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Abstract: Exercise is commonly prescribed as a lifestyle treatment for chronic metabolic diseases
as it functions as an insulin sensitizer, cardio-protectant, and essential lifestyle tool for effective
weight maintenance. Exercise boosts the production of reactive oxygen species (ROS) and subsequent
transient oxidative damage, which also upregulates counterbalancing endogenous antioxidants to
protect from ROS-induced damage and inflammation. Exercise elevates heme oxygenase-1 (HO-1)
and biliverdin reductase A (BVRA) expression as built-in protective mechanisms, which produce the
most potent antioxidant, bilirubin. Together, these mitigate inflammation and adiposity. Moderately
raising plasma bilirubin protects in two ways: (1) via its antioxidant capacity to reduce ROS and
inflammation, and (2) its newly defined function as a hormone that activates the nuclear receptor
transcription factor PPARα. It is now understood that increasing plasma bilirubin can also drive
metabolic adaptions, which improve deleterious outcomes of weight gain and obesity, such as
inflammation, type II diabetes, and cardiovascular diseases. The main objective of this review is
to describe the function of bilirubin as an antioxidant and metabolic hormone and how the HO-1–
BVRA–bilirubin–PPARα axis influences inflammation, metabolic function and interacts with exercise
to improve outcomes of weight management.

Keywords: HO-1; biliverdin reductase; BVRA; PPARα; bilirubin; inflammation; metabolic disease;
nutraceuticals; vitamin D; vitamin E; nitrate

1. Introduction

Obesity and ectopic lipid accumulation are key contributing hallmarks of metabolic
dysfunction, which is the cornerstone of pathogenesis for most comorbidities [1–3]. People
with a BMI greater than 30 (>30) have an increased risk for obesity-associated comorbidities
that include cardiovascular disease, hypertension, insulin-resistant diabetes, dyslipidemia,
and certain cancers [4–7]. Alterations in lipid metabolism also contribute to ectopic lipid
accumulation, exacerbating metabolic disorders, especially when combined with limited
physical activity. Understanding and combating metabolic dysfunction is essential for
improving clinical outcomes and quality of life.
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Obesity treatment has been challenging, and exercise continues to be the foundation
for obesity prevention and treatment. Despite the continued interest in exercise training in
obesity, there are still challenges, including patients falling short on meeting exercise recom-
mendations over time and limited effectiveness of exercise as a sole driver for stimulating
weight loss [8–10].

A common theme found in the literature on the healthy athletic population is how
different nutrients, hormones, dietary supplements, and other forms of ergogenic aids
[referred to herein as “exercise enhancers” (EEs)] can improve exercise training outcomes
to enhance athletic performance. There is also emerging evidence that EEs may augment
the metabolic benefits of exercise and, in some cases, modulate inflammation. This review
provides a brief overview of exercise in preventing metabolic dysfunction along with the
potential role of select antioxidants (i.e., bilirubin and others), vitamin D, and nitrates on
improving metabolic outcomes associated with exercise. The primary focus will then shift
to describing bilirubin’s emerging significance as a potential EE due to its role as a strong
antioxidant and metabolic hormone.

This review describes how exercise interacts with bilirubin to further sensitize these
newly defined antioxidant and protective metabolic functions as a hormone. The role of
exercise and its influence on bilirubin catabolism will be discussed along with proposed
theories on how bilirubin may influence physiological adaptations associated with exer-
cise training and how this might impact inflammatory responses. A primary mechanism
discussed postulates that as exercise increases reactive oxygen species (ROS) production,
increased heme oxygenase (HO-1) activity raises plasma bilirubin levels, which can also di-
rectly bind and activate PPARα (peroxisome proliferator-activated receptor α) in metabolic
tissues (e.g., adipose, liver, and muscle), which might explain some of the therapeutic
benefits observed with exercise (Figure 1). Other important mediators such as HO-1 and
PPARs and their impact on exercise and inflammation will be discussed.
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Figure 1. Overview of heme oxygenase and bilirubin interaction with exercise. Exercise increases re-
active oxygen species (ROS) and potentiates oxidative DNA damage. The body compensates with ox-
idative stress by upregulating heme oxygenase-1 (HO-1), which generates the antioxidant bilirubin to
help prevent excessive oxidative damage. Bilirubin also directly binds to the PPARα nuclear receptor
to induce genes that suppress lipid accumulation and has cardiogenic and hepato-protective effects.

2. The Effect of Exercise on Weight Management and Inflammation

Exercise is regularly prescribed as a first-line treatment in preventing type 2 diabetes,
coronary artery disease (CAD), and non-alcoholic fatty liver disease (NAFLD) [11–13]. It has
strong therapeutic effects that usually meet or exceed expected improvements in metabolic
function from pharmaceutical treatment [14]. Exercise training triggers significant metabolic
adaptations that improve cardiorespiratory fitness, promoting greater capillary density and
increases in HDL synthesis to protect from CAD [14,15]. Exercise also enhances glucose
uptake through elevating translocation of GLUT4 in skeletal muscle and by increasing IRS-1
phosphorylation, an insulin receptor substrate that improves insulin sensitivity [16,17].
Therefore, exercise can be a reliable first-line and preventative therapeutic for type II
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diabetes by decreasing blood glucose [18] and CAD by reducing atherosclerotic plaque
buildup and subsequent risk of stroke and myocardial infarction [19].

