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Systematically Exploring the Effects of Pole Count
on the Performance and Cost Limits of Ultra-high
Efficiency Fractional hp Axial Flux PM Machines

Narges Taran, Student Member, IEEE, Vandana Rallabandi, Senior Member, IEEE,
Greg Heins, Member, IEEE, Dan M. lonel, Fellow, IEEE

Abstract—Optimizing the design of electric machines is a
vital step in ensuring the economical use of active materials.
The three-dimensional flux paths in axial flux PM (AFPM)
machines necessitate the use of computationally expensive 3D
electromagnetic analysis. Furthermore, a large number of design
evaluations is required to find the optimum, causing the total
computation time to be excessively long. In view of this, a
two-level surrogate assisted algorithm capable of handling such
expensive optimization problems is introduced, which substan-
tially reduces the number of FEA evaluations to less than 200
while conventional algorithms require thousands of designs to
be analyzed. The proposed algorithm is employed to optimally
design an AFPM machine within a specified envelope, and to
identify the limits of cost and efficiency. In order to obtain these
limits, the variables' ranges are assigned to be as wide as possible,
resulting in a vast design space, the study of which was enabled by
the developed special algorithm. Additionally, optimized designs
with different rotor polarities are systematically compared in
order to form the basis for a set of generalized design rules.

Index Terms—Axial flux permanent magnet, surrogate assisted,
multi-objective, optimization, number of poles, 3D FEA, SPM.

I. INTRODUCTION

The design and optimization of axial flux permanent magnet
(AFPM) machines are of great interest due to many of their
advantages such as higher torque density and efficiency. Their
disc shape makes it practical to achieve designs with a larger
diameter and a higher number of poles. The possibility to
have a higher pole count leads to potential performance
improvements. Determining the number of rotor poles and
subsequently stator slots greatly impacts the outcomes of
the electric machine design optimization [1]. This paper is
a systematic investigation of those impacts for a surface
mounted AFPM machine.

Recently, the fractional slot concentrated winding (FSCW)
has attracted attention for its application in surface mounted
PM machines [2]-[4]. Its main advantages include shorter end
coils, a simple structure, and improved fault tolerance. The
use of double layer FSCW, as opposed to its single layer
counterpart, can mitigate the core and PM losses. Also, in

N. Taran and D. M. Ionel are with the SPARK Laboratory, the De-
partment of Electrical and Computer Engineering, University of Kentucky,
Lexington, KY 40506 USA (e-mails: narges.taran@uky.edu; dan.ionel@uky.
edu). V. Rallabandi was with the SPARK Laboratory, ECE Department,
University of Kentucky, and is now with GE Research, Niskayuna,
NY (e-mail: vandana.rallabandi@ieee.org). G. Heins is with the Regal
Beloit Corporation, Australia, Rowville, VIC 3178, Australia (e-mail:
greg.heins @regalbeloit.com).

case of axial flux configurations, the double layer winding can
yield an increased active diameter within a constrained total
diameter, due to the reduction in coil thickness.

Studies on surface mounted PM machines (SPM) with a
concentrated winding provide the principles for selecting the
best combinations for the number of slots and poles. They
propose a slot per pole per phase less than or equal to 0.5
[5], Ny = N, =1 or N, = N, £2 [6]-[9], and N, > N,
[10], where N, and N, are the number of slots and poles,
respectively. Based on the above guidelines, four slot/pole
combinations (12/10, 24/20, 36/30, 48/40) with a double layer
concentrated winding are selected.

The main shortcomings of the studies conducted on the
effect of slot/pole combinations is that they rely on simplistic
assumptions, such as a constant yoke thickness, and the use
of analytical approaches and/or 2D models for machines with
3D flux paths [3], [11]-[15], which results in comparing
topologies that are not truly optimal designs for their pole
count.

This paper is an expanded follow-up to a previous confer-
ence paper by the same authors [16]. Together the current and
the previous conference paper provide substantial contribu-
tions to the subject matter by: systematically investigating the
optimal design and pole count selection of a surface mounted
AFPM machine; employing an algorithm capable of solving
optimization problems with 3D FEA design evaluations and
a very wide search space; and proposing a method for inter-
preting the Pareto front and selecting the optimal design in a
multi-objective problem.

The optimization method is a two-level surrogate assisted
algorithm that employs a combination of differential evolution
(DE) algorithm, kriging meta models as surrogate interpo-
lations, and 3D FEA. Through this approach, thousands of
designs are evaluated with a relatively accurate surrogate
model, while the most promising designs are analyzed using
the very high fidelity 3D finite element method.

