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Abstract of Thesis

VARIANCE OF THE AMYLOID BETA PEPTIDE AS A METRIC FOR THE
DIAGNOSIS OF ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder associated with
aging. AD is by far the best understood and most studied neurodegenerative disease.
Substantial advances have been made over the last decade, however it is debatable how much
closer we are to a clinically useful therapy. A long standing goal in the AD field has been to
improve the accuracy of early detection, with the assumption that the ability to intervene earlier
in the disease process will lead to a better clinical outcome. Major facets of this effort have been
the continued development and improvement of AD biomarkers, with a strong focus on
developing imaging modalities. AD is accompanied by two pathological hallmarks in the brain:
extracellular neuritic plagues composed of the beta-amyloid peptide (AB) and intracellular
neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein. Evidence of AP as
the driving force behind the progression of AD (the amyloid cascade hypothesis) was first
published by Hardy & Higgins in 1992, and this peptide has been the focus of therapeutic and
diagnostic testing for decades. Significant technological advances in recent years now allow
imaging of amyloid pathology in vivo. These methods evaluate AP burden in a living person, and
could potentially serve as both a biomarker, and as a diagnostic tool to detect disease.
Pittsburgh Compound B (PiB) is currently the best studied of these imaging agents, however, our
current knowledge of the quantitative relationship between PiB binding and amyloid pathology
in the brain is limited. A better understanding of how these variables relate to one another is
essential for the continued development of reliable diagnostic biomarkers for AD. We analyzed
increasingly insoluble pools of AR to quantify their relative contributions to the overall AB
burden, and to determine if any of these measures could be used to predict disease status. We
found that the amount of PiB binding in a cortical region of the brain could distinguish cases of
mild cognitive impairment (MCI) when corrected to the amount of PiB binding in the
cerebellum. As the AB peptide ages, the amino acid aspartate may spontaneously convert to an
isoaspartate residue through a succinimide intermediary. The presence of iso-Asp AB has been
used to indicate the presence of aged plaques in AD and Down syndrome cases. We sought to
investigate the potential relationship between levels of ‘aged’ AB in the plasma as indicated by
iso-Asp AB and disease state, as a potential biomarker for the presence of AD pathology. We
found that AD cases had lower levels of all forms of AR in plasma when standardized to the
group average, and that plasma levels of AR and iso-Asp AB were reversed between disease
groups. A follow up study is required, however, these initial data are a promising step towards
utilizing aged iso-Asp AB plasma levels as a potential biomarker to indicate disease state.
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CHAPTER 1: INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder associated
with aging. Worldwide, the current number of individuals with AD is about 24 million, but could
reach more than 80 million by the year 2040 (Ferri et al., 2005). AD is by far the best understood
and most studied neurodegenerative disease. Although substantial advances have been made
over the last decade, it is debatable how much closer we are to a clinically useful therapy. A long
standing goal in the AD field has been to improve the accuracy of early detection, with the
assumption that the ability to intervene earlier in the disease process will lead to a better clinical
outcome. Major facets of this effort have been the continued development and improvement of
AD biomarkers (Petersen et al., 2010; Trojanowski et al., 2010), with a strong focus on

developing imaging modalities (Klunk, 2011).

First described by Dr. Alois Alzheimer over one hundred years ago, AD is characterized
by progressive cognitive and behavioural decline and dementia (Cipriani, Dolciotti, Picchi, &
Bonuccelli, 2011). AD is accompanied by two pathological hallmarks in the brain: extracellular
neuritic plaqgues composed of the beta-amyloid peptide (AB) and intracellular neurofibrillary
tangles (NFTs) composed of hyperphosphorylated tau protein. Evidence of AB as the driving
force behind the progression of AD (the amyloid cascade hypothesis) was first published by
Hardy & Higgins (Hardy & Higgins, 1992), and this peptide has been the focus of therapeutic and

diagnostic testing for decades.

AB is a product of proteolytic processing of the amyloid precursor protein (APP). APP is a
single transmembrane domain protein which is expressed ubiquitously throughout the body.
There are multiple pathways for the processing of APP — not all of which produce AB.

Approximately ~90% of APP is processed through the non-amyloidogenic pathway, in which the
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initial cleavage event is performed by a-secretase within the AB region, in the portion of APP
located outside the membrane. This releases a secreted APP fragment (sAPP-a), and leaves
behind a C-terminal fragment within the membrane (CTF-a). The second cleavage event is
performed by y-secretase within the membrane-bound region, which releases a p3 fragment
and the APP intracellular domain (AICD) which may play a role in transcriptional regulation
(O'Brien & Wong, 2011). The remaining ~10% of APP processing occurs through the
amyloidogenic pathway. This processing event is similar to the non-amyloidogenic pathway
except that the initial cleavage event is performed by B-secretase. Cleavage by B-secretase (the
active component of which is BACE1) occurs outside the membrane and releases a secreted APP
fragment (sAPP-B), leaving behind the membrane-bound fragment (CTF-B). The second cleavage
event is also performed by y-secretase, this time releasing the AP peptide and the AICD.
Depending on the site at which y-secretase performs the cleavage, there is variation in the
length of AB peptide produced. The majority (~¥90%) of y-secretase cleavage produces the more
soluble, 40-amino acid long AB peptide (AB40). Approximately 5-10% of y-secretase cleavage
produces an AR peptide which is 42 amino acids in length (AB42). The remaining cleavage events
produce AB of varying sizes, the next most common being the 38-amino acid long AB38 (~1% of
AB produced). The AB42 peptide is more aggregate-prone, and is the major AB peptide species

present in the neuritic plaques found in Alzheimer’s disease brain (Ahmed et al., 2010).