Although exercise training can improve blood glucose control, insulin sensitivity, and
other aspects of metabolic syndrome without weight loss, these benefits are substantially
greater when significant weight loss occurs [20–23]. Indeed, the American College of Sports
Medicine issued separate recommendations to maintain health [24] or support weight
loss through exercise [25]. Exercise is also one of the primary recommendations of the
Diabetes Prevention Program (DPP) and a pivotal component to the classic Look AHEAD
trial primarily due to the role that exercise is thought to play in weight loss and weight
management [26,27]. Unfortunately, weight loss from exercise is often suboptimal due
to compensatory mechanisms that resist the maintenance of an energy deficit [8–10]. For
instance, an individual may exercise to expend 3000 kcal per week for ten weeks through
exercise to expend a total of 30,000 kcal. However, this individual rarely loses 30,000 kcal of
body mass. By comparing changes in bodily energy stores with the amount of total energy
expended through exercise, we have demonstrated this compensatory response to equate
to roughly 1000 kcal per week during a 12-week exercise intervention, and that energy
expenditures of greater than 2700 kcal per week are needed to achieve significant weight
loss after 12 weeks. [28,29]. Others have reported that greater amounts of exercise can evoke
a proportionally greater compensatory response [30], potentially explaining why exercise
interventions with large differences in daily and weekly exercise energy expenditures can
promote similar weight loss [30–33]. Because of this, many have turned to various EE’s to
improve both weight loss and metabolic health outcomes with exercise. We will discuss
some specific studies on EE’s below and how they might impact exercise-induced ROS
and inflammation.

Exercise-Induced Formation of Reactive Oxygen Species and Select Antioxidant
Defense Mechanisms

ROS generation from exercise has a significant role in triggering and sustaining the
healthy cellular, tissue, and organ level adaptations that help improve and maintain cardio-
metabolic health. Acute ROS generation from exercise occurs via electron transport oxygen
catabolism in the skeletal muscle. This is triggered by a substantial increase in mito-
chondrial oxygen uptake into the skeletal muscle cell, increasing ROS production [34].
Exercise-induced ROS production can also produce muscle injury, which sends inflamma-
tory signals that attract polymorphonuclear neutrophils and macrophages and produce
additional ROS in its defense mechanism of oxidative burst [35]. If there is a chronic
imbalance of more ROS production than antioxidant activity, chronic oxidative stress may
lead to apoptotic pathways in tissues [36]. A skeletal muscle oxidative stress imbalance
is commonly seen in untrained individuals who begin a strenuous training program or
“weekend-warriors” who perform a single bout of infrequent strenuous exercise (Figure 2).
Although exercise is known to increase the abundance of ROS, progressive exercise training
allows time for the upregulation of defense mechanisms that help protect the body from
oxidative damage. This is known as redox balance (Figure 3), where free radicals are bal-
anced by the adaptive antioxidants produced [37]. Exercise may stimulate the generation
of antioxidants by triggering significant cell adaptations and upregulating antioxidant-
producing enzymes [38]. Those who are exercise-trained and perform a single bout of
exercise can leverage the benefits of endogenous antioxidant upregulation, along with
mitochondrial expansion, cryoprotection, and insulin sensitivity [35]. The importance of
ROS is highlighted in experimental models treated with allopurinol. This compound in-
hibits ROS production and protects muscle tissue from oxidative stress. However, because
exercise-induced ROS was not produced, the important adaptive signaling pathways for
oxidative protection were blunted. Thus, the formation of ROS in exercise can help activate
these intrinsic protective pathways. Notwithstanding, allopurinol is a competitive inhibitor
for xanthine oxidase that produces H2O2. H2O2 is a kind of ROS; thus, xanthine oxidase is
an intrinsic prooxidant. This adaptive signaling response is an important body regulation,
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and if extrinsic, pharmaceutical dose antioxidants are administered, the body’s natural
adaptive ability to produce in trinsic antioxidants may be thwarted [38].
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Figure 3. Redox Balance of ROS and Antioxidants. Exercise potentiates the release of reactive
oxygen species due to increased oxidative exposure. However, exercise training also induces an
adaptive response with the upregulation of antioxidant defense mechanisms that will help restore
redox balance. The downregulation of endogenous antioxidant systems or the increased production
of reactive oxygen species can precipitate an imbalance in redox balance and potentiate chronic
oxidative damage.

Ultimately, exercise-related ROS adaptations improve oxygen transport and delivery
that translate into better aerobic fitness that help explain many of the health benefits
of exercise. Furthermore, upregulation of endogenous antioxidant systems can work in
concert with exogenous dietary antioxidants to mitigate ROS-related tissue damage and
support normal metabolic function and healthy aging. Conversely, the accumulation of ROS
and inadequate ROS defense responses has been implicated as a key mechanism leading
to significant atrophy in muscle tissue. Muscle atrophy due to chronic excessive ROS
exposure progresses slowly as part of the normal aging process but is more pronounced and
accelerated in severe underlying pathological processes such as in cancer wasting (cancer
cachexia) [39], neurodegenerative diseases (Parkinson’s, Alzheimer’s), and immobilization
(musculoskeletal injury) [40].
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3. HO-1, BVRA, and Bilirubin as Inflammatory Mediators
3.1. Exercise-Induced HO-1 as a Mediator of Immune System Responses

HO-1 produces a known potent antioxidant and enzyme responsible for the cleavage
of heme, yielding biliverdin, iron (Fe2+), and carbon monoxide (CO) [41,42]. The HO-
1 pathway also regulates some of the metabolic and inflammatory aspects of insulin
resistance. While there is a connection between inflammation and the development of
insulin resistance, it is unclear which development precedes and which is causative [43].
HO-1’s role in inflammation and insulin resistance appears equivocal in the literature.

The presence of HO-1 mimics the same efficacious properties as bilirubin [44]. Biliru-
bin downregulates the M1 macrophages associated with the release of pro-inflammatory
cytokines [45–47]. Future work to understand how HO-1 may affect M1 cells may shed
light on potential underlying mechanisms to explain how bilirubin downregulates M1
cells. HO-1 also protects the liver from ischemia-reperfusion injury by modulating the
macrophage phenotype into the anti-inflammatory M2 state in mouse livers [48,49]. This
serves as evidence for an HO-1 role as a hepatic cryoprotective agent. In this same study,
low HO-1 mRNA levels in human liver transplants correlated with increased expression
of M1 pro-inflammatory markers [48,49]. Liver-specific biliverdin reductase A (BVRA)
knockout animals with reduced hepatic bilirubin had worsened fatty liver on a high-fat
diet compared to littermate controls [50], which was confirmed in global BVRA knockout
animals [51]. Bilirubin reduces lipid content and inflammatory markers in mouse models
of obesity-induced NAFLD [46,47].

