6-23-2015

Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome

Bradley D. Gelfand
University of Kentucky, brad.gelfand@uky.edu

Charles B. Wright
University of Kentucky, wright.charles@uky.edu

Younghhee Kim
University of Kentucky, younghee.kim@uky.edu

Tetsuhiro Yasuma
University of Kentucky, tetsu.yasuma@uky.edu

Reo Yasuma
University of Kentucky, rya226@uky.edu

See next page for additional authors

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/ophthalmology_facpub

Part of the Ophthalmology Commons

Repository Citation
Gelfand, Bradley D.; Wright, Charles B.; Kim, Younghhee; Yasuma, Tetsuhiro; Yasuma, Reo; Li, Shengjian; Fowler, Benjamin J.; Bastos-Carvalho, Ana; Kerur, Nagaraj; Uittenbogaard, Annette; Han, Youn Seon; Lou, Dingyuan; Kleinman, Mark E.; McDonald, W. Hayes; Núñez, Gabriel; Georgel, Philippe; Dunaiief, Joshua L.; and Ambati, Jayakrishna, "Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome" (2015). Ophthalmology and Visual Science Faculty Publications. 9.
https://uknowledge.uky.edu/ophthalmology_facpub/9

This Article is brought to you for free and open access by the Ophthalmology and Visual Science at UKnowledge. It has been accepted for inclusion in Ophthalmology and Visual Science Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome

Notes/Citation Information
Published in Cell Reports, v. 11, issue 11, p. 1686-1693.

© 2015 The Authors
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Digital Object Identifier (DOI)
http://dx.doi.org/10.1016/j.celrep.2015.05.023
Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome

Graphical Abstract

Highlights

- Iron overload induces retinal pigmented epithelium death via NLRP3 inflammasome
- SINE RNAs are intermediates of iron-induced inflammasome activation and cell death
- Iron promotes SINE RNA accumulation by inhibiting DICER1 activity
- Efficient DICER1 processing of SINE RNAs by PCBP2 is inhibited by iron overload

Authors

Bradley D. Gelfand, Charles B. Wright, Younghee Kim, ..., Philippe Georgel, Joshua L. Dunaief, Jayakrishna Ambati

Correspondence

brad.gelfand@uky.edu

In Brief

Iron overload, implicated in numerous diseases, including age-related macular degeneration, induces retinal cell death via the NLRP3 inflammasome. Gelfand et al. show that iron-induced inflammasome activation depends upon accumulation of non-coding SINE RNAs (Alu and B2 RNAs), which accrete due to impaired DICER1 processing.
Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome

Bradley D. Gelfand, 1,2,3,* Charles B. Wright, 1 Younghee Kim, 1 Tetsuhiro Yasuma, 1 Reo Yasuma, 1 Shengjian Li, 1 Benjamin J. Fowler, 1,4 Ana Bastos-Carvalho, 1 Nagaraj Kerur, 1 Annette Uittenbogaard, 1 Youn Seon Han, 1 Dingyuan Lou, 1 Mark E. Kleinman, 1 W. Hayes McDonald, 5 Gabriel Núñez, 6 Philippe Georgel, 7 Joshua L. Dunaief, 8 and Jayakrishna Ambati 1,4

1Department of Ophthalmology and Visual Sciences
2Department of Biomedical Engineering
3Department of Microbiology, Immunology, and Human Genetics
4Department of Physiology
University of Kentucky, Lexington, KY 40536, USA
5Proteomics Laboratory, Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37205, USA
6Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
7INSERM UMR_S 1109, Fédération de Médecine Translationnelle (FMTS), Université de Strasbourg, Strasbourg 67085, France
8F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA

*Correspondence: brad.gelfand@uky.edu
http://dx.doi.org/10.1016/j.celrep.2015.05.023
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

SUMMARY
Excess iron induces tissue damage and is implicated in age-related macular degeneration (AMD). Iron toxicity is widely attributed to hydroxyl radical formation through Fenton’s reaction. We report that excess iron, but not other Fenton catalytic metals, induces activation of the NLRP3 inflammasome, a pathway also implicated in AMD. Additionally, iron-induced degeneration of the retinal pigmented epithelium (RPE) is suppressed in mice lacking inflammasome components caspase-1/11 or Nlrp3 or by inhibition of caspase-1. Iron overload increases abundance of RNAs transcribed from short interspersed nuclear elements (SINEs): Alu RNAs and the rodent equivalent B1 and B2 RNAs, which are inflammasome agonists. Targeting Alu or B2 RNA prevents iron-induced inflammasome activation and RPE degeneration. Iron-induced SINE RNA accumulation is due to suppression of Dicer1 via sequestration of the co-factor poly(C)-binding protein 2 (PCBP2). These findings reveal an unexpected mechanism of iron toxicity, with implications for AMD and neurodegenerative diseases associated with excess iron.

