
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Clinical and 
Translational Science Behavioral Science 

2018 

INTERMITTENT HYPOXEMIA IN PRETERM INFANTS INTERMITTENT HYPOXEMIA IN PRETERM INFANTS 

Elie G. Abu Jawdeh 
University of Kentucky, elieabujawdeh@gmail.com 
Author ORCID Identifier: 

https://orcid.org/0000-0003-4414-7007 
Digital Object Identifier: https://doi.org/10.13023/etd.2018.252 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Abu Jawdeh, Elie G., "INTERMITTENT HYPOXEMIA IN PRETERM INFANTS" (2018). Theses and 
Dissertations--Clinical and Translational Science. 7. 
https://uknowledge.uky.edu/cts_etds/7 

This Doctoral Dissertation is brought to you for free and open access by the Behavioral Science at UKnowledge. It 
has been accepted for inclusion in Theses and Dissertations--Clinical and Translational Science by an authorized 
administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cts_etds
https://uknowledge.uky.edu/cts_etds
https://uknowledge.uky.edu/behavsci
https://orcid.org/0000-0003-4414-7007
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Elie G. Abu Jawdeh, Student 

Dr. Peter Giannone, Major Professor 

Dr. Hannah Knudsen, Director of Graduate Studies 



  

 

 

 

 

INTERMITTENT HYPOXEMIA IN PRETERM INFANTS 
 

 

 

_____________________________________________ 

DISSERTATION 
_____________________________________________ 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Medicine at the University of Kentucky 
 

By 

Elie G Abu Jawdeh 

Lexington, Kentucky 

 

Co-Directors: Dr. Peter Giannone, Professor of Pediatrics 

and Dr. Yang Jiang, Associate Professor of Behavioral Sciences 

Lexington, Kentucky 

Copyright © Elie G Abu Jawdeh 2018 

 

 

 

 



 
 

 
 

 

 

 

 ABSTRACT OF DISSERTATION 
 

 

INTERMITTENT HYPOXEMIA IN PRETERM INFANTS 

Intermittent hypoxemia (IH) is defined as episodic drops in oxygen 
saturation (SpO2). Virtually all preterm infants have IH events. Extremely preterm 
infants have hundreds of IH events per day. The extent of IH is not apparent 
clinically as accurately documenting cardiorespiratory events for day-to-day 
patient care management is challenging. High resolution pulse oximeters with 2 
second averaging time are currently the ideal methods to measure IH. We have 
developed novel methods and processes to accurately and efficiently calculate 
an IH profile that reflects to spectrum of the problem.  

The natural progression of IH is dynamic. There is low incidence of IH in 
the few 2 weeks of life, followed by a progressive increase until peak IH at 4-5 
week after which IH plateaus. Multiple factors place preterm infants at high risk 
for increased IH. These factors include respiratory immaturity, lung disease, and 
anemia. We also show that preterm infants prenatally exposed to opioids or 
inflammation (due to maternal chorioamnionitis) have increased IH measures 
compared to unexposed infants. Interestingly, the increased IH in the exposed 
groups persists beyond the immediate postnatal period.  

Brief episodes of oxygen desaturations may seem clinically insignificant; 
however, these events may have a cumulative effect on neonatal outcomes. 
There is mounting evidence from both animal models and clinical studies 
suggesting that IH is associated with injury and poor outcomes such as impaired 
growth, retinopathy of prematurity and neurodevelopmental impairment. In 
addition data from neonatal animal models and adults with obstructive sleep 
apnea suggest that IH is pro inflammatory itself. We demonstrate in this 
document for the first time in preterm infants that IH is associated with increased 
serum inflammatory marker, C-reactive protein.  



 
 

Finally, a valuable experience throughout this process is working with a 
talented and dedicated multidisciplinary team. We are a solid example of the 
value of team science during this new era of clinical and translational research. 
Our respiratory control research program is one of handful programs nationwide 
able to perform such high-fidelity studies related to cardiorespiratory events in 
preterm infants. We will continue to tackle complex questions involving health of 
infants. 

 

KEYWORDS: Intermittent Hypoxemia, Preterm Infants, Prenatal Opioid  
 Exposure, Chorioamnionitis, Inflammation  

 

 

 

 

 

 

 

 

 

 

 

 

     Elie G. Abu Jawdeh, M.D.      

 

                           6/26/2018                     
       Date 

 

 

 



 
 

 

 

 

 

INTERMITTENT HYPOXEMIA IN PRETERM INFANTS 
 

 

By 

Elie G Abu Jawdeh 

 

 

 

 

 

 
 

        Peter Giannone, M.D.      
Co-Director of Dissertation 

 
     Yang Jiang, Ph.D.     

Co-Director of Dissertation 
 

      Hannah Knudsen, Ph.D.   
Director of Graduate Studies 
 

   6/26/2018    
           Date 

 



 

 
 

 

 

 

 

 

 

 

 

 
To my parents Giryes and Jeanne D’arc 

To my brother Bassam and his family Manal, George and Michael 

To my brother Dany 

 

To Farah 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

ACKNOWLEDGEMENTS 
 

I would like to thank my mentor Dr. Peter Giannone for his sincere guidance and 
mentorship. Special thanks for his friendship and support at both the personal 
and academic levels. His encouragement to pursue this work and his close follow 
up were very valuable. Dr. Giannone is a role model and positive driving force 
through the various challenges faced during this work and academic 
development.  

I would like to thank my mentor Dr. Henrietta Bada for her sincere guidance and 
mentorship. Special thanks for her friendship and support at both the personal 
and academic levels. Dr. Bada is a role model for physician-scientists. Thank you 
for pushing me hard and closely following up throughout the process.  

I would like to thank Dr. Philip Westgate for his friendship, guidance and 
oversight over data analyses. Special thanks for his major contributions to data 
analyses method development.  

I would like to thank Dr. Abhijit Patwardhan and his team (Yihua Zhao PhD, 
David Wasemiller MS and Sahar Alaei MS) for major contributions to method 
development. Thank you for your valuable feedback and support. Especial 
recognition for developing algorithms utilized for data processing and analyses.  

I would like to thank my dissertation committee, Dr. Yang Jiang (Co-Director) and 
Dr. Mandar Joshi for their sincere guidance, valuable feedback, and for their 
support throughout the process. 

I would like to thank to Dr. Richard Ingram (Outside Examiner).  

I would like to thank Dr. Katrina Ibonia and Dr. Enrique Gomez for supporting the 
initiation of this research program including early methods development and data 
collection and analyses.  

I would like to thank Dr. Aayush Gabrani, Dr. Divya Mamilla, Dr. Amrita Pant, Dr. 
Mandy Brasher, Audra Stacy (M4) and Dr. Friederike Strelow for their 
contributions to data collection and analyses.  

I would like to thank the University of Kentucky, Department of Pediatrics and 
Division of Neonatology research nurses and staff including Vicki Whitehead RN 
CCRC, Deb Grider RN, Susan deGraaff, Holly Nieves DNP, Kimberly Walker 
DNP, Alisa (Beth) McKinney-Whitlock CCRP, Sarah Butler RN and Crystal 
Wilson LPN for various contributions including patient enrollment, logistics and 
data collection and analyses. 



 

iv 
 

I would like to thank Hong Huang MD PhD, Brandon Schanbacher MS, and 
especially Sean Carpenter BSBE for involvement with sample 
processing/analyses, logistics and method development. I thank Haleigh 
Whitlock and Himanshu Savardekar BS for involvement in validation portion of 
methods chapter.   

I would like to thank the following University of Kentucky Neonatology and 
Pediatrics faculty collaborators and colleagues for their valuable feedback and 
involvement in various aspects of this work: John Bauer PhD, Prasad Bhandary 
MD, M. Douglas Cunningham MD, Zoran Danov MD, Nirmala Desai MD, Ricki 
Goldstein MD, Mina Hanna, MD, and Majd Makhoul MD. 

I would like to thank all the Neonatology faculty and fellows for their support 
especially for their contributions to enrollment and informed consent. Thank you 
to the neonatal intensive care units (NICU) nurses and staff at the Division of 
Neonatology, University of Kentucky. 

I would like thank mentors from afar for their contributions to this field.  

I would like to thank the Center for Clinical and Translational Science (CCTS) 
and Department of Behavioral Sciences at University of Kentucky.  

I would like to thank the Case Western Reserve University colleagues, friends 
and collaborators including Julianne Di Fiore BSEE, Anna Maria Hibbs MD MS 
and Thomas Raffay MD. 

I would like to thank my long time mentor and source of inspiration Dr. Richard 
Martin for his guidance and genuine investment in my career development. Dr. 
Martin is an exemplary role model and a source of great motivation to me and 
many investigators worldwide.  

 

 

Grant support: This dissertation was supported by funds from the Children’s 
Miracle Network, the Gerber Foundation, and the National Center for Research 
Resources, UL1RR033173, and is now at the National Center for Advancing 
Translational Sciences. 

 

 

 



 

v 
 

TABLE OF CONTENTS 

 
ACKNOWLEDGEMENTS ..................................................................................... iii 

 

LIST OF TABLES ............................................................................................... viii 

LIST OF FIGURES ...............................................................................................ix 

 

CHAPTER 1: INTRODUCTION AND CLINICAL RELEVANCE ............................ 1 

I. Introduction ................................................................................................. 1 

II. Natural Progression .................................................................................... 1 

III. Factors that Influence Intermittent Hypoxemia ........................................ 2 

IV. Monitoring ................................................................................................ 4 

V. Consequences ............................................................................................ 4 

VI. Conclusion ............................................................................................... 4 

 

CHAPTER 2: METHOD DEVELOPMENT AND VALIDATION ............................. 5 

I. Introduction ................................................................................................. 5 

II. Data Acquisition .......................................................................................... 6 

III. Data Filtering and Processing ................................................................. 8 

IV. Intermittent Hypoxemia Profile ................................................................ 9 

V. Statistical Analyses ................................................................................... 12 

VI. Validation ............................................................................................... 13 

VII. Discussion ............................................................................................. 14 

VIII. Acknowledgements ............................................................................... 15 

 

CHAPTER 3: PRENATAL OPIOID EXPOSURE AND INTERMITTENT 
HYPOXEMIA ...................................................................................................... 31 

I. Introduction ............................................................................................... 31 

II. Methods .................................................................................................... 32 

III. Results .................................................................................................. 34 



 

vi 
 

IV. Discussion ............................................................................................. 36 

V. Conclusion ................................................................................................ 38 

VI. Acknowledgements ............................................................................... 39 

 

CHAPTER 4: INTERMITTENT HYPOXEMIA IS ASSOCIATED WITH 
INCREASED SERUM C-REACTIVE PROTEIN IN PRETERM INFANTS .......... 45 

I. Introduction ............................................................................................... 45 

II. Methods .................................................................................................... 46 

III. Results .................................................................................................. 47 

IV. Discussion ............................................................................................. 48 

V. Acknowledgments ..................................................................................... 50 

 

CHAPTER 5: MATERNAL CHORIOAMNIONITIS AND INTERMITTENT 
HYPOXEMIA IN PRETERM INFANTS ............................................................... 62 

I. Introduction ............................................................................................... 62 

II. Methods .................................................................................................... 64 

III. Results .................................................................................................. 66 

IV. Discussion ............................................................................................. 67 

V. Acknowledgements ................................................................................... 69 

 

CHAPTER 6: ROLE OF INDOMETHACIN IN REDUCING INTERMITTENT 
HYPOXEMIA: PRELIMINARY ASSESSMENT................................................... 81 

I. Introduction ............................................................................................... 81 

II. Methods .................................................................................................... 82 

III. Results .................................................................................................. 84 

IV. Discussion ............................................................................................. 84 

V. Acknowledgements ................................................................................... 87 

 

CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS .................................... 94 

 

 



 

vii 
 

APPENDIX A ...................................................................................................... 99 

BLOOD TRANSFUSIONS IN PRETERM INFANTS: CHANGES ON 
PERFUSION INDEX AND INTERMITTENT HYPOXEMIA ............................. 99 

 

APPENDIX B .................................................................................................... 119 

RELATIONSHIP BETWEEN PERFUSION INDEX AND PATENT DUCTUS 
ARTERIOSUS IN PRETERM INFANTS ........................................................ 119 

 

REFERENCES ................................................................................................. 140 

 

VITA ................................................................................................................. 164 

 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 
 

LIST OF TABLES 
 

Table 3. 1: Baseline Characteristics ................................................................... 40 
Table 3. 2: Neonatal Morbidities and Outcomes ................................................. 41 
 
Table 4. 1: Respiratory Characteristics ............................................................... 51 
 
Table 5. 1: Baseline Characteristics for All Infant with and without MC or Funisitis
 ........................................................................................................................... 70 
Table 5. 2: Baseline Characteristics for No MC or Funisitis versus MC only  

infants .............................................................................................. 71 
Table 5. 3: Baseline Characteristics for No MC or Funisitis versus Funisitis 

exposed ........................................................................................... 72 
Table 5. 4: Baseline Characteristics for Infant with MC versus Funisitis ............. 73 
 
Table 6. 1: Baseline Characteristics ................................................................... 88 
Table 6. 2: Respiratory Characteristics ............................................................... 89 
Table 6. 3: Neonatal Morbidities ......................................................................... 90 
 
 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

LIST OF FIGURES 
 

Figure 2. 1: A sample showing the effect of averaging time on the number of IH 
events. ............................................................................................. 16 

Figure 2. 2: Sample demonstration of frequency of IH events averaged over 3 
intervals (weeks, days and hours). .................................................. 17 

Figure 2. 3: Sample demonstration of frequency of hyperoxemic events averaged 
over 3 intervals (weeks, days and hours). ....................................... 18 

Figure 2. 4: Sample demonstration of percent time spent with SpO2 below 
thresholds averaged over 3 intervals (weeks, days and hours). ...... 19 

Figure 2. 5: Sample demonstration of percent time spent with SpO2 above 
thresholds (hyperoxemia) averaged over 3 intervals (weeks, days 
and hours). ....................................................................................... 20 

Figure 2. 6: Mean SpO2 presented at different intervals (weeks, days, hours) 
from a sample patient. ..................................................................... 21 

Figure 2. 7: Mean average nadir and lowest SpO2 signal presented at different 
intervals (weeks, days, hours) from a sample patient. ..................... 22 

Figure 2. 8: Mean average peak and highest SpO2 signal presented at different 
intervals (weeks, days, hours) from a sample patient. ..................... 23 

Figure 2. 9: Mean average duration of IH events presented at different intervals 
(weeks, days, hours) from a sample patient. ................................... 24 

Figure 2. 10: Mean average duration of hyperoxemia events presented at 
different intervals (weeks, days, hours) from a sample patient. ....... 25 

Figure 2. 11: Sample demonstration of bradycardia events averaged over 3 
intervals (weeks, days and hours). .................................................. 26 

Figure 2. 12: Mean perfusion index (PI) presented at different intervals (weeks, 
days, hours) from a sample patient. ................................................. 27 

Figure 2. 13: Inter-observer Pearson correlations among observers for the 
number of IH events (IH-SpO2<80). ................................................ 28 

Figure 2. 14: A Pearson correlation comparing mean observer counts versus 
those calculated by IH Automated Analyses Algorithm (IH-AAA) for 
IH-SpO2<80 ..................................................................................... 29 

Figure 2. 15: A Pearson correlation comparing observer calculation versus IH 
Automated Analyses Algorithm (IH-AAA) for %time-SpO2<80 ........ 30 

 

 

 

 



 

x 
 

Figure 3. 1: Flow diagram for patient eligibility.................................................... 42 
Figure 3. 2: Comparison of %time-SpO2<80 between opioid exposed and 

unexposed. ...................................................................................... 43 
Figure 3. 3: Comparison of IH-SpO2<80 between opioid exposed and 

unexposed. ...................................................................................... 44 
 

Figure 4. 1: Proposed vicious cycle related to apnea, IH and postnatal 
inflammation. ................................................................................... 52 

Figure 4. 2: Scatter plot for CRP levels in studied patient population ................. 53 
Figure 4. 3: Scatter plots for IH in studied patient population. ............................ 54 
Figure 4. 4: Correlations comparing serum CRP and percent time below 

thresholds. ....................................................................................... 55 
Figure 4. 5: Correlations comparing serum CRP and IH frequency. ................... 56 
Figure 4. 6: Correlations comparing serum CRP and IH duration....................... 57 
Figure 4. 7: Correlations comparing serum CRP and primary outcome measure 

%time-SpO2<80 at multiple duration intervals. ................................ 58 
Figure 4. 8: Correlations comparing serum CRP and primary outcome measure 

IH-SpO2<80 at multiple duration intervals. ...................................... 59 
Figure 4. 9: Negative correlation between mean SpO2 and serum CRP. ........... 60 
Figure 4. 10: Correlation between serum CRP and IH mean nadir/mean peak .. 61 
 

Figure 5. 1:  Increase in %time-SpO2<80 in preterm infants less than 30 weeks 
born with maternal chorioamnionitis (MC)........................................ 74 

Figure 5. 2: Unadjusted differences in %time-SpO2<80 between pathologic 
maternal chorioamnionitis (MC) and/or Funisitis versus unexposed 75 

Figure 5. 3: Adjusted differences in %time-SpO2<80 between pathologic MC 
and/or Funisitis versus unexposed .................................................. 76 

Figure 5. 4: Unadjusted differences in IH-SpO2<80 between pathologic MC 
and/or Funisitis versus unexposed .................................................. 77 

Figure 5. 5: Adjusted differences in IH-SpO2<80 between pathologic MC and/or 
Funisitis and unexposed (no MC of funisitis) ................................... 78 

Figure 5. 6: Differences in severe bronchopulmonary dysplasia (BPD) among 
groups .............................................................................................. 79 

Figure 5. 7: Proposed relationship between intermittent hypoxemia and 
inflammation and possible role of maternal chorioamnionitis. .......... 80 

 

 



 

xi 
 

Figure 6. 1: Potential benefit of indomethacin in reducing intermittent hypoxemia 
(IH) in preterm infants. ..................................................................... 91 

Figure 6. 2: Potential benefit of indomethacin in reducing intermittent hypoxemia 
(IH) in preterm infants with maternal chorioamnionitis (MC). ........... 92 

Figure 6. 3: Proposed relationship between inflammation and intermittent 
hypoxemia (IH) and potential benefit of indomethacin. .................... 93 

 



 

1 
 

CHAPTER 1: INTRODUCTION AND CLINICAL RELEVANCE 
 

This chapter was published as a review article at the American Academy of 

Pediatrics NeoReviews. The following is a summary of the review with 

permission from the publisher. The full review is not open access and can be 

found at the citation below.  One section related to prenatal exposure was added 

to this chapter that was not included in the original publication.  

 
Citation: Abu Jawdeh EG. Intermittent Hypoxemia in Preterm Infants: Etiology 

and Clinical Relevance. NeoReviews. 2017 November 01; 18(11):e637-e646. 
 

I. Introduction 
 

Intermittent hypoxemia (IH), generally defined as brief, episodic drops in 

hemoglobin oxygen saturation (SpO2). Intermittent hypoxemia is a common 

disorder in preterm infants with rising evidence linking IH to neonatal morbidities 

and long term impairment.  The definition and thresholds below which IH is 

clinically relevant are debatable (1-4).  

 

II. Natural Progression 
 

Intermittent hypoxemia is inversely related to gestational age (GA) (5, 6). 