Work by Gobert et al. found HO-1 to prevent an inflammatory response and has
implicated HO-1 as a virulence factor in H. Pylori and other bacteria in order to evade
the immune system [52]. Other work has described using a heme-inducing compound
to effectively reduce obesity, insulin sensitivity and increase serum adiponectin levels.
Inhibition of the HO-1 system decreased adiponectin and increased pro-inflammatory
cytokines, TNFα, IL-6, and IL-1 [53–55]. Adiponectin, a known anti-inflammatory hormone,
is thought to be working indirectly through HO-1-activation [56]. The complete mechanism
of this anti-inflammatory activity is not fully understood, but some theories with convincing
evidence reveal new insight on HO-1 and the importance of its catabolic products.

The HO-1 pathway can decrease inflammation by producing biliverdin/bilirubin,
which has protective anti-inflammatory effects, especially in vascular endothelial tissue [57].
Another anti-inflammatory action of HO-1 is through carbon monoxide production, which
is a known cryoprotectant and anti-apoptotic factor in endothelial cells that have the
potential to crosstalk with nitric oxide, a known vasodilator. Although this work serves
as further evidence that HO-1 has important underlying anti-inflammatory and insulin-
sensitizing mechanisms that may augment bilirubin’s therapeutic value, it is essential to
note that the supporting evidence is not unequivocal. In contrast to these aforementioned
findings, conflicting data suggest that HO-1 is implicated in driving inflammation and may
even support insulin resistance in humans. Jais et al. demonstrated that HO-1 levels predict
a strong positive prediction of metabolic disease in human subjects [58], while Ghio et al.
reported HO-1 elevation due to cytokine stimulation in inflammatory disease [59]. Whether
HO-1 is present in response to the inflammation or if it is the direct cause of inflammation
is not completely clear.

Although HO-1’s direct role on insulin resistance and inflammation has not been fully
elucidated, the influence of exercise on the HO-1 pathway may shed light on these equivocal
data. Niess et al. showed that HO-1 expression in leukocytes increased significantly after
sustained endurance exercise in marathon runners. The authors interpreted this to be
due to the excessive amount of free radical production, although the mechanism that
causes this upregulation of HO-1 in exercise is not completely clear [60]. However, it
can be postulated that since exercise promotes ROS generation, it would induce nuclear
factor (erythroid-derived 2)-like-2 (Nrf2) expression, which is a key transcription factor
in inducing HO-1 [61–63]. A potential explanation for the upregulation of HO-1 may be
that acute exercise can also propagate a transient pro-inflammatory state to increase levels
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of HO-1 via increased cytokine activity. Others have suggested that ROS, themselves,
can induce and upregulate HO-1. Kurata et al. found that the HO gene was induced by
12-O-tetradecanoylphorbol 13-acetate response element (TRE) in the presence of hydrogen
peroxide, a ROS [64]. These oxidative free radical levels vary based on habitually trained
versus untrained subjects. The trained individuals had a much more robust adaptive
antioxidant defense system and thus a lower level of ROS production [65]. HO-1 levels
at rest are significantly reduced in trained subjects compared to untrained subjects [60].
This suggests an adaptive regulatory feedback mechanism to which, at rest, basal ROS
are downregulated in trained individuals and hence, a lower HO-1 level. The prevailing
hypothesis surrounding this observation is that HO-1 is upregulated to offer protection
from the free radicals that are produced with exercise (Figure 3) [59].

3.2. The Emerging Role of Biliverdin Reductase in Immune Response

BVRA plays a vital role in macrophage polarization and as a target for regulating
responses to bacterial lipopolysaccharides and complement activation products. BVRA
is expressed in macrophages where it is tyrosine phosphorylated. Phosphorylated BVRA
then binds to phosphatidylinositol 3-kinase (PI3K) at the p85α subunit to activate down-
stream signaling to Akt [66,67]. Macrophage classification occurs according to activation
state and function. M-1 macrophages are classically activated macrophages that express
cytokines such as TNFα and interleukin-17A. M-2 macrophages are alternatively activated
macrophages that express anti-inflammatory cytokines such as interleukin-10 (IL-10) and
transforming growth factor-beta (TGFβ). Overexpression of BVRA in macrophages ele-
vates expression of M-2 macrophage markers, while knockdown of BVRA increases M-1
macrophage markers [68]. Renal ischemia-reperfusion injury increases the levels of BVRA
positive macrophages increasing the levels of IL-10, helping in the reparative process [68].
The recruitment of macrophages is an influential process in the inflammatory response.
Release of chemokines that act on specific receptors such as the complement activation
fragment 5a receptor one (C5aR1) recruits macrophages to sites of tissue injury. Loss of
macrophage BVRA results in greater levels of C5aR1 increasing inflammation [69]. These
studies demonstrate the critical role of BVRA in both macrophage chemotaxis and polariza-
tion. Augmentation of macrophage BVRA levels may be an effective treatment to bolster
anti-inflammatory pathways in a number of inflammatory diseases. How they might affect
metabolic adaptations to exercise is yet to be determined.

3.3. The Effect of Exercise on Bilirubin and Its Actions

Given that HO-1 expression is directly influenced by exercise training (Figure 4), it
is logical to assume that exercise increases plasma bilirubin levels. Hinds et al. recently
conducted a study where rats genetically selected for high capacity running (HCR) and low
capacity running (LCR) were used to identify the metabolic pathways in the liver altering
plasma bilirubin levels through exercise [70]. The investigators observed that HCR rats
had significantly greater plasma bilirubin and hepatic BVRA expression while having a
reduced expression of the glucuronyl hepatic enzyme UGT1A1. Significant increases in
PPARα-target genes were also observed in HCR rats compared to the LCR. For the first time,
these results suggest hepatic mechanisms involved in bilirubin synthesis and metabolism
that may explain the positive effects of exercise on plasma bilirubin and metabolic health.

