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may be used to predict incident dementia 50. In the Gothenburg MCI study 122, 

neuropsychological tests including RAVLT, along with hippocampal volume and 

cerebrospinal fluid markers, were used to predict progression from MCI to dementia 

within a follow-up time of two years. They found that a combination of all markers was 

the most successful to predict dementia, but the RAVLT was the best individual predictor 

for dementia. RAVLT was also used to distinguish AD from other types of dementia 123, 

124.  

               In this analysis, we explored trajectories of episodic memory using Group 

Based Trajectory Modeling (GBTM) and longitudinal RAVLT measures for two groups 

of research participants: Alzheimer’s disease Neuroimaging Initiative Phase 1 (ADNI1) 

subjects with normal cognition at baseline and ADNI1 subjects with MCI at baseline. 

Key questions focus on what are the trajectories for baseline normal and MCI subjects 

and whether trajectories differ between baseline normal and MCI subjects over time. In 

addition, we investigate whether trajectories in cognitively normal subjects and subjects 

with MCI at baseline predict incident dementia using predicted trajectory membership as 

a risk factor.  

METHODS    

Sample population and data sources 

              Data were obtained and downloaded from the ADNI database 

(http://adni.loni.usc.edu/) on June 3, 2015. The primary goal of the project is to obtain 

and assess clinical, imaging, genetic and biospecimen biomarkers related to the 

development and progression of AD and develop treatments that may slow the 

progression of AD 125.  

http://adni.loni.usc.edu/
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               Because our interest is focused on longitudinal change, our analysis was limited 

to ADNI1 participants since they have the longest follow-up. During ADNI1, which 

began recruiting participants in 2004, 400 MCI subjects, 200 subjects with early AD, and 

200 control subjects, all aged 55- 90 years, were targeted for recruitment at 50 study sites 

across North America (actual enrollment: 397 MCI subjects and 229 normal control 

subjects, respectively). They were followed-up at 6-month intervals (from study baseline 

to 9 years).  All ADNI research activities were approved by Institutional Review Boards 

(IRB) at the participating study sites, and all participants provided written informed 

consent. The University of Kentucky IRB declared this secondary analysis of ADNI data 

exempt since the ADNI data are de-identified. 

Inclusion and exclusion criteria  

                All analyses for the current study were based on MCI and control subjects who 

enrolled into ADNI1 (actual enrollment: 397 MCI subjects and 229 normal control 

subjects, respectively) and had any follow-up visits in ADNI 1, ADNIGO, or ADNI2.  

Fourteen subjects (1 American Indian, 12 Asian, and 1 more than one race) were 

excluded from the analysis due to small number in their race categories. Twenty-one 

subjects with only one visit were also removed from the analyses, which left 591 total 

subjects for analysis: 219 normal subjects and 372 MCI subjects.  

Rey Auditory Verbal Learning Test (RAVLT) 

                   The RAVLT is a list-learning task that measures auditory verbal memory 126.  

The RAVLT is conducted using two 15-item lists of unrelated words (List A and List B) 

that are read to the participant in a series of trials. To begin, List A is read to the 

participant, and the participant is asked to repeat as many of the 15 words as they can, 
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and the number of correct words is recorded. This procedure is repeated in another 4 

trials, which results in 5 learning trial scores. Then the examiner reads the second list of 

15 words (List B) to the participant, and the participant is asked to recall as many of 

words in List B as possible. Next, the participant is again asked to recall the words in List 

A, and the number of words (immediate recall score) correctly recalled is recorded. The 

participant is then given different tasks to do for 30 minutes. After 30 minutes, the 

participant is asked again to recall as many words as they can from List A, and the 

number of correct words (30-minute delayed recall) is recorded. Last, the participant is 

asked to recognize the words in List A when presented a sheet containing the 15 List A 

words plus 15 distractor words, and examiner records the number of successes 

(recognition score).  

             In the current study, the 30-mintute delayed recall score, which ranges from 0 to 

15 127, is the outcome of interest.   

APOE genotype 

             APOE genotype which is significantly associated with cognitive trajectory 128 

was obtained for all 591 participants (ɛ2/2: 2 (0.34%); ɛ2/3: 46 (7.78%); ɛ2/4: 13 

(2.20%); ɛ3/3: 281 (47.55%); ɛ3/4: 199 (33.67%); ɛ4/4: 50(8.46%)). The genotypes were 

converted to an indicator for a carrier of at least one ɛ4 allele.  

Covariates 

                 Covariates of interest included age at baseline, race, gender, smoking 

information, body mass index (BMI) at baseline, years of education, as well as self-

reported indicators of cardiovascular disease risk (i.e., diabetes, and hypertension) and 

sleep apnea. Age at baseline was calculated based on the participant’s birthdate and exam 
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date. Race was coded as a dummy variable: 0 (as black) and 1 (as White). Similarly, 

smoking was coded as 0(non-smoker) and 1(current smoker). Since ADNI collects 

medical history as single-field text strings (variable “mhdesc”), the self-reported status of 

hypertension, diabetes, and sleep apnea was extracted by searching for keywords. For 

example, the subjects with sleep apnea were identified by first converting all “mhdesc” 

text string values to uppercase, and then a search for the text string ‘SLEEP’ was used to 

find subjects who reported sleep problems. Then each identified case was checked 

individually to confirm sleep apnea. A similar procedure was conducted for status of 

hypertension (keywords: “HYPERTENSION”, “HIGH BLOOD PRESSURE”) and 

diabetes (keyword: DIABETES). Misspelled conditions in the raw data were identified 

when each individual value was checked.  These three variables were coded as dummy 

variables (0 = not reported and 1= reported). 

Statistical Analysis 

             Baseline differences between normal and MCI subjects were assessed with Chi-

square and t test statistics except that number of examinations and months of follow-up 

were conducted through Mann-Whitney Wilcoxon test. GBTM 129, 130 was applied to 

identify different longitudinal trajectories and estimate mean level of RAVLT 30-minute 

delayed recall scores for normal and MCI subjects separately. Trajectory analysis 

assumes that the study population is a mixture of several latent subgroups. According to 

this hypothesis, in each latent subgroup the 30-minute delayed recall score follows a 

distinct trajectory over time. To implement GBTM, the outcome was modeled first as a 

function of time and latent groups were identified. Next, the proportion of the population 

that follows each latent trajectory was estimated. Individuals were assigned to specific 
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latent groups based on the largest posterior probability of group membership for each 

individual. Finally, the analyses examined how the probability of trajectory group 

membership varied with covariates versus an arbitrary reference trajectory group. In the 

present study, covariates of interest included age, race, gender, APOE ε4 carrier status, 

education, hypertension, diabetes, sleep apnea, BMI, and smoking status.  

                   To find the best fitting model to predict trajectory group membership, various 

models including all 10 covariates were fitted for 2 to 6 trajectories (inclusive) 44  and all 

combinations of orders (quadratic was the highest order) of each group. Bayesian 

Information Criterion (BIC) was applied to select the best number of groups and orders 

43. Then log-likelihood ratio tests were applied to reduce the number of covariates in the 

model. Censored normal distribution (CNORM) was applied to normal subjects, while 

Zero Inflated Poisson (ZIP) for modeling excess zero counts were used for MCI subjects 

based on histograms of the outcome in each study population (data not shown). To fit 

CNORM in the normal sample, the 30-minute delayed recall score was standardized by 

subtracting the baseline sample mean (7.5) and dividing by the sample standard deviation 

(3).  The ZIP model assumes that some zeros occur in the Poisson process, and others are 

from a separate always zero generating process. There are two processes in the ZIP 

model – one is to determine if the individual is eligible for a non-zero response, the other 

estimates the mean of a Poisson distribution from which  a count of response  can be 

generated for eligible individuals. Furthermore, the eligibility of a non-zero response for 

an individual may vary with time. These two processes are fit simultaneously with two 

separate regression models: logistic regression to model the probability of being eligible 

for a nonzero count, and Poisson regression to model the size of the count. For simplicity, 
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we assumed that the probability logit for being eligible for a zero count in the ZIP model 

was common to all trajectory groups and constant over time.  

                      The final fitted model provides descriptive information on the estimated 

groups, including (1) posterior probabilities of an individual belonging to one of the 

identified groups, (2) the proportion of each study group following the same latent 

trajectory, (3) regression parameters to define the shape of the trajectories over time 

(intercept only, linear, and quadratic in the present study), (4) risk and protective factors 

associated with membership in a trajectory group. 

                  All data were analyzed by using PC-SAS 9.4® (SAS Institute, Inc., Cary, 

NC), and 0.05 was set as the significance level. Group trajectory analyses were carried 

out using the SAS procedure PROC TRAJ 129, 130.  