Significant technological advances in recent years now allow imaging of amyloid
pathology in vivo. These methods evaluate AB burden in a living person, and could potentially
serve as both a biomarker, and as a diagnostic tool to detect incipient disease (Jagust et al.,
2009). Pittsburgh Compound B (PiB, 2-[4’ -(Methylamino)phenyl]-6- hydroxybenzothiazole), a

derivative of the amyloid dye Thioflavin T, (Wang et al., 2004) is currently the best studied of



these imaging agents. After labeling with 'C for PET imaging, increased PiB retention can be
quantified in brain regions known to accumulate AB deposits in AD patients (Klunk et al., 2004).
The utility of PiB and other probes for determining how mild cognitive impairment (MCI)
progresses to AD is being evaluated in a large, multicenter effort (Apostolova et al., 2010;
Grimmer et al., 2009; Klunk et al., 2004). Despite progress in understanding the contribution of
AB to neuronal dysfunction and neurodegeneration, the lack of a detailed analysis of the
interrelationship between AB and the other common indices of AD pathology has hampered our
understanding of the development and progression of the disease. For instance, our current
knowledge of the quantitative relationship between PiB binding and amyloid pathology in the
brain is limited (Bacskai et al., 2007; lkonomovic et al., 2008; Klunk et al., 2005; Klunk et al.,
2003; Leinonen et al.,, 2008). A better understanding of how these variables relate to one
another is essential for the continued development of reliable diagnostic biomarkers for AD. We
analyzed increasingly insoluble pools of AB to quantify their relative contributions to the overall

AB burden, and to determine if any of these measures could be used to predict disease status.

Alzheimer's disease is a progressive neurodegenerative disease, proceeding through
several stages. Although the exact staging of the disease is still debated, there is almost certainly
a preclinical or prodromal phase of the disease where some AD pathology is present in the
absence of readily apparent clinical impairment (PCAD) (Price et al., 2009). After this stage,
patients will pass through a state of mild cognitive impairment (MCI) (Petersen, 2004; Petersen
et al., 2001) before progressing to early stage AD, defined by the presence of specific clinical
features, including functional memory impairment. About twenty percent of otherwise
cognitively normal elderly show PiB retention in one or more neocortical regions (Aizenstein et

al., 2008), and this is associated with a risk of later cognitive decline, indicating the presence of a



possible stage of preclinical AD (Morris et al., 2009; Pike et al., 2007). Some of these cases can
eventually be classified as amnestic MCI (Villemagne et al., 2008). About sixty percent of MCI
patients show elevated PiB binding in some part of the neocortex (Kemppainen et al., 2007; Pike
et al., 2007), and higher levels of PiB binding are associated with faster rates of cognitive
decline, increased incidence of conversion to AD, and a greater degree of cerebral atrophy

(Ewers et al., 2012; Koivunen et al., 2011).

The amino acid aspartate (present at positions 1, 7, and 23 in the human AB sequence)
readily undergoes isomerization to produce isoaspartate (iso-Asp) under physiological
conditions (Ahmed et al., 2010; Shimizu, Matsuoka, & Shirasawa, 2005). The reaction occurs
when aspartate spontaneously converts to a succinimide intermediate; the succinimide
intermediate is subsequently hydrolyzed to produce iso-Asp (Shimizu, Watanabe, Ogawara,
Mori, & Shirasawa, 2000). The isomerization of aspartate is not a permanent modification.
Isoaspartate can be converted back to aspartate by the highly conserved enzyme, protein L-
isoaspartyl methyltransferase (PIMT), which is responsible for the recognition and repair of
isoaspartate residues (Chondrogianni et al., 2014). Iso-Asp residues accumulate in aged proteins
in vitro under physiologic temperature and pH (Reissner & Aswad, 2003), and its presence in AB
peptides isolated from AD brains has been documented (Shimizu et al., 2005). The presence of
predominantly (55.0%) iso-Asp at position 7 in AB (iso-Asp7 AB) from neuritic plaques was first
reported by Roher (Roher et al., 1993), with the suggestion that these structural alterations in
peptide composition could have an influence on AB deposition and/or clearance. The presence
of aspartate at position 7 in AB was subsequently shown to be essential for classical
complement pathway (CCP) activation; iso-Asp substitution at this position abolished the

activation of the CCP (Velazquez, Cribbs, Poulos, & Tenner, 1997) indicating the significance of



modification to iso-Asp7 AB. The presence of iso-Asp7 AB has been used to indicate the
presence of aged plaques in AD cases, and also in Down syndrome - a disorder which is also
associated with the accumulation and deposition of the AB peptide within the brain, due to the
presence of an extra copy of APP-containing chromosome 21 and resultant higher production of
the AB peptide (Fonseca, Head, Velazquez, Cotman, & Tenner, 1999). Low levels of AB peptide
are detectable in human plasma samples, however, although AP deposition in brain is a
component of AD pathology, the presence of AB in plasma is not indicative of the presence or
severity of AB plaques in the brain. We sought to investigate a potential relationship between
levels of ‘aged’ AB in the plasma as indicated by iso-Asp7 AP and disease state, as a potential

biomarker for the presence of AD pathology.



CHAPTER 2: MATERIALS AND METHODS

Human Subjects and Neuropathological Assessment

Samples were obtained from the tissue repository at the Alzheimer’s Disease Center at
the University of Kentucky Sanders-Brown Center on Aging (UK SBCoA). Details of the
recruitment, inclusion criteria, and mental status test batteries have been described previously
(Schmitt et al., 2000). Diagnoses followed the National Institute on Aging-Alzheimer’s
Association guidelines for the neuropathologic assessment of Alzheimer’s disease (Hyman et al.,
2012). Human tissue collection and handling followed PHS guidelines and the University of

Kentucky IRB.

