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Abstract 

An IS researcher may obtain Big Data from primary or secondary data sources. Sometimes, 

acquiring primary Big Data is infeasible due to availability, accessibility, cost, time, and/or complexity 

considerations. In this paper, we focus on Big Data-based IS research and discuss ways in which one may, 

post hoc, establish quality thresholds for numerical Big Data obtained from secondary sources. We also 

present guidelines for developing journal policies aimed at ensuring the veracity and verifiability of such data 

when used for research purposes.  

Key Words 

Data Quality; Big Data; Secondary Data; Numerical Data; Quality Threshold. 

Acknowledgment 

We thank Dr. Simon Sheather, Ph.D., University of Kentucky, for referring us to the Big Data sets used in 

this study. 

  

                                                             
1 Forthcoming in Decision Support Systems 



1. Introduction: 

Marsden and Pingry (2018) draw attention to “major, persistent numerical data quality issues,” in 

published Information Systems (IS) academic research that undermines the ability of researchers to replicate 

prior empirical and analytical IS research. For a forthcoming Decision Support Systems journal issue, the 

authors issued a Call for Papers (CFP), focusing on (a) a response to their paper, (b) detailing quality 

thresholds  for “quantitative” data used in IS research, and/or (c) detailing and arguing for journal policies that 

emphasize data quality and research reproducibility. 

 Marsden and Pingry (2018) identify seven alternative ways to generate numerical data (termed, “data 

types”) used in IS research: (i) interviews, (ii) surveys, (iii) field experiments, (iv) quasi-experiments, (v) 

controlled laboratory experiments, (vi) empirically observed with or without accuracy control, and (vii) 

purchased data from third-party vendors. They assess the accuracy of each of these data types by how 

clearly and precisely one can answer seven questions about the data (i.e., What, When, Where, Why, Who, 

Which, and How?), hereafter referred to in this paper as, “6W-1H.” Because a single data set could serve 

multiple purposes over time, they argue that the “Why?” question is the least important but regard accurate 

answers to the remaining questions as necessary conditions for data accuracy, validity, and research 

reproducibility.  The authors conclude that data generated using carefully controlled and documented 

laboratory experiments that use Vernon Smith’s (1982) induced-value approach to laboratory 

experimentation represent the gold standard or upper threshold of data quality. At the other extreme, the 

authors regard survey data as often representing the lowest quality threshold and present their reasons for 

this view.  

In this paper, we focus on Big Data-based research, given the increasing use of such data. A 

researcher may obtain Big Data from primary or secondary data sources. Sometimes, acquiring primary Big 

Data is infeasible due to availability, accessibility, cost, time, and/or complexity considerations. Given the 

availability of a vast number of secondary Big Data sources, we discuss ways in which one may post hoc 



establish quality thresholds for numerical Big Data obtained from secondary sources. We also advocate 

guidelines for journal policy development to help ensure the veracity and verifiability of such data when used 

in academic research. Thus, this paper is an attempt at addressing the foci mentioned in (b) and (c) of 

Marsden and Pingry’s (2018) Call for Papers in the context of secondary, numerical Big Data use in IS 

research.  

We organize the remainder of this paper as follows: In Section 2, we briefly describe Big Data and 

sources of Numerical Big Data.  Using a real-world, secondary Big Data set as an example, we identify 

several data quality issues that the data set suffers from in Section 3, followed by a discussion on how one 

may, post hoc, establish data quality thresholds for such data sets. In Section 4, we consider possible ways 

that academic research journals in the IS (and other) field(s) could assess to what extent the quality of 

secondary, numerical Big Data used in research meets quality thresholds. We present concluding remarks 

in Section 5. 