There are a limited number of articles published on this topic in humans [71,72]. In a
controlled study that examined different levels of training intensity, researchers found that
the high-intensity training group (defined as 12 kilocalories per kilogram per week (KKW)
energy expenditure) presented a significant increase in total serum bilirubin in comparison
to the sedentary control group. Those who trained at moderate intensity levels (defined as
4 and 8 KKW) experienced no significant differences in serum bilirubin levels [71]. Priest
et al. observed an increase in bilirubin in male runners after a 13-mile run along with an
increase in alkaline phosphatase. Bile acids and bilirubin have been shown to be elevated
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in these runners [73]. In both studies, bilirubin levels seem to be elevated in response to
high-volume, exhaustive forms of exercise with high energy expenditure.
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A subgroup analysis from Swift et al. revealed another interesting trend that showed
those who were insulin resistant in the high-intensity exercise group had a significant
increase in bilirubin compared to the insulin-sensitive group [71]. A more recent study
confirmed these observations by examining why moderate-to-vigorous physical activity
(MVPA) resulted in a significant increase in serum bilirubin in insulin-resistant subjects but
not in insulin-sensitive subjects. The authors hypothesized that the observed increase in
bilirubin in the insulin-resistant subjects could be due to a lower basal level of bilirubin,
resulting in a more remarkable absolute change in bilirubin in response to MVPA [74]. The
underlying rationale for this pattern of bilirubin change in response to different exercise
volumes should be further explored to improve our understanding of the connection
between insulin resistance and changing bilirubin levels.

Several studies in athletes have also reported a strong correlation between elevated
bilirubin and the degree of exercise intensity and an associated increase in erythrocyte
hemolysis [71,75–77]. Witek et al. reported normal bilirubin reference ranges for 339 male
and female Polish athletes [72]. While approximately 45% of the samples had bilirubin
levels in the range of 7–14 µM, 12% of the athletes had 21–28 µM. Nineteen percent of
the total bilirubin values exceeded the established normal limit of 21 µM. These elevated
concentrations appeared to be related to changes caused by regular exercise and were not
directly related to increased hemolysis. The authors suggested that other exercise-induced
mechanisms seem to affect bilirubin concentrations, such as altered liver function and
upregulation of bilirubin production (to serve as an antioxidant) in response to increased
oxidative stress (ROS). A study of young Polish athletes (aged 18–40 years) reported that
bilirubin levels increased in response to both a ketogenic diet and short-term, high-intensity
exercise (CrossFit) [78]. Study subjects increased their bilirubin concentrations in both
diet groups in response to exercise (Customary diet: 10 ± 5 to 19 ± 8; Ketogenic diet:
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14 ± 0 to 20 ± 8 µM; p < 0.05). These studies bring to question if bilirubin levels are
being controlled by exercise to correct metabolic imbalances, mitigate oxidative stress, and
reduce inflammation.

3.4. The Hormonal Function of Bilirubin in Exercise and the Impact of PPAR Signaling

The PPARs are a subfamily of ligand-activated nuclear receptor transcription factors
with three distinct isoforms: α, β/δ, γ [79]. These isoforms are found in different tis-
sues, each with a predominant isoform. PPARα is expressed in hepatocytes, enterocytes,
and vascular endothelium and works to improve mitochondrial efficacy in FA oxidation
in these tissue types. PPARβ/δ are expressed more ubiquitously in the body but pre-
dominate in skeletal muscle and macrophages and are important in fatty acid oxidation
and macrophage immunosuppression through the reduction in NF-κB inflammatory cy-
tokines [80,81]. PPARγ is found mainly in white and brown fat adipocytes and enhances
genes involved in the metabolism of glucose and adipocyte differentiation [82–86]. PPAR’s
are activated in the presence of their specific corresponding natural or synthetic pharma-
cological ligands. All PPAR isoforms will activate in the presence of unsaturated fatty
acid (PPAR pan agonist), which acts as a ligand to the PPAR isoforms [87]. It should be
noted that all of the PPAR isoforms are considered to drive anti-inflammatory pathways.
A hepatocyte-specific and adipocyte-specific knockout of PPARα in mice fed a high-fat
diet showed greater fat content in each of the KOs, which both also exhibited significantly
higher inflammation compared to control littermates [88,89]. Similarly, studies showing
that overexpression of inflammatory meditator glucocorticoid receptor beta (GRβ) in the
liver of C57/bl6 mice induced hepatic lipid accumulation in 5 days on a normal chow diet
by suppression of hepatic PPARα [90].