The paper is structured as follows: the next section intro-
duces the AFPM machine specifications and its 3D parametric
model. The selected objectives and geometrical variables are
explained. Section III introduces the optimization algorithm.
The optimization results are discussed in section IV, which also
includes a proposed systematic approach for design selection
and interpretation of the Pareto front of a multi-objective opti-
mization. The results are validated experimentally in sections
V. The study concludes in section VI.
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Fig. 1. The geometrical independent variables included in the process of
design optimization. The variables are introduced to the algorithm as ratios.

TABLE I
INDEPENDENT OPTIMIZATION VARIABLES AND CORRESPONDING LIMITS,
EXEMPLIFIED FOR THE CONFIGURATION WITH 40 POLES.

Variable  Description Min  Max
g Air-gap [mm] 1.50  4.00
kry rotor yoke ratio = i’"z 0.07 0.25
ksy stator yoke ratio = in 0.07 025
kpm magnet length ratio = LL’; 7:’ 0.06 025
Ko split ratio = 52¢ 048  0.80
kon over hang ratio = % -1.00  1.00
ksw slot width to slot pitch ratio = qu’ 2 045 0.90
kp pole arc to pole pitch ratio = :ii)t 0.60 095

II. PROBLEM FORMULATION FOR ANALYSIS AND
OPTIMIZATION

The axial flux machine under study is designed to produce
the rated torque of 5.4 Nm at 1050 rpm. The optimization
study is comprehensive and considers all possible designs
within the limitations of this problem, i.e. geometrical dimen-
sions, mechanical limits, etc., in order to reach the absolute
limit of each objective function. As designs within the widest
applicable range of variables are included, a reference design
to improve upon is not considered in this study.

The envelope size, including axial length and total outer
diameter are constant and fixed at their maximum value
while number of poles and other geometrical variables are
investigated to achieve the most favorable design. The optimal
design problem is elaborated in the following.

A. Objectives

Considering that cost competitiveness and design efficiency
are the most important criteria from the perspective of manu-
facturers and customers, the optimization objectives are con-
sidered to be the total loss and cost [17]. The two optimization
objective functions are defined for the total loss, Fj, and active
material cost, F:

E:WCu+Wc+mea

1
FC:mC+3~m0u+24‘mpm, ()

where W¢,,, We, and Wp,, stand for the copper, stator core,
and PM eddy losses. The preliminary studies showed that
the rotor core loss is a negligible portion of the total loss
in this study, and is therefore not considered in the analysis.
The low rotor core losses can be attributed to the relatively
low fundamental frequency, as well as reduced rotor core flux
density harmonics due to application of surface mounted PMs.
The magnet losses can be reduced by segmentation.

The total mass of the stator and rotor core are represented
with m,, and the copper and magnet mass, with m¢g, and
Mpm, Tespectively. The mass is calculated in kg and the
steel cost per kg is considered as the one-unit reference
[18]. This per-unitized method of defining the cost function
makes the calculations independent of the impact of using
various vendors and currencies, while still including a correct
representation of the cost trends needed for design comparison.

It is expected that the best compromise design varies for
different pole counts. One of the goals of this study is to
investigate those varying factors in order to identify general-
ized rules for a suitable initial design of SPM machines with
different polarities.

Generally, as the number of poles and slots increases,
the copper loss decreases, due to the reduced end winding
length. On the other hand, the increase in the fundamental
frequency causes more core losses. Therefore, a pole count
which achieves a proper trade-off between copper and core
losses, for a given application and dimensional constraints
exists, and should be identified. The methodology developed
in this paper can also be utilized to identify the number of
poles most suitable for a specified application.

B. Parametric 3D FEA Models

The AFPM machines to be optimized are single stator
single rotor configurations with surface mounted Neodymium
magnets and concentrated non-overlapping windings. The
stator core is laminated. In order to include the effect of
varying number of poles, different optimization studies are
conducted for four slot/pole combinations i.e. 12/10, 24/20,
36/30, and 48/40. The total axial height and the total outer
diameter including the end coils are kept the same in all
the studied topologies. Figure 1 illustrates the 3D parametric
model, exemplified for the 40 pole configuration. All of the
FEA results are obtained from time-transient 3D models with
motion.