INTRODUCTION
Iron is a critical component of dozens of enzymatic processes and, in excess, can induce oxidative damage via Fenton’s reaction, in which iron catalyzes the formation of highly reactive hydroxyl radicals. Accordingly, iron overload is implicated in the pathogenesis of numerous diseases including neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis (Urütüla et al., 2014). Retinal iron overload is also implicated in the pathogenesis of age-related macular degeneration (AMD). For example, human eyes with AMD display increased iron deposition in the retina and aqueous humor (Flinn et al., 2014; Hahn et al., 2003; Jüenemann et al., 2013) and animal models of iron overload reproduce AMD-like phenotypes of the retinal pigmented epithelium (RPE) and outer retina (Flinn et al., 2014; Gnana-Prakasam et al., 2012; Hadziahmetovic et al., 2008; Hahn et al., 2004). Although the damaging effects of iron overload are often attributed to oxidative damage, the precise mechanisms driving iron-induced retinal toxicity have not been defined.

Here, we report a mechanism of iron-induced retinal degeneration unique among several Fenton-capable metals that requires the specific activation of the NLRP3 inflammasome, an innate immune signaling complex recently implicated in AMD pathogenesis. We also report that iron induces NLRP3 inflammasome signaling via induction of Alu RNAs derived from short interspersed nuclear elements (SINEs), which are endogenous inflammasome activators abundant in human AMD. These findings suggest that the intrinsic toxicity of excess iron in the retina depends upon the activation of SINE RNA-mediated innate immune signaling.

RESULTS
Iron Overload Activates the NLRP3 Inflammasome
Given the apparent role of iron overload in retinal degeneration, we sought to determine the effect of iron on the RPE cell layer, which provides essential support to photoreceptors and the...
degeneration of which demarcates atrophic AMD. The NLRP3 inflammasome is an immune signaling complex implicated in the pathogenesis of AMD (Anderson et al., 2013; Kauppinen et al., 2012; Liu et al., 2013; Marneros, 2013; Tarallo et al., 2012; Tseng et al., 2013). In models of atrophic AMD, NLRP3 inflammasome activation induces cellular death via the inflammasome effector caspase-1 (Tarallo et al., 2012). Therefore, we sought to determine whether iron overload activated the NLRP3 inflammasome. We examined mice doubly deficient in genes encoding the cellular iron exporters ceruloplasmin and hephaestin (Cp−/−Heph−/−) that exhibit age-dependent retinal iron deposition and AMD-like pathologies (Hadziahmetovic et al., 2008; Hahn et al., 2004). Similar to previous reports of human geographic atrophy tissues (Tarallo et al., 2012; Tseng et al., 2013). In models of atrophic AMD, NLRP3 inflammasome activation induces cellular death via the inflammasome.

We next tested whether other metal ions capable of participating in Fenton’s reaction induced retinal toxicity. As with Fe(III), each of Cr(VI), Cu(I), and Zn(I) were toxic to the RPE cell layer (Figure 1H). However, unlike Fe(III), the toxicity of Cr(VI), Cu(I), and Zn(I) overload persisted in caspase-1/11-deficient mice (Figure 1I), suggesting that iron toxicity in this system is uniquely inflammasome dependent.