2. Big Data and Big Data Sources: 

The concept of Big Data has been defined in various ways for several years now with Gartner Analyst 

Laney (2001) describing Big Data as data that we distinguish by its volume, velocity, and variety attributes 

(i.e., the 3 V’s). Over the years, other terms have been added to the three V’s, with, e.g., veracity being 

popularly used as a fourth “V.” Others, such as the SAS Institute, have developed their own extensions 

(Variability, Complexity). None of these terms, however, is unambiguously defined in precise terms and 

interpretation varies with context and time (e.g., what is “big” data in particle physics (or, today) is different 

from what it is in marketing (or, in particle physics, tomorrow)). As such, we adopt the context-dependent 

view that Big Data is data: (i) that is of extremely large quantity; (ii) that is possibly arriving at a very fast rate; 

(iii) that contains structured, alphanumeric data elements possibly along with unstructured text, voice, video, 

and/or audio data elements; (iv) whose accuracy is not always guaranteed and may have to be established; 



and, (v) which is possibly captured or assembled from different kinds of primary and/or secondary data 

sources.  

Baesens et al. (2016) identify the following sources of Big Data: (a) Large-scale enterprise systems 

(e.g., ERP, SCM, CRM systems); (b) Online social graphs (e.g., Facebook, Twitter, Weibo); (c) Mobile 

devices (e.g., cell phones, tablets, laptops, PDAs); (d) Internet of Things (i.e., a sensor interconnected 

communication network of living and non-living objects (e.g., gadgets, vehicles, people, animals); and, (e) 

Open/Public data (secondary data,  gathered and made available freely for others to use).   

Note that Baesens et al. (2016) regard all data other than open/public data as being “primary” data 

or data gathered by an entity interested in obtaining that data first hand. As such, data category “e” (i.e., 

open/public data) is data from any or all of the preceding categories (“a” through “d”) made available for 

others to use (i.e., is secondary data). Here, we take “others” to mean those not associated in any way with 

acquiring, first-hand, any of the data in the open/public data source(s) in question. Our focus here is on 

category “e.” Further, given our interest in numerical data, we do not consider data source “b” (which is largely 

textual) and any non-numerical content generated by the devices mentioned in “c” further in this paper. We 

briefly elaborate on categories “a” and “d” next to understand their data characteristics.  

Big Data generated using Large-scale Enterprise Systems is largely comprised of structured data. 

For example, CRM systems contain Customer, Employee, Contract, and Purchase History data stored in 

standalone, client-server, or cloud databases. Much enterprise data is drawn from multiple other source 

points (e.g., transactional databases) within the enterprise. Additionally, unstructured data in the form of text 

content could also be part of such systems (e.g., email/instant messaging interactions with customers and 

employees). Depending on the enterprise (e.g., Amazon) and point in time (e.g., Black Friday), the data could 

also be voluminous and streaming (i.e., arriving at a fast rate). Taken in conjunction with the seven data types 

defined by Marsden and Pingry (2018), one may conclude that a CRM system could contain data of any type 

except those involving experiments (i.e., types iii, iv, and v). With a well-designed CRM and underlying 



transactional systems, an enterprise should be able to answer all seven of the data accuracy-related 

questions (i.e., the 6W-1H questions) satisfactorily. However, there is no such guarantee with any or all 

enterprise system data. 

The Internet of Things (IoT) is yet an unfolding concept. IoT Data is comprised of many kinds of data 

depending on the “things” involved. Examples include, status data (e.g., is the equipment working normally?; 

how many parking spaces are open at which locations?; which signs of heart disease does a patient exhibit, 

if any?); location data (e.g., where is the forklift truck at present?; which warehouse shelf stocks Brand X 

shampoo?); and, automation data (e.g., climate control/electricity use data generated by “smart” (i.e., IoT-

enabled) buildings; what speed is the driverless car travelling at?)). As these examples illustrate, much IoT 

data is structured, alphanumeric data. However, unstructured content is also possible (e.g., navigation 

instructions to a parking location with available spots).  Given the use of automation and sensors in the IoT, 

it would seem that much Big Data generated by the IoT should also pass muster with regard to the 6W-1H 

data accuracy attributes posited by Marsden and Pingry (2018). There is no guarantee, however, as two 

sensors located side-by-side could each record data quite differently (e.g., because one or both malfunction, 

one is more/less sensitive than the other is). 