Cases used for set one of the PiB binding measures (Table 2.1) were as follows: control cases (n
=9, 5M / 4F; age, 84.3 £ 5.1 years) had no history of antemortem cognitive impairment (MMSE:
28.4 + 1.5; last MMSE: 0.7 + 0.4 years); AD cases (n = 10, 4M / 6F; age, 83.4 £ 5.7 years) showed
substantial cognitive impairment (MMSE, 9.9 + 6.0; last MMSE: 2.4 + 2.3 years). Prodromal or
preclinical AD (PCAD) cases (n = 10, 1M / 9F; age, 85.6 + 3.7 years) were defined as those that
met the NIA-Reagan neuropathology criteria for likely AD, but exhibited no clinical signs of
dementia (MMSE, 29.4 + 0.7; last MMSE: 0.8 + 0.5 years) (Price et al., 2009). Amnestic MCI cases
(n=7,3M/ 4F; age, 89.0 + 5.8 years) were defined as per Petersen et. al. (Petersen et al., 1999);
MMSE scores (24.8 + 3.1; last MMSE: 0.6 + 0.3 years) were significantly lower (p < 0.04) in this
group compared to the control group. Frontotemporal dementia (FTD) cases (n = 6, 3M / 3F;
age, 61.0 + 14.6 years) were included as an additional neurodegenerative disease and served as
a specificity control (Cairns et al., 2007). FTD, which typically occurs at a younger age than AD,

results in a significant cognitive impairment (MMSE, 7.8 + 9.0; p < 0.001; last MMSE: 4.6 + 3.1



TABLE 2.1: Case Set 1, PiB Binding

DISEASE STATE n AGE (yrs) MMSE
CONTROL (CON) 9(5M/4F) | 843+5.1 28.4+1.5
PRECLINICAL AD (PCAD) 10 (IM/9F) | 85.6+3.7 29.4+0.7
AMNESTIC MILD COGNITIVE IMPAIRMENT (MCI) | 7 (3M/4F) | 89.0+5.8 24.8+3.1
ALZHEIMER'’S DISEASE (AD) 10 (4M/6F) | 83.4+5.7 9.9+6.0
FRONTOTEMPORAL DEMENTIA (FTD) 6(3M/3F) | 61.0+146 | 7.8+9.0

Brain regions: superior and middle temporal gyri (SMTG), cerebellum (CB)




years) but does not typically show the same pattern of neuropathology as AD. AB deposition is

not a feature of FTD (Cairns et al., 2007).

Cases for set two of the PiB binding experiments (Table 2.2) were as follows: control
cases (N = 23; 87.0 + 6.5 years) had no history of antemortem cognitive impairment and were
age-matched to AD cases (N = 22; 85.8 + 7.6 years). The average postmortem interval (PMI) was

similar for both groups (Control: 3.0 + 0.8; AD: 2.9 + 0.7, hours).

Brain weights were determined and a gross neuropathological evaluation carried out at
the time of autopsy. Tissue samples were dissected and frozen or formalin fixed. For histology,
paraffin-embedded specimens were cut (8 um) and stained with standard hematoxylin-eosin,
modified Bielschowsky method, or Gallyas silver method. Braak staging (Braak & Braak, 1991)
used both Gallyas and Bielschowsky-stained sections. Neurofibrillary tangles (NFTs), diffuse
plaques (DPs; plaques without surrounding dystrophic, argyrophilic neurites), and neuritic
plaques (NPs; plaques surrounded by dystrophic, argyrophilic neurites) were counted and
averaged as described (Markesbery et al., 2006; Nelson et al., 2010; Nelson et al., 2007). There

was no cause of death pattern in any disease group.



TABLE 2.2: Case Set 2

DISEASE STATE n AGE (yrs) MMSE
CONTROL (CON) 23 (7M/16F) 87.0+6.5 286+1.4
ALZHEIMER’S DISEASE (AD) 22 (8M/14F) 85.8+7.6 12.1+8.1

Brain regions: midfrontal gyri (BA9), superior and middle temporal gyri (SMTG), inferior parietal
lobule (IP), hippocampal formation (HIPP), cerebellum (CB)



AB Extractions

AB was extracted from human brain samples under increasingly stringent conditions as
described previously (Beckett et al., 2010). Briefly, frozen brain samples were weighed and
homogenized via polytron in ice cold phosphate buffered saline (PBS, pH 7.4) including a
complete protease inhibitor cocktail (PIC; Amresco, Solon, OH) at 200 mg/mL. An aliquot of raw
homogenate was conserved for PiB binding measures; remaining raw homogenate was then
centrifuged (20,800 x g for 30 mins @ 4°C), and the supernatant was collected. The pellets were
re-extracted by sonication in 2% sodium dodecyl sulphate (SDS) with PIC (10 x 0.5 sec pulses @
100 W; Fisher Sonic Dismembrator, Fisher Scientific, Pittsburgh, PA), centrifuged (20,800 x g for
30 mins @ 14°C), and the supernatant collected. Finally, the remaining pellet was re-extracted in
70% (v/v) formic acid followed by centrifugation (20,800 x g for 1 h @ 4°C), and collection of the

supernatant. The extracts were stored at -80°C until time of assay.

PiB Binding

3H-PiB binding to brain homogenates was carried out similar to the filtration assay of
Klunk et al. (Klunk et al., 2005), as per Rosen et al. (Rosen, Walker, & Levine, 2011). Briefly,
unfractionated PBS homogenate was diluted into a 96-well polypropylene plate in triplicate.
Two hundred pl of 1nM 3H-PiB (custom synthesized by ViTrax Radiochemicals, Placentia, CA; a
kind gift of Dr. Brian Ciliax, Emory University) was added to each of the first two wells, and 1 uM
of an unlabeled competitor (BTA-1) was added to the third well to determine nonspecific
binding (by subtraction). Femtomoles of 3H-PIB bound were calculated per wet weight of tissue

after correcting for counting efficiency.
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AB ELISAs