Small for gestational age (SGA) are particularly at risk to having increased IH 

compared to infants appropriate for gestational age (AGA). In addition, IH natural 

progression varies by postnatal age (1, 2). There is a low frequency of IH during 

the first week after birth, followed by a progressive increase by weeks 2-3, with a 

peak around 4-5 weeks then plateau/decrease during weeks 6-10.  The factors 

that influence the rise in IH are poorly defined (7, 8).  
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III. Factors that Influence Intermittent Hypoxemia 
 

The conventional definition of apnea of prematurity (AOP) may not be 

applicable to the causality of IH in the current extremely premature NICU 

population with lung immaturity and lung disease, because as IH can often occur 

following very brief respiratory pauses, periodic breathing or ineffective 

ventilation (9-11).  

 
The “Perfect Storm” 

The impaired  respiratory control along with  lung disease/immaturity 

create a “perfect storm”, leading to an increased  IH frequency(12). Factors that 

contribute to increased respiratory pauses and resultant IH in preterm infants 

include: upregulated inhibitory neurotransmitters, decreased central chemo-

sensitivity (7, 10, 13), paradoxical ventilatory depression in response to hypoxia 

(10, 13), hyper-excitable carotid bodies (14), immature laryngeal chemo-reflex 

(15) and low baseline functional residual capacity (FRC) (7, 10, 16). 

 

Prenatal Exposure 
 Prenatal environmental exposures such as opioids, tobacco, and other 

drugs may have a sustained effect on apnea, lung disease and subsequently IH. 

Prenatal opioid exposure alters the response to carbon dioxide and depresses 

central respiratory control centers (17-21). Opioids are known to suppress 

breathing and respiratory effort especially in neonates (22). Opioid exposed 

infants often show intrauterine growth retardation and meconium staining, two 

hallmarks of fetal hypoxia. Similar to the literature from sudden infant death, 

prenatal opioid use may increase cardiorespiratory events in preterm infants. 

Prenatal opioids, especially street heroin, cause chronic intrauterine hypoxia 

leading to brainstem gliosis damaging the central respiratory centers; hence 

likely more apnea events (19). In addition, infants with intrauterine exposure to 

drugs of abuse have “down-regulation” of placental neurotransmitter receptors 

(23). Abnormalities or depletion of receptor sites, especially if the same process 
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occurs in the fetal brain, could impair function of the normal neonatal respiratory 

control network leading to frequent or prolonged apnea and subsequent IH. 

Furthermore, prenatal exposure to other illicit drugs such as cocaine perturbs, 

albeit subtly, the maturation of respiratory control, resulting in disruption of 

postnatal respiration (24). Prenatal tobacco use is common; around 22% of 

mothers smoke while pregnant in the USA (25). Prenatal nicotine exposure 

increased apnea in neonatal mice (26). In addition, studies evaluating pulmonary 

mechanics in infants of smoking mothers indicated prenatal exposure affects 

pulmonary function by altering expiratory flow profiles, reducing respiratory 

compliance and increasing airway resistance (25, 27). Furthermore, prenatal 

tobacco alters chemoreceptor sensitivity and blunts response to hypoxia in 

infants (25, 28). Given the rising epidemic of drug abuse in the USA, a larger 

cohort aimed at understanding these relationships, especially opioids, is 

imperative and may have a direct impact on management of preterm infants.  

 
Role of Inflammation  

Inflammation increases apnea events and worsens lung disease; 

subsequently increasing IH (29-31). However, because IH is pro-inflammatory, 

the relationship between inflammation and IH may be bidirectional (7, 14, 32-35). 

 
Anemia 

Preterm infants with anemia are at increased risk for IH. As the hematocrit 

level decreases, the probability of apnea, bradycardia and IH events increases 

(1, 16, 36).  

 

Target Oxygen Saturation 

The target oxygen saturation influences the frequency of IH (8, 37). A 

lower SpO2 target is associated with greater incidence of IH events compared 

with higher SpO2 target (16).  
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IV. Monitoring  
 

Intermittent hypoxemia is very common in preterm infants with hundreds 

of events per day and accurately documenting those events by bedside providers 

is challenging without continuous automated recordings (1, 38, 39).  

 

V. Consequences 
 

There is rising evidence linking IH to neonatal morbidities and long term 

impairment. These brief episodes of oxygen desaturations have been implicated 

in the following. Data from animal models:  neurocognitive handicap, impaired 

myelination, decreased neuronal integrity, long-term neuro-functional deficits, 

increased inflammation and oxidative stress, impaired growth and sleep 

disordered breathing/apnea (32, 40-42). Data from human studies: Retinopathy 

of prematurity (ROP), Neurodevelopmental Impairment (NDI) (cognitive, motor 

and language delay) and death (3, 5, 43-46).  

 

VI. Conclusion 
 

Although IH is very common in preterm infants the extent of the problem is 

often underestimated by clinical providers. Multiple factors in preterm infants 

increase their risk for significant IH.  Intermittent hypoxemia is clinically relevant 

with rising evidence from both animal models and preterm infants linking IH to 

poor outcomes.  
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CHAPTER 2: METHOD DEVELOPMENT AND VALIDATION 
 
 

I. Introduction 
 

Intermittent hypoxemia is a common problem in preterm infants due to 

their immature respiratory control (apnea of prematurity) and lung 

immaturity/disease (BPD). All preterm infants are at risk for IH. Extreme preterm 

infants have highest risk for IH, due to their extremely immature respiratory 

control and lung immaturity/disease. When oxygen saturation (SpO2) is 

continuously recorded, extreme preterm infants have on average 150 to 200 

severe IH events per day during which their SpO2 drops below 80% (1). 

Intermittent hypoxemia (IH) is defined as episodic drops in blood oxygen 

saturation. The specific definition of oxygen saturation (SpO2) drop varies by 

research group, however most consider SpO2 drop to less than 80% as 

significant (1-3, 36). Others consider a SpO2 of less than 90% as the starting 

point (4). Calculating and establishing an IH profile that reflects the spectrum of 

IH in terms of frequency, severity and duration is imperative.  

Accurately documenting cardiorespiratory events for day-to-day patient 

care management is challenging, as the extent of IH is not apparent clinically. 

Pulse oximeters are the current standard of care for monitoring oxygenation in 

the Neonatal Intensive Care Unit (NICU). Bedside providers under-recognize the 

number of events compared to objective automated recordings. In one study, 

compared to polysomnography, nursing staff recorded less than 30% and 40% of 

IH and bradycardia events, respectively. The shorter the event, the less likely 

that it was recognized by nursing staff (36). For example, bedside providers 

documented 35% and 29% of IH events that lasted greater than 20 and 10 

seconds, respectively (38). Pulse oximeters are the current standard of care for 

monitoring oxygenation in the NICU. Hence, continuous physiologic recording is 

required for accurate detection of IH.  
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In this section we describe the development of methods for SpO2 

recording, filtering, analyses, selection of outcome measures and validation of 

our novel programs.  

 

II. Data Acquisition 
 

Oxygen saturation data were prospectively collected from preterm infants 

admitted to our level 4 NICU starting November 2014. We used Masimo Radical 

7 (Masimo, Irvine, CA) pulse oximeters for continuous data acquisition. Masimo 

pulse oximeters are widely used in NICUs worldwide due to their proprietary 

Signal Extraction Technology (SET®) that measures through motion and low 

perfusion; both important considerations in preterm infants (37, 47-52). All our 

research pulse oximeters were updated to the latest software prior to study 

initiation.  

Pulse oximeters were equipped with serial data recorders (Acumen 

Instruments Corp) for continuous data collection (4). The Acumen recorders were 

connected to the RS232 port located on the Masimo pulse oximeter docking 

station. Data was collected with 1Hz frequency (every second) and saved on 

compact flash memory cards connected to the serial data recorders. The 

compact flash memory cards saved data continuously and were manually 

downloaded by research personnel to our encrypted servers provided by the 

University of Kentucky. We programed the Acumen recorders to save the data in 

daily files (midnight to midnight). The daily files were easier to transfer due to 

smaller size. In addition, the daily files provided a visual check of data loss if any 

and troubleshooting if necessary. The Acumen serial data recorder provided a 

time stamp (date and time, including seconds) for every second of data 

download. Time stamping is important while linking our IH data to other outcome 

measures. We downloaded data from serial data recorders weekly. Initially we 
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had difficulty with memory cards not being reliable leading to data loss. However, 

that problem was transient and resolved with a different brand of memory cards.  

We also trialed a different serial data recorder (SeriaGhost Logger) that 

was placed in series with the Acumen recorders. The SerialGhost recorders were 

reliable and stored data accurately. The SerialGhost saved all data in one file 

that at times was tens of gigabytes in size before post processing. The 

SerialGhost utilized the timestamp from the pulse oximeters versus the Acumen 

which had its own time stamp (in addition to that of the pulse oximeters). The 

SerialGhost had the capacity for timestamping however in our experience it was 

not reliable and was not linked to every second of data download. The 

SerialGhost was downloaded once at the end of the study period as downloading 

weekly was not feasible in the absence of a memory card. We tested a 

SerialGhost with Wi-Fi capabilities. The goal was to download directly to our 

encrypted serves. This was more challenging than expected given both 1) 

hospital network restrictions and 2) network changes upon moving infants from 

one room to another. Currently, we only use the Acumen serial data recorders.   

A research monitoring unit is connected to the patient after informed 

consent is obtained. Initially we docked our research units to the clinical stations 

and utilized the same pulse oximeter for both for clinical and research purposes. 

An alarm delay was set to avoid alarm fatigue. However, the serial data 

recorders were sometimes left behind when moving patients among rooms. Early 

during our study period we changed this practice and currently we utilize an 

additional research pulse oximeter that moves with the patient. The research 

pulse oximeter alarm settings are silenced to avoid further noise and alarm 

fatigue. Patients are connected to the additional research pulse oximeter upon 

enrollment and monitored for first 2 months of life or 36 weeks corrected age, 

whichever came last.  
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Averaging Time 

Pulse oximeters are the current standard of care for monitoring 

oxygenation in the NICU. However, the monitor settings, such as the averaging 

time, affects the number of IH events recorded (39). Pulse oximeters average 

SpO2 values over several heartbeats. Pulse oximeters set to longer averaging 

times underestimate IH events of short duration and overestimate events of 

longer duration. This is likely as a result of several short events merged together 

as one prolonged event (Figure 2.1). Clinical pulse oximeters are set to longer 

averaging time to decrease alarm fatigue for bedside providers (53). The default 

averaging times in clinical pulse oximeters range between 8 to 10 seconds but 

can be as long as 16 seconds. An option for centers who wish to use shorter 

averaging time is setting a longer alarm delay time (10 to 15 seconds) to reduce 

alarm fatigue (53). For research purposes, similar to other groups who study IH, 

we utilized high-resolution pulse oximeters with 2-second averaging time for 

continuous SpO2 monitoring (1, 2). We confirmed and tracked the pulse oximeter 

settings weekly during data download.  

  

III. Data Filtering and Processing 
 

In collaboration with biomedical engineering (Dr. Abhijit Patwardhan 

laboratory) we developed novel programs to filter and process SpO2 data to 

analyze IH. Both algorithms were developed using Matlab (Matlab, Natick, MA).  

The IH data filtering program excluded artifacts based on both the EXC 

code provided by Masimo monitors and missing variables in the output. The 

filtering program imported the raw data in text (.txt) format and exported clean 

data in text (.txt) format as well. The exported data files were automatically 

organized daily by the algorithm. The daily file names included the patient 

identification number and the date of the recorded data. The filtering algorithm 

has the capacity to filter multiple patients at the same time.  
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The second program is called Intermittent Hypoxemia Automated 

Analyses Algorithm (IH-AAA). The IH-AAA process the filtered data files to 

analyze the IH profile (below).  The algorithm imported the clean daily text files (1 

Hz frequency) and exported analyzed IH outcome measures in excel files 

averaged over different durations and intervals (weekly, daily, hourly). This 

program has the capacity to analyze multiple patients at the same time. The 

algorithm exports multiple excel files for every patient to reflect the spectrum of 

IH of different durations (e.g. 4-180 seconds, >180 seconds, etc.) and intervals 

(weekly, daily, hourly). Each excel file is labeled with patients identification 

number, date of the recorded data and interval. The IH-AAA also has the 

capacity to filter raw data in text files.  

 

IV. Intermittent Hypoxemia Profile 
 

The clinical relevance of IH is a relatively new observation (2) with no 

accurately defined threshold below which IH leads to morbidities and impairment;  

the exact definition of IH is controversial (54). Therefore, we developed a 

program that accounts for IH at multiple thresholds and calculate an IH profile.  

The IH profile reflects the continuum of the IH problem making it possible to 

demonstrate at what level IH causes injury.  

In this section we describe the IH profile. For the purpose of 

demonstration we used a sample patient. We selected the second patient 

enrolled in our cohort (IH0002). The first patient had an early death and does not 

have a complete data set.   

Frequency 

The number of IH events is calculated for every interval (weekly, daily, 

hourly). The frequency of IH is a primary outcome measure that has been utilized 

by us and other groups and linked to neonatal morbidities and mortality (1, 2, 4, 

55, 56). We define severe IH events as a SpO2 drop to less than 80% (IH-
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SpO2<80). Moderate and mild IH are defined as a drop in SpO2 to less than 85% 

(IH-SpO2<85) and 90% (IH-SpO2<90), respectively. An additional outcome 

measure is calculated based on Rhein et al. where mild IH is calculated based on 

a change from baseline by more than 4% and to SpO2<90 (IH-SpO2<90 (>4% 

Drop))(4). We have the capacity to change our thresholds for IH frequency. Our 

program outputs frequency of IH at different intervals (weeks, days, hours) as 

represented in Figure 2.2. An upper threshold is often set for IH to differentiate 

intermittent from sustained hypoxemia. We also document sustained hypoxemia 

measures.   

Similar to IH, hyperoxemic events are calculated. Documenting 

hyperoxemia is important given both the associated morbidities and to assess 

fluctuations in oxygenation. We currently have the hyperoxemia severity set at 2 

thresholds with SpO2 more than 95% (IH-SpO2>95) and 97% (IH-SpO2>97). 

Sample patient for hyperoxemic events frequency is presented in Figure 2.3.  

Percent time   

The percent time in hypoxemia is another primary measure. The benefit of 

this outcome measure is that it represents cumulative IH events of short and long 

duration. The same 3 SpO2 thresholds for percent time in hypoxemia are 

selected here for severe (%time-SpO2<80), moderate (%time-SpO2<85) and 

mild hypoxemia (%time-SpO2<90 and %time-SpO2<90 (>4% drop)) (Figure 
2.4). This measure of percent time spent with SpO2 below threshold was chosen 

per Poets et al. (3). Percent time is calculated at multiple intervals (weeks, days, 

hours). Similarly, hyperoxemia is analyzed demonstrating percent time spent with 

SpO2 more than 95% and 97%, (Figure 2.5). Percent time outcome measure is 

not affected by averaging time and is clinically relevant in all NICUs (39).  

Mean, Nadir and Peak 

The mean, nadir and peak SpO2 measures provide an additional 

perspective for IH. Mean is calculated for every interval (weeks, days, hours) and 

provides a baseline for IH during that interval (Figure 2.6). Both an average nadir 
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for all events and lowest nadir are calculated. The nadir provides insight 

regarding the severity of IH (Figure 2.7). Similarly the average peak and highest 

signal are calculated for every interval (weeks, days, hours), (Figure 2.8).   

Duration 

The duration of IH is addressed in multiple forms. First, the average 

duration of IH events below every threshold is calculated for the three intervals 

(weeks, days, hours) (Figure 2.9). Similarly the average duration is calculated for 

hyperoxemia (Figure 2.10). However, the duration of IH may vary widely and the 

average duration may not be representative as it is influenced by outliers. Hence, 

we developed our algorithm to output multiple files of different duration cutoffs 

(for example multiples of 60 seconds). E.g. 1-59seconds, 60-119 seconds, 120-

179 seconds, 180-239 seconds, 240-299, >300 seconds. By dividing the duration 

cutoffs, the average duration is influenced less by outliers. The duration cutoffs 

can be easily adjusted to any duration (for example multiples of 30 seconds, etc.) 

In addition, we use the 4-180 second cutoff for the primary measure as 

previously described by Abu Jawdeh et al. and Rhein et al. (1, 4). 

Bradycardia 

 Heart rate decelerations or bradycardia events are part of the apnea of 

prematurity problem. Our algorithm calculates bradycardia below 2 thresholds of 

80 and 100 beats per minute (bpm) (Figure 2.11) (11). The relative time of 

bradycardia to IH is also calculated. However, the role of heart rate deceleration 

is beyond the scope of this document.  

Perfusion Index 

Perfusion index (PI) is a noninvasive measure of perfusion thought to 

reflect the general hemodynamic status of the preterm infant (57, 58).  Perfusion 

index assesses the pulse strength derived from pulse oximetry. Perfusion index 

is measured by infrared light, and is calculated as the ratio of the pulsatile to non-

pulsatile components of the blood flow in tissue. The value of PI has been 
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demonstrated in multiple neonatal morbidities (59, 60), including prediction of 

patent ductus arteriosus patency shown from this cohort (61). Figure 2.12 

demonstrates PI in a sample patient.  

 

V. Statistical Analyses 
 

Statistical modeling must account for the covariance among repeated 

measurements from the same subject. A general strategy to do so is to use linear 

mixed models, also known as linear multilevel models, hierarchical models, or 

multivariate Gaussian models (62). Correctly accounting for this correlation will 

ensure standard errors are appropriately estimated, thus yielding correct p-

values and thus valid inference. Furthermore, in our experience and elsewhere, 

the need for an appropriate transformation, such as the square root, is needed 

for IH-based measures (2).  

In order to attain valid inference, the model for the mean structure of the 

given outcome over time, as well as the model for the covariance among 

outcomes from the same subject (not of interest to the research question, but a 

necessity for inference), must be correctly specified (62). Otherwise, inference 

may be biased. A simple solution to this issue is to look at outcomes aggregated 

over weekly periods; e.g., weekly IH totals.  In such a case, a statistical model 

can treat time as categorical to ensure a correctly specified mean structure with 

respect to time. Furthermore, a working unstructured covariance can be used 

with such a mean structure to ensure appropriate standard error estimation.  

Finally, this flexible modeling of the mean and covariance structures allows 

inference to be valid if any missing data are missing completely at random 

(MCAR) or missing at random (MAR) (63).  

Outcome data is sometimes not captured for periods of time for example 

due to patient leaving the NICU for procedures or imaging. Therefore, as 

outcomes are usually aggregated over time, e.g. the total IH count for a given 



 

13 
 

weekly period, such outcomes should be weighted by the amount of time they 

were observed. For instance, if interest is in weekly IH count, but IH data were 

only obtained for exactly half of the week, then that subject’s total IH count would 

need to be doubled for use in the statistical analysis such that it represents the 

desired weekly total. A weight of one half would then need to be assigned to this 

outcome value in the analysis. If this weighting procedure is not done, estimated 

means and standard errors may be biased.    

 

VI. Validation 
 

In order to validate the novel program, we performed an assessment 

comparing IH measures calculated by the algorithm to those of independent 

observers. The observers were masked (blind) to the algorithm analyses. We 

obtained SpO2 data from 20 preterm infants less than 30 weeks GA randomly 

selected from our cohort. A total of 60 hours were analyzed. Each subject 

contributed 3 hours of SpO2 data; 1 hour from each postnatal age epoch (1 

week, 1 months and end of study period) as defined by Abu Jawdeh et al. (1). 

We included IH events 4-180 second duration per Abu Jawdeh et al. (1). The 

validation presented focuses on two primary measures, IH-SpO2<80 and %time-

SpO2<80. Other thresholds of less than 85% and 90% were examined with 

similar results. 

