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ABSTRACT OF THESIS 
 
 
 

 
MODELING OF BIOREFINERY SUPPLY CHAIN ECONOMIC PERFORMANCE 

WITH DISCRETE EVENT SIMULATION  

As competition for fossil fuels accelerates, alternative sources of chemicals, fuels, and 
energy production become more appealing to researchers and the layman. Among the 
candidates to fill this growing niche is lignocellulosic biomass. Many researchers have 
examined supply chain design and optimization for biofuel and bioenergy production 
throughout the years. However, these models often fail to capture the variability and 
uncertainty inherent to the biomass supply chain. Multiple factors with high degrees of 
stochasticity can have major impacts on the performance of a biorefinery: weather, 
biomass quality, feedstock availability, and market demand for products are just a few. 
To begin to address this issue, a discrete event simulation model has been developed to 
examine the economic performance of a region specific, multifeedstock biorefinery 
supply chain. Probability distributions developed for product demand and feedstock 
supply begin to address the random nature of the supply chain. Model development is 
discussed in the context of a multidisciplinary framework for biorefinery supply chain 
design. A case study, sensitivity analysis, and scenario analysis, are utilized to examine 
the capabilities of the model. 
 
KEYWORDS: Biomass Supply Chain, Biofuel, Discrete Event Simulation, 

Multidisciplinary, Uncertainty. 
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1 INTRODUCTION 

1.1 Background Information 

As fossil resources for the production of transportation fuels and energy have become 

ever more scarce due to dwindling supply, inefficient use, and increasing demand, 

interest in renewable and alternative sources of raw materials for these purposes has 

steadily grown. One technologically viable option for substitution in this regard has 

proven to be biomass. The ability to produce biofuels and other products utilizing various 

biomass feedstocks and chemical processes has been demonstrated (Tripp et al, 2009). 

Heat and electricity, transportation fuels, specialty chemicals, and other synthetic 

materials traditionally derived from fossil fuels can technically be developed from 

various biomass feedstocks.  

Biofuels can broadly be categorized as first-generation, second-generation, or third-

generation based on feedstock inputs. First generation techniques utilize well-established 

technologies to convert seeds, grains, or whole plants to biofuels. The feedstocks are 

typically derived from food products. Second generation biofuels are produced using 

thermochemical pathways or fermentation with non-food source feedstocks. In addition 

to agricultural and forestry residues, potential biomass resources include all plant-derived 

materials including starches, sugars, and oils. Additionally, animal waste, urban-wood 

residues, industrial process residues, and municipal solid waste could be considered 

potential feedstocks (An et al, 2011; Perlack et al, 2005). Third generation biofuels are 

produced from algae or seaweed. Here, the biomass is harvested from nature or gown for 

use as feedstock in chemical conversion processes (Nigam and Singh, 2011). In general, 

third generation biofuels are not considered relevant in the marketplace until 2050 due to 

the state of technology development (Bringezu et al, 2009). What’s more, researchers 

have shown that, from a lifecycle perspective, the environmental impact of these 

alternative products can be significantly less than fossil fuels. Mu et al. (2010) point out 

that recent LCA studies have consistently shown possible greenhouse gas emission 
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reductions of greater than 50% by utilizing biochemical or thermochemical means to 

produce fuels from biomass.  

In addition to scientific support, significant political will has been garnered in favor of 

expanding the use of biofuels around the globe. The European Union has instituted 

minimum biofuel content legislation that will take full effect by 2020. With the passage 

of Directive 2003/30/CE, the member states have mandated that transportation fuels will 

contain 10% biofuel by that time (Londo et al., 2010). Similarly, Argentina mandates a 

minimum content of biofuels in gasoline and diesel (Mele et al., 2011). Increasingly, 

nations all around the world are setting goals for increased use of bioenergy (Olsson, 

2007). Notably, the USA has taken significant measures to increase biofuel production 

and consumption nationally. The Renewable Fuels Standard (RFS), established in 2005 

(Public Law 109-58, 2005), created a volumetric consumption mandate for biofuels for 

the first time. Subsequently, in 2007, this historic standard was expanded by the passage 

of the Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140, 

2007).  This legislation, which more than doubles the requirements set forth with the 

RFS, establishes the RFS2.  Optimistically, legislators mandated up to 36 billion gallons 

of biofuels by 2022 with 21 billion gallons made up of advanced biofuel derived from 

sources other than those traditionally used to produce ethanol. Of these 21 billion gallons, 

16 billion gallons should be comprised of fuels derived from cellulose, hemi-cellulose, or 

lignin of renewable biomass that has lifecycle greenhouse gas emissions that are at least 

60% lower than the baseline established in 2005 (Biotechnology Industrial Organization, 

2011).  This planned increase in consumption is illustrated in Figure 1-1.  
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Figure 1-1 RFS2 Consumption Mandate (Biotechnology, 2011) 

At a more local level, many state governments in the USA have instituted various 

regulation regimes and incentive programs for biofuel production and consumption. For 

example, perhaps accelerated recently in response to the passage of the RFS and, 

subsequently, the RFS2 on the national level, all states have taken the initiative to create 

utilization policies for woody biomass.  Becker and Lee (2008) compiled a 

comprehensive collection of state policies related to biofuel, energy efficiency, and 

energy production from biomass based sources. The national distribution of policies, as 

well as the date of the most recently enacted policy can be seen in Table 1-1.  The authors 

of the sampled study categorized state level incentive policies in the following way: tax 

incentives including exemptions, deductions, credits, or reductions of sales, 

corporate/production, personal, and/or property taxes; subsidies including cost sharing, 

rebate, and grant programs; rules and regulations including renewable energy and fuel 

standards and certification requirements; education and consultation including research 

initiatives or training to enhance biomass technical expertise; and financing and 

contracting including business recruitment, issuing bonds, making low/no interest loans 

available, and procurement and contracting to require biomass product use in certain 
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activities. From the table it is clear that in recent years interest in providing incentives for 

business investment in biotechnology for fuel and energy production has increased.  

Although the EPA has lowered the fuel standard for cellulosic biofuels on multiple 

occasions (ultimately decreasing the production milestones from a required 500 million 

gallons in 2012 to 8.65 million gallons in 2012 (Bracmort, 2012)), the existence of this 

type of legislation globally indicates a need for expanded biofuel production capacity. In 

fact the United States Energy Information Administration predicts the domestic 

production of ethanol and biodiesel together to increase by at least around 20% by 2015 

and by at least 64% by 2035 (US EIA, 2012a). Assuming that market pressures and 

political support continue to increase together, the need for expanded biorefinery and 

bioenergy production capacity will doubtless become an issue to be dealt with. 

Despite the proven chemistry, political support, and potential environmental benefits 

biomass currently accounts for only a fraction of the energy production and transportation 

fuel consumption in the United States. Figure 1-2 illustrates the use discrepancy by 

comparing annual consumption of gasoline, fuel ethanol, and biodiesel from 2009 

projected into 2014. The apparent discrepancy between technological capability and 

technology implementation is thus revealed. Bio-based sources of transportation fuels 

have clearly not become competitive alternatives to fossil fuels.    
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Table 1-1 Woody Biomass State Policies [Source: Becker and Lee (2008)] 

	
   Policy	
  Type	
   	
  
State	
  

Abbreviation	
   Tax	
  Incentive	
   Subsidies	
  &	
  
Grants	
  

Rules	
  &	
  
Regulations	
  

Education	
  &	
  
Consultation	
  

Financing	
  &	
  
Contracting	
  

Most	
  Recent	
  	
  
Enactment	
  

AL	
     -­‐	
    -­‐	
   2006	
  
AK	
     -­‐	
   -­‐	
    2008 
AZ	
    -­‐  -­‐	
    2008 
AR	
   - -­‐	
     -­‐	
   2007	
  
CA	
        2008 
CO	
        2008 
CT	
        2007 
DE	
   -­‐	
     -­‐	
   -­‐	
   2008	
  
FL	
       -­‐	
   2008	
  
GA	
    -­‐	
   	
    -­‐	
   2008	
  
HI	
        2008 
ID	
        2007 
IL	
      -­‐	
    2007 
IN	
   -­‐	
   -­‐	
    -­‐	
    2008 
IA	
        2008 
KS	
    -­‐	
   -­‐	
    -­‐	
   2008	
  
KY	
    -­‐	
    -­‐	
   -­‐	
   2008	
  
LA	
   -­‐	
   -­‐	
     -­‐	
   2008	
  
ME	
      -­‐	
   -­‐	
   2008	
  
MD	
    -­‐	
    -­‐	
   -­‐	
   2004	
  
MA	
        2007 
MI	
       -­‐	
   2008	
  
MN	
      -­‐	
    2007 
MS	
   -­‐ -­‐	
    -­‐	
    2006 
MO	
    -­‐    2009 
MT	
     -­‐	
   -­‐	
   -­‐	
   2007	
  
NE	
   -­‐	
   -­‐	
    -­‐	
    2007 
NV	
    -­‐	
      2007 
NH	
       -­‐	
   2008	
  
NJ	
   -­‐	
   -­‐	
    -­‐	
    2008 
NM	
    -­‐	
     -­‐	
   2007	
  
NY	
       -­‐	
   2008	
  
NC	
        2008 
ND	
       -­‐	
   2008	
  
OH	
       -­‐	
   2008	
  
OK	
   -­‐	
   -­‐	
      2007 
OR	
        2007	
  
PA	
   -­‐	
      -­‐	
   2008	
  
RI	
    -­‐	
      2005 
SC	
     -­‐	
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Figure 1-2 Fuel Consumption [Source: EIA:STEO Jan, ‘13] 

Traditionally, higher production costs for biofuels have prevented their economic 
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consumer prices. Economies of scale would most likely significantly reduce the costs 

experienced by biofuel producers and make their products significantly less expensive for 

consumers (Ryan et al., 2006). Modeling has suggested that certain aspects of the current 

national renewable fuels standard (RFS2) may make it economically reasonable for 

existing biofuel producers to invest in expanding capacity in order to benefit from the 

growing consumer base and may increase the number of new market entrants (Kesan et 

al., 2012) thereby making economies of scale possible in the biofuels industry. 

Besides poor economies of scale, a shift from reliance on fossil resources to agriculturally 
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impacts on biorefinery operational ability (Gold and Seuring, 2011; Tay et al., 2011; van 

Dyken et al., 2010; Zhu et al., 2011).   

1.2 Research Objectives and Questions 

With the need for expanded supplies of biofuels established and several obstacles 

identified, work must be carried out to address these challenges. The objective of this 

research is to analyze the long-term economic performance of biorefinery supply chain 

operations in such a way as to capture the dynamic influences of uncertainty inherent to 

the system. Standard methods for solving location-allocation supply chain problems such 

as Mixed Integer Linear Programming (MILP) adequately capture the state of a supply 

chain for given static conditions defined by deterministic parameter values. In the case of 

biorefinery supply chain design utilizing only this type of model yields an optimal 

collection of feedstock supply locations, biorefinery siting, and points of sale for finished 

products. However, relying on deterministic inputs for variables such as product demand 

and supply availability greatly reduces the ability of the model to represent the true state 

of supply chain optimality. In this way, many uncertainties associated with biorefinery 

feedstock supply and product demand are overlooked. 

Pitt (2013) reported on the recent record-setting payouts from agriculture insurers. Due to 

consecutive years of drought and flooding, US farmers received crop insurance payments 

of around $16 billion. This massive payout represents the insured value of lost crops. Not 

only does this represent a heavy financial burden for farmers and taxpayers; from the 

perspective of a biorefinery, the lost crops potentially represent a lull in feedstock supply 

availability. Clearly, as local supply diminishes, biorefinery decision makers could 

compensate for this lack of supply by sourcing from other suppliers. This action could 

maintain production, however, possible deviation from the optimal supply chain would 

have some negative impact on supply chain economic performance. Similarly, 

fluctuations in product demand could have similar impacts. Taking this type of variability 

into consideration by defining supply and demand variables using probability 

distributions over a longer time frame is paramount in establishing robust supply chains. 
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Analyses such as long-term supply chain profitability, deviation from the MILP defined 

supply chain, and policy application scenarios can be applied to more adequately discuss 

the supply chain including sources of local raw materials for the production of 

transportation fuels, chemicals, and electricity.   

Overall, this work will address the following questions: 

1. Is an optimized biorefinery supply chain always viable in a given region? 

2. How is the profitability of a biorefinery supply chain impacted by variability in 

feedstock supply availability and product demand? 

3. In what ways could the modeled supply chain be improved for long term positive 

economic performance? 

4. How can policy decisions impact the viability of regional biorefinery supply chains? 

The remainder of this thesis is divided into several more chapters. Chapter 2 includes a 

thorough literature review exploring existing biomass supply chain modeling as well as 

relevant supporting information. Chapter 3 describes the development of a new 

multidisciplinary framework for integrated biorefinery supply chain design. Chapter 4 

describes the methodology employed to develop a biomass supply chain simulation 

model in the context of a larger modeling framework intended to provide decision 

support for biorefinery supply chain stakeholders. Chapter 5 is used to explain the 

illustrative case study employed to demonstrate the simulation methodology. In Chapter 6 

analyses of the results from simulation are shown and, in Chapter 7, general observations 

of the results are discussed, conclusions are drawn, and future opportunities for 

expanding this work are discussed.  
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2 LITERATURE REVIEW 

In order to assess the current state of the art related to biomass supply chain modeling and 

multidisciplinary approaches for tackling problems of this type, a survey of recent 

literature has been conducted. This section is divided as follows. First, in Section 2.1, 

rationale behind the need for supply chain modeling in the context of biofuel production 

is discussed. Second, in Section 2.2, the important topic of modeling uncertainty, 

particularly in the supply chain context, is covered.  Next, Section 2.3 describes 

analytical methods and examples of biomass supply chain modeling. Section 2.4 

identifies selected simulation-based methods for modeling. Finally, in Section 2.5, the 

work toward a multidisciplinary approach to address the issues related to biomass fed 

fuel and chemical production is highlighted by existing literature.  

2.1 The Need for Supply Chain Modeling for Biofuel Production Planning 

As highlighted in Section 1.1 (Background Information), numerous legislative drivers 

have biofuel poised to expand in the United States. The economic impact of the RFS2, 

for example, is expected to unfold similarly to that observed as conventional fuel ethanol 

infrastructure was being created. With lignocellulosic biofuel mandated as well, however, 

the implications for agriculture, land use, and economy in general are potentially larger 

(Beckman et al, 2011). It has been suggested that the effect of policies that increase the 

competitiveness of biomass based fuels is crucial to their development (Soloman, et al 

2007). This type of government aid is meant to limit new industry entrant exposure to 

risk as they enter a market segment without a large-scale industrial base (Gutterson and 

Zhang, 2009). Besides this mandated impetus, some scholars believe that biofuels can 

become cost competitive with fossil based counterparts on their own in the near future. 

Expected increases in agricultural yield, farming advances such as no-till methods, a 

large existing supply of potential biofuel feedstocks and other biotechnology 

advancements could greatly increase the feasibility of profitable biomass to biofuel 

supply chains (Hellenhaus, 2006).  Bartle and Abadi (2010) further suggest that excess 

potential agricultural land could result from these factors in conjunction with declining 
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population growth rates; they indicate that the utilization of this newly available land for 

the purpose of energy or biofuel production could help to accelerate the economies of 

scale necessary for widely profitable biorefinery supply chains. 

Energy balance studies have confirmed the potential for profitable design of biomass 

supply chains. Hill et al. (2006) make the point that low input crops grown on marginal 

crop lands have markedly better economies than the traditional biofuels sourced from 

food crops. Wu et al (2007) found similar results when examining woody biomass as a 

feedstock in western Australia. They emphasize a need to focus on harvest and 

transportation optimization to ensure the viability of the potential nascent industry. 

Wellisch et al (2010) suggest that biorefinery supply chain systems have great potential 

for sustainable innovation. Direct employment in refinery jobs, indirect industry 

development to support the biorefining sector, and local utilization of agriculturally based 

energy feedstocks can together be powerful drivers of rural development provided that 

deliberate planning and assessment methodologies are followed. Iakovou et al (2010) 

emphasize the importance of utilizing waste biomass as feedstock in order to maximize 

societal and environmental benefits gained from biorefining. Ryan et al (2006) posits the 

increased energy security and rural development possible from the development of 

biofuel industries. It is impossible to discuss the implementation of biofuel supply chain 

systems without mentioning the food-versus-fuel controversy. Huang et al (2012), point 

out the potential tradeoffs related to the alleviation of poverty with industrial expansion 

of biofuel production and the indirect impacts of feedstock and non-feedstock agricultural 

product commodity price rises. These potential negative impacts must be considered. 

Cruz Jr., et al (2009) proposed a discrete-time input-output model based framework to 

examine the dynamic behavior of biorefineries and their supply chains. In modeling, 

biorefinery production level is adjusted to compensate for surplus or deficit feedstock 

levels to regulate these dynamics. The research found that biorefineries may experience 

undesirable sustained or slowly decaying oscillatory behavior in production levels. They 

conclude that policy based or market based interventions could help quicken the 

stabilization of the new industry. 



 

 11 

In addition to these necessary compromises and tradeoffs, hurdles do exist to the 

widespread establishment of biorefinery supply chains. For Europe, McCormick and 

Kåberger (2007) described these as economic conditions, know-how and institutional 

capacity, and supply chain coordination. Economic conditions such as relatively low 

fossil fuel prices make biobased transportation fuels non-competitive with their fossil 

based counter parts; this is largely linked with their third point. Low biomass bulk density 

as well as relatively low calorific values associated with biomass result in high feedstock 

requirements for biorefineries and, thus, high transportation costs to deliver it (Richard, 

2010). Poor storability of biodegradable feedstocks also contributes to complications and 

supply chain uncertainties (Gold and Seuring, 2011). The implementation of widespread 

production of biofuels is prohibited, to some extent, by the high capital investment 

required to update infrastructure. When discussing the potential for biobased bulk 

chemical production in the United Kingdom, the BREW project report (Patel et al 2006) 

concluded that the challenge in developing the industry was primarily an economic one. 

The researchers pointed out that technological improvements and advances are crucial to 

bringing down the cost as well. Charlton et al (2009), while assessing the feasibility of 

biorefining in Wales, insisted that biorefineries ensure feedstocks are produced using 

only marginal land and foster the creation of locally sourced biomass supply chains with 

the ability to eventually integrate into a larger economic system. They point to the local 

transportation system’s ability to handle increased demand for its use as a limiting factor 

to biorefinery development and general alternative fuel production adoption. Despite the 

fact that ample supply for sustainable supply of approximately 1 billion tons of biomass 

production each year for energy needs has been hypothesized and validated (Perlack et al, 

2005 and Downing et al, 2011, respectively), similar challenges face alternative fuel 

producers in the United States.  

With all these considerations, modeling is helpful for determining influencing variables, 

supply chain impact, and supply chain viability for a nascent biorefining industry. 

Appelqvist et al (2004) provided a literature review covering the topics of product and 

supply chain design. This analysis categorized the modeling in surveyed research as 

‘reengineering,’ ‘breakthrough,’ ‘continuous improvement,’ and ‘design for logistics’ 
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according to the state of the supply chain and product being considered. Table 2-1 

illustrates this taxonomy.  

Table 2-1 Research Classification Adapted from Appelqvist et al (2004) 
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For the case of biorefining, research can fall into any of these categories. First generation 

corn ethanol supply chain design via optimization, for instance, could be considered 

Reengineering because the existing product is being examined in light of a new supply 

chain. The result of optimization is the supply chain layout itself. Along these same lines, 

lignocellulosic biofuels and related technologies, a much newer innovation, could be 

considered a New Product. Therefore, the design of a new supply chain via modeling in 

this context would constitute research in the upper right quadrant of the table. Through 

literature review in the broader supply chain context, Appelqvist (2004) notes that 

simulation and optimization methods are often chosen for these models; the researcher 

further highlights the fact that the vast majority of literature surveyed fell in the domain 

of either reengineering or continuous improvement. Very little research was reported in 

the ‘Breakthrough’ domain, none in relation to lignocellulosic biomass supply chain 

design. Although the remainder of this literature review will show that in the years since 
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the publication of Appelqvist (2004) significant levels of research have expanded the 

literature in these domains, work still remains to be done. 

2.2 Uncertainty in Biomass Supply Chain Modeling 

Awudu and Zhang (2012) reviewed literature relating to uncertainties and sustainability 

aspects of biofuel supply chain management. The pair classified sources of supply chain 

uncertainty in this context. Table 2-2 summarizes their findings.  

Table 2-2 Sources of Uncertainty in the SC [Source: Awudu and Zhang (2012)]  

Source of Uncertainty Details Year Researcher(s) 

Supply Quantity of Feedstock 2000 Nagel 

  
2007 Caeser et al. 

  
2008 Dauzenberg and Hanf 

 
Availability of Arable Land 2003 Berndes et al. 

  
2009 Ravindranath et al. 

Transportation Delivery 2009 Schmidt et al. 

 
Intermodal 2009 Ekşioğlu et al. 

Production and 

Operations 

Supply of Raw Materials 2009 Cruz Jr. et al. 

Inventory Balance 2010 Ochoa et al. 

Demand and Price Market Volatility 2007 Meyer 

  2010 
Markandya and 

Pemberton 

 Raw Material Cost 2009 Ravindranath et al. 

 Market Size 2010 Cadre and Orset 

Other Carbon/Nitrogen Emissions 2006 Mortimer and Elsayed 

  2008 Hammond et al. 

 Tax Policy 2005 Rozakis and Sourie 
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As is clear from the table, researchers have noted various sources of uncertainty in 

biomass supply chains. Besides those noted by Awudu and Zhang in their literature 

review, many other sources of biomass supply chain uncertainty have been identified in 

the existing literature. Petrou and Pappis (2009) point out that the variety in modeling 

results obtained from various modeling of biomass supply chains is due to large 

variability in impacting factors such as local economies, climates, production methods, 

etc. Other researchers have explored problems such as the indirect land use change from 

biofuel production. This change naturally leads to many questions about the proper 

means to model these observations (Kim et al, 2009). Seasonal and regional variability of 

biomass supply (Zhu et al, 2011), varying moisture content of that supply (van Dyken et 

al, 2010), poor storability (Gold and Seuring, 2011), and complexity due to the variety of 

potential conversion technologies (Tay et al, 2011) are only a few additional sources of 

uncertainty in the system. Therefore, these highly stochastic systems must be analyzed to 

obtain a better understanding of this variability and the impact of means to deal with it. 

Various researchers have tackled this problem with varying results while others, for the 

moment, have avoided the question via assumption. Regardless, any robust biorefinery 

supply chain model should account for this uncertainty in some fashion. 

2.3 Analytical Biomass Supply Chain Modeling 

With increased legislative mandates for biobased energy and fuel production increasing 

over the last decade (Solomon et al, 2007), it should come as little surprise that so too has 

the interest in modeling the impacts and operations of biomass supply chains. As 

mentioned previously, unique hurdles and challenges related to the perishability of the 

feedstock, seasonal variability, transportation issues, etc. must be dealt with when 

considering the supply chain design. This variability, in turn, adds to the complications of 

practitioners as they attempt to provide biorefinery supply chain stakeholders with 

decision support.  

Many articles in the literature focus on analytically modeling supply chain activities and 

design. Analytical models can include mathematical modeling formulations of various 
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supply chain problems. Linear and nonlinear programming is a particularly prevalent 

method seen in the literature. Biorefinery supply chain performance at various degrees of 

resolution has been optimized via mixed integer linear programming on numerous 

occasions. Wu et al (2011) modeled economic performance of woody biomass use as a 

potential biorefinery feedstock in West Virginia. Giarola et al (2011) examined the 

supply chain implications of converting from first to second generation biorefinery 

technology with model based multiple objective mixed integer linear programming. With 

objective functions maximizing Net Present Value and minimizing GHG impact over 

twenty years, the results highlight important tradeoffs necessary between economic and 

environmental objectives. Gomes et al (2012) employed mixed integer programming to 

optimize chipping, storage, and delivery of wood biomass for fuel production. Many 

other examples of this type of supply chain optimization exist: several recent examples, 

among many others, are listed in Table 2-3 to show the persistent nature of the work in 

this area in recent years continuing to today.  