AB40 and AP42 were measured using a well-characterized sandwich ELISA, details of
which have already been published (Beckett et al., 2010; Das et al., 2003; McGowan et al., 2005;
Murphy et al., 2007; Weidner et al., 2011). Briefly, 384-well plates (Immulon microtiter 4 HBX;
Thermo Scientific, Rochester, NY) were coated with a capture antibody at a concentration of 0.5
ug/well, sealed, and incubated overnight @ 4°C. The following day, plates were washed once
with PBS and blocked with 100 pL of blocking buffer (Synblock; AbD Serotec, Raleigh, NC)
according to manufacturer’s directions. Blocked plates were sealed and stored, dessicated, @
4°C until use. Prior to use, plates were washed twice with PBS and standards and samples were
loaded at least in triplicate. A standard curve was prepared using synthetic AB peptide (AB40 or
AB42, as appropriate; rPeptide, Bogart, GA) diluted in antigen capture buffer (AC; 0.02 M
sodium phosphate buffer (pH = 7), 0.4 M NaCl, 2 mM EDTA, 0.4% Block Ace (Serotec; Raleigh,
NC), 0.2% BSA, 0.05% CHAPS, and 0.05% NaNs). Samples were diluted in AC buffer prior to
loading (PBS samples were diluted 1:4, SDS samples were diluted ranging from 1:20 to 1:100).
Formic acid samples were neutralized 1:20 in TP buffer (1 M Tris base, 0.5 M Na,HPQ,), followed
by a further dilution in AC buffer for final dilution ranging between 1:100 and 1:400. The capture
antibody used for the AB40 measures was Ab42.5 (specific for human AB1-16), and the capture
antibody for the AP42 measures was 2.1.3 (c-terminal specific for AB42). Detection was
performed with biotinylated 13.1.1 (1:1000, c-terminal specific for AB40) or biotinylated 4G8
(1:2000, specific for AB17-24; BioLegend, San Diego, CA), followed by NeutrAvidin-HRP (1:5000;
Thermo Fisher, Waltham, MA). Finally, plates were developed with 3,3’,5,5'-
tetramethylbenzidine (TMB; Kirkegaard and Perry Laboratories (KPL), Gaithersburg, MD),

stopped with 6% o-phosphoric acid, and read at 450 nm.
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Oligomeric AR was measured using a similar process, using the same antibody for both
capture and detection (capture: 4G8 @ 0.1 pg/well, detection: biotinylated-4G8 @ 1:2000;
BioLegend) followed by NeutrAvidin-HRP. The plates were developed with TMB (KPL), stopped

with 6% o-phosphoric acid, and read at 450 nm.

Iso-Asp7 Antibody Production and Screening

Monoclonal antibodies directed against iso-Asp7 AP were produced by abpro (Woburn,
MA), and culture media from selected hybridomas were sent to our lab at UK for screening.
Initial clones were screened for specificity via direct ELISA against iso-Asp7 AB1-16 and non-iso-
Asp AB1-16. Immulon 4 HBX plates were coated with synthetic peptide (iso-Asp7 AB1-16 or non-
iso-Asp AB1-16) @ 0.1 pg/well and incubated overnight @ 4°C. The following day, plates were
washed once with PBS and blocked with Synblock (100 uL/well) for 1 hour @ room temperature.
Next, the Synblock was removed and the plates were allowed to dry upside down for 1 hour at
room temperature. The plates were then washed twice with PBS and the clonal supernatants
were diluted into detection buffer (DB; 0.2 M sodium phosphate buffer (pH = 7), 2 mM EDTA,
0.4 M NaCl, 1% BSA, 0.002% thimerosal) to create a dilution series (no dilution, 1:10, 1:100, and
1:1000) and loaded at 100 pL/well. The plates were sealed and incubated at room temperature
for 1 hour. The plates were then washed twice with PBST (PBS with 0.5% Tween-20) and twice
with PBS. The plates were then incubated with goat-a-mouse-lgG-HRP (1:20,000 in DB; Pierce,
Rockford, IL) for 1 hour at room temperature. Finally, the plates were washed four times with
PBST and four times with PBS. They were then developed with TMB (KPL), stopped with 6% o-
phosphoric acid, and read at 450 nm. The ODs from the iso-Asp7 AP and the non-iso-Asp AB

conditions were compared to each other. The clones which were reactive to iso-Asp7 AB and not
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non-iso-Asp AB were selected for further subcloning. A total of five clones were selected for

subcloning.

The supernatants from the subclones were screened following the procedure as
described above. Two of the subclones (3A9.H7 and 7C2.E12) which showed high specificity for
iso-Asp7 AB and non-reactivity to non-iso-Asp AP were chosen to be scaled up for antibody
production and purification. Antibody 7C2.E12 was chosen for use in the screening of human

samples for iso-Asp7 AP because it had a slightly better specificity profile than 3A9.H7.

Iso-Asp7 A8 in Human Brain Samples

Serially extracted human brain samples from the inferior temporal region were
screened for iso-Asp7 AP reactivity via sandwich ELISA. Antibody 2.1.3 (c-terminal specific for
AB42) was used as a capture antibody (0.5 pg/well). PBS, SDS, and neutralized formic acid
samples were loaded at appropriate dilutions in AC buffer (control samples: PBS @ 1:4, SDS @
1:20, FA @ 1:100; AD samples: PBS @ 1:4, SDS @ 1:100, FA @ 1:400). Detection was performed
using biotinylated antibodies 3A9.H7, 7C2.E12, or 6E10 (1:1000 in DB; 6E10 against human AB1-
16; BiolLegend), followed by NeutrAvidin-HRP @ 1:5000. The plates were then developed with

TMB (KPL), stopped with 6% o-phosphoric acid, and read at 450 nm.

Iso-Asp7 AB in Human Plasma Samples

Plasma from AD and control cases were received from the UK SBCoA Alzheimer’s Disease Center
(Table 2.3). Controls (N=10 4F/6M; 82.9 + 2.6 years) had no history of ante-mortem cognitive
impairment and were age-matched to AD cases (N=10, 5F/5M; 85.6 + 1.7 years). The average
postmortem interval (PMI) was similar for both groups (Control: 4.7 + 1.0; AD: 6.9 + 1.7, hours).