The observers were masked to both other observers and algorithm 

counts. Three observers manually counted the first measure of IH-SpO2<80 from 

the raw data. The second measure of %time-SpO2<80 was analyzed by a 

singled masked observer utilizing Microsoft Excel (Excel Version 2010). Pearson 

correlations among observers and algorithm were performed using GraphPad 

(Prism 7). There was excellent correlation among observers as presented in 

Figure 2.13. For IH-SpO2<80, there was excellent correlation between mean 

observer count and algorithm count as presented in Figure 2.14. For %time-
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SpO2<80, there was excellent correlation between observer and algorithm as 

presented in Figure 2.15. 

 

VII. Discussion  
 

There is rising evidence linking IH to both short and long term morbidities 

in preterm infants and hence, accurate recording of these events is paramount in 

determining their impact. In this chapter we described methods development to 

collect and process SpO2 data to measure IH. We defined our IH outcome 

measures with emphasis on IH profile. Finally, we presented the process for 

validating IH-AAA for accurate and reliable measurement of IH. We have 

developed an automated, convenient, and time efficient strategy to record such 

events, with exceptional accuracy when compared to human measurements.  

The clinical significance of IH in preterm infants is a relatively new 

observation (2, 3, 54). In the past, brief IH events occur hundreds of times per 

day seemed clinically insignificant.  However in the last 5-10 years, the interest in 

accurately documenting these IH events increased given the recent evidence 

linking IH to neonatal morbidities. Accurately documenting IH should involve a 

continuous physiologic recording with an automated system as bedside providers 

under-recognize the number of events (36, 38). An important factor in continuous 

monitoring is averaging time of pulse oximeters. As longer averaging times will 

underestimate IH events of short duration and overestimate events of longer 

duration (39, 64). This is likely as a result of several short events merged 

together as one prolonged event (39, 64). 

An additional challenge relates to IH is variation in definitions. This 

variation is likely related to the unknown thresholds below which IH leads to 

injury. Most centers however consider a SpO2 drop to less than 80% as clinically 

relevant. We developed an IH profile that represents the continuum of IH. The IH 
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profile allows us to better define at what threshold (e.g. severity, duration, etc.) IH 

matters clinically.  

 In conclusion, over the last 5 years we developed efficient and validated 

methods to accurately assess IH. We are one of few centers in the nation able to 

perform high fidelity studies related to IH in preterm infants.  
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Figure 2. 1: A sample showing the effect of averaging time on the number 
of IH events. 

A) The 2 second averaging time recording shows 3 events IH-SpO2<90, 3 event 

IH-SpO2<85 and 2 event IH-SpO2<80. In contrast, 16 second averaging 

conversion shows 1 event IH-SpO2<90, 3 events IH-SpO2<85 and 1 event IH-

SpO2<80. B) This figure zooms in to seconds 40-60 to show how increased 

averaging time smooths the waveform by merging multiple short events. 

0 2 0 4 0 6 0

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

S e c o n d s

S
p

O
2

 (
%

)

2  s e c o n d s

1 6  s e c o n d s
8  s e c o n d s

4 0 4 5 5 0 5 5 6 0

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

S e c o n d s

S
p

O
2

 (
%

)

2  s e c o n d s

8  s e c o n d s

1 6  s e c o n d s

B

A



 

17 
 

 

Figure 2. 2: Sample demonstration of frequency of IH events averaged over 
3 intervals (weeks, days and hours). 

The graphs present IH below multiple thresholds: IH-SpO2<90 (>4% Drop), IH-

SpO2<90, IH-SpO2<85 and IH-SpO2<80.  
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Figure 2. 3: Sample demonstration of frequency of hyperoxemic events 
averaged over 3 intervals (weeks, days and hours). 

The graphs present hyperoxemia events with SpO2 greater than 95% (IH-

SpO2>95) and 97% (IH-SpO2>97). 
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Figure 2. 4: Sample demonstration of percent time spent with SpO2 below 
thresholds averaged over 3 intervals (weeks, days and hours). 

The graphs present percent time below multiple thresholds: %time-SpO2<90 

(>4% Drop), %time-SpO2<90, %time-SpO2<85 and%time-SpO2<80.  
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Figure 2. 5: Sample demonstration of percent time spent with SpO2 above 
thresholds (hyperoxemia) averaged over 3 intervals (weeks, days and 
hours). 

The graphs present percent time with SpO2 greater than 95% (%time-SpO2>95) 

and 97% (%time-SpO2>97). 
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Figure 2. 6: Mean SpO2 presented at different intervals (weeks, days, 
hours) from a sample patient.  
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Figure 2. 7: Mean average nadir and lowest SpO2 signal presented at 
different intervals (weeks, days, hours) from a sample patient.  
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Figure 2. 8: Mean average peak and highest SpO2 signal presented at 
different intervals (weeks, days, hours) from a sample patient. 
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Figure 2. 9: Mean average duration of IH events presented at different 
intervals (weeks, days, hours) from a sample patient.  
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Figure 2. 10: Mean average duration of hyperoxemia events presented at 
different intervals (weeks, days, hours) from a sample patient. 
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Figure 2. 11: Sample demonstration of bradycardia events averaged over 3 
intervals (weeks, days and hours). 

The graphs present heart rate deceleration below two thresholds of 100 beats 

per minute (bpm) and 80bpm.   
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Figure 2. 12: Mean perfusion index (PI) presented at different intervals 
(weeks, days, hours) from a sample patient. 
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Figure 2. 13: Inter-observer Pearson correlations among observers for the 
number of IH events (IH-SpO2<80). 

(A) Observer 2 vs. Observer 1. (B) Observer 3 vs. Observer 1 (C) Observer 3 vs. 

Observer 2. 
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Figure 2. 14: A Pearson correlation comparing mean observer counts 
versus those calculated by IH Automated Analyses Algorithm (IH-AAA) for 
IH-SpO2<80 
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Figure 2. 15: A Pearson correlation comparing observer calculation versus 
IH Automated Analyses Algorithm (IH-AAA) for %time-SpO2<80 
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CHAPTER 3: PRENATAL OPIOID EXPOSURE AND INTERMITTENT 
HYPOXEMIA 
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I. Introduction 
 

 Intermittent hypoxemia (IH) is defined as brief, episodic drops in oxygen 

saturation (SpO2) (1, 2). Preterm infants are at increased risk for IH due to their 

respiratory control instability/apnea of prematurity superimposed on immature 

lung structure/function. Intermittent hypoxemia in preterm infants can persist 

beyond discharge from the neonatal intensive care unit (NICU) (4). Brief 

episodes of oxygen desaturations may seem clinically insignificant, but these IH 

episodes, occurring up to hundreds of times per day, have a cumulative effect on 

neonatal morbidity and mortality. There is ample evidence showing a significant 

effect of IH on neurocognitive handicap, decreased neuronal integrity, increased 

inflammation and oxidative stress, and impaired growth (32, 41). Furthermore, IH 

has been linked to severe retinopathy of prematurity and long term 

neurodevelopmental impairment such as worse language and motor outcomes 

(2, 3, 43, 44) (45). The clinical relevance of IH is a relatively new observation with 

the advent of high-resolution pulse oximeters and assessing factors that 

influence IH is imperative.  
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There is a rise in substance misuse in the USA reaching a nationwide 

epidemic (65-70). There is an urgent need to understand the impact of prenatal 

opioid exposure on neonatal outcomes (41). Opioid exposure is associated with 

long-term neurobehavioral and developmental impairment in infants (71-78). 

Opioids are known to suppress breathing and respiratory effort especially in 

neonates (22). Since most mothers who misuse opioids have also been found to 

smoke and use poly-drugs that affect breathing pattern, it has been challenging 

to assess the isolated effect of prenatal opioid exposure on respiratory outcomes. 

Prenatal tobacco exposure alters respiratory control and worsens lung function 

(25-28, 79). Prenatal exposure to other illicit drugs such as cocaine perturbs 

maturation of respiratory control, resulting in disruption of postnatal respiration 

(24). Only few studies were able to assess the effect of isolated opioid exposure 

on neonatal respiratory outcomes. However, these studies included mostly later 

preterm and term infants or were limited to short monitoring times and small 

sample sizes (17, 80). In this study, we utilize continuous high resolution pulse 

oximeters to assess the relationship between isolated prenatal opioid exposure 

and IH in preterm infants during the first 2 months of life.  

 

II. Methods 
 

Study Design and Data Collection 

Oxygen saturation data were prospectively collected from 130 preterm 

infants less than 30 weeks gestational age (GA) admitted to our level 4 NICU 

between November 2014 and April 2017. We used high resolution pulse 

oximeters (Radical 7: Masimo, Irvine, CA) set at 2 second averaging time and 

1Hz sampling rate to continuously monitor patients during the first 8 weeks of life. 

In order to differentiate intermittent from sustained hypoxemia, we included 

events between 4-180 seconds (1). The exact threshold below which IH is 

clinically significant is controversial. A drop in SpO2 to less than 80% is widely 
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considered to be clinically relevant (1-3). Therefore, the primary outcome 

measure was defined as percent time spent with SpO2 below 80% (%time-

SpO2<80). The secondary outcome measure was defined as the number of 

severe IH events with SpO2 less than 80% (IH-SpO2<80).  Other outcome 

measures such as length of stay and neonatal morbidities were collected.   

Pulse oximeters were equipped with serial data recorders (Acumen 

Instruments Corp) for continuous data collection. Novel programs were utilized to 

filter and analyze data (Matlab, Natick, MA) (1, 61). Data with artifacts were 

excluded. Only SpO2 data with good signal were included in the analyses. 

Preterm infants less than 30 weeks GA were included. Infants with major 

congenital malformations were excluded.  

Data related to substance misuse and tobacco use were retrospectively 

collected from medical charts. If a mother chronically used prenatal opioids and/or 

the maternal/neonatal drug screens were positive for opioids, then the infant was 

considered for screening. Infants were then excluded from the study if the mother 

used tobacco, alcohol, or other drugs (such as cannabis); i.e., in order to assess for 

isolated opioid exposure, patients with any other exposure were excluded.  Infants 

in our cohort who were not exposed to opioids, tobacco, or other drugs served as 

controls. Neonatal meconium or urine drug screens are performed in the immediate 

newborn period. Positive drug screens due to opioids and other medications used 

for pain or sedation during delivery were excluded, as they do not represent 

prenatal misuse. Tobacco and alcohol use were collected from mothers’ medical 

records, as the toxicology screens at our hospital do not test for alcohol or tobacco 

exposure. The study was approved by the University of Kentucky Institutional 

Review Board, and informed consent was obtained prior to SpO2 data acquisition. 

Statistical Analysis 

Descriptive statistics for continuous variables are presented as either the 

mean with standard deviation or median with interquartile range, and frequencies 

and percentages are given for categorical variables.  Two-sample t-tests and 
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Wilcoxon two-sample tests were used to compare opioid exposure to non-

exposure with respect to continuous variables, and chi-square or Fisher’s exact 

tests were used for categorical variables.  To compare opioid exposure to non-

exposure with respect to IH measures over time, we utilized multivariate 

Gaussian linear modeling in order to account for repeated measurements from 

subjects, and to adjust for the potential confounders of gestational age, birth 

weight, APGAR score at 5 minutes of life, gender, and the use of prenatal 

steroids.  In order to meet statistical assumptions in these models, the square 

root of the IH measures was taken. Furthermore, weekly observations were 

weighted by the percentage of time IH was tracked during the given week.  

Analyses were conducted in SAS version 9.4 (SAS Institute, Cary, N.C.), and all 

tests were two-sided with a 5% significance level. 

 

III. Results 
 

Of the 127 infants in our database with complete data sets, 19.7%, 29.1%, 

and 4.7% were prenatally exposed to opioids, tobacco and cannabis, 

respectively. None were exposed to alcohol, cocaine and other illicit drugs. 

Opioid exposed infants were positive for buprenorphine metabolites (64%), 

oxycodone (16%) and other opioids such as heroin and fentanyl (20%). A total of 

82 infants qualified for analysis as they were either unexposed to any illicit 

drug/tobacco (n=68) or exposed to opioids only (n=14). Figure 3.1 presents the 

flow diagram for patient eligibility and exclusion.   

There were no significant differences in baseline characteristics as 

presented in Table 1. The mean GA was 27 weeks in both groups. There were 

no significant differences in birth weight, gender and Apgar scores at 5 minutes 

of life. The vast majority of infants received prenatal steroids with no difference 

between groups. There were no significant differences in respiratory outcomes 

and neonatal morbidities between groups as presented in Table 2. Our cohort 

included preterm infants less than 30 weeks GA. Essentially all infants had 
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respiratory distress syndrome and received surfactant. Severe 

bronchopulmonary dysplasia, postnatal steroids use for lung disease, and 

oxygen need at 28 days, 36 weeks postmenstrual age and at discharge did not 

differ between opioid exposed and unexposed groups (all p=NS). Other neonatal 

morbidities such as patent ductus arteriosus, late onset sepsis, and necrotizing 

enterocolitis did not differ between groups (all p=NS). None of the exposed 

infants died versus 9 deaths in the unexposed group (p= 0.35). The median 

length of stay was 17 days longer in the opioid group (85 days) compared to 

unexposed group (68 days); however, the results were not statistically significant 

(p=0.32).  

There was a statistically significant increase in our primary outcome 

measure, %time-SpO2<80, as represented in Figure 3.2. The estimated 

difference in the means of the square root of %time-SpO2<80 was 0.23 [95% CI: 

(0.03, 0.43), p=0.03]. The mean number of IH events was estimated to be 2.95 

[95% CI: (-0.35, 6.25), p-value = 0.08] higher in the opioid exposed group, as 

represented in Figure 3.3; however, this did not reach statistical significance. 

Note that these results represent the square root of means in order to meet 

statistical assumptions in these models; estimated medians for IH measures are 

calculated using our model results and are presented in Figures 3.2B and 3.3B. 

Given increased death in the unexposed group, we then analyzed data excluding 

deaths, and results were similar. Specifically, there was a statistically significant 

increase in our primary outcome measure (%time-SpO2<80) in the opioid 

exposed compared to the unexposed group, with an estimated mean difference 

(square root) of 0.24 [95% CI: (0.05, 0.44), p-value = 0.02]. Furthermore, the 

mean number of IH events was estimated to be 2.98 [95% CI: (-0.20, 6.16), p-

value = 0.07] higher in the opioid exposed group, not quite reaching statistical 

significance.  
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IV. Discussion 
 

These results suggest that prenatal opioid exposure is associated with 

increased IH measures compared to unexposed preterm infants. This study has 

two main findings. First, interestingly, the increased IH measures in opioid 

exposed infants persisted beyond the early postnatal period. Preterm infants 

were continuously monitored with high resolution pulse oximeters during the first 

2 months of life. Second, we had the unique opportunity to assess the 

relationship between isolated opioid exposure and respiratory instability in 

preterm infants. It was challenging in the past to assess the relationship between 

isolated prenatal opioid exposure and respiratory outcomes/IH, as the majority of 

women who use opioids also smoke or misuse poly-drugs. Given our cohort 

demographics, we had the ability to report this association in infants exposed to 

opioids only.  

Another interesting secondary finding in our study is the steady increase in 

IH in the first month of life before plateauing and then decreasing. This natural 

progression of IH has been described before from another cohort of preterm 

infants less than 28 weeks GA (1, 2). Our study replicates this finding from a new 

cohort of preterm infants less than 30 weeks GA. The rise in IH may be related to 

peripheral chemoreceptor dysregulation and development of lung disease (7). 

Patients in our opioid exposed and unexposed groups did not significantly 

vary in terms of baseline characteristics (such as age, weight, gender) and 

neonatal morbidities (such as lung disease, patent ductus arteriosus, late onset 

sepsis and necrotizing enterocolitis). In addition, we adjusted in the model for 

factors that may influence oxygenation in preterm infants such as GA and 

prenatal steroids. The finding of 9 deaths in the unexposed group compared to 

no deaths in the opioid exposed group may be due to chance. Secondary 

analyses excluding deaths showed similar results with increased IH in the opioid 

exposed group. A significant secondary finding in this study is the high 

prevalence of tobacco and drug exposure in our cohort of preterm infants. The 
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frequency of opioid exposure in our preterm population is higher than previously 

reported, thus creating urgency toward addressing this significant problem in this 

vulnerable patient population (65, 67-70). 

There are multiple proposed mechanisms by which prenatal opioid 

exposure may affect breathing patterns and subsequent persistent IH in preterm 

infants. Prenatal opioid exposure alters the response to carbon dioxide and 

depresses central respiratory control centers (17-21); a main driver for 

respiratory output. Olsen et al demonstrated a blunted response to carbon 

dioxide in methadone exposed infants compared to controls (17). Ali et al 

compared the response to hypercarbia among three groups of term patients who 

were exposed to tobacco/substance misuse, tobacco alone, and unexposed 

controls. The authors showed a lower increase in central respiratory drive in 

response to hypercarbia in infants exposed to substance misuse as compared to 

tobacco alone and unexposed controls (18). Another mechanism that explains 

our results may be related to in utero hypoxia related to opioids. Prenatal opioids, 

especially street heroin, cause chronic intrauterine hypoxia leading to brainstem 

gliosis, resulting in injury to the central respiratory network. This may lead to 

respiratory instability and subsequent IH (19). Finally, data from animal models 

showed that exposure to opioid agonists caused down-regulation of placental 

neurotransmitter receptors (23). Abnormalities or depletion of receptor sites, 

especially if the same process occurs in the fetal brain, could impair the function 

of the normal neonatal respiratory control network leading to frequent or 

prolonged apnea and subsequent IH.   

Many studies have assessed the impact of prenatal opioid exposure on 

sudden infant death syndrome (SIDS) in infants with controversial results. This 

study does not address SIDS; rather, it focuses on IH, the end result of apnea of 

prematurity. However, the mechanism by which prenatal opioid exposure is 

associated with increased SIDS and IH may be similar. Although our study period 

focused on the inpatient setting, it is plausible that opioid exposed infants 

continue to have increased cardiorespiratory events/IH after discharge. 
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Interestingly, compared to unexposed infants, opioid exposed infants had a trend 

toward longer length of stay (68 versus 85 days, p=NS), which may be related, in 

part, to persistent cardiorespiratory events. 

A major limitation of this study is that data related to exposure were 

retrospectively collected. Another limitation is a lack of reporting daily caffeine 

use and daily respiratory support settings. At our center, virtually all infants with 

GA less than 30 weeks are started on caffeine therapy. Furthermore, our study 

focused on IH events and lacked reporting of apnea and bradycardia events. 

Lack of addressing heart rate is a limitation since bradycardia events may be 

associated with poor long term outcomes (3). Another limitation is the small 

sample size; however, our sample size of isolated opioid exposure is relatively 

large compared to existing literature. This is a single center study; hence, our 

results may not be generalizable. Finally, we did not compare the long term 

neurodevelopmental outcomes for exposed versus unexposed infants.    

 

V. Conclusion 
 

There is rising evidence linking IH to neonatal morbidities and impairment. 