Results  

                       Table 3.1 presents the characteristics of participants overall and 

participants by cognitive status at baseline. Normal subjects were followed up longer than 

MCI subjects (p < 0.001). Also, normal subjects were older (p = 0.039), more highly 

educated (p = 0.049), more likely to be female (p = 0.007), and had higher BMI than MCI 

subjects (p = 0.037). Normal subjects comprised fewer APOE-ɛ4 allele carriers and 

subjects with sleep apnea than MCI subjects. Over 91% of subjects had > 3 examinations. 

There were 2476 total observations from MCI subjects and 1541 observations from 

normal subjects.  

Potential groups identified by GBTM 
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                  GBTM identified distinct latent groups in the normal and MCI study samples. 

For normal subjects, 6 latent groups were identified (Figure 3.1) while for MCI subjects 5 

groups were identified  (Figure 3.2) based on the best BIC values among the candidate 

trajectory models. Table 3.2 shows descriptions of the trajectories for normal MCI 

subjects, including the shape of each group trajectory and the number of probable 

members. Trajectories were numbered in order of the estimated mean of 30-minute 

delayed recall at baseline.  

                Baseline normal subjects showed three types of trajectories over time: stable 

(groups 3 and 6: ~30% of subjects), curvilinear decline (groups 4 and 5: ~28% of 

subjects), and linear decline (groups 1 and 2: ~ 42% of subjects). Table 3.3 shows 

characteristics for the trajectory groups. For normal subjects, Group 6 is youngest, and 

has the most male subjects and most years of education.  Subjects in group 3 are oldest, 

group 5 has the most year of education and most male subjects in MCI group. As shown 

in Figure 3.1, group 6 (n = 22) and group 3 (n = 44) remained relatively stable over 9 

years of follow-up but had different intercepts. Group 5 (n = 30) showed slow curvilinear 

decline during the first 4 years of follow-up and faster decline after 4 years, and Group 4 

(n = 31) revealed mild curvilinear decline. Table 3.3 shows the observed frequency of 

cognitive status at end of follow-up by assigned group memberships. The majority of 

subjects assigned to Groups 3 and 6 remained cognitively normal at the end of follow-up, 

and only 5 subjects in Group 3 progressed to MCI status. No subjects in Groups 3 or 6 

progressed to dementia by the end of follow-up. Groups with members most likely to 

develop dementia by end of follow-up were Groups 1 (18%) and 5 (17%). Details of 

parameter estimates for each trajectory are included in Table 3.2.  
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                   In contrast to groups identified for normal subjects, all potential trajectory 

groups for MCI subjects showed the tendency to decline, with the exception of group 2, 

which starts near and  stays around “0” (floor effect). Subjects in Group 1(n = 143) and 

Group 2 (n = 66) were most likely to develop dementia by end of follow-up, with over 

70% of each group progressing (Table 3.3). Subjects in Group 3 (n = 66) had a slightly 

better chance  to remain in MCI (52%) than progressing  to dementia (48%), while the 

majority of subjects in Groups 4 (70%) and 5 (65%) remained MCI. Interestingly, 11% 

subjects in group 4 (n = 73), and 22% subjects in Group 5 (n = 23) had reverted to normal 

cognition by the end of follow-up. None of the MCI subjects in Groups 1 – 3 reverted 

back to normal status by the end of follow-up.  

               For all 6 normal groups and all 5 MCI groups (Table 3.2), the averages of the 

posterior membership  probabilities were greater than 0.7, which indicates that the 

models are acceptable based on the Nagin’s ‘rule of thumb’ on minimum average 

posterior probability 131. 

Risk factors associated with probability of trajectory group membership 

                Table 3.4 presents the parameter estimates for the risk factors associated with 

trajectory group membership. The comparison group is Group 4 for both normal and MCI 

subjects, which was arbitrarily selected. Based on BIC and log-likelihood ratio test, age, 

BMI, and education were retained in both the 6-group model for normal subjects and 5-

group MCI model (Table 3.4) , while gender only stayed in model for normal subjects, 

and  APOE ɛ4 was only in the model for MCI subjects (Table 3.4). Demographic 

variables associated with group memberships among baseline normal subjects (vs. Group 
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4) included female gender (p = 0.02 for Group 6), older age (p = 0.03 for Group 2) and 

higher education (p = 0.02 for Group 2, and p = 0.01 for Group 3).  For example, in 

group 2 for baseline normal subjects, it was estimated that each additional year of 

education increase reduces probability  of belonging to Group 2 vs. the probability of 

belonging to Group 4 by 22% (probability ratio[PR] = 0.78) ,which means that subjects 

with higher education were more likely to  be classified into Group 4 than Group 2. 

Similar effects were observed for Group 1 vs. Group 4.  

                For baseline MCI subjects, APOE ɛ4 allele was a risk factor for being in 

Groups 1 and 2 (p = 0.002 and p < 0.001, respectively) which means that APOE ɛ4 allele 

carriers would be more likely to be Group 1 or Group 2 than Group 4 ( see Table 3.3). 

The APOE ɛ4 allele carriers increased the PR  of belonging to Group 1 vs. belonging to 

Group 4 by 85%, and the probability of belonging to group 2 vs. belonging to group 4 by 

388%, holding other covariates constant in the model. Based on Table 3.4, age is not 

significant but kept in the model, which may suggest that age cannot distinguish the rest 

groups from reference Group 4, but it may distinguish Group 3 from Group 2 (data not 

shown). BMI was significant in Group 1 (p = 0.02) and 2(p <0.001) which suggests 

higher BMI will move subjects out of Group 1 or Group 2 into Group 4.  

Discussion  

              In the current study, we estimated the trajectories of RAVLT 30-minute delayed 

recall scores over 9 years of follow-up in baseline ADNI normal and MCI subjects. 

Normal subjects showed three patterns: stable, linear decline, and curvilinear decline, 

while trajectories for MCI subjects were more heterogeneous.  For normal subjects, 
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Table 3.1. Subject characteristics for ADNI1 participants and by cognitive status 

Characteristic 
All Subjects 

(N=591) 

Normal 

(n=219) 

MCI 

(n=372) 

P valued 

Number of examinations(range 2 – 12)     

        1/2/3/4+ 0/27/25/539 0/7/4/208 0/20/21/331  

        Mean ±SD 7±3 8±3 7±3  

        Median 7 9 6 <0.001 

Months of follow-up (range 6 – 108)     

        Mean ±SD 54±31 64±30 49±29  

        Median 48 72 36 <0.001 

Baseline ageb, y 75.2±6.6 75.9±5.1 74.8±7.3 0.039 

Educationb, y  15.8±2.9 16.1±2.8 15.6±3.0 0.049 

White racec 562 (95.1) 204 (93.2) 358 (96.2) 0.094 

Male genderc 352 (59.6) 115 (52.5) 237 (63.7) 0.007 

Baseline smokingc 235 (39.8) 84 (38.4) 151 (40.6) 0.592 

APOE-ɛ4 (≥1 ɛ4 allele) c 262 (44.3) 58 (26.5) 204 (54.8) <0.001 

Baseline sleep apneac 60 (10.2) 14 (6.4) 46 (12.4) 0.020 

Baseline hypertensionc  278 (47.1) 105 (48.0) 173 (46.6) 0.757 

Baseline diabetesc  49 (8.3) 19 (8.7) 30 (8.1) 0.802 

Baseline BMIab, kg/m2 26.4±4.1 26.8±4.3 26.1±4.0 0.037 
aBMI: Body Mass Index ; b mean ± standard deviation; ccount (%). d P values for continuous variables from 

t test statistics  and P values for categorical variables from Chi-square test except that p values  

 for number of examinations and months of follow-up were from Mann-Whitney-Wilcoxon. 
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Table 3.2. Description of identified groups from the trajectory modeling 

Identified group  

membership  
%a nb 

 

Trajectory 

polynomialc 

P value for 

trajectory polynomiald 

Parameter estimates of trajectory groupe 
Posterior probabilityf 

  Mean± SD(min) Intercept(SE) Slope(SE) Quadratic(SE) 

Baseline normal 

1 15.1 33 Linear <0.001 -1.48(0.05) -0.11(0.01) - 94.9±11.6(62) 

2 26.6 58 Linear <0.001 -0.56(0.04) -0.11(0.01) -       95.9±9.7(51) 

3 20.2 44 Quadratic 0.51 -0.0001(0.01) 0.001(0.03) 0.003(0.004) 92.6±13.2(56) 

4 14.2 31 Quadratic <0.001 0.67(0.07) 0.27(0.04) -0.03(0.006) 91.7±14.7(54) 

5 13.8 30 Quadratic <0.001 0.47(0.07) 0.11(0.06) -0.05(0.006) 92.8±12.3(52) 