Iron Overload Causes Accumulation of Alu, B1, and B2 SINE RNAs

RNAs transcribed from ubiquitous Alu repetitive elements are inflammasome activators implicated in atrophic AMD (Dridi et al., 2012; Kaneko et al., 2011; Tarallo et al., 2012). We sought to determine whether iron overload induced Alu RNA accumulation. Iron overload induced elevated Alu RNA levels in human RPE cells (Figure 2A). Rodents also carry SINE repeats such as B1 and B2 elements that, like Alu repeats, are derived from non-LTR, non-autonomous retrotransposons (Jurka et al., 2005). B1 and B2 RNAs can also induce inflammasome signaling and retinal degeneration (Kaneko et al., 2011; Tarallo et al., 2012). Subretinal delivery of iron induced a dose-dependent increase in B1 and B2 RNA levels in the RPE/choroid of wild-type mice but left Dicer1 mRNA levels unchanged (Figure 2B). Fluorescent in situ hybridization of B1 and B2 RNAs in retina of 6-month-old Cp−/−Heph−/− mice revealed robust enrichment of these RNAs in multiple retinal layers including the RPE, choroid, and neural retina of double knockout mice compared to age-matched wild-type controls (Figure 2C).

We hypothesized that iron toxicity could be due to its ability to induce Alu RNAs. Administration of an Alu RNA-targeted antisense oligonucleotide in iron-treated human RPE cells abolished caspase-1 maturation (Figure 2D), implicating Alu RNA as an intermediate in this process. We previously developed an antisense oligonucleotide targeted against B2 RNA that is chemically modified for in vivo cell entry and that prevents RPE degeneration due to SINE RNA accumulation in mice (Kaneko et al., 2011; Tarallo et al., 2012). Antagonizing B2 RNA in wild-type mice prevented iron-induced RPE degeneration in four of six eyes treated with B2 antisense (compared to zero of six eyes treated with a scrambled antisense; Fisher’s exact test; p < 0.03; Figure 2E). Collectively, these data support the concept that iron overload induces Alu RNA accretion and resulting inflammasome-mediated retinal toxicity.

Iron Overload Enhances DICER1-Dependent Alu RNA Stability

Alu RNA levels are controlled in part by the RNase DICER1 (Hu et al., 2012; Kaneko et al., 2011; Ren et al., 2012, 2013; Tarallo et al., 2012; Yan et al., 2013). We previously reported that DICER1-mediated Alu RNA clearance is essential for maintaining retinal health (Kerur et al., 2013; Tarallo et al., 2012). We confirmed that, as with Alu RNAs, both B1 and B2 RNAs are substrates for DICER1 enzymatic cleavage (Figure S2). Because free iron generates reactive oxygen species and the abundance of...
DICER1 is reduced by oxidative stress (Kaneko et al., 2011; Mori et al., 2012; Wiesen and Tomasi, 2009), we predicted that iron-induced Alu RNA accumulation was due to transcriptional repression of DICER1 levels. Surprisingly, iron overload did not affect DICER1 levels in RPE cells or in wild-type mice (Figures 2A and 2B). Dicer1 mRNA was also unchanged in the RPE of 6-month-old Cp−/− Heph−/− compared to age-matched wild-type mice (Kaneko et al., 2011), suggesting that induction of

Figure 1. Iron Toxicity Depends on the NLRP3 Inflammasome
(A) Immuno-labeling of Nlrp3 (yellow signal) and nuclei (DAPI, blue signal) in the RPE/choroid of 6-month-old wild-type (top) or Cp−/− Heph−/− mice (middle). Bottom row depicts the same area from a serial section of Cp−/− Heph−/− immunolabeled with isotype goat IgG. Representative of n = 3 mice. The scale bar denotes 20 μm.
(B) Fundus (top) and ZO-1 staining of RPE flat mount preparations (bottom) of wild-type mice 7 days after injection of 1 μl Fe(III) at indicated concentrations. Blue arrows denote injection site.
(C and D) Western blotting of pro- and active forms of caspase-1 in ARPE-19 cells and wild-type mouse retina and RPE/choroid (pooled from four eyes) treated with indicated doses of Fe(III).
(E and F) Fundus and ZO-1 staining of RPE flat-mount preparations following delivery of Fe(III) into the subretinal space of mice lacking inflammasome components caspase-1/11 (E) and Nlrp3 (F).
(G) Fundus and ZO-1 staining of RPE flat-mount preparations of wild-type mice that received caspase-1 peptide inhibitor preceding delivery of Fe(III) into the subretinal space.
(H and I) Fundus and ZO-1 staining of RPE flat-mount preparations following administration of Cr(VI), Cu(I), or Zn(I) into the subretinal space of wild-type mice (H) and in mice lacking inflammasome components caspase-1/11 (I). Indicated doses represent the minimum concentration of metals required to consistently induce RPE degeneration.
(B–I) The scale bars denote 50 μm. Fundus images are representative of at least four replicates.
Alu or B1 and B2 RNAs by iron overload was not due to suppression of DICER1 abundance.