Table 2-3 Recent Biomass Supply Chain Optimization Literature  

Year Researcher(s) 

2007 Rentizelas et al 

2009 Rentizelas et al 

2010 van Dyken et al 

2010 Lam et al 

2011 An et al (references) 

2011 Kim et al (a & b) 

2012 Marvin et al 

2012 Judd et al 

2012 Faulkner 

2013 Foo et al 

2013 Kelloway et al 

2013 Shabani and Sowlati 
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Zamboni et al (2009) presented a spatially explicit static mixed integer linear 

programming model that sought to capture the demand uncertainty via the use of various 

scenarios. Dal-Mas et al (2010) expanded on Zamboni’s model to include uncertainties in 

production cost and selling price. These examples do provide insight into the impacts of 

uncertainty; however, they fail to capture probabilistic uncertainty present in the system 

as well as potential dynamic effects. Other research also attempts to capture uncertainty 

in a similar way, via scenario setting. For instance Zhu et al (2011) included buffer stock 

in a mixed integer linear programming model to deal with uncertainty; similar 

shortcomings exist for these examples as well. 

To begin to address this issue, Dal-Mas et al (2011) later proposed a dynamic mixed 

integer linear programming expansion of this problem considering market uncertainties. 

The problem is formulated as a stochastic problem to account for the uncertainties related 

to biomass availability as well as market demand for the finished good.  

Stochastic modeling has also been utilized to probabilistically address biorefinery supply 

chain risk. Baptista et al (2012) implemented stochastic modeling for this purpose in a 

closed loop supply chain. Bowling et al (2011) accounted for market uncertainties by 

considered nonlinear impacts of economies of scale on biorefinery supply chain design. 

The capital cost functions that made up the model were reformulated using disjunctive 

models; the results of the research yielded convex relationships that guarantee global 

optimality. 

Awudu and Zhang (2012) have identified techniques used to model supply chains under 

uncertainty. While their work focuses on biorefinery supply chains, the researchers make 

the point that literature treatment of uncertainty specifically in the biorefinery supply 

chain context specifically is limited; they therefore generalized their literature review to 

include all supply chain uncertainty. The researchers have identified analytical and 

simulation based techniques. The analytical techniques of Awudu and Zhang (2012) can 

be seen in Table 2-4; the simulation-based techniques are shown in Table 2-5 in the next 

section. Analytical techniques included consist of various incarnations of mathematical 
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modeling. The particular examples given highlight the use of stochastic variables to 

capture uncertainty.  

Table 2-4 Analytical Biorefinery Supply Chain Modeling Under Uncertainty 
(Awudu and Zhang, 2012) 

Method Year Researcher(s) 

Stochastic Mixed Integer Linear 

Programming 
2010 Dal-Mas et al. 

Integer Stochastic Programming 2011 Kim et al. 

Stochastic Mixed Integer Non-Linear 

Programming 
2009 Sodhi and Tang 

Stochastic Planning w/ Scenario 

Generation 
2004 Lababidi et al 

Markov Chain 2008 Al-Othman et al 

 

2.4 Simulation Based Biomass Supply Chain Modeling 

While mixed integer programming is by far the most common method of addressing 

biorefinery supply chain design, this method is often based on initial guesses and 

assumptions; there is not necessarily a guarantee of obtaining the global optimum 

solution (Johnson et al, 2012). A potential alternative to this type of analytical modeling 

is simulation based modeling. Akgul et al (2011) comments on optimization based 

methods for biofuel supply chain assessment under uncertainty. The work identifies 

mathematical programming as well as simulation-based methods as being relevant to this 

field. It is suggested that simulation based methods have the advantage of allowing the 

practitioner to identify detailed supply chain performance information even with 

significant levels of operational uncertainty in a system.  
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The IBSAL model, or Integrated Biomass Supply Analysis Logistics model, (Sokhansanj 

et al, 2006) considers weather influence, moisture content and dry matter loss from a 

supply chain perspective via simulation. The model is highly detailed, however, it 

provides no optimization or dynamic indication of supply chain performance. Slade et al 

(2009), while discussing the viability of lignocellulosic ethanol in Europe, make the point 

that supply chain performance in this context is dependent upon feedstock costs and the 

value obtained from ethanol. These two considerations are highly dependent on 

influencing factors that are inherently highly uncertain. Factors such as the price of oil or 

present and future policy incentives can fit this bill. Yun et al (2009) modeled optimal 

operation planning for biorefineries. The research described hedging options for biomass 

procurement that led to decreased profit variability. The work showed that with proper 

finance tools, firms could manage supply and demand uncertainty properly.  

In 2004, Terzi and Cavalieri (2004) provided a survey of research focused on simulation 

modeling in the broader context of supply chains. These models were reportedly utilized 

for supply chain network design, strategic decision-making, inventory planning, 

distribution planning, and production planning. Kleijnen (2005) described techniques 

used for supply chain simulation modeling. At the most basic level, spreadsheet based 

simulation has been used for manufacturing resource planning and vendor managed 

inventory systems. Systems dynamics models elicit non-obvious emergent behavior from 

systems through nonlinear feedback interactions. Discrete event simulation is particularly 

well suited for supply chain operation modeling as it represents a quick and detailed view 

of individual supply chain events. Discrete event simulation modeling was utilized by 

Zhang et al (2012) to model woody biomass transportation for conversion into biofuel in 

Michigan. The model was exercised to show delivered feedstock costs, energy 

consumption, and greenhouse gas emissions from each supply chain event. Mobini et al 

(2011) used discrete event simulation modeling to estimate moisture content, carbon 

dioxide emissions, and cost of delivered biomass based on IBSAL modeling. Rangel et al 

(2010) quantified waiting times for harvesting sugar cane and unloading it in the. This 

model was not stochastic due to a general lack of probability distributions; however, 
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many dependent variables resulted in a dynamic model, a possibility with discrete event 

simulation.  

Table 2-5 Simulation-Based Biorefinery Supply Chain Modeling Under Uncertainty 
(Awudu and Zhang, 2012) 

Method Year Researcher(s) 

Discrete Event Simulation 

2004 Jung et al  

2004 Kerbache and Smith 

2004 Higichi and Troutt 

2009 Miranda and Garribo 

Monte Carlo Simulation 

1994 Subrahmanyam et al 

2004 Jung et al 

2004 Hung et al 

2009 Mahnam et al 

2009 Miranda and Garribo 

 

In several instances, Monte Carlo simulation has been used in recent years to quantify 

biomass supply chain uncertainty. Schade and Wisenthal (2011) identified policies for 

achieving EU biofuel objectives and compared them via analysis of expected opportunity 

losses via Monte Carlo simulation. They show that ranking of policy options via this 

method is valid and should replace the single variable sensitivity runs common in 

modeling. Similarly, Kim et al (2011) provided a global sensitivity analysis for an 

optimal design using Monte Carlo simulation. Rouch (2010) discussed the development 

of a sourcing model for forest biomass. Stochastic disturbances to supply were simulated 

via Monte Carlo method. Tay et al (2011) utilized fuzzy methods to optimize supply 

chain performance. In this context, fuzzy methods allow for simultaneous maximization 

of economic performance and minimization of environmental impact. Utilizing fuzzy 

methods allows the model to make “unexpected” adjustments to the objective function 

value, moving slightly away from global optimality to represent tradeoffs associated with 
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these often-conflicting goals. Hytonen and Stuart (2010) employed Monte Carlo to assess 

technology risk for biorefineries using forest biomass as a feedstock. The model allowed 

for identification of the least-risk option. Yu and Tao (2008) developed an energy-flow 

based LCA of gasoline-ethanol blends from various biomass sources in regions of China 

including four life cycle stages for fuel products and three life cycle stages for vehicles. 

The model incorporated Monte Carlo simulation to account for model uncertainty. 

2.5 Multidisciplinary Approach for Sustainable Biorefinery Supply Chain Design 

An et al (2011) conducted a thorough comparative literature review of existing biomass 

and petroleum based fuel supply chain related literature. Broadly, the survey supports the 

assertion that research in this domain can be classified on the basis of decision timeframe 

considered and the point in supply chain where the modeling is set. The review goes on 

to classify several literature examples according to these considerations. It is evident 

from the reviewed literature that research integrating strategic, tactical and operational 

levels of decision making was lacking. This is illustrated by the taxonomy developed by 

An et al (2011). The researchers applied the taxonomy to specifically biofuel supply 

chain literature; these results are presented in Table 2-6. It is clear that upstream models 

at the operational level dominate the examined body of work. 
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Table 2-6 Literature Taxonomy [Source: An et al (2011)] 

SCM Planning Level Layer in Supply Chain Year Researcher(s) 
Operational Upstream 1984 Jenkins et al. 

  1992 Mantovani and Gibson 

  1996 Gallis 

  1997 De Mol et al. 

  1999 Gemtos and Tsiricoglou 

  1999 Murray 

  2002 Higgins 

  2003 Tatsiopoulos and Tolis 

  2004 Higgins and Postma 

  2005 Goycoolea et al. 

  2005 Gunn and Richards 

  2005 Hamelinck et al. 

  2005 Martins et al. 

  2006 Sokhansanj et al. 

  2007 Gronalt and Rauch Peter 

  2007 Kumar and Sokhansanj 

  2007 Petrou and Mihiotis 

  2008 Constantino et al. 

  2008 Lejars et al. 

  2008 Ravula et al. 

 Up/Midstream 1999 Higgins [23] 
Integrated Upstream 1997 Cundiff et al. 

  2002 Gigler et al. 

  2004 Gunnarsson et al. 

  2005 Troncosoa and Garrido 

  2007 Dunnett et al. 

  2010 Zhu et al. 

 All 2009 Ekşioğlu et al. 

  2010 Ekşioğlu et al. 

  2010 Huang et al. 
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A more holistic view of the supply chain is necessary for assessing the true 

environmental, economic, and societal impact of a biorefinery. Ekşioğlu et al. (2009) 

made the point that long and medium term biorefinery supply chain decisions and short-

term logistics decisions should not be made in isolation; communication is key. They 

further noted that since these decisions are directly impacted by transportation costs and 

biomass availability, benefits may be seen from a system of 2 or 3 small biorefineries as 

opposed to 1 centralized location. Similarly, in 2009, Cundiff et al suggested that, due to 

the distributed nature of biomass, small, localized biorefineries could be more 

economical, environmentally friendly, and socially responsible than large centralized 

facilities.  This viewpoint, the researcher points out, means that the interactions between 

feedstock production, logistics, and processing would be key to developing efficient 

supply chains. These considerations, it was noted, must be addressed concurrently. Along 

these lines, Kokossis and Yang (2010) took a systems view of biorefineries. This method 

of thinking requires attention to interconnections among existing subsystems. By doing 

this, the researchers claimed to maximize process efficiencies across the system through 

better design and optimizing activities such as process integration.  

In past supply chain research, application of various tools with information sharing has 

proven to enhance the validity and impact of the overall model. A good example of this is 

the integration of GIS with modeling techniques such as LP to examine region specific 

biorefineries. For example, Tittmann et al (2010) combined GIS information with mixed 

integer programming to determine the optimal supply chain for a biorefinery located in 

California. Information made available to the model through integration of GIS made the 

model much more realistic. Similarly, Zhang et al (2011) and Schardinger et al (2012) 

incorporated geographic modeling results into linear optimization. Ayoub and Yuji 

(2012) take regional biomass availability into consideration during genetic algorithm 

modeling to optimize biorefinery supply chains. Given regional biomass resource 

availability, alternate production paths are chosen for some products. Miyazaki et al 

(2012) link linear programming with chemical process optimization. The amount of 

product optimally produced is used as an input to the linear program and capital cost is 

calculated. 
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Benefits can be gained from combining simulation and optimization for biochemical 

processing. Furlan et al (2012), Sukumara et al (2012), and Caballero et al (2012) 

combined process simulation and optimization. In this way, the optimal chemical process 

is selected for a given feedstock or product. Elia et al (2011) conducted process 

simulations for biomass, natural gas, and coal combinations. The feedstock requirements, 

production of finished goods, Hydrogen input requirements to drive the reverse water gas 

shift reaction, electricity requirements for operations, and  plant unit sizing obtained from 

this process modeling were used as inputs in a mixed integer linear programming supply 

chain model.  Elia followed this work (Elia et al. 2012) with the application of this 

system for the entire United States. The study found that while a combination of biomass 

and fossil resources such as coal or natural gas could replace petroleum-based fuels in the 

United States, certain tradeoffs among economic and environmental factors couldn’t be 

overlooked. Nevertheless, profitable supply chains and significant potential for relatively 

positive environmental impact were demonstrated. This combination of biorefinery 

supply chain optimization and chemical process simulation yielded a very powerful tool 

for assessing the feasibility of multifeedstock integrated biorefineries in the United 

States. 

Del Mol et al (1997) created a framework for simulation and optimization for biomass 

supply chains. An optimization model determined the network structure and optimal 

biomass types. This aspect of the model provided a strategic level view of the supply 

chain. Simulation, on the other hand, revealed more detailed results about operations and 

logistics, providing a tactical viewpoint. Ayoub et al (2007) described the general 

BioEnergy Decision System (gBEDS). This theoretical system would combine 

information databases with genetic algorithm modeling to find optimal conversion paths 

and simulation to check economic and technical feasibility. The model was demonstrated 

for 1 biomass feedstock on a national scale in Japan. The lack of regional information and 

the limit on feedstock options, however, means that supply chains modeled may not be 

globally optimal. Ingalls et al (2008) discusses the combination of optimization and 

simulation. Given the optimal solution, simulation allows for the researcher to explore 

how the optimal solution performs under dynamic conditions. In the supply chain 
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context, such a combination is shown to reveal revenues and costs, advantages gained 

from tax policy changes, and how supply chain dynamics effect supply chain 

performance. Zheng et al (2008) describes simulation optimization as part of an overview 

of simulation techniques seen in supply chain research. Here, a stochastic approximation 

is used with discrete event dynamic system with continuous inputs. You et al (2012) 

combined multiobjective mixed integer linear programming, economic input-output 

modeling, and life cycle analysis (LCA) to determine optimal solutions. In this way, 

social impact and environmental impact have been taken into account along with 

economic considerations. Mardan and Klahr (2012) minimize the cost of operating an 

iron foundry by combining optimization and simulation modeling. The researchers found 

that running simulation alone does not guarantee optimality. The use of both optimization 

and simulation techniques allows the analyst to monitor the condition of the simulated 

result and ensure optimization. 

As indicated by the reviewed body of literature, there is clearly a need for biorefinery 

supply chain modeling. Combining analytical and simulation based modeling techniques 

can leverage the benefits of both. Integration of process optimization and simulation with 

supply chain optimization and simulation, as the following chapters will discuss, allows 

for many benefits to be gained. 
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3 MULTIDISCIPLINARY APPROACH FOR BIOREFINERY SUPPLY CHAIN DESIGN  

3.1 Overview 

Much progress has been made in the field of biorefinery supply chain modeling. Parallel 

to this activity, biorefinery technology and chemical processes have been developed, 

simulated, and optimized. Although some exceptions do exist (Sammons, Jr et al, 2008 

for example), the work in these two fields is often carried out independently with little 

multidisciplinary interaction. It has been demonstrated that biorefinery economic 

performance depends very heavily on biomass transportation expenses; therefore, it is not 

unreasonable to suggest that biomass supply chain performance relies heavily on factors 

such as biorefinery biomass input requirements and production rate of various finished 

goods. The complexity of the interdependence between supply chain design and chemical 

process modeling, then, is lost by considering biorefinery process optimization and 

biomass transportation cost minimization models in isolation.  

With the goal of providing an overall framework to encompass these interdependent 

aspects of the design, a vision for multidisciplinary consideration of biorefinery supply 

chains has been developed. Figure 3-1 illustrates the necessary modeling components and 

information flows envisioned. Supply chain optimization and chemical process 

simulation models would work in conjunction to determine a base-case optimal supply 

chain, feedstock portfolio, and product slate for a selected region. Chemical process 

modeling should utilize regional biomass characteristics and multiple alternative potential 

conversion technologies to simulate chemical reactions. Furthermore, incorporating 

thermal pinch analysis, the chemical process should be optimized to minimize processing 

triple bottom line impacts. The supply chain optimization model should consider factors 

such as regional biomass availability, processing costs, transport costs, and other 

constraints in a mixed integer linear programming formulation of the resource location-

allocation problem. These models together would provide the critical supply chain 

information mentioned; however, this pair utilizes deterministic inputs and falls short of 

capturing supply chain uncertainties. The true power of the multidisciplinary framework 
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would be leveraged when outputs from these deterministic models provide input 

information for a long period supply chain simulation. Here, the optimal supply chain 

would be tested under dynamic conditions taking into account the stochastic nature of 

many of the supply chain activities. Utilizing the bidirectional information flows shown 

in Figure 3-1, a better supply chain design could be obtained. With the addition of 

quantitative, probabilistic risk analysis, to help manage the high levels of uncertainty 

inherent to the biorefinery supply chain, further improvements could be realized. 

In subsequent sections of this chapter, more detailed discussions of each subcomponent 

of such a framework are provided. First, work toward chemical process simulation and 

optimization is addressed. Subsequently, efforts in supply chain optimization modeling 

are considered. Progress toward integrating probabilistic, Bayesian belief network based 

risk modeling is discussed. Finally, supply chain simulation is discussed. In general, its 

application would provide biorefinery supply chain stakeholders with a means to evaluate 

potential environmental, societal, and economic factors related to a regional biorefinery 

and its supplier and consumer base. 



 

 

  
Figure 3-1 Multidisciplinary vision for a biorefinery design framework
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3.2 Chemical Process Simulation and Optimization 

With this vision established, Sukumara et al (2012) addressed the chemical process 

optimization of an integrated biorefinery. An integrated biorefinery combines multiple 

thermochemical and biochemical conversion technologies with the goal of diversifying 

feedstock requirements and product portfolios; this flexibility is thought to provide 

opportunities for more sustainable energy, fuel, and chemical production (Yun et al, 

2009; Werpy et al, 2004; Naik et al, 2010). With feed flexibility, nontraditional sources 

for biofuel production can be considered. Dedicated energy crops (e.g. miscanthus or 

switchgrass), crop residues (e.g. wheat chaff or cornstover), wood residues from paper 

and timber mills, urban wood waste, animal manures, and municipal solid waste are all 

potential sources of biomass that should be considered for modeling and optimization in 

this context. Different feedstocks in combination with various conversion technologies 

can yield a variety of products for diverse markets as is illustrated in Figure 3-2. There, 

each arrow connecting feedstocks and products represents separate conversion pathway 

opportunities. 

 
Figure 3-2 Potential conversion pathways [Source: Tripp et al, 2009] 
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Given an initial feedstock portfolio for a selected region, Sukumara et al (2012) 

determined an optimal product portfolio using Gasification, the Water-Gas Shift 

Reaction, and Fischer Tropsch Synthesis. The ASPEN® model for this design work can 

be seen in Figure 3-3. Optimization of the model including thermal pinch analysis 

minimized the biorefinery operating costs by minimizing electricity requirements, heating 

utilities and cooling utilities. This information along with the rate of production and the 

optimal product slate produced, as it will be shown, are important inputs for both supply 

chain optimization and biomass supply chain simulation models associated with the 

multidisciplinary vision for the development of biorefinery supply chain designs. 

Additional details of the chemical process optimization can be found in Sukumara et al 

(2012). 

 

Figure 3-3 Feed flexible gasification process diagram [Source: Sukumara et al, 2012] 
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3.3 Supply Chain Identification and Optimization 

Faulkner (2012) employed the results from the model shown in Figure 3-3 as part of the 

inputs using inter-model information sharing in line with the framework outlined in 

Figure 3-1. Additionally, literature data was used to model a second-generation fuel 

ethanol plant. Other modeling inputs included case region specific data related to biomass 

supply and product demand. Utilizing mixed integer linear programming, Faulkner 

(2012) maximized the profit from each biorefinerinery separately. The model identified 

the optimal supply chain configuration to source feedstock, locate the biorefinery, and 

distribute products to the market. For each technology (integrated biorefining with 

multiple feedstocks and ethanol from corn stover), a ‘small,’ a ‘medium,’ and a ‘large’ 

capacity biorefinery were described based on varying levels of feedstock consumption 

and the appropriate supply chain model was applied.  

Optimal supply chain profitability over a year was determined by considering 

deterministic feedstock supply and product demand levels. Figure 3-4 shows that for the 

selected case study region (Jackson Purchase Region in Kentucky, to be explained in 

detail in Chapter 4), in general, the integrated biorefinery was not profitable regardless of 

capacity. The fact that certain months showed profit prompted the researcher to further 

analyze the integrated biorefinery supply chain for profitable scenarios; by allowing plant 

closure during the least profitable months, regional biomass supply chains could support 

profit with integrated biorefineries. It should be noted that the presented analysis includes 

the production and sale of a product, residual fuel oil (RFO), that was generated in the 

process simulation but not originally included in the modeled product slate (see Faulkner 

(2012) for additional details).  
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Figure 3-4 Monthly biorefinery supply chain profitability [Source: Faulkner, 2012] 

As a result of modeling, the structure of an optimal supply chain configuration including 

biomass supply locations, a biorefinery site location, and optimal product distribution 

locations for the selected case study region were determined. Additionally, this case study 

demonstrates the first steps of collaborative work between chemical process design and 

supply chain optimization intended in Figure 3-1. 

3.4 Bayesian Belief Network (BBN) Based Risk Modeling  

With so much uncertainty related to, particularly, biorefinery feedstock supply 

availability, decision support systems developed should consider an assessment of the 

associated risks (McCormick and Kåberger, 2007). In this way, supply chain designs are 

more likely to limit supply chain costs and maximize return on investment.  

 

Bayes Theorem, a fundamental description of the relationship between conditional 

events, reveals how newly observed information should be incorporated into event 

probabilities (Gut, 2005). The theorem has been applied to both the risk analysis and 

supply chain contexts in many instances (Nordgard and Sand, 2009; Weber et al, 2012; 
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Kelepouris et al, 2011; Badurdeen et al, 2013); its application in biorefinery supply chain 

risk assessment is more limited. 

 

Amundson et al (2012) described the application of a Bayesian belief network based risk 

assessment methodology to a biomass supply chain. This model utilized a generic risk 

event taxonomy, describing risk events based on their scope of influence, be it at the 

individual farm, regional agricultural, or external level. Relevant risks were identified for 

a corn stover supply chain set in the Jackson Purchase Region of Kentucky. 

Subsequently, root cause analysis and the determination of the most influential risk 

drivers were carried out. 

 

This demonstration case study presented by Amundson et al (2013) emphasizes the 

potential for this tool to provide information relevant to biomass supply availability. This 

insight could help inform the supply chain and process models pictured in Figure 3-1 via 

the information channels highlighted. Until now, only preliminary models have been 

developed; future work is required to expand the scope to include demand and processing 

risks and to identify the most useful applications of this model to biorefinery supply chain 

design. 

3.5 Supply Chain Simulation – The Next Step 

The work by Sukumara et al (2012), Faulkner (2012), and Amundson et al (2012) made 

great strides in moving towards a holistic supply chain design paradigm where 

information sharing could lead to a better supply chain design including the assessment 

of environmental and societal impacts.  