6 10.1 22 Linear <0.001 1.74(0.06) 0.11(0.02)  97.0±10.3(54) 

Baseline MCI 

1 38.5 143 Linear <0.001 0.25(0.16) -0.70(0.08) - 95.5±9.3(53) 

2 17.8 66 Quadratic 0.012 -9.94(2.63) 4.20(1.47) -0.53(0.21) 83.5±9.5(61) 

3 17.8 66 Linear <0.001 1.18(0.08) -0.14(0.03) - 87.3±15.2(38) 

4 19.7 73 Linear 0.0159 1.73(0.05) -0.02(0.01) - 90.5±13.5(51) 

5 6.2 23 Linear 0.6103 2.34(0.04) -0.01(0.01) - 95.8±10.6(52) 

Note: %a = percent of subjects were assigned in the trajectory group based on the greatest posterior probability for the subject; b= number of 

subjects in the trajectory group; c = highest term of polynomial for the trajectory group;  d  = p value for highest term of polynomial for the 

trajectory group;  e  = parameter estimates in each trajectory group( intercept, slope, quadratic), SE = standard error of each parameter estimate; 

f  = average  and standard deviation of greatest posterior probability for all subjects assigned in the trajectory group, min = minimum posterior 

probability in the trajectory group.   
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Table 3.3. Characteristics of the subjects in each trajectory group 

Potent

ial 

Trajec

tory 

group 

n Agea Educationa Femaleb APOE-ɛ4b BMIa 

Follow-up 

timea 

(Months) 

 

Baseline 

RAVLTa 

Cognitive Status at end of follow-upc 

 Normal MCI Dementia 

Baseline normal Subject 

1 33 76.4±5.4 16.2±2.6 42.4 30.3 25.1±3.6 52.4±30.4 3.3±1.8 19(57.6) 8(24.2) 6(18.2) 

2 58 77.1±5.2 15.6±2.9 34.5 25.9 27.4±4.0 56.9±31.4 6.2±2.7 39(67.2) 14(24.1) 5(8.6) 

3 44 76.0±4.9 15.3±2.9 56.8 22.7 26.7±4.1 69.3±28.7 6.9±3.0 39(88.6) 5(1.4) 0(0.0) 

4 31 75.0±5.7 16.9±2.8 41.9 19.4 27.5±3.8 70.8±28.1 9.4±3.1 28(90.3) 2(6.5) 1(3.2) 

5 30 75.6±4.8 16.1±3.3 50.0 33.3 26.1±5.6 73.2±27.9 9.1±2.2 20(66.7) 5(16.7) 5(16.7) 

6 22 74.4±3.5 17.2±1.8 77.3 31.8 28.0±5.0 68.2±29.3 12.9±2.3 22(100.0) 0(0.0) 0(0.0) 

Baseline MCI subject 

1 143 73.9±7.3 15.3±3.2 42.0 61.5 25.5±3.7 44.2±25.9 1.5±1.6 0(0.0) 39(27.3) 104(72.7) 

2 66 75.1±7.1 15.9±2.5 34.9 78.8 25.2±3.5 38.9±27.4 0±0 0(0.0) 19(28.8) 47(71.2) 

3 66 77.5±5.9 14.8±3.1 19.7 42.4 27.4±4.1 55.4±29.1 3.3±1.9 0(0.0) 34(51.5) 32(48.5) 

4 73 73.9±8.3 16.0±2.7 34.3 37.0 26.9±4.3 54.3±33.0 5.6±3.0 8(11.0) 51(69.9) 14(19.2) 

5 23 74.0±7.5 17.2±2.3 56.5 34.8 26.2±4.6 68.6±30.1 10.1±3.2 5(21.7) 15(65.2) 3(13.0) 

Note:  RAVLT = Rey Auditory Verbal Learning Testing; a =mean ± standard deviation; b=percentage; c= count (%). 
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Table 3.4. parameter  estimate for risk factors associated  with each 

trajectory group   

Trajectory 

 group  
Parameter Estimate (SE)a p-value 

Normal Subjects    
1 Intercept   0.93 (2.95) 0.75 

       Age        0.06 (0.04) 0.16 
       BMI       -0.12 (0.06) 0.06 
       Gender   -0.41 (0.60) 0.49 
       Education  -0.10 (0.11) 0.40 

2 Intercept   -1.31 (3.60) 0.72 
       Age        0.09 (0.04) 0.03 
       BMI       0.01 (0.05) 0.90 
       Gender   -0.98 (0.55) 0.08 
       Education  -0.24 (0.11) 0.02 

3 Intercept   8.10 (2.52) 0.001 
       Age        -0.02 (0.04) 0.67 
       BMI       -0.05 (0.06) 0.36 
       Gender   -0.26 (0.59) 0.65 
       Education  -0.29 (0.11) 0.01 

5 Intercept   0.19 (3.34) 0.96 
       Age        0.04 (0.05) 0.42 
       BMI       -0.05 (0.06) 0.42 
       Gender   -0.07 (0.62) 0.91 
       Education  -0.10 (0.13) 0.44 

6 Intercept   -2.88 (5.00) 0.57 
       Age        -0.06 (0.06) 0.33 
       BMI        0.02 (0.06) 0.69 
 Gender   1.74 (0.73) 0.02 
 Education   0.22 (0.15) 0.14 

MCI subjects    
1 Intercept  2.70 (1.90) 0.16 

  Apoe4      1.05 (0.33) 0.002 
   Age        0.02 (0.02) 0.44 
   BMI         -0.09 (0.04) 0.02 
   Education   -0.08 (0.05) 0.14 

2 Intercept  7.76 (1.91) 0.00 
  Apoe4      1.77 (0.47) <0.001 
   Age        -0.03 (0.02) 0.26 
   BMI         -0.21 (0.05) <0.001 
   Education   -0.11 (0.07) 0.09 

3 Intercept  -1.96 (2.97) 0.51 
  Apoe4      0.40 (0.43) 0.35 
   Age        0.06 (0.03) 0.07 
   BMI         -0.01 (0.05) 0.83 
   Education   -0.14 (0.07) 0.04 

5 Intercept  -1.63 (3.52) 0.64 
 Apoe4      -0.15 (0.56) 0.79 
  Age        -0.01 (0.03) 0.75 
  BMI         -0.03 (0.07) 0.64 
   Education   0.13 (0.11) 0.22 

Note: all results  of parameter estimates were derived by using group 4 as reference 

group in both normal and MCI subjects; a SE = standard error 
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         Figure 3.1. Model based trajectories identified for baseline normal ADNI 

participants 
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Figure 3.2. Model based trajectories identified for baseline MCI ADNI participants 
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CHAPTER FOUR 

 

 

Comparison between neural network and logistic regression for dementia 

prediction: Results from the PREADViSE trial 

ABSTRACT 

                 Two reviews summarized nearly all studies about parametric predictive models 

and suggested that none are recommended for use in population dementia diagnostic 

screening. Therefore, further investigation needs to be conducted on this topic. The goal 

of this study was to apply logistic regression (parametric method) and neural network 

(non-parametric method) in a large Alzheimer’s disease prevention trial to compare the 

predictive performance of two methods. Significant covariates were entered into 

multivariate logistic regression for prediction modeling. Backward elimination was 

applied to select the final logistic regression model. Neural network was performed 

through the R package “Neuralnet” by using the same covariates as in the final logistic 

regression model. Results show that neural network had a slightly better predictive 

performance (area under curve (AUC): 0.732 in neural network vs. 0.725 in logistic 

regression). Overall, neural network has better in sensitivity (83.2%) and negative 

predicative value (98.0%) than in logistic regression’s sensitivity (72.6% ) and negative 

predictive value was (42.7% ), but not in the positive predictive value (10.0% vs. 42.8% 

). Furthermore, in logistic regression, higher education was associated with deceased 

probability of dementia. Older age, the presence of the APOE ɛ4 allele and the presence 

of a reported memory change were positively associated with having dementia. Similar 

effects were illustrated for covariate presence of APOE ɛ4 allele and memory change in 



 

49 
 

neural network, but not for education. Based on the result in neural network, the effect of 

education depends on age, presence of APOE ɛ4 allele and memory change. In 

conclusion, neural network performed slightly better than logistic regression in sensitivity 

and negative predictive value, and it also is able to reveal complicated relationships 

among covariates.  

INTRODUCTION 

                The rising of prevalence dementia has become a major concern for public 

health as disability associated with dementia, especially at the late stage, leads to high 

costs personally, socially and economically. Early identification of individuals with high 

risk of dementia may be of great importance to prevent or intervene dementia onset. To 

identify these high-risk individuals as earlier as possible, developing an effective 

predictive or prognostic models with risk factor is regarded as research priority. So far, 

numerous studies have been conducted to find a useful prediction model.  