In the case of any of the three primary (numerical data) sources of interest, to the extent an academic 

researcher can obtain information related to the data accuracy attributes (i.e., 6W-1H) from the source 

providing the data for research, such as a business enterprise, the researcher will be in a position to furnish 

these to anyone who seeks clarification. However, being prepared to furnish such second-hand assurances 

in and of itself is not proof of the veracity of the data. The burden of proof rests with the researcher and herein 

lies the challenge. 

 Turning to the data source of interest to us, Open/Public Data, the data in such repositories is 

sourced from elsewhere. Secondary data sites are plentiful. As one example, Marr (2016) provides a listing 

of thirty-three open Big Data sites for public use. A popular site used in classrooms by students and teachers 



is Kaggle.com that hosts over 14,000 open data sets at the time of writing. Another example is Data Planet 

from Sage Publishing that presently offers over 6 billion small and big data sets coupled with data crosscheck 

and visualization capabilities. Typically, however, such sites provide limited information in terms of the 6W-

1H questions. In the following section, we make use of an example public Big Data set to both illustrate some 

of the data accuracy challenges such data could pose and propose ways in which a researcher could 

authenticate the data. 

3. Quality Issues and Thresholds for Secondary, Numerical Big Data: 

3.1. Illustrative Data Quality Issues: 

To consider threshold establishment for secondary, numerical Big Data, we first illustrate some of 

the issues present in Public Big Data sets by considering the following data: 2013-2017 City of Chicago Taxi 

Trip (CCTT) Data https://data.cityofchicago.org/Transportation/Taxi-Trips/wrvz-psew/data). Table 1 provides 

a brief description of this data set (we have renamed some fields for clarity). 

 Of the 23 fields, 13 are numerical. As the site notes, the city’s Department of Business Affairs and 

Consumer Protection (BACP), charged with assuring the quality and safety of taxi rides, makes this data 

available to the public. BACP gathered the above data through two “major payment processors” that process 

most of the taxi payments in the city. BACP takes some effort at ensuring data privacy by masking taxi 

medallion numbers, times (all times are rounded to the nearest 15 minutes), and locations (only census tracts 

and community areas are shown). BACP also undertook limited data cleansing. Specifically: 

• Trip times less than 0 or greater than 86,400 seconds were removed. (Rationale: Trip times cannot be 

negative and trips cannot exceed 24 hours even accounting for stops, as city regulations do not allow 

working times that exceed a day). 



• Trip lengths less than 0 or greater than 3,500 miles were removed. (Rationale: Travel distances cannot 

be negative and the farthest distance one can drive from Chicago and remain within the US territory is 

3,500 miles.). 

• If any component of the trip cost is less than $0 or greater than $10,000, all components of the trip cost 

were removed. (Rationale: trip cost cannot be negative; the choice of $10,000 is arbitrary). 

• Some duplicate records (0.45%) were removed with duplicate records being identified using the following 

nine fields: <Taxi ID, Trip Start Time, Trip End Time, Trip Time, Trip Length, Trip Start Census Track, 

Trip End Census Track, Trip Start Community Area, Trip End Community Area>. (Rationale: A particular 

taxi cannot have two or more trips that start and end at the exact same times, on the same day, at the 

same start and end locations.) 