The results for biorefinery stakeholders, however, can be improved by including the final 

piece of the framework pictured in Figure 3-1. Faulkner (2012) based product demand 

and feedstock supply on deterministic values that fail to capture the true complexity in 

which biorefinery supply chains are immersed. Encompassing stochasticity using a 

discrete event simulation model by including probability distributions to describe supply 
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and demand and taking into account the time value of money over a longer time horizon 

provides a more complete picture of the biorefinery operational details. Such an analysis 

will also help assess the implications of drawing biomass feedstocks from farther 

locations than those identified as optimal by the MILP optimization. The following 

chapter describes the methodology taken to develop such a discrete event simulation 

model. Subsequently, analysis of the model reveals various insights that can be gained 

from incorporating this dynamic view of the supply chain into the design paradigm. 
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4 METHODOLOGY FOR THE DEVELOPMENT OF A SUPPLY CHAIN SIMULATION 

The objective of this research is to develop a biomass supply chain simulation model 

capable evaluating the long-term operational performance of a supply chain network 

design. Additionally, this model fills a critical void currently present in the 

multidisciplinary framework visible in Figure 3-1. The simulation model provides a 

means to analyze biorefinery supply chain operations over a multi-year time horizon 

taking into consideration uncertainty related to feedstock supply and product demand. 

This scale of simulation allows for an assessment of the long-term viability of the 

network and economic benefits possible from biorefinery operation in a selected region.  

Model development and analysis requires several steps. Scope definition where potential 

feedstock options and conversion technologies are considered is the first of these 

processes. Next, static supply chain and process optimization occurs. Here, optimal 

chemical processes and supply chain configurations are determined. Although input 

values are deterministic, this step provides invaluable inputs for the proposed simulation 

model. These crucial activities have been accomplished in previous work (Faulkner, 

2012; Sukumara et al, 2012) as described in sections 2 and 3 of Chapter 3. The research 

presented in this thesis advances the achievements of these previously created models by 

including the explicit consideration of uncertainty in the system. Input data and 

simulation model development must occur by, among other activities, identifying data 

probability distributions for feedstock supply and product demand based on historic data. 

Finally, simulation modeling and system analysis takes place. The steps followed to 

achieve a biorefinery supply chain simulation model are highlighted with Figure 4-1. As 

the figure highlights with the differently colored borders, these activities can be 

subdivided into two major steps: Simulation Model and Input Data Development (Figure 

4-1 A) and Simulation Modeling and System Analysis (Figure 4-1 B).  Each subdivision 

is comprised of multiple activities; in the following sections of Chapter 4, each of these 

steps is described in detail. 
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Figure 4-1 Methodology Outline 

4.1 Input Data and Simulation Model Development  

4.1.1 Input Data Development 

As mentioned previously, supply chain and chemical process models have been used to 

determine optimal supply chain and product slate configurations based on deterministic 

input for values related to feedstock supply and product demand. Table 4-1 displays the 

variables and parameters used for supply chain optimization. An explicit goal of the 

simulation model is to incorporate uncertainty in the parameters. To do this, the data 
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requirements of the model are different; probability distributions for reasonable input 

values are necessary. The values requiring such distributions are seen in Table 4-2 under 

the heading ‘Random Variables’ along with the other parameters and variables used in 

simulation. Compiled historic data should be fit to distribution functions for use in long-

term discrete event simulation to describe product demand, supply availability, and 

operating costs. This section will describe in detail the development of these data 

distributions.  

Table 4-1 Optimization Parameters and Variables [Source: Faulkner, 2012] 

Deterministic Parameters Decision Variables 

TM Truck mass P Product supply 

TM' Biomass truck capacity X Amount of biomass 
feedstock 

TM'' Product truck capacity Y Amount of product 
ρ Density Binary Variables 
s Truck speed P Plant open 
d Distance Subscripts 
k Truck diesel cons’n conv’n f biomass feedstock 
T Number of trucks p product 
c Labor hrs. needed conversion i Biomass supply location 
c' Ethanol produced conversion j plant location 
B New supply of biomass k product location 
B' Aged biomass m month 
B'' Total biomass availability   
BN Biomass needed ELEC Biorefinery electricity cost 
E Biomass erosion factor LC Labor cost 
P' Product demand LC' Hourly labor cost 
L Product loss during transport MC Maintenance cost 

R Biomass land rent cost MC' Maintenance cost 
conversion 

BC Biomass purchasing cost SC Supervisor cost 
BC' Biomass transport cost OVC Overhead cost 
BC'' Biomass transport diesel cost PC Product transport cost 
BC''' Biomass inventory cost PC' Prod. transport diesel cost 
BTC Biomass truck dist. dep’t cost PTC Prod. truck dist. dep’t cost 
BTC' Biomass truck time dep’t cost PTC' Prod. truck time dep’t cost 
OC Operating cost DP Diesel price 

COOL Biorefinery cooling cost BP Biomass purchase price 
HEAT Biorefinery heating cost PP Product selling price 
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Table 4-2 Simulation Parameters and Variables  

Deterministic Parameters Random Variables 

D Distance PD Product Demand 
n Number of locations S Biomass Supply 

DBR Daily Biomass 
Requirement CO 

Biorefinery Operating 
Cost 

DR Raw	
  Material	
  Decay	
  Rate Dependent Variables 
MC Raw	
  Material	
  Cost	
  per	
  Ton NPV Net Present Value 

SW Raw Mat’l Shipment 
Weight I Income 

TCBS(t) Bulk Solids Transport Cost CT Cost of Transport 
TCL(t) Bulk Liquid Transport Cost CD Diesel Fuel Expense 

TS Truck Speed CM Feedstock Expense 
CPM Cost per Truck Mile CS Biorefinery Storage Cost 
TDR Truck Diesel Requirement BS Biorefinery Storage 
TW Truck Weight BSA Biomass Storage 
DP Diesel Price PSA Product Storage 
P Price of Product PMA Product Delivered 
r Daily interest rate Binary Variables 

DOCA Daily Operating Cost-Aug O Plant Open 

DOCS-J Daily Oper. Cost-Sep to Jul SQ Sufficient Quantity 
Available 

SC Storage Cost per Ton OS Member of Optimal SC 
SR Product	
  Subsidy	
  Rate/Gal Subscripts 

Array Variables i Biomass Feedstock 
  j Product 

DA Distance Array s Biomass Supply Location 
DM Distance to Market Array b Biorefinery Location 

PMA Product at Market Array d demand location 
PSA Product Storage Array m month 

  t day 
  c Region of interest 
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Assuming a profitable supply chain design has been identified via the supply chain and 

chemical process optimization models, development of a long-term simulation model 

commences. Several decisions for modeling purposes are informed based on the 

information obtained from scope definition and optimization modeling. Some of the 

major decisions necessary for consideration in the modeling phase include, among other 

influencing factors:  

• Biomass conversion technology 

• Product slate for the selected region 

• Feedstock and product transportation method(s) 

• Feedstock harvest method(s) 

• Feedstock harvest schedule to consider and how to model this 

• Incorporating surplus biomass treatment 

• Consideration of biorefinery capital costs 

Technologies available for biomass conversion to specific chemical and fuel products are 

varied. Options can include various combinations of thermal (torrefaction, pyrolysis, 

etc.), chemical (Fishcer-Tropsch synthesis, transesterification, etc.), and biochemical 

techniques (fermentation, anaerobic digestion, etc.). The specific combination of 

technologies for simulation input should be determined based on chemical process 

optimization given region specific biomass availability. Ideally, with multiple 

technological paths selected for comparison, optimal products are determined via process 

modeling and optimization to minimize electricity requirements, heat, and cooling 

utilities. Volumetric quantities of specific biomass required per unit time for optimal 

production is also gleaned from this activity. 

Transportation methods should be regionally selected. In the United States, transportation 

of biomass and finished products via diesel fuel consuming trucks is generally a 

reasonable assumption. Readily available tools such as Google Maps™ can be leveraged 

to determine realistic distances between potential biorefinery locations and potential 
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biomass source locations. In this way, realistic distances can be generated quickly based 

on the actual infrastructure available. Where relevant, simulation modeling can be altered 

to include alternative shipment modes such as barge or rail transportation. In many cases, 

it is feasible that such shipment methods could drastically reduce the transportation cost 

associated with supplying raw materials to a biorefinery. Figure 4-2 illustrates the cost 

structure associated with biomass and ethanol transportation in a case study from Illinois. 

Noticeably, for certain scenarios and supply chain designs, the utilization of larger 

volume transportation systems may yield significant cost savings.  It is clear that the best 

mode of transport for a supply chain configuration is a function of the average required 

distance to travel, total volume of material to be transported, and the costs (fixed and 

variable) associated with transportation activities. 

 

Figure 4-2 Cost structure for ethanol and biomass transportation (Kang et al, 2010) 

Utilizing the potential biorefinery and biomass resource locations, a distance matrix 

consisting of travel distances between the biorefinery and each supply location should be 

developed. This matrix will be used as an essential input for the discrete event simulation. 

An example is shown in Table 4-1. In the table four possible biorefinery locations ten 

source locations are represented. Values in the interior of the matrix represent the 

distances between biorefinery locations and each supply location.  These values were 
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identified utilizing Google Maps™ in order to employ real and existing road 

infrastructure. A binary variable is utilized to indicate which of these biorefinery location 

options are being examined. The exact biorefinery location is another output from static 

mixed integer linear programming optimization mentioned earlier. Another binary 

variable is utilized to indicate the supply source locations that have been identified via the 

mixed integer linear programming process as optimal. In Table 4-3, the 5th, 6th, and 7th 

biomass source locations are indicated as optimal. The final column (with the heading 

“Sufficient Supply?”) is a variable used to indicate when a supply location’s resources 

have been depleted to a level where shipment cannot be completed. These variables are 

used in the simulation to track deviations from the designed optimal supply chain. Similar 

matrices can be developed to reflect product transportation distances.  

Table 4-3 Example distance matrix developed for use in simulation modeling 

Optimal Supply Location Biorefinery Location (b) 
1 2 3 4 

Number 
(s) OSs SQsi 

OSb 
0 1 0 0 

1 0 1 21 69.8 29.6 61.9 
2 0 1 8.7 72.3 17.2 49.6 
3 0 1 9.1 52.2 14.6 46.9 
4 0 1 15.3 62.6 23.9 56.2 
5 1 1 60.3 5.3 55.8 56.4 
6 1 1 50.1 9.7 45.6 55.1 
7 1 1 55.4 7.9 50.9 50.7 
8 0 1 11 44.1 6.5 38.8 
9 0 1 14.7 46.7 6.2 35.8 

10 0 1 13.2 53.9 4.7 27.7 
 

Various products generated through integrated biorefining may be treated differently. For 

instance, it is assumed that electricity and natural gas produced in a regional biorefinery 

could be delivered directly to existing infrastructure (pipeline for natural gas and the 

national electrical grid for electricity) and, therefore, transportation costs for these 

products are considered to be zero. For most states in the USA, this assumption is valid. 

In Figure 4-3 the US national transmission grid and natural gas pipeline infrastructure are 
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juxtaposed; it is clear that most of the country and all population centers have access to 

these. In places where this is not the case, modifications could be made to the simulation 

model in order to take into consideration the usage of these products to offset operating 

costs for the facility, given some additional capital expenditure. Currently, it is assumed 

that all products produced are delivered to the market and sold; electricity utilized for the 

biorefining processes is assumed to be purchased from the grid and diesel consumed in 

transportation is assumed to be purchased at the market rate. 
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Figure 4-3 National (a) transmission grid and (b) gas pipeline infrastructure 

 

b

. 

a. Source: NREL 

Source: EIA 
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Next, demand distributions for the selected optimal products should be determined.  It is 

necessary to define a distribution for each region of consideration for each month of the 

year. Publically available historical data related to regionally specific consumption of 

fuels and electricity can be gathered from the Energy Information Administration via 

their website. Once collected, this data can be plotted for each region for each month. 

Likely, examination of the data will reveal groupings of similar demand behavior in 

specific similarly populated areas, for example. With these groups identified, combined 

data points for the can be fit to composite distribution functions for use in the discrete 

event simulation model using ARENA Input Analyzer. The expected value of the 

distributions as well as the variance expected can be plotted to show that historically 

reasonable demand values can be generated with the defined distributions. 

Besides product demand, distributions of supply levels at feedstock sourcing locations 

must also be developed. These represent the amount of new biomass available each day 

for transport to the selected biorefinery location. Similar to the demand distributions, 

regional level data for each month can be conglomerated from sources such as the 

National Agricultural Statistics Service.  Data for these regions can be aggregated from 

multiple years in order to determine a reasonable expected value and variance for the 

biomass supply.  

For both supply and demand, the generation of specific distributions is presented with the 

case study in Chapter 4.    

4.1.2 Simulation Model Development 

In general, DES models represent reality as a sequence of events that each change the 

state of a system at an instant in time. In this research a discrete event simulation (DES) 

model is developed to simulate the activities observed in supply chain activities to deliver 

biomass feedstocks to the biorefinery and products from the biorefinery to demand 

locations.  
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The events included in the model developed are represented in the flow chart in Figure 4-

4. In this section, the general approach taken to model these events is described. In 

chapter 5, these will be described more specifically in the context of the case study.  

 

Figure 4-4 Sequence of Events Modeled 

Traditionally in DES, entities in the system represent a customer, unit of production, etc. 

In the case of the biomass supply chain under consideration, this viewpoint is also valid; 

however, certain complications quickly emerge. Due to the long time scale of the 

simulation model as well as the desired resolution of data retrieved from the model, 

modeling each unit of biomass as entities resulted in large numbers of system entities, 

long runtimes, and, in some cases, an inability to divide the base unit. For instance, 

defining an entity of biomass feedstock as 1 ton of the biomass limits the ability to base 

shipments on truck volume, demand at the biorefinery, or to ship fractions of tons of 

biomass. To alleviate these problems, the DES model developed contains only one entity. 

This serves essentially as a place keeper for processes and advances the clock as discrete 

events are completed. All data parameters relevant to biomass supply, product demand, 
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associated costs, processing, etc. are tracked utilizing user-defined variables in ARENA. 

Several variable values are currently assumed. Table 4-2 lists the variables that have been 

taken as deterministic for the purposes of modeling.  

The power of the simulation model comes from the uncertainty captured by the use of 

random variables. Table 4-2 lists the random variables generated from input distributions 

included in the simulation; the development of these distributions was described in 

section 4.1.1. Additional dependent variables in the simulation rely on various 

combinations of random and deterministic variables and parameters. Therefore, these can 

be considered to be random variables. In particular, the variable BSA (the biomass 

storage array) is a vector variable that represents the total biomass supply. The sum of the 

values of the random variable Sic (which represents feedstock (i) production in a 

particular region (c)) over all months (m) under consideration divided by the number of 

supply locations (s) for feedstock (i) in region (c), nsic for each of the supply locations (s) 

in region c gives the value for entries in the vector BSA. This is expressed in equation 4-1 

below. 

!"# =< !!,!!
! !!!! ,∀!, !; !!,!!

! !!!! ,∀!, !;… ; !!,!!
! !!"# ,∀!, !, ! > (4-1) 

Modeling of each discrete event is accomplished by utilizing combinations of basic and 

advanced process elements in ARENA simulation software. The modeling of events 

illustrated in Figure 4-4 is described here. Region level demand for each of the optimal 

products (j) is generated as a random value, Djcm, from the distribution developed as 

described in Section 4.1.1. This value is determined for each product considering the 

specific month in the simulation timeline. The county level demand for each product (j) is 

then evenly divided among the selected market locations within the county, ndjc. 

Similarly, the daily biomass supply of feedstock (i) that becomes available at each supply 

location (s) is dependent on the random variable Sicm; these values are generated based on 

distributions specific to each month (m) and each region (c). The supply from individual 

locations is determined by evenly dividing the county-level value among the selected 
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locations, nsic. These individual supply and demand variables are stored as array variables 

(BSA and PSA, respectively).  

The perishable nature of biomass feedstocks necessitates the consideration of decay due 

to microbial action of bacterial, fungi, etc. To accommodate this, biomass held in storage 

is allowed to decay based on a simple linear relationship shown in Equation 4-2 where 

DR, the raw material decay rate is a constant defined by literature and BSA’ represents 

the updated variable BSA.  

!"!! = !"# ∗ ! − !"         ∀!, ! (4-2) 

Feedstock transportation is then modeled in ARENA utilizing search modules to find the 

shortest distance supply location for a given raw material (i) utilizing a search module 

and a distance array variable (DA) containing the information described and presented in 

Table 4-3. DA is defined specifically as Equation (Set) 4-3 where the subscripts p and q 

represent the rows and columns of the matrix DA, respectively. The parameter Dsb 

represents the distance from feedstock source (s) to the biorefinery location (b) in 

keeping with the notation shown in Table 4-3.  

 (4-3) 
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!"!" =
1,                  !"  ! = ! + 1, ! = !"#   ! + 2  !"#  !"#!" ≥ !!!
0,                  !"  ! = ! + 1, ! = !"#   ! + 2  !"#  !"#!" < !"!

 

 !!"                                                                                                                                    !"#  ! = ! + 1, ! = ! + 1 
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The general shape of the variable DA is shown in Figure 4-5. 

Column # 
Row # 

1 2=b+1 … Max{b} +1 Max{b} +2 

1  OSb ,  ∀b  

2=s+1 

OSs ,  ∀s Dsb , ∀s,b SQsi ,  ∀s,i … 

Max{s}+1 

Figure 4-5 General Shape of the Array Variable DA 

Use of the ‘Search’ module in ARENA serves to identify the minimum distance path to 

ship biomass from a given feedstock supply location to the biorefinery. In simulation 

trucks are sent to the nearest supply location for a particular feedstock until that location 

runs out of stock. The binary variable !"!" associated with the matrix variable DA (see 

Equation 4-3 and Table 4-3) becomes zero at this point, effectively closing the supply 

location; no further trucks will be sent there for that given day. Subsequently, the next 

closest supply location is selected for shipments until it is exhausted and so forth. The 

function of the Search module is summarized by the logic in Figure 4-6. 

After all distances in the distance array variable column associated with the optimum 

biorefinery location have been checked to ensure the closest supply location has been 

selected, the vector BSA is updated to indicate the removal of biomass from the selected 

supply location. This is achieved via Equation 4-4 where SWi is the weight of a shipment 

of biomass (i). In cases where the biomass amount stored (in the variable BSA) is less 

than the shipment weight (i.e. shipment from the location will result in a partially filled 

truck and leave the supply location empty) Equation 4-5 should be employed. Logic in 

ARENA provides for this decision. Thus, the biomass supply is emptied (BSAs = 0) and 

the binary variable !"!" in DA (Equation 4-3) is set to zero to indicate no supply. Here 

again, BSA’ represents the updated variable BSA. 
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Figure 4-6 Logic to Select Minimum Distance from Supply to Biorefinery Locations  

 !"#′! = !"#! −SWi (4-4) 

 !"#′!=0 (4-5) 

 !"!" = 0  

 

The delivery of biomass to the biorefinery is achieved in simulation through the 

evaluation of Equation 4-6. Via these equations an updated value of biomass stored at the 

biorefinery for use in the production of finished goods and utilities, BSi (with the updated 

value denoted BSi’), is calculated. As noted, if the amount of biomass available at supply 

locations (BSAsi) is greater than or equal to the assumed shipment weight of biomass i, 

then biorefinery stocks are increased by one full shipment. Otherwise, a partially full 

truck is sent containing the entire stock available at the supply location. 
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 BSi’ = BSi +SWi , If     BSAsi ≥ SWi (4-6)  

 BSi’ = BSi +BSAsi,, If    BSAsi < SWi 

Costs associated with raw material transportation, diesel fuel use (assuming truck 

transportation), and material cost to the biorefinery for purchase of the biomass should be 

recorded for the determination of biorefinery supply chain profitability. The first cost is 

transportation cost (CT). This value accounts for the time dependent and distance 

dependent expenses associated with shipping biomass excluding transportation fuel 

expenses (these are considered separately). Again, the prime denotes updated variables. 

      

 CTi’ = CTi + 2*[[Ds,b * CPM ] + ( TCBS(t)/TS)] (4-7) 

 

Diesel fuel costs associated with biomass feedstock transport (CDi) are calculated via 

Equation 4-8 where CDi’ is the updated variable. The deterministic parameter TDR is an 

assumed truck diesel requirement given in units of gallons/ton-mile. Therefore, 

multiplying this value by twice the distance from the biomass source to the biorefinery 

(to account for travel to and from the supply location) yields the distance dependent 

portion of the cost. Additionally, truck and shipment weight (TW and SWi , respectively) 

are taken into consideration. Truck weight is considered twice while shipment weight is 

only added once; this is to simulate truck movement to a feedstock supply location empty 

and to the biorefinery with a full or partial load.   

  

 CDi’ = CDi +[(DP*TDR)*(2*Dsb+2*TW+ SWi)], If  BSAs ≥ SWi (4-8)   

 CDi’ = CDi +[(DP*TDR)*(2*Dsb+2*TW+ BSAsi)], If  BSAsi < SWi  

 

Raw material purchase cost is also taken into consideration in simulation. These values, 

calculated with Equation 4-9, account for the expenses incurred by the biorefinery from 

procurement of feedstock materials. The assumed per ton price of the biomass feedstock 

is multiplied by the shipment weight (SWi) each time a shipment is made. 

  

 CMi’ = CMi + (SWi * MCi),         If     BSAs ≥ SWi (4-9) 

 CMi’ = CMi + (BSAs * MCi),      If     BSAs < SWi 
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These steps for calculating the various costs, associated with feedstock delivery from 

supply locations to the biorefinery location are repeated until the condition displayed as 

Equation 4-10 is satisfied for each biomass raw material (i) under consideration. 

 BSi  ≥ DBRi      ∀ i (4-10) 

 

Steps must also be followed for the simulation of product generation, selection of optimal 

distribution market locations as well as for the delivery of finished biorefinery products 

to the market. 

ARENA decision logic determines the biomass present at the biorefinery and calculates 

the biorefinery operating costs and storage costs. The biorefinery is not considered to 

have stored the biomass consumed for a the production of a given days biofuels and other 

products; at steady state, the biorefinery would consume the raw materials as shipments 

were received to convert them to finished products.  Biorefinery stocks of biomass are 

reduced by the daily biomass requirements as per Equation 4-11. 

 BSi’  = BSi - DBRi     for all biomass sources, i (4-11) 

Operating costs are determined based on the assumed costs obtained from the process 

optimization model. To capture some variability, a triangular distribution has been 

defined with a range of ± 5% of the assumed operating costs for August (DOCA) and the 

remainder of the year (DOCS-J) as per the notation in Table 4-2. This is summarized as 

Equation 4-12. 

 If m = August (4-12) 

 CO  = TRIA(DOCA *(1-0.05), DOCA, DOCA *(1+0.05)) 

 Else  

 CO  = TRIA(DOCS-J *(1-0.05), DOCS-J, DOCS-J *(1+0.05)) 
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Storage costs to the biorefinery are considered to be localized to the biomass stored on 

site after production of the biofuels has occurred. This cost is expressed as Equation 4-13. 

 CS  = SC *( !"!!
! ) (4-13) 

The variable PSA serves the same role for product supply as BSA did for feedstock 

supply. The sum of the values of the random variable PDjc (the demand for a product (j) 

in region (c)) over all months (m) divided by the number of demand locations (d) for 

product (j) in region (c), ndjc for each of the demand locations (d) in region c gives the 

value for entries in the vector PSA. This is described by Equation 4-14. 

  (4-14) 

 !"# =< !!!,!!
! !!!! ,∀!, !; !"!,!!