                Many parametric prediction models have been predominantly developed from 

logistic regression 47-50 or proportional hazards regression analysis 51-56. For non-

parametric models, the classification tree is the most often used method 60, 61. Alternative 

approaches, also include non-parametric statistical learning methods such as random 

forest 62 and neural network analyses63. Covariates used in the majority of predictive 

modeling studies include demographic variables, such as age, education, body mass index 

(BMI), medical comorbidity (e.g., history of cardiovascular disease) or 

neuropsychological or cognitive tests. Recently, studies have incorporated genetic risk 

factors and imaging data into predictive models 53, 140.  However, studies have also argued 

that non-genetic risk factors and neuroimaging variables have not significantly increased 
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discriminative accuracy 140, and that these data are often difficult and expensive to obtain 

141. Furthermore, evidence suggests that a third of Alzheimer’s disease (AD) cases 

worldwide may be due to modifiable risk factors 142.  

                   Two systematic reviews, which summarized nearly all parametric research 

methods for prediction of dementia risk in the past decades 45, 46 , concluded that despite 

the significant increase in the number of risk modeling studies, the predictive accuracy of 

these parametric models has not changed to a significant degree (range 0.49-0.91 in 2010 

review, and 0.49-0.89 in the 2015 review) , and  none of the methods are recommended 

for dementia risk prediction in the population setting due insufficient consideration of 

sample selection, model diagnostics, and model validation 45, 46.   

                   In this study, we aim to compare the predictive performance between neural 

network and logistic regression using mainly mental status and self-reported data from 

the Prevention of Alzheimer ’s disease with Vitamin E and Selenium (PREADViSE) trial 

and also including a known AD genetic risk (APOE genotype) and clinical diagnosis of 

dementia  ) to construct a predictive model.  

METHODS  

Study sample and data sources 

                 The PREADViSE trial was an ancillary study to the Selenium and Vitamin E 

Cancer Prevention Trial (SELECT) (a large prostate cancer prevention randomized 

controlled trial (RCT))88 and was designed to evaluate the effectiveness of antioxidant 

supplements vitamin E and selenium in preventing incident AD and other forms of 

dementia. During the recruiting period from 2002 to 2009, PREADViSE enrolled 7,547 

non-demented male participants age 62 years and older (age 60 if African American) 
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from 128 participating SELECT clinical sites in the US, Canada, and Puerto Rico. The 

eligibility criteria for participating in PREADViSE included active SELECT enrollment 

at a participating site, and absence of dementia and other active neurologic conditions 

that affect cognition such as major psychiatric disorder, including depression.  

                   The SELECT study supplements were discontinued by its Data Safety 

Monitoring Committee in 2008 following a futility analysis on its primary endpoint of 

prostate cancer incidence 89, and then participants in PREADViSE and SELECT were 

invited to continue as participants in observational cohort studies. All participants were 

invited to continue in the cohort study, and 4,271 of 7,547 original PREADViSE 

volunteers consented to participation. In order to maximize the consistency and 

completeness of follow-up, only participants who were screened in both the RCT and 

exposure phases of PREADViSE are included in the current study (N=3784). 

PREADViSE was approved by the University of Kentucky Institutional Review Board 

(IRB) as well as the IRBs at each SELECT study site. Each participant provided written 

informed consent. 

Mental status screening 

                  The Memory Impairment Screen (MIS) 91 was used as the primary screening 

instrument for memory impairment in both the RCT and observational portions of 

PREADViSE. The MIS was given annually. If participants failed the MIS (that is, the 

participant scored 5 or less out of 8 on either the immediate or delayed recall portion of 

the MIS), a second tier screen was administered. An expanded Consortium to Establish a 

Registry in AD battery (CERAD-e) 92 was used during the RCT period and the modified 

Telephone Interview for Cognitive Status (TICS-m)93 , was used during the observational 
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study. Both the CERAD-e and the TICS-m assess participants’ global cognitive function. 

Failure on the secondary screen (T score ≤ 35 on CERAD-e battery or total score ≤ 35 on 

TICS-m) would lead to a recommendation for a clinic visit with their local physician. 

Records from the clinic visit were reviewed by 3-5 expert clinicians, including two 

neurologists and at least one neuropsychologist, for a consensus diagnosis. In cases where 

the neurologists disagreed in their diagnoses, the study PI made the final determination. 

Annual screenings were completed in May 2014, and a small number of participants were 

followed for medical records through August 2015. 

Covariates 

                    APOE genotype was obtained for 3681 participants (ɛ2/2: 26 (0.71%); ɛ2/3: 

459 (12.47%); ɛ2/4: 86 (2.34%); ɛ3/3: 2240 (60.85%); ɛ3/4: 808(21.95%); ɛ4/4: 

62(1.68%)). These genotypes were converted to a dummy indicator for at least one ɛ4 

allele, where the presence of at least one ɛ4 allele was considered a carrier.  For 103 

subjects without APOE information, SAS 9.4® procedure PROC MI was used to impute 

missing values for the indicator variable based on family history of dementia. Four 

imputed data sets were generated; participants with two or more positive imputations for 

APOE ɛ4 were coded as APOE ɛ4 positive. APOE ɛ4 positivity is a major risk factor for 

AD-type dementia 96. Other data collected included age at baseline, race, BMI, years of 

education, as well as self-reported indicators of cardiovascular disease (i.e., diabetes, 

hypertension, and smoking), coronary artery bypass graft (CABG), congestive heart 

failure, hypertensive medication, and memory change at the baseline.   These data were 

obtained at enrollment and annually thereafter as recognized risk factors for dementia 97 .   
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History of significant cognitive or motor impairment due to stroke was an exclusion 

criterion, thus stroke was not considered in the models. 

Case Ascertainment 

                  To create a predictive model, we used clinical dementia status (dementia vs. 

non-dementia) at end of follow-up as the outcome. Dementia cases were identified 

through two methods during annual follow-up. First, as described above, a medical 

records-based consensus diagnosis was used. Date of diagnosis was assigned as the date 

of the failed screen. Second, because many participants were reluctant to obtain medical 

workups for their memory, additional longitudinal measures including the AD8 Dementia 

Screening Interview 94, self-reported medical history, self-reported diagnosis of dementia, 

use of memory enhancing prescription drug, and cognitive scores including the MIS, 

CERAD-e T Score, NYU Paragraph Delayed Recall, and TICS-m were used to identify 

cases. The diagnostic criteria for the second method were AD8 total of ≥ 1 (at any time 

during follow-up) to indicate functional impairment 94 plus one of the following: a self-

reported diagnosis of dementia, use of a memory enhancing prescription drug (donepezil, 

rivastigmine, galantamine, or memantine), or cognitive score below cutoffs for intact 

cognition on any test (for example: 1.5 SDs below expected performance based on age 

and education normative data95. The date of diagnosis was assigned to the earliest event.  

Data analysis    

                       Chi-square and t-test statistics were used to examine differences in 

categorical and continuous variables between dementia groups. Univariate logistic 

regressions were performed first, and only those variables significantly associated with 

probability of dementia at univariate analysis would be included in the multivariable 
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logistic regression.  Covariates included in the initial multivariable logistic regression 

model were age, education, smoking, APOE-ɛ4 allele status (any vs. none), history of 

hypertension, diabetes, coronary artery bypass graft (CABG), antihypertensive 

medication use, and memory change. In the model, age and education were used as 

continuous variables, and the rest were binary variables (yes vs. no). Logistic regression 

with backward elimination method was performed to compare with the neural network. 

Covariates age, education, APOE-ɛ4, and self-reported memory change were left in the 

final logistic regression model without interaction terms.   In the preliminary analysis, 

neural network revealed an interaction effect among years of education, age at baseline, 

status of memory change, and APOE-ɛ4 allele status. The logistic regression was then 

conducted again to confirm the interaction effects.  

Neural Network 

                      As an extension of generalized linear models (GLM), artificial neural 

network (ANN) is applied to explore the complex relationship between covariates and 

response143. Multilayer perceptron (MLP) is the main model for neural network which 

consists of vertices and directed edges called neurons and synapses in the study 

respectively. Neurons are organized as layers and connected by synapses. Our ANN 

model had three neuron layers: input, hidden, output (See figure 4.1). The input layer 

included all covariates in separate neurons, and the output layer consisted of the response 

variable (output). The layers between input and output layers are referred as hidden layers 

because they are not observed. For each synapse, a weight is attached to indicate the 

effect of the corresponding neuron. All data will pass through the neural network as 

signals, and these incoming signals will be first processed by the activation function, and 
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then by integration function to approximate output of the neuron. Based on Hornik 144, 

one hidden layer is sufficient, two or more hidden layer may be needed in some 

circumstance. An MLP with one hidden layer consisting of J hidden neurons can be 

represented by the following function: 

y  ≈  𝑔 (𝜔0 + 𝑊𝑇 {𝑓 (𝜔0𝑗 +  ∑ 𝜔𝑖𝑗𝑥𝑖
𝑛
𝑖=1 )}

𝑗=1

𝐽
 ), 

                                     = 𝑔 (𝑓 (𝜔0𝑗 +  𝑊𝑗
𝑇𝑥) ), 

where y stands for output,   𝜔0 indicates the intercept helping define the output neuron 

and 𝜔0𝑗 indicates the intercept helping define the jth hidden neuron. 𝑊𝑗
𝑇  = 

(𝜔1𝑗, … , 𝜔𝑛𝑗), which indicates the vector of weights corresponding to the synapses from 

input and leading to the jth hidden neuron, and 𝑥 = (𝑥1 , … , 𝑥𝑛) denotes the vector of all 

covariates.  