 We ran several data quality tests involving some of the numerical fields of this partially cleansed data 

set using the visual and predictive analytics package JMP Pro, from SAS, and summarize our findings in 

Table 2. In assessing Entity Integrity violations, we used the same nine fields (mentioned earlier) that BACP 

used to check for duplicate entries. We have highlighted (in bold) the relatively larger values in the table, but 

our point is that despite the cleansing attempts by BACP, the data set yet has multiple issues. In fact, some 

of the cleansing steps BACP undertook has actually exacerbated the missing value problem (e.g., the BACP 

left blank Trip Length fields with values “< 0” or “> 86,400,” but the records themselves remain in the data 

set). A thorough assessment would involve additional checks. For example:  (a) Does the same taxi show up 

on multiple, overlapping trips in the same time window?; (b) Does the Taxi ID match with Taxi Company in 

every instance?; (c) Are the Trip Start and Trip End Census Tract, Community Area, and Centroid entries 

mutually consistent?; and, (d) Are the Trip Costs consistent with official Taxi Rates (found at, 

https://yellowcabchicago.com/rates/)? There also is the concern of how to go about treating missing/incorrect 

values, a topic too involved to discuss here. 



Out of curiosity, we accessed the New York Taxi and Limousine Commission (NY TLC) Trip Record 

Data (https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page). This data set spans January 2009 – 

June 2018 at present and contains over a billion records pertaining to Yellow Taxicab, Green Cab, and For 

Hire Vehicle rides. The site notes that TLC-authorized technology providers had gathered the data on their 

behalf. The TLC makes it clear that it cannot guarantee the accuracy of the data. The fields in these datasets 

are similar, though not identical, to those in the CCTT data set. We ran analogous checks on the Yellow and 

Green taxi sets for just the month of January 2018. Here, the most glaring observation was that the Trip Total 

did not equal the sum of the component costs in 1,467,402 of the 8,759,874 records (i.e., 16.75%) for Yellow 

Taxicabs in January 2018 and 75,437 of the 793,529 records (i.e., 9.51%) for the Green Cabs. These data 

sets also had small percentages of negative Trip Total entries (0.05% and 0.24%, respectively). 

3.2. Establishing Data Quality Thresholds for Numerical, Secondary Big Data: 

If a researcher is the primary data acquirer, then establishing and adhering to quality checks is largely 

in his/her control. Even here, there is potential for dirty data. One of the authors was involved, many years 

ago, in a carefully controlled and documented induced-value laboratory experiment, a setting described as 

establishing the gold standard for data quality thresholds by Marsden & Pingry (2018). A student researcher 

was further processing data generated by human participants in parallel, using spreadsheet software and 

accompanying data analysis programs running on multiple machines, in a networked research laboratory. 

One day, the student alerted the team to the fact that numerical, subject-generated data values in individual 

worksheets that should have remained static were arbitrarily changing. We verified this to be the case, ceased 

the attempt, and restarted the analysis using a small number of standalone machines despite the delays that 

this induced. The problem did not manifest itself in the new environment. We had no explanation for why the 

participant-generated data was morphing on the networked machines and chalked this up to, “some network 

error.”  In this instance, the student chanced upon this behavior as the analysis would run for several hours 

in the lab and this person happened to stop by during a run. Had the run terminated before his/her arrival, 

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page


none of us may have detected this data quality problem. Analysis based on dirty data would have found its 

way into a publication and, perhaps, never discovered. This anecdote underscores Marsden and Pingry’s 

(2018) observation, “… no data type is inherently of low quality and no data type guarantees high quality ….” 

As our discussions in Section 3.1 reveals, data provided with cleansing and documentation by a 

secondary provider, even with implicit or explicit quality assurances, could contain unaddressed quality 

issues that merit further attention. Establishing quality with secondary data is a more difficult task as one 

usually is doing this post hoc – i.e., quality control during a (data acquisition) process is usually “cheaper” 

than control after the process has generated output. In addition, the purpose for which a researcher uses the 

secondary data requires establishing quality checks tailored to the task that could be different from checks, 

if any, applied in originally gathering the data. Thus, one cannot establish hard thresholds for any secondary 

data set without cognizance of the application at hand. For instance, consider Age (in years) as a field. The 

upper and lower data value bounds set for a data set about Pre-School through Elementary School children 

