 (32.5) 0.729 

DKA or HHS‡ 0 (0) 1 (1.3) 0.250 

Hepatorenal Syndrome‡ 3 (1.3) 0 (0) 0.420 

Pulmonary Hypertension‡ 0 (0) 0 (0)  

Renal Transplant‡ 0 (0) 0 (0)  

Admission Parameters 
Admission Weight (kilograms [kg])* 89.7 (73.6-104) 88.2 (68-112.3) 0.975 
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Table 5.1 (continued) 
 

 Standard Therapy 
(n=231) 

Diuresis Protocol 
(n=77) 

p-Value 

Admission Height (centimeters)* 170.1 (162.5-177.8) 170.1 (162.5-177.8) 0.678 

Rhabdomyolysis‡ 0 (0) 8 (10.4) <0.0001 

Acute Respiratory Distress Syndrome‡ 13 (5.6) 1 (1.3) 0.202 
Pre Furosemide Parameters 
Mean Arterial Pressure (mmHg)* 81 (73-91) 82 (71-91) 0.849 

Heart Rate (bpm)* 91 (79-103) 88 (75-102) 0.254 

Weight Prior to Furosemide Start (kg)* 91.7 (75-104.4) 88.2 (67.1-113) 0.806 

Change in Weight Prior to Furosemide (kg)* 0 (0-7.1) 0 (-3.1-4.9) 0.103 
Laboratory Results 
Serum Creatinine* 0.88 (063-1.30) 0.79 (0.65-1.19) 0.259 

Blood Urea Nitrogen* 24 (16-36) 25 (14-36) 0.881 

pH, Arterial* 7.38 (7.29-7.44) 7.43 (7.39-7.47) 0.002 

pH, Venous§ 7.37 (0.08) 7.40 (0.07) 0.221 

Sodium* 143 (139-145) 142 (140-145) 0.569 

Potassium* 4.1. (3.8) 4.1 (3.6-4.4) 0.215 

Bicarbonate§ 27.2 (6.9) 287 (5.6) 0.268 

Chloride§ 105.4 (6.0) 105.7 (6.2) 0.731 

Albumin§ 2.1 (0.6) 1.9 (0.5) 0.091 
*Wilcoxon Rank Sum, Median (Interquartile Range); †Chi Square Test; Number (Percentage); 
Fisher’s Exact, Number (Percentage); § Student’s T-test, Average (Standard Deviation) 

 
(Table 5.2). The starting dose of furosemide was found to be significantly higher in the protocol 

group while the total daily doses and cumulative doses were significantly higher in this group. A 

higher frequency of metolazone and acetazolamide use were found in the protocol group, 

contrasted to a higher rate of albumin usage in the historical cohort. 

5.2.2 Specific Aim 1 
 
 

For the primary aim which sought to determine whether a pharmacist-managed diuresis 

protocol significantly decreases net fluid balance 72 hours following resolution of shock in 

medically critically ill patients, the average mean fluid balance at 72 hours post-shock resolution 
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Table 5.2 Concomitant Therapies 
 

 Standard Therapy 
(n=231) 

Diuresis Protocol 
(n=77) 

p-Value 

Furosemide Dosing Strategy 

Starting Dose (mg)§ 41.9 (21.2) 45.7 (15.1) 0.007 

Day One Total Daily Dose (mg)* 40 (40-60) 80 (40-120) <0.0001 

Day Two Total Daily Dose (mg)* 0 (0-40) 60 (0-120) <0.0001 

Day Three Total Daily Dose (mg)* 0 (0-20) 0 (0-80) 0.0008 

Total Cumulative Dose * 80 (40-200) 240 (120-400) <0.0001 

Adjunctive Agents 

Metolazone† 14 (6.1) 27 (35.1) <0.0001 

Chlorothiazide‡ 13 (5.6) 3 (3.9) 0.553 

Acetazolamide† 12 (5.2) 10 (13.0) 0.021 

Albumin‡ 23 (10.0) 2 (2.6) 0.041 

Concomitant Nephrotoxins 

Total Nephrotoxin Exposure* 2 (1-3) 2 (1-3) 0.321 

Aminoglycoside† 23 (10.0) 7 (9.1) 0.824 

Beta-Lactam† 194 (83.9) 65 (84.4) 0.928 

Intravenous Antiviral† 10 (4.3) 12 (15.6) 0.001 

ACE Inhibitor† 39 (16.9) 12 (15.6) 0.729 

Amphotericin B‡ 4 (1.7) 3 (3.9) 0.372 

Intravenous Bactrim‡ 16 (6.9) 3 (3.9) 0.338 

Intravenous Vancomycin† 131(56.7) 42 (54.6) 0.740 

Initiation of Infusion 28 (12.1) 8 (10.4) 0.682 
*Wilcoxon Rank Sum, Median (Interquartile Range); †Chi Square Test; Number (Percentage); 
‡Fisher’s Exact, Number (Percentage); §Student’s T-test, Average (Standard Deviation) 

 
was – 2403 mL in the protocol group and + 765 mL in the standard therapy cohort, a difference 

found to be statistically significant (Table 5.3). There was also a significant difference in 24- and 