We next sought to determine whether iron affected the stability of Alu RNA transcripts. Iron overload delayed RPE cell processing of a transfected biotin-labeled Alu RNA (Figure 3A). Further, whereas excess iron did not affect the transcription rate of endogenous Alu RNAs, degradation of native Alu RNAs was delayed as assessed by a run-on assay (Figure 3B). To determine whether iron-overload-induced Alu RNA accumulation involved DICER1 enzymatic activity, we examined this activity in cells treated with an antisense oligonucleotide targeting DICER1 that itself induces Alu RNA accumulation (Kaneko et al., 2011; Tarallo et al., 2012). In DICER1 antisense-treated cells, iron overload did not further enhance Alu RNA levels (Figure 3C), suggesting iron may work by suppressing DICER1 enzymatic activity. Conversely, iron did not affect recombinant human DICER1-mediated Alu RNA processing in vitro (Figure 3D), implicating an indirect, iron-sensitive mediator of DICER1 activity.

PCBP2 Binds to and Enhances DICER1 Processing of Alu RNA

We investigated potential iron-sensitive Alu RNA-binding partners by performing 2D liquid chromatography tandem mass spectrometry on proteins from primary human RPE cell lysates captured by pull-down of synthetic biotin-labeled Alu RNA. We identified poly(C)-binding protein 2 (PCBP2) (Figure S3A), an RNA-binding protein reported to be both iron sensitive and capable of modulating DICER1 enzymatic activity for micro-RNA processing (Li et al., 2012). It is reported that free cellular iron impairs DICER1 microRNA processing by decreasing its affinity for micro-RNA processing (Li et al., 2012). Because, like microRNAs, Alu RNAs are enzymatic targets of DICER1, we investigated whether a similar mechanism was responsible for iron-induced Alu RNA accumulation. We confirmed the interaction of PCBP2 and Alu
RNA by streptavidin-mediated pull-down of a biotin-labeled Alu RNA followed by immunoblotting for PCBP2 (Figure 4A) and conversely via antibody-mediated pull-down of endogenous PCBP2 followed by northern blotting for native Alu RNA (Figure 4B). Whereas iron treatment neither impaired Alu RNA-DICER1 binding nor decreased PCBP2 expression, PCBP2-Alu RNA binding was decreased by iron overload (Figures 4A and 4B). The affinity of DICER1 for Alu RNA was unchanged by iron overload (Figure 4A), as is the case for DICER1 pre-microRNA processing activity inhibition by iron (Li et al., 2012). Alu RNA/PCBP2 binding specificity was further confirmed by performing a competition assay with 5-fold excess of unlabeled in vitro transcribed human pre-Let-7a microRNA, which binds to PCBP2 and DICER1 (Li et al., 2012) or unlabeled tRNA (with no known binding affinity for PCBP2; Figure S3B). To examine the effect of PCBP2 on DICER1-mediated processing of Alu RNAs, we measured the efficiency of Alu RNA processing by DICER1 in vitro in the presence of recombinant human PCBP2 and iron. Whereas iron or PCBP2 alone did not affect DICER1-mediated Alu RNA processing, recombinant PCBP2 enhanced DICER1-mediated Alu RNA cleavage, which was significantly impaired in the presence of iron (Figure 4C). Collectively, these data identify PCBP2 as an iron-sensitive co-factor for DICER1-mediated Alu RNA enzymatic processing.

DISCUSSION

Our data establish an alternative paradigm for iron-overload-induced retinal toxicity—namely that iron overload enhances Alu RNA stability and thereby promotes RPE degeneration via the NLRP3 inflammasome (Figure 4D). Iron toxicity in the retina and other tissues is widely attributed to catalysis of hydroxyl radicals via Fenton’s reaction. However, our findings reveal that, absent SINE RNA accumulation or caspase-1 signaling, iron overload is not sufficient to drive degeneration of the retina. We further report that iron-overload-induced Alu RNA/inflammasome-mediated retinal toxicity is not a generic response to excess of Fenton catalysts, as this pathway was not common to chromium-, copper-, or zinc-induced retinal toxicity.