C. Optimization Variables

The search space for the optimal design is assigned to be
very large, i.e., the ranges of the optimization variables are as
wide as possible, with only geometrical limitations taken into
account, to include the absolute limits of the minimum cost
and loss achievable. Therefore, the variables are limited either
to prevent the intersection of various geometrical components
or to address mechanical constraints such as the minimum air-
gap or yoke thickness.

Eight geometrical variables are selected as optimization
variables, as illustrated in Fig. 1 and Table 1. The flux
lines distribution for the 40 pole topology, as an instance,
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Fig. 2. The 3D flux lines distribution of an exemplified design with 40 poles.
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Fig. 3. The effects of optimization variables on dc copper loss of designs
with different pole count, represented by per-unitized regression coefficients.

is presented in Fig. 2. The variables are defined as ratios to
ensure their independence. Only the air-gap is defined as an
absolute value, in mm. The variables in the axial direction
are divided by the total axial length, L,,. The slot depth is
calculated for a constant overall axial length.

The over-hang ratio, k., is defined to take values between
—1 and +1. The positive values indicate over-hang, that is, the
magnet radial length is greater than the stator radial length with
the same average radius. The negative values represent under-
hang, that is, the magnet radial length is less than the stator
radial length with the same average radius. Taking over-hang
into account, particularly in cost sensitive designs, is helpful in
potential PM volume reduction. It is ensured that all designs
produce the rated torque at the rated speed through a two-
pass analysis. First the design is analyzed using a preassigned
current density. Then, based on the produced torque and the
required torque, the current density is adjusted and the design
is re-evaluated to ensure the rated torque is obtained.

D. Sensitivity Studies

The effects of the optimization variables on the performance
of the designs with different number of poles are investigated
by studying regression coefficients, which are obtained by con-
ducting a design of experiments study. Negative and positive
regression coefficients indicate that the absolute value of the
response reduces and increases, respectively, upon increase

1.00
0.75
0.50
0.25
0.00
-0.25

I 10 pole

Core loss Reg. Coeff. [pu]

-0.50 [ 20 pole
0.75 [—130 pole

' [__140 pole
-1.00

k Kk g k. k., k k. Kk
ry pm

Fig. 4. The effects of optimization variables on core loss of designs with
different pole count, represented by per-unitized regression coefficients.
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Fig. 5. The effects of optimization variables on cost function of designs with
different pole count, represented by per-unitized regression coefficients.

in the corresponding factor. The larger the magnitude of the
regression coefficients, the more influential the factor.

The influence of variations in the optimization variables
on dc copper loss, stator core loss, and cost function are
illustrated in (Fig. 3, Fig. 4, and Fig. 5). The magnet loss
comprises a smaller fraction of the total losses. In the case of
the specific ratings and envelope constraints in this study, it
may be observed from these figures that the general trend is
that the copper losses increase upon increasing the air-gap (g),
and split ratio (k4s). On the other hand, by increasing magnet
thickness (kpy, ), slot width (k) and pole arc (k;,), the copper
loss reduces. This is attributed to the higher magnetic loading
achieved by an increase in these parameters, and therefore, a
lower current density can be employed to produce the rated
torque. The rotor yoke (k,.,) appears to be influential only in
case of the machine with the lowest pole count, which may
be owing to its higher saturation, considering the larger pole
pitch.

It is observed that the degree of the impacts varies for differ-
ent pole counts. With fixed axial length, the increase in yoke
thickness can be achieved by reducing the slot depth. This may
alter the leakage pattern and/or the harmonic spectrum and
hence core losses in a non-straightforward way. Figure 5 shows
that the effect of overhang ratio (k,) is more considerable
in cost function and more so in case of the machines with
lower number of poles. This design of experiments based
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Fig. 6. (a) The flowchart for the two-level surrogate assisted algorithm,
proposed for multi-objective optimization of electric machines with 3D FEA
models. (b) The details of blocks 1, 2, and 3.

study shows that the selected studied variables have significant
effects on objectives. Therefore, the optimization is performed
with all eight discussed variables.

III. TWO-LEVEL SURROGATE ASSISTED OPTIMIZATION

The magnetic flux for an AFPM machine is in both axial
and circumferential directions. The flux leakage occurs in three
dimensions, (Fig. 2). Also, the tooth width variation in the
radial direction makes the stator core in the inner diameter
prone to saturation. Two-dimensional or quasi-3D models
cannot capture the effects of end coils and overhang. These are
some of the reasons necessitating the use of computationally
expensive 3D models for AFPM machines.