48-hour volumes in the protocol group. Further, a test of interaction was performed for patient 

enrollment pre- and post- protocol modification, demonstrating a lack of statistical significance 

regarding those enrolled in the protocol before or after this time point. (Table 5.4) 
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Table 5.3 Clinical Outcomes 
 

 Standard Therapy 
(n=231) 

Diuresis Protocol 
(n=77) 

p-Value 

72 Hour Fluid Balance (mL)§ 252.4 (4021.7) -2412.5 (4198.0) <0.0001 

48Hour Fluid Balance (mL)§ 479.4 (3170.2) -1481.5 (3307.8) <0.0001 

24 Hour Fluid Balance (mL)§ 326.6 (2024.3) -607 (2227.5) 0.0007 

Ventilator-Free Days (days)* 18 (5-22) 20 (14-23) 0.071 

Ventilator Days (days)* 8 (6-14) 8 (5-12) 0.387 

Furosemide to Extubation (hours)* 68.1 (23.6-144.4) 49.8 (22.5-141.1) 0.298 

Re-intubation Rate 44 (19.0) 16 (20.8) 0.740 

ICU-Free Days (days)* 16 (4-21) 19 (13-22) 0.018 

ICU Days (days)* 9.4 (6.4-14.5) 8.1 (5.8-13.7) 0.310 

In-Hospital Mortality 43 (18.6) 5 (6.5) 0.011 

Serum Creatinine Rise 49 (21.2) 19 (24.7) 0.526 

Hypokalemia 0 (0) 3 (3.9) 0.015 

Hypernatremia 17 (7.4) 17 (22.1) 0.001 

Metabolic Alkalosis 1 (0.4) 1 (1.3) 0.438 

Overall Adverse Event 58 (25.1) 32 (41.6) 0.006 

Comfort Care Order† 37 (16.0) 8 (10.4) 0.226 
*Wilcoxon Rank Sum, Median (Interquartile Range); †Chi Square Test; Number (Percentage); 
‡Fisher’s Exact, Number (Percentage); §Student’s T-test, Average (Standard Deviation) 

 
5.2.3 Specific Aim 2 

 

For the secondary aim of assessment of the impact of a pharmacist-managed diuresis protocol on 

mechanical ventilation days in medically critically ill patients, it was demonstrated that while 

patients had 2 more ventilator-free days in the protocol group versus those in the historical 

cohort, this difference was not statistically significant. Rates of re-intubation, defined as any 

repeat incidence of mechanical ventilation after the initial extubation while receiving diuresis 

within 180 minutes of original extubation, were not significantly different between groups. 

5.2.4 Specific Aim 3 
 
 

Finally, we sought to address the safety of a pharmacist-managed generalized diuresis 

protocol via rates of adverse events. Within the study cohort, there was a statistically significant 
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Table 5.4 Subgroup Analysis of Post-Modification 
 

 Coefficient 95% CI p-Value 

Protocol -3347.3 -4815.3 – -1879.3 <0.0001 

Post Modification 1221.865 -612.3 – 3055.9 0.191 
 

increase in the rate of metabolic disturbances compared to the historical cohort. This was 

primarily driven by an increase in hypernatremia as well as hypokalemia. 

5.2.5 Other Outcomes of Interest 
 

Mortality within the protocolized cohort in this study was lower compared to the 

historical cohort group. There was also a higher rate of ICU-free days in the protocol group, with 

protocolized patients having 3 days more free of ICU care. In multivariable logistic regression for 

overall mortality, protocolized therapy was associated with an OR of 0.29 (0.10-0.85) after 

adjustment for illness severity, fluid balance upon furosemide start, time on mechanical ventilation 

prior to furosemide therapy, and vasoactive therapy. In regards to ICU length of stay, no 

significant difference was seen between groups. 

5.2.6 Protocol Adherence 
 

When evaluating protocol compliance, data for 74 patients were available for evaluation. 