would be different from those for Middle school through High school students.  If the data is an extract from 

a Big Data set about all school students, it is a researcher’s responsibility to first cleanse all of the data and 

then extract data rows of interest. It would be incorrect to extract data rows of interest first and then attempt 

cleansing because of the checks and crosschecks needed to establish whether the seeming data rows of 

interest are indeed the correct data rows of interest. For instance, a student taking AP Calculus shows up as 

a middle schooler. Was this actually a middle school student taking AP classes (e.g. as a gifted student) or 

was he/she actually a high schooler?  If one is unable to get this clarified, one must drop this “seeming” 

middle schooler from further consideration. Below, we discuss some ways to conduct post hoc authentication. 

We used JMP Pro for our quick analyses to spot some readily-discernable quality issues. The 

process of data “wrangling” (i.e., data acquisition, data unification, and data cleansing) can be accomplished 

in different ways based on circumstances. For instance, one may use “traditional” spreadsheet and database 

management tools like MS Excel and MS Access/MS SQL Server/Oracle Database. One may also 



accomplish wrangling by writing code in an environment like R or using a language like Python. Today, 

sophisticated wrangling capabilities are available via standalone and/or integrated products from certain Data 

Cleansing, Business Intelligence, Data Visualization, and Data Analytics vendors such as Quadient (Data 

Cleaner), IBM (Cognos Analytics), Alteryx, and SAS (Visual Analytics). Modern products also embody 

advanced statistical and machine learning capabilities to help ease the cleansing task but none fully 

automates the task under all circumstances and one cannot assume any is thorough in cleansing. An 

extensive list of about 80 contemporary products with data cleansing capabilities is available at 

softwareadvice.com. Choices include products ranging from the inexpensive to the very expensive; niche 

products (i.e., tailored to particular industries) to general-purpose products; on-premise or cloud-based 

products; products targeted at Small, Medium, or Large businesses; and products that run on Windows, Mac, 

or Linus platforms.  

Data cleansing should help prepare a secondary Big Data set user better respond to some of the 

6W-1H questions. How well, he/she is able to answer each question is context dependent. Some sites help 

answer some of the questions unambiguously. For example, in the CCTT and NY TLC data sets, we 

unequivocally know what data was gathered, when it was gathered, where it is located, and why it was 

gathered by the primary sources. We also know, somewhat less clearly, who gathered the data (the BACP 

through two payment processors for the CCTT data and via two TLC-authorized technology providers for the 

NY TLC data). We have little information on the “how” question (i.e., what instruments and/or artifacts where 

involved). Through a researcher’s own data wrangling efforts, we also can determine who the researcher is, 

why he/she acquired the data, what data he/she is using, where his/her data extract is located, and to what 

extent the data quality was improved. Both taxi data sites also provide contact information 

(dataportal@cityofchicago.org or @ChicagoCDO; FOIL@tlc.nyc.gov) so that one can seek further 

clarifications on the source data, how it was gathered, and/or request additional data (if available). Such 

features make data from these secondary sources more amenable for academic research use.  

mailto:dataportal@cityofchicago.org
https://twitter.com/ChicagoCDO
mailto:FOIL@tlc.nyc.gov


We note that, without such secondary sources, these data would be impossible to gather in entirety 

even if one had the required resources (time, money, and expertise). This is also the case with other 

confidential data like healthcare data, pharmaceutical data, diseases data, and corporate data, for instance, 

which are usually gathered, used, and sometimes released later for public use with suitable masking. 

Examples are numerous and include FBI Crime data, CDC Cause of Death data, Medicare Hospital Quality 

data, Bureau of Labor Statistics data, Dow Jones Weekly Returns data, and Walmart Historical Sales data. 