! !!!! ,∀!, !;… ; !"!,!!
! !!"# ,∀!, !, ! >  

Product transportation to market is then modeled in a similar fashion to feedstock 

transport. Here, Search modules are used to determine the closest product point of sale 

with unsatisfied demand. The array variable searched has been titled DM and contains 

information similar to Table 4-3. DM is defined specifically as Equation 4-15 where the 

subscripts p and q represent the rows and columns of the matrix DM, respectively. The 

parameter Dbd represents the distance from the biorefinery location (b) to the demand 

locations (d). 
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  (4-15) 

 !"! =
!,                                !"  ! = !,!− ! = !   ∈   !"#$%&'  !"##$%  !"#$%
!,                                !"  ! = !,!− ! ≠ ! ∈   !"#$%&'  !"##$%  !"#$%  

!"!" =                                                     !"! =
1,                              !"  ! − 1 = ! ∈   !!"#$%&  !"##$%  !ℎ!"#  , ! = 1
0,                              !"  ! − 1 ≠ ! ∈   !"#$%&'  !"##$%  !ℎ!"#, ! = 1  

!"!" =
1,                  !"  ! = ! + 1, ! = !"#   ! + 2  !"#  !"#!" ≥ !"!
0,                  !"  ! = ! + 1, ! = !"#   ! + 2  !"#  !"#!" < !"!

 

 !!"                                                                                                                                     !"#  ! = ! + 1, ! = ! + 1 

The general shape of the variable DM is shown in Figure 4-7. 

Column # 
Row # 

1 2=b+1 … Max{b} +1 Max{b} +2 

1  OSb ,  ∀b  

2=d+1 

OSd ,  ∀d PDbd , ∀b,d SQdj ,  ∀d,j … 

Max{d}+1 

Figure 4-7 General Shape of the Array Variable DM 

Use of the ‘Search’ module in this instance proceeds in the same fashion as is illustrated 

in Figure 4-6. In this case, however, instances of the subscript s should be replaced with d 

and the variable DA should be replaced with DM. With these small modifications, the 

module works to identify the shortest routings taking into consideration demand. 

When a shortest distance path is identified for product transportation, the variable PSA is 

updated to indicate delivery of the product to the marketplace. In Equations 4-16 and 4-
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17 the prime indicates an updated variable. When the product stored is greater than the 

demand, an amount of product j equal to one shipment is removed from the stock. In 

contrast, when the stored products are less than demand, all products in storage are 

delivered for sale and the binary variable SQdj is set to zero, indicating product j is no 

longer available for sale. 

 !"!!! = !"!! −  SWj ,  If  PSAd ≥ PDjd (4-16) 

 !"!!!=0, If PSAd < PDjd (4-17) 

 !"′!" =0 

The delivery of product to market locations results in the variable PMA updating 

similarly to the variable BS seen previously for biomass feedstock delivery to the 

biorefinery. Equation 4-18 displays this interaction with the prime indicating updated 

variables. 

 PMAj’ = PMAj + SWj , If  PSAdj ≥ SWj (4-18) 

 PMAj’ = PMAj + PSAdj, If  PSAdj < SWj 

 

Product delivery, like feedstock delivery, results in costs for transportation and fuel 

expenses. These values are calculated in much the same way as their feedstock-related 

counterparts via Equations 4-19 and 4-20. 

 CTj’ = CTj + 2*[[Db,d * CPM ] + ( TCL(t)/TS)] (4-19) 

 

 CDj’ = CDj +[(DP*TDR)*(2*Dbd+2*TW+ SWj)], If  PSAd ≥ SWj (4-20) 

 

 CDj’ = CDj +[(DP*TDR)*(2*Dbd+2*TW+ PSAdj)], If  PSAdj < SWj 
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Following the calculation for costs associated with the transportation of a specific liquid 

product to a market location, the income variable (I) is updated via Equation 4-21. It 

should be noted that non-liquid fuel products (i.e. natural gas and electricity) utilize the 

same income equation; for them, the transportation steps are foregone. Since the 

shipments of products are made taking into consideration the demand at the market 

locations, it is assumed that the product delivered to market has a buyer and, therefore, 

results in income.  

 I’ = I + [!!   ∗ !!"!]
!
!  (4-21) 

 

Total cost associated with the supply chain activities of biomass and biorefinery products 

are calculated via Equation 4-22. 

 Total Costs  = CO + CS + !!" + !!" + !!" +!
! !!" + !!"!

!   (4-22) 

 

The time-value of money is taken into consideration in modeling by employing the 

discounted cash flow method. In this way, the future profits or losses from the biorefinery 

supply chain can be accounted for in current common-year dollar values.  It is assumed 

for modeling purposes that an interest rate of 3% per year is reasonable. Through 

standard unit conversion operations the yearly interest rate can be converted into an 

equivalent daily rate (r); therefore, the present value of a supply chain design on a given 

day, t, is found through computation of Equation 4-23:      

 

 NPVt  = NPVt-1 +  
[!"#$%&!  –  !"#$%  !"#$#!]

!!! !   (4-23) 

Various subsidies have the potential to change supply chain performance. In the model, 

as per the literature reviewed, subsides are based on a ‘$/gallon produced’ paradigm 

wherein biorefineries receive an assumed dollar amount for each gallon of liquid fuel that 
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replaces fossil based fuels in the market place.  Subsidies are applied by adding the 

earned subsidy value for a particular day to that days income, as seen in Equation 4-24. 

 Incomet’  = Incomet + !" ∗ !"#!
!  (4-24) 

The simulation system clock is then advanced 1 day.  

The methodology developed here has been exercised with the application of a case study 

that will be described in Chapter 5. 
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5 CASE STUDY DESCRIPTION 

In order to demonstrate the simulation model’s capabilities, a case study has been 

developed. The basis for the case study is the optimal supply chain designed by Faulkner 

(2012) utilizing chemical process information obtained from modeling presented in 

Sukumara et al (2012). The case study is presented to demonstrate the value of simulation 

modeling in the context of an integrated biorefinery supply chain decision-making 

framework.  

The case study utilizes data from the Jackson Purchase Region of Kentucky. In order to 

demonstrate the linkage among various aspects of the integrated biorefinery decision-

making framework, it is important to maintain a consistency of data among the models. 

To this end, data sets used for biomass availability, product demand, and assumed values 

(from literature) for parameters such as feedstock moisture content, among others, was 

maintained the same as that used in Faulkner (2012) and Sukumara, et al (2012). 

The remainder of this chapter is divided into subsections to facilitate discussion of the 

case study. Section 5.1 includes details about the case study region. Section 5.2 describes 

key inputs obtained from the other component models in the overall decision support 

framework. Section 5.3 focuses on the determination of potential feedstock supply 

locations and the development of biomass supply distributions. Similarly, Section 5.4 

discusses the selection of product market point-of-sale locations as well as the 

development of daily demand distributions for these locations. Finally, Chapter 5 

concludes with Section 5.5 and a discussion of the simulation model implementation. 

5.1 Jackson Purchase Region, KY 

As indicated in Figure 5-1, the Jackson Purchase Region (JPR) is located in southwest 

Kentucky and consists of Ballard, Calloway, Carlisle, Fulton, Graves, Hickman, 

Marshall, and McCracken counties. Figure 5-2 highlights these individual counties as 

well as the existing regional energy infrastructure. 
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Figure 5-1 Jackson Purchase Region of Kentucky 

 

Figure 5-2 JPR Counties and Existing Energy Production Infrastructure 

The location was originally chosen due to a combination of factors. First, the variety of 

potential feedstocks available was a driver for selection. These counties are rural with 

economies that are largely agriculturally based. This economy provides opportunity to 

explore uses for non-food biomass sources. The production of corn, soybeans, wheat, and 

other crops in the region yields a significant potential source of lignocellulosic material in 

the form of crop residues. A thriving poultry industry and numerous chicken houses led 

to the notion of exploring spent chicken litter, typically a waste stream, as a potential 

feedstock for fuel and energy production. Additionally, vicinity of the region to protected 

forests and wooded areas prompted the decision to consider forest residues as an 

additional source of raw material for a regional biorefinery. Finally, as highlighted in 

Figure 5-2, the region is currently home to coal, natural gas, and hydroelectric energy 

 
   

 

 
 

Coal 
Natural Gas 
Hydroelectri
c 



 

58 

production facilities. This regional expertise and tradition of energy export could provide 

support for a potential biofuel and energy plant.  

With a population of approximately 200,000 (U.S. Census Bureau, 2010) this region also 

can be assumed to have the necessary supporting infrastructure to support a biorefinery. 

The JPR has a demand base for the consumption of liquid fuels, natural gas, and 

electricity produced by the suggested biorefinery. Road transportation networks are well 

established in the region, making biomass and product trucking feasible. Besides this, the 

region’s borders are composed of major water bodies. The Mississippi river forms the 

western boundary, the Ohio forms the northern border, and Kentucky Lake / the Tennesse 

river lie to the east of the region. These waterways are widely used for the transportation 

of coal via barge in the region; it is not unreasonable to envision similar usage for 

biomass-based sources of raw materials. In addition to water and road infrastructure, rail 

transport is available in the region as well.  

With this abundance of transportation options, potential feedstock resources, and 

potential consumers for finished products, the JPR provides an outstanding microcosm 

for the application of region specific integrated biorefinery supply chain development. 

5.2 Inputs from Other Models in the Multidisciplinary Framework 

As was previously mentioned, this research focuses on the development of simulation 

models to be incorporated to the integrated biorefinery decision support framework. As 

such, it was necessary to utilize several specific outputs from other models in the 

framework. In addition, several data inputs were common and used across all models 

including geo-spacially identified potential feedstock supply locations, biorefinery sites, 

product selection, product conversion rate, and end market demand destinations.  All of 

these inputs were developed in an iterative fashion simultaneously. For discussion, an 

explanation of each of these inputs is provided in the following subsections.  
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5.2.1 Inputs from Chemical Processing Simulation and Optimization 

Given an initial survey of relevant data for biomass feedstock supply in the region, corn 

stover, chicken litter and forest residue were selected as the three sources to be 

considered for integrated biorefining. Then, ASPEN was utilized to design chemical 

processes for the conversion of these feedstocks to biorefinery products. The technology 

modeled (as per Sukumara et al (2012)) integrated biorefining including gasification 

which results in a product rich in CO and H2 gas known commonly as syngas, a 

Hydrogen gas-shift reactor which increases the ratio of CO to H2, and Fischer Tropsch 

synthesis for the synthesis of gasoline, diesel fuel, residual fuel oil, and natural gas. 

Electricity, the final product, is produced via combustion of the H2 following the 

Hydrogen gas-shift reaction. 

Given an initial range for feedstock amounts provided to the biorefinery, ASPEN 

Economic Optimizer is used to minimize heating utility, cooling utility, and electricity 

costs. The resulting consumption of feedstock and product output for the marketplace 

were used as input values for the MILP model (Faulkner, 2012). These results were 

further optimized through iteration between the MILP model and the ASPEN model; heat 

integration, wherein existing thermal energy in the system is harnessed to further 

minimize heating and cooling utility costs, was implemented as well.  

Ultimately, plant operating costs, consumption rates for each feedstock, and production 

rates for each product were obtained and used as assumed parameters in the simulation 

model. The values obtained from this activity can be seen in Table 5-1. 
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Table 5-1 Inputs obtained from process simulation and optimization 

 

5.2.2 Inputs from Supply Chain Optimization Modeling 

The above inputs were developed in parallel with a MILP model (Faulkner 2012) which 

uses the results from chemical process simulation. In order to design the supply chain, 

potential biorefinery locations were selected as the JPR county seats for simplicity. These 

are shown in Figure 5-2 plotted using Google Maps®.   The accompanying table in the 

figure lists the JPR counties along with their respective county seats. 

Based on selected maximum biomass capacity available in the JPR counties, the number 

of potential biomass supply locations was determined by Faulkner (2012). These same 

potential biomass source locations were utilized in developing the simulation model in 

this study. Maps developed using Google Maps® showing locations of potential feedstock 

supply locations have been adapted from the work of Faulkner (2012) and are presented 
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in Figures 5-4 through 5-6. In the case of chicken litter, previous GIS work (Zhang, 2010) 

was leveraged as well to generate Figure 5-6. 

 

 

County County Seat 

Ballard Wickliffe 

Calloway Murray 

Carlisle Bardwell 

Fulton Hickman 

Graves Mayfield 

Hickman Clinton 

Marshall Benton 

McCracken Paducah 

 

 Figure 5-3 Potential Biorefinery Locations in JPR County Seats [Faulkner 
(2012)] 
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County 
# of CS 

Locations 

Ballard 4 

Calloway 3 

Carlisle 3 

Fulton 4 

Graves 7 

Hickman 6 

Marshall 2 

McCracken 2 

 

Figure 5-4 Potential Corn Stover Supply Locations in JPR [Faulkner (2012)] 

 

County 
# of FR 

Locations 

Ballard 4 

Calloway 2 

Carlisle 5 

Fulton 1 

Graves 3 

Hickman 1 

Marshall 2 

McCracken 1 

 

Figure 5-5 Potential Corn Stover Supply Locations in JPR [Faulkner (2012)] 
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County 
# of CL 

Locations 

Ballard 1 

Calloway 2 

Carlisle 1 

Fulton 1 

Graves 9 

Hickman 6 

Marshall 1 

McCracken 0 

 

Figure 5-6 Potential Chicken Litter Supply Locations in JPR [Faulkner (2012)] 

The distance array (DA) matrix used as input for the simulation model was established 

using information presented in Figures 5-3 through 5-6. For each feedstock, Appendix B 

defines the overall distance array (DA) variable (discussed in Chapter 4.2.1.).  

Similar to the supply location inputs, point of sale locations for finished product demand 

have been predetermined by Faulkner (2012) based on a selected optimal product slate 

determined by Sukumara et al (2012), regional product consumption data, and 

demographic information related to each county. The products considered in the 

simulation model include gasoline, diesel fuel, electricity, natural gas, and residual fuel 

oil. As previously mentioned, the simulation model assumes that electricity is delivered 

directly to the existing grid and that natural gas is delivered to the market via existing 

pipeline infrastructure.  In both of these cases, the gasoline and diesel points of sale are 

considered as consumption points; however, transportation costs are not accrued for 

delivery. For gasoline and diesel fuel, it is reasonable to assume a similar dispensation 

location, as with nearly any fueling station found in the USA.  One market distribution 

site for these products was selected for each county taking into consideration the county 

population density; selected locations are at major road crossings in the county seat 
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locations (seen in Figure 5-3). Residual fuel oil, however, has a more specific market. As 

such, these products should be delivered to existing fuel terminals in the region (IRS 

2012). 

These same potential points of sale locations were also utilized in the development of 

inputs for the case study simulation model. A map (developed using Google Maps®) 

indicating locations of the identified points of sale adapted from Faulkner (2012) is 

presented in Figure 5-7.  The sites for gasoline and diesel sale are indicated with light 

blue tabs whereas the residual fuel oil locations, both located in McCracken County, are 

shown with pink markers.  

 

Figure 5-7 Potential Points of Sale in JPR [Faulkner (2012)] 

Again, Google Maps’ features were used to determine distances among potential 

biorefinery locations and potential points of sale. These values populated the matrix that 

describes the variable DM (described in Figure 4-7) and correspond with similar 

variables found in Faulkner (2012). Table 5-2 defines the overall distance to market array 

variable with respect to each product. The use of this data is outlined in Chapter 4.1.2. 
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Table 5-2 Distances between biorefinery and point of sale locations. 

Gasoline and Diesel Fuel 

No. County Ballard 
Callowa

y 
Carlisle Fulton Graves Hickman Marshall McCracken 

1 Ballard 0.4 54.7 8.9 41.3 30.8 23.8 48.1 32.1 

2 Calloway 55.2 0.7 50.6 52.0 24.5 46.0 18.8 47.1 

3 Carlisle 8.2 50.1 0.4 32.7 26.3 15.3 43.6 33.9 

4 Fulton 42.2 51.5 33.6 0.9 39.8 18.7 58.9 68.9 

5 Graves 31.8 23.7 27.3 40.9 0.7 22.2 20.7 29.9 

6 Hickman 23.6 43.8 15.0 17.3 23.4 0.1 42.5 49.3 

7 Marshall 49.0 18.8 44.4 60.5 20.0 43.0 0.8 24.2 

8 McCracken 31.1 52.4 30.0 65.7 26.1 44.9 33.7 2.6 

Residual Fuel Oil 

No. Location Ballard 
Callowa

y 
Carlisle Fulton Graves Hickman Marshall McCracken 

9 1 34.6 45.7 32.8 68.7 28.2 47.6 27.2 1.3 

10 2 43.4 39.5 39.9 64.4 23.8 47.0 22.7 6.1 

 

A crucial output from Faulkner (2012) used as an input for the supply chain simulation 

model is the optimal supply chain configuration. Faulkner (2012) determined the 

optimized supply chain for biorefineries of various sizes (described as small, medium, 

and large based on the volume of biomass feedstock required for operations). Through 

analysis, it was determined that for the region a ‘large’ size biorefinery is not profitable. 

Small and medium size facilities, on the other hand, showed the potential for profitability. 

As such, these two configurations were chosen for simulation modeling. The optimal 

supply chain configurations adapted from Faulkner (2012) and modeled via simulation 

can be seen in Figure 5-8.  

 

 



 

66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-8 Optimal SC for Medium Plant Size (a) and Small Plant Size (b) 
[Faulkner (2012)] 

(b) 

(a) 

Selected Biorefinery Site 

Product Demand Location 

Corn Stover Supply Location 

Forest Residue Supply Location 

Chicken Litter Supply Location 
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The configurations from Faulkner (2012) are translated into the values of the binary 

variable OSs and OSd in the array variables DA and DM, respectively, as outlined in 

Figure 4-5 and Figure 4-7. These values indicate the supply and demand locations that 

comprise the identified optimal supply chain. Similarly, the binary variable, OSb (as seen 

in Figures 4-5 and 4-7) is informed by the choice of optimal biorefinery as selected by 

Faulkner (2012). The distance information and optimal supply chain information 

constitute the primary simulation model input obtained from the supply chain 

optimization model. These factors are used to help explain increases in costs seen by the 

supply chains over time as they are forced to deviate from their optimal supply chain 

feedstock sources. 

5.3 Biomass Feedstock Related Information 

The biomass sources selected for simulation included corn stover, chicken litter, and 

forest residue based on an initial survey of the regional availability of various biomass in 

the case study area by Faulkner (2012). In this section, assumptions and details relating to 

the development of distributions for feedstock supply is discussed. 

5.3.1 Corn Stover Input Distributions 

Crop residues, in general, are touted as a potential source for lignocellulosic biomass to 

produce alternative fuels due to their relatively low cost and availability nationally (US 

DOE, 2011). More specifically, corn stover, the portion of a corn stalk left in the field 

after harvesting the grain, has been supported as a potential source of raw material due to 

its relative abundance and, with proper management, ability to be collected with 

minimally negative impacts on soil erosion (Graham et al, 2007). 

For modeling, several assumptions were made regarding corn stover as a feedstock. 

These are tabulated in Table 5-3 and are consistent with assumptions made by Faulkner, 

2012.  The data is obtained from Millbrandt (2005). 
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Table 5-3 Assumed corn stover parameter values 

 Assumed Value 

Moisture Content 15.5% 

Bulk Density of Grain 56 lbs/bushel 

Mass ratio (Residue : Grain) 1 : 1 

 

It was additionally assumed that corn stover harvest proceeded at the same time as grain 

harvest. One pass harvesting has been shown to be technically feasible with moderate 

modification to traditional corn harvesting equipment (Shinners et al, 2007) and 

potentially economically superior (Atchison and Hettenhaus, 2004). This assumption 

greatly simplifies the collection of biomass availability data.  

Annual availability of corn stover was determined utilizing publically available county 

level data related to the percentage of corn harvest completion and corn production 

(USDA, 2010b and USDA, 2010a, respectively).  These data were synthesized according 

to Equations 5-1 through 5-3 to decompose county level yearly data into weekly corn 

stover harvest information. This synthesis was carried out for all available years’ county 

level data and the resulting processed data points can be seen in Appendix A. ARENA 

Input Analyzer was then used to determine monthly corn stover production distribution 

functions for each county. It should be noted that in some instances, corn harvest data 

reported for a particular year was revised and these revisions were reported with the 

subsequent year. These duplicate years’ data were included in the analysis to add more 

data points to the set. Since the system under consideration is extremely variable and the 

goal of distribution fitting is merely to generate historically reasonable numbers (not to 

recreate the past exactly) this action was considered reasonable. The generated county 

level monthly distributions are listed in Table 5-4. These distributions generate new daily 

corn stover supply; weekly data synthesized using Equations 5-1 through 5-3 are divided 

by seven to obtain daily values for new corn stover supply at the county level. These 
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daily county values are then evenly distributed among the potential corn stover supply 

locations as discussed in Chapter 4.  

 corn harvested to date = total corn to be harvested × % harvest complete (5-1) 

 

 % new harvest =  (5-2) 

 !"#$  !"#$%&'%(  !"  !"#$  !"  !""#  !  !  !"#$  !"#$%&'%(  !"  !"#$  !"  !""#  !!!
!"#$  !"#$%&'%(  !"  !"#$  !"  !""#  !

 

 !"#$  !"#$%&'(#)  (!")
!"#$

 × !"  !"#  !"#$
!  !"  !"#$

 ×  !  !"  !"#$  !"#$%&
!  !"  !"#$

  (5-3) 

 × 1.155 × % new harvest = !"#  !"  !"#$%&'%(
!""#!!"#$%&

 

In general, the distributions developed produce corn stover supply levels comparable to 

the historic data quite well as can be seen in Figures 5-3 through 5-10.  In some cases, 

such as for November harvests in Ballard, Calloway, Fulton, and McCracken counties, 

the range of standard deviations of the distribution expected value and the historic data do 

not overlap. In these instances, the distribution typically overestimates the corn stover 

production. These expected values result from relatively small data sets with high 

variance among the data points. These distributions were allowed to remain in the model, 

however, as a means to counteract a general tendency of several distributions to 

underestimate the corn stover supply in August and October.  It is important to reiterate 

the goal of these distribution models. They must produce random values for the variables 

associated with feedstock supply and the values they produce must be reasonable for the 

region under investigation. This has been achieved. 
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Table 5-4 Distributions for Daily Corn Stover Supply Generation 

Month County Distribution 

August 

Ballard ((-0.001 + 29300*BETA(0.85, 42.1)))/7 

Calloway ((-0.001 + 29300*BETA(0.85, 42.1)))/7 

Carlisle ((-0.001 + EXPO(3700)))/7 

Fulton ((-0.001 + 29300 * BETA(0.85, 42.1)))/7 

Graves ((-0.001 + EXPO(9710)))/7 

Hickman ((-0.001 + EXPO(6590)))/7 

Marshall ((-0.001 + EXPO(1860)))/7 

McCracken ((-0.001 + EXPO(1860)))/7 

September 

Ballard ((-0.001 + WEIB(16100, 4.36)))/7 

Calloway ((-0.001 + WEIB(16100, 4.36)))/7 

Carlisle ((3850+20600*BETA(1.35,2.84)))/7 

Fulton ((-0.001 + WEIB(16100, 4.36)))/7 

Graves ((9610+57300*BETA(1.36,3.28)))/7 

Hickman ((7140+38600*BETA(1.15,2.61)))/7 

Marshall ((1390 + 8000*BETA(1.31, 2.83)))/7 

McCracken ((1580+13200*BETA(1.09, 2.16)))/7 

October 

Ballard ((-0.001 + 29300*BETA(0.662, 3.57)))/7 

Calloway ((-0.001 + 29300*BETA(0.662, 3.57)))/7 

Carlisle ((1690+EXPO(5570)))/7 

Fulton ((-0.001 + 29300 * BETA(0.662, 3.57)))/7 

Graves ((4500+40500*BETA(0.507,0.986)))/7 

Hickman ((3200+GAMM(17200,0.582)))/7 

Marshall ((671 + WEIB(1840, 0.821)))/7 

McCracken ((TRIA(0.001,697,1390)))/7 

November 

Ballard ((NORM(2120, 462)))/7 

Calloway ((NORM(2120, 462)))/7 

Carlisle ((-0.001+5590*BETA(1.6,2.71)))/7 

Fulton ((NORM(2120, 462)))/7 

Graves ((TRIA(-0.001, 2780,12700)))/7 

Hickman ((TRIA(-0.001, 1390, 9760)))/7 

Marshall ((788+EXPO(3350)))/7 

McCracken ((NORM(1140, 592)))/7 
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Figure 5-9 CS Distribution Expected Value & Historic Mean – Ballard County 

 

Figure 5-10 CS Distribution Expected Value & Historic Mean – Calloway County  
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Figure 5-11 CS Distribution Expected Value & Historic Mean– Carlisle County  

 

Figure 5-12 CS Distribution Expected Value & Historic Mean– Fulton County  
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Figure 5-13 CS Distribution Expected Value & Historic Mean– Graves County  

 

Figure 5-14 CS Distribution Expected Value & Historic Mean– Hickman County  
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Figure 5-15 CS Distribution Expected Value & Historic Mean– Marshall County  

 
Figure 5-16 CS Distribution Expected Value & Historic Mean– McCracken County  
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5.3.2 Forest Residue Input Distributions 

Defined as the treetops, branches, stumps, dead wood, small-diameter wood, and 

undergrowth unsuitable for saw logs, forest residue is often removed by forestry officials 

as a means to minimize risk of catastrophic forest fire (US DOE, 2011). With proper 

management, improved lifecycle environmental performance relative to other biomass 

options could be realized by combining residue collection with existing operations 

(Williams et al, 2009) It should be noted that only sustainable forestry practices should be 

followed; too aggressive removal can have detrimental effects on the forest system 

(Hacker, 2005).  