A total of 65 patients had their furosemide stopped appropriately by the protocol secondary to 

goal achievement. There were also 14 stops for safety reason, 9 of which were also designated to 

have goal achievement simultaneously as an indication for stopping, and 5 stops for pure safety 

reasons. Zero stops were accounted for by death or initiation of renal replacement therapy. Upon 

initiation, 34 had received a prior dose of furosemide during admission, with an average dose of 

50.6 mg ± 19.2 mg IV. Of those who did not have furosemide during admission, 11 patients 

received furosemide prior to admission, with an average dose of 32.7 mg ± 18.4 mg orally. Upon 

inclusion, 40 patients had both a positive fluid balance with signs of fluid overload on physical 

exam. A total of 13 had only a net or positive fluid balance without signs of fluid overload and 21 

patients had signs of fluid overload without a positive fluid balance. The majority of fluid intake 
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was from intravenous medications, continuous infusion medications, and enteral feedings (Table 

5.5), rather than shock resuscitation. 

Of the 74 patients on protocol, there were 23 patients with a protocol duration of 24 hours. 

The majority of patients were on protocol for 48 hours (n=26 patients), while 10 patients received 

protocol for 3 days. Another 10 patients required 4 days of protocol, while 3 patients required 6 

days and 2 patients required a total of 8 days of therapy. Overall, there were 179 patient days on 

protocol for evaluation, 77 of which were prior to the protocol modification. Of these 179 days, the 

goal most frequently selected was -1000 mL, with 67 patient days targeting this goal. Further, 

61 patient days had a goal of -2000 mL and 41 had a goal of -1500 mL. A much smaller number 

had goals outside of this range with 3, 1, and 4 days with a goal of net even, -500 mL, and greater 

than -2000 mL, respectively. 

The most frequently utilized starting dose was 40 mg (n=131), followed by 80 mg (n=26), 

60 mg (n=13), and 20 mg (n=11). The majority of days did not need dose adjustments with only 

11 patient days with 1 adjustment and 1 patient day each regarding a total of 2 or 3 adjustments. 

Nine of the dose adjustments were via activatable orders per nursing. The 40 mg dose was found 

to be effective in 126 patients, with 38 of these patient days on every 6 hour therapy versus 66 

with every 8 hour, 14 with every 12 hour, and 2 with every 24 hours frequency. In the 13 patients 

requiring 60 mg to meet goal, 2 patient days were on every 6 hour frequency, and 10 were on 

every 8 hour therapy. An effective dose of 80 mg was found in 28 patients, with 12 patients 

receiving every 6 hours, 14 receiving every 8 hours and 2 receiving every 12 hours. There was 

one patient who required 120 mg and two patients who required 160 mg for effectiveness every 

8 hours. In nine patients the effective dose and interval were not found as goal was never met. 

Within this time, 84 protocol days did not require a protocol hold. The most frequent reason for 

holding of the protocol was for achievement of goal (n=58) followed by urine output exceeding 

goal (Figure 5.2). Of the holds, 77 were deemed appropriate and 13 were inappropriate stops. 
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Table 5.5 Fluid Intake Source 
 

 Baseline (n=74) Patient Days (n = 179) 

Fluids 13 (17.6) 21 (11.7) 

Intermittent Medications 69 (92.0) 162 (90.5) 

Continuous Medications 60 (81.1) 125 (69.8) 

Enteral Feeding 59 (79.7) 155 (86.6) 

Free water 21 (28.4) 77 (43.0) 

Other oral fluids 7 (9.5) 36 (20.1) 

Other fluid source 2 (2.7) 5 (2.8) 
 

Outside of inappropriate stops, there were 12 protocol deviations for doses given despite hold 

parameters. There were 7 deviations secondary to decrease dose and 21 patients with an interval 

change. The average percentage decrease in dose was 56.2% (Range 50-67%). The daily goal was 

met 80.5% of the time, with 144 patient days at goal. Of the interval changes, a high proportion 

of these patients were patients decreased from every 6 hours to every 8 hours (n=21). Eight 

patients required a decrease to every 12 hour dosing and 2 patients were decreased to every 24 

hour dosing. Two patients required initiation of continuous infusion. Two protocol deviations 

were secondary to failed nursing activation of orders. 

 
5.3 Discussion 

 

We hypothesized that a pharmacist-managed diuresis protocol would result in a lower 

cumulative fluid balance 72 hours after shock resolution, defined as freedom from vasopressor 

support or bolus crystalloid administration for at least 12 hours, in medically critically ill patients. 