Generally, thousands of design evaluations are required to
identify the Pareto front [17]. Moreover, the full exploration
of a wide design space, as is undertaken in this paper, would
typically require even more designs to be evaluated. For these

TABLE II
NUMBER OF GENERATIONS, FE MODELS, AND KRIGING SURROGATE
MODELS FOR EACH OPTIMIZATION STUDY.

Poles 40 30 20 10
Generations 5 7 5 9
FE models 211 207 164 300
Kriging models 3130 3120 2040 5640

4.2
3.7 o) O Evaluated designs in 3D FEA
® Pareto optimal designs

—. 32
>
27
7]
822
<
3 1.7 o o
12 o

0.7
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Total loss [pu]

Fig. 7. All designs evaluated in 3D FEA for the 30 pole configuration and
the Pareto optimal designs represented by filled circles.

reasons, the use of 3D FEA models with conventional algo-
rithms is simply unaffordable. Surrogate assisted optimization
algorithms make it feasible to evaluate a larger number of
designs. In this paper, a new two-level surrogate assisted
differential evolution multi-objective optimization (SAMODE)
is employed in order to identify the Pareto front accurately
with a minimum number of expensive design evaluations.
This algorithm reduces the required number of FEA design
evaluations from thousands to less than two hundred.

The flowchart representing the new optimization algorithm
is illustrated in Fig. 6. This is a two-level surrogate-assisted
algorithm taking advantage of differential evolution and krig-
ing models. The flowchart is composed of an exterior and an
interior level loop. The exterior loop is an evolutionary algo-
rithm, replacing the regeneration step with an interior loop.
The interior loop is based on a multi-objective differential
evolution (MODE) algorithm that employs surrogate models
for function evaluations [19]. A summary of the optimization
process is provided in the following.

The first step of the optimization algorithm is to construct
the initial sample pool. This may be done with random designs
or design of experiments (DoE). For optimization problems
with larger number of variables and a wide design space, such
as the study at hand, DoE requires a large number of designs
for inclusion in the sample pool in order to take possible
nonlinearities into account. Therefore, in this study, random
designs are used to construct the initial sample pool. The
resolution of the sample pool is subsequently increased only
in the promising areas of the search space.

After generating the minimum sample size, the performance
of a limited number of unsampled designs, say ten designs,



is evaluated with the surrogate model and also simulated with
FEA and an estimation error is calculated. If the error is larger
than a preset limit, e.g. 5%, these designs are added to the
pool and a new batch of unsampled designs are evaluated.
This process constantly increases the sample pool size until
satisfactory estimations are achieved.

The next step is to select the initial generation. For each
iteration of interior loop, the initial population is set to be
the Pareto front designs of the latest sample pool. Then,
the interior level optimization is performed using, in this
case, conventional DE methods with inexpensive surrogate
models as its function evaluation tool. The output of this is an
estimated Pareto front. It is expected to have some estimation
errors for the Pareto front designs performance, to correct
which, the Pareto front designs are evaluated with 3D FEA
and replaced their approximate estimations suggested by the
surrogate models. The interior loop optimization is performed
again, this time with the updated sample pool. This continues
until the termination criteria are reached.

Multi-objective optimizations usually set a maximum num-
ber of function evaluations or maximum number of generations
as the termination criterion. For the algorithms that converge to
the optima very fast, this criterion can cause many dispensable
generations which is vital to avoid. In this study, in order
to reduce expensive evaluations, a negligible improvement
in three representative points of the Pareto front, for a few
consecutive generations, will terminate the optimization.

The surrogate model used in this algorithm is Gaussian
process prediction [20], known as kriging in geostatics. The
kriging surrogate model is a local fitting model that, unlike
conventional curve fitting methods, does not fit a global
polynomial function. The kriging model puts more weight on
sampled data points in the vicinity of the un-sampled data,
providing nonlinear estimations that are more accurate even
for the outliers. Kriging surrogate models can be divided into
trend and residual components [21],

YV =Xp+rTRY(Y — XB) ;
Ty = exp[—Eleﬁtht - xi7t|2} , 2)

Rij = exp[—SF_10iwis —x54?] d,5=1,...,m,
where Y is the response to be predicted based on the known
sampled data points, i.e. X and Y. § is the matrix of
regression coefficients that can be obtained using methods
such as least squares. n is the number of samples and k the
number of variables. Kriging weights, »7 and R~ are derived
from the covariance function or semivariogram and maximum
likelihood estimation (MLE).