Although our data suggest that hydroxyl radical formation is not sufficient to drive inflammasome-mediated retinal toxicity, the necessity of iron-mediated hydroxyl radical formation on Alu RNA-mediated iron toxicity is not known. We previously reported that Alu RNAs induce mitochondrial reactive oxygen species generation, which is an essential component of its inflammasome signaling and toxicity (Tarallo et al., 2012). That Alu RNA signaling involves reactive oxygen species generation and iron’s ability to catalyze free radical formation suggests that Fenton activity of iron could augment Alu RNA toxicity.

Iron antagonism of DICER1 in the RPE likely impacts not only Alu RNA metabolism but microRNA biogenesis as well. Although we previously found no anatomical disruption of microRNA-deficient RPE of adult mice (RPE-specific knockouts of Drosha, Dgcr8, and argonaute-2 appeared normal upon fundus and flat mount examination; Tarallo et al., 2012), we cannot exclude the possibility that global microRNA perturbation due to DICER1 inhibition also contributes to or modulates iron-overload-induced retinal toxicity.

These findings also provide support for pathogenic roles for both inflammasome activation and iron overload in human AMD. Inflammasome signaling in human AMD tissues has now been observed by multiple laboratories (Chan et al., 2013; Tarallo et al., 2012; Tseng et al., 2013). Experimentally, multiple AMD-related stimuli including Alu RNA (Kerur et al., 2013; Tseng et al., 2013), A2E (Anderson et al., 2013), complement cascade components (Doyle et al., 2012; Triantafilou et al., 2013), amyloid-β (Liu et al., 2013), and excess VEGF-A (Mameros, 2013) have been reported to act via inflammasome signaling. Our results suggest that targeting inflammasome signaling components as a “next-generation” therapeutic for AMD may provide additional, unanticipated benefits with respect to phenotypes arising from iron overload. Notably, our findings reveal that...
NLRP3 alone does not account for the entirety of iron-induced RPE degeneration. Therefore, it will be important in future studies to determine the extent to which NLRP3-independent inflammasome activation contributes to the AMD and pathological effects of AMD-related inflammasome agonists. Further, our studies utilized a mouse line lacking both caspase-1 and the non-canonical inflammasome component caspase-11, which were protected from treatment with a relatively high dose of iron. Whether non-canonical inflammasome activation is required for iron-induced toxicity is an important future direction for study.

PCBP2 is an RNA-binding protein and iron chaperone, with diverse cellular functions such as RNA stability (Czyzyk-Krzeska and Bendixen, 1999; Paulding and Czyzyk-Krzeska, 1999; Xin et al., 2011), protein stability (You et al., 2009), immunity (Blyn et al., 1996, 1997; You et al., 2009), microRNA processing (Li et al., 2012), iron homeostasis (Lane and Richardson, 2014), preventing stress-induced apoptosis (Ghosh et al., 2008), cell growth (Han et al., 2013; Waggoner et al., 2009), and tumor growth (Han et al., 2013; Hu et al., 2014). The extent to which these diverse functions of PCBP2, as well as its SINE RNA-processing activity, contribute to inflammasome activation and iron-induced RPE degeneration in geographic atrophy warrants further investigation.

Iron overload has been observed in numerous neurodegenerative disorders including in senile plaques and neurofibrillary tangles of human cadaver brains with Alzheimer’s disease (Quintana et al., 2006; Sayre et al., 2000; Smith et al., 1997) and in the substantia nigra of humans with Parkinson’s disease (Ayton and Lei, 2014; Dexter et al., 1987). Interestingly, the involvement of the NLRP3 inflammasome has been independently implicated in the pathogenesis of these diseases (Codolo et al., 2013; Freeman et al., 2013; Heneka et al., 2013). This study raises the intriguing possibility that the damaging effects of Alu RNA accretion due to iron overload could extend beyond AMD and contribute to neurodegenerative diseases with recognized etiological similarities. These findings also raise the interesting possibility that systemic iron overload promotes NLRP3 inflammasome activation outside of the eye, such as in hepatic macrophages, where inflammatory phenotypes such as NF-κB activation and cytokine expression are noted effects of iron overload in liver injury (Lin et al., 1997; Xiong et al., 2008).
EXPERIMENTAL PROCEDURES

Intracellular Injections and Imaging

All animal experiments were in accordance with the guidelines of the University of Kentucky Institutional Animal Care and Use Committee and the Association for Research in Vision and Ophthalmology. Subretinal injections and intravitreal injections (1 μl each) were performed using a 35-gauge Exmor microsyringe (ito). Fundus imaging was performed on a TRC–50 IX camera (Topcon) linked to a digital imaging system (Sony). RPE flat mounts were immunolabeled using antibodies against Zonula Occludens-1 (Invitrogen) and visualized by confocal microscopy (Leica Microsystems). Cryosections of 4% PFA fixed retinal cross-sections were immuno-labeled with anti-Nlrp3 (Abcam) and visualized by fluorescent microscopy (Nikon).