However, the exact threshold (frequency, duration, severity) by which IH leads to 

injury in preterm infants needs further investigation; i.e., any increase in IH may 

be associated with impairment in preterm infants. Furthermore, there is a need to 

understand factors, such as prenatal opioid exposure, that may influence IH and 

subsequently increase neonatal morbidities. In this study, we show an 

association between prenatal opioid exposure and increased IH measures in 

preterm infants. Studies to address the relationship between opioid exposures, 

IH, and long term neurodevelopmental outcomes are imperative. Given the rising 

epidemic of opioid misuse in the USA, understanding the relationship between 

opioid exposure, IH and long term impairment is imperative. A larger prospective 

study aimed at understanding these relationships may have a direct impact on 

short and long term management of preterm infants.  
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Table 3. 1: Baseline 
Characteristics 

Opioid Exposed Unexposed p-Value 
N=14 N=68 

Gestational age (weeks) 27.0 ± 2.1 27.0 ± 1.6 0.97 
Birth weight (grams) 948 ± 263 928 ± 247 0.79 
Male 6 (43%) 23 (34%) 0.54 
Apgar 5 min 7 (6, 7.5) 6 (5, 7) 0.21 
Prenatal steroids 12 (86%) 61 (91%) 0.62 
Mean ± SD, Median (Interquartile range) 
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Table 3. 2: Neonatal 
Morbidities and Outcomes 
 

Opioid  
Exposed 

Opioid 
Unexposed 

p-Value 

N=14 N=68 
Received Surfactant 14 (100%) 62 (91%) 0.58 
Respiratory distress syndrome 14 (100%) 67 (99%) 1 
Oxygen at 28 days of life 10 (71%) 39 (57%) 1 
Oxygen at 36 weeks corrected 
age 

7 (50%) 19 (28%) 0.26 

Oxygen at discharge 9 (64%) 30 (44%) 0.18 
Severe Bronchopulmonary 
Dysplasia 

9 (64%) 27 (46%) 0.21 

Postnatal steroids use for lung 
disease 

6 (43%) 19 (29%) 0.35 

Pneumothorax 1 (7%) 2 (3%) 0.43 
Patent Ductus Arteriosus 8 (57%) 24 (35%) 0.13 
Necrotizing Enterocolitis 0 (0%) 2 (3%) 1 
Late Onset Sepsis 
Mortality 

3 (21%) 
0 (0%) 

9 (13%) 
9 (13%) 

0.43 
0.35 

Length of Stay (days) 85 (59, 101) 68 (56, 91) 0.32 
Frequency (%), Median (Interquartile range) 
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Figure 3. 1: Flow diagram for patient eligibility. 
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Figure 3. 2: Comparison of %time-SpO2<80 between opioid exposed and 
unexposed. 

A) Preterm infants exposed to prenatal opioids had increased time spent with 

oxygen saturation less than 80% (%time-SpO2<80) compared to unexposed 

infants (p=0.03). The model adjusted for gestational age, birth weight, gender, 

prenatal steroids, and Apgar scores at 5 minutes of life. B) This figure 

demonstrates the estimated average %time-SpO2<80 medians in both groups 

calculated using the adjusted model results. Sqrt, square root. 
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Figure 3. 3: Comparison of IH-SpO2<80 between opioid exposed and 
unexposed. 

A) Preterm infants exposed to prenatal opioids did not have a significant increase 

in number of intermittent hypoxemia (IH) events per week (IH-SpO2<80) 

compared to unexposed infants (p=0.08). The model adjusted for gestational 

age, birth weight, gender, prenatal steroids, and Apgar scores at 5 minutes of 

life. B) This figure demonstrates the estimated average IH-SpO2<80 medians of 

opiate exposed versus unexposed preterm infants calculated using the adjusted 

model results.  Sqrt, square root 
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CHAPTER 4: INTERMITTENT HYPOXEMIA IS ASSOCIATED WITH 
INCREASED SERUM C-REACTIVE PROTEIN IN PRETERM INFANTS  

 

I. Introduction  
 

 Systemic inflammation perturbs breathing patterns, worsens apnea and 

cardiorespiratory events. There is ample evidence in preterm infants and animal 

models demonstrating that systemic inflammation increases apnea and 

subsequent IH (29, 30, 81-83). Furthermore, apnea and subsequent increase in 

IH is often an early sign of inflammatory processes such as sepsis and 

necrotizing enterocolitis (NEC) in the neonatal intensive care unit (NICU) (29, 

30, 81-83). However, interestingly, based on animal studies, the relationship 

between inflammation and IH may be bidirectional, Figure 4.1 (7). I.e. IH may 

be pro-inflammatory itself.  

 Mounting evidence, links IH with both short and long term neonatal 

morbidities such as retinopathy of prematurity, sleep disordered breathing, 

neurodevelopmental impairment and increased mortality (2, 3, 16, 45, 46, 54, 

55, 84-86). Intermittent hypoxemic episodes due to obstructive sleep apnea in 

adults are associated with increased levels of inflammatory biomarkers (87-93).  

Multiple inflammatory markers have been tested in adults. There is ample 

evidence demonstrating increased C-reactive protein (CRP) serum levels in 

adult patients with obstructive sleep apnea (87-93).  There are no studies in 

preterm infants to support IH being pro-inflammatory; however, there is rising 

evidence from neonatal animal models suggesting IH is pro-inflammatory. For 

example, IH exposed rat-pups had increased serum inflammatory biomarkers 

such as IFN-γ and IL-1β (32). Chronic IH in rodents increases inflammation 

(monocyte chemoattractant protein-1, IL1β, TNF-α, and a 5 fold increase in IL-6) 

in the carotid body chemoreceptors altering their function and subsequently 

affecting respiratory control and apnea (14, 33-35). We wanted to assess the 
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relationship between IH and serum CRP for the first time in human preterm 

infants.  

 

II. Methods 
 

Study Design and Data Collection 

Oxygen saturation (SpO2) data were prospectively collected from 26 

preterm infants less than 30 weeks gestational age (GA) admitted to our level 4 

NICU between November 2014 and September 2015. We used high resolution 

pulse oximeters (Radical 7: Masimo, Irvine, CA) set at 2 second averaging time 

and 1Hz sampling rate to continuously monitor patients. Pulse oximeters were 

equipped with serial data recorders (Acumen Instruments Corp) for continuous 

data collection. Novel programs were utilized to filter and analyze data (Matlab, 

Natick, MA) (1, 61). Data with artifacts were excluded. Only SpO2 data with good 

signal were included in the analyses. Infants with major congenital 

malformations were excluded. 

We collected blood samples at 30 days of life to assess for systemic 

inflammation at peak of IH. Blood samples for CRP were collected for research 

purposes and not for clinical purposes; i.e. not because there was a concern for 

illness or change in status. High sensitivity CRP was analyzed using commercial 

ELISA kits. Data related to other morbidities that may increase CRP such as 

sepsis and necrotizing enterocolitis (NEC) were collected. Other demographics, 

morbidities, and respiratory characteristics were collected from medical records.  

Statistical Analyses 

Average IH measures (IH profile) were calculated for the week prior to 

CRP collection. Plots of CRP and IH measures were performed to identify 

outliers. We assessed the relationship between IH and CRP using GraphPad 
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Prism 7. Statistical analyses were based on Pearson correlation and linear 

regressions. Since the exact threshold below which IH causes injury is 

unknown, we calculated an IH profile reflecting the continuum of the problem. 

We did not set a lower or upper limit for IH in this study. A drop in SpO2 to less 

than 80% is widely considered to be clinically relevant (1-3) and therefore was 

selected as the primary outcome measure. Other thresholds included SpO2 of 

85% and 90%. Furthermore, 6 different IH duration intervals were calculated: 1-

59 seconds, 60-119 seconds, 120-179 seconds, 180-239 seconds, 240-299 

seconds, more than or equal to 300 seconds.  

 

III. Results 
 

Of the 26 infants included, 25 had SpO2 data available during the week 

prior to CRP collection. Blood samples for CRP analyses were obtained at 

median day of life (DOL) 30 (IQR 29-32 days). Scatter plots identified 2 outliers 

with CRP values of 20.829mg/dL and 69.128mg/dL (Figure 4.2). One of the 

outliers had sepsis within 2 weeks (11 days) prior to the CRP collection date. 

Three other patients had sepsis but occurred more than 2 week prior to our 

assessment. No patients had NEC. Plots for IH measures to identify outliers are 

presented in Figures 4.3.  

Median GA is 27 weeks (Interquartile Range (IQR) 26 - 28 weeks). 

Median birth weight is 980 grams (IQR 763 - 1230 grams). There were no small 

for gestational age (SGA) infants. Median weight at the time of CRP is 1220 

grams (IQR 900 – 1440 grams). Median CRP is 0.236mg/dL (IQR 0.025 - 1.648 

mg/dL). Respiratory support data are presented in Table 4.1.  

There was strong positive correlation between our primary measure, 

%time-SpO2<80, and serum CRP levels (Figure 4.4). The positive correlation 

between percent time below threshold and CRP persisted with higher SpO2 

threshold of 85% and 90%. There was moderate positive correlation between our 
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primary measure, IH-SpO2<80, and serum CRP levels (Figure 4.5). The positive 

correlation between IH events and CRP persisted with higher SpO2 threshold of 

85%. There was a strong positive correlation between duration of events and 

CRP; i.e. the longer the IH events the higher the serum CRP (Figure 4.6). 
Furthermore, there was a statistically significant positive correlation between 

primary outcome IH measures and CRP at the 6 different duration intervals 

examined (except for IH-SpO2<80 at 1-59 seconds, p-Value 0.06) (Figures 4.7 
and 4.8). The mean SpO2 and CRP had a strong negative correlation; i.e. the 

lower the mean SpO2 the higher the inflammatory marker (Figure 4.9). There 

was no statistically significant correlation between IH mean nadir and CRP 

(Figure 4.10A). There was moderate negative correlation between peak mean IH 

and CRP as represented in Figure 4.10B.  

 

IV. Discussion 
 

Our results show that increased IH is associated with increased systemic 

CRP. This relationship between IH and inflammatory markers is documented for 

the first time in human preterm infants. Interestingly, most IH profile measures at 

all three thresholds and 6 duration categories correlated with worse inflammation. 

These results are clinically relevant as elevated inflammation during NICU stay, 

mainly 28 days, has been shown to be associated with worse long term 

outcomes (94). 

Intermittent hypoxemia at all thresholds and durations was associated with 

increased serum CRP. The strongest correlation was between %time-

SpO2<threshold and CRP. This is clinically relevant as percent time below 

threshold is available to the clinical team from the clinical pulse oximeter 

histograms. The frequency of IH correlated positively with CRP only with 

moderate and severe IH. The lower the mean SpO2 is the higher the serum 

CRP; an important finding with possible impact on the oxygen target saturation 

controversy in the NICU (2, 8, 37, 46, 95, 96).  
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C-reactive protein in comprised of five identical, non-covalently associated 

subunits (approximately 23 kD each) (97). C-reactive protein has both pro-

inflammatory and anti-inflammatory characteristics (98). Both acute and chronic 

inflammation can increase CRP such as infection and metabolic stresses, 

respectively (99, 100). We chose CRP as our inflammatory measure for multiple 

reasons. First, compared to other markers of inflammation, CRP is widely used in 

the NICU with known reference ranges (101-105). Second, CRP is a good and 

stable marker for low grade inflammation (100, 106). Minor CRP elevations are 

considered a marker of low-grade inflammation, sometimes called subclinical 

inflammation or mini-inflammation. Low grade inflammation is the degree of 

inflammation we expected will be associated with increased IH. We utilized high 

sensitivity CRP commercial ELISA kits in order to measure low grade CRP 

changes. Third, multiple adult studies including meta-analyses have 

demonstrated increased CRP in patients with IH from obstructive sleep apnea 

(87-93).  

Our results suggest that IH may be pro-inflammatory itself. Since IH is pro-

inflammatory, that may lead to a spiral or snowball effect (positive feedback 

loop). Apnea events cause IH and subsequent systemic postnatal inflammation 

that is transferred to the respiratory control network, peripheral chemoreceptors 

and lungs. The postnatal inflammation leads to a further cycle of increased 

apnea events and consequently higher frequency of IH (Figure 4.1). 

Interestingly, this phenomenon may be in part responsible for the IH peak at 4-5 

weeks of age (54). 

This study has multiple strength including the prospective design and 

novel results. A major limitation for this study is the small sample size. However, 

the results were consistent at multiple IH thresholds and duration intervals 

suggesting a significant relationship between IH and increased CRP.  Another 

limitation is the use of a single inflammatory marker. Future studies should focus 

on multiple inflammatory markers along the inflammation cascade. Other 

markers that have been associated with IH in adults with obstructive sleep apnea 
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or IH in neonatal rodent models include, Interleukin (IL)-6, IL-1β, IL-8, Tumor 

Necrosis Factor (TNF)-α, Intercellular Adhesion Molecule (ICAM)-1, Interferon 

(IFN)-γ, Vascular Cell Adhesion Molecule (VCAM)-1 (14, 32-35, 89).  

 We demonstrate in this study, for the first time in preterm infants, that IH is 

associated with increased inflammation, namely CRP. While there is mounting 

evidence of adverse effects of IH, there has been no focus on inflammation in the 

cycle of events in preterm infants. Our findings are significant as the increased 

inflammation may be the mediator for increased morbidities and impairment in 

infants with IH (2, 3, 16, 45, 46, 54, 55, 84-86). Future larger studies that 

examine the role of inflammation as a mediator for long term injury from IH 

should be examined.  
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Table 4. 1: Respiratory 
Characteristics 

                       Frequency, n (%) 
Room Air 3 (12%) 
Continuous Positive Airway 
Pressure 7 (28%) 
Non-Invasive Nasal Ventilation 6 (24%) 
Conventional Ventilation  9 (36%) 
Oxygen Supplementation 12 (48%) 
These respiratory setting were collected on the day of CRP measurement.  
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Figure 4. 1: Proposed vicious cycle related to apnea, IH and postnatal 
inflammation. 
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Figure 4. 2: Scatter plot for CRP levels in studied patient population  

Two outliers were identified. Arrows identify outliers. 
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Figure 4. 3: Scatter plots for IH in studied patient population. 

A) Frequency of IH. B) Percent time with SpO2 below threshold. C) Duration of 

IH. D) Mean, nadir and peak of IH. Arrows identify outliers. 
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Figure 4. 4: Correlations comparing serum CRP and percent time below 
thresholds.  
A) %time-SpO2<90 (>4% Drop) versus CRP. B) %time-SpO2<90 versus CRP. 

C) %time-SpO2<85 versus CRP. D) %time-SpO2<80 versus CRP. All 

correlations were statistically significant with p-values were less than 0.01. 
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Figure 4. 5: Correlations comparing serum CRP and IH frequency. 
A) IH-SpO2<90 (>4% Drop) versus CRP. B) IH-SpO2<90 versus CRP. C) IH-

SpO2<85 versus CRP. D) IH-SpO2<80 versus CRP. The positive correlations 

between moderate (IH-SpO2<85), severe (IH-SpO2<80) IH and CRP are 

statistically significant (p-value less than 0.05). 
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Figure 4. 6: Correlations comparing serum CRP and IH duration. 
A) Duration SpO2<90 (>4% Drop) versus CRP. B) Duration SpO2<90 versus 

CRP. C) Duration SpO2<85 versus CRP. D) Duration SpO2<80 versus CRP. All 

correlations were statistically significant with p-values were less than 0.0001. 
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G. CRP  versus 
%time-SpO2<80 

A 
(1-59s) 

B 
(60-119s) 

C 
(120-179s) 

D 
(180-239s) 

E 
(240-299s) 

F 
(≥300s) 

r 0.6215 0.5594 0.4713 0.6632 0.5861 0.4917 

95% CI 
0.2709 to 

0.8265 
0.1804 to 

0.7938 
0.062 to 
0.7449 

0.3353 to 
0.8477 

0.2185 to 
0.808 

0.0884 to 
0.7565 

p-Value 0.002 0.0068 0.0268 0.0008 0.0042 0.0201 
Figure 4. 7: Correlations comparing serum CRP and primary outcome 
measure %time-SpO2<80 at multiple duration intervals.  
A) 1-59 seconds B) 60-119 seconds C) 120-179 seconds D) 180-239 seconds E) 
240-299 seconds F) more than or equal to 300 seconds.  G) This table presents 

the correlation coefficients (r), 95% confidence intervals (CI) and p-values for all 

intervals. All correlations were statistically significant.   
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G. CRP versus 
IH-SpO2<80 

A 
(1-59s) 

B 
(60-119s) 

C 
(120-179s) 

D 
(180-239s) 

E 
(240-299s) 

F 
(300s ) 

r 0.4031 0.555 0.4671 0.6677 0.5819 0.57 

95% CI 
-0.02225 to 

0.7049 
0.1742 to 

0.7914 
0.05663 to 

0.7425 
0.3426 to 

0.85 
0.2124 to 

0.8058 
0.1954 to 

0.7995 
p-Value 0.0628 0.0073 0.0284 0.0007 0.0045 0.0056 

Figure 4. 8: Correlations comparing serum CRP and primary outcome 
measure IH-SpO2<80 at multiple duration intervals. 
A) 1-59 seconds B) 60-119 seconds C) 120-179 seconds D) 180-239 seconds E) 
240-299 seconds F) more than or equal to 300 seconds.  G) This table presents 

the correlation coefficients (r), 95% confidence intervals (CI) and p-values for all 

intervals. All correlations (except 1-59 seconds) were statistically significant.   
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Figure 4. 9: Negative correlation between mean SpO2 and serum CRP. 

The lower is the mean oxygen saturation to the higher the CRP level. 
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Figure 4. 10: Correlation between serum CRP and IH mean nadir/mean peak 
 A) Correlation between CRP and IH mean nadir. There was no statistically 

significant relationship. B)  Significant negative correlation between mean peak 

SpO2 and CRP.  
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CHAPTER 5: MATERNAL CHORIOAMNIONITIS AND INTERMITTENT 
HYPOXEMIA IN PRETERM INFANTS 

 

I. Introduction 
 

Four million babies are born per year in the United States and close to a 

half million are premature (<37 weeks gestation) (107). The total societal 

economic cost of preterm birth is estimated at 26 billion dollars (108-110). Mean 

costs of care associated with extreme prematurity are nearly a quarter of a 

million dollars in the first 4 years of life; approximately 20 times higher than late 

preterm infants (111). Although significant progress has been made in the care of 

preterm infants, they continue to suffer from significant morbidities such as 

apnea, chronic lung disease (bronchopulmonary dysplasia (BPD)), retinopathy of 

prematurity (ROP), and neurodevelopmental impairments (NDI) (112, 113). 

Intermittent Hypoxemia (IH), contributes to the aforementioned morbidities (54). 

Brief episodes of oxygen desaturations may seem clinically insignificant, but 

these IH episodes, occurring up to hundreds of events/day, have a cumulative 

effect on morbidities and mortality. As presented in Chapter 1, mounting 

evidence, links IH with both short and long term neonatal morbidities such as 

ROP, NDI, sleep disordered breathing, and increased mortality (2, 3, 16, 45, 46, 

54, 55, 84-86). Laboratory and animal data show IH results in increased 

inflammatory cytokines, increased free radicals and oxidative stress, increased 

white matter injury, neurocognitive handicap, and poor growth (4, 41, 54, 114-

120).  

 Several predictors that influence IH have been investigated. Gestational 

age and IH are inversely related (5); with extremely preterm infants having the 

highest prevalence of IH. Infants with BPD have increased IH that persists on 

mechanical ventilation (1, 2, 7). Preterm infants with anemia are at increased 

risk for IH (1, 36); as hematocrit level decreases the probability of apnea/IH 

events increases. Intermittent hypoxemia natural progression changes with 
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postnatal age. There is low IH frequency during the 1st week of life, followed by 

a progressive increase over weeks 2-3, peaks around 4-5 weeks, and 

decreases at weeks 6-8 (1, 2, 54). The reasons leading to the rise in IH 

postnatally are poorly defined but likely due to both developing lung disease and 

chemoreceptor dysregulation possibly due to inflammation and hypoxia (7). 

Systemic inflammation increases apnea events and subsequently IH (29). 