The two level layout provides an approach to evaluate only
the most promising designs with expensive 3D FEAs in the
exterior loop, while the interior loop provides an approach
for evaluating thousands of designs using inexpensive surro-
gate interpolations. This algorithm, unlike existing surrogate
assisted algorithms, does not solely rely on estimated values,
and has a dynamic sample pool that increases the initial sample
pool size until the estimation error is sufficiently small. Such
an implementation avoids unnecessary expensive design eval-

TABLE III
THE PER-UNIT VALUE OF REPRESENTATIVE OPTIMUM DESIGNS FOR
DIFFERENT POLE COUNTS. THE TOTAL MASS, COST, AND LOSS OF THE
SELECTED 20 POLE DESIGN REPRESENT THE BASE.

Number of poles 40 30 20 10
Copper 0.15 0.18 0.22 0.22
g Steel 0.58 0.60 0.74 0.94
s PM 0.03 0.03 0.04 0.05
Total 0.76 0.81 1.00 1.21
Copper 0.20 0.24 0.29 0.29
Z Steel 0.26 0.26 0.33 0.41
o PM 0.29 0.26 0.38 0.50
Total 0.75 0.77 1.00 1.21
Copper 0.71 0.67 0.49 0.75
%2 Core 0.63 0.43 0.37 0.22
S PM 003 007 014 0.17
Total 1.36 1.17 1.00 1.14
Emag. efficiency [%] 92.7 93.7 94.6 93.9
Power density [W/kg] 217.5 2055 1654 136.8

Torque density [Nm/kg] 2.0 1.9 1.5 1.2
Goodness [Nm/v/ W] 0.79 0.86 0.93 0.87

uations while the kriging model resolution gradually improves
for designs closer to the Pareto front.

IV. OPTIMIZATION RESULTS AND DISCUSSION

The two-level surrogate assisted optimization is performed
on the AFPM machines with different number of poles. For all
cases, the population size is set at ten designs per generation.
The base optimization method is DE, shown in Fig. 6b,
block number 3, which requires scaling factor and cross over
probability; both are assigned to be 0.5.

The number of generations is dynamic and not fixed, as
the optimization terminates once further improvement is not
achieved. The number of total FEA runs is also variable be-
cause it depends on factors such as the acceptable sample pool
resolution, the number of generations, and the number of new
proposed promising designs in each generation. The number
of generations, FE models, and krigign surrogate model design
evaluations for each optimization set-up is provided in Table
II.

As expected, because each generation includes hundreds
of design candidates evaluated with ultra-fast kriging meta
models, even the total number of generations is much lower
than for typical DE optimization algorithms, resulting in a
substantial reduction of the computational effort. Only a rela-
tively low number of 3D FE models are employed, each solved
with the ANSYS/Maxwell software in approx. 30 minutes on
a desktop PC workstation with 10 cores, Intel(R) Xeon(R)
CPU E5-2687W v3 @ 3.10 GHz, and much faster on HPC
systems with large scale parallel processing capabilities. As
an example for the 30 pole machine, Fig. 7 includes all the
207 candidates evaluated with 3D FEA and for clarity does
not include the results for the 3120 Kriging models.

A. Optimal Design Selection

The final product of such a multi-objective optimization,
after reaching termination criteria, is a set of non-dominated



designs, referred to as Pareto optimal designs. For minimiza-
tion problems, a design is Pareto optimal if there exists no
other feasible design within the defined search space which
would decrease one objective without causing a concurrent
increase in at least one other objective [22]. Mathematically,
designs variables' vector =™ is called a Pareto optimal design,
if no other vector x exists that satisfies both the following
conditions [23]:

[(@) < @ forall je(1,2,.0m) ;
£ (@) < fj(x—*z) for at least one j € (1,2,...,m).

where f represents the objective function and m is the number
of objective functions, for this study m = 2. An example
Pareto front obtained for the 30 pole topology and 2 objectives
of this study is plotted in Fig. 7.

The final design should be selected among the Pareto opti-
mal designs. The Pareto designs closer to the knee region of
the Pareto front provide a trade-off between the two objectives
while the designs further away from the knee point represent
the superiority of one of the objectives over the other. The
designs that are located more to the left side represent those
high in efficiency and cost, while the designs on the right
feature low cost and high loss

The relation between the two objectives can be captured by
fitting a curve on the Pareto front. The general format of the
fitted curve can be described as

3)

fo=

e, @)
Ji—b

where f1 and fg are the two objective functions on the fitted
curve (loss and cost, respectively, in this study), and constants
a, b, and c are positive values that can be assigned based on
the exact shape of the obtained Pareto front.