Given the high number of outside hospital transfers at this institution as well as the proportion 

of patients admitted without shock criteria, the statistical team opted to calculate this 72 hour 

post-shock volume beginning with the last dose of vasoactive therapy or upon time of ICU 

admission for those patients without vasopressor support during their stay. We found a significant 

decrease in day 3 fluid volume with the addition of this protocol in patients’ care. We further 

hypothesized that patients receiving protocolized pharmacist-managed diuresis would 
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Figure 5.2 Indications for Protocol Hold Pre- and Post- Protocol Modification 
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have an increase in ventilator-free days at 28 days, defined as the number of days from day 1 to 

day 28 in which a patient was able to breathe without assistance. While a numeric difference in 

duration of mechanical ventilation wean was seen, there was no statistically significant difference 

found. Of note, ventilation wean procedures are not standardized at this institution. Daily 

spontaneous breathing trials are performed in all patients who meet criteria which is taken into 

consideration for extubation; however, extubation orders are left to attending discretion. This 

lack of ventilator wean protocolization may have affected total ventilator duration and ventilator- 

free days between groups. Reintubation rates were not significantly different between groups 

which supports relative uniformity on ventilator wean strategies. The reported reintubation rates 

are in alignment with previous studies showing ranges from 13.8-22.6%, depending on weaning 

method. (366) 

For the third aim regarding metabolic derangements in the patient, we anticipated that a 

pharmacist-managed diuresis protocol when compared to standard care will have a similar rate of 

adverse events. Adverse events were defined as acute kidney injury (serum creatinine 1.5 times 

baseline serum creatinine, serum creatinine increase of at least 0.3 mg/dL, or urine output <0.5 
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mL/kg/hr for at least 6 hours), or the incidence of a severe metabolic disturbance (potassium <3 

mmol/L, sodium >150 mmol/L, or bicarbonate >40 mmol/L with a pH <7.3). (119) We saw 

within the protocol group, however, a significant increase in the rates of adverse events. Of note, 

while a nursing-driven electrolyte replacement protocol had been in place within this institution, 

changes to the protocol occurred mid-protocol implementation. These electrolyte protocol 

changes potentially may have increased the rates of hypokalemia, particularly within the post- 

modification period. In regards to rates of hypernatremia, it is worth nothing that 12 patient days 

had protocol noncompliance secondary to dose administration despite hold parameters. At our 

institution, providers at times request continuation of furosemide despite elevated sodium levels, 

often with the addition of metolazone for augmentation in patient situations with an elevated 

sodium. There was an increased rate in metolazone use. No severe adverse events were reported 

over the course of protocol implementation within the protocol population. Overall, there was a 

significant difference in net fluid status that was likely due to a higher furosemide exposure. A 

significant increase in episodes of hypernatremia and hypokalemia are not unsurprising given this 

furosemide strategy. Future protocol design will reflect these episodes of hypernatremia and 

hypokalemia with creation of more explicit electrolyte rules. 

Other key considerations to this study include a decrease in mortality and increased ICU- 

free days in the protocol group. Diligence in the selection of potential impactful parameters on 

outcomes was pursued. These included baseline weight and admission source as there have been 

correlated with rates of mortality in the sepsis population. (367, 368) A recent meta-analysis of 

65 randomized controlled trials of septic shock evaluated mortality rates based on baseline 

characteristics and inclusion criteria. (369) When evaluating the control groups, a significant 

amount of heterogeneity was found in mortality rates with an overall mortality rate of 38.6% and 

a prediction limit ranging from 13.5% to 71.7% When evaluating parameters influencing 

mortality ranges, a combination of severity scores, incidence of mechanical ventilation, and mean 

serum creatinine could only account for 41% of the total heterogeneity in mortality rates. 



120  

Vasopressor, mechanical ventilation, and definitions of sepsis or infection did not affect mortality 

rates. Other parameters such as size of trial, number of centers, blinding, and quality did not affect 

rates of mortality either. Variables such as fluid balance and diuretic therapy were not included in 

that meta-analysis. It is possible that the implication of volume de-resuscitation seen in the 

current study is directly correlated with mortality, in line with previous studies examining the 

impact of fluid status. The variables which have been consistently correlated with mortality, such 

as the aforementioned study, were accounted for in the matching criteria of this cohort. However, 

these findings need to be replicated in a larger population for confirmation. (71, 177) 

A key limitation to this study is the lack of randomization and blinding. Given the nature 

of the protocol, blinding to the medical staff was not possible. A pre-post intervention study was 

chosen given the lack of blinding within the study. As all pharmacists, physicians, and nurses at 

this institution rotate among the medical ICUs, it was anticipated that an overall change in 

practice may occur over the study timeframe given increased awareness of fluid balance and 

approach to diuretic dosing with its use in the pilot unit. To demonstrate the potential for such 

phenomenon, a recent debate regarding sepsis management illustrates this point. While a 

landmark trial by Rivers and colleagues in 2001 demonstrated a significant improvement in sepsis 

mortality with utilization of an early goal directed therapy (EGDT) protocol, large clinical trials 