Hofstetter et al. showed that systemic inflammation increased IL-1β that binds to 

its receptors located on endothelial cells of the blood brain barrier (29). Activation 

of IL-1β receptors leads to increased prostaglandins in the respiratory control 

network in the brain leading to respiratory depression/apnea and subsequent IH 

(29, 121). In addition, systemic inflammation worsens lung disease, decreases 

lung reserves leading to more IH in the presence of apnea (16). Interestingly, 

inflammation in the pulmonary system can be transmitted, likely through the 

vagal nerve, to the central respiratory network in the brain stem leading to further 

respiratory instability/apnea (30, 31, 122). In summary, inflammation increases 

apnea, worsens lung disease and subsequently increases IH. 

Prenatal (intrauterine) inflammation is a common cause of preterm birth. 

Prenatal inflammation can happen with or without infection. Recently in 2016 the 

National Institute of Child Health and Human Development (NICHD) suggested 

the Triple I terminology referring to Intrauterine Inflammation, Infection or both in 

order to replace chorioamnionitis. For the purpose of consistency in this 

document, we will use the terminology of maternal chorioamnionitis (MC) as the 

main contributor to prenatal inflammation (123). Funisitis is inflammation of the 

umbilical cord (124). The majority of fetuses exposed to MC develop a systemic 

fetal inflammatory response syndrome (FIRS), usually defined as elevated serum 

interleukin-6 (IL-6). Fetal inflammatory response syndrome occurs due to the 

infant being in direct contact with affected amniotic fluid and/or inflammatory cell 

or cytokine transfer through placental circulation (125-127). Importantly, prenatal 

inflammation is reported to be a major contributor to morbidities e.g. apnea, BPD, 

ROP and brain injury (2, 127-150).  
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Pilot Assessment 

 A total of 30 infants less than 30 weeks GA were enrolled in this pilot trial 

to test the hypothesis that prenatal inflammation is associated with increased IH 

in postnatal life. Patients were monitored for 4 weeks. The presence of MC was 

collected from medical records through our Vermont Oxford Network (VON) 

database. Maternal chorioamnionitis as documented by the clinical team was 

considered positive in the data base. Blood samples were collected on day of life 

(DOL) 1 to measure high-sensitivity C-reactive protein (hsCRP); widely used in 

the NICU and a reliable measure of low grade inflammation (106, 151-154). Data 

related to MC and blood samples were available for 26 patients and, of those, 6 

patients had MC. Median hsCRP on DOL 1 was more than 10 times greater in 

patients with MC (0.82 mg/dl) compared to no MC (0.071mg/dl), however, these 

differences were not statistically significant. Patients with MC had statistically 

significant increased IH during the study period (Figure 5.1) that persisted after 

adjusting for GA, gender, ethnicity, and severity of disease (SNAP-PE) scores.  

A limitation of the pilot assessment was that MC was collected per the 

clinical team and may not meet all clinical chorioamnionitis criteria (123). Hence, 

we decided to define MC in the following study per placental pathology reports. 

We wanted to test the hypothesis that pathologic MC or funisitis are associated 

with increased IH in preterm infants. Since in funisitis, the umbilical cord is 

affected, we hypothesized a greater impact on IH in those infants.  

 

II. Methods 

Study Design and Data Collection 

Oxygen saturation data were prospectively collected from preterm infants 

less than 35 weeks gestational age (GA) admitted to our level 4 NICU between 

November 2014 and July 2017. We used high resolution pulse oximeters 
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(Radical 7: Masimo, Irvine, CA) set at 2 second averaging time and 1Hz 

sampling rate to continuously monitor patients during the first 4 weeks of life. In 

order to differentiate intermittent from sustained hypoxemia, we included events 

between 4-180 seconds (1). The exact threshold below which IH is clinically 

significant is controversial. A drop in SpO2 to less than 80% is widely 

considered to be clinically relevant (1-3). Therefore, the primary outcome 

measures were defined as percent time spent with SpO2 below 80% (%time-

SpO2<80) and frequency of IH events with SpO2 drop below 80% (IH-

SpO2<80).  

Pulse oximeters were equipped with serial data recorders (Acumen 

Instruments Corp) for continuous data collection. Novel programs were utilized 

to filter and analyze data (Matlab, Natick, MA) (1, 61). Data with artifacts were 

excluded. Only SpO2 data with good signal were included in the analyses. 

Preterm infants less than 30 weeks GA were included. Infants with major 

congenital malformations were excluded.  

 The presence of MC was collected from medical records. We chose our 

exposure as pathologic MC (inflammation noted in the placenta on pathology 

reports) or Funisitis (inflammation of the umbilical cord on pathology reports) in 

attempt to have more objective data. We did not include clinical MC since the 

data related to MC was collected retrospectively and hence clinical parameters 

may not be always appropriately documented.   

 Severe BPD was investigated as a secondary outcome measure given 

the controversial literature suggesting a relationship between MC and BPD. 

Severe BPD was defined per the National Institute of Child Health and Human 

Development (NICHD) criteria for respiratory status at 36 weeks corrected age 

(155). Respiratory settings and other demographic and baseline characteristics 

were collected from medical charts.  
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Statistical Analyses  

Descriptive statistics for continuous variables are presented as either the 

mean with standard deviation or median with interquartile range (IQR), and 

frequencies and percentages are given for categorical variables.  Two-sample t-

tests and Wilcoxon two-sample tests were used to compare MC or Funisitis 

exposed to those not exposed with respect to continuous variables, and chi-

square or Fisher’s exact tests were used for categorical variables.  Patients with 

exposure or MC or Funisitis were compared to unexposed. In addition, infants 

with MC only and Funisitis were separately compared to unexposed. To 

compare MC or Funisitis infants to those not exposed with respect to IH 

measures over time, we utilized multivariate Gaussian linear modeling in order 

to account for repeated measurements from subjects, and to adjust for the 

potential confounders of gestational age, small for gestational age (SGA) and 

the use of prenatal steroids.  In order to meet statistical assumptions in these 

models, the square root of the IH measures was taken. Furthermore, weekly 

observations were weighted by the percentage of time IH was tracked during the 

given week.  Analyses were conducted in SAS version 9.4 (SAS Institute, Cary, 

N.C.) and GraphPad Prism. 

 

III. Results 
 

A total of 151 patient included in our cohort were reviewed. Of those, 121 

infants had placental pathology reports and respiratory/IH outcomes data. 

Baseline characteristics and comparisons between groups are presented in 
Tables 5.1 - 5.4. There was a difference in GA (p <0.0001) and birth weight (p= 

0.0019) among groups. Deaths prior to discharge varies among groups 

(p=0.0011) with increased mortality in the exposed compared to unexposed 

infants. Other baseline characteristics did not vary among groups. 
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Contrary to our hypothesis, infants with funisitis had no major differences 

in IH measures compared to unexposed (Figures 5.1 and 5.3). The differences 

were most pronounced while comparing the MC only group versus unexposed 

(Figures 5.2 and 5.4).  After adjusting for GA, SGA and prenatal steroids, 

statistically significant differences were noted while comparing the MC only 

versus unexposed (Figures 5.3 and 5.5). Severe BPD tended to be higher in 

any of the exposed groups compared to unexposed; however both unadjusted 

and adjusted differences were not statistically significant (Figure 5.6) 

 

IV. Discussion 
 

Our results related to IH measures in infants exposed to perinatal 

inflammation were inconsistent. The significant increase in IH in infants with 

clinical MC noted in our pilot study was not consistently replicated in infants with 

pathologic definition of MC. There were increased IH measures in infants 

exposed to pathologic MC and/or funisitis compared to unexposed infants. After 

adjusting for GA, SGA status and prenatal steroids, differences were statistically 

significant in the MC only group. Severe BPD did not vary among groups, 

however tended to be higher in pathologic MC and/or funisitis exposed infants 

compared to unexposed.   

 There were no differences in SGA status between groups, a major risk 

factor for increased IH. Infants with pathologic MC had lower GA and birth 

weight compared to those unexposed. This is an expected finding given that the 

incidence of prenatal inflammation is inversely related to GA, ranging from 75% 

to 35% in 23 and 29 week GA infants respectively (127, 156-159). This 

difference in GA may be responsible for the increased unadjusted IH in the 

exposed groups. Statistically significant higher IH persisted in the MC only group 

after adjusting for GA. Interestingly, infants with MC only group had a 

statistically significant smaller GA compared to funisitis infants (Table 4). This 
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may suggest that the impact of MC on IH is most pronounced in extreme 

prematurity; in contrast to our cohort that included older preterm infants of less 

than 35 weeks GA. We did not adjust for birth weight in the model analyses 

given the collinear relationship with GA.  

Our results suggest that the effect of prenatal inflammation due to MC on 

IH persisted far beyond the perinatal period; an interesting and important finding 

documented for the first time in human preterm infants. The reasons for 

persistently increased IH in MC exposed infants at 5-6 weeks postnatal age 

(Figure 5.1 and Figure 5.3) are unknown. We speculate that perinatal 

inflammation from MC exacerbates the IH/inflammation cycle by causing 

chemoreceptor dysregulation and worsening of lung disease (Figure 5.7) (7).  

A limitation of this study is that data related to MC were retrospectively 

collected. The choice of pathologic definition of chorioamnionitis is another 

limitation that likely had an impact on our results. Pathologic chorioamnionitis is 

a histologic finding that may not be symptomatic with no change in maternal 

clinical status and subsequently the infant. The placenta is thought to act as a 

barrier that protects the infant and therefore without clinical symptoms the full 

impact of inflammation may not have reached the infant. Our choice of 

pathologic definition relates to inconsistent documentation in medical records of 

symptoms of clinical chorioamnionitis such as uterine tenderness and foul 

smelling amniotic fluid; hence we may underestimate the number of clinical 

chorioamnionitis. The secondary outcome measure of severe BPD was chosen 

as a dichotomous variable per the NICHD definition (155). The absence of 

significant differences in severe BPD among groups may under estimate the 

complexity and continuum of lung disease in preterm infants. Finally, this is a 

single center study and our results may not be generalizable. 

 This study investigates relationship between prenatal inflammation due to 

MC and IH. No other groups have studied this relationship in the past in preterm 

infants. We demonstrated a persistently increased IH in the MC only group 
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beyond the perinatal period, long after the direct effect of inflammation resolves. 

Our inconsistent results may be related to the pathologic definition of MC versus 

clinical chorioamnionitis. Prospective studies investigating the impact of clinical 

chorioamnionitis on IH may provide mechanistic insights in this understudied 

relationship between inflammation and IH in preterm infants. 
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Table 5. 1: Baseline Characteristics for All Infant with and without MC or 
Funisitis 

 
No MC or Funisitis MC or Funisitis p-Value 

N 58 61 
 

Gestational Age 27 3/7 25 6/7-28 5/7 25.6 24 6/7-26 6/7 <0.0001 

Birth Weight 1030 765-1155 830 685-980 0.006 

Small for Gestational Age 3 5.2% 3 4.9% 1 

Prenatal Steroids 53 91.4% 54 88.5% 1 

Female 28 48.3% 31 50.8% 0.31 

Non-Hispanic/ White 49 84.5% 52 85.2% 1 

Deaths 2 3.4% 8 13.1% 0.001 

Median IQR, n %, MC: Maternal Chorioamnionitis 
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Table 5. 2: Baseline Characteristics for No MC or Funisitis versus MC only infants 

 
No MC or Funisitis MC only p-Value 

N 58 19 
 

Gestational Age 27 3/7 25 6/7-28 5/7 25 1/7 23 6/7-25 6/7 <0.0001 

Birth Weight 1030 765-1155 730 640-853 0.001 

Small for Gestational Age 3 5.2% 1 5.3% 1 

Prenatal Steroids 53 91.4% 16 84.2% 1 

Female 28 48.3% 6 31.6% 0.4253 

Non-Hispanic/ White 49 84.5% 17 89.5% 0.7893 

Deaths 2 3.4% 4 21.1% 0.0263 

Median IQR, n %, MC: Maternal Chorioamnionitis 
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Table 5. 3: Baseline Characteristics for No MC or Funisitis versus Funisitis 
exposed 

 
No MC or Funisitis Funisitis p-Value 

N 58 42 
 

Gestational Age 27 3/7 25 6/7-28 5/7 26 2/7 25 1/7-27 5/7 0.0093 

Birth Weight 1030 765-1155 880 700-1145 0.1047 

Small for Gestational Age 3 5.2% 2 4.8% 1 

Prenatal Steroids 53 91.4% 38 90.5% 0.0067 

Female 28 48.3% 25 59.5% 0.0558 

Non-Hispanic/ White 49 84.5% 35 83.3% 0.7069 

Deaths 2 3.4% 4 9.5% 0.1829 

Median IQR, n %, MC: Maternal Chorioamnionitis 
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Table 5. 4: Baseline Characteristics for Infant with MC versus Funisitis 

 
MC Funisitis p-Value 

N 19 42  

Gestational Age 25 1/7 23 6/7-25 6/7 26 2/7 25 1/7-27 5/7 0.003 

Birth Weight 730 640-853 880 700-1145 0.03 

Small for Gestational Age 1 5.3% 2 4.8% 1 

Prenatal Steroids 16 84.2% 38 90.5% 0.69 

Female 6 31.6% 25 59.5% 0.19 

Non- Hispanic/ White 17 89.5% 35 83.3% 1 

Deaths 4 21.1% 4 9.5% 0.47 

Median IQR, n %,  MC: Maternal Chorioamnionitis 
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Figure 5. 1:  Increase in %time-SpO2<80 in preterm infants less than 30 
weeks born with maternal chorioamnionitis (MC). 

The %time spent with SpO2<80% was higher in the MC group compared to no 

MC. Statistically significant difference noted in model analysis (adjusted) 

between groups during study period, p<0.05. This data is from a pilot 

assessment defining MC per clinical team.  
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Figure 5. 2: Unadjusted differences in %time-SpO2<80 between pathologic 
maternal chorioamnionitis (MC) and/or Funisitis versus unexposed 
This figure demonstrates unadjusted differences in %time-SpO2<80 between 
pathologic maternal chorioamnionitis (MC) and/or Funisitis and unexposed (no 
MC or Funisitis). A) The %time-SpO2<80 was higher in MC or funisitis group 
compared to no MC or funisitis (unexposed). The differences were statistically 
significant during postnatal weeks 4, 5, 6, and 8. B)  The %time-SpO2<80 was 
consistently higher in MC only compared to no MC or funisitis. The differences 
were statistically significant during all postnatal weeks (except week 2). C) There 
were no statistically significant differences in %time-SpO2<80 in funisitis vs no 
MC or funisitis groups. **p<0.01, *p<0.05, +p<0.1. 
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Figure 5. 3: Adjusted differences in %time-SpO2<80 between pathologic MC 
and/or Funisitis versus unexposed 
This figure demonstrates adjusted differences in %time-SpO2<80 between 
pathologic maternal chorioamnionitis (MC) and/or Funisitis and unexposed (no 
MC or Funisitis). The graphs presents exposed minus unexposed estimates after 
adjusting for gestational age, small for gestational age status and prenatal 
steroids. A) There was no difference in %time-SpO2<80 in MC or funisitis group 
compared to no MC or funisitis (unexposed). B)  The %time-SpO2<80 was 
higher in MC only compared to no MC or funisitis. The adjusted differences were 
statistically significant during postnatal weeks 5 and 6. C) There were no 
statistically significant differences in %time-SpO2<80 in funisitis vs no MC or 
funisitis groups. *p<0.05, +p<0.1. 
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Figure 5. 4: Unadjusted differences in IH-SpO2<80 between pathologic MC 
and/or Funisitis versus unexposed 
This figure demonstrates unadjusted differences in IH-SpO2<80 between 
pathologic maternal chorioamnionitis (MC) and/or Funisitis and unexposed (No 
MC or Funisitis). A) There was a trend toward higher IH-SpO2<80 in MC or 
funisitis group compared to no MC or funisitis (unexposed) that was statistically 
significant during postnatal weeks 6 and 8. B)  There was a trend toward higher 
IH-SpO2<80 in MC only compared to no MC or funisitis. The differences were 
statistically significant during postnatal weeks 1, 6 and 8. C) There was a trend 
toward higher IH-SpO2<80 in funisitis vs no MC or funisitis groups that reached 
statistical significance during week 6 only. **p<0.01, *p<0.05, +p<0.1. 
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Figure 5. 5: Adjusted differences in IH-SpO2<80 between pathologic MC 
and/or Funisitis and unexposed (no MC of funisitis) 
This figure demonstrates adjusted differences in IH-SpO2<80 between 
pathologic maternal chorioamnionitis (MC) and/or Funisitis and unexposed (no 
MC or Funisitis). The graphs presents exposed minus unexposed estimates after 
adjusting for gestational age, small for gestational age status and prenatal 
steroids. A) There was no difference in IH-SpO2<80 in MC or funisitis group 
compared to no MC or funisitis (unexposed). B)  There was no difference in IH-
SpO2<80 in MC only compared to no MC or funisitis. C) There were no 
significant differences in IH-SpO2<80 in funisitis vs no MC or funisitis groups. 
+p<0.1. 
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Figure 5. 6: Differences in severe bronchopulmonary dysplasia (BPD) 
among groups 

This figure presents the frequency on severe bronchopulmonary dysplasia (BPD) 

among groups. There was a trend towards increased severe BPD in the MC 

and/or Funisitis groups compared to unexposed (No MC or Funisitis); MC or 

Funisitis p=0.14, MC p=0.057, funisitis p= 0.42. A logistic regression model 

adjusting for gestational age, small for gestational age status and prenatal 

steroids showed no a statistically significant difference in severe BPD among 

groups (p=0.79). 
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Figure 5. 7: Proposed relationship between intermittent hypoxemia and 
inflammation and possible role of maternal chorioamnionitis.  

The relationship between IH and inflammation is bidirectional with inflammation 

worsening IH and subsequently IH increases inflammation leading to further 

respiratory depression. Prenatal inflammation (maternal chorioamnionitis) 

exacerbates the cycle leading to more IH.  
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CHAPTER 6: ROLE OF INDOMETHACIN IN REDUCING INTERMITTENT 
HYPOXEMIA: PRELIMINARY ASSESSMENT 

 

 

I. Introduction 
 

Although significant progress has been made in the care of preterm infants, 

they continue to suffer from significant morbidities such as apnea, 

bronchopulmonary dysplasia (BPD), retinopathy of prematurity (ROP), and 

neurodevelopmental impairments (NDI) (112, 113). In addition, prematurity is 

associated with elevated societal economic costs.  Four million babies are born 

per year in the United States and close to a half million are premature (107) with 

total societal economic cost of approximately 26 billion dollars (108-110). Mean 

costs of care associated with extreme prematurity are nearly a quarter of a 

million dollars in the first 4 years of life; approximately 20 times higher than late 

preterm infants (111).  

Intermittent Hypoxemia (IH), episodic drops in oxygen saturations, 
contributes to the aforementioned morbidities (54). Brief episodes of oxygen 

desaturations may seem clinically insignificant, but these IH episodes, occurring 

up to hundreds of events/day, have a cumulative effect on morbidities and 

mortality. Mounting evidence, links IH with both short and long term neonatal 

morbidities such as retinopathy of prematurity (ROP), neurodevelopmental 

impairment (NDI), sleep disordered breathing, and increased mortality (2, 3, 16, 

45, 46, 54, 55, 84-86). Laboratory and animal data show IH results in increased 

inflammatory cytokines, increased free radicals and oxidative stress, increased 

white matter injury, neurocognitive handicap, and poor growth (4, 41, 54, 114-

120). Decreasing IH will lead to decreased associated morbidities and 

impairment in preterm infants. In addition since cardiorespiratory events delay 

discharge (6, 160), an intervention to decrease IH will reduce length of stay and 

the burden on health care dollars. 
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Currently there are multiple strategies aimed at decreasing IH. Those 

mainly include methyl xanthine use and respiratory support; i.e. focus on 

treatment of apnea and management of lung disease. Although effective, the 

aforementioned strategies do not eliminate IH or lead to lung injury with 

subsequent long term consequences (4, 161-175). No current strategy focus on 

other causes of increased IH such as inflammation. Since prenatal inflammation 

plays a role in increased IH, finding strategies to ameliorate prenatal/perinatal 

inflammation may be effective at decreasing IH and associated morbidities. 