                    The function 𝑔 above denotes the integration function and is defined as  

𝑔(𝑧) = 𝑧. 

                     The function 𝑓denotes the activation function to calculate z in the above 

formula. Here, the logistic function is used: (𝑓(𝑢) =  
1

1+𝑒−𝑢 
).  

Then supervised learning is applied in which true output is defined and is compared to 

the predicted output. The starting weights are usually assigned randomly from the 

standard normal distribution143. Weights are also chosen at this stage145. To fit the neural 

network, the following steps are repeated: 

1) Neural network calculates a predicted output o(x) for given inputs x and starting 

weights. 

2) An error function E, for example, sum of squared errors (SSE)   
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𝐸 =  
1

2 
∑ ∑(𝑜𝑙ℎ − 𝑦𝑙ℎ)2

𝐻

ℎ=1

𝐿

𝑙=1

 

or the cross-entropy  

𝐸 =  − ∑ ∑ (𝑦𝑙ℎlog (𝑜𝑙ℎ)𝐻
ℎ=1

𝐿
𝑙=1 + (1 − 𝑦𝑙ℎ )log (1 − 𝑜𝑙ℎ)), where l = 1,…, L 

indicates  the observations, h = 1,…,H the output nodes, lh = hth nodes for lth 

observation,  

will be applied to measure the difference between the actual output and predicted 

output. 

3) Then all weights are adapted based on the rule of a learning algorithm.  

                    The process will stop if the pre-specified criterion (rule of a learning 

algorithm) is reached, for example, all components of the gradient vector of the error 

function with respect to the weights (𝜕𝐸/𝜕𝒘) are smaller in absolute value than a given 

threshold or a specified maximum step (it is referred as number of iterations) is reached. 

The resilient backpropagation algorithm (rprop+) is the most commonly used learning 

algorithm 146. Weights are modified by searching in the opposite direction of the partial 

derivatives until a local minimum is found 143. Additional technical details about ANN 

can be found in Gilnther‘s technical report and Quintana’s paper 143, 147. 

                     Our ANN input layer included four covariates including age, education, 

APOE-ɛ4, and self-reported memory change, in order to be directly comparable to the 

logistic regression model. We decided to have 10 hidden units based on the consideration 

based on literature148. The output layer had one neuron, which was dementia status at end 

of follow-up. Logistic was used as the activation function since the outcome was binary. 

Since cross entropy did not work with the data, and as indicated by Hastie in Section 
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2.3.1148, it is not unreasonable to use identity function in binary outcome, so identity 

function was applied as integration function, and sum square error was calculated. The 

“rprop+” algorithm was used to determine the weights. AUC was calculated to compare 

the performance between logistic regression and ANN on classification of dementia 

status. 

                 Descriptive analysis and logistic regression were conducted by using SAS 

9.4® (SAS Institute, Inc., Cary, NC). ANN was performed in R package “Neuralnet” 

under R (R Foundation for Statistical Computing, Vienna, Austria, version 3.1.2) 149. 

Statistical significance was set at p < 0.05.  

RESULTS 

                 Table 4.1 presents the general characteristics of participants in both RCT and 

central follow up. Of 3784 subjects, 277 had been diagnosed with dementia at the end of 

follow-up. Compared to subjects who did not develop dementia, subjects who developed 

dementia were older at baseline, less educated, were more often smokers, carried the 

APOE-ɛ4 allele, used antihypertensive medication, and reported experiencing a memory 

change at baseline (Table 4.1).  

                  Based on preliminary analysis (data not shown), the prediction error in the 

neural network did not change dramatically as the threshold of the partial derivatives of the 

error function changed; we chose 0.1 as the threshold. Figure 4.1 depicts the neural network 

structure for the current study and shows the final weights of the corresponding synapses. 

These weights were used to calculate the estimated probability of the response variable. To 

interepret the association found in the neural network, the estimated probabilities of having 

dementia for 36 hypothetical subjects are presented in Table 4.2. The measure of 
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association for having dementia given a certain covariate in the neural network depends on 

the covariate and other covariates in the model. From Table 4.2, keeping  other covariates 

in the model constant, as age increased, the estimated probability of having dementia is 

increased.  For example, for subjects 1, 2 , and 3, who represent persons who are non-

APOE- ɛ4 carriers, have no self-reported memory change, and have 17.8 years of education 

(1 standard deviation (SD) above average) and are aged at  62.2 years (1 SD below the 

average), at 67.2 years (average), and at 72.2 years (1 SD above the average), respectively, 

the estimated probabilities of developing dementia are 0.029, 0.052, and 0.068, 

respectively. Similarly, we can conclude APOE-ɛ4 allele is associated with increased 

esitmated probability of dementia.  

              As illustrated in Table 4.2, the effect of education on risk of dementia depended 

on age, APOE-ɛ4 allele status, and status of memory change. Higher education was 

associated with lower risk of dementia only in younger subjects, but not in younger 

subjects with APOE-ɛ4 and memory change. For example, in the younger age group (1 

SD below the mean age), the estimated probability (𝑝̂ = 0.003) of having dementia for 

hypothetical subject 7 with one SD above the average for education is much lower than 

subject 1 (𝑝̂ = 0.029) with one SD below average education. Similar comparisons can be 

made for subjects 10 (𝑝̂ = 0.054) and 16 (𝑝̂ = 0.002), but not for subject 28 (𝑝̂ = 0.070) 

and subject 34 (𝑝̂ = 0.098), who are hypothetical subjects with both APOE- ɛ4 and 

memory change. Education did not have a protective effect on risk of dementia for older 

subjects (1 SD above mean age), especially for older subjects with APOE-ɛ4 and memory 

change. No matter what education levels were, older subjects who were APOE- ɛ4 

carriers and had memory changes had the highest risk of dementia, such as subjects 30 (𝑝̂ 
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= 0.354), 33 (𝑝̂ = 0.364), and 36 (𝑝̂ = 0.372) . In contrast, well-educated younger subjects 

who did not have either APOE-ɛ4 or memory changes had the lowest risk of dementia, 

such as subject 7 (𝑝̂ = 0.003), subject 16 (𝑝̂ = 0.002), subject 25 (𝑝̂ = 0.001).  

                   According to the results in neural network in which the effect of education 

interacted with age, status of APOE-ɛ4, and status of memory change, logistic regression 

were performed to confirm the interaction effects. Table 4.3 shows parameter estimates 

and p values for each 3-way interaction regression model.  Education in years interacted 

with APOE-ɛ4 allele carrier, and self-reported memory changes are significantly 

associated with having dementia (p = 0.01). To demonstrate the effect modification 

identified in the logistic regression model, 36 hypothetical subjects are presented in table 

4.4. Subjects with no APOE- ɛ4 and memory change had highest estimated probability of 

having dementia, such as subject 30 (𝑝̂ = 0.664), and subject 33 (𝑝̂ = 0.594). Age 

modified the effect of education; however, comparing subjects 28, 29, 30, or subjects 19, 

20, 21 from table 4.4, the interaction effect among age education, APOE- ɛ4 and memory 

change is not significant. Furthermore, APOE- ɛ4 status had a stronger association with 

dementia in future than the effect of memory change when comparing subject 12 (𝑝̂ =

0.315) to subject 21 (𝑝̂ = 0.164), and subject 11(𝑝̂ = 0.205) to subject 20(𝑝̂ = 0.125), 

and so on.  

                  Comparison of overall performance between logistic regression and ANN for 

predicting incident dementia was recorded in Table 4.5. ANN had slightly better 

predictive accuracy than logistic regression (AUC in neural network = 0.732 vs. AUC in 

logistic regression 0.725). Overall, neural network has better in sensitivity (83.2%) and 

negative predictive value (98.0%) than sensitivity (73.6%) and negative predictive value 
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(97.2%) in logistic regression, but worse in the positive predictive value (10.0% in neural 

network vs. 41.4% in logistic regression).  

