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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

In sustainable manufacturing, inconsistencies exist among objectives defined in triple-bottom-lines (T BL) of economy, society, and environment.
Analogously, inconsistencies exist in flow shop scheduling among three objectives of minimizing total completion time (TCT ), maximum com-
pletion time (MCT ), and completion time variance (CTV), respectively. For continuous functions, the probability is zero to achieve the objectives
at their optimal values, so is it at their worst values. Therefore, with inconsistencies among individual objectives of discrete functions, it is more
meaningful and feasible to seek a solution with high probabilities that system performance varies within the control limits. We propose a trade-off
balancing scheme for sustainable production in flow shop scheduling as the guidance of decision making. We model trade-offs (TO) as a function
of TCT , MCT , and CTV , based on which we achieve stable performance on min(TO). Minimizing trade-offs provides a meaningful compromise
among inconsistent objectives, by driving the system performance towards a point with minimum deviations from the ideal but infeasible optima.
Statistical process control (SPC) analyses show that trade-off balancing provides a better control over individual objectives in terms of average,
standard deviation, Cp and Cpk compared to those of single objective optimizations. Moreover, results of case studies show that trade-off balancing
not only provides a stable control over individual objectives, but also leads to the highest probability for outputs within the specification limits. We
also propose a flow shop scheduling sustainability index (FS S I). The results show that trade-off balancing provides the most sustainable solutions
compared to those of the single objective optimizations.
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1. Introduction

Flow shop scheduling problem arises where a set of jobs on
one or multiple machines must be sequenced in order to op-
timize a given objective function. Permutation flow shop is a
special type of flow shop in which the processing order jobs is
identical on all machines. Permutation flow shop has been the
subject of a massive body of literature [1]. Maximum comple-
tion time (MCT ) and total completion times (TCT ) are two fun-
damental performance measures in flow shop scheduling, driv-
ing many other performance measures such as utilization, work
in process (WIP) inventories, and material flow [2]. For an n-
job m-machine flow shop, MCT is the completion time of the
last job n on the last machine m, and TCT is the sum of comple-
tion times of all jobs on the last machine. Average completion

∗ Corresponding author. Tel.: +1-859-257-4842 ; fax: +1-859-257-1071.
E-mail address: wei.mike.li@uky.edu (Wei Li).

time ACT=TCT/n also known as flow time is the average time
a job spends in the system. Minimization of ACT is equivalent
to minimization of TCT for a fixed n. Minimization of MCT
and TCT have been proven to be NP-complete for flow lines
with the number of machines m ≥ 3 and m ≥ 2, respective-
ly [3, 4]. Therefore, it is extremely difficult to find an optimal
solution to a general n-job m-machine problem within a given
computation time. Completion times variance (CTV) is another
important performance measure for flow shop scheduling. CTV
measures the variability of flow time. In service systems, CTV
present service uniformity [5, 6], i.e, the variability of the time
a job/customer spends in the system. Minimization of CTV also
has been proven to be NP-hard [7].

Since MCT , TCT and CTV are all important performance
measures in the production scheduling, it is necessary to de-
velop multi-objective optimization models to optimize system
performance [2]. Although MCT , TCT and CTV are all func-
tions of completion times, minimizing one does not necessarily
minimize another [8, 9]. Given NP-hardness and inconsisten-
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cies, it is necessary to balance the trade-offs among them for
sustainable production.

The impact of production has been extended to the triple
bottom lines (T BL) of economy, environment and society [10].
Although production impacts on environment and on econo-
my have been reported in the literature such as carbon-efficient
scheduling [11] and energy-efficient scheduling [12], sparse s-
tudies on flow shop scheduling considered all three aspects of
T BL, because of the inconsistencies among objectives in T BL,
Akbar and Irohara [14] provided a recent review of scheduling
for sustainability.

Jawahir et al. [13] defined sustainable manufacturing as
“sustainable manufacturing at product, process, and system lev-
els must demonstrate reduced negative environmental impacts,
offer improved energy and resource efficiency, generate mini-
mum quantity of wastes, provide operational personnel health
while maintaining and/or improve the product and process qual-
ity with the overall life-cycle cost benefits”.

Lu et al. [15] proposed the Process Sustainability Index
(ProcS I) in which all aspects of T BL were taken into consid-
eration. ProcS I consists of six clusters including: manufactur-
ing cost, energy consumption, waste management, operational
safety and personnel health. Each cluster is then divided into
several sub-clusters to address specific areas of impact within
each cluster. The sub-clusters are then divided into individu-
al metrics that measure single and specific aspects of process
sustainability [16]. Once the individual metrics are identified
and measured, a bottom-up approach is implemented to aggre-
gate the metrics into ProcS I. ProcS I assigns a scalar score on
a scale of 0 to 10 to the studied process, however, given the
number of factors involved in TBL, such as people, planet, and
profit, which are evaluated as metrics, optimization objectives
in sustainability can be inconsistent with each other, and conse-
quently the trade-offs between metrics need to be systematically
balanced.

In this paper, given an n-job m-machine permutation flow
shop, we first show the inconsistencies among objectives of
minimizing MCT , TCT , and CTV . Second, we propose a trade-
off balancing scheme that provides better control for flow shop
scheduling. Third, by extending the scheme proposed by Lu
(2015) [16], we propose a generic model for balancing trade-
offs between inconsistent performance metrics in flow shop
scheduling, which can be extended to balance trade-offs be-
tween any number of inconsistent objectives, in terms of lin-
ear regression models in statistics, such as z = CX + d, as
z = f (y1, y2, ..., yO), and yo = CX + do, for o = 1, 2, ...,O, where
yo is subject to AX ≤ B.