Preterm infants are commonly born through a prenatal inflammatory process 

(123, 151, 176, 177). The increased systemic inflammation at birth worsens 

apnea and lung disease leading to a rise in IH. Anti-inflammatory agents may 

ameliorate systemic inflammation and decrease IH. Olsson et al. in rat pup 

experiments showed that indomethacin reversed the depressive respiratory 

effects of inflammation (caused by IL-1 β and lipopolysaccharide (LPS)) in 

addition to hypoxia (144). In this preliminary assessment, we wanted to assess 

the effect of indomethacin, anti-inflammatory agent, on IH in preterm infants.  

 

II. Methods 

Study Design and Data Collection 

Oxygen saturation data were prospectively collected from 30 preterm 

infants less than 30 weeks gestational age (GA) admitted to our level 4 NICU 

between November 2014 and September 2015. We used high resolution pulse 

oximeters (Radical 7: Masimo, Irvine, CA) set at 2 second averaging time and 

1Hz sampling rate to continuously monitor patients during the first 4 weeks of 

life. In order to differentiate intermittent from sustained hypoxemia, we included 

events between 4-180 seconds (1). The exact threshold below which IH is 

clinically significant is controversial. A drop in SpO2 to less than 80% is widely 

considered to be clinically relevant (1-3). Therefore, the primary outcome 
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measure was defined as percent time spent with SpO2 below 80% (%time-

SpO2<80).  

Pulse oximeters were equipped with serial data recorders (Acumen 

Instruments Corp) for continuous data collection. Novel programs were utilized 

to filter and analyze data (Matlab, Natick, MA) (1, 61). Data with artifacts were 

excluded. Only SpO2 data with good signal were included in the analyses. 

Infants with major congenital malformations were excluded.  

Infants were randomized to placebo versus indomethacin in this 

randomized controlled (double blind) trial (RCT). Indomethacin was given within 

12 hours of birth and repeated every 24 hours for a total of 3 doses per the 

current evidence based dosing regimen utilized for other indications (178-183). 

Neonatal morbidities, including maternal chorioamnionitis (MC), were collected 

from medical records. In regards to this assessment, after the intervention 

infants received the standard clinical care per clinical team; except for the 

additional pulse oximeter. 

Statistical Analyses   

Statistical analyses for IH were based on linear mixed models, which 

statistically accounted for repeated measures. Intermittent hypoxemia (%time-

SpO2<80) and change of IH over time were compared in indomethacin versus 

placebo groups using SAS version 9.4 (SAS Institute, Cary, N.C.). Analyses 

were based on intention-to-treat, and tests were two-sided with a 5% 

significance level.  Comparisons were performed for all infants and in infants 

with MC only; as we considered the latter most likely group to benefit given they 

are born through and inflammatory process. Comparisons for baseline 

characteristics, respiratory support and morbidities were performed using 

GraphPad Prism 7 (GraphPad Software, La Jolla California USA).  
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III. Results 
 

Oxygenation data was available on 26 preterm infants with 13 infants 

each of the indomethacin and placebo groups. Table 1 represents baseline 

characteristics between indomethacin and placebo groups. There were no 

differences in GA, birth weight and gender and other baseline characteristics 

(Table 6.1). Table 2 represents respiratory characteristics during and at the end 

of study period showing no significant differences between groups. More infants 

were on non-invasive support at 36 weeks corrected age, however these results 

were not statistically significant (Table 6.2).  

There were no statistically significant differences in neonatal morbidities 

between groups as represented in Table 6.3. There was one death in the 

indomethacin group versus none in placebo. Severe IVH was similar in both 

groups. Infants in the placebo group tended to have more PDA, however, all 

except for one were non-hemodynamically significant per Gomez et al (61). Late 

onset sepsis and necrotizing enterocolitis rates were not different between 

groups.  

Although results were not statistically significant, there was a trend 

toward lower IH rates in the indomethacin compared to placebo group. Figure 
6.1 presents data for all infants. Figure 6.2 presents data from the patients born 

with MC. There is attenuation of the peak %time-SpO2<80 at 4-5 weeks of life, 

however it was not statistically significant. 

 

IV. Discussion 
 

This preliminary data demonstrate that indomethacin, administered 

shortly after birth, may be a promising new therapy for reducing IH in preterm 

infants. Infants with increased prenatal inflammation due to MC may benefit the 
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most from this intervention. Perinatal inflammation plays a major role in the 

pathophysiology of IH and vice versa; and administering an anti-inflammatory 

agent may break the IH/inflammation vicious cycle in its earliest stages leading 

to decreased IH (Figure 6.3).  

Current strategies aimed at decreasing IH focus on treatment of apnea 

and management of lung disease. Caffeine, a competitive adenosine receptor 

inhibitor, improves IH (4, 161, 162). Recent evidence suggest that caffeine may 

also have mild anti-inflammatory effects (184). Caffeine is used in NICUs 

worldwide and usually discontinued around 34-36 weeks corrected age (185). 

Recently, Rhein et al. showed that prolonged caffeine use reduces IH frequency 

until 37 weeks corrected age. Although caffeine is effective in decreasing IH, it 

does not eliminate IH. Other approaches to ameliorate IH are respiratory support 

measures such as mechanical ventilation, continuous positive airway pressure 

(CPAP) and oxygen supplementation (13, 186). However, respiratory support, 

even with current gentle ventilation strategies, leads to lung injury with 

subsequent long term consequences (163-174). In addition, oxygen 

supplementation in preterm infants leads to ROP (major cause of visual 

impairment) (37). Furthermore, preterm infants continue to have frequent IH 

events while on respiratory support (1, 2). A strategy that addresses other factors 

that increases IH (such as inflammation) may have an additive impact on 

amelioration of IH and hence improve long term outcomes. Although our results 

are not statistically significant, our trends align with preclinical animal model data. 

Olsson et al., demonstrated that indomethacin administration reversed the 

depressive effects of inflammation on breathing patterns(144).  Indomethacin is a 

promising intervention that needs further investigation. Finding a strategy 

(indomethacin) to decrease inflammation at birth may decrease IH and 

subsequently decrease associated morbidities in preterm infants. 

Prophylactic indomethacin has been tested in preterm infants to reduce 

other neonatal morbidities such as IVH and PDA. Multiple studies demonstrated 

that indomethacin decreases severe IVH by more than 30% (183, 187). 
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However, the decrease in IVH did not translate to improved long term outcomes 

(187). Similarly prophylactic indomethacin use improves PDA closure (179, 

188). However, prophylaxis was not more effective, compared to early treatment 

of symptomatic PDA, at reducing mortality and respiratory outcomes (189). Both 

the lack of long term benefit and increased risk benefit ratio, especially in infants 

without PDA, led to increased practice variation in use of prophylactic 

indomethacin. However, indomethacin has not been prospectively studied in 

preterm infants born with MC. Since these infants are born through an 

inflammatory process, we speculate they may benefit the most from an anti-

inflammatory agent. As shown in Figure 6.2, infants with MC who received 

indomethacin tended to have lower IH peak at 1 month of life. 

For future larger RCT involving infants with MC, indomethacin should be 

considered for multiple reasons. First, in contrast to postnatal steroids, 

indomethacin has a good safety profile and is not associated with long term NDI 

in preterm infants (178, 180, 190-194). Adverse effects associated with 

indomethacin include transient renal insufficiency (195); which can be 

ameliorated by interventions to improve renal perfusion. Other reported but rare 

adverse effects include increased risk of bleeding and intestinal perforation 

(178, 180, 191, 193, 194). Second, indomethacin is associated with decreased 

morbidities, mainly patent PDA and IVH (178-180, 192, 196, 197); morbidities 

that may affect cardiorespiratory events in preterm infants. Third, indomethacin 

also regulates blood flow to the brain which may lead to improved respiratory 

control and less IH (another mechanism to improve IH); as preterm infants have 

a paradoxical ventilatory depression in response to hypoxia/poor brain perfusion 

(198, 199). Fourth, indomethacin is an effective anti-inflammatory agent that 

reversibly inhibits cyclooxygenase (COX)-1 and COX-2 enzymes, which results 

in decreased formation of prostaglandin precursors; main culprits leading to 

apnea in the setting of inflammation (29, 30). Fifth, animal data show 

indomethacin reverses the effects of inflammation on respiratory patterns(144). 

Sixth, indomethacin is not the standard of care with wide practice variation both 
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locally and nationally creating equipoise and ability to test indomethacin (200). 

Finally, although indomethacin has been studied in preterm infants, the focus of 

those studies was not in the setting of perinatal inflammation or IH.  

A major limitation of this study is the small sample size especially for the 

subset involving MC patients. However, this was a preliminary assessment 

aimed at generating pilot data to power future larger studies. Another limitation 

of this study is the use of indomethacin dosing regimen for IVH and PDA 

prophylaxis (179, 181-183). Indomethacin was administered in 3 doses 

(0.2mg/kg/dose on DOL1 and 0.1mg/kg/dose on DOL 2 and 3) in the first 3 days 

of life. This dosing regimen has documented safety but it may not be adequate 

to suppress inflammation in infants with born with MC. Longer treatment course 

may be necessary to have a significant impact on decreasing inflammation and 

subsequent IH. Ideally, pre and post indomethacin inflammatory markers should 

have been measured to document a decrease in systemic inflammation.  

 This is the first study to test the effect of indomethacin in management of 

IH in preterm infants. This innovative pilot study possibly identified a subset of 

preterm infants (with prenatal inflammation/MC) who may benefit the most from 

indomethacin to reduce IH; an important discovery in the era of precision 

medicine. Future larger studies should focus on investigating indomethacin in 

patients born with MC. 
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Table 6. 1: Baseline 
Characteristics 

Indomethacin Placebo 
p-Value 

N=13 N=13 

    

Gestational age, weeks 27 4/7 (26 2/7-28 

5/7) 

27 3/7 (25 3/7-28 

5/7) 

NS 

Birth weight, grams 980 (750 - 1228) 1080 (735 - 1230) NS 

Male 69.2% 69.2% NS 

Apgar 5 min 5 (3-7) 6 (5-8) NS 

Maternal Chorioamnionitis 2 (15.4%) 4 (30.8%) NS 

Prenatal steroids 13 (100%) 12 (92.3%) NS 

Frequency (%), Median (Interquartile range) 
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Table 6. 2: Respiratory Characteristics 
Indomethacin Placebo 

p-Value 
N=13 N=13 

    

Respiratory distress syndrome 13 (100%) 13 (100%) NS 

Received Surfactant 12 (92%) 11 (85%) NS 

 

Respiratory Support at 28 days of life                                                        NS 
Oxygen Supplementation 11 (84.6%) 12 (92.3%)  

No Support 1 (7.7%) 1 (7.7%)  

Non Invasive Support 8 (61.5%) 7 (53.8%)  

Ventilator Support 4 (30.8%) 5 (38.5%)  

 

Respiratory Support at 36 weeks corrected age (CA)                               NS 
Oxygen Supplementation 9 (69.2%) 6 (46.2%)  

No Support 0 (0%) 6 (46.2%)  

Non Invasive Support 9 (69.2%) 5 (38.5%)  

Ventilator Support 1 (7.7%) 1 (7.7%)  

Discharged/Death prior 36 weeks CA 2 (15.4%) 1 (7.7%) 

 

 

Oxygen at discharge 7 (54%) 6 (46%) NS 

Frequency (%) 
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Table 6. 3: Neonatal Morbidities 
Indomethacin Placebo 

p-Value 
N=13 N=13 

    

Severe IVH 3 (23.1%) 3 (23.1%) NS 

Patent Ductus Arteriosus 3 (23.1%) 5 (38.5%) NS 

Necrotizing Enterocolitis 0 (0%) 0 (0%) NS 

Late Onset Sepsis 3 (23.1%) 2 (15.4%) NS 

Mortality 1 (8%) 0 (0%) NS 

Frequency (%) 
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Figure 6. 1: Potential benefit of indomethacin in reducing intermittent 
hypoxemia (IH) in preterm infants. 

Benefit of indomethacin (black) vs placebo (gray) on IH as reflected by percent 

time spent with SpO2<80% (%time-SpO2<80). N=26, p=NS.  
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Figure 6. 2: Potential benefit of indomethacin in reducing intermittent 
hypoxemia (IH) in preterm infants with maternal chorioamnionitis (MC).  

Benefit of indomethacin (black) vs placebo (gray) on IH as reflected by loss of 4-

5 weeks peak in percent time spent with SpO2<80% (%time-SpO2<80). N=6, 

p=NS.  
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Figure 6. 3: Proposed relationship between inflammation and intermittent 
hypoxemia (IH) and potential benefit of indomethacin. 

The relationship between IH and inflammation is bidirectional with inflammation 

worsening IH and subsequently IH increases inflammation leading to further 

respiratory depression. Prenatal inflammation (maternal chorioamnionitis) 

exacerbates the cycle leading to more IH. We speculate that Indomethacin, an 

anti-inflammatory agent; improves IH by ameliorating the described vicious cycle. 
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CHAPTER 7: SUMMARY AND FUTURE DIRECTIONS 
 

 Over the past 4 years we have made multiple major contributions to the 

field; especially as it relates to Pediatrics and Neonatal Perinatal Medicine. We 

investigated a clinically significant medical problem (IH) that although has 

profound consequences has not been well studied in preterm infants.  

First, we developed novel methods and processes to perform high fidelity 

studies and accurately assess cardiorespiratory events/IH. We have the ability to 

efficiently collect, post process and analyze bedside monitoring data. We utilized 

high resolution pulse oximeters with 2 second averaging time and 1Hz sampling 

rate. Our analyses IH Automated Analyses Algorithms (IH-AAA) have the 

capacity to import multiple streams of raw data and export detailed IH profiles 

from each subject. Furthermore, the IH profile is an innovative and unique 

method to address this understudied problem. Calculating an IH profile provides 

an enhanced representation of the continuum of the IH problem. Having a good 

representation of the spectrum of the problem may help identify thresholds 

(frequency, duration, severity) beyond which IH leads to neonatal morbidities and 

impairments. These novel measures can be further developed to become part of 

the routine monitoring strategies in the NICU for instantaneous feedback to 

clinical care.  

Second, we reconfirmed finding related to the dynamic natural progression 

of IH in preterm infants.  Di Fiore et al. and Abu Jawdeh et al. first reported from 

a single center study that there is a low frequency of IH in extremely preterm 

infants (less than 28 weeks GA) during the first week after birth, followed by a 

progressive increase by weeks 2-3, with a peak around 4-5 weeks then 

plateau/decrease during weeks 6-8 (1, 2). No other studies have addressed this 

issue or replicated these findings in order to better understand mechanisms in 

the future. We now reproduce this finding from a second center, utilizing an 

expanded patient population of less than 30 weeks GA (versus 28 weeks shown 

before) showing similar IH dynamic frequency until 10 weeks postnatal life 

(versus 8 weeks shown before). The reasons leading to the rise in IH postnatally 
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are poorly defined but likely because of both developing lung disease and 

chemoreceptor dysregulation possibly resulting from inflammation and hypoxia 

(7). Now that these findings have been reproduced, studies should focus on 

understanding further mechanisms and causes for the rise in IH during early 

postnatal life.   

Third, our findings demonstrate the importance of prenatal exposures and 

their effects on postnatal outcomes. We had the unique opportunity to assess the 

relationship between isolated opioid exposure and respiratory instability in 

preterm infants. It was challenging in the past to assess the relationship between 

isolated prenatal opioid exposure and respiratory outcomes/IH, as the majority of 

women who use opioids also smoke or misuse poly-drugs. Our results suggest 

that prenatal opioid exposure is associated with increased IH measures 

compared to unexposed preterm infants. Interestingly, the increased IH 

measures in opioid exposed infants persisted beyond the early postnatal period. 

Another important finding is that the prevalence of opioid exposure in our local 

preterm population is higher than previously reported nationally, thus creating 

urgency toward addressing this significant problem in this vulnerable patient 

population 

 Fourth, we translated and complemented the knowledge we have from 

preclinical animal and bench studies to the clinical setting in preterm infants. We 

showed for the first time in preterm infants that cumulative IH is associated with 

increased markers of inflammation, namely C-reactive Protein (CRP). Our results 

suggest that IH at any of the selected thresholds is associated with increased 

CRP. In addition, we demonstrated that the longer IH events are associated with 

higher CRP levels. These are important findings that shed light on possible 

mechanisms by which IH causes neonatal morbidities and impairment. Future 

longitudinal studies that focus on repeated measures of short and long acting 

markers of inflammation throughout the inflammatory cascade will help define 

mechanisms and better understand this relationship between IH and 

inflammation. 
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Furthermore, our findings support our hypotheses of a bidirectional 

relationship between inflammation and IH. It is well established that systemic 

inflammation leads to increased apnea and subsequently IH (29, 30). In this 

document, we demonstrated that IH may be pro-inflammatory itself. The pro-

inflammatory effects of IH may lead to a vicious cycle (positive feedback loop). 

Apnea events cause IH (oxygen desaturations) and subsequent postnatal 

inflammation systemically and hence in the respiratory control network, 

peripheral chemoreceptors and lungs. The postnatal inflammation leads to a 

further cycle of increased apnea events and consequently higher frequency of IH. 

Interestingly, this phenomenon may be in part responsible for the IH peak at 4-5 

weeks of age. 

Fifth, we demonstrated that maternal chorioamnionitis may be associated 

with increased IH during early postnatal life. No other groups have studied this 

relationship in the past in preterm infants. We speculate that maternal 

chorioamnionitis starts or exacerbates the aforementioned cycle early leading to 

the snowball/spiral effect. Our inconsistent results in this chapter may be related 

to the pathologic definition of MC versus clinical chorioamnionitis. Prospective 

studies investigating the impact of chorioamnionitis (clinical and pathologic) on IH 

may provide mechanistic insights in this understudied relationship between 

inflammation and IH in preterm infants.  

Sixth, our preliminary assessment suggests that indomethacin, a 

commonly used medication in the NICU, may be used in a novel indication; to 

decrease IH in patients born with increased inflammation due to MC. This is the 

first study to test the effect of indomethacin in management of IH in preterm 

infants. This innovative pilot study possibly identified a subset of preterm infants 

(with prenatal inflammation/MC) who may benefit the most from indomethacin to 

reduce IH; an important discovery in the era of precision medicine. A large 

randomized clinical trial is needed to test the efficacy of this promising 

intervention, in management of IH in preterm infants born with perinatal 

inflammation.  
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Seventh, we present in Appendix A a recent publication showing that red 

blood cell transfusion (RBC) decrease IH events beyond the first week of life. We 

also demonstrated a lack of benefit/possible worsening in oxygenation after RBC 

transfusion in the first week of life; an interesting finding now reported twice from 

two separate cohorts. This finding requires further investigation especially after 

possible worsening in oxygenation reported in this study. We also documented 

factors, other than hematocrit, that should be considered before RBC transfusion 

administration; including mechanical ventilation, FiO2 requirement and IH 

measures. Our publication is a stepping stone towards larger studies aimed at 

finding objective bedside measures to guide RBC transfusion administration.     