AB40, AB42, iso-Asp7 APB40, and iso-Asp7 AB42 levels in plasma from AD
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TABLE 2.3: Case Set for Plasma Iso-Asp7 AB Measures

DISEASE STATE n AGE (yrs) MMSE
CONTROL (CON) 10 (6M/4F) | 82.9+2.6 | 27.7+08
ALZHEIMER’S DISEASE 10 (5M/5F) | 85.6+1.7 | 15.9+3.1

*Note: In this case set, the average MMSE score was calculated from only 9 of the 10 AD cases,
as the MMSE test was not able to be completed for one of the participants due to

behavioral/cognitive problems.
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cases and controls were measured via sandwich ELISA. Both AB40 and iso-Asp7 AB40 were
captured with antibody 13.1.1 (0.5 pg/well, c-terminal specific for AB40); AB42 and iso-Asp7
AB42 were measured with capture antibody 2.1.3 (0.5 pg/well, c-terminal specific for AB42).
Non-isomerized AP (both AB40 & AB42) was detected with biotinylated-6E10 (1:1000, specific
for human AB1-16), and iso-Asp7 AB (40 & 42) was detected with biotinylated-7C2.E12 (1:1000,
specific for iso-Asp7 AB1-16) followed by NeutrAvidin-HRP (1:5000). Plates were then developed
with TMB (KPL), stopped with 6% o-phosphoric acid, and read at 450 nm. A standard curve was
prepared using synthetic non-isomerized AP (either AB40 or AB42, as appropriate) which was
used to predict the values for the non-isomerized AB conditions. For the iso-Asp7 AB conditions,
dilutions of synthetic iso-Asp7 AB1-16 were coated directly onto the plate, and were detected

with biotinylated 7C2.E12.
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CHAPTER 3: RESULTS

For case set one, quantitative measurements of AR by ELISA were performed from both SMTG
and cerebellum (Figure 3.1). The total amount of AB found in the disease cases was increased in
both the SMTG (SDS: F[4,32] = 63.01, p<0.0001; FA: F[4,32] = 7.00, p<0.001) and cerebellum
(SDS: F[4,31] = 11.49, p<0.001; FA: F[4,31] = 4.5, p<0.006). There were no disease-related
differences between the amounts of aqueous (PBS) soluble AB in either region (SMTG: F[4,32] =
1.39, n.s.; cerebellum: F[4,31] = 2.07, n.s.). The disease-related increase in the SMTG relative to
the cerebellum was larger in the SDS fraction (F[4,29] = 32.37, p<0.0001) but not in the FA
fraction (F[4,29] = 0.97, n.s.). The largest values were from the AD cases, with smaller increases
observed in the PCAD and MCI cases. The PCAD and MCI groups were not significantly different
from each other. There was ~8 times more SDS-soluble AB in the SMTG compared to the
cerebellum in the AD group as compared to the controls (t[9] = 6.77, p<0.01), whereas there
was no difference between the amounts of FA-soluble AB in the same cases (t[9] = -0.63, n.s.).
Effects were similar for both AB40 and AB42 (Table 3.1). There was significantly more oligomeric
AB in the SMTG (F[4,32] = 5.00, p<0.003), but not in the cerebellum (F[4,31] = 1.15, n.s.), in
disease. When compared to the cerebellum, oligomeric AR was higher in the SMTG in the AD
(t[9] = 7.09, p<0.01), PCAD (t[9] = 3.32, p<0.04), and MCI (t[5] = 4.03, p<0.03) cases. PiB binding
was similarly elevated in the SMTG (F[4,32] = 7.08, p<0.001). PiB binding was minimal in the
cerebellum, and did not show a strong disease-related increase (F[4,31] = 2.2, p<0.1) in this

region. There were no significant differences between the FTD cases and controls.
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Figure 3.1 Soluble AB, Oligomeric AB, and Fibrillar AB.

Sandwich ELISA (soluble AB): The total amount of AB was increased in AD in both the SMTG and
cerebellum in the SDS and FA fractions; PBS-soluble AB was not elevated in disease. Increases in
PCAD and MCI cases were modest relative to controls, and were most apparent in the FA
fraction isolated from the SMTG. FTD cases were essentially indistinguishable from control
cases. Data shown are corrected for age and PMI. Similar results were obtained in separate
evaluations of AB40 and AB42 (Table 3.1). Single-Site ELISA (oligomeric AB): Oligomeric AB was
only significantly higher in the SMTG and not within the cerebellum. Values for PCAD and MCI
cases were intermediate between control and AD cases; FTD cases were slightly lower than
controls, although this was not a significant difference. PiB Binding (fibrillary AB): Fibrillar AB, as
defined by PiB binding, was significantly higher in the SMTG than in the cerebellum. Values for
PCAD and MCI cases were intermediate between control and AD cases; FTD cases were not
significantly different from control cases and, similar to oligomeric AB, were slightly lower.
Dunnett's test, * = p < 0.05, ** = p < 0.01. Reprinted from (Beckett et al., 2012) with permission

from I0S Press.
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Although we could detect clear differences in postmortem PiB binding between the
SMTG and cerebellum, they were significant in the AD group (t[9] = 6.61, p<0.01), but only
marginally significant for the PCAD (t[9] = 2.60, unadjusted p<0.03) and MCI (t[5] = 2.84,
unadjusted p<0.04) groups. For amyloid imaging in vivo, values for cortical PiB retention are
typically standardized to values obtained from the cerebellum in the same patient [16]. We
therefore performed a similar comparison in our case series, by standardizing the SMTG value to
the cerebellum from the same case (Figure 3.2). Since the oligomeric AR measures exhibited a
pattern comparable to PiB binding, we did the same analysis in these cases. There were no
differences between disease states when the amount of oligomeric AR in the SMTG was
standardized in this manner (F[4,31] = 0.86, n.s.). The postmortem PiB binding ratio was
significantly different in disease when the SMTG values were corrected to the cerebellum
(F[4,31] = 5.70, p<0.001). When the data were analyzed in this way, the MCI group was notably
higher than the other groups, an effect attributable to the very low levels of cerebellar PiB

binding in this subgroup.
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ABao
0.3+0.2
0.3+0.1