We have shown that bilirubin (unconjugated form) binds directly to the PPARα nuclear
receptor to induce transcription of genes (Figure 5) [91–94], which control adiposity and
glucose sensitivity. Interestingly, competitive binding studies and transcriptional activity
assays demonstrated that bilirubin’s binding to the PPARs is specific to only PPARα, and it
has no actions or binding to PPARγ or PPARβ/δ [91,92]. In looking more specifically at
ligands for PPARα, a synthetic ligand such as fenofibrate (fibrates) is widely used in the
treatment of hypertriglyceridemia in order to reduce serum triglyceride levels. Through
the binding and subsequent activation of the PPARα nuclear receptor, fenofibrate reduces
plasma triglycerides and VLDL/LDL concentrations [95]. An increased expression of
PPARα offers significant induction of β-oxidation [46,47,63,92,94] and myocardial ATP
production, which are markers for myocardial viability [96,97]. It can also reduce the
oxidative stress that occurs after a high-fat meal [95]. As mentioned above, unconjugated
bilirubin has been demonstrated to act as a novel endocrine ligand that activates the
transcriptional activity of PPARα by direct interaction, which changes coregulator proteins
bound to the nuclear receptor to control gene activity [92]. PPARα activation by bilirubin
in obese mice with glucose intolerance leads to a decrease in fasting blood glucose, as
well increase in lean body mass and an increased presence of FGF21 (fibroblast growth
factor 21) [42]. FGF21 can act as a metabolic regulator by rapid reduction in blood glucose
and insulin levels in obese models [42,98] (readers are referred to another review discussing
modulation of metabolism by FGF21 for more information [99]). The impact that bilirubin
has on exercise via FGF21 is unknown. More studies are needed to elucidate the protective
properties of bilirubin that occur via it driving the PPARα-FGF21 pathway that reduces
adiposity and improves insulin sensitivity.
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isoforms are bound by corepressors proteins until they are bound to the ligand, which induces a
change from co-repressors to co-activators. Unconjugated bilirubin enters the cells and activates
PPARα and not the PPARγ or PPARβ/δ isoforms. Bilirubin binding to PPARα induces a complex
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Exercise plays a role in the activation of the PPAR systems. Exercise increases the levels
of AMP-activated kinase (AMPK), ERK1/2-MAPK, and PKC, which are kinases in the
skeletal muscle involved in increasing the expression of downstream transcription factors.
These kinases are found to increase the transactivation of PPARα and thus an increase
in FA oxidation and glucose production, which can be used as fuel during exercise [100].
PPARα, in particular, has strong actions on improving the efficacy of FA oxidation in
the liver and adipose tissues [88,89]. PPARα mRNA upregulates in bouts of exercise
and in times of starvation in order to metabolize fat and use it for an effective energy
source [101,102]. Acute exercise also provides increases in liver and serum FGF21, which
provides systemic insulin sensitization [103]. PPARα expression is necessary for optimized
endurance exercise. PPARα knockout models had significantly less tolerance to endurance
exercise than the control. This lack of tolerance is due to a rapid depletion of hepatic
glycogen [104]. We have shown that reducing PPARα activity in the liver leads to lower
hepatic glycogen content [88,90], and activation by bilirubin increases it [47,70]. Similarly,
hepatocyte-specific BVRA knockout animals on a high-fat diet had reduced bilirubin-
PPARα activity and lower glycogen levels [50]. Endurance athletes were found to have a
specific polymorphism that produces an increased binding capacity of PPARα in skeletal
muscle and more type I slow-twitch fibers [105]. This suggests that PPARα may have
critical roles in exercise and is necessary to perform enhanced endurance activity [106].
Similar to PPARα, PPARγ and PPARβ/δ mRNA is also elevated as a result of an aerobic
exercise training program [107,108]. PPARβ/δ are the least studied of the isoforms. There
is evidence to support PPARβ/δ’s ability to rectify metabolic disorders and enhance β-
oxidation in muscle [109]. Many of its effects mimic the functionality of PPARα; however,
the PPARβ/δ is more ubiquitously expressed than PPARα [110].
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PPARγ is upregulated after sustained exercise programs and showed beneficial effects
in skeletal muscle [111]. This skeletal muscle had signs of mitochondrial biogenesis and
thus, improved aerobic respiration. The mitochondrial biogenesis is also seen in adipose
tissue and is phenotypically evident by the increased conversion of white fat into brown
fat in the presence of a highly induced PPARγ [112]. This exercise-induced PPARγ can
provide antidiabetic effects through upregulation of monocyte PPARγ-control genes [111].
PPARγ is also in charge of controlling adipocyte differentiation [113,114]. In a PPARγ
knockout model, severe lipoatrophy is observed, along with insulin resistance [115]. The
PPARγ knockout mice have significantly decreased body mass; however, the liver showed
a 1.5-fold increase in weight and increased lipid deposition in hepatic tissue. The increased
lipid deposition in the liver is due to disrupted adipogenesis in white adipose tissue (WAT),
causing increased plasma triglycerides that can deposit in the liver [116]. These PPAR
systems have been correlated with decreased levels of atherosclerosis, insulin resistance,
and inflammation in conjunction with metabolic syndrome and hypertriglyceridemia [114].

Another novel metabolic role designated to bilirubin is its natural ability to act as
an insulin sensitizer [44,117]. PPARγ is elevated following bilirubin administration in
mice with improved insulin sensitivity. This isomer of PPAR is implicated as a potent
factor in adipocyte differentiation and adiponectin secretion [117]. Bilirubin administration
has also improved obesity and hyperglycemia in rodent models. Bilirubin-treated obese
mice increased phosphorylation of Akt (Thr309), an insulin-signaling molecule, in skeletal
muscle and hepatocytes, indicating preservation of insulin sensitivity [44]. Bilirubin-treated
mice also presented with greater adiponectin levels [117]. It should be noted that while
bilirubin induced PPARγ expression in diabetic mice, it is not a ligand for this receptor
as was previously demonstrated [91,92]. Because bilirubin levels rise with exercise more
effectively in insulin-resistant subjects, there is therapeutic potential for bilirubin to control
cholesterol metabolism and glucose tolerance in insulin-resistant patients. Therefore,
exercise in pre-diabetic patients may offer metabolic benefits by raising HO-1, upregulating
adiponectin and bilirubin levels, enhancing insulin signaling, activating PPARα pathways,
and thus, decreasing insulin resistance (Figure 6).
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4. The Signaling Mechanisms of Heme Oxygenase and Bilirubin in Metabolism
4.1. Generation and Catabolism of Bilirubin