15 years later have failed to demonstrate an improvement in mortality when EGDT was 

compared to usual care. (13, 370) Authors have proposed that usual care has, with time, improved 

given the popularity of the EGDT trial, guideline incorporation, and by nature of increased 

recognition. Such a phenomenon is possible with implementation of this protocol. However, given 

the limited time lapse between the pre-group and the protocol implementation within these time 

periods and lack of emergence of any randomized control trial or change of clinical guideline 

regarding fluid management between the pre- and post-phases, changes in overall approaches to 

care based on factors external to the protocol were unlikely. When considering the 

aforementioned survey (Chapter 2) which indicated a broad range in approaches to diuresis, a 
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practice drift among control patients was unlikely as objective differences were observed using 

the protocol. To limit potential bias further, patients were matched on a large number of clinically 

relevant variables and no subjective outcome measures were utilized. 

Protocol modifications in the study may also be seen as a potential limiting factor in study 

interpretation. However, in the subgroup analysis performed, protocol inclusion pre- or post- 

modification did not appear to significantly impact the primary result. This supports the result 

that a pharmacist-driven multi-disciplinary protocol would improve fluid balance at 72 hours 

compared to standard of care. 

Other considerations within this study were overall protocol adherence and pharmacist 

hours. Evening critical care pharmacy services are provided daily within the Medical ICU at our 

institution until 22:00, leaving a 9 hour gap without coverage. Van Berkel and colleagues showed 

that 42% of institutions have evening critical care services with pharmacist-to-patient ratios 

greater than 1:15 and 1:25 in 92% and 58.3% of hospitals, respectively. (371) In this cohort, 50% 

of respondents expressed concerns regarding the appropriateness of the workload and ability to 

provide adequate patient care. Pharmacist-to-patient ratios at our institution range from 1:13 to 

1:16 minimum and a minimum of 1:75 during evening hours (16:00-22:00). For this reason, we 

opted to utilized nursing-activatable furosemide orders for those patients not at fluid balance 

goals. However, utilization rates of these orders accounted for only 56% of the adjustments, with 

the primary pharmacist activating or increasing orders the remaining percentage of the time. The 

feasibility of this study without activatable orders is likely; however, pharmacist staffing ratios 

must be considered in such a design alteration. 

Lastly, the selection of outcome parameters are likely worth mentioning. We evaluated 

72 hour fluid balance in accordance with previous literature, however evidence suggests that fluid 

balance documentation is not always accurate. Perren and colleagues found in a cohort of 147 ICU 

patients, cumulative fluid balances were inaccurate over 33% of the time with errors ranging from 

-3606 mL to 2020 mL. A poor correlation was found between body weight changes and net 
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cumulative fluid balance. While adjusting the fluid balance for sensible or insensible fluid losses, 

febrile states, or diarrhea, correlation was only slightly better. Standard deviations of the average 

difference of body weight fluctuations and fluid balance changes were always greater than 1 liter 

total. (372) In another cohort evaluating 504 ICU admissions, only 160 patients had complete 

data. In this cohort, changes in body weight and fluid balance demonstrated weak correlation both 

prior to as well as after correlation for insensible losses (r2=0.34 for both). The 95% limits of 

agreement had a large range from -5.8 kg up to 6 kg total. (373) In our study, patient daily body 

weights were unreliable. Because this practice is not tightly protocolized, we did not utilize body 

weight as a monitoring parameter. However, it is possible that daily weights would assist in 

providing stronger clinical outcomes. 

This study does have several strengths; however, including the utilization of easily 

obtainable bedside monitoring parameters, the multi-disciplinary approach to protocol 

development, utilization, and modification, and selection of matching parameters. Several 

potential confounders on 72-hour fluid balance were matched between groups, decreasing 

between-group difference. Objective outcome measures were utilized to limit overall bias in the 

interpretation of both efficacy and safety. This sequential period pilot study demonstrated that a 

pharmacist-driven diuresis protocol was significantly associated with a negative fluid balance at 

72 hours; however increased rates of adverse events were found, namely hypernatremia and 

hypokalemia. The increased mortality and decreased number of ICU-free days in the standard 

therapy group is hypothesis-generating, particularly given the lack of difference between-groups 

in ventilator-free days. 