DISCUSSION  

             The purpose of this study was to compare predictive accuracy for incident 

dementia between neural network and logistic regression in the PREADViSE trial. 

Neural network showed slightly improved predictive accuracy (AUC = 0.732) compared 

in logistic regression (AUC = 0.725). The model obtained from the neural network had 

slightly better sensitivity and negative predict value, but worse in positive predictive 

value. Similar association between covariates and the outcome were found in neural 

network and logistic regression, but the model in neural network is more difficult to 

interpret than logistic regression. Furthermore, neural network can easily identify more 

complex relationships among model variables, here education and age, APOE, and self-

reported memory change. While higher education is usually considered universally 

protective against dementia 150, 151, the effect of education on dementia in the neural 

network depended on age, APOE-ɛ4 allele status, and self-reported memory change.  

                    Stephan et al45 evaluated predictive accuracy of dementia prediction models 

and found that poor predictive accuracy is associated with single-factor models, long 

follow-up intervals, and all-cause dementia for outcome ascertainment, which assumes all 

dementias share risk factors. The Canadian Study of Health and Aging (CSHA) 152 

showed lower predictive accuracy (AUC = 0.77 in 10-year follow-up than 5 –year follow 

up (AUC = 0.83).  The predictive accuracy (AUC = 0.732) in our neural network model 

is slightly lower than the CSHA 10-year study, but is comparable to the Gothenburg H-70 

1902-02 birth cohort for 10-years of follow-up (AUC = 0.74)153. In contrast to the CSHA 
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study, Exalto et al did not find any significantly different results on predictive accuracy in 

two Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) studies 

based on follow-up time (one is 10 years follow-up and another one is 36 years )59, 154. 

Follow-up time in the current study was over 10 years. 

                   Based on covariates used to generate the predictive model, models generated 

in the previous papers can be summarized into the following categories: 1) demographic 

only model; (2) cognitive tests based models with or without demographic data; (3) 

comorbidity data model; (4) genetic and biomarker model; (5) models including 

demographics, comorbidities, genetics, and biomarkers. Our logistic regression model 

included age, education, APOE, and memory changes to predict incident dementia and 

had moderate predictive accuracy (AUC: 0.725, sensitivity 73.6% and specificity 60.7%). 

Another similar study 154in which the model was derived from demographic variables, 

health risk factors and APOE, obtained slightly better diagnostic accuracy (AUC = 

0.78).This study also argued that diagnostic accuracy will not change significantly after 

removing APOE from the model (AUC: 0.77; sensitivity 77% and specificity 63%). 

Other models include neuroimaging information and/or neuropsychological tests. Tang et 

al. argued in their review that genetic information and/or imaging data do not improve 

diagnostic accuracy significantly 46, 140. Furthermore, predictive models using one or 

multiple neuropsychological tests as covariates seem to have higher predictive accuracy, 

but there is not direct comparison for these two approaches due to between-study 

variation, such as different criteria on outcome measurement45. Waite and colleagues 

argued that refining the subgroups of dementia types may improve diagnostic accuracy, 
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but is unlikely to be cost effective because defining these subgroup of dementia can be 

expensive155.  

                        On the other hand, from machine learning and classical statistical 

methods, neural network in several studies has demonstrated superior ability to identify 

complex relationships in data compared to classical statistical methods156, 157. Also, neural 

networks obtained higher predictive accuracy rate than linear discriminant analysis and 

successfully distinguished Alzheimer’s patients from control aged 80 years and older in 

the Nun study using neurofibrillary tangles and neurotic plagues counts (AUC was not 

reported) 158. In contrast, Maroco et al.159 suggested that random forest and linear 

discriminant analysis performed better than other statistical methods, such as neural 

network, support vector machines, and logistic regression based on the consideration of 

predictive accuracy, sensitivity, specificity. They also argued that neural networks and 

logistic regression are inappropriate for unbalanced data, which means small frequency 

vs. large frequency group in response variable160-163. 

Furthermore, Song et al. 164 compared the machine learning methods with classic 

statistical methods for two biomedical datasets: one was from patient care records and 

another was from a population survey, and they did not find significant differences in 

prediction between the two datasets, which indicates that the quality of the questionnaire 

may be more important than accuracy of the answers in the questionnaire.  

                Strengths for this study include larger sample size and long follow-up. We were 

also able to consider most well-established risk factors for dementia, including 

demographic, genetic, and medical characteristics, including cardiovascular risk factors.  

This study also had some limitations. Our outcome diagnosis was based on two criteria 
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due to lack of medical records from many participants, our case ascertainment may be 

less accurate.  However, misclassification of diagnosis is independent of exposure 

measurement, so no differential misclassification is unlikely. Thus, results are likely 

biased toward the null.    

                 In conclusion, neural network did not significantly improve predict accuracy 

over logistic regression and also increased difficulty of interpretation of the association 

between the outcome and covariates. The most important to improve performance of a 

model, does not depend on statistical methods, or computational techniques, but depends 

on how much accurate information the dataset contain. In future, the similar study should 

focus on refining the definition of outcome diagnosis, improving quality of questionnaire, 

performing validation after generating a risk model.   
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Table 4.1. General Characteristics of participants in PREADViSE 
 

Characteristic All Subjects 

(N=3784) 

No Dementia 

(n=3557) 

Dementia 

(n=227) 

 

P value  

Baseline ageb, y 67.2±5.0 67.0±5.0 70.1±5.2 < 0.001 

Educationb, y  15.5±2.3 15.5±2.3 15.0±2.5 0.002 

Black racec 318 (8.4) 294 (8.3) 24 (10.6) 0.22 

Baseline smokingc 2018 (53.4) 871(52.9) 85 (61.2) 0.01 

APOE-ɛ4 (≥1 ɛ4)c 956 (25.3) 1876 (24.5) 153 (37.4) < 0.001 

Baseline hypertensionc 2998 (39.7) 2703 (38.6) 295 (53.4) <0.001 

Baseline diabetesc 354 (9.4) 322 (9.1) 32 (14.1) 0.01 

Baseline BMIab, kg/m2 28.4±4.3 28.4±4.3 28.4±4.5 0.93 

Baseline CABGac 135 (3.6) 119(3.4) 16(7.1) 0.004 

Baseline Congested Heart diseasec 18(0.5) 16(0.5) 2(0.9) 0.36 

Baseline antihypertensive 

medicationc 

1413 (37.3) 1308(36.8) 105(46.3) 0.004 

Memory changec 852 (22.5) 762 (21.4) 90 (39.7) <0.001 
aBMI: Body Mass Index; CABG: Coronary artery bypass graft;b mean ± standard deviation; ccount (%). 
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Table 4.2. Illustration effect of education by age, APOE-ɛ4 allele and memory change 

status for hypothetical subjects from neural network 
 

 Agea 

 Old  Average  Young 

Educationb Subject 

ID 
𝑝̂c 

 Subject 

ID 
𝑝̂c 

 Subjects 

ID 
𝑝̂c 

Absence of APOE- ɛ4 allele  and  Absence Memory change   

Low 3  0.068  2 0.053  1 0.029 

      Average 6  0.066  5 0.046  4 0.018 

High 9  0.062  8 0.037  7 0.003 

Presence of APOE- ɛ4 allele   and Absence of memory change 

Low 12 0.148  11 0.103  10 0.054 

     Average 15 0.128  14 0.079  13 0.028 

High 18 0.104  17 0.053  16 0.002 

Absence of APOE- ɛ4 allele  and  Presence of memory change   

Low 21 0.145  20 0.126  19 0.091 

      Average 24 0.113  23 0.096  22 0.048 

High 27 0.100  26 0.053  25 0.001 

Presence of APOE- ɛ4 allele  and  Presence of memory change   

Low 30 0.354  29 0.056  28 0.070 

      Average 33 0.364  32 0.071  31 0.084 

High 36 0.372  35 0.058  34 0.098 

Note: Note : aYoung = 62.2 years , Average = 67.2 years, Old = 72.2 year ; bLow =13.2 years of education, 

Average =15.5 years of education, High = 17.8 years of education; c𝑝̂ = estimated probability of having 

dementia 
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Table 4.3 Parameter estimates from interaction of logistic regression 