Bilirubin is a tetrapyrrole compound formed from the catabolism of heme to biliverdin
that is converted to bilirubin by biliverdin reductase (BVR) [17,41,42,118–122]. Tetrapyrroles
are seen as an orange-yellow pigment, which may indicate underlying disease processes if
extremely elevated (>150 µM) in the skin (jaundice) or the urine [41]. When erythrocytes
(red blood cells) are lysed, the hemoglobin is broken down into heme and protoporphyrin.
The heme is oxidatively cleaved by the enzyme heme oxygenase (HO), yielding biliverdin,
iron, and carbon monoxide (CO) [41]. This biliverdin can be converted to bilirubin through
the cytosolic enzyme biliverdin reductase [123–125]. The conversion to bilirubin has
been empirically shown to produce potent antioxidant effects that can regulate cellular
redox reactions, decrease ROS, and decrease the activity of NADPH oxidase [3]. Bilirubin
circulates bound to water-soluble albumin, where it is transferred to the hepatocyte as
unconjugated bilirubin. Then, bilirubin is conjugated by the UDP glucuronosyltransferase
1A1 (UGT1A1) enzyme [121,126]. Once conjugated, bilirubin is then metabolized by colonic
bacterial proteases and is either reabsorbed into the hepatobiliary system as urobilinogen
or excreted in the feces and urine as stercobilin or urobilin, respectively [122]. The bilirubin
pathway (illustrated and described in more detail elsewhere [17,41,42,119–122,126]) is
increased with exercise [70], and a better understanding of the pathway regulation may
identify areas that alter the bilirubin half-life that might lead to pathological consequences.

4.2. Biliverdin Reductase and Metabolism

While there are limited studies showing that BVRA is regulated by exercise [70], there
have been supporting studies showing a role for the enzyme in metabolism [50,51,124,125,127].
Adipocyte-specific deletion of BVRA results in adipocyte hypertrophy and increased in-
flammation while decreasing mitochondrial number and markers of adipocyte browning
such as PPARα and β3 adrenergic receptor (Adrb3) [127]. The loss of adipocyte BVRA
also decreases insulin signaling in white adipose tissue contributing to increased fasting
hyperglycemia in knockout mice [127]. These results agree with the finding from obese
human patients who exhibit lower levels of BVRA, increased levels of inflammation, and
increased adipocyte size [128]. CRISPR knockout of BVRA in hepatocytes and kidney
proximal tubules cells induces oxidative stress and lipid accumulation [124,125]. Similarly,
mice with a global knockout of BVRA have increased oxidative stress [41]. Deficiencies in
BVRA also correlate with brain insulin resistance in Alzheimer’s disease patients [129,130].
Administration of BVRA peptides improved intranasal insulin treatment in a mouse model
of Alzheimer’s disease, suggesting a potential therapeutic role for targeting BVRA for
treatment [131].

BVRA also plays an essential role in the development of metabolic diseases associated
with obesity, like NAFLD. Hepatocyte-specific BVRA knockout mice develop more severe
dietary-induced NAFLD as compared to wild-type littermates [50]. The loss of hepatocyte
BVRA increases activation of glycogen synthase kinase 3beta (GSK3β) via decreased levels
of serine 9 (Ser9) phosphorylation which in turn increases serine 73 (Ser73) phosphorylation
of PPARα, increasing protein turnover and decreasing its transcriptional activity [50].
Interestingly, reduced adipocyte levels in BVRA in obese human patients resulted in
significantly more hepatic steatosis and NAFLD [128]. These results suggest that BVRA can
have both direct and indirect effects to contribute to hepatic steatosis and the development
of NAFLD. More studies are needed to determine factors that regulate BVRA expression
and how these are affected by exercise.

4.3. Bilirubin and Metabolic Dysfunction

Bilirubin was once believed to act only as a toxic bile substance and end-product. How-
ever, more recent studies have uncovered potential metabolic benefits of greater yet subclin-
ical bilirubin concentrations. These include its role in ROS scavenging, anti-inflammatory
properties, and reduction in adipocyte size from increased fat oxidation [94,132,133]. While



Antioxidants 2022, 11, 179 12 of 24

marked extreme hyperbilirubinemia (>150 µM) can be a sign of a more ominous clinical di-
agnosis, raised basal concentrations are also associated with protecting metabolic function
(25–50 µM as discussed in [41]). The metabolic syndrome [134] is associated with increased
insulin resistance and oxidative stress, which can also lend significant inflammatory and
cardiovascular risk factors. Increased serum bilirubin concentration acts as a protective
factor against the development of MetS. Subjects with increased basal bilirubin levels have
a lower odds ratio to develop MetS [134]. It is thought this observation is due to the
antioxidant, anti-inflammatory, and hormonal properties of bilirubin (discussed in more
detail above). Conversely, in subjects diagnosed with metabolic syndrome, serum bilirubin
is typically reduced (<10 µM, discussed further in [41]) [135]. Thus, the clinical assessment
of serum bilirubin may have some future utility as a screening or prediction tool for those
with high risk for metabolic dysfunction. In support of this, coronary artery disease severity
was recently predicted with an odds ratio of 0.155 (95% confidence interval), revealing an
inverse relationship between bilirubin and CAD severity [136]. NAFLD was also predicted
in patients with an odds ratio of 0.88 (95% confidence interval), showing a strong inverse
relationship between serum bilirubin and NAFLD [137]. A study of obese children showed
that those with NAFLD had the lowest serum bilirubin [133]. Low bilirubin has also been
associated with a greater risk of cerebral deep white matter lesions in healthy subjects [138],
suggesting that low levels may impair cognitive function or lead to stroke [139–141]. These
studies might suggest that increasing bilirubin levels could be therapeutic for improving
metabolic dysfunction and reducing stroke risk. Factors that induce heme oxygenase pro-
duction of bilirubin, such as nutraceuticals, may have several benefits [63]. These studies
highlight a potential protective effect of bilirubin against metabolic disease and should be
examined further to elucidate more of its positive benefits.