Publically available data related to the production of forest residue is much less available 

than was the case for corn stover. In this case, the Timber Product Output Report 

provides biannual commercial logging residues volumetrically (TPO, 2009). Since the 

RFS 2 (US EPA, 2007) does not consider forest residue from federal land “renewable,” 

forest residues from these sources are not considered in this study. It is assumed that the 

TPO Report, similarly to Faulkner (2012), represents total forest residue availability in 

the JPR.  

Additionally, for modeling, further assumptions were made regarding forest residue as a 

feedstock. These can be seen in Table 5-5 and are consistent with assumptions made by 

Faulkner, 2012.  

Table 5-5 Assumed forest residue parameter values and sources 

 Assumed Value Source 

Moisture Content 49% Miles et al, 1995 

Bulk Density of Grain 25.6 lbs/ft3 Brown, 2003 
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The raw data used for forest residue supply data distribution development, taking into 

consideration the assumptions mentioned, can be seen in Table 5-6.  

 Table 5-6 Annual Forest Residue in Jackson Purchase Region  

 

Annual Logging Residues (Wet Tons) 

Year Ballard Calloway Carlisle Fulton Graves Hickman Marshall McCracken 

2001 3,098 6,528 9,779 3,379 10,701 2,522 8,102 4,736 

2003 9,203 10,176 11,558 3,904 14,976 2,790 8,896 1,600 

2005 8,589 7,757 16,448 3,571 14,618 6,874 6,733 3,123 

2007 13,146 8,755 14,976 1,830 9,766 4,915 7,987 2,010 

2009 17,318 7,283 24,230 2,624 10,803 3,277 9,178 1,997 

 

The Kentucky Division of Forestry recommends that woody biomass harvest should be 

conducted in conjunction with traditional harvest and forest management activities.  The 

group also suggests that these harvest operations should be timed to avoid logging in wet 

soil conditions in order to minimize site degradation via soil compaction and rutting 

(KDF 2011). To maintain this condition it has further been assumed that the entire 

logging residue is removed within the three driest months in the Jackson Purchase 

Region.  This led to the equal distribution of the values in Table 5-6 across July, August, 

and September. The resulting monthly values can be seen in Table 5-7. 

 
Table 5-7 Monthly Forest Residue Harvest (July, Aug, and Sep) 

 
Monthly, Harvested July, Aug, Sep (Wet Tons) 

Year Ballard Calloway Carlisle Fulton Graves Hickman Marshall McCracken 

2001 1,032.53 2,176.00 3,259.73 1,126.40 3,566.93 840.53 2,700.80 1,578.67 

2003 3,067.73 3,392.00 3,852.80 1,301.33 4,992.00 930.13 2,965.33 533.33 

2005 2,862.93 2,585.60 5,482.67 1,190.40 4,872.53 2,291.20 2,244.27 1,041.07 

2007 4,381.87 2,918.40 4,992.00 610.13 3,255.47 1,638.40 2,662.40 669.87 

2009 5,772.80 2,427.73 8,076.80 874.67 3,601.07 1,092.27 3,059.20 665.60 
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ARENA Input Analyzer was again used to fit the monthly data in Table 5-7 to monthly 

distribution functions for each county. The generated county level distributions for the 

months under consideration (July, August, and September) are listed in Table 5-8. The 

generation of multiple uniform distributions from the data can be taken as an indication 

of the supply uncertainty in any given month due to the relatively small data set available 

for distribution development. These distributions generate new monthly forest residue 

supply. It is assumed that the forest residue harvest is spread evenly throughout the 

months and, therefore, the generated new forest residue on a given day is equal to the 

generated monthly value divided by the number of days in the current month. These daily 

values are distributed evenly among the county forest residue supply locations as 

discussed in Section 4.  

 
Table 5-8 Distributions for Monthly Corn Stover Supply Generation 

County Distribution 

Ballard UNIF(1.03e+003,5.77e+003) 

Calloway UNIF(2.18e+003,3.39e+003) 

Carlisle (3.26e+003)+EXPO(1.87E+003) 

Fulton UNIF(610,1.3e+003) 

Graves 3.26e+003+1.74e+003*BETA(.065,.0757) 

Hickman 840+WEIB(361,0.546) 

Marshall UNIF(2.24e+003,3.06e+003) 

McCracken (533+WEIB(265,0.564)) 
 

These distributions produce forest residue supply levels similar to the historic data. This 

comparison can be examined in Figure 5-17. It should be noted that these distribution 

expected values and standard deviations are based on very limited data input. The 

distributions reproduce the average historical data very well; additional data would likely 

increase the standard deviation bars seen in Figure 5-17. At that point, it would be 
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appropriate to re-establish the forest residue supply generation distributions. However, 

with the limited data available, these distributions suffice. 

 
Figure 5-17 Forest Residue Distributions’ Expected Values and Historic Means  

5.3.3 Chicken Litter Input Distributions 

Chicken litter, or more generally poultry litter, consists of bedding material, usually 

composed of wood chips or shavings, droppings, and other waste materials such as dead 

birds, feathers, feed and supplements.  After its use, several routes for chicken litter 

disposal exist besides landfilling the material.  Chicken litter is often composted, a 

process of aerobic degradation lasting about a month and yielding fertilizing material for 

agricultural processes. However, ammonia loss during composting can lead to nutrient 

poor composted material; in addition, high levels of phosphorus in the poultry litter can 

have eutrophic effects on local water supplies (Howry et al, 2008). Another method of 

disposal is anaerobic digestion. Through this process, microbial organisms first degrade 

lipids and polysaccharides via hydrolysis. The resulting chemical subunits then undergo 
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fermentation or other metabolic processes that convert them into simpler organic 

compounds. The organic material primarily yields methane, carbon dioxide, and a 

residual sludge often used as a fertilizer. Another disposal option is direct combustion to 

produce heat and power (Kelleher et al, 2002). Besides these alternatives, it has been 

suggested that poultry litter could make a good raw material for fuel and chemical 

production through experimental work (Dávalos et al, 2002; Kim et al, 2009; Mante and 

Agblevor, 2011). Among the advantages of this route is the positive utilization of a 

current waste stream. 

Publically available data for end-of-year inventory of broilers (chickens for meat 

production) and layers (chickens for egg production) were collected. This information is 

made available every five years by the USDA (2007). Utilizing an assumed manure rate, 

the generation of the feedstock was determined. Generally, all poultry bedding in use will 

not be disposed of at one time. Poultry farmers often lay fresh bedding once per year 

accompanied by a complete cleanout of the houses. They may, in the interim, remove 

caked material from the houses and add fresh bedding to the top layer of the chicken 

house (Flora 2006). There has been some controversy regarding the optimal timing for 

chicken litter disposal (Edwards 1992). For the purposes of this simulation, it has been 

assumed that some chicken litter is available each month due to the partial cleaning 

activities. Large quantities of the material become available in December when the full 

house cleanouts are assumed to occur. The county level chicken inventories are used in 

conjunction with the assumed manure rate to determine available supply of chicken litter. 

A lack of reported data for McCracken County leads to its omission from analysis. A 

constant manure rate and moisture content were assumed from literature; these values can 

be seen in Table 5-9. This processed data can be seen in Table 5-10.  

Table 5-9 Assumed chicken litter parameter values 

 Assumed Value Source 

Moisture Content 20% Miles et al, 1995 

Manure Rate 0.04 kg dry matter/head-day Brown, 2003 
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Table 5-10 Monthly Chicken Litter Supply Data 

 Chicken Litter Produced 

Year County 
Chicken 

Inventories 
Jan-Nov Dec 

20
07

 

BALLARD 971636 653.33 12308.80 

CALLOWAY 1269775 853.33 16076.80 

CARLISLE 863058 586.67 11052.80 
43284 40.00 753.60 

FULTON 656514 440.00 8289.60 
64220 53.33 1004.80 

GRAVES 8510360 5680.00 107011.20 
242910 173.33 3265.60 

HICKMAN 5657755 3773.33 71089.60 
113016 80.00 1507.20 

MARSHALL 817355 546.67 10299.20 
1041 13.33 251.20 

20
02

 

BALLARD 1361131 920.00 17332.80 

CALLOWAY 1569250 1053.33 19844.80 
786 13.33 251.20 

CARLISLE 623951 426.67 8038.40 

FULTON 593872 400.00 7536.00 
107275 80.00 1507.20 

GRAVES 6198054 4133.33 77872.00 
235318 160.00 3014.40 

HICKMAN 3935000 2626.67 49486.40 
70026 53.33 1004.80 

MARSHALL 1067857 720.00 13564.80 

19
97

 

BALLARD 742200 506.67 9545.60 

CALLOWAY 1953813 1306.67 24617.60 
258 13.33 251.20 

CARLISLE 509000 346.67 6531.20 
50006 40.00 753.60 

GRAVES 5111998 3413.33 64307.20 
108238 80.00 1507.20 

HICKMAN 2094024 1400.00 26376.00 

MARSHALL 567809 386.67 7284.80 
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Distributions fit to the data for the months January through November as well as for 

December (when full chicken house cleanout takes place) are shown in Table 5-11. As 

with the other feedstocks, these production values are distributed evenly across the days 

of the month and among the county chicken litter supply source locations. Due to the 

relatively small sample size, the distributions generated are all triangle distributions; 

these provide a view of the data, however, do not precisely replicate the input 

observations necessarily. In the case of biorefinery supply chains, where large variability 

is expected, distribution precision is not necessarily important however. 

 
Table 5-11 Distributions for Monthly Chicken Litter Supply Generation 

Month County Distribution 

January - 

November 

Ballard TRIA(633,685,1150) 

Calloway TRIA(1070,1120,1650) 

Carlisle TRIA(483,513,784) 

Fulton TRIA(600,602,617) 

Graves TRIA(4370,4660,7320) 

Hickman TRIA(1750,2060,4820) 

Marshall TRIA(483,525,900) 

McCracken N/A 

December 

Ballard TRIA(119000,12900,2.17000) 

Calloway TRIA(20100,21200,31100) 

Carlisle TRIA(9110,9670,14800) 

Fulton TRIA(11298,11300,11600) 

Graves TRIA(82300,87800,138000) 

Hickman TRIA(33000,38700,90700) 

Marshall TRIA(9110,9890,17000) 

McCracken N/A 
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In Figure 5-18 the historic mean and simulation values are compared. It should be noted 

that although the distributions are triangular, the simulation recreates the historical 

observations well for all counties in January through November.  

 

Figure 5-18 Chicken Litter Distribution Expected Value & Historic Mean- Jan-Nov  

More variability is observed in December, however (Figure 5-19 and Figure 5-20) due to 

widely variable historic data. In some cases the simulated values will over or 

underestimate the supply availability for chicken litter in the county. In general, however, 

the historic mean is within one standard deviation of the data distribution expected value. 

Because of this, the simulated values are considered to be reasonable. Clearly, additional 

data availability would reshape the distributions and provide a more complete 

representation of the availability of this biomass feedstock. 
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Figure 5-19 CL Distribution Expected Value & Historic Mean- Dec  

 

Figure 5-20 CL Distribution Expected Value & Historic Mean- Dec, concluded 
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5.4 Biorefinery Product Distribution Details 

The biorefinery products selected for simulation included gasoline, diesel fuel, residual 

fuel oil, electricity, and natural gas based input parameters used by Faulkner (2012) and 

the optimal product portfolio determined by Sukumara et al (2012). Once biomass is 

available at the biorefinery, production of products is simulated via the values obtained 

from process modeling found in Table 5-1. Data distributions were created for the 

demand of each product based on publically available consumption data. This section 

will highlight the assumptions and details relating to the simulation of biorefinery product 

demand.  

5.4.1 Gasoline Demand Generation 

Kentucky gasoline sales from August 2004 to July 2011 (US DOT 2011) were gathered 

and converted, on a per capita basis, to JPR county level data using the methodology 

outlined by Faulkner (2012). The averages of the resulting data set can be seen in Table 

5-12. 

Table 5-12 Average JPR gasoline consumption – [Gallons x 1,000,000]  

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Ballard 0.32 0.35 0.34 0.37 0.36 0.38 0.37 0.36 0.36 0.34 0.36 0.38 

Calloway 1.40 1.53 1.51 1.63 1.59 1.66 1.65 1.59 1.57 1.50 1.56 1.68 

Carlisle 0.20 0.22 0.22 0.23 0.23 0.24 0.24 0.23 0.23 0.22 0.23 0.24 

Fulton 0.27 0.29 0.29 0.31 0.30 0.32 0.32 0.31 0.31 0.29 0.30 0.32 

Graves 1.44 1.58 1.56 1.69 1.65 1.72 1.71 1.66 1.64 1.57 1.62 1.74 

Hickman 0.19 0.21 0.20 0.22 0.22 0.23 0.22 0.22 0.22 0.21 0.21 0.23 

Marshall 1.20 1.32 1.30 1.40 1.37 1.43 1.42 1.38 1.36 1.30 1.34 1.44 

McCracken 2.51 2.75 2.71 2.94 2.87 2.99 2.97 2.88 2.84 2.72 2.82 3.02 

 



 

85 

Relatively similar consumption within groups of counties was observed in the data. These 

groups are highlighted via different color shading in Table 5-12. These county level data 

were aggregated to create combined distributions to simplify data development. ARENA 

Input Analyzer was utilized to fit the aggregated data sets to distribution functions. These 

are listed for each county in Table 5-13. It will be observed that the counties grouped in 

Table 5-12 share common distribution functions. 

Table 5-13 Gasoline Demand Distributions 

Month County Distribution 

January - 

December 

Ballard 1.68e+005+GAMM(4.55e+004,2.27) 

Calloway NORM(1.51e+006,1.61e+005) 

Carlisle 1.68e+005+GAMM(4.55e+004,2.27) 

Fulton 1.68e+005+GAMM(4.55e+004,2.27) 

Graves NORM(1.51e+006,1.61e+005) 

Hickman 1.68e+005+GAMM(4.55e+004,2.27) 

Marshall NORM(1.51e+006,1.61e+005) 

McCracken NORM(2.82e+006,2.04e+005) 
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The developed distribution performance relative to the historical data means can be seen 

in Figure 5-21. The grouped county data means fall within the standard deviation of the 

aggregated distributions. 

 
Figure 5-21 Gasoline Demand Distribution Expected Values & Historic Means  

5.4.2 Diesel Fuel Demand Generation 

Special fuel sales in the state of Kentucky represent a combination of fuel alternatives to 

gasoline including diesel fuel. It is assumed that these sales represent primarily the sale of 

diesel fuel and that other alternative fuel sales are negligible. Therefore, special fuel sales 

allow for a measure of diesel demand. These data were collected for the time period 

including August 2004 to July 2011 (US DOT, 2011) and converted to county level data, 

similarly to the gasoline data, according to the method described by Faulkner (2012). The 

averages of the resulting data set can be seen in Table 5-14. 
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Table 5-14 Average JPR special fuel consumption – [Gallons x 1,000,000] 

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Ballard 0.12 0.13 0.14 0.13 0.12 0.15 0.13 0.14 0.15 0.14 0.14 0.13 

Calloway 0.52 0.59 0.61 0.59 0.55 0.65 0.56 0.59 0.64 0.59 0.60 0.57 

Carlisle 0.08 0.09 0.09 0.08 0.08 0.09 0.08 0.09 0.09 0.09 0.09 0.08 

Fulton 0.10 0.11 0.12 0.11 0.10 0.12 0.11 0.12 0.12 0.12 0.12 0.11 

Graves 0.54 0.61 0.63 0.61 0.57 0.67 0.58 0.62 0.67 0.62 0.63 0.59 

Hickman 0.07 0.08 0.08 0.08 0.07 0.09 0.08 0.08 0.09 0.08 0.08 0.08 

Marshall 0.45 0.51 0.53 0.51 0.47 0.56 0.49 0.51 0.55 0.51 0.52 0.49 

McCracken 0.94 1.07 1.10 1.06 0.98 1.17 1.01 1.08 1.16 1.08 1.09 1.03 

 

Similarly to the gasoline sales data, counties with similar consumption were grouped, 

their data points were aggregated, and combined distribution functions were determined 

using ARENA Input Analyzer. The generated distributions are shown in Table 5-15. 

Table 5-15 Diesel Fuel Demand Distributions 

Month County Distribution 

January - 

December 

Ballard 61700+ERLA(2.01e+004,2) 

Calloway NORM(5.65e+005,7.36e+004) 

Carlisle 61700+ERLA(2.01e+004,2) 

Fulton 61700+ERLA(2.01e+004,2) 

Graves NORM(5.65e+005,7.36e+004) 

Hickman 61700+ERLA(2.01e+004,2) 

Marshall NORM(5.65e+005,7.36e+004) 

McCracken NORM(1.05e+006, 1.08e+005) 

 

Distribution performance relative to historic means can be seen in Figure 5-22. 



 

88 

 
Figure 5-22 Diesel Fuel Demand Distribution Expected Values & Historic Means  

5.4.3 Electricity Demand Generation 

Similarly to Faulkner (2012), for the purposes of modeling the regional generation of 

electricity is used as a measure of electricity demand. Energy export via transmission 

lines is not taken into consideration. The average JPR county level data are displayed in 

Table 5-16.  
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Table 5-16 Average JPR electricity generation – [MWh x 100,000] 

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Ballard 0.16 0.17 0.15 0.14 0.14 0.17 0.17 0.17 0.16 0.14 0.15 0.16 

Calloway 0.69 0.75 0.65 0.60 0.60 0.73 0.74 0.73 0.69 0.61 0.65 0.73 

Carlisle 0.10 0.11 0.09 0.09 0.09 0.10 0.11 0.11 0.10 0.09 0.09 0.10 

Fulton 0.13 0.14 0.12 0.12 0.11 0.14 0.14 0.14 0.13 0.12 0.13 0.14 

Graves 0.71 0.78 0.67 0.62 0.62 0.76 0.77 0.76 0.72 0.64 0.68 0.75 

Hickman 0.09 0.10 0.09 0.08 0.08 0.10 0.10 0.10 0.10 0.08 0.09 0.10 

Marshall 0.59 0.65 0.56 0.52 0.52 0.63 0.64 0.63 0.60 0.53 0.56 0.63 

McCracken 1.24 1.35 1.17 1.09 1.08 1.31 1.34 1.32 1.25 1.11 1.18 1.31 

 

These average values are computed from state level monthly electricity data that has been 

collected from the Energy Information Agency (US EIA, 2012b) and converted to county 

level JPR data via the method described by Faulkner (2012). Again, similarly consuming 

counties have been grouped and aggregate distributions have been generated from the 

combined data sets using ARENA Input Analyzer. The generated distributions can be 

seen in Table 5-17. 

Table 5-17 Electricity Demand Distributions 

Month County Distribution 

January - 

December 

Ballard 7.6e+003 + 1.12e+004 * BETA(1.08, 1.71) 

Calloway TRIA(4.89e+004, 6.47e+004, 8.47e+004) 

Carlisle 7.6e+003 + 1.12e+004 * BETA(1.08, 1.71) 

Fulton 7.6e+003 + 1.12e+004 * BETA(1.08, 1.71) 

Graves TRIA(4.89e+004, 6.47e+004, 8.47e+004) 

Hickman 7.6e+003 + 1.12e+004 * BETA(1.08, 1.71) 

Marshall TRIA(4.89e+004, 6.47e+004, 8.47e+004) 

McCracken 1.03e+005 + 4.67e+004 * BETA(1.24, 1.56) 
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The relative performance of each generated distribution compared to historic mean values 

of electricity production can be seen in Figure 5-23. 

 
Figure 5-23 Electricity Demand Distribution Expected Values & Historic Means  

 

5.4.4 Natural Gas Demand Generation 

Natural gas consumption has been quantified as the volume of total natural gas delivered 

for all purposes on the state level on a monthly basis (US EIA, 2012c). The method for 

converting this data to JPR county level data described by Faulkner (2012) is again 

followed and the average values for each month and each county can be seen in Table 5-

18. 
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Table 5-18 Average JPR delivered natural gas – [Mcf x 100,000] 

County Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Ballard 0.50 0.54 0.39 0.29 0.22 0.23 0.22 0.24 0.22 0.25 0.36 0.50 

Calloway 2.23 2.41 1.72 1.28 0.98 1.02 0.99 1.07 0.97 1.12 1.57 2.21 

Carlisle 0.32 0.34 0.25 0.18 0.14 0.15 0.14 0.16 0.14 0.16 0.23 0.32 

Fulton 0.42 0.46 0.33 0.24 0.19 0.20 0.19 0.21 0.19 0.22 0.31 0.42 

Graves 2.30 2.49 1.78 1.32 1.02 1.06 1.02 1.12 1.02 1.17 1.64 2.28 

Hickman 0.30 0.33 0.23 0.17 0.13 0.14 0.13 0.15 0.13 0.15 0.22 0.30 

Marshall 1.91 2.07 1.48 1.10 0.84 0.88 0.85 0.92 0.84 0.96 1.36 1.90 

McCracken 4.00 4.32 3.10 2.30 1.77 1.84 1.77 1.93 1.76 2.02 2.84 3.97 

 

As with the other biorefinery products, counties with similar levels of consumption have 

been grouped together. Unlike the other products, however, the consumption of natural 

gas displays nonlinearity forming a peak during the year. This can be attributed to the 

significant increase in use of the fuel for heating businesses and homes during winter 

months. To account for this difference, multiple distributions for each group of counties 

were generated with ARENA Input Analyzer to correspond with different levels of 

consumption in a particular month. The resulting generated distribution functions are 

displayed in Table 5-19. 
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Table 5-19 Natural Gas Demand Distributions 

Month County Distribution 

October - 

March 

Ballard TRIA(1.01e+004, 1.45e+004, 3.09e+004) 

Calloway NORM(9.93e+004, 1.4e+004) 

Carlisle TRIA(1.01e+004, 1.45e+004, 3.09e+004) 

Fulton TRIA(1.01e+004, 1.45e+004, 3.09e+004) 

Graves NORM(9.93e+004, 1.4e+004) 

Hickman TRIA(1.01e+004, 1.45e+004, 3.09e+004) 

Marshall NORM(9.93e+004, 1.4e+004) 

McCracken NORM(1.85e+005, 2.13e+004) 

April, August - 

September 

Ballard TRIA(1.33e+004, 1.92e+004, 4.69e+004) 

Calloway NORM(1.46e+005, 2.58e+004) 

Carlisle TRIA(1.33e+004, 1.92e+004, 4.69e+004) 

Fulton TRIA(1.33e+004, 1.92e+004, 4.69e+004) 

Graves NORM(1.46e+005, 2.58e+004) 

Hickman TRIA(1.33e+004, 1.92e+004, 4.69e+004) 

Marshall NORM(1.46e+005, 2.58e+004) 

McCracken NORM(2.73e+005, 4.3e+004) 

May - July 

Ballard TRIA(2.45e+004, 3.1e+004, 6.34e+004) 

Calloway NORM(2.22e+005, 2.91e+004) 

Carlisle TRIA(2.45e+004, 3.1e+004, 6.34e+004) 

Fulton TRIA(2.45e+004, 3.1e+004, 6.34e+004) 

Graves NORM(2.22e+005, 2.91e+004) 

Hickman TRIA(2.45e+004, 3.1e+004, 6.34e+004) 

Marshall NORM(2.22e+005, 2.91e+004) 

McCracken NORM(4.14e+005, 4.28e+004) 
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The expected value of each distribution function has been compared to the historic mean. 