Variables Estimate (SE) P value 

Intercept 4.78(5.59) 0.39 

Age at baseline -0.10(0.08) 0.22 

Education in years -0.91(0.37) 0.01 

Presence of  APOE- ɛ4 allele -1.91(2.11) 0.37 

Presence of memory change 2.45(2.07) 0.24 

Age at baseline  * Presence of  APOE- ɛ4 allele 0.05(0.03) 0.04 

Age at baseline  * education in years 0.01(0.005) 0.02 

Age at baseline  * Presence of  memory change -0.002(0.03) 0.91 

Education in years  * Presence of  APOE- ɛ4 allele -0.08(0.07) 0.30 

Presence of  APOE- ɛ4 allele * Presence of  memory change -4.85(1.99) 0.01 

Education in years * Presence of  memory change -0.10(0.07) 0.18 

Education in years *Presence of  APOE- ɛ4 allele * Presence of  memory change 0.32(0.13) 0.01 
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Table 4.4.  Estimated probability of having dementia from multivariable logistic 

regression to illustrate interaction effects among age at baseline, education,  APOE- ɛ4 

allele and memory change 

 
 Agea 

 Old  Average  Young 

Educationb Subject 

ID 
𝑝̂c 

 Subject 

ID 
𝑝̂c 

 Subjects 

ID 
𝑝̂c 

Absence of APOE- ɛ4 allele  and  Absence Memory change   

Low 3  0.059  2 0.044  1 0.032 

      Average 6  0.055  5 0.036  4 0.023 

High 9  0.051  8 0.029  7 0.016 

Presence of APOE- ɛ4 allele   and Absence of memory change 

Low 12 0.315  11 0.205  10 0.126 

     Average 15 0.299  14 0.172  13 0.091 

High 18 0.284  17 0.143  16 0.066 

Absence of APOE- ɛ4 allele  and  Presence of memory change   

Low 21 0.164  20 0.125  19 0.095 

      Average 24 0.126  23 0.084  22 0.055 

High 27 0.097  26 0.056  25 0.032 

Presence of APOE- ɛ4 allele  and  Presence of memory change   

Low 30 0.664  29 0.525  28 0.382 

      Average 33 0.594  32 0.415  31 0.256 

High 36 0.519  35 0.313  34 0.161 

Note: Note : aYoung = 62.2 years , Average = 67.2 years, Old = 72.2 year ; bLow =13.2 years of education, 

Average =15.5 years of education, High = 17.8 years of education; c𝑝̂ = estimated probability of having 

dementia 
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Table 4.5. Comparison of predictive performance of logistic regression and 

neural network 

 Logistic regressiona Neural networka 

Sensitivity 73.6% 83.2% 

Specificity 60.7% 51.4% 

Positive Predictive Value 41.4% 10.0% 

Negative Predictive Value 97.2% 98.0% 
Note : aArea under curve : 0.725 in logistic regression and 0.732 in neural network 
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Figure 4.1 . Graphics of neural network  for incidence of dementia in PREADViSE trial. Age, APOE-ɛ4, Education, Memory 

Change represent the 4 input neurons on the left side of the diagram. Each input neuron was connected with 10 hidden neurons (second 

column of empty circles from the left of figure) by 10 corresponding synaptic weights. The 10 hidden units and the output neuron – 

dementia were connected by the synapses starting the hidden units and ending at the output layer. The first “1” in the circle from the left of 

the figure represents the intercepts of each hidden neuron, and the second “1” in the circle stands for the intercept of output neuron. These 

weights and intercepts were adapted to calculate the estimated probability of dementia. The model was stopped after 203313 steps, and 

predication error is 99.02907. 
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CHAPTER FIVE 

 

Conclusion 

Summary 

 

               Understanding its prevalence, risk factors, and development and potential 

interventions for dementia is becoming an important facet of public health and health 

care delivery. The purpose of this dissertation was to develop further the body of 

literature about risk factors, development, and prediction of dementia. Two datasets 

including Prevention of Alzheimer’s Disease with Vitamin E and Selenium 

(PREADViSE trial) and Alzheimer’s Disease Neuroimaging Initiative(ADNI) were used 

to conduct three studies: (1) “Self-reported sleep apnea and dementia risk: Findings from 

the PREADViSE Alzheimer’s disease prevention trial;” (2) “Evaluating  trajectories of 

episodic memory in normal cognition and mild cognitive impairment: results from 

ADNI;” (3) “Comparison between neural network and logistic regression in 

PREADViSE trial.”  The major findings from these studies are summarized below:  

          

                    Chapter Two examined the association between self-reported sleep apnea at 

baseline and risk of dementia in a U.S. male population. This was the first study to 

investigate this topic in this population using a cohort study. Two cohort studies82, 83 had 

shown that sleep apnea is significantly associated with risk of dementia in U.S. female 

and Taiwanese population. By contrast, a few cross-sectional studies found no 

association between sleep apnea and cognitive decline. One the other hand, one small 

cross-section study and one ADNI study suggest that the association between sleep apnea 

and dementia depends on the status of APOE-ɛ4.  We demonstrated that sleep apnea in 
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general is not associated with risk of dementia in U S male population. However, for 

APOE-ɛ4 non-carrier, men with sleep apnea had an estimated 66% increased risk to 

develop dementia.  

                 Considering longitudinal studies feature of dementia studies, Chapter Three 

shifts focus to the trajectory of development into dementia. Many statistical methods 

including linear mixed effect model, Markov processes, multi-stage disease progression 

model, have been applied to investigate change or trajectory of cognitive and 

neuropsychological measurement over time. Nagin and colleagues developed the group 

based trajectory model (GBTM) which accommodates the discrete nature and truncated 

distribution of outcome. It assumes that the sample is composed of a mixture of distinct 

groups, and that each group of individuals follows a similar developmental trajectory in 

terms of changes at mean level of outcome measurements 38-41.  Furthermore, one 

advantage of GBTM is that it qualitatively identifies distinct developmental groups that 

may not be identifiable by using LMM 42, 43. Another advantage is that the model can 

distinguish real differences from chance variation. Chapter Three explored potential 

trajectories in episodic memory scores in normal and MCI subjects enrolled in the ADNI 

and assessed whether the risk factors that influence these trajectories differ by cognitive 

status using GBTM. 

              This study confirmed heterogeneity of episodic memory in both baseline normal 

and MCI subjects. In baseline normal subjects, 6 distinct trajectories were identified 

based on the baseline value of  RAVLT 30 min-delayed recall and shape of trajectory 

during years  while 5 trajectories in MCI subjects. Accounting baseline scores, the 6 

group trajectories in baseline cognitive normal subjects can be summarized as three type 
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of trajectories: stable (Group 3 and Group 6), linear decline (Group 1 and Group 2), and 

curvilinear decline (Group 4 and Group 5). About a third of baseline normal subjects will 

remain cognitively normal over time, and about 28% of subject’s present curvilinear 

decline.  In contrast to the trajectories identified for normal subjects, all 5 trajectories 

group for MCI showed the tendency to decline. Over 65% subjects remained MCI 

throughout follow-up. Subjects with trajectories in Groups 1 and 2 were more likely to 

progress to dementia.  The study also confirmed that disparate outcomes for MCI 

subjects.  About 11% and 22% MCI subjects in Groups 4 and 5, respectively, were 

reverted back to normal cognitive states and 19% and 13% were converted to dementia, 

respectively.  Furthermore, the study demonstrate different demographic variables were 

significantly associated with different trajectories in normal and MCI subjects. Age, 

education, BMI are significantly associated with trajectories for normal and MCI 

subjects. However, APOE is only significantly associated with trajectories for MCI 

subjects. 

              In Chapter Four, we aimed to compare predictive performance from parametric 

and non-parametric method using PREADViSE study. Two recently systematic reviews 

reported nearly all parametric research methods for prediction of dementia risk in the past 

decades 45, 46 and recommend that none of them are recommended for dementia risk 

prediction in the population setting due to sample selection, model diagnostics, and 

model validation 45, 46. Several non-parametric methods were commonly used including 

classification tree, random forest, and neural network. Chapter 4 compared the 

performance of logistic regression and neural network and found that neural network 

obtains slightly improved predictive accuracy (AUC = 0.732) comparing to predictive 
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accuracy (AUC = 0.725) in logistic regression. Neural network obtain similar association 

between covariates and outcomes as logistic regression did. Moreover, neural network 

can demonstrate more complex relationships among covariates. Based on finding from 

neural network, the effect of years of education on risk of dementia depends on APOE-ɛ4 

allele, years of age, self-reported memory change.  

 

Strengths and limitations 

 

               A major strength of this dissertation is that two datasets used in this dissertation 

were drawn from two large and clinically well-defined longitudinal study with adequate 

follow-up time (over 11 years in PREADViSE and 9 years in ADNI study). Long –time 

follow-up can lead to more incident cases to increase power of survival analysis and 

provide adequate data points to investigate the development of dementia. Furthermore, 

the dissertation will enrich the body of literature about dementia from comprehensive 

aspects including prevention (finding risk factor of dementia, chapter 2), development 

(trajectory of episodic memory, chapter 3), and prediction (predictive of model of 

dementia, chapter 4) of dementia.  