5. Strategies to Improve Metabolic Outcomes through Nutraceuticals
5.1. The Influence of Diet on Antioxidants

Fresh fruit and vegetable intake represent the largest source of dietary antioxidants
that are essential in maintaining health [142]. A great deal of research has evaluated fruit
and vegetable intake as a means to counter the inflammation that has been attributed to
nearly all chronic diseases of modern society, with many studies demonstrating a strong
inverse correlation between fruit and vegetable intake and inflammatory markers [143,144].
Much of the research concerning dietary antioxidants and inflammation has centered on
the Mediterranean diet due to its emphasis on fresh fruit and vegetable intake. Both
cross-sectional and longitudinal trials have demonstrated a substantial lowering effect
for the Mediterranean diet on a wide variety of inflammatory markers, including IL-6,
IL-7, IL-19, CRP, and TNFα [145–147]. This has prompted the use of the Mediterranean
diet in hopes of managing metabolic and vascular diseases, endocrine disorders, and
some cancers [148–150]. Elucidation of specific antioxidants, and the benefits of dietary
supplementation, have been a focus for many current research studies, giving rise to various
nutraceuticals. Below, we describe the effects of such nutraceuticals and their beneficial
actions on the HO-1 pathway and inflammation.

5.2. The Benefits of Moderately Raising Plasma Bilirubin

Natural substances that raise plasma bilirubin have been of interest for reducing
adiposity [63]. One herbal method that is gaining interest in elevating plasma bilirubin
is the use of the milk thistle plant (Silybum marianum) [63]. The plant contains a mix of
polyphenols such as p-coumaric, vanillic acid, silybin, and α-tocopherol [151,152]. The
primary compound in milk thistle that is considered the active component that increases
plasma bilirubin is the silymarin flavonoids that suppress hepatic UGT1A1 [153]. Silymarin
may protect against liver injury and hepatic fat accumulation [154–156]. However, how
milk thistle or silymarin might function combined with exercise in reducing adiposity
is unknown.
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Bilirubin is a potent endogenous antioxidant that the body uses to support oxidative
balance [17,41,42,119–122]. Plasma bilirubin has been empirically correlated with decreased
risk for oxidative disorders such as coronary artery disease (CAD) [42,119]. The theory
of action stemmed from individuals with Gilbert Syndrome, who have a mutation in the
UGT1A1 gene, which causes defective processing of bilirubin [47,126]. Hence, lower hep-
atic UGT1A1 causes higher plasma unconjugated bilirubin [47]. Individuals with Gilbert
Syndrome were found to have decreased incidence of CAD [157]. Previous studies pos-
tulate that unconjugated bilirubin is fluxing back into cells and acting as a scavenging
agent of oxidative radicals. However, researchers have also hypothesized that elevated
serum bilirubin acts as a marker that could predict greater expression or inducibility of
intracellular HO-1, which will increase the intracellular concentration of bilirubin [132].
Using HPLC-TLS, these researchers detected bilirubin levels within vascular endothelial
cells. They also showed that bilirubin within these vascular endothelial cells could ef-
fectively modulate HO-1 upregulation [158]. These findings suggest strong potential for
developing pharmacotherapeutics that can target and upregulate this intrinsic antioxidant
system within the vascular endothelium through the induction of HO-1 and help prevent
or follow the progression of cardiovascular disease. This has the potential to lend more
focused antioxidant and anti-inflammatory therapeutic approaches.

5.3. Vitamin D Repletion

Vitamin D is an important secosteroid in understanding metabolic disease [159]. Vi-
tamin D deficiency (defined as a 25(OH)D level less than 20 ng/dL) is common and
is associated with decreased muscle endurance, function, and strength [160–167]. Vi-
tamin D deficiency is connected to muscle metabolic perturbations, including insulin
resistance [168–170], and is linked to mitochondrial dysfunction [171] in both young and
aged adults. Vitamin D deficiency is highly prevalent in obesity without vitamin D sup-
plementation [172,173]. Obese adults are commonly prescribed a high-dose vitamin D
repletion protocol to combat vitamin D deficiency and obesity-associated vitamin D resis-
tance. Aggressive vitamin D repletion to correct the deficiency is linked to improved muscle
mitochondrial function [171,174]. Increasing vitamin D status is consistently associated
with skeletal muscle lipid deposition and distribution [175–178]. There is also evidence
that vitamin D may improve hepatic steatosis with just 4-weeks of supplementation [179].

Calcitriol, the active form of vitamin D [1,25(OH)2D3], is the only form that can bind
to the Vitamin D receptor (VDR). The VDR is a nuclear receptor transcription factor that
controls gene expression changes that improve mitochondrial function in myotubes [180],
insulin sensitivity, and myocellular lipid partitioning in high fat-treated SkM cells [181]. In
humans, we found that vitamin D combined with aerobic exercise potentiated the metabolic
benefit of training by producing the most intramyocellular lipid (IMCL) loss and increasing
skeletal muscle tissue-level VO2 in older adults at risk for metabolic dysfunction [182].
These benefits were greater than when providing vitamin D repletion or exercising inde-
pendently. These observations are consistent with reports that vitamin D coupled with
exercise has positively affected muscle mitochondrial function [171,174]. In addition, VDR
expression in SkM was increased by exercise [183]. Vitamin D supplementation has been
associated with muscle regeneration and repair [123,145,146], suggesting an additive effect
when combined with vitamin D repletion.

In addition to these findings, vitamin D has been described to have anti-inflammatory
effects and is linked to insulin sensitivity and immuno-modulation [184–186]. Recent
work has also highlighted a novel role of vitamin D in upregulating HO-1 expression in
intestinal cells and reduced expression of macrophage HO-1 with an associated reduction
in conjugated bilirubin [187]. Vitamin D has been shown to block the activation of M-1
macrophages, increase activation of M-2 macrophages, and impair monocyte/macrophage
recruitment [187]. Collectively, these data suggest that vitamin D may ameliorate metabolic
dysfunction by altering lipid availability for oxidation in response to exercise training and
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may help regulate inflammatory pathways. These observations require further exploration
in obesity-inflammation studies.