Eighth, we present in Appendix B a publication addressing the relationship 

between perfusion index (PI) and patent ductus arteriosus (PDA) in preterm 

infants. Perfusion index (PI) is a noninvasive measure of perfusion collected from 

the bedside utilizing our developed methods. Delta PI (ΔPI) is the difference 

between PI measured pre-ductal versus post-ductal. We were able to 

demonstrate that a lower mean ΔPI and pre PI values over a 4-hour period have 

the potential to detect the presence of PDA in premature infants. We were the 

first to report a lower variability in ∆PI in infants with PDA compared to those 

without. This non-invasive measure (PI) is a promising bedside tool to assess for 

PDA in preterm infants. Future studies are needed to determine the clinical utility 

of PI in predicting hemodynamic significance and hence need for PDA treatment 

in preterm infants.  

We have multiple ongoing studies addressing IH from various 

perspectives. A) We are assessing other factors that may influence IH in preterm 

infant. For examples, we hypothesized that delayed cord clamping may reduce 

IH through a rise in both hematocrit and progenitor cells. A bolus of blood and 

progenitor cells from delayed clamping of the umbilical cord may have a lasting 

impact on IH. This study is funded by the Gerber Foundation and we are near 

completion of patient enrollment. B) We are assessing the utility of IH as a 

clinical marker for patient management in the NICU. For examples, among other 
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markers, we are testing IH as a predictor for 1) readiness to discontinue 

mechanical ventilation (extubation readiness) and 2) thresholds for RBC 

transfusions in preterm infants. C) We are assessed the relationship between IH 

and neonatal morbidities. For example, we are investigating the relationship 

between IH and growth impairment in preterm infants. In addition, we completed 

enrollment for a study funded by the Children’s Miracle Network assessing the 

relationship between IH and acute kidney injury (IHAKI study) in preterm infants.  

Finally, a valuable experience throughout this process is working with a 

talented and dedicated multidisciplinary team. Our team encompasses multiple 

divisions, departments, colleges and other institutions and universities. We are a 

solid example of the value of team science during this new era of clinical and 

translational research (201). Our respiratory control research program is one of 

handful programs nationwide able to perform such complex high-fidelity studies 

related to cardiorespiratory events in preterm infants. The team has established 

an excellent working relationship and will continue to tackle complex questions 

involving health of infants. 
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ABSTRACT 

Background 

Red blood cell (RBC) transfusion decreases intermittent hypoxemia (IH) 

events beyond the first week of life. This benefit may be related to improved 

perfusion to the respiratory control network. Perfusion index (PI) is a perfusion 

measure provided by the pulse oximeter. We hypothesized that the benefit in IH 

after RBC transfusion is associated with a rise in PI. In addition, we assessed the 

value of PI and clinical measures in predicting the effect of RBC transfusion on 

IH.  

Study Design and Methods 

We prospectively enrolled infants less than 30 weeks gestational age. PI 

and oxygen saturation (SpO2) were monitored with high-resolution pulse 

oximeters 24 hours pre and post RBC transfusion. Data was analyzed at three 

postnatal periods, epoch 1: first week of life (1 to 7 days of life), epoch 2: 2 to 4 

weeks of life (8 to 28 days of life), and epoch 3: 4 to 8 weeks of life.  

Results 

One hundred eighteen transfusions were analyzed. IH measures 

significantly decreased post transfusion in epochs 2 and 3. PI significantly 

increased after transfusion, but it did not correlate with the decrease in IH 

measures. Mechanical ventilation, fraction of inspired oxygen (FiO2), and IH 

measures influenced the effects on oxygenation.  

Conclusions 

RBC transfusion improved IH after the first week of life. The benefit in IH 

did not correlate with PI increase after transfusion. Pre transfusion respiratory 

support and IH measures predicted the effect of transfusion on oxygenation. 

Key Words: red blood cell transfusion, preterm infants, perfusion, hypoxemia 
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INTRODUCTION 

 Intermittent Hypoxemia (IH), defined as episodic drops in oxygen 

saturation, is common in preterm infants.(1-3) The incidence of IH in extremely 

low gestational age infants changes during the first 2 months of life.(1, 2) There 

is low IH frequency during the first week of life, followed by a progressive 

increase over weeks 2-3, plateaus around 4 weeks, and decreases at weeks 6-

8.(1, 2) Intermittent hypoxemia is associated with both short and long term 

morbidities such as retinopathy of prematurity,(2) neurodevelopmental 

impairment, and late death.(1, 3-5) Red blood cell (RBC) transfusion results in IH 

improvement, particularly beyond the first week of life.(1) Perhaps, the main 

rationale for RBC transfusion in preterm infants is improvement in 

oxygenation.(6) There are two proposed mechanisms for beneficial effect of RBC 

transfusion on oxygenation. The first relates to greater cardiovascular stability 

with increased perfusion to the respiratory control network leading to improved 

central respiratory drive and subsequent less IH.(1, 7-9) The second suggests 

greater stability of oxygenation due to a rise in hematocrit leading to less IH in 

the presence of apnea.(1),(10)  

Perfusion index (PI) is a noninvasive measure of perfusion provided by the 

bedside pulse oximeter. Perfusion index is calculated from the ratio of the 

pulsatile to non-pulsatile signal at the monitoring site.(11, 12) Perfusion index 

correlates with superior vena cava flow,(13) detects critical left heart obstructive 

disease,(14) and patent ductus arteriosus.(15, 16) Furthermore, Kanmaz et al. 

noted that RBC transfusion is associated with a significant increase in PI and 

suggested that PI may be a useful marker for the need of transfusion.(17) 

Therefore, we wanted to assess if the benefit in IH seen after RBC transfusion is 

associated with a rise in PI in preterm infants at different postnatal ages. In 

addition, we assessed the predictive value of PI, hematocrit, mechanical 

ventilation, fraction of inspired oxygen (FiO2) and IH; in order to identify infants 

who will benefit the most from the RBC transfusion in terms of oxygenation. 
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MATERIALS AND METHODS 

Study Design and Data Collection 

This was a prospective cohort study conducted at the University of 

Kentucky Medical Center Neonatal Intensive Care Unit between November 2014 

and October 2015. The study was approved by the University of Kentucky 

Institutional Review Board. Infants with gestational age (GA) less than 30 weeks 

were approached in the first week of life and informed consent was obtained from 

parent(s). Infants were then followed and oxygen saturation was continuously 

monitored in the first 2 months of life. Infants who received RBC transfusion per 

the NICU transfusion guidelines were included in the analyses. The following is a 

summary of the local NICU transfusion guidelines: Hematocrit threshold of <35% 

for mechanically ventilated neonates or FiO2 requirement >40%, hematocrit 

<28% for infants on non-invasive respiratory support or FiO2 requirement <40%, 

and hematocrit <22% for neonates on no respiratory support. RBC transfusion at 

15ml/kg was administered over a 3 hour period. Oxygen saturation (SpO2) and PI 

were monitored using continuous high-resolution (2s averaging time and 1Hz 

sampling rate) pulse oximeters (Radical 7: Masimo, Irvine, CA, USA). The target 

oxygen saturation in our unit is 90-95%. Patients were continuously monitored for 

the first 8 weeks of life and data was stored on serial data recorders. Novel 

programs were utilized to filter (Matlab, Natick, MA, USA) and analyze (SAS 

Institute, Cary, NC, USA) data. Variables related to demographics, weight, 

respiratory measures and medications were collected.  

The primary outcome measures for IH were defined as 1) a drop in SpO2 

to less than 80% for ≥4s and ≤3min duration (IH-SpO2<80) and 2) overall percent 

time spent with SpO2 <80% (%time-SpO2<80). The lower limit of 4s duration was 

based on the previous data by Abu Jawdeh et al. and the upper limit of 3 min 

duration was used to differentiate intermittent from sustained hypoxemia.(1) 

Other outcome measures included additional SpO2 thresholds of 85% and 90%.  
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A RBC transfusion was eligible for analysis if no other RBC transfusion 

was administered 24 hours pre or post transfusion. We then analyzed changes in 

IH frequency (IH-SpO2<80, IH-SpO2<85, IH-SpO2<90), percent time spent below 

threshold (%time-SpO2<80, %time-SpO2<85, %time-SpO2<90), mean PI, and 

variability of PI during the 24 hours pre and post RBC transfusion. Additionally, 

we determined the associated changes in hematocrit and respiratory 

characteristics. 

To account for the effect of postnatal age on IH following RBC 

transfusion(2), the 8-week monitoring period was stratified into three epochs and 

analyzed separately; epoch 1: first week of life (1 to 7 days of life), epoch 2: 2 to 

4 weeks of life (8 to 28 days of life), and epoch 3: 4 to 8 weeks of life.(1) In order 

to assess which preterm infants benefit the most from RBC transfusion, we 

evaluated the predictive value of the following pre RBC transfusion variables: PI, 

hematocrit, mechanical ventilation, FiO2 requirement, and IH primary measures. 

 

Statistical Analysis 

To compare epochs in Table 1, continuous variables were presented as 

mean ± standard deviation (SD) and categorical variables were expressed as 

frequencies and percentages.  Sample means and SDs were also utilized in 

Figures 2 and 3 to visually compare pre and post RBC transfusion values for 

each epoch. Pearson’s correlations were used to quantify associations between 

changes in different variables.  To account for statistical correlation arising from 

repeated measurements, i.e. multiple observations per subject, generalized 

estimating equations with robust standard errors were utilized for inference.  

Finally, linear mixed models with robust standard errors were utilized to obtain 

results for Table 3, in which change in IH measures (IH-SpO2<80 or %time-

SpO2<80) after RBC transfusion was the outcome of interest.  The primary 

predictors were pre RBC transfusion mechanical ventilation, FiO2 requirement, 

and pre RBC transfusion IH measures.  The models also controlled for pre RBC 
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transfusion PI and hematocrit.  All tests were two-sided at the 5% significance 

level.  Analyses were conducted in SAS version 9.4 (SAS Institute, Cary, NC, 

USA). 

 

RESULTS 

Fifty preterm infants met criteria for enrollment. Thirty-nine infants 

received RBC transfusions that were eligible for analysis for a total of 118 

transfusions (22, 63 and 33 RBC transfusions in epochs 1, 2, and 3, 

respectively). The median (IQR) of eligible transfusions were as follows: 2(1-2), 

5(3-7) and 8(6-10) for epochs 1, 2, and 3, respectively (Table 1). Figure1 shows 

the flow diagram for patient enrollment, transfusion eligibility, and number of 

infants who received transfusions during each epoch. There were no significant 

differences in GA, birth weight, gender, and race across all 3 epochs (Table 1).  

The majority of infants required respiratory support, supplemental oxygen and 

caffeine therapy (Table 1). The FiO2 requirement (mean ± standard deviation) 

increased to 35.2% ±11.6 (p=0.1), 43.7% ± 19.3 (p=0.9) and 47.8% ± 24.7 

(p=0.3) in epochs 1, 2 and 3 respectively but was not statistically significant.  

 

Changes in Measures Pre and Post RBC Transfusion 

As represented in Figure 2A, there was a statistically significant but 

minimal increase in mean 24 hour PI after RBC transfusion across all epochs. 

There was no difference in variability of PI between pre and post RBC 

transfusion in all 3 epochs (pre-post: -0.07 ± 0.33, p=0.2; -0.01 ± 0.12, p=0.5; -

0.05 ± 0.15, p=0.1 in epochs 1, 2 and 3 respectively). In epoch 1, there was no 

change in IH-SpO2<80 and IH-SpO2<85 post RBC transfusion; interestingly, 

there was a significant increase in IH-SpO2<90 (Figure 3). Overall, %time-

SpO2<80, %time-SpO2<85 and %time-SpO2<90 did not significantly change in 

epoch 1 (Figure 3). In epochs 2 and 3, we found a significant decrease in IH-
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SpO2<80 and IH-SpO2<85 and no change in IH-SpO2<90 (Figure 3). Overall 

%time-SpO2<80% and %time-SpO2<85 improved in epoch 2 and 3 with no 

changes in %time-SpO2<90. As expected, mean hematocrit significantly 

increased 24 hours after RBC transfusion across all three epochs (Figure 2B).  

 

Correlations of Changes Pre and Post RBC Transfusion 

There was no significant correlation between changes in PI and IH pre 

and post RBC transfusion in any of the 3 epochs (Table 2). There was no 

correlation between changes in hematocrit and IH pre and post RBC transfusion 

in epochs 1 and 2 (Table 2). In epoch 3, there was a positive correlation between 

the change in hematocrit and IH measures that was statistically significant for 

%time-SpO2<80 (Table 2).  

 

Factors Associated with the Effect of RBC Transfusion on IH measures 

Linear mixed models were utilized to assess factors that influenced the 

effect of RBC transfusion on IH.  The models controlled for pre RBC transfusion 

PI, hematocrit, mechanical ventilation, FiO2 requirement and IH-SpO2<80 or 

%time-SpO2<80.  The results are presented in Table 3. 

 

DISCUSSION 

Our study shows an increase in perfusion (as represented by the rise in 

PI) after RBC transfusion. However, this increase does not correlate with the 

improvement in oxygenation. Consistent with Abu Jawdeh et al.,(1) our study 

shows that IH improved post RBC transfusion only beyond the first week of 

life.(2) In addition, our results replicate the lack of benefit in oxygenation after 

RBC transfusion in the first week of life. This study also demonstrates that pre 
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RBC transfusion mechanical ventilation need, FiO2 requirement and IH measures 

influence the effect of RBC transfusions on oxygenation.  

Similar to a study by Kanmaz et al.,(17) our results show a significant 

increase in PI post RBC transfusion. The increase in PI is minimal and may not 

be clinically significant. The observed increase in PI did not correlate with a 

decrease in IH measures following RBC transfusion. The effect of RBC 

transfusion on PI may be related to volume expansion. In contrast, RBC 

transfusion effect on IH is likely due to changes in oxygen carrying capacity and 

stabilization of oxygenation.(6, 10, 18) 

The effect of RBC transfusion on IH varied based on postnatal age. There 

was significant improvement in oxygenation after RBC transfusion in epochs 2 

and 3. However, there was no significant change in IH measures after RBC 

transfusion during the first week of life; in fact, an increase in IH frequency 

occurred for IH-SpO2<90. This increase in IH events in epoch 1 after transfusion 

for IH-SpO2<90 reflects the increase in milder events (SpO2 ≥85%); although all 

trended in the same direction. The etiology of this reproducible lack of benefit in 

oxygenation after RBC transfusion in early postnatal life is unknown, but may be 

influenced by multiple factors. The lack of benefit may be related to the already 

low incidence of IH during this period.(1, 2) Other factors may include inadequate 

compensatory mechanisms to overcome the changes in blood flow, volume 

status and blood viscosity associated with RBC transfusion during early postnatal 

life.(6, 18-20) Furthermore, the higher proportions of high-affinity fetal 

hemoglobin in early postnatal life may have an impact on the effect of RBC 

transfusion on oxygenation.(10),(20)  The lack of benefit in oxygenation after RBC 

transfusion in the first week of life raises important concerns regarding liberal 

transfusion thresholds during early postnatal life and the need to further evaluate 

any adverse respiratory effects in this time period. In addition, studies to further 

evaluate mechanisms and factors that influence the effect of RBC transfusion on 

IH in the first week of life are imperative.  
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Respiratory support (mechanical ventilation and FiO2) and IH measures 

influenced the effect of RBC transfusions on oxygenation (Table 3). As expected, 

patients on mechanical ventilation benefited more from RBC transfusion 

compared to extubated infants in epoch 2 and approached significance in epoch 

3. Interestingly, in epoch 1, patients on mechanical ventilation had no 

improvement or worsening in oxygenation after RBC transfusion. We speculate 

the findings seen in the first week of life in ventilated infants may relate to patient 

characteristics including immaturity of compensatory mechanisms, severe lung 

disease with poor pulmonary reserves and subsequent lung fluid overload from 

RBC transfusion.(6, 10, 20) Increased FiO2 requirement pre RBC transfusion was 

associated with a significant decrease in IH measures post transfusion during 

epoch 1. After the first week of life, higher IH measures pre RBC transfusion 

were associated with greater benefit in oxygenation that was statistically 

significant in epoch 2 and approached significance (p=0.053) in epoch 3. Extent 

of FiO2 requirement and IH measures are closely related as FiO2 adjustment is 

often based on oxygen desaturations. Our sample size may not have been large 

enough to reach statistical significance in all epochs; however, FiO2 and IH 

measures are promising objective tools able to guide transfusion management. 

Overall, the results of the study show that postnatal age, along with type of 

respiratory support and IH measures, influence the effect of RBC transfusion on 

oxygenation. Further studies to evaluate mechanisms as to how these factors 

influence the effect of RBC transfusion on IH are needed. 

Maintaining hematocrit above a certain consensus threshold is the major 

indication for RBC transfusion in NICUs worldwide.(21, 22) Consistent with 

previous studies, our results suggest that hematocrit alone is a weak predictor of 

the effect of RBC transfusion on oxygenation.(1, 5, 7, 9, 23, 24) Although 

hematocrit significantly increased post RBC transfusion, the change in hematocrit 

did not correlate with improved oxygenation after RBC transfusion except in 

epoch 3 where a poor correlation was noted (Table 2). We speculate that 

hematocrits are closely followed in the NICU and the levels in our infants may not 

have been low enough to result in significant cardiorespiratory instability. 
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A limitation to this study is not having evaluated other hemodynamic 

factors such as blood pressure, heart rate, and volume status. We also lack 

documentation of other neonatal morbidities that may have affected PI and 

oxygenation such as presence of intraventricular hemorrhage, patent ductus 

arteriosus, and sepsis. As our model included multiple variables, the current 

sample size may have lacked sufficient power to reach significance in certain 

epochs. The possible variation in RBC transfusion indications among providers is 

a limitation, but likely minimized by our unit consensus transfusion guidelines.   

 

CONCLUSION 

Red blood cell transfusion is associated with decreased IH events after 

the first week of life. The lack of benefit in oxygenation after RBC transfusion in 

the first week of life is an interesting finding now reported twice from two 

separate cohorts. This finding requires further investigation especially after 

possible worsening in oxygenation reported in this study.  Our primary aim to 

assess the value of PI as an indication for RBC transfusion did not yield positive 

findings. We documented factors, other than hematocrit, that should be 

considered before RBC transfusion administration; including mechanical 

ventilation, FiO2 requirement and IH measures. Our study is a stepping stone 

towards larger studies aimed at finding objective bedside measures to guide 

RBC transfusion administration.     
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TABLE 1 Baseline characteristics of enrolled patients among epochs 

  

Epoch 1 Epoch 2 Epoch 3 
p value 

n=22 n=63 n=33 

   Gestational age in weeks (n)            
(Mean ± SD) (22) 25.8 ± 1.3 (62) 25.6 ± 1.3 (33) 25.6 ± 1.2 0.8 

   Birth weight in grams (n) (Mean ± SD) (22) 807 ± 162 (62) 796 ± 171 (33) 803 ± 179 0.94 

   Postnatal age in days (n)           
(Mean ± SD) (22) 4.6 ± 1.6 (62) 18.0 ± 6.4 (33) 43.5 ± 8.9 <0.001 

Weight day of transfusion in grams 
(n) (Mean ± SD) (22) 808 ± 153 (62) 982 ± 247 (33) 1475 ± 434 <0.001 

   Number of Transfusions per patient, 
Median (IQR) (22) 2 (1-2) (63) 5 (3-7) (33) 8 (6-10) <0.001 

   Male, n (%) 15/22 (68%) 36/62 (58%) 21/33 (64%) 0.7 

   Caucasian, n (%) 17/22 (77%) 53/61 (87%) 27/33 (82%) 0.7 

   Respiratory Support 
    

     Conventional ventilator, n (%) 18 (86%) 50 (86%) 21 (68%) 0.22 

     Non-invasive ventilation, n (%) 3 (14%) 8 (14%) 10 (32%) 
 

     NIPPV, n (%) 2 (10%) 6 (10%) 7 (23%) 
 

     CPAP, n (%) 1 (5%) 2 (3%) 3 (10%) 
 

Missing data for type of respiratory 
support, n (%) 1 (5%) 5 (8%) 2 (6%) 

 

   Supplemental oxygen, n (%) 19/21 (90%) 54/58 (93%) 29/31 (94%) 0.92 

   Pre RBC transfusion FiO2 (n)          
(Mean ± SD) (21) 30.0 ± 9.3 (59) 42.7 ± 21.0 (31) 44.8 ± 20.8 <0.001 

   Caffeine, n (%) 21/22 (95%) 62/62 (100%) 31/33 (94%) 0.55 

aSD, standard deviation; bNIPPV, nasal intermittent positive pressure ventilation; cCPAP, continuous 
positive airway  pressure; p for mean difference; 
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TABLE 2 Correlations of changes in PI, Hematocrit and IH 

  Epoch 
ΔIH Events < 80%  Δ%time < 80%   

 r p value  r p value 

Δ Perfusion Index  

1 -0.05 0.46 -0.18 0.61 

2 0.18 0.13 0.14 0.38 

3 -0.16 0.22 0.07 0.51 

Δ Hematocrit  

1 0.1 0.33 -0.03 0.88 

2 -0.11 0.37 -0.05 0.86 

3 0.271 0.08 0.322 0.02 

 aΔ represents change in value: post RBC transfusion - pre RBC transfusion. br = 
correlation coefficient 
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FIGURE 1: Flow diagram for patient enrollment and transfusion eligibility  
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FIGURE 2: Mean PI and Hematocrit levels for all the 3 epochs pre and post RBC 

transfusion. There was a statistically significant increase in the PI (A) and 

hematocrit (B) after RBC transfusion in all the three epochs (*p<0.05). 