5.4 Further Investigation 
 

While we were able to show a pharmacist-driven protocolized approach to diuresis was 

associated with 72-hour negative fluid balance post-shock resolution, as well as a decrease in 

mortality with an increase in ICU-free days, questions surrounding administration of diuretics in 

the intensive care unit still remain. 
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5.4.1 Diuretic Considerations and Renal Function Assessment by Biomarkers 
 

Much of the furosemide literature furosemide in the critically ill population surrounds its 

use as a predictor of acute kidney injury, diagnosis of acute kidney injury, or even as a causative 

factor in the development of acute kidney injury. Potentially deleterious effects of furosemide on 

overall renal function include an increased risk of acute tubular injury secondary to medullary 

ischemia with a decrease in medullary flow relative to the cortex. There is activation of RAAS 

and sympathetic stimulation resulting in venodilation, in conjunction with volume loss leading to 

decreased preload and renal vasoconstriction. The use of furosemide in our population 

demonstrated no difference in rates of AKI between treatment groups as defined via the KDIGO 

criteria. (117) However, such was defined via serum creatinine, as the majority of other available 

studies, which is a highly limited biomarker of renal function given its long half-life and delay in 

diagnosis of acute kidney injury up to 36 hours. The utilization of biomarkers for renal function 

in the ICU may better assist the clinician in the administration of furosemide as it relates to effects 

on the kidneys. More novel biomarkers of renal function include biomarkers of actual function, 

including cystatin C, galectin-3, and proenkephalin. Biomarkers of renal damage include 

neutrophil gelatinase-associated lipocalin (NGAL), liver-type fatty acid-binding proteins, 

interleukin-18 (IL-18), kidney injury molecule-1 (KIM-1) and biomarkers of cycle arrest include 

tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein-7. 

Additional biomarkers of nephrotoxicity include N-acetyl-glucosaminidase, Glutathione-S- 

transferase, and Gamma-glutamyl transpeptidase and alkaline phosphatase. (374) Various 

combinations of these biomarkers can demonstrate progression of acute kidney injury and 

progression of acute injury and pre-renal injury from tubular injury. (375) IL-18, NGAL, and 

KIM-1 have all shown to correlate significantly with acute tubular injury in comparison to pre- 

renal injury and other types of renal dysfunction. (375-378) Specifically, NGAL is not affected by 

the administration of diuresis. (375) Utilizing these biomarkers and their trends may assist in 
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timing for the initiation of diuresis, appropriateness of its use, and even the decision to discontinue 

in the critically ill. (379) 

5.4.2 Diuretic Dosing Considerations 
 

More evidence regarding the optimization of furosemide dosing in the critically ill is 

likely necessary. The range of furosemide utilized in our study included 20-320 mg per day; 

however, a high incidence of concomitant diuretics were found. Loop diuretics have a known 

threshold dose which must be achieved in order to see an effect on urine output. (240) This 

threshold has a wide range based on underlying renal function, starting at 10 mg IV in a naive 

patient with normal renal function up to 80 to 160 mg in patients with acute kidney injury or 

chronic kidney disease. Similarly, a dose ceiling effect has been defined in patients with chronic 

kidney disease, nephrotic syndrome, cirrhosis, and heart failure, ranging from 40 mg to 200 mg 

depending on underlying disease state. However such a ceiling has not been found in the broad 

critically ill population. The half-life of furosemide also changes depending on renal function. Low 

serum albumin and increased organic anion transport receptor competitors can decrease 

furosemide delivery while increased tubular albumin, increased RAAS activation and elevated 

sodium and water intake can diminish the furosemide effect. A recent study demonstrated that 

within 7724 critically ill patients in a single center ICU, body mass index was independently 

correlated with an increased risk of diuretic receipt, with every 5 kg/m2 associated with a 1.19 

increase risk of diuretic administration in the ICU. Additionally, every 5 kg/m2 associated with a 

2.75 mg higher daily diuretic dose. The authors attribute this to the sodium-retentive state of 

obesity; however, were unable to differentiate this affect independent of comorbidities of obesity 

such as insulin resistance, pulmonary hypertension, and heart failure. (380) A large model 

accounting for all of the known baseline parameters, concurrent diseases, physiologic state and 

variables, and pharmacokinetic variables is necessary in order to determine which factors are most 

influential  on  the  optimal  furosemide  dose  for  those  individuals  in  the  ICU.  Additionally 
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concomitant therapies such as nephrotoxins, fluid administration, and the sodium or other 

composition variates of such are also likely impactful. 

5.4.3 Diuretic Timing Considerations 
 

Timing of furosemide administration is a highly ambiguous area within this population. 