RNA and Protein Abundance Analysis

In situ hybridization was performed on frozen, fixed tissue sections from Cep72/Heph7 mice and wild-type (C57BL/6J) age-matched mice were processed using custom designed probes for B1 and B2 RNAs (Advanced Cell Diagnostics) according to the manufacturer’s instructions. Probes were visualized by confocal microscopy (Leica Microsystems). Quantities of B1, B2 U6, and SS RNAs were determined by northern blotting. Protein abundance was measured by western blotting with the following primary antibodies: mouse-anti-PCBP2 (Abnova; 1:500), rabbit-anti-DICER1 (Bethyl Laboratories; 1:1,000), mouse-anti-s–tubulin (Sigma; 1:1,000), rabbit-anti-caspase-1 (Invitrogen; 1:1,000 or Abcam, 1:1,000), mouse-anti-NLRP3 (Enzo Life Sciences; 1:1,000), anti–β-actin (Sigma-Aldrich; 1:1,000), and rabbit-anti-vinculin (Sigma-Aldrich; 1:1,000).

Statistical Analysis

Results are expressed as mean ± SEM, with p values < 0.05 considered statistically significant. Differences between groups were compared by Mann-Whitney U test or Student’s t test, as appropriate.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures and three figures and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2015.05.023.

AUTHOR CONTRIBUTIONS

B.D.G., C.B.W., Y.K., T.Y., R.Y., S.L., B.J.F., A.U., Y.S.H., D.L., N.K., A.U., Y.S.H., and B.J.F. provided reagents. B.D.G. conceived and directed the project and wrote the paper with assistance from J.A. All authors had the opportunity to discuss the results and comment on the manuscript.

ACKNOWLEDGMENTS

Vector to express recombinant human PCBP2 was provided by Dr. Peng Jin (Emory University). L. Toll, G.R. Pattison, R. King, L. Xu, M. McConnell, C. Payne, D. Robertson, and G. Botzet provided technical assistance. B.D.G. was supported by American Heart Association and International Retinal Research Foundation (IRRF); T.Y. was supported by Fight for Sight postdoctoral award; J.A. was supported by NIH grants (DP1GM114862, R01EY018350, R01EY018386, R01EY020672, R01EY022238, and R01EY024068), Doris Duke Distinguished Clinical Scientist Award, Burroughs Wellcome Fund Clinical Scientist Award in Translational Research, Ellison Medical Foundation Senior Scholar in Aging Award, Foundation Fighting Blindness Individual Investigator Research Award, Harrington Discovery Institute Scholar-Innovator Award, Dr. E. Vernon Smith and Eloise C. Smith Macular Degeneration Endowed Chair, and Research to Prevent Blindness departmental unrestricted grant; B.J.F. was supported by NIH T32HL091812 and UL1RR033713; A.B.-C. was supported by the Programme for Advanced Medical Education (sponsored by Fundação Calouste Gulbenkian, Fundação Champalimaud, Ministério da Saúde, and Fundação para a Ciência e Tecnologia, Portugal) and Bayer Global Ophthalmology Research Award; Y.K. was supported by Alcon Japan Research award; N.K. was supported by Beckman Initiative for Macular Research and NIH K99EY024336; and C.B.W. was supported by The Loris and David Rich Post-doctoral Scholar Award (IRRF). J.A. and B.J.F. are named as inventors on patent applications relating to the treatment of macular degeneration filed by their employer, the University of Kentucky. J.A. is a co-founder of iVeena (Holdings, Pharma, Delivery), which has licensed some of this technology from the University of Kentucky. J.A. has received honoraria from Alergan.

Received: December 11, 2014
Revised: March 23, 2015
Accepted: May 8, 2015
Published: June 11, 2015

REFERENCES