The final design selection can be performed by quantifying
the superiority of objectives over one another. This quantifi-
cation can be expressed by a factor 7'; any percentage-wise
further improvement in one objective should cause less than
T times deterioration in the other, that is:

Aﬁl = —Aﬁ2 T 2128 df%Q _ ! X fzﬂ . (5
fn Ji2 dfn T fu

Equation (5) in combination with (4) can be solved for f;l
and f;z that are the the objective values of the desired design.
The closest design on Pareto to ( f;l s fgg) can be selected as
the final design.

The knee point can be defined as the point where 7' = 1.
This means any percentage-wise improvement in one of the
objectives results into the exact amount of percentage-wise
deterioration in the other, and is therefore representative of a
best-compromise design. The calculated knee point is marked
with a star in Fig. 8. Two other examples, prioritizing loss
and cost, are also included and marked. In one example, with
T = 0.2, further percentage-wise reduction of loss will cause
at least 5 times (1/0.2 = 5) more percentage-wise increase in
cost. As another example, where T = 5, further reduction in
cost leads to at least 5 times more increase in the loss.

2.2 T T T T
Fitted curve on Pareto designs
= 171 @ ® Pareto optimal designs .
& e
g 1.2
i(; T=0.2
E T=1 (knee)
0.7} ’Nﬂ.o ]
00000 °
0.2 1 1 . 1
0.8 1.5 2.3 3.0 3.8 4.5

Total loss [pu]

Fig. 8. The fitted curve on the Pareto front and the calculated knee point,
based on (5), marked with the red star symbol (%). The point 7' = 0.2 is
where further reduction in loss causes at least 5 (%2 = 5) times more increase
in the cost. The point 7" = 5 is where further reduction of cost causes at least
5 times more increase in loss.
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Fig. 9. Pareto fronts obtained for the machines with different pole count,
employing 3D FEA models. A representative design of each topology is
marked with a star symbol (%). The per-unit system is based on the
representative design with the highest efficiency which is the 20 pole topology
marked with a red star symbol (¥).

B. Identification of Trends

The representative optimum design for each pole count is
selected to be on the knee point of the Pareto front, marked
with a star in Fig. 9. The breakdown of active material mass,
cost, and loss for these designs is shown in Table III and Fig.
10. Table III also includes the global performance parameters,
i.e., power density, torque density, and goodness defined as
Nm per loss unit, in order to provide comparison indices with
other designs.

It is observed that for the optimum design with a lower
number of poles and slots, the copper and steel mass increase.
The PM mass is affected by several variables including the
split ratio, overhang, PM thickness, and PM arc ratio and it
comprises a smaller portion of the total mass.

It is also seen that copper losses of the knee point design
reduce initially upon increasing pole count, and then increase.
This trend may in part be explained by considering that as
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Fig. 10. The mass, cost, and loss components of the design on the knee
point of the Pareto front obtained from the optimization studies with different
number of poles.

the number of poles and slots reduces, the end turn length
increases, while the current density reduces. The minimum
copper loss is obtained for the design with 20 poles, given the
specifications and ratings of this study. The core loss is lower
for optimum designs with lower number of poles. This can be
attributed to the reduced electrical frequency. The magnet loss
increases for lower pole counts; magnet segmentation is not
considered in the optimization process, therefore lower pole
counts with larger pieces of magnets may increase the magnet
eddy current losses. Magnet segmentation would affect the
cost function which adds to the complications of setting up
a systematic optimization algorithm. It also should be noted

(a)

(c) (@

Fig. 11. Flux density distribution in magnets of the optimum designs with
(a) 40, (b) 30, (c) 20, and (d) 10 poles at the rated load. Note that the color
scale is identical and ranges from 0.2 T to 1.5 T.

TABLE IV
MINIMUM FLUX DENSITY WITHIN NEODYMIUM MAGNETS OF THE
OPTIMUM DESIGNS SELECTED ON THE KNEE OF THE PARETO FRONT.

Number of poles 40 30 20 10

Open-circuit [T] 0.57 045 039 0.30
Load 1 pu [T] 0.57 045 039 0.28
Load 2 pu [T] 0.57 041 036 0.20

that, compared to the other two loss components, magnet loss
is a smaller portion of the total losses.