The results are shown in Figure 5-24; the historic means all fall within one standard 

deviation of the distribution function expected value. 

 
Figure 5-24 Natural Gas Demand Distribution Expected Values & Historic Means  

5.4.5 Residual Fuel Oil 

Unlike the other products discussed, residual fuel oil is not a consumer product. 

Therefore, allocating the demand to the county level based on populations via the 

methodology described by Faulkner (2012) is not applicable. This fact, coupled with a 

lack of available county level data for residual fuel oil consumption, leads to difficulty in 

defining consumption on the county level. The fact that residual fuel oil is used at the 

defined terminal locations as bunker fuel oils for river transportation, as well as having 

other various uses, justifies an assumption that all produced residual fuel oil will be sold. 

Demand distributions were not created for this product. 
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6 RESULTS & ANALYSIS 

6.1 Biorefinery Supply Chain Simulation Model 

After chemical process optimization and supply chain optimization had been carried out 

and the appropriate inputs from the respective models were obtained, the methodology 

for supply chain modeling with discrete event simulation was carried out. A major output 

of this exercise is the simulation model itself. Care was taken to ensure that assumptions 

among the three component models were consistent, as previously described. Evaluation 

of the selected optimal supply chain was carried out utilizing the model adapted to these 

inputs. The model view screen shot with different sections labeled is shown in Figure 6-1. 

Each subsection noted in the figure carries out specific tasks described in detail in 

Chapter 4 (Methodology). Subsequent discussion will illuminate the model in more 

detail. 
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Figure 6-1 multi-feedstock biorefinery supply chain discrete event simulation model 

This model was run for a period of 10 years in order to examine the long term 

profitability of the system taking into consideration capital cost, transportation costs, 

diesel fuel expenses, storage costs, operating costs, and raw material costs paid for the 

feedstocks. The following sections will describe the findings from this modeling. 

Figure 6-1 section a and b have been expanded in Figure 6-2. A control entity enters the 

figure from the left-hand side, following the path specific to the current month in 

simulation time. Product demand and new feedstock supply for the day are generated 

using distribution functions described in Chapter 5. Biorefinery requirements for each 

biomass are checked for changes (a feature included for future expansions of the model: 

a b 

c 

e 

d 

f 

a: product demand generation     b: feedstock supply generation      c: decomposition of stored biomass     d: distribution of final 

products     e: transport of biomass feedstock       f: Time-value of money consideration      g: generation of new product 

 

 

g 
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currently, this parameter is a deterministic value provided from process modeling) and 

biomass storage arrays are updated to track the stock of biomass available for shipment. 

 

Figure 6-2 Product Demand (a) and Feedstock Supply Generation (b) 

Figure 6-1 section c is magnified in Figure 6-3. Here, stored biomass in the system is 

allowed to decay via the deterministic rate identified previously (DR). 



 

97 

 

Figure 6-3 Stored Feedstock Decomposition (c) 

Figure 6-4 and 6-5 detail the modeling typical of Figure 6-1 section d. Figure 6-4 is the 

module utilized to simulate the distribution of liquid fuel products. The stock of a 

particular product at the biorefinery is checked. If supply is present, demand for the 

corresponding product is assessed. Subsequently, logic selects the nearest (i.e. optimal) 

demand location via the methodology described in Chapter 4. The variables associated 

with product supply are adjusted to capture the sale of the product and, finally, income 

from the day’s sale of the product is recorded. 

 

Figure 6-4 Distribution of Final Products – Type 1 (d) 
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As has been mentioned, the distribution of other products, such as natural gas and 

electricity for this case study, did not require transportation due to assumed integration 

with existing delivery infrastructure. This results in a much simpler distribution 

simulation. As an example, Figure 6-5 outlines the simulation of the distribution of 

natural gas. Similar to liquid fuels, supply and demand are checked, distribution occurs, 

and income is recorded. Instead of seeking the optimal supply location, the natural gas 

supply diminishes the network’s aggregated demand; similar considerations are taken in 

the case of electricity distribution. 

 
Figure 6-5 Distribution of Final Products – Type 2 (d) 

Figure 6-6 highlights an example of biomass supply transportation found in Figure 6-1 

section e. The supply of a particular biomass relative to the biorefinery requirements for a 

given day is assessed. If additional feedstock is needed at the biorefinery, supply 

availability is checked; given biorefinery need and any available supply, the logic 

described in Chapter 4 selects the optimal (nearest) supply location with availability. 

Storage variables are updated to reflect the delivery of material. Costs associate with the 

purchase of a particular feedstock and its transportation are assessed at this time. 
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Figure 6-6 Transportation of Biomass Feedstock (e)  

Cost aggregation, application of the discounted cash flow method for the calculation of 

net present value of investment, and the provision for the application of subsidies make 

up section f of Figure 6-1. These modules are displayed in Figure 6-7. The costs associate 

with feedstock acquisition, transportation activities, biorefinery operation, and production 

of products are aggregated and subtracted from the income on a daily basis. These values 

are discounted with an assumed interest rate (r) to give units of current dollars. The 

discounted cash flow method procedure applied is discussed in section 6.1. A module for 

the inclusion of subsidies in analysis, which effectively increases the discounted income 

of the biorefinery, is found in this portion of the ARENA model as well. 
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Figure 6-7 Time Value of Money Consideration (f)  

 

Finally, Figure 6-8 highlights the portion of the modeling (Figure 6-1 section g) 

responsible for simulating the production of products from feedstock at the biorefinery.  

Here, feedstock present at the biorefinery is multiplied by a conversion factor determined 

from the information provided by process simulation (see Table 5-1) yielding the 

volumes of product for distribution and sale on the next day in simulation. Operating 

costs for the simulated day is applied according the month and the appropriate associated 

deterministic operating cost parameter (DOCA or DOCS-J, depending on the month). 

Storage costs are assessed to be aggregated in the next simulated day based on the 

biomass remaining in storage and the deterministic parameter associated with storage 

costs per ton (SC).  
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Figure 6-8 Generation of New Product (g) 

Other ARENA modules seen in Figure 6-1 were omitted from discussion due to the 

nature of their functions. These modules perform various bookkeeping activities, make it 

possible to examine individual portions of the model, and reset variables after a system 

cycle has been completed, for example. 

6.2 Supply Chain Performance Report 

The supply chain activities for the described case study were simulated over a period of 

10 years. Costs associated with each transportation, sale, and production aspect of the 

chain were tracked to evaluate the overall, long term profitability and economic 

sustainability of the biorefinery supply chain. A primary goal of this simulation modeling 

exercise was to learn the characteristics of this type of supply chain and, ultimately draw 
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generalized conclusions from the study.  To that end, transportation costs for biomass and 

biorefinery products, raw material costs, transportation and fuel costs, operating costs, 

and storage costs were aggregated for each day of operation. Additionally, income 

derived from the sale of products in the marketplace was recorded in order to examine the 

revenues created by the supply chain system. Overall plant capital cost was also taken 

into consideration for potential evaluations of a biorefinery payback period.  

Since this study is covers an extended period, it was necessary to include consideration of 

the time-value of money in these analyses. This was accomplished through the 

calculation of the Net Present Value (NPV) of the continuing investment in biorefinery 

supply chain activities via the discounted cash flow method. This method discounts 

revenues from a given operation to present dollar values utilizing Equation 6-1 where 

DPV is the discounted present value of all future values (FVt) of positive and negative 

cash flows for a given time period, N. In this equation, the value of the variable r is an 

assumed constant value of the interest rate. For modeling purposes this value is assumed 

to be 3% per year.  

 !"# = !"!
!!! !

!

!!!
 (6-1) 

For the small biorefinery, the discounted cash flow method was applied to the optimal 

supply chain configuration determined by Faulkner (2012) for the small integrated 

biorefinery in the Jackson Purchase Region. These values are plotted in Figure 6-9 for the 

entire ten year duration of the simulation run. The values plotted represent the average 

values obtained from five iterations of the simulation model.  Figure 6-9 displays the 

values of NPV for the biorefinery investment as a function of simulation time.  
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Figure 6-9 NPV Variations – Small Biorefinery Supply Chain 

From the plot of daily values of NPV in Figure 6-2 it is clear that the supply chain will 

never yield a profit. Given an initial investment (determined by process optimization 

modeling) annual losses ensure that the cumulative NPV shows a continuous decline. 

There are, however, certain portions of the curve with a positive trajectory. It is important 

to examine this phenomenon in order to identify aspects of the supply chain design that 

may be leveraged to improve overall net present value of the system. The average daily 

revenues (total income — aggregated costs) across 5 simulation replications for the 

biorefinery are plotted in Figure 6-10.  

The magnitudes of cyclical variations in revenues shed light on the negatively trending 

NPV seen in Figure 6-9. As there are only short periods over which revenue is generated 

and the magnitude of this positive cash flow is small compared to negative cash flows, it 

is inevitable that the NPV of the overall investment will decline in the long run.   
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Since the negative portions of the revenue plot are significantly larger in magnitude than 

the positive portions, it is inevitable that investment present value will steadily decline in 

the long term. 

 

Figure 6-10 Daily Revenue Variation – Small Biorefinery Supply Chain  

To further investigate this seasonal pattern that has emerged in Figure 6-10, it is helpful 

to select a representative year among those modeled and assess their average monthly 

revenues. By doing this, insight can be gained regarding which months are profitable for 

the supply chain in question. This analysis has been done and can be seen as Figure 6-11. 

It can be seen that the supply chain realizes an operating profit during the months 

associated with the corn stover harvest season. Although the supply chain modeled is 

multi-feedstock, the daily biorefinery requirements are dominated by corn stover. This 

dependence on that resource is clearly reflected in the plot seen in Figure 6-11.  
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It should be noted that the plot of average revenues for each month closely mirrors the 

results obtained by Faulkner (2012) indicating that the supply chain being modeled is, in 

fact, the optimal solution to the location allocation problem. Comparison of this plot and 

the Faulkner results clearly highlight the value of simulation modeling in addition to 

linear optimization. These implications are discussed in future chapters; however, it 

seems evident that projection of the investment into the future gives a much clearer 

picture of the reality that this supply chain configuration, although optimal, will likely 

never reach profitability.   

 

Figure 6-11 Sample Average Monthly Revenues – Small Biorefinery 
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allows the determination of an approximate payback period for the biorefinery 

investment. The regression model is shown in Equation 6-2.  

 !"# = 11542  t− 60000000;      R2 = 0.9956 (6-2) 

In this way, a payback period of 14.24 years is determined. It is important, however, to 

caution that this payback period represents an optimistic viewpoint and illustrates the 

impact that assumption selection can have on the outcome of modeling. Several costs, 

such as managerial costs, overhead costs, and maintenance costs would significantly alter 

this perspective by negatively shifting the NPV plot vertically. The result of any negative 

shift would be a prolonged payback period.  

 

Figure 6-12 NPV Variation – Medium Biorefinery Supply Chain 
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In addition to the assumption considerations, the variance among the data increases with 

time as a reflection of the uncertainty associated with projecting costs and income into 

the future. This can be seen in the plot of standard deviation of the NPV as a function of 

time in Figure 6-13. These factors combine to limit the reliability of any prediction.  

 

Figure 6-13 Standard Deviation of NPV – Medium Biorefinery 

The daily revenues for the medium biorefinery are plotted in Figure 6-14. In this case, the 

daily revenues are positive in general. The monthly revenue trend is reflected in the 

average monthly revenues seen in Figure 6-15.   
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Figure 6-14 Daily Revenue Variation – Medium Biorefinery Supply Chain 

 

Figure 6-15 Sample Average Monthly Revenues – Medium Biorefinery 
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In this case, the income seen in the model outweighs the costs associated with the 

transportation of biomass; the biorefinery design successfully leverages its large 

production of residual fuel oils for increased profit. These results, it should be noted, do 

not directly match the results from Faulkner (2012) due to the model assumptions related 

to residual fuel oil sales. The simulation model assumes that residual fuel oil can be 

considered infinitely in demand due to its use as a bunker fuel at its sale location in 

McCracken County in the Jackson Purchase region, as suggested by Faulkner (2012). By 

deleting the income obtained directly from the sale of residual fuel oils, the negative 

profitability trend shown by Faulkner (2012) (and shown in Figure 3-4) is recreated. 

Deviation in the magnitude of the values seen can be attributed to the continued inclusion 

of costs related to residual fuel oil production and transportation that remain in the 

simulation results. The average monthly revenues without the inclusion of residual fuel 

oil income can be seen in Figure 6-16.  

 

Figure 6-16 Sample Average Monthly Revenues without RFO – Medium Biorefinery 
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6.3 System Sensitivity Analysis 

To understand the impact of several key assumptions made during modeling in 

simulation, as well as linear programming and process modeling, sensitivity analysis was 

a crucial activity. Using ARENA’s Process Analyzer, control variables can be altered and 

responses in key performance indicators for the supply chain system can be examined. 

Primarily, analysis was carried out to examine the effect of varying some key assumed 

values in the simulation model. 

Figure 6-17 shows the sensitivity of the investment net present value to varying prices for 

natural gas. The impact on net present value is captured via decreases in losses seen from 

investment in the Jackson Purchase Region small integrated biorefinery expressed in 

current dollars. In each of the sensitivity studies, a red data point indicates the currently 

assumed value from modeling.  

 
Figure 6-17 Sensitivity of Present Value losses to changes in natural gas price. 
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Similarly, the changes in present value loses observed with varying electricity price, 

residual fuel oil price, and gasoline price can be seen in Figures 6-18, 6-19, and 6-20, 

respectively.  All of these products indicate a linear dependence of present value losses 

with the price of products sold by the biorefinery. This makes sense because increased 

prices for the commodities produced by the biorefinery supply chain will only increase 

income at the biorefinery. It should be noted, however, that effects such as changes in 

demand due to increasing cost have not been reflected in modeling. It is expected that as 

price of the product tends to infinity, the present value would settle to a limit governed by 

the relationship between the price of the good and demand for it. The only product sold 

that indicates the opposite trend is diesel fuel where, with increasing price, the net present 

value of the biorefinery supply chain decreases as seen in Figure 6-21. This can be 

attributed to the fact that diesel is consumed for the transportation of all products and 

feedstocks; the impact of increased diesel cost on transportation-related costs outweighs 

the increased revenue realized from the increased prices.  

Linear regression models fit to these curves provide means to extrapolate and estimate 

conditions necessary for profitable supply chain results; in most cases, for the small 

biorefinery scenario, these conditions are relatively extreme. For instance, it is clear from 

Figure 6-12 that present value gains are not realized until gasoline prices reach between 

$6.00 and $6.50. It should be noted that with such large changes in product prices 

required for biorefinery profitability in this case, demand shifts are inevitable. Increased 

loses due to decreased income would be possibly significant enough to offset any gains 

from increased revenues realized due to higher prices. 
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Figure 6-18 Sensitivity of Present Value losses to changes in electricity price. 

 

Figure 6-19 Sensitivity of Present Value losses to changes in residual fuel oil price. 
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Figure 6-20 Sensitivity of Present Value losses to changes in gasoline price 

 

Figure 6-21 Sensitivity of Present Value losses to changes in diesel fuel price 
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In Figure 6-22, the impact of product prices on net present value is observed. Clearly, 

residual fuel oil price impacts the present value the most.  

 

Figure 6-22 Sensitivity of Net Present Value losses to changes in product prices 
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back to the biorefinery chemical process simulation where utilities are being minimized.  
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 Figure 6-23 Impact of product portfolio on NPV 
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6.4 Examination of Costs 

Of interest to this research is the breakdown of costs associated with biorefinery 

activities. These have been plotted and can be seen for the small and medium size 

biorefineries in Figures 6-24 and 6-25, respectively. As may be expected, the overall cost 

profile for the larger capacity biorefinery is higher; the profitable state of the medium size 

biorefinery can be attributed to increased income due to high production of residual fuel 

oil with unlimited demand assumed. In both cases, there is a clear drop in all costs 

corresponding to the beginning of the corn stover harvesting period. Here, inputs from 

the process modeling indicate a smaller biorefinery feedstock requirement relative to the 

rest of the year. As such, the biorefinery operating costs, transport costs, diesel costs, and 

raw material costs reflect this decision. Moving forward in time from the end of the corn 

stover harvest period, diesel costs used for the transportation of feedstock to the 

biorefinery and products to their final destination are significantly lowered. This reflects 

the biorefinery’s ability to draw from the most optimal members of the optimal supply 

chain during this time period. As the year progresses from the end of one corn stover 

harvest to the next, it can be observed that the diesel expenses and the transport costs 

experienced by the biorefinery steadily increase as the biorefinery sources from farther 

distances. This finding is consistent with Faulkner (2012). Further insight into the system 

behavior, however can be gained from simulation. For instance, the costs observed during 

the entire simulation period have been plotted for the unprofitable small biorefinery in 

Figure 6-26. Here, the cyclic nature of various costs becomes evident. Similar patterns 

likely exist in reality for the operating costs. The relatively stable values seen for 

operating costs are due to the prescribed biorefinery specified operating costs. Specified 

feedstock requirements similarly explain the stable values observed for raw material 

costs. These particular variables could benefit from feedback communication in real time, 

perhaps informed by Bayesian belief network based risk analysis models or systems 

dynamics approaches, with the process simulation models; as of yet, such linkage of 

these separate models remains for future work. 
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Figure 6-24 Costs over a representative year - small biorefinery. 

 

Figure 6-25 Costs over a representative year - medium biorefinery. 
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Figure 6-26 Costs over a simulation period (3650 days) - small biorefinery. 

6.5 Scenario Analysis 

This section discusses the use of the developed simulation model to examine means by 

which supply chain performance could be improved by technology adoption or by policy. 

6.5.1 Inclusion of Preprocessing 

The unprofitable small capacity biorefinery was selected for analysis in order to examine 

the possibility of improving its performance. Here, as was seen in Figure 6-15 and Figure 

6-17, income made from product delivery to the marketplace is eliminated by large 

increases in diesel costs due to biomass feedstock exhaustion at nearby locations. To 

decrease the driving cost resulting in negative profitability one potential solution is the 
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implementation of preprocessing at the biomass supply location. This activity effectively 

increases the density of the material to be transported by decreasing its volume. In this 

way, potentially more biomass could be shipped with fewer trucks and, therefore, smaller 

diesel costs for the biorefinery, assuming that entity funds the preprocessing activities.  

Densification options can increase the bulk density of the loose biomass by at least half 

and up to ten times, depending on multiple factors (Sokhansanj and Turhollow, 2004). 

Although baling is a very common method for preparing biomass, particularly for 

residues like corn stover, to be transported, other options exist that allow for more 

densification of biomass at the feedstock location. Pelletization is one such methodology 

that has been shown to potentially increase the overall economics related to biomass 

supply chains (Usulu, et al 2008) with  (Sultana et al, 2010) pelletization. Researchers 

have shown that pelletization can lead to significantly increased biomass shipment weight 

(Sokhansanj, et al (2010) for instance, reported biomass at 40 tons of corn stover per load 

compared to 12.35, the base case assumption). It seems obvious that decreasing the 

number of trucks in this way would have positive economic impacts. It is, however, 

important to consider the tradeoffs at play when implementing pelletization. 

For this scenario analysis, Table 6-1 shows the assumptions used to implement 

preprocessing in the ARENA modeling. An additional variable was added to the ARENA 

model in order to track preprocessing costs as biomass is shipped from the corn stover 

source locations to the biorefinery. 

Table 6-1 Assumed parameters to examine the feasibility of pelletization.  

Source 
Weight of Load 

(ton/load) 

Price  

($/ton processed) 

Sokhansanj, et al (2010) 40 31 
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Figure 6-27 shows results from this analysis. The red curve indicates the benefits that can 

be realized by implementing preprocessing in the form of pelletization without taking 

into consideration the added costs. From the chart it is clear that improvements in net 

present value are achieved, however, for the scenario modeled via simulation, the gains 

achieved due to reduced diesel and transportation cost did not offset the increased costs 

associated with the pelletizing action. When the preprocessing costs associated with the 

simulated preprocessing activities is included in analysis, the deficit increases, making 

profitable supply chain activities more difficult to achieve.   

 

Figure 6-27 NPV as a function of increasing shipment weight 

The improvement in performance can be attributed primarily to a marked decrease in the 

diesel costs associated with the delivery of corn stover to the biorefinery, as seen in 

Figure 6-28. The green line represents the diesel expenses when pelletizing is taking 

place; the red base case is the diesel cost associated with the delivery of un-processed 

corn stover. Relative decreases in transportation cost, diesel cost, and net losses 

(neglecting the additional cost of preprocessing activities) obtainable in this system can 

be seen in Figure 6-29.  
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Figure 6-28 Decrease in diesel cost as a result of pelletizing corn stover 

 

Figure 6-29 Costs as a function of shipment weight 
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6.5.2 Application of Subsidies 

In 2009, as part of the Kentucky Governor’s task force on biomass and biofuels in 

Kentucky (Anderson et al, 2009) it was suggested that public opinion of funding 

mechanisms to help foster a biomass based liquid fuel and energy industry in the state be 

assessed. The funding mechanisms suggested included a renewable energy fee on all 

electricity sold in the Commonwealth, reallocation of fees already assessed, revision of 

existing laws to allow for increased tax credits per gallon of biofuel produced, and public 

assistance in applications for federal loans and grants. For the purposes of demonstrating 

the ability of this simulation model to assess policy options, a scenario wherein a per 

gallon subsidy is provided by the state government to a biorefinery in the Jackson 

Purchase Region. KRS 141.4244 in Kentucky State law authorizes a $1/gallon tax credit 

for cellulosic ethanol production in the state. In the scenario, it has been assumed that this 

legislation has evolved such that the per gallon subsidy rate (SR) is applied after the 

production of any liquid fuels from renewable, lignocellulosic sources. 