Along with evidence that vitamin D repletion augments oxidative metabolism [171,174],
we show in a muscle cell line that active calcitriol treatment altered total lipid, lipid species
content, and increased gene expression of PLIN2, a lipid coatomer protein that facilitates
IMCL availability for β-oxidation [188,189]. PLIN2-containing lipid droplets are also pref-
erentially used during moderate-intensity exercise [190], suggesting that increased PLIN2
expression may increase lipolytic potential. In vitro findings from our group [180,181] indi-
cate increased PLIN2-associated lipid accumulation and lipolysis after calcitriol treatment.
These changes suggest an increased lipid flux—defined here as the rate at which lipids pass
through SkM via IMCL accumulation and oxidation—and, by association, a decrease in
lipid-mediated pathologies [191]. These cell culture results suggest that vitamin D is in-
volved in muscle lipid packaging, partitioning, and mitochondrial lipid oxidation. Together
with data showing that exercise improves muscle sensitivity to vitamin D storage and reten-
tion [192], evidence of muscle adaptations to the combination of vitamin D supplementation
with exercise are tightly connected with improved mitochondrial function and may serve
an integral role in delaying stagnant ectopic fat infiltration and metabolic dysfunction.

5.4. Nitrate from Foods and Dietary Supplements

Dietary nitrate is predominately found in green leafy vegetables and concentrated
food sources (e.g., beetroot juice) and dietary supplements. Physically active individuals
commonly use this EE to increase plasma nitrate concentrations and subsequently increase
nitric oxide availability [193]. Increasing nitric oxide via the nitrate-nitrite-NO signal-
ing pathway (with supplemental dietary nitrate) has been shown to decrease NADPH
oxidase-derived oxidative stress via HO-1 induction and reduce p47phox expression [194].
Metabolically, nitrate has also been shown to reduce the oxygen cost of exercise [195] and
improve exercise tolerance, economy, and performance. These benefits may also extend to
those newly committed to exercise to lose fat and improve metabolic function. In addition
to these observations, it seems reasonable that dietary nitrate may also work alongside
exercise to preserve endothelial function [196]. Basaqr et al. recently found that four weeks
of concentrated beetroot juice combined with vitamin C improved endothelial function
and the lipid profile of overweight subjects with evidence of endothelial dysfunction [197].
The exact mechanism of action to explain these findings is unknown but is partially ex-
plained by the combined antioxidant effects of vitamin C and concentrated dietary nitrate
supplements to decrease oxidative stress [198–201]. Improvements in blood lipids from
others suggest that dietary nitrate supplementation with the addition of vitamin C (or
other nutraceutical antioxidants) may be a valuable dietary approach alongside exercise to
improve metabolic and cardiovascular health [60,61]. Future studies could determine how
these impact exercise, inflammation, and metabolic outcomes.

5.5. Vitamin E Supplementation

Vitamin E (α/γ-tocopherol) is one of the most important dietary antioxidants that
play a critical role as a radical savaging agent and mechanistic inducer [202]. Vitamin E acts
as a potent antioxidant to neutralize free radicals and superoxide by using its free hydroxyl
group to accept unpaired electrons [203]. Furthermore, unlike other dietary antioxidants
(e.g., vitamin C, carotenoids, etc.), Vitamin E is uniquely connected with exercise-induced
oxidative stress and insulin sensitivity. The regulation and distribution of Vitamin E are
controlled by alpha-tocopherol transfer protein (α-TTP) in the liver. α-TTP secretes Vitamin
E from the liver by releasing α-tocopherol into the circulation. However, this mechanism is
still not clearly understood [204]. Data suggests that α-TTP is lower when the α-tocopherol
levels are low and subjects with an α-TTP gene (TTPA) knockout presented with symptoms
of vitamin E serum deficiency [202]. The α-TTP is also known to be induced by hypoxic
states and stress-induced free radical production [205]. The administration of vitamin E in
hypoxic states (similar to hypoxia observed with high-intensity exercise) has mitigated ROS-
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related biochemical changes in many tissues by preventing increases in malondialdehyde
and myeloperoxidase and protecting against lipid peroxidation [206]. This hypoxia-based
regulative mechanism has the potential to be evident during times of exercise; however,
this hypothesis has yet to be tested. The rationale behind this hypothesis is that during
exercise, hypoxia-induction of α-TTP will help increase serum α-tocopherol and protect the
cells from free-radical damage during exercise-induced oxidative stress. This tocopherol
can also provide non -antioxidant functions and induce mRNA levels of transcription
factors, PPARγ, and the hormone, adiponectin [207,208]. Adiponectin and PPARγ are
activated by vitamin E and are known to improve insulin sensitivity in diabetes. The
vitamin E-induction of PPARγ is not through direct binding but through the increase in
15d-PGJ2, a commonly described ligand of PPARγ [208] that is also known to induce HO-1
through p38 MAP kinase and the Nrf-2 pathway [209]. This induction may further increase
exercise-induced HO-1 activation and influence the BVRA-bilirubin-PPARαaxis. Both
Vitamin E and PPARs are valuable targets in hepatic protection in non-alcoholic hepatic
steatosis and fibrosis [210].

6. Conclusions

Exercise has clear benefits in reducing adiposity and inflammation while improving
insulin sensitivity. A deeper understanding of the mechanisms of how exercise functions
to improve these beneficial actions is needed. While bilirubin was once thought to be a
harmful bile substance, current research argues otherwise and that slightly elevated levels
have numerous health benefits against metabolic dysfunction. Studies on how exercise
influences factors such as heme oxygenase, BVRA, and UGT1A1 that control bilirubin’s
turnover (half-life) are needed. Furthermore, nutraceuticals that activate and control these
pathways might be beneficial in improving weight-loss regimens. Investigations in these
areas might also benefit patients with inflammatory disorders as increasing plasma bilirubin
has anti-inflammatory properties that probably originate from its antioxidant and hormone
(as a ligand for PPARα) properties. Future work determining the interplay of exercise and
nutraceuticals has many health benefits to help a broad spectrum of diseases.
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