0.4+0.1

0.6+0.3

0.3+0.1

ABao
0.2+0.0
0.2+0.1

0.0+0.0

0.4+0.2

0.0+0.0

TABLE 3.1: AB4o and AB4z Values (Uncorrected)

PBS

PBS

ABaz
1.3+0.3
1.6+0.2

1.2+0.5

2.0+0.3

1.3+0.6

ABaz
21+0.2
1.6+0.3

0.8+0.3

1.2+0.3

14+0.1

SMTG
SDS
ABao ABa
49+3.1 17.6+9.1
26+0.9 19.8+6.3
3.1+0.6 16.0t6.1

1032+

111 £ 52.5*
131*

3.1+£0.7 0.0+0.0

Cerebellum
SDS
ABao ABaz
79116 0.7x0.7
11.4+0.9 0.210.2

11.1+0.9 12+1.0

53.8+28.8 62.0+5.3*

7.3+14 0.0+0.0

FA
ABao
10.1+1.6
13.0+1.3
273+4.1

310+
108.3*

18.0+15

FA
ABao
122+1.3
134+1.2

14.8+3.0

544 + 328.7

9.0+0.9

Values are given in pmol / g (see main text for a description of the methods)

* p < 0.05, Dunnett’s test (relative to control group).
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Figure 3.2 Correcting PiB Binding Values to the Cerebellum Distinguishes MCI Cases.

(A) There were no differences between disease states when the amount of oligomeric AB in the
SMTG was standardized to the amount found in the cerebellum. (B) There was a significant
difference detected for disease when PiB binding in the SMTG was corrected to the amount in
the cerebellum. Interestingly, the most prominent effect of this standardization was to amplify
the difference between the MCI cases as compared to the other groups. Dunnett's test, ** = p <

0.01. Reprinted from (Beckett et al., 2012) with permission from I0S Press.
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Finally, for this case series we wanted to determine how PiB binding related to other
aspects of AB pathology (Figure 3.3). Postmortem PiB binding was strongly correlated with the
total plague number (R2 = 0.51, p<0.0001; not shown). Whereas plaque counts are a reasonable
means to determine disease status, it is likely that AR positive area is a stronger correlate of PiB
binding (lkonomovic et al., 2008). Oligomeric AB was only correlated with SDS soluble AB42 (R2
= 0.16, p<0.01; not shown). PiB binding was significantly correlated with both SDS- (p<0.001)
and FA- (p<0.05) soluble AR, but not with PBS-soluble AB (p<0.12). These forms of the peptide
are less soluble by definition (they require either a harsh detergent or acid to solubilize), and
also show the most consistent increases with disease. In both cases, the strongest correlation
was with AB42 (SDS: R2 = 0.46, p<0.001; FA: R2 = 0.21, p<0.002). PiB binding was also
significantly correlated with the amount of oligomeric AR (R2 = 0.22, p<0.01). PiB binding was
not significantly correlated with any of these forms of AB (including either AB40 or AB42) in the
cerebellum (oligomeric AB, p<0.3; PBS-soluble AB, p<0.4; SDS-soluble AB, p<0.15; FA-soluble A,
p<0.1; data not shown). This was somewhat surprising, as at least two of these forms of AB
(SDS- and FA-soluble) did show significant changes in the cerebellum with disease, and were
higher in the AD cases (Table 3.1; Figure 3.1). We did not detect a relationship (p<0.5) between

any aspect of cerebrovascular pathology and postmortem PiB binding in this case series.

For the second case series, we determined which combination of AR measurements best
discriminated AD cases from controls. To this end, we used a logistic regression model for the
presence of disease. We then used a stepwise procedure to identify the subset of
measurements that best predicted that a randomly selected subject was an AD case (by log odds
ratio). A simple solution was obtained, as there was only one variable in the best subset: the

total amount of SDS soluble AB, with an odds ratio of 1.06 + 0.04 (95 % C.l.). A box plot of the
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Figure 3.3 PiB Binding Correlates with Less Soluble Forms of AB in the SMTG.
(A) The amount of postmortem PiB binding was significantly correlated with oligomeric AB
(p<0.01). (B) PiB binding was not correlated with AB extractable in PBS, the most soluble form of
the peptide. However, PiB binding was significantly correlated with AP extractable in either SDS
(C; p<0.001) or FA (D; p<0.05). Reprinted from (Beckett et al., 2012) with permission from 10S

Press.
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same data showed minimal overlap between AD cases and controls (Figure 3.4). While
informative, the overall sample size was too small to conduct a training-validation approach to
selecting the best predictor of disease status. Although values between 90 and 95 could be used
as a cut-off point to declare an individual to be an AD case, the data set was not large enough to
identify a more precise number. PiB binding offered no discernible advantage as a diagnostic

tool in this context.

To test the hypothesis that iso-Asp7 AR might have predictive value in differentiating AD
cases from controls, we evaluated a set of twenty cases from the UK ADC. For this study, we
compared normal plasma AB40 and AB42 using our standard sandwich ELISA, alongside iso-Asp7
AB40 and iso-Asp7 AB42. In general, AD cases were lower on all forms of AB when standardized
to the group average (Figure 3.5), although only iso-Asp7 AB40 was close to significant on this
measure (p<0.06). It is possible given the uniform direction of the trend that the data might
better segregate given a larger sample size. The AB values were highly variable in general (Figure
3.6). However, there was a potentially interesting crossover effect in the data. In this case, AB40
values in controls were lower than AB42, but reversed for iso-Asp7 (i.e., iso-Asp7 AB40 was
higher than iso-Asp7 APB42). A somewhat similar effect was observed in the AD cases. We
evaluated this change using a simple sign test. In this case, the change in direction in the Ap40
values trended towards significance (p<0.12), but was significant for AB42 (p<0.02). However,
although this is a promising outcome, there were not enough cases to determine if this could be
used to distinguish AD cases from control cases. This will need to be determined in a larger,

follow-up study.
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Figure 3.4 SDS Soluble AB Indicates Disease State.