Various subsidy rates were applied in the small capacity biorefinery supply chain 

simulation model; the results can be seen in Figure 6-30. Applying linear regression, it is 

clear that for a subsidy rate of $1.75 per gallon of fuel produced is necessary cause the 

supply chain Net Present Value to break even. This analysis reveals that the current 

subsidy available, $1 per gallon of biodiesel or ethanol produced is not enough to support 

this biorefinery supply chain alone. However, the potential impact of this subsidy can be 

seen. If this rate were applied to all liquid fuel production, the $1/gallon produced would 

result in benefits of around $3 million per year. This level of sustained subsidy represents 

a potentially large burden on the tax paying population and, therefore, may not be a 

realistic alternative. However, this exercise is valuable in illustrating the insights for 

policy makers made available by this simulation model.   
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Figure 6-30 Impact of various subsidy rates on NPV – small biorefinery 
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7 CONCLUSIONS & FUTURE WORK 

A comprehensive methodology for the development of a discrete event simulation model 

for the assessment of region specific biorefineries has been presented in this thesis. The 

simulation model utilized outputs from other models that constitute an integrated supply 

chain design framework, including supply chain optimization via MILP and chemical 

process simulation and optimization. The Jackson Purchase Region of Kentucky served 

as a case study to demonstrate the applicability of the simulation model in the context of 

the larger framework. The long-term economic performance of an optimized biorefinery 

supply chain was analyzed taking into consideration variability associated with 

lignocellulosic biomass feedstock supply and transportation fuel, natural gas, and 

electricity product demand. Based on the results of a previously completed MILP 

optimization model (Faulkner, 2012) two supply chain configurations with various 

feedstock consumption were considered for the case study.  Both of the supply chains 

considered the conversion of second-generation lignocellulosic biomass including corn 

stover, chicken litter, and forest residue via gasification and Fischer-Tropsch synthesis in 

an integrated biorefinery. To properly simulate the availability of this atypical feedstock 

supply mixture, probability distributions for each county, for each month, for each 

feedstock were developed utilizing publically available historic data. The products 

considered included gasoline, diesel fuel, residual fuel oil, natural gas, and electricity. 

Similarly to the feedstock supply, regional demand for these goods had to be assessed 

and, subsequently, probability distributions had to be developed. By representing supply 

and demand with distributions formed by historic observations, a clearer picture of the 

time varying impact of the uncertainty inherent to biomass supply chains can be explored. 

The current literature is lacking in biorefinery supply chain simulation models that take 

into account uncertainty inherent to the system. This research adds to this body of work 

by considering uncertainty in biomass supply and biorefinery product demand. Perhaps 

the most novel aspect about the presented model development is its role in a larger 

biorefinery supply chain design and optimization framework. Very few researchers have 

considered the interactions that exist among biorefinery supply chain design and 
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chemical process modeling; even fewer have considered the role variability and 

uncertainty play in this context. This work, therefore, begins to bridge this gap.  

Ultimately, as mentioned in this document’s introduction, the goal of this work is to 

address the questions outlined in Section 1.1. The remainder of this chapter is organized 

according to activities aimed at addressing each of those questions. 

7.1 Is an Optimized Biorefinery Supply Chain always Viable in a Given Region? 

This work goes a long way toward answering this question. Analysis of the supply chains 

designated as optimal by Faulkner (2012) revealed many important insights. With very 

similar assumptions, it was shown that the small capacity integrated biorefinery was not 

profitable in the Jackson Purchase Region of Kentucky in the long run.  Due to the 

granularity of the data used for input as well as the capabilities of the model, patterns in 

supply chain profitability could be discerned. In specific months following the harvest of 

corn stover the profit of the biorefinery increased dramatically due to large availability of 

nearby feedstock sources. As new material available each day declined and stocks held at 

the nearby feedstock supply locations were diminished through decay and usage for the 

production of final products, material had to be sourced from further locations. As the 

distance increased, costs associated with diesel fuel consumption and transportation 

related costs increased, resulting in increased losses. These results mirror the profitability 

shown by the model in Faulkner (2012). Projection of the discounted value of the 

investment several years into the future, however, revealed that despite these positive 

time periods, the overall profitability of the investment is extremely negative. This type 

of insight is only possible by considering the time-value of money over a long time 

horizon and incorporating variability in supply availability and product demand. 

 

Similar analysis was conducted for the medium capacity facility. From Faulkner (2012) 

the medium capacity biorefinery supply chain was not profitable. However, due to 
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assumptions related to the production and distribution of residual fuel oil, large profits for 

the biorefinery negated the increased losses from diesel fuel and transportation expenses. 

As per the suggestions in the methodology outlined by Faulkner (2012), it was assumed 

that, since residual fuel oil was a bunker fuel kept at the demand locations in bulk, 

demand for this product could be assumed to be infinite. In other words, it was assumed 

that all residual fuel oil had a buyer.  In this thesis, it has been shown that by eliminating 

this assumption, the trend observed by Faulkner (2012) can be recreated with the 

simulation model. 

7.2 How is the Profitability of a Biorefinery Supply Chain Impacted by Variability 

in Feedstock Supply Availability and Product Demand? 

Sensitivity analysis was conducted for the simulation. It was determined that the most 

sensitive parameter in the simulation was the price of diesel fuel. Since the costs are 

shown to primarily be driven by the diesel expenses for the transportation of liquid fuel 

products and solid biomass feedstock, this result was expected. The impact of the sale of 

individual products was also examined. It was discovered that the sale of residual fuel oil 

has the largest influence on the net present value of the biorefinery supply chain. Perhaps 

more interestingly, the relatively small impacts of natural gas and electricity sale were 

discussed. This fact points to additional opportunities to design in recycle loops in the 

supply chain system. Utilizing the electricity and natural gas to offset operating costs 

associated with hot and cold utilities could potentially be more beneficial than the profits 

gained from the sale of these products. Similarly, further analysis examining the use of 

part or all of the produced diesel fuel for transporting feedstocks and products would be 

beneficial. This exploration would reveal any potential benefits available by offsetting the 

expense of purchasing this product for use in transportation activities. There likely exists 

some optimal combination of diesel fuel self-consumption and sales; employing an 

optimal policy could potentially yield a more economically sustainable biorefinery supply 

chain. 
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In the current application, uncertainty with regards to biomass supply and product 

demand is taken into consideration through the use of probability distributions based on 

historical observations. In future, research should help to develop models with predictive 

capabilities as well. Incorporation of a robust Bayesian Belief Network based 

quantitative, probabilistic risk model, similar to that discussed in Amundson et al (2012, 

2013), could help to provide insight for such an addition to the model. In this way, events 

occurring in the discrete event simulation model could provide evidence to update the 

historically based data distributions resulting in a more realistic representation of the 

supply chain dynamics. Other methodologies, particularly systems dynamics, could be 

employed to help inform the evolution of the values of model parameters with time. 

Macroeconomic effects and emergent behavior in the system as the biofuel and bioenergy 

markets mature could be explored, among many other possibilities.  

7.3 In what ways could the modeled supply chain be improved for long term 

positive economic performance? 

After analysis uncovered the dependence of biorefinery profitability on the diesel fuel 

expenses required to transport both feedstock and products, the impact of including 

biomass densification activities in the supply chain was explored. In theory, by increasing 

the weight of each shipment of corn stover via densification of the biomass, there should 

be a reduction in diesel fuel consumption. Due to the fact that diesel consumption in the 

simulation model is dependent on weight of the shipment, some optimal level of 

densification must exist. In practice, the decreases in diesel fuel consumption do result in 

improved values of NPV. However, it was found that, for the modeled scenario, the gains 

realized did not eclipse the necessary costs associated with the preprocessing activities. In 

fact, the ultimate effect of adding preprocessing costs was a negative shift in the NPV 

that resulted in worse economic performance for the biorefinery. In certain situations, 

where the number of shipment is very high due to very high volume production, for 

instance, the fuel savings would be amplified and the expenses could be overcome driven 

by increased profits and decreased costs. However, these results were not observed for 

the presented case study in the Jackson Purchase Region.   
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Currently, a major limitation in the application of the multidisciplinary biorefinery supply 

chain decision support framework visualized in Figure 3-1 is the breadth of 

lignocellulosic biomass to fuel technologies considered. In this thesis, the simulation 

model assumed the application of an integrated biorefinery utilizing gasification, water-

gas shift, and Fischer-Tropsch synthesis. Future work should develop a library of 

chemical process models that the supply chain optimization and simulation models could 

draw from. In this way, multiple alternative technology platforms could be considered for 

a given region and the most viable could be selected based on the dynamic conditions in 

the simulation model. A good justification for this approach can be seen through the 

ethanol production via dilute-acid pretreatment, saccharificaation, and fermentation 

discussed in Faulkner (2012). Compared with the integrated biorefinery, this process, 

based on literature rather than results from process simulation, showed more consistently 

profitable performance in the given region. Integration of this model with process 

simulation and optimization and the supply chain simulation model discussed here could 

potentially yield more profitable results for a region specific biorefinery supply chain.  

7.4 How can policy decisions impact the viability of regional biorefinery supply 

chains? 

To demonstrate the simulation model’s capacity for testing the impact of policy measures 

on the profitability of a designed biomass supply chain, options for policy measures were 

first examined. Figure 1-2 outlines the various state level legislations in the United States 

related to woody biomass. Existing incentive programs in Kentucky, it was discovered, 

allow for a tax credit of one dollar per gallon of biodiesel/ethanol produced or blended in 

the state. It has been assumed that this tax credit corresponds to an equal increase in the 

biorefinery profit without impacting costs; therefore, it is assumed that these subsidies 

result in increases the net present value of the investment. For the purposes of 

demonstrating applicability, it has been assumed that regional governments would extend 

the biodiesel and ethanol subsidy to any liquid fuel product produced form lignocelluloisc 

biomass.  
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It was observed that, in general, the addition of subsidies in this way results in an increase 

of the net present value proportional to the total production of fuels. This means that the 

larger the volume of product created, the larger the subsidy. However, it was previously 

shown that large capacity biorefineries in the Jackson Purchase Region are not profitable 

due to limited locally available biomass. An optimization problem could be solved to 

potentially find an optimal combination of biomass transportation activity and subsidy 

rates. Additionally, future work should address means of subsidy application other than a 

direct subsidy per gallon of product. Considerations such transportation related subsidies 

or incentives based on capital investment could be made for a more complete analysis. 

Ultimately, the simulation provides a first step toward analyzing the sustainability of 

biomass supply chains. Further refinements mentioned throughout this section could help 

increase the usefulness and accuracy of the data obtained from the model. Additionally, 

simulation and optimization modeling in the multidisciplinary framework should 

incorporate decision variables that minimize negative environmental and societal 

impacts. For instance, incorporation of soil erosion and emissions calculations into the 

portions of the simulation where biomass supply is generated and transported, with 

feedback to limit them to a sustainable level, would help to minimize environmental 

impact. System dynamics models integrated with the discrete event simulation could 

quantify societal impacts of the biorefinery supply chain such as rural development, local 

employment, and the degree of reliance on fossil fuel in a region of interest. Additional 

heat and mass integration in the chemical process simulation and optimization models 

could help improve the operational costs as well as the environmental impact of the 

biorefinery. Taking all this into consideration, a powerful insight for biorefinery supply 

chain decision makers could potentially be gained through the use of this simulation 

model in conjunction with the multidisciplinary framework. 
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APPENDIX A: PROCESSED CORN HARVEST DATA 

Data synthesized from USDA, 2010b and USDA, 2010a via equations 5-1 through 5-3 
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  1
	
  

27-­‐Aug	
   4,143.10	
   4,326.22	
   3,649.52	
   5,394.93	
   8,177.57	
   6,016.64	
   1,391.04	
   1,881.60	
  

3-­‐Sep	
   6,214.66	
   6,489.34	
   5,474.28	
   8,092.39	
   12,266.35	
   9,024.96	
   2,086.56	
   2,822.40	
  

10-­‐Sep	
   11,393.54	
   11,897.12	
   10,036.18	
   14,836.05	
   22,488.31	
   16,545.76	
   3,825.36	
   5,174.40	
  

17-­‐Sep	
   12,429.31	
   12,978.67	
   10,948.56	
   16,184.78	
   24,532.70	
   18,049.92	
   4,173.12	
   5,644.80	
  

24-­‐Sep	
   17,608.19	
   18,386.45	
   15,510.46	
   22,928.44	
   34,754.66	
   25,570.72	
   5,911.92	
   7,996.80	
  

1-­‐Oct	
   14,500.86	
   15,141.78	
   12,773.32	
   18,882.25	
   28,621.49	
   21,058.24	
   4,868.64	
   6,585.60	
  

8-­‐Oct	
   18,643.97	
   19,468.01	
   16,422.84	
   24,277.18	
   36,799.06	
   27,074.88	
   6,259.68	
   8,467.20	
  

15-­‐Oct	
   5,178.88	
   5,407.78	
   4,561.90	
   6,743.66	
   10,221.96	
   7,520.80	
   1,738.80	
   2,352.00	
  

22-­‐Oct	
   3,107.33	
   3,244.67	
   2,737.14	
   4,046.20	
   6,133.18	
   4,512.48	
   1,043.28	
   1,411.20	
  

29-­‐Oct	
   4,143.10	
   4,326.22	
   3,649.52	
   5,394.93	
   8,177.57	
   6,016.64	
   1,391.04	
   1,881.60	
  

5-­‐Nov	
   3,107.33	
   3,244.67	
   2,737.14	
   4,046.20	
   6,133.18	
   4,512.48	
   1,043.28	
   1,411.20	
  

Ye
ar
	
  2
	
  

26-­‐Aug	
   5,008.78	
   7,375.34	
   4,234.72	
   6,660.64	
   11,252.08	
   8,008.00	
   1,679.58	
   2,880.36	
  

2-­‐Sep	
   7,012.29	
   10,325.48	
   5,928.61	
   9,324.90	
   15,752.91	
   11,211.20	
   2,351.41	
   4,032.50	
  

9-­‐Sep	
   8,014.05	
   11,800.54	
   6,775.55	
   10,657.02	
   18,003.33	
   12,812.80	
   2,687.33	
   4,608.58	
  

16-­‐Sep	
   10,017.56	
   14,750.68	
   8,469.44	
   13,321.28	
   22,504.16	
   16,016.00	
   3,359.16	
   5,760.72	
  

23-­‐Sep	
  
20,035.12	
   29,501.36	
   16,938.88	
   26,642.56	
   45,008.32	
   32,032.00	
   6,718.32	
  

11,521.4

4	
  

30-­‐Sep	
  
19,033.36	
   28,026.29	
   16,091.94	
   25,310.43	
   42,757.90	
   30,430.40	
   6,382.40	
  

10,945.3

7	
  

7-­‐Oct	
  
19,033.36	
   28,026.29	
   16,091.94	
   25,310.43	
   42,757.90	
   30,430.40	
   6,382.40	
  

10,945.3

7	
  

14-­‐Oct	
   2,003.51	
   2,950.14	
   1,693.89	
   2,664.26	
   4,500.83	
   3,203.20	
   671.83	
   1,152.14	
  

21-­‐Oct	
   2,003.51	
   2,950.14	
   1,693.89	
   2,664.26	
   4,500.83	
   3,203.20	
   671.83	
   1,152.14	
  

28-­‐Oct	
   4,007.02	
   5,900.27	
   3,387.78	
   5,328.51	
   9,001.66	
   6,406.40	
   1,343.66	
   2,304.29	
  

4-­‐Nov	
   2,003.51	
   2,950.14	
   1,693.89	
   2,664.26	
   4,500.83	
   3,203.20	
   671.83	
   1,152.14	
  

Ye
ar
	
  3
	
  

25-­‐Aug	
   5,733.50	
   9,749.88	
   6,264.72	
   7,476.84	
   16,808.40	
   10,712.52	
   2,407.86	
   2,364.77	
  

1-­‐Sep	
   7,007.62	
   11,916.52	
   7,656.88	
   9,138.36	
   20,543.60	
   13,093.08	
   2,942.94	
   2,890.27	
  

8-­‐Sep	
   9,555.84	
   16,249.80	
   10,441.20	
   12,461.40	
   28,014.00	
   17,854.20	
   4,013.10	
   3,941.28	
  

15-­‐Sep	
   7,644.67	
   12,999.84	
   8,352.96	
   9,969.12	
   22,411.20	
   14,283.36	
   3,210.48	
   3,153.02	
  

22-­‐Sep	
   6,370.56	
   10,833.20	
   6,960.80	
   8,307.60	
   18,676.00	
   11,902.80	
   2,675.40	
   2,627.52	
  

29-­‐Sep	
   3,822.34	
   6,499.92	
   4,176.48	
   4,984.56	
   11,205.60	
   7,141.68	
   1,605.24	
   1,576.51	
  

6-­‐Oct	
   9,555.84	
   16,249.80	
   10,441.20	
   12,461.40	
   28,014.00	
   17,854.20	
   4,013.10	
   3,941.28	
  

13-­‐Oct	
   5,733.50	
   9,749.88	
   6,264.72	
   7,476.84	
   16,808.40	
   10,712.52	
   2,407.86	
   2,364.77	
  

20-­‐Oct	
   1,911.17	
   3,249.96	
   2,088.24	
   2,492.28	
   5,602.80	
   3,570.84	
   802.62	
   788.26	
  

27-­‐Oct	
   2,548.22	
   4,333.28	
   2,784.32	
   3,323.04	
   7,470.40	
   4,761.12	
   1,070.16	
   1,051.01	
  

3-­‐Nov	
   1,911.17	
   3,249.96	
   2,088.24	
   2,492.28	
   5,602.80	
   3,570.84	
   802.62	
   788.26	
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Ye
ar
	
  4
	
  

29-­‐Aug	
   6,281.86	
   7,822.92	
   5,769.46	
   7,319.09	
   14,410.70	
   11,238.86	
   2,086.56	
   3,752.78	
  

5-­‐Sep	
   4,187.90	
   5,215.28	
   3,846.30	
   4,879.39	
   9,607.14	
   7,492.58	
   1,391.04	
   2,501.86	
  

12-­‐Sep	
  
18,845.57	
   23,468.76	
   17,308.37	
   21,957.26	
   43,232.11	
   33,716.59	
   6,259.68	
  

11,258.3

5	
  

19-­‐Sep	
   10,469.76	
   13,038.20	
   9,615.76	
   12,198.48	
   24,017.84	
   18,731.44	
   3,477.60	
   6,254.64	
  

26-­‐Sep	
  
19,892.54	
   24,772.58	
   18,269.94	
   23,177.11	
   45,633.90	
   35,589.74	
   6,607.44	
  

11,883.8

2	
  

3-­‐Oct	
   12,563.71	
   15,645.84	
   11,538.91	
   14,638.18	
   28,821.41	
   22,477.73	
   4,173.12	
   7,505.57	
  

10-­‐Oct	
   14,657.66	
   18,253.48	
   13,462.06	
   17,077.87	
   33,624.98	
   26,224.02	
   4,868.64	
   8,756.50	
  

17-­‐Oct	
   5,234.88	
   6,519.10	
   4,807.88	
   6,099.24	
   12,008.92	
   9,365.72	
   1,738.80	
   3,127.32	
  

24-­‐Oct	
   4,187.90	
   5,215.28	
   3,846.30	
   4,879.39	
   9,607.14	
   7,492.58	
   1,391.04	
   2,501.86	
  

31-­‐Oct	
   3,140.93	
   3,911.46	
   2,884.73	
   3,659.54	
   7,205.35	
   5,619.43	
   1,043.28	
   1,876.39	
  

7-­‐Nov	
   2,093.95	
   2,607.64	
   1,923.15	
   2,439.70	
   4,803.57	
   3,746.29	
   695.52	
   1,250.93	
  

Ye
ar
	
  5
	
  

4-­‐Sep	
   9,756.18	
   11,999.23	
   8,135.32	
   9,713.09	
   22,289.40	
   15,262.13	
   3,131.35	
   4,938.95	
  

11-­‐Sep	
   6,504.12	
   7,999.49	
   5,423.54	
   6,475.39	
   14,859.60	
   10,174.75	
   2,087.57	
   3,292.63	
  

18-­‐Sep	
   17,344.32	
   21,331.97	
   14,462.78	
   17,267.71	
   39,625.60	
   27,132.67	
   5,566.85	
   8,780.35	
  

25-­‐Sep	
   18,428.34	
   22,665.22	
   15,366.71	
   18,346.94	
   42,102.20	
   28,828.46	
   5,914.78	
   9,329.12	
  

2-­‐Oct	
   19,512.36	
   23,998.46	
   16,270.63	
   19,426.18	
   44,578.80	
   30,524.26	
   6,262.70	
   9,877.90	
  

9-­‐Oct	
   15,176.28	
   18,665.47	
   12,654.94	
   15,109.25	
   34,672.40	
   23,741.09	
   4,870.99	
   7,682.81	
  

16-­‐Oct	
   8,672.16	
   10,665.98	
   7,231.39	
   8,633.86	
   19,812.80	
   13,566.34	
   2,783.42	
   4,390.18	
  

23-­‐Oct	
   5,420.10	
   6,666.24	
   4,519.62	
   5,396.16	
   12,383.00	
   8,478.96	
   1,739.64	
   2,743.86	
  

30-­‐Oct	
   6,504.12	
   7,999.49	
   5,423.54	
   6,475.39	
   14,859.60	
   10,174.75	
   2,087.57	
   3,292.63	
  

6-­‐Nov	
   0.00	
   0.00	
   0.00	
   0.00	
   0.00	
   0.00	
   0.00	
   0.00	
  

13-­‐Nov	
   1,084.02	
   1,333.25	
   903.92	
   1,079.23	
   2,476.60	
   1,695.79	
   347.93	
   548.77	
  

Ye
ar
	
  6
	
  

3-­‐Sep	
   12,265.68	
   15,124.70	
   11,176.70	
   10,405.92	
   25,346.16	
   19,509.50	
   2,787.46	
   5,685.12	
  

10-­‐Sep	
   6,132.84	
   7,562.35	
   5,588.35	
   5,202.96	
   12,673.08	
   9,754.75	
   1,393.73	
   2,842.56	
  

17-­‐Sep	
   11,243.54	
   13,864.31	
   10,245.31	
   9,538.76	
   23,233.98	
   17,883.71	
   2,555.17	
   5,211.36	
  

24-­‐Sep	
   10,221.40	
   12,603.92	
   9,313.92	
   8,671.60	
   21,121.80	
   16,257.92	
   2,322.88	
   4,737.60	
  

1-­‐Oct	
   14,309.96	
   17,645.49	
   13,039.49	
   12,140.24	
   29,570.52	
   22,761.09	
   3,252.03	
   6,632.64	
  

8-­‐Oct	
   15,332.10	
   18,905.88	
   13,970.88	
   13,007.40	
   31,682.70	
   24,386.88	
   3,484.32	
   7,106.40	
  

15-­‐Oct	
   14,309.96	
   17,645.49	
   13,039.49	
   12,140.24	
   29,570.52	
   22,761.09	
   3,252.03	
   6,632.64	
  

22-­‐Oct	
   3,066.42	
   3,781.18	
   2,794.18	
   2,601.48	
   6,336.54	
   4,877.38	
   696.86	
   1,421.28	
  

29-­‐Oct	
   6,132.84	
   7,562.35	
   5,588.35	
   5,202.96	
   12,673.08	
   9,754.75	
   1,393.73	
   2,842.56	
  

5-­‐Nov	
   2,044.28	
   2,520.78	
   1,862.78	
   1,734.32	
   4,224.36	
   3,251.58	
   464.58	
   947.52	
  

12-­‐Nov	
   6,132.84	
   7,562.35	
   5,588.35	
   5,202.96	
   12,673.08	
   9,754.75	
   1,393.73	
   2,842.56	
  

Ye
ar
	
  7
	
  

2-­‐Sep	
   9,321.98	
   9,734.00	
   8,211.42	
   12,138.59	
   18,399.53	
   13,537.44	
   3,129.84	
   4,233.60	
  

9-­‐Sep	
   10,357.76	
   10,815.56	
   9,123.80	
   13,487.32	
   20,443.92	
   15,041.60	
   3,477.60	
   4,704.00	
  

16-­‐Sep	
   13,465.09	
   14,060.23	
   11,860.94	
   17,533.52	
   26,577.10	
   19,554.08	
   4,520.88	
   6,115.20	
  

23-­‐Sep	
   16,572.42	
   17,304.90	
   14,598.08	
   21,579.71	
   32,710.27	
   24,066.56	
   5,564.16	
   7,526.40	
  

30-­‐Sep	
   14,500.86	
   15,141.78	
   12,773.32	
   18,882.25	
   28,621.49	
   21,058.24	
   4,868.64	
   6,585.60	
  

7-­‐Oct	
   17,608.19	
   18,386.45	
   15,510.46	
   22,928.44	
   34,754.66	
   25,570.72	
   5,911.92	
   7,996.80	
  