In order to evaluate the PM demagnetization situation, the
minimum flux density within the entire PM space is recorded
and presented in Table IV. The evaluations are carried for
open-circuit, rated and double the rated load. The flux density
distribution at the rated operating condition is illustrated in
Fig. 11. The optimization results suggest thicker magnets for
the designs with higher pole count. Therefore, the lowest
flux density of 0.3 T is observed in case of the machine
with the lowest pole count and thinner magnets which have
a lower permeance coefficient. The magnets of the machine
with 40 poles have minimum flux density of 0.57 T. The
demagnetization curve of employed Neodymium PM exhibits
a knee at about 0.35 T for 75°C. The results show that for
this design problem, optimum designs with higher pole count
have a lower risk of demagnetization.

C. Characteristics of Optimum Designs

The box plot in Fig. 12 illustrates the distribution of
variables for designs on the Pareto fronts. This plot can be
used to identify certain characteristics of optimum designs as
discussed in the following. The PM thickness of the optimal
designs located on the Pareto front tends towards their smaller
values and more so for lower pole counts. Generally, the PM
arc ratios are larger for the lower pole counts. This implies
that when the number of poles is lower, a design with thinner
PMs and larger pole arc to pole pitch ratio will be more
beneficial. The optimization algorithm reduces the thickness of
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Fig. 12. Distribution of the design variables for the Pareto front designs
obtained with different pole counts.
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Fig. 13. Pareto front obtained for the machine with 30 poles, divided into three
zones, the vertical section (zone 1) where further reduction in loss requires at
least 5 times more increase in cost, the knee in the middle (zone 2), and the
horizontal section (zone 3) where further reduction in cost requires at least 5
times more increase in loss.
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Fig. 14. Distribution of the design variables at different zones of the Pareto
front for the topology with 30 poles. This topology is selected due to the its
extended asymptotic Pareto front on both sides, illustrated in Fig. 13.

the PMs with wider arcs that may result in reduction of the PM
volume and eddy losses. The stator yoke in optimum designs
is generally larger for topologies with lower pole counts. This
can be to reduce the flux density in the yoke and hence core
loss.

The split ratio of the Pareto front designs is generally
inclined toward their greater value and more so for higher
pole and slot counts. A larger split ratio reduces the active
material weight and cost and provides a larger tooth width
in the inner diameter, mitigating the risk of saturation. The

increased number of slots necessitates larger split ratio for
core loss reduction.

To examine the extreme Pareto designs which are located on
the tips of the Pareto front, the 30 pole topology is exemplified
because of its extended and asymptotic Pareto front. The
Pareto front is divided into three zones shown in Fig. 13.

The division of Pareto designs into three zones is conducted
using the factor T, as explained by (5). Zone 1 is selected to be
where further reduction of loss causes at least 5 times more
increase in cost which corresponds to 7' < 0.2. Zone 3 is
where further reduction in cost leads to at least 5 times more
increase in loss, corresponding to 7" > 5. Zone 2 includes
the Pareto designs in between. Therefore, designs in zone 1
and 3 are optimized with an emphasis on minimizing the loss
and cost, respectively, while the designs in zone 2 display a
preference of balance between the two objectives.

Based on Fig. 14, the high efficiency designs in zone 1
have a thinner yoke and a larger air-gap. However, the use of
more magnet material results in costly designs. More efficient
designs also have wider slots, smaller current density and
copper loss. The less expensive, albeit less efficient, designs
in zone 3 are achieved by reducing the PM thickness, the PM
arc, and the overhang ratio, and also by increasing the split
ratio.

Extreme cases of designs, with the lowest loss and with the
lowest cost, along with the knee designs that achieves trade-
off between loss and cost are presented in Fig. 15. The design
with the least loss in Fig. 15a has thick PMs and a thin yoke
such that the cost is mostly associated with the PMs at about
78% of the total cost. Copper and core losses are both equal, at
about 17 W. The design in Fig. 15b has the minimum cost and
employs very thin PMs and a very thick yoke. The copper loss
accounts for most of the total loss with 134 W out of 140 W,
while the cost is distributed evenly among the materials. The
results illustrate that the designs in the knee zone, i.e. the best
trade-off region, have balanced cost and loss components, a
characteristic typically associated with robust optimal designs.