In our study, we opted to evaluate 72 hour fluid balance after shock resolution; however, 24- and 

48-hours were also significantly lower in the protocol group. It is possible that in some patients 

early initiation is better. A recent study evaluated the utilization of diuretic therapy early in 

critically ill patients receiving vasoactive therapy using the Medical Information Mart for 

Intensive Care III database. (381) This is an online database that contains over 40,000 critically 

ill patients over a 12 year period. In patients with a positive fluid balance 48 hours after ICU 

admission diuretic use was significantly associated with decreased mortality (OR 0.64, 95% CI 

0.51-0.78). (382) In the negative fluid balance subgroup, there was no statistical difference in 

mortality (OR 0.73, 95% CI 0.47-1.14). This study is the first to demonstrate a benefit of diuretic 

therapy in patients still found to be in active shock outside of an acute decompensated heart failure 

population. In line with the physiologic rationale of ebb and flow phases, most literature has 

evaluated fluid balance around 72 hours after shock onset. However, there are several other 

considerations. This diuretic administration relative to shock timing concept makes several 

assumptions. The first of which that all patients have the same pattern of shock onset and 

resolution timing. The second is that we are not able to account for the exact time of shock onset 

in a presenting patient, considering other key factors such as outside hospital transfers, time of 

symptom onset, and patient presentation time. 

Further, other factors may contribute to ongoing vasoactive therapy support that is 

independent of fluid balance. Patients in septic shock may develop septic cardiomyopathy, 

resulting in a continuation of vasoactive support for maintenance of cardiac output. Additionally, 

if fluid overload results in an elevated central venous pressure, cardiac output may decrease 

therefore decreased mean arterial pressure or a decrease in microcirculatory flow and overall 
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perfusion pressure may be seen. Both situations which may be mitigated at bedside by continued 

vasoactive support when undifferentiated from a pure decrease in systemic vascular resistance. 

(383) This study did not specifically evaluate whether a baseline vasopressor dose impacted 

benefit of diuresis; therefore, it is possible that certain patients may be able to tolerate volume 

offloading during shock while others cannot. Loop diuretics such as furosemide may activate 

RAAS, which can result in vasodilation. Loop diuretics may also increase secretion of vasodilatory 

prostaglandins that result in increased proximal tubule pressure. (384, 385) For this reason, IV 

furosemide may decrease or increase arterial pressure, stroke volume, and renal blood flow. (220) 

While invasive hemodynamic monitoring is no longer standard of care, a study evaluating non- 

invasive hemodynamic parameters, such as markers of volume responsiveness and bedside 

ultrasonography, as triggers for initiation of volume removal, may assist in resolving ongoing 

questions regarding optimal timing of diuretic initiation. 

New data demonstrates that septic shock additionally can be stratified into 

subphenotypes. The most recent data suggested six subphenotypes of sepsis, including 

uncomplicated septic shock, pneumonia with acute respiratory distress syndrome, postoperative 

abdominal, severe septic shock, pneumonia with acute respiratory distress syndrome plus 

multiorgan dysfunction syndrome, and late septic shock. (386) In another meta-analysis on 349 

studies, 29 variants of 23 genes were associated with the risk of sepsis. (387) Neither of these 

studies, however evaluated the impact of volume and fluid status on outcomes based on genetic or 

phenotypic factors. A retrospective study of 14,993 patients admitted to a single center over a 12 

year period, however, did in fact look at fluid resuscitation and response based on sepsis subclasses. 

That study identified four distinct sepsis profiles including profile 1, considered to be the baseline 

type; profile 2, consisting of respiratory dysfunction; profile 3, with multiple organ dysfunction; 

and profile 4 with neurologic dysfunction. Mortality was highest in profile 3 (45.4%) and lowest in 

profile 1 (16.9%). In a multivariable regression model adjusting for several concomitant factors, a 

higher cumulative fluid input volume within the first 48 hours was found 
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to decrease overall mortality in profile 3 (OR 0.89 per 1L, 95% CI 0.83-0.95) while increasing 

mortality in those patients in profile 4 (OR 1.20, 95% CI 1.11-1.30). (388) Lest we forget, with 

less than 5 randomized controlled trials evaluating fluid resuscitation in sepsis and actual 

physiology outcomes, there are more questions than answers regarding which patients may 

benefit from fluid resuscitation and when. (389) If such solutions can be found, selection of patients 

for diuresis and volume removal as well as timing can be evaluated more lucidly. 

5.4.4 Diuretic Considerations and Pulmonary Function 
 

All of these considerations must further be explored within the cohort of acute respiratory 

distress syndrome as these patients may have alternative optimal timeframes and de-resuscitation 

goals compared to the shock and general ICU population. A recent secondary analysis of all 

randomized controlled trial conducted by the Acute Respiratory Distress Syndrome Network 

from the year 1996 to 2013 took an additional look at mortality rates in patients with ARDS. 