                    In chapter 2, survival analysis was conducted for the first time in U.S. male 

population for association between self-reported sleep apnea and risk of dementia. The 

limitation for this chapter may include missing cases or misclassification of exposure or 

outcome. However, use of the AD8 functional status screen demonstrated better 

agreement with medically-confirmed ascertainment, which improve ascertainment of 

cases.  Based on the phrasing of questionnaire for self-reported measure of sleep apnea, it 

is most likely that non-differential misclassification happened, which should only lead to 
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the results towards null.   In chapter three, we applied group trajectory based model to 

illustrate episodic memory trajectory in baseline cognitive normal and MCI subjects, 

which is semi-parametric model developed by Nagin. The model assumes that the sample 

is composed of a mixture of distinct groups, and that each group of individuals follows a 

similar developmental trajectory in terms of changes at mean level of outcome 

measurements 38-41. And there are only a few paper available in the literature on how to 

apply and fit GBTM, which could be a better statistical methods for longitudinal 

dementia studies.  However, GBTM has its limitation, which is that the direct relationship 

between outcome (dementia) and risk factors (such as age education, gender, etc) does 

not exist, so we cannot quantitatively interpret the association between outcomes and 

covariates as routine. We applied neural network, a novel statistical learning method and 

compared it to the logistic regression in chapter 4. The better strategy to compare neural 

network and logistic regression is to perform validation, then compare the predictive 

performance between neural network and logistic regression.  

   

Future Research  

                 Several avenues of future research have been suggested by the studies in the 

dissertation. First, replication study using objective measure of sleep apnea and consistent 

diagnosis of incident dementia for chapter 2 are needed to confirm the association 

between sleep apnea and risk of dementia. As discussed above, rigorous outcome 

diagnosis criteria are called to improve ascertainments of incident cases. Furthermore, 

measurement of sleep apnea in chapter 2 came from self-reported questionnaire which 

may cause non differential misclassification. Objective measure of sleep apnea such as 
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apnea-hypopnea index, are needed to recheck the association. Many sleep apnea subjects 

who were taking sleep treatments, such as Continuous Positive Airway Pressure (CPAP) 

therapy or pills. In future study, we also wonder whether or how much these treatments 

influence the association between sleep apnea and risk of dementia.  

                In Chapter Three, we examined the trajectory of RAVLT 30-mimtute delayed 

recall as index of episodic memory in normal and MCI subjects. In the future, we would 

assess trajectory of other test scores of RAVLT, which represent different aspects of 

cognitions.  In additional to RAVLT, we also propose to investigate a series of 

trajectories of other neuropsychological tests, such as dysexecutive components using 

data in ADNI. Moreover, we are also interested in finding the best index whose trajectory 

is the most associated with conversion or progression to dementia.  MCI in ADNI 1 were 

generally defined and it was not determined the specific stage or time of MCI. In 

ADNGO, and ADNI2, two specific group MCI subjects: early MCI and later MCI were 

recruited, it will be interesting to study the specific trajectories for these subpopulation.  

     

 

 

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjEhdaZu6_NAhXG5yYKHfH2C_EQFgg8MAA&url=http%3A%2F%2Fwww.webmd.com%2Fsleep-disorders%2Fsleep-apnea%2Fcontinuous-positive-airway-pressure-cpap-for-obstructive-sleep-apnea&usg=AFQjCNGkEB6Mj6-voljnGwa19GTKbWX-rg&sig2=1eKFV3fZphPYebUBw9ICKg&bvm=bv.124272578,bs.1,d.eWE
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Appendix   

Table 1s:   Mean and Standard deviation of 30 min delayed recall of RAVLT baseline at each follow-up assessment 

 

 
 

Month 

Normal 
  

MCI 

 Overall 

(n) 

Group 1 

(n ) 

Group 2 

(n ) 

Group 3 

(n ) 

Group 4 

(n) 

Group 5 

(n ) 

Group 6 

(n ) 

 Overall 

(N ) 

Group 1 

(n) 

Group 2 

(n ) 

Group 3 

(n ) 

Group 4 

(n) 

Group 5 

(n) 

RAVLT 0 7.4±3.7(217) 3.3±1.8(33) 6.2±2.7(58) 6.9±3.0(42) 9.4±3.1(31) 9.1±2.2(30) 12.9±2.3(22)  2.9 ±3.3(371) 1.5±1.6(143) 0±0(66) 3.3±1.9(66) 5.6±3.0(73) 10.1±3.2(23) 

 6 6.9±3.5(215) 2.5±1.8(30) 4.7±2.0(58) 7.4±2.1(44) 9.4±2.2(31) 8.5±2.1(30) 11.9±2.8(22)  2.3±3.1(367) 0.8±0.9(143) 0±0(65) 2.6±1.9(64) 4.6±2.7(72) 10.0±2.7(23) 

 12 7.9±3.7(208) 3.5±2.2(30) 6.0±2.3(52) 7.6±2.7(44) 10.5±2.2(31) 9.2±2.2(30) 13.6±1.4(21)  2.4±3.5(347) 0.5±0.8(138) 0±0(57) 2.7±1.8(62) 5.2±3.0(67) 11.4±2.3(23) 

 18a - - - - - - -  2.1±3.1(315) 0.4±0.7(122) 0±0(52) 1.8±1.7(57) 5.2±2.7(64) 9.2±2.7(20) 

 24 8.1±4.0(199) 2.8±2.6(29) 6.1±2.2(51) 7.8±2.3(40) 11.7±1.6(30) 9.8±2.5(29) 13.4±3.0(20)  2.3±3.5(289) 0.3±0.7(114) 0±0(44) 2.3±1.9(55) 5.1±3.0(55) 11.0±2.8(21) 

 36 6.8±3.7 (183) 1.4±1.7(24) 4.2±1.9(45) 7.6±1.6(38) 10.0±1.9(28) 7.8±1.6(29) 12.3±2.4(19)  2.2±3.4(243) 0.2±0.5(86) 0.2±0.4(

32) 

1.5±1.5(52) 4.3±2.4(53) 10.5±3.5(20) 

 48 7.5±4.3(120) 2.0±1.9(15) 4.3±2.6(28) 7.8±2.9(29) 11.4±1.6(18) 7.7±2.1(18) 14.4±1.0(12)  2.1±3.3(141) 0.1±0.4(46) 0.1±0.4(

20) 

1.7±1.7(34) 4.7±2.9(30) 8.6±4.3(11) 

 60 6.9±4.4(106) 1.6±1.6(13) 3.8±2.6(23) 7.0±2.4(27) 10.1±2.9(19) 6.6±3.6(13) 14.1±1.4(11)  2.4±3.8(106) 0.1±0.2(31) 0±0(12) 1.0±1.5(28) 4.7±2.8(25) 11.2±3.6(10) 

 72 7.1±4.5(110) 1.0±1.4(12) 4.2±2.1(24) 7.8±2.5(25) 10.8±2.0(19) 4.9±3.1(18) 14.6±0.9(12)  2.7±4.1(101) 0.1±0.3(27) 0.1±0.3(

11) 

1.2±1.3(24) 4.2±3.6(27) 11.2±3.6(12) 

 84 7.4±4.5(95) 1.4±1.9(9) 3.4±2.5(17) 7.7±2.2(23) 10.5±2.4(18) 5.1±3.1(15) 14.2±1.0(13)  2.6±3.8(75) 0±0(17) 0±0(6) 1.3±1.3(20) 3.5±2.7(21) 8.8±5.3(11) 

 96 5.8±4.7(63) 0.4±0.9(5) 3.1±1.7(14) 7.9±2.1(15) 9.6±2.9(10) 1.5±2.2(13) 14.3±0.8(6)  2.2±3.2(54) 0.1±0.3(11) 0±0(4) 0.8±1.4(11) 3.7±2.9(21) 5.0±5.1(7) 

 108b 5.8±5.1(13) 6.0±0(1) 4.5±2.1(2) 10.3±2.9(3) 7.0±2.8(2) 0±0(4) 15±0(1)  4.1±5.3(10) 0±0(3) - - 5.2±3.8(5) 7.5±10.6(2) 

Note:  a Baseline normal subjects were not assessed in 18 months; bNone of  MCI subjects in  group 1 and group2  were assessed at 108 month  
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Figure 1s. Model based trajectories overlaid with crude trajectories for normal ADNI subjects. Solid lines indicate model based 

trajectories and dash lines stand for crude trajectories. The model based trajectories show discrepancy with crude trajectories at 

the end points of follow up.   
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Figure 2s. Model based trajectories overlaid with crude trajectories for MCI ADNI subjects. Solid lines indicate model based 

trajectories and dash lines stand for crude trajectories. The model based and crude trajectories demonstrate good match for 

Group1-4, but not in Group 5, which may be due to less participants in that group and/or mean- variance relationship (larger 

mean goes with large variance) in ZIP distribution.  
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