V. PROTOTYPING AND EXPERIMENTAL VALIDATION

All the designs evaluated for the four slot/pole combinations
along with the Pareto front obtained are represented in Fig.
16. A lower loss design can be obtained from the 20 pole
configuration, while a less expensive design can be achieved
with 30 or 40 poles. A machine with 20 poles and 24 slots
which achieves the ultra high efficiency in excess of 94% is
selected for prototyping and marked with a star in Fig. 16.
The manufactured prototype is presented in Fig. 17.

The estimated performance using the 3D FEA model is
verified with measurements and represented in Table V [24].
The spinning loss includes mechanical losses, such as friction
and windage, stator core losses, and PM losses. The calculated
efficiency uses copper and core losses obtained from the FEA
and 6 W mechanical losses. The results for the measurements
and the FEA are in agreement and serve as the basis for the
satisfactory validation of the study.

The performance of the motor is investigated at different
speed and torque values. The efficiency map is measured and



Fig. 15. The optimum designs obtained for the configuration with 30 poles. (a) The design with minimum loss on the Pareto front, (b) the design with
minimum cost on the Pareto front, (c) the design on the knee of the Pareto front with a trade-off between cost and loss.
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Fig. 16. The overall Pareto front (filled markers) and all of the evaluated
designs (hollow markers). The prototyped design is selected to have a high
efficiency, marked with a star symbol ().

TABLE V
THE EXPERIMENTAL AND CALCULATED RESULTS FOR THE ULTRA HIGH
EFFICIENCY AXIAL FLUX SPM MACHINE RATED AT 0.75 HP. THE
CALCULATED VALUE OF THE EFFICIENCY USES 3D FEA RESULTS AND A 6
W MECHANICAL LOSS COMPONENT.

Calculated  Measured
Torque Constant  [Nm/A] 1.4 1.4
Phase resistance  [(2] 0.39 0.37
Conductor loss [W] 17.4 15.3
Core loss [W] 10.9 —
Mechanical loss [W] 6 —
Spinning loss [W] — 17.3
Total loss [W] 34.3 32.6
Efficiency [%] 94.5 94.3

plotted in Fig. 18. The calculated efficiency map within the
same speed and torque range matches satisfactorily with the
measurements. The performance of the machine at the rated
torque and speed is marked.

VI. CONCLUSION

This paper systematically identifies the absolute perfor-
mance limits that can be achieved by fractional horse power
AFPM machines with surface magnets within a given enve-
lope. This necessitates the study of a large number of designs
spanning a wide design space, and having different slot-pole
combinations, and the problem is further complicated due
to the three-dimensional nature of the machine geometry. In

(b)

Fig. 17. The ultra high efficiency AFPM machine, rated for 5.4 Nm at 1050
rpm, selected for prototyping based on the comprehensive optimization study
with 3D FEA models. (a) The stator with a core OD of approx. 170 mm and
(b) the assembled motor.

this regard, a new two-level surrogate assisted multi-objective
optimization algorithm which enables this large scale study
is utilized. The algorithm greatly improves the computational
efficiency achieved through a significant reduction in the
number of 3D finite element evaluations to less than two
hundred, while a conventional optimization method would
have required thousands of FEA design evaluations. This
economizes the computational resources and time, thereby
making the optimization of such expensive problems feasible.
The paper also proposes a systematic method for selecting the
optimum designs for multi-objective optimization problems.
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Fig. 18. The measured efficiency map of the prototyped machine. The

performance of the machine at its rated torque and speed is marked with
a star symbol ().

Approximately horizontal and vertical lines obtained on
the extremes of the Pareto front indicate that within the
geometrical limitations further improvement in efficiency and
cost is not probable. The results confirmed that the designs
with the best trade-off between the two objectives of loss and
mass split the core and copper losses nearly equally.

The combined Pareto front with pole counts ranging from
10 to 40 illustrates that the highest efficiency is obtained for
designs employing 20 poles. An ultra high efficiency axial flux
SPM design with 20 poles rated for 0.75 hp is prototyped,
demonstrating a measured efficiency of 94.3%.

Furthermore, the effect of the pole count on the optimum
design variables is examined to find a relative trend. For
instance, it is observed that thinner PMs with a larger pole
arc to pole pitch ratio are generally more beneficial for lower
pole counts. Within the studied frame size and ratings, a bigger
air-gap, a thinner yoke, and a larger slot width result in more
efficient, albeit more expensive, designs. Learning such trends
can serve as a basis for developing generalized design rules
and as a reference for the preliminary stages of the optimum
design process, ultimately making the optimization results
more accurate as well as computationally affordable.
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