SDS soluble AR was identified as an exceptionally strong indicator of disease state. The area
under the receiver operator curve was 0.978 (p = 0.0016), with a sensitivity of 100% and a
specificity of 95.7%. The Hosmer-Lemeshow goodness of fit statistic (p = 0.51) indicated no
evidence of a lack of fit. A boxplot of SDS soluble AB, segregated by disease state, shows almost
no overlap between cases and controls (A); PiB binding, in contrast, shows considerable overlap

(B). Reprinted from (Niedowicz, Beckett, et al. 2012) with permission from John Wiley and Sons.
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Figure 3.5 AD Cases Have Lower Standardized Levels of Plasma AP Than Control Cases.

Levels of plasma AR were measured from 20 human cases (Control: N=10, 6F/4M; 82.9 + 2.6
years; AD: N=10, 5F/5M; 85.6 + 1.7 years). When standardized to the group average, AD cases
had lower levels plasma AR, regardless of form. However, only iso-Asp7 AB was close to

significant (p<0.06).
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Figure 3.6 Levels of AB and Iso-Asp7 AB Were Reversed Between Groups.

Plasma levels of AB and iso-Asp7 AB were reversed between disease group and AP form. For
example, AB40 was lower than AB42 in the control group; however iso-Asp7 AB40 was higher
than iso-Asp7 AB42 in the control group. A similar effect was present in the AD cases. Using a
simple sign test, we evaluated this change. The change in direction in the AB40 values trended

towards significance (p<0.12). The direction change for the AB42 values was significant (p<0.02).
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CHAPTER 4: DISCUSSION

We found significant quantities of higher order AB multimers (oligomeric AB) in the
neocortex that increased with disease progression, and these were considerably less abundant
in the cerebellum. Similarly, PiB binding, thought to mostly reflect AB in a fibrillar state, was
increased in the SMTG but not in the cerebellum. However, in later stage AD, the amount of
aggregated AB was similar between the SMTG and cerebellum. This implies that at least some
higher order AB structures do not form solely in a concentration dependent manner, and that
other processes must be involved. Differences between the amounts of oligomeric AB in the
neocortex and the cerebellum are well known (Klein, 2002; Lambert et al., 2001), and the role of
these species in AD neuropathology has been explored in some detail in recent years (Mc
Donald et al., 2010; Walsh et al., 2002). Interestingly, we found correlations between PiB
binding and oligomeric, SDS- and FA-soluble AB in the SMTG but not in the cerebellum. This
further indicates that the AB deposited in the cerebellum is different from the AR deposited in
the neocortex in some fundamental way, and that the diffuse amyloid deposits in the

cerebellum are not strongly related to PiB binding.

There are both high (nM) and low (uM) affinity PiB binding sites on synthetic and
biological AB fibrils (Klunk et al., 2005). The low affinity site is more abundant in synthetic fibrils,
fibrillar AB from transgenic mice, and the AB found in the brains of aged non-human primates
(Maeda et al., 2007; Rosen et al., 2011). A large proportion of the PiB binding under our assay
conditions (1 nM 3H-PiB) is to the high affinity site (Klunk et al., 2005). It is possible that these
differences between the SMTG and cerebellum reflect an underlying difference in the disease
process that could be useful in elucidating unknown, or at least unappreciated, aspects of AD. At

a minimum, a comparison between the cerebellum and a neocortical region such as the SMTG
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might be ideal for determining the molecular identity of the high density, high affinity PiB
binding site in the AD brain. The identification and mapping of this site could represent an

important step towards the development of new imaging agents.

Autopsy studies of patients subject to PiB neuroimaging are still relatively uncommon
(Ikonomovic et al., 2008; Klunk et al., 2005; Svedberg et al., 2009), and there has been relatively
little examination of earlier stage cases of disease of the type reported here. The longitudinal
study of these individuals, and the integration of PiB neuroimaging data with established
pathologies and other potential biomarkers, will be critical for developing a reliable clinical
protocol for AD diagnosis and monitoring (Apostolova et al., 2010). It is intriguing that our data
show that PiB may have some benefit in distinguishing MCI cases from not only normal elderly
controls, but possibly from preclinical AD cases as well. We emphasize that this is a study in a
relatively small number of cases, and demonstrating the true utility of PiB binding as an agent
for identifying MCI will require a much larger cohort. These findings are particularly important
given the recommendations from the National Institute of Aging (NIA) /Alzheimer's Association
which focus on the use of imaging and CSF measures to define MCI (Albert et al., 2011). These
recommendations emphasize the use of subjects from longitudinal studies and incorporation of
CSF and/or imaging studies to define MCl as being caused by AD pathology. Similarly, both
imaging and CSF play a larger role in the defining of AD in the NIA guidelines (Jack et al., 2011).
Data from the present study contribute to both of these efforts by demonstrating the utility of
imaging probes for both clinical imaging as well as ex vivo analysis in the laboratory setting to
understand the pathological processes involved in AD. This has the potential to not only advance
our understanding of the disease at the molecular level, but could also lead to better imaging