In our view, restricting all Big Data used in academic research to be only primary data, would severely curtail 

academic research given non-availability, lack of access, time or cost constraints, and/or complexity 

considerations. Academic IS research must allow for the use of carefully selected and vetted secondary Big 

Data. Consider, e.g., the errors in the SEC’s EDGAR system whose data is the basis for many top-tier 

Finance journal publications. It is only as of October 2018 that the SEC began emphasizing data quality, 

beginning with EDGAR Release 18.3 (https://xbrl.us/news/sec-efm-release48/). 

4. Quality Threshold Policy Guidelines for Academia: 

We advocate the following guidelines for developing journal policies for all submissions using 

secondary, numerical Big Data: 

i. The authors must clearly identify all secondary Big Data sources, provide access information for these 

sources, and provide contact information of entities who may be reached for clarifications about source 

data. 

ii. The sources that provide the secondary data must be credible and well known (journal-specific examples 

of admissible and inadmissible sources may be provided, as a guide to authors). 

iii. The authors must extract relevant data from the sources accessed, further process the data as necessary 

(i.e., to improve quality and/or to customize the data for the application of interest), and be ready to make 

the processed data accessible to the journal upon request. In particular, authors must carefully document 



quality issues addressed and changes made to the data to render it usable. In so doing, the authors must 

also clearly describe the steps (tools and techniques) used for post hoc data processing. 

iv. Authors must provide clear answers, to whatever extent is possible, to the 6W-1H questions. These 

answers should help a journal decide if it must solicit further information, or if it could send the article out 

for further review, or reject the submission outright. 

v. The article itself must provide links to the original secondary data sources, the extracted data, and to the 

data as processed for use, for the benefit of readers. 

vi. Individual journals, groups of journals, or IS academic groups (e.g., departments at universities, IS 

academic societies), could choose to establish repositories listing credible, well-known secondary data 

sources or hosting/pointing to data from such sources. These may also include vetted, primary data 

gathered by prior researchers that the repository makes available for others to use. 

We developed a checklist (see Figure 1) that academic journal reviewers/editors could use in authenticating 

the quality of Big Data sources and extracts used when reviewing research articles.  

5. Concluding Remarks: 

In this paper, we posit that it is not always possible to acquire primary Big Data due to availability, 

accessibility, cost, time, and/or complexity considerations. Therefore, we consider secondary sources of Big 

Data as viable sources for exploitation for academic research. A compelling reason for this is the vast number 

of open secondary data sources that are available today containing governmental, financial, economic, 

health, sports, societal, corporate or other data made available for public use. Using two city-government 

data sources, we first identify some of the numerical data quality issues present in these sets as examples 

of such issues in general. We then present different ways in which a researcher could cleanse such data, 

ranging from largely manually guided efforts to highly automated ones. We draw attention to the growing 

body of sophisticated data wrangling tools that a researcher could exploit to help ease the task of wrangling. 

We then move to answer the 6W-1H question that Marsden and Pingry (2018) recommend for verifying and 



establishing the quality level of a given data set. We provide responses to these questions in the case of the 

two data sets used in this study. The level of data quality finally assigned to a given secondary data set is 

context-dependent (i.e., dependent on the extent to which one can clearly and completely answer each of 

the 6W-1H and other questions shown in Figure 1).  

We narrate a past personal experience that depicts that even data obtained from a carefully 

controlled, induced-value laboratory experiment could be susceptible to quality issues during or after it was 

gathered. We conclude by advancing a set of guidelines and a checklist aimed at helping IS journals enhance 

the veracity and verifiability of Big Data obtained from secondary sources. Taking into consideration Marsden 

and Pingry’s (2018) observation that no data type can be of inherent “low” quality or of guaranteed “high” 

quality, we take the view that academic IS journals should consider credible sources of secondary Big Data 

as viable sources of Big Data for academic IS research, provided a researcher can answer the questions in 

the checklist (Figure 1) to the journal’s satisfaction (i.e., we expect, journals in the IS field would vary in their 

quality expectations, just as in any field). While our focus has been on numerical data, our arguments would 

largely carry over to non-numerical data as well. 
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