14-­‐Oct	
   8,286.21	
   8,652.45	
   7,299.04	
   10,789.86	
   16,355.14	
   12,033.28	
   2,782.08	
   3,763.20	
  

21-­‐Oct	
   3,107.33	
   3,244.67	
   2,737.14	
   4,046.20	
   6,133.18	
   4,512.48	
   1,043.28	
   1,411.20	
  

28-­‐Oct	
   4,143.10	
   4,326.22	
   3,649.52	
   5,394.93	
   8,177.57	
   6,016.64	
   1,391.04	
   1,881.60	
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4-­‐Nov	
   4,143.10	
   4,326.22	
   3,649.52	
   5,394.93	
   8,177.57	
   6,016.64	
   1,391.04	
   1,881.60	
  

Ye
ar
	
  8
	
  

25-­‐Aug	
   5,008.78	
   7,375.34	
   4,234.72	
   6,660.64	
   11,252.08	
   8,008.00	
   1,679.58	
   2,880.36	
  

1-­‐Sep	
   5,008.78	
   7,375.34	
   4,234.72	
   6,660.64	
   11,252.08	
   8,008.00	
   1,679.58	
   2,880.36	
  

8-­‐Sep	
   9,015.80	
   13,275.61	
   7,622.50	
   11,989.15	
   20,253.74	
   14,414.40	
   3,023.24	
   5,184.65	
  

15-­‐Sep	
   10,017.56	
   14,750.68	
   8,469.44	
   13,321.28	
   22,504.16	
   16,016.00	
   3,359.16	
   5,760.72	
  

22-­‐Sep	
  
18,031.61	
   26,551.22	
   15,244.99	
   23,978.30	
   40,507.49	
   28,828.80	
   6,046.49	
  

10,369.3

0	
  

29-­‐Sep	
  
18,031.61	
   26,551.22	
   15,244.99	
   23,978.30	
   40,507.49	
   28,828.80	
   6,046.49	
  

10,369.3

0	
  

6-­‐Oct	
  
18,031.61	
   26,551.22	
   15,244.99	
   23,978.30	
   40,507.49	
   28,828.80	
   6,046.49	
  

10,369.3

0	
  

13-­‐Oct	
   7,012.29	
   10,325.48	
   5,928.61	
   9,324.90	
   15,752.91	
   11,211.20	
   2,351.41	
   4,032.50	
  

20-­‐Oct	
   2,003.51	
   2,950.14	
   1,693.89	
   2,664.26	
   4,500.83	
   3,203.20	
   671.83	
   1,152.14	
  

27-­‐Oct	
   3,005.27	
   4,425.20	
   2,540.83	
   3,996.38	
   6,751.25	
   4,804.80	
   1,007.75	
   1,728.22	
  

3-­‐Nov	
   3,005.27	
   4,425.20	
   2,540.83	
   3,996.38	
   6,751.25	
   4,804.80	
   1,007.75	
   1,728.22	
  

Ye
ar
	
  9
	
  

31-­‐Aug	
   11,467.01	
   19,499.76	
   12,529.44	
   14,953.68	
   33,616.80	
   21,425.04	
   4,815.72	
   4,729.54	
  

7-­‐Sep	
   9,555.84	
   16,249.80	
   10,441.20	
   12,461.40	
   28,014.00	
   17,854.20	
   4,013.10	
   3,941.28	
  

14-­‐Sep	
   7,644.67	
   12,999.84	
   8,352.96	
   9,969.12	
   22,411.20	
   14,283.36	
   3,210.48	
   3,153.02	
  

21-­‐Sep	
   6,370.56	
   10,833.20	
   6,960.80	
   8,307.60	
   18,676.00	
   11,902.80	
   2,675.40	
   2,627.52	
  

28-­‐Sep	
   3,822.34	
   6,499.92	
   4,176.48	
   4,984.56	
   11,205.60	
   7,141.68	
   1,605.24	
   1,576.51	
  

5-­‐Oct	
   9,555.84	
   16,249.80	
   10,441.20	
   12,461.40	
   28,014.00	
   17,854.20	
   4,013.10	
   3,941.28	
  

12-­‐Oct	
   6,370.56	
   10,833.20	
   6,960.80	
   8,307.60	
   18,676.00	
   11,902.80	
   2,675.40	
   2,627.52	
  

19-­‐Oct	
   1,911.17	
   3,249.96	
   2,088.24	
   2,492.28	
   5,602.80	
   3,570.84	
   802.62	
   788.26	
  

26-­‐Oct	
   1,911.17	
   3,249.96	
   2,088.24	
   2,492.28	
   5,602.80	
   3,570.84	
   802.62	
   788.26	
  

2-­‐Nov	
   3,185.28	
   5,416.60	
   3,480.40	
   4,153.80	
   9,338.00	
   5,951.40	
   1,337.70	
   1,313.76	
  

9-­‐Nov	
   1,274.11	
   2,166.64	
   1,392.16	
   1,661.52	
   3,735.20	
   2,380.56	
   535.08	
   525.50	
  

Ye
ar
	
  1
0	
  

4-­‐Sep	
   9,422.78	
   11,734.38	
   8,654.18	
   10,978.63	
   21,616.06	
   16,858.30	
   3,129.84	
   5,629.18	
  

11-­‐Sep	
  
17,798.59	
   22,164.94	
   16,346.79	
   20,737.42	
   40,830.33	
   31,843.45	
   5,911.92	
  

10,632.8

9	
  

18-­‐Sep	
   10,469.76	
   13,038.20	
   9,615.76	
   12,198.48	
   24,017.84	
   18,731.44	
   3,477.60	
   6,254.64	
  

25-­‐Sep	
  
17,798.59	
   22,164.94	
   16,346.79	
   20,737.42	
   40,830.33	
   31,843.45	
   5,911.92	
  

10,632.8

9	
  

2-­‐Oct	
   14,657.66	
   18,253.48	
   13,462.06	
   17,077.87	
   33,624.98	
   26,224.02	
   4,868.64	
   8,756.50	
  

9-­‐Oct	
   14,657.66	
   18,253.48	
   13,462.06	
   17,077.87	
   33,624.98	
   26,224.02	
   4,868.64	
   8,756.50	
  

16-­‐Oct	
   6,281.86	
   7,822.92	
   5,769.46	
   7,319.09	
   14,410.70	
   11,238.86	
   2,086.56	
   3,752.78	
  

23-­‐Oct	
   4,187.90	
   5,215.28	
   3,846.30	
   4,879.39	
   9,607.14	
   7,492.58	
   1,391.04	
   2,501.86	
  

30-­‐Oct	
   4,187.90	
   5,215.28	
   3,846.30	
   4,879.39	
   9,607.14	
   7,492.58	
   1,391.04	
   2,501.86	
  

6-­‐Nov	
   2,093.95	
   2,607.64	
   1,923.15	
   2,439.70	
   4,803.57	
   3,746.29	
   695.52	
   1,250.93	
  

13-­‐Nov	
   2,093.95	
   2,607.64	
   1,923.15	
   2,439.70	
   4,803.57	
   3,746.29	
   695.52	
   1,250.93	
  

Ye
ar
	
  1
1	
  

3-­‐Sep	
   8,672.16	
   10,665.98	
   7,231.39	
   8,633.86	
   19,812.80	
   13,566.34	
   2,783.42	
   4,390.18	
  

10-­‐Sep	
   6,504.12	
   7,999.49	
   5,423.54	
   6,475.39	
   14,859.60	
   10,174.75	
   2,087.57	
   3,292.63	
  

17-­‐Sep	
   16,260.30	
   19,998.72	
   13,558.86	
   16,188.48	
   37,149.00	
   25,436.88	
   5,218.92	
   8,231.58	
  

24-­‐Sep	
  
29,268.54	
   35,997.70	
   24,405.95	
   29,139.26	
   66,868.20	
   45,786.38	
   9,394.06	
  

14,816.8

4	
  

1-­‐Oct	
   7,588.14	
   9,332.74	
   6,327.47	
   7,554.62	
   17,336.20	
   11,870.54	
   2,435.50	
   3,841.40	
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8-­‐Oct	
   16,260.30	
   19,998.72	
   13,558.86	
   16,188.48	
   37,149.00	
   25,436.88	
   5,218.92	
   8,231.58	
  

15-­‐Oct	
   10,840.20	
   13,332.48	
   9,039.24	
   10,792.32	
   24,766.00	
   16,957.92	
   3,479.28	
   5,487.72	
  

22-­‐Oct	
   5,420.10	
   6,666.24	
   4,519.62	
   5,396.16	
   12,383.00	
   8,478.96	
   1,739.64	
   2,743.86	
  

29-­‐Oct	
   5,420.10	
   6,666.24	
   4,519.62	
   5,396.16	
   12,383.00	
   8,478.96	
   1,739.64	
   2,743.86	
  

5-­‐Nov	
   1,084.02	
   1,333.25	
   903.92	
   1,079.23	
   2,476.60	
   1,695.79	
   347.93	
   548.77	
  

12-­‐Nov	
   1,084.02	
   1,333.25	
   903.92	
   1,079.23	
   2,476.60	
   1,695.79	
   347.93	
   548.77	
  

Ye
ar
	
  1
2	
  

1-­‐Sep	
   9,321.98	
   9,734.00	
   8,211.42	
   12,138.59	
   18,399.53	
   13,537.44	
   3,129.84	
   4,233.60	
  

8-­‐Sep	
   9,321.98	
   9,734.00	
   8,211.42	
   12,138.59	
   18,399.53	
   13,537.44	
   3,129.84	
   4,233.60	
  

15-­‐Sep	
   12,429.31	
   12,978.67	
   10,948.56	
   16,184.78	
   24,532.70	
   18,049.92	
   4,173.12	
   5,644.80	
  

22-­‐Sep	
   16,572.42	
   17,304.90	
   14,598.08	
   21,579.71	
   32,710.27	
   24,066.56	
   5,564.16	
   7,526.40	
  

29-­‐Sep	
   14,500.86	
   15,141.78	
   12,773.32	
   18,882.25	
   28,621.49	
   21,058.24	
   4,868.64	
   6,585.60	
  

6-­‐Oct	
   17,608.19	
   18,386.45	
   15,510.46	
   22,928.44	
   34,754.66	
   25,570.72	
   5,911.92	
   7,996.80	
  

13-­‐Oct	
   9,321.98	
   9,734.00	
   8,211.42	
   12,138.59	
   18,399.53	
   13,537.44	
   3,129.84	
   4,233.60	
  

20-­‐Oct	
   4,143.10	
   4,326.22	
   3,649.52	
   5,394.93	
   8,177.57	
   6,016.64	
   1,391.04	
   1,881.60	
  

27-­‐Oct	
   4,143.10	
   4,326.22	
   3,649.52	
   5,394.93	
   8,177.57	
   6,016.64	
   1,391.04	
   1,881.60	
  

3-­‐Nov	
   3,107.33	
   3,244.67	
   2,737.14	
   4,046.20	
   6,133.18	
   4,512.48	
   1,043.28	
   1,411.20	
  

Ye
ar
	
  1
3	
  

31-­‐Aug	
   9,015.80	
   13,275.61	
   7,622.50	
   11,989.15	
   20,253.74	
   14,414.40	
   3,023.24	
   5,184.65	
  

7-­‐Sep	
   9,015.80	
   13,275.61	
   7,622.50	
   11,989.15	
   20,253.74	
   14,414.40	
   3,023.24	
   5,184.65	
  

14-­‐Sep	
   9,015.80	
   13,275.61	
   7,622.50	
   11,989.15	
   20,253.74	
   14,414.40	
   3,023.24	
   5,184.65	
  

21-­‐Sep	
   17,029.85	
   25,076.16	
   14,398.05	
   22,646.18	
   38,257.07	
   27,227.20	
   5,710.57	
   9,793.22	
  

28-­‐Sep	
  
18,031.61	
   26,551.22	
   15,244.99	
   23,978.30	
   40,507.49	
   28,828.80	
   6,046.49	
  

10,369.3

0	
  

5-­‐Oct	
  
20,035.12	
   29,501.36	
   16,938.88	
   26,642.56	
   45,008.32	
   32,032.00	
   6,718.32	
  

11,521.4

4	
  

12-­‐Oct	
   6,010.54	
   8,850.41	
   5,081.66	
   7,992.77	
   13,502.50	
   9,609.60	
   2,015.50	
   3,456.43	
  

19-­‐Oct	
   2,003.51	
   2,950.14	
   1,693.89	
   2,664.26	
   4,500.83	
   3,203.20	
   671.83	
   1,152.14	
  

26-­‐Oct	
   4,007.02	
   5,900.27	
   3,387.78	
   5,328.51	
   9,001.66	
   6,406.40	
   1,343.66	
   2,304.29	
  

2-­‐Nov	
   3,005.27	
   4,425.20	
   2,540.83	
   3,996.38	
   6,751.25	
   4,804.80	
   1,007.75	
   1,728.22	
  

9-­‐Nov	
   1,001.76	
   1,475.07	
   846.94	
   1,332.13	
   2,250.42	
   1,601.60	
   335.92	
   576.07	
  

Ye
ar
	
  1
4	
  

29-­‐Aug	
   10,192.90	
   17,333.12	
   11,137.28	
   13,292.16	
   29,881.60	
   19,044.48	
   4,280.64	
   4,204.03	
  

5-­‐Sep	
   8,281.73	
   14,083.16	
   9,049.04	
   10,799.88	
   24,278.80	
   15,473.64	
   3,478.02	
   3,415.78	
  

12-­‐Sep	
   8,281.73	
   14,083.16	
   9,049.04	
   10,799.88	
   24,278.80	
   15,473.64	
   3,478.02	
   3,415.78	
  

19-­‐Sep	
   7,007.62	
   11,916.52	
   7,656.88	
   9,138.36	
   20,543.60	
   13,093.08	
   2,942.94	
   2,890.27	
  

26-­‐Sep	
   4,459.39	
   7,583.24	
   4,872.56	
   5,815.32	
   13,073.20	
   8,331.96	
   1,872.78	
   1,839.26	
  

3-­‐Oct	
   7,644.67	
   12,999.84	
   8,352.96	
   9,969.12	
   22,411.20	
   14,283.36	
   3,210.48	
   3,153.02	
  

10-­‐Oct	
   7,007.62	
   11,916.52	
   7,656.88	
   9,138.36	
   20,543.60	
   13,093.08	
   2,942.94	
   2,890.27	
  

17-­‐Oct	
   3,185.28	
   5,416.60	
   3,480.40	
   4,153.80	
   9,338.00	
   5,951.40	
   1,337.70	
   1,313.76	
  

24-­‐Oct	
   1,911.17	
   3,249.96	
   2,088.24	
   2,492.28	
   5,602.80	
   3,570.84	
   802.62	
   788.26	
  

31-­‐Oct	
   2,548.22	
   4,333.28	
   2,784.32	
   3,323.04	
   7,470.40	
   4,761.12	
   1,070.16	
   1,051.01	
  

7-­‐Nov	
   1,911.17	
   3,249.96	
   2,088.24	
   2,492.28	
   5,602.80	
   3,570.84	
   802.62	
   788.26	
  

Ye
ar
	
  1
5	
  

3-­‐Sep	
   9,422.78	
   11,734.38	
   8,654.18	
   10,978.63	
   21,616.06	
   16,858.30	
   3,129.84	
   5,629.18	
  

10-­‐Sep	
   13,610.69	
   16,949.66	
   12,500.49	
   15,858.02	
   31,223.19	
   24,350.87	
   4,520.88	
   8,131.03	
  

17-­‐Sep	
   13,610.69	
   16,949.66	
   12,500.49	
   15,858.02	
   31,223.19	
   24,350.87	
   4,520.88	
   8,131.03	
  

24-­‐Sep	
  
16,751.62	
   20,861.12	
   15,385.22	
   19,517.57	
   38,428.54	
   29,970.30	
   5,564.16	
  

10,007.4

2	
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1-­‐Oct	
   15,704.64	
   19,557.30	
   14,423.64	
   18,297.72	
   36,026.76	
   28,097.16	
   5,216.40	
   9,381.96	
  

8-­‐Oct	
   13,610.69	
   16,949.66	
   12,500.49	
   15,858.02	
   31,223.19	
   24,350.87	
   4,520.88	
   8,131.03	
  

15-­‐Oct	
   9,422.78	
   11,734.38	
   8,654.18	
   10,978.63	
   21,616.06	
   16,858.30	
   3,129.84	
   5,629.18	
  

22-­‐Oct	
   4,187.90	
   5,215.28	
   3,846.30	
   4,879.39	
   9,607.14	
   7,492.58	
   1,391.04	
   2,501.86	
  

29-­‐Oct	
   2,093.95	
   2,607.64	
   1,923.15	
   2,439.70	
   4,803.57	
   3,746.29	
   695.52	
   1,250.93	
  

5-­‐Nov	
   2,093.95	
   2,607.64	
   1,923.15	
   2,439.70	
   4,803.57	
   3,746.29	
   695.52	
   1,250.93	
  

12-­‐Nov	
   2,093.95	
   2,607.64	
   1,923.15	
   2,439.70	
   4,803.57	
   3,746.29	
   695.52	
   1,250.93	
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APPENDIX B: DISTANCE ARRAY DATA  

Corn Stover 

No. 

Biorefinery 

 

Supply 

Ballard Calloway Carlisle Fulton Graves Hickman Marshall McCracken 

1 

Ballard 

21 69.8 29.6 61.9 42.8 44.1 48.8 22.5 

2 8.7 72.3 17.2 49.6 39.7 32.1 53.6 28.1 

3 9.1 52.2 14.6 46.9 28.3 29.4 45.4 23.5 

4 15.3 62.6 23.9 56.2 37 38.8 44 18.4 

5 

Calloway 

60.3 5.3 55.8 56.4 29.7 50.5 23.9 52.2 

6 50.1 9.7 45.6 55.1 19.5 40.7 15.9 34.6 

7 55.4 7.9 50.9 50.7 24.8 44.7 26.5 54.8 

8 

Carlisle 

11 44.1 6.5 38.8 20.2 21.3 37.5 29.7 

9 14.7 46.7 6.2 35.8 22.8 18.3 40.1 34.1 

10 13.2 53.9 4.7 27.7 25.1 10.2 48.6 38.9 

11 

Fulton 

42.9 51.9 34.3 3.4 39.4 19.4 58.5 68.5 

12 33 42.3 24.4 8.9 32.1 9.5 51.2 61.2 

13 37.6 48 29.1 5.7 37.8 14.2 56.9 66.9 

14 33.9 35.5 25.4 16.5 24.6 10.5 43.7 53.7 

15 

Graves 

43.5 17.1 39 37.6 12.9 31.6 30.3 40.3 

16 42.3 26.4 33.7 24.8 20.6 18.9 39.6 49.7 

17 38.1 19.2 33.6 39.6 7.5 27.9 24.9 34.9 

18 23 36.6 18.4 52.4 12.7 28.6 29.3 20 

19 29.1 32 21.2 36.6 10.6 17.5 29.6 39.6 

20 30.7 30.3 26.2 49.4 7.7 32 20.8 18.8 

21 37.8 18.8 33.2 49.2 7.1 29.3 16.4 33.3 

22 

Hickman 

38.5 31.7 30 21.6 19.8 15.1 38.9 48.9 

23 27.8 47.4 19.3 13.1 27.7 4.4 46.8 53.5 

24 24.7 44.6 16.1 23.7 20.7 6.2 41.6 41.5 

25 26.1 51.8 15.4 21.5 33.1 9.8 52.1 51.9 

26 18.6 48.6 10.1 22.3 28.2 4.8 47.2 44.3 

27 30.9 37.8 22.4 25.4 16 7.5 35 45 

28 
Marshall 

50.3 15.1 45.7 61.7 20.5 44.3 4.9 32 

29 42 29.2 52.3 68.3 27.8 50.9 10.6 15.5 

30 
McCracken 

24.7 56.3 25.2 57.6 31.6 40.1 37.6 11.3 

31 28.5 40.9 24 56.6 17 39.2 21.9 9.8 
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Forest Residue 

No. 

Biorefinery 

 

Supply 

Ballard Calloway Carlisle Fulton Graves Hickman Marshall McCracken 

32 

Ballard 

16.1 73.5 24.6 56.9 47.8 39.5 54.8 29.3 

33 12.2 74 20.7 53.1 43.1 35.6 55.3 29.8 

34 8.5 72.6 17.1 49.4 39.5 31.9 53.9 28.4 

35 3.9 51.2 13.6 45.9 27.3 28.4 44.6 32.2 

36 
Calloway 

67.9 15 63.4 66.2 33.5 54.6 19 43.1 

37 62.5 10 57.9 61.2 31.8 55.2 26 54.3 

38 

Carlisle 

9.6 45.5 7.9 40.2 21.6 22.7 38.9 29.2 

39 16.2 55.4 7.6 29.2 26.6 11.7 45.7 41.9 

40 7.9 55.9 6.1 38.5 32 21 49.3 39.6 

41 14.8 44.2 8.8 38.4 20.3 20.9 37.6 31.5 

42 11.9 53.9 3.4 32.8 30 18.3 47.3 37.6 

43 Fulton 34.1 48.1 25.6 6.8 37.9 10.7 57 59.8 

44 

Graves 

39.5 31.1 34.9 51 10.5 33.5 16 18.8 

45 37.8 31.4 29.3 32.4 13.4 14.4 32.5 42.5 

46 49.2 19.5 40.7 31.8 13.2 25.8 33.7 43.8 

47 Hickman 23.6 48.6 15 21.1 28.2 5.3 47.3 49.3 

48 
Marshall 

57.5 27.9 52.9 68.9 28.4 51.5 9.8 23.3 

49 53.9 14.7 49.3 66.1 23.2 48.7 11.2 38 

50 McCracken 35.7 32.3 31.1 60.1 19.6 42.7 15.1 9.9 
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Chicken Litter 

No. 

Biorefinery 

 

Supply 

Ballard Calloway Carlisle Fulton Graves Hickman Marshall McCracken 

51 Ballard 3.2 58.1 11.8 44.1 34.2 26.6 51.5 30.5 

52 
Calloway 

46 10.2 41.4 45.7 15.3 35.5 24 42.8 

53 61.6 10.1 57 61.2 26.8 55.6 15.1 43.3 

54 Carlisle 13.4 47 4.8 34.4 23.1 17 40.4 35.5 

55 Fulton 47.4 55.9 38.8 5.8 43.4 23.9 62.4 72.5 

56 

Graves 

21.1 35 16.6 49.5 11.1 24.9 28.5 23.7 

57 25.6 33 21 48.8 9.1 31.4 25.7 21.8 

58 39.8 26.6 35.2 52 9.1 34.6 15.5 24.1 

59 29.6 29.7 23.5 37 6.1 19.8 25.2 35.2 

60 36.6 34.2 28 26.6 14.5 13.2 33.6 43.6 

61 42.2 27 36.8 28.4 13.3 21.9 32.3 42.3 

62 46.2 25.2 37.7 28.8 18.5 22.8 39.1 49 

63 51.8 18 43.3 34.3 15.9 28.4 33.3 43.3 

64 48.6 16.3 48.2 39.3 18 33.3 35.4 45.4 

65 

Hickman 

26.2 41 17.6 18.7 25.8 2.7 44.9 51.9 

66 28.2 40.6 19.6 22.2 18.6 4.7 37.6 47.7 

67 31.1 49.8 22.6 12.4 31 7.7 50.1 56.8 

68 28.3 42.2 19.8 23.9 20.2 6.4 39.2 41.1 

69 22.1 47.1 13.5 26.2 23.2 8.7 44.1 47.8 

70 21.9 47.3 13.4 21 26.9 3.6 46 47.6 

71 Marshall 54.4 19.4 49.8 65.8 25.3 48.4 5.4 32.7 
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