reagents in the future.
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In the second case set, we detected an approximate 11-fold elevation in extractable AB
in the AD brain relative to controls, compared to more modest increases in the amount of PiB
binding (~4 fold). We did not detect a robust elevation in oligomeric AB using the single site
immunoassay method in this study. While these data do not rule out the possibility that
oligomeric and fibrillar AR contribute to AD (Mc Donald et al., 2010; Walsh et al., 2002), they do
indicate that any role these two species play in mediating AD pathogenesis occurs in the
background of a tremendous amount of AB in other pools. It is possible that oligomeric and
fibrillar species of AB contribute to AD via their synergy with other AB pools. It is also possible
that the largest contribution of oligomeric AB to neuronal dysfunction and degeneration is of far
greater importance earlier in the disease process (such as in preclinical AD (Price et al., 2009) or
in cases of amnestic MCl (Petersen et al.,, 1999)). Alternatively, the location or local
concentration of oligomeric species may be the key to their ability to promote disease onset and
progression. Finally, the immunoassay approach that we used in this case series detects only
relatively large forms of oligomeric AB; it is likely that smaller forms of oligomeric AB (e.g.,
dimers, trimers, etc.) escape detection by this method. It is possible that these smaller forms of
oligomeric AB may be more important for the disease process (Walsh & Selkoe, 2004).
Nevertheless, the lack of a clear increase in oligomeric AB in AD cases highlights that, in spite of
recent advances, there are still limitations on our understanding of the disease process. It is
noteworthy that PiB binding in the postmortem brain was unable to discriminate between cases
and controls as well as SDS soluble AB. Postmortem PiB binding is evaluated under highly
favorable experimental conditions, while binding in vivo occurs under less optimal conditions.

Blood flow and sequestration on the time scale of the imaging session are significant in vivo
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variables, whereas PiB has greater access to amyloid binding sites ex vivo. It is well known that
there is considerable variability and heterogeneity in PiB retention in the human brain, with PiB
retention increasing in a non-linear manner during the progression of disease and unable to
uniformly discriminate AD from non-AD cases (Sojkova & Resnick, 2011). Postmortem PiB
binding appears to involve only a small fraction of the total amount of AB in the brain, and it is
likely that some portion of the unlabeled amyloid is significant to the disease process (Svedberg
et al., 2009). It is also likely that differentially soluble pools of AB in the brain deposit at different
rates (Murphy & LeVine, 2010), and it is unclear which of these pools PiB retention represents.
The study of PiB binding ex vivo could shed light on these issues. Although these data do not
diminish the potential clinical utility of PiB as an agent for detecting the deposition of AB in the
brain of living patients, they nevertheless raise the possibility that in vivo imaging using PiB is
largely detecting deposits of AB that are considered by neuropathologists as less important to
the AD clinical phenotype than either NPs or NFTs. For instance, in this study and many others,
the strongest relationship between MMSE and neuropathology is with neocortical NFTs (Nelson
et al., 2010; Nelson et al., 2007), which are not related to the amount of PiB binding. This finding
is in line with some of the earliest studies of PiB in vivo, which reported no relationship between
PiB binding and MMSE scores (Klunk et al., 2004). However, recent work in defining the
preclinical state of AD has raised the intriguing possibility that DPs are being overly discounted
as a factor in pathology (Price et al., 2009). There are currently relatively few individuals that
have come to autopsy following PiB neuroimaging. Further study of these individuals, and
integration with other biomarker data (Apostolova et al., 2010), will be essential for developing

a reliable clinical screening procedure for the detection of AD and monitoring its progression.
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We were able to measure levels of AB40, AB42, iso-Asp7 AB40, and iso-Asp7 AB42 in
plasma samples from AD and control cases. When standardized to the group average, AD cases
had lower levels of all forms of AB. Although the trend was convincing, this did not reach
significance. The difference in iso-Asp7 AB40 between AD and control cases was closest to
reaching significance (p<0.06). AB deposition in diffuse and neuritic plaques are a hallmark of AD
pathology. AD cases have significantly higher levels of AB in the brain compared to control cases
(Figure 3.1). Iso-Asp7 AB is significantly deposited within AB plagues in AD brain (Roher et al.,
1993). With this in mind, we expected to find higher levels of AB overall, and of iso-Asp7 AB in
particular, in the plasma from AD cases compared to control cases. However, this was not the
case. A possible explanation is that once AP plaques develop to the point of becoming neuritic,
both the non-isomerized AB and iso-Asp7 AP peptides may be selectively sequestered within
those plaques of the AD brain, and become less free to move about the periphery. If this is
indeed the case, the significantly lower plague burden among control cases could allow for more
free-floating AB species throughout the periphery, resulting in the relatively higher levels of
plasma AP seen in this study. If the trend we saw in plasma AP levels between AD and control
cases were to hold true, we would expect the effect to reach significance with a larger case
study. A follow-up study is required, however, these initial data are a promising step towards

utilizing aged iso-Asp7 AB plasma levels as a potential biomarker to indicate disease state.
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AC
AD
AICD

APP

AB

ccp
CON
CTF-a
CTF-B
DB

DP
ELISA
F/M
FA
FTD
Iso-Asp7 AB
MCI
NFT
NP
oD

PBS

Appendix I: List of Abbreviations

antigen capture buffer

Alzheimer’s disease

amyloid precursor protein intracellular domain
amyloid precursor protein
amyloid-beta

Celsius

classical complement pathway
control

c-terminal fragment a

c-terminal fragment

detection buffer

diffuse plaque

enzyme-linked immunosorbent assay
female/male

formic acid

frontotemporal dementia
isomerized aspartate 7 amyloid-beta
mild cognitive impairment
neurofibrillary tangle

neuritic plaque

optical density

phosphate buffered saline
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PBST
PCAD
PiB
PIC
PMI
SAPPo.
sAPPj
SDS
SMTG
TMB

TP

phosphate buffered saline with tween-20
pre-clinical Alzheimer’s disease
Pittsburgh binding compound B

protease inhibitor cocktail

postmortem interval

secreted amyloid precursor protein alpha
secreted amyloid precursor protein beta
sodium dodecyl sulfate

superior and mid temporal gyrus
3,3',5,5'-tetramethylbenzidine

tris phosphate buffer
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Appendix II: AB Sequences

AB40

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV

AB42

DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA

Iso-Asp7 AB40

DAEFRH-isoD-SGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA

Iso-Asp7 AB42

DAEFRH-isoD-SGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA
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