These authors found in a multivariable logistic regression model that day one fluid balance was 

significantly associated with mortality (OR 1.07 per 1 L, 95% CI 1.04-1.11). Further, day one fluid 

balance was additionally associated with a decreased rate of discharge home with unassisted 

breathing (HR 0.918 per 2 L, 95% CI 0.895-0.941). Most intriguingly, when looking at rates of 

mean daily fluid balance, days 1-7 showed a decrease in averages over time. However, day zero 

fluid balance has steadily risen in the past 15 years. Further, the average fluid balance on day one 

still remains positive, above 1000 mL. (390) How loop diuretics play a role in fluid balance and 

these outcomes has yet to be definitively determined. Literature has demonstrated that the 

administration of furosemide may improve pulmonary gas exchange, decrease edema formation, 

and improve intrapulmonary shunt fraction in early phases of pulmonary edema in mechanisms 

that are not direct to its diuretic action. Instead furosemide effects relating to pulmonary 

vasodilation, attributing to redirection of blood flow to nonedematous alveolar regions may 

become important. (391-396) Specifically, continuous infusion furosemide has shown to improve 

lung injury scores, pO2/FiO2, and shunt fractions in animal models while decreasing the amount 



128  

of pulmonary end expiratory pressure required when initiated 2 hours after the onset of acute 

lung injury. (397) Other models have demonstrated that furosemide administration in later stages 

of pulmonary edema may actually worsen pulmonary gas exchange without having any effect on 

the edema itself. (398-400) 

Recent evidence in acute respiratory distress syndrome also has taken to the use of 

biomarkers. A latent class analysis of baseline clinical and plasma biomarker data within the 

aforementioned FACTT trial was performed in a recent publication. (401) Two phenotypes were 

found, consisting of different cutoffs for interleukin-8, serum bicarbonate, and tumor necrosis 

receptor factor-1. Subphenotype 2, identified in 2 previous trials, was associated with increased 

levels of inflammatory biomarkers, acidosis, and shock and was present in similar frequency in the 

two earlier trials, In this analysis, within phenotype 1, a fluid conservative approach resulted in a 

mortality rate of 26% versus 18% in a fluid liberal group, whereas a fluid conservative approach 

resulted in a mortality rate of 40% compared to 50% in a fluid liberal approach in the phenotype 

2 group. When looking beyond the defining laboratory parameters, other laboratory differences 

are seen, with an increase in Ang-2, a mediator of endothelial cell injury, RAGE, a marker of lung 

epithelial cell injury, and serum creatinine. Hemodynamic variables at baseline do not appear to be 

significantly different between phenotypes, with the exception of a significantly higher central 

venous pressure in those patients with phenotype 2 (p=0.005). The impact of furosemide as well 

as fluid management strategies potentially needs to potentially be stratified based on phenotype 

of ARDS. 

Outside of the acute respiratory distress population, pulmonary edema secondary to other 

causes may also potentially benefit from furosemide. In an animal model of cardiogenic pulmonary 

edema, inhibition of pulmonary NKCC blocked alveolar fluid secretion. (140) Inhibition of 

epithelial sodium channels increased alveolar fluid which was dependent on NKCC. Given 

furosemide’s effect on NKCC, administration has shown to decrease alveolar fluid transport and 

secretion while alveolar fluid clearance. However, the administration of furosemide in this study 
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was via inhalation. Additionally, multiple types of edema were not considered such as those in 

neurogenic diseases states or altered altitudes. The effect of furosemide on edema in these states 

as well as in relation to volume status must also be further considered before broadening its 

application to a generalized pulmonary edema population. 

5.5 Conclusion 
 

Fluid administration is ubiquitous within the critically ill population. The number of 

patients presenting with severe sepsis, just one indication for fluid administration in the ICU, has 

surpassed one million annually. There is minimal evidence to guide initiation of de-resuscitation 

within the general ICU population. This study was the first to evaluate a pharmacist-drive de- 

resuscitation protocol utilizing pharmacologic diuresis in the intensive care unit. We were able to 

demonstrate a significant improvement in fluid balance at 72 hours following shock resolution, 

with potential benefit on mortality and ICU length of stay. Volume overload states may be a 

marker of severity rather than a parameter for early diuresis intervention. Although this study 

provided support for a pharmacist-driven protocol, prospective randomized trials may not 

demonstrate efficacy of this intervention for such clinical outcomes. Further evidence is needed 

to optimize those who may benefit. Questions remain regarding patient selection, timing, 

concomitant disease considerations, and role of phenotypic profiling as well as serum biomarkers 

to optimize furosemide dosing regimens. 
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