Mean/standard deviation 
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FIGURE 3: IH events/day and % time below threshold pre and post transfusion. 

3A-C: IH-SpO2<80 and IH-SpO2<85 decreased in epochs 2 and 3 (*p<0.04) while 

IH-SpO2<90 increased in epoch 1 (*p=0.04). 3D-F: % time-SpO2<80 and % time-

SpO2<85 decreased in epochs 2 and 3 (*p<0.04). There was a decrease in % 

time-SpO2<90 in epochs 2 (p=0.2) and 3 (p=0.3) and increase in epoch 1 

(p=0.07). Mean/standard deviation 
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ABSTRACT 

Background  

Perfusion index (PI) is a noninvasive measure of perfusion. ΔPI 

(difference between pre- and postductal PI) may identify hemodynamically 

significant PDA. However, studies are limited to brief and intermittent ΔPI 

sampling. Our objective is to assess the value of continuous high resolution ΔPI 

monitoring in the diagnosis of PDA. 

Methods 

Continuous ΔPI monitoring in preterm infants was prospectively performed 

using two high-resolution pulse oximeters. Perfusion Index measures (ΔPI mean 

and variability, pre- and postductal PI) were analyzed over a 4-h period prior to 

echocardiography. A cardiologist blinded to the results evalu- ated for PDA on 

echocardiography. Linear mixed regression models were utilized for analyses. 

Results  

We obtained 31 echocardiography observations. Mean ΔPI (−0.23 vs. 

0.16; P < 0.05), mean pre-PI (0.86 vs. 1.26; P< 0.05), and ΔPI variability (0.39 

vs. 0.61; P = 0.05) were lower in infants with PDA compared to infants without 

PDA at the time of echocardiography. 

Conclusion 

Mean ΔPI, ΔPI variability, and mean pre-PI measured 4 h prior to 

echocardiography detect PDA in pre- term infants. PI is dynamic and should be 

assessed continu- ously. Perfusion index is a promising bedside measurement to 

identify PDA in preterm infants. 
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BACKGROUND 

Patent ductus arteriosus (PDA), a common condition in pre- term infants, 

leads to shunting of blood between the systemic and the pulmonary circulations. 

Approximately 65% of infants born between 25 and 28 wk gestational age (GA), 

and 85% of those born at 24 wk GA will have PDA at first week of life (1). 

Persistent patency is associated with adverse outcomes, including prolonged 

assisted ventilation and higher rates of death, bronchopulmonary dysplasia, 

pulmonary hemorrhage, necrotizing enterocolitis, impaired renal function, 

intraventricular hemorrhage, periventricular leukomalacia, and cere- bral palsy 

(1,2). Because of these associated complications, majority of infants < 28 wk GA 

will receive medical or surgical therapy in an attempt to close the PDA (1–3). 

Currently, the gold standard for PDA diagnosis is echocardiography (2, 4–8), and 

often clinical symptoms are not associated with echocar- diography findings 

(1,4). 

Perfusion index (PI) is a noninvasive measure for monitoring the general 

hemodynamic status of the preterm infant (9–11). Perfusion index provides 

assessment for the pulse strength and is derived from pulse oximetry. PI, 

measured by infrared light, is calculated as the ratio of the pulsatile (AC) to 

nonpulsatile components (DC) of the blood flow in tissue (9,10,12,13). In 

neonates, PI has clinical application. Granelli et al. (14) corre- lated lower PI 

values in infants with critical left heart obstructive disease. In addition, De Felice 

et al. (15) reported that PI was decreased in infants born to mothers with 

chorioamnionitis. 

Reports are inconsistent as to the value of PI in the assess- ment of PDA. 

This may be attributed in part to location and the duration of PI measurements 

(12,16). Khositseth et al.(16) hypothesized that the peripheral perfusion of the 

lower extremities (postductal) is decreased compared to the right arm (preductal) 

in preterm infants with hemodynamically significant patent ductus arteriosus 

(hsPDA). This difference is due to left-to-right shunt across the ductus arteriosus 
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into the pulmonary artery. They reported that a difference in PI between the 

upper and the lower extremity, or delta PI (∆PI), of more than 1.05% strongly 

correlated with the echocardio- graphic diagnosis of hsPDA (sensitivity: 66.7%, 

specificity: 100%, positive predictive value: 100% and negative predictive value: 

86.4%). Their study was limited by a one-time obser- vation that may not be 

reflective of the hemodynamic vari- ability of perfusion in infants with PDA. 

Alternatively, Vidal et al. (12) conducted a study to evaluate the postductal PI of 

premature infants in order to categorize the PDA status and found that postductal 

PI did not correlate with PDA and was not influenced by ductal flow pattern. 

We conducted a prospective study to assess the value of ∆PI in the 

diagnosis of PDA in preterm infants, using high resolu- tion continuous pre- and 

postductal monitoring. 

 

METHODS 

This prospective study was conducted at a level IV NICU between 

November 2014 and July 2015. The study was approved by the Institutional 

Review Board of the University of Kentucky and parental informed consent was 

obtained in all cases. Infants with GA ≤ 29 wk were enrolled on the first day of life 

and followed for a 2-wk period. Infants with major congenital malformations were 

excluded. Those infants in which we had an echocardiography and adequate PI 

data for 4 h prior to the echocardiography were chosen for analysis. 

 

Perfusion Index Measurement 

Perfusion index was continuously monitored using high resolution (2 s 

averaging time, 1 Hz sampling rate) pulse oximeters (Masimo Radical Masimo 

Corporation, Irvine, CA). In order to capture echocardiograms performed for PDA 

assessment, data were recorded continuously during the first 14 d of life. 
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Subjects were connected to two pulse oximeters simultaneously; right upper 

extremity for pre-ductal monitoring and either lower extremity for postductal 

monitoring. Data from pulse oximeters were continuously stored to serial data 

recorders. The pre- and postductal PI difference (ΔPI) was defined as the PI 

measured preductal minus the PI measured postductal (16). 

 

Echocardiography 

Two-dimensional, color Doppler, spectral Doppler, and M-mode 

echocardiography was performed to assess for PDA at the discre- tion of the 

attending physician using a Phillips IE33 echocardiog- raphy machine with 12-

MHz transducer. A cardiologist, blinded to the results of the study, independently 

examined the echo images and categorized subjects into the following three 

groups: (i) hemodynami- cally significant PDA (hsPDA); (ii) nonhemodynamically 

signifi- cant PDA (non-hsPDA), and (iii) no PDA. The definition of hsPDA 

included infants with at least two of the following: (i) ductal diameter at the 

pulmonary side ≥ 1.4 mm/kg; (ii) left atrial to aortic ratio ≥ 1.5;(iii) left pulmonary 

artery (LPA) mean flow velocity of ≥ 0.42 m/s; and (iv) LPA end-diastolic velocity 

of ≥ 0.2 m/s (3,5,7,17–19). 

 

Sample Size 

In order to determine the minimum sample size needed to assess the 

value of ∆PI in PDA diagnosis, we utilized the results reported in the pilot data by 

Khositseth et al. (16). Assuming the ∆PI (%) mean and SD are 1.00 and 0.70, 

respectively, for children with PDA and 0.04 and 0.10, respectively, for children 

with no PDA, we calculated a total required study sample size of 15 infants 

(power 80%, p<0.05). 
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Data Management and Statistical Analysis 

The pulse oximeters serial data recorders were time synced. Perfusion 

Index sampling rate was 1Hz (every second). However, there were rare 

occurrences of two values per second. In such cases, the average value for the 

given second was utilized. In order to better visualize an example of PI values 

over time (Figure 2), we plot PI values that were averaged over each minute. 

Any given value, at any given second, by itself will not represent a true overall 

reflection of PI for the duration of several hours, and thus cannot be used to 

accurately predict PDA. We therefore decided, for predictive purposes, to assess 

the utility of average ΔPI values during the 4 h prior to an echocardiography as a 

single measure of PI to predict PDA which could better represent the 

hemodynamic status of preterm infants. This period of 4 h will capture changes 

resulting from the ultradian rhythm that has been reported in premature infants 

(20). Subjects with 4 h of adequate monitoring prior to the echocardiography 

were considered for analysis. Artifacts and extreme values, found in less than 2% 

of PI measurements, were removed as they were associated with inadequate 

signal capture. 

Data analyses were conducted by a statistician. The primary outcome of 

interest is the average ∆PI during the 4 h leading up to echo- cardiography and 

pre- and postductal PI were secondary outcomes. Furthermore, PI variability was 

analyzed by using the outcome of the SD of the individual PI values over the 4 h. 

When comparing mean  values for no PDA, non-hsPDA and hsPDA, linear mixed 

regression models were utilized in order to account for repeated measurements 

in subjects with multiple echocardiograms. The Kenward and Roger degrees of 

freedom method was used for inference (21). Generalized estimating equations 

with the Kauermann and Carroll correction (22) and between-within degrees of 

freedom were used to evaluate base- line differences among groups defined by 

PDA status. Analyses were conducted in SAS Version 9.4 (SAS Institute, Cary, 

NC). All tests were two-sided at the 5% significance level. 
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RESULTS 

A total of 40 infants were enrolled upon admission. Of these, 4 had no 

echocardiography performed and 16 had missing PI data or artifacts during the 

study period. Final analyses included data from 20 infants with a total of 31 

echocardiography observations (each infant was observed at 1 to 3 occasions) 

(Figure 1). Eighteen infants were found to have PDA on echocardiography. The 

characteristics at birth of the infants did not significantly differ between those with 

and without PDA, as shown in Table 1. The baseline characteristics of the infants 

at the time of echocardiography are presented in Table 2; no statistically 

significant differences were noted among groups. As represented in Figure 2, PI 

values were found to be highly variable with changes every minute. 

 Mean ΔPI differed signifi antly between infants with PDA and without PDA 

(Figure 3). Mean pre- and postductal PI values are presented in Figure 4. The 

preductal PI was significantly elevated in infants without PDA as compared to 

infants with PDA. Among the PDA subgroups, the preductal PI of those with non- 

hsPDA was lower compared to infants without PDA (Figure 4). The mean 

postductal PI did not differ among groups (Figure 4). 

Variability of ΔPI, pre- and postductal PI is presented in Figure 5. ΔPI 

variability was significantly lower in infants with PDA compared to no PDA. 

Although not statistically significant, the PI variability is consistently low in infants 

with PDA for pre- and postductal measures. 

 

DISCUSSION 

Our study demonstrates that the mean ΔPI, mean pre-PI and the ∆PI 

variability can identify PDA in premature infants. Mean values of ∆PI, pre- and 

postductal PI and ∆PI variability were continuously calculated over the 4-h period 

prior to echocardiography compared to intermittent measures as previously 
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described (11,12,14,23,24). Our observations are somewhat contradictory to 

initial expectations related to changes in pre-ductal PI and ΔPI. We expected to 

observe a steady preduc- tal PI and a decreased postductal PI leading to a larger 

ΔPI in infants with PDA. The negative ΔPI (Figure 3) is likely a combination of a 

decreased preductal PI (reported by Karadag et al. (25)) and a postductal PI that 

is either steady (reported by Vidal et al. (12)) or increased (reported by 

Alderliesten et al.(9)). These results have a combined effect towards a negative 

ΔPI value found in infants with PDA. 

We found the preductal PI to be significantly lower in infants with PDA 

compared to infants without PDA (Figure 4). To understand this result, we refer 

to the definition of PI (AC/DC*100) (15,26), wherein AC is the pulsatile 

component of the signal and DC is the  nonpulsatile  component.  Infants with 

PDA can have an absent or reverse flow during diastole in the postductal sites 

but continuous forward blood flow in the preductal sites (7,8). In infants with PDA, 

there is also an increase in the cardiac output to compensate for the decreased 

perfusion in the postductal sites (27–29). This change in cardiac output increases 

the preductal DC component in infants with PDA compared to no PDA; 

explaining why the preduc- tal PI is lower in these infants. Our results are 

consistent with Karadag et al. (25) who analyzed the preductal PI in infants 

treated with surfactant. They found that the incidence of PDA was greater among 

the infants with a lower preductal PI. 

Our study shows no difference between mean postductal PI in infants with 

PDA and no PDA. Our findings are consistent with Vidal et al. (12) who found no 

statistically significant difference or correlation between postductal PI and PDA in 

premature infants. Although not statistically significant, the postductal PI was 

higher in our infants with PDA compared to infants without PDA (Figure 4). We 

believe that with PDA there is a decrease in the DC component of the postductal 

PI due to the overall lower perfusion and decreased mean arterial pressure at the 

postductal sites (30,31). Furthermore, our find- ings are consistent with the report 
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by Alderliesten et al. (9) who found in a study of 342 neonates that infants with 

hsPDA had higher postductal PI than infants without hsPDA. They attrib- uted 

this finding to a hyperdynamic circulation with a widened pulse-pressure resulting 

in an increase in the AC component. We believe that the increase in postductal 

PI, if present, is the result of a combination of the effect of the elevated AC 

component (due to the hyper-dynamic circulation) and a decreased DC 

component (due to a decreased general perfusion). 

Given that the mean ∆PI may not reflect instantaneous hemodynamic 

changes, we also assessed the variability of the ∆PI over the 4-h monitoring 

period. Since the correlation of blood fl w and PI has already been established 

(11, 32), we believe that the ∆PI variability should also correlate with the 

hemodynamic status of the infant. Our fi dings show that infants with PDA have 

signifi antly lower ∆PI variability compared to those with no PDA (Figure 5). 

Although trending in the same direction, changes in variability were not 

statistically significant for pre- and postductal PI (Figure 5). The change in ∆PI 

variability observed in our study is noteworthy since it has not been previ- ously 

described. De Felice et al. (15) speculated that changes in PI variability may be 

associated with neonatal morbidities, similar to heart rate variability. Decreased 

heart rate variability in preterm infants with PDA was described by Prietsch et al. 

(33). This decreased heart rate variability resolved after treatment with 

indomethacin. ΔPI and heart rate variability are valuable at identifying subclinical 

cardiovascular dysfunction in pre- term infants (15). The variable PI, as a refl 

ction of the changing hemodynamic status of infants, may also explain the 

discrepancy among PI values reported in different studies (9,13,14,23,24). 

Compared to other studies (11,12,14,23,24), we measured PI with high 

resolution (1s sampling rate) continuous pulse oximetry which gives our study the 

strength of having high quality monitoring for long periods of time. We advocate 

for continu- ous measurement of PI compared to spot checks; however, the 

question that remains to be answered is the optimal monitoring duration needed 

to detect hemodynamic instability. 
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The echocardiographic classification of hsPDA used in this study is 

commonly reported in the literature (8,30,31) but did not correspond to the 

clinical status of our infants. Those infants designated by echocardiography as 

hsPDA required less mechanical ventilation, had less FiO2 requirement, and no 

difference in acidosis compared to non-hsPDA; although not statistically 

significant (Table 2). It is possible that mechanical ventilation may have an effect 

on PI measures; however, our sample size does not allow to determine an 

independent effect of ventilation on PI changes. Our study was not designed to 

establish any correlation between the PI values and the clini- cal severity of the 

ductus arteriosus. Even though the ductal stealing phenomenon in infants with 

PDA is well known (17,30,31), its relationship with end organ hypoperfusion and 

neonatal morbidity remains controversial (34). 

Although we achieved the planned observations per our power calculation 

(accounting for data loss), our sample size is small to evaluate other factors that 

may affect PI values. Our study has the strength of offering continuous high-

quality monitoring throughout the study period. This allowed us to adequately 

assess the relationship between PI and PDA. 

We were able to demonstrate that a lower mean ΔPI and pre PI values 

over a 4-h period have the potential to detect the presence of PDA in premature 

infants. We are the first to report a lower variability in ∆PI in infants with PDA 

compared to infants without PDA. Perfusion index provided by the bedside 

monitor is a promising bedside tool to assess for PDA in preterm infants. Future 

studies with a large cohort are needed to determine the clinical utility of PI in 

predicting PDA and monitoring of its hemodynamic course through days of 

treatment. 

 

 

 



 

129 
 

 

ACKNOWLEDGMENTS 

The authors are thankful to the NICU faculty, nurses, research staff, and 

families. 

 

STATEMENT OF FINANCIAL SUPPORT 

The study was funded by National Center for Research Resources, 

UL1RR033173, and is now at the National Center for Advancing Translational 

Sciences (E.G., E.G.A.J.); and The Gerber Foundation (E.G.A.J., P.W., P.G., 

H.B.). Disclosure: The authors have no financial relationships relevant to this 

article to disclose. The authors have no conflicts of interest to disclose. 

 



 

130 
 

 

 

 



 

 
 

 

131 



 

132 
 

 

 

  

 

 

Figure 1.  Flow diagram of the enrolled patients. 
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Figure  2.  Sample plot representing PI values of one infant with PDA (Variability 

0.33, Mean −0.01) and no PDA (Variability 0.71, Mean 0.87) for 4 h prior to an 

echocardiogram. Dashed lines represent the preductal PI and solid lines 

represent the postductal PI. 
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Figure 3. Mean ± SD values of Delta Perfusion Index (ÄPI) 4 h prior to 

echocardiography. Comparing ÄPI in infants with no PDA vs. infants with PDA, 

hemodynamically significant PDA (hsPDA) and no hsPDA. *P < 0.05 compared 

to no PDA. 
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Figure 4. Mean ± SD values of Perfusion Index (PI) 4 h prior to echocar- 

diography. Comparing the preductal (black bar) and postductal (white bar) PI of 

infants with no PDA vs. infants with PDA, hemodynamically significant PDA 

(hsPDA) and no hsPDA. *P < 0.05 compared to no PDA. 
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Figure 5. Mean ± SD values of the Variability of Perfusion Index (PI) 4 h prior to 

echocardiography. Comparing ∆PI (dotted bar), preductal PI (black bar) and 

postductal PI (white bar) variability for infants with no PDA vs. with PDA, 

hemodynamically significant PDA (hsPDA) and no hsPDA. *P < 0.05 and ‡P = 

0.08 compared to no PDA. 
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