The rest of this paper is organized as follows: the problem
description is provided in Section 2, results of empirical case
studies are discussed in Section 3, and conclusion and future
works are presented in Section 4.

2. Problem description

The following formulations provide the mathematical de-
scriptions of MCT , TCT and CTV in an n-job, m-machine per-

mutation flow shop. The processing time of job j on machine
i is defined as p j,i, j = 1, 2, ..., n and i = 1, 2, ...,m. C j,i is the
completion time of job j on machine i. Since all jobs are ready
to be processed at the time 0, there is no idle time on the first
machine. Equation 1 represents the completion time of job j on
machine 1. Equation 2 represents the completion time of the
first job on each machine. Therefore, we are able to calculate
the completion time of each job on each machine by equation 3.
MCT is the completion time of the last job on the last machine
and is shown by equation 4. TCT is the sum of completion
times of all jobs on the last machine and is presented by equa-
tion 5. Completion times variance is calculated by equation 7.

C j,1 =
∑ j

h=1 ph,1 j = 1, 2, ..., n (1)
C1,i =

∑m
i=1 p1,i (2)

C j,i = max(C j−1,i,C j,i−1) + p j,i (3)
j = 2, 3, ..., n
i = 2, 3, ...,m
MCT = Cn,m (4)

TCT =
∑n

j=1 C j,m (5)

ACT = TCT/n (6)

CTV = 1
n
∑n

j=1(C j,m − ACT )2 (7)
Given an instance s with n jobs, s ∈ {1, 2, ..., S }, there are

n! different sequences in s. Let π ∈ {1, 2, ..., n!} denote a se-
quence of n jobs, normalized deviation of objective k generated
by sequence π can be defined as ND(x[k]

π,s) =
x[k]
π −MIN(x[k]

s )
MAX(x[k]

s )−MIN(x[k]
s )

, with k = 1 for min(TCT ), k = 2 for min(MCT ), and k = 3
for min(CTV), and x[k]

π is the performance of sequence π on ob-
jective k. MAX(x[k]

s ) and MIN(x[k]
s ) are the worst (maximum)

and the best (minimum) solutions for objective k in instance s.
Let ωk be as the decision maker’s preference to objective k and
Ω = [ω1, ω2, ω3], we propose a trade-off function represented
by equation 8.

TO[Ω]
π,s =

∑3
k=1 ωkND(x[k]

π ) (8)
∑3

k=1 ωk = 1,
This linear model can be extended to balance trade-offs in prob-
lem settings for machining or for TBL, which is beyond the s-
cope of this paper. Let π∗s(Ω) be the sequence that minimizes
TO[Ω]

s , the arithmetic mean of normalized deviations over all
instances is defined by AND(Ω) = 1

3S
∑S

s=1
∑3

k=1 ND[k]
π∗,s. We u-

tilize AND(Ω) as a new performance indicator along with TCT ,
MCT , and CTV to evaluate the performance of each solution.
Equation 8 explicitly integrates the decision maker’s preference
into the trade-off function by assigning a weight (ωk) to each
objective. With dynamics in production, decision makers’ pref-
erences might change as the process reveals its performance
over the time. min(TO) is precisely equivalent to minimizing
the deviations from an ideal point at which all the objectives
are at their optimum values.

In order to develop a comprehensive the flow shop schedul-
ing sustainability index (FS S I), by extending the scheme pro-
posed by Lu et al. [16], we propose a top to bottom decompo-
sition followed by a bottom to top aggregation. At the decom-
position phase, we divide FS S I to three clusters covering the
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objective. With dynamics in production, decision makers’ pref-
erences might change as the process reveals its performance
over the time. min(TO) is precisely equivalent to minimizing
the deviations from an ideal point at which all the objectives
are at their optimum values.

In order to develop a comprehensive the flow shop schedul-
ing sustainability index (FS S I), by extending the scheme pro-
posed by Lu et al. [16], we propose a top to bottom decompo-
sition followed by a bottom to top aggregation. At the decom-
position phase, we divide FS S I to three clusters covering the
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Table 1: Average normalized deviations for all 66 weights

(1,0,0) (0,1,0) (0,0,1) (0.9,0.1,0) (0.8,0.2,0) (0.7,0.3,0) (0.6,0.4,0) (0.5,0.5,0) (0.4,0.6,0) (0.3,0.7,0) (0.2,0.8,0)
TCT 0.000 0.187 0.489 0.003 0.012 0.026 0.043 0.062 0.080 0.100 0.119
MCT 0.245 0.000 0.176 0.185 0.133 0.092 0.060 0.037 0.022 0.011 0.005
CTV 0.368 0.180 0.000 0.347 0.328 0.310 0.292 0.274 0.257 0.238 0.223
𝑇𝑇𝑇𝑇 0.204 0.122 0.222 0.178 0.158 0.143 0.132 0.124 0.120 0.117 0.116

(0.1,0.9,0) (0.9,0,0.1) (0.8,0,0.2) (0,7,0,0.3) (0.6,0,0.4) (0.5,0,0.5) (0.4,0,0.6) (0.3,0,0.7) (0.2,0,0.8) (0.1,0,0.9) (0,0.1,0.9)
TCT 0.139 0.001 0.007 0.020 0.052 0.106 0.178 0.263 0.348 0.423 0.458
MCT 0.001 0.221 0.197 0.172 0.145 0.123 0.107 0.103 0.119 0.145 0.138
CTV 0.207 0.344 0.313 0.275 0.216 0.150 0.092 0.046 0.017 0.004 0.002
𝑇𝑇𝑇𝑇 0.116 0.189 0.172 0.155 0.138 0.126 0.125 0.137 0.161 0.191 0.200

(0,0.2,0.8) (0,0.3,0.7) (0,0.4,0.6) (0,0.5,0.5) (0,0.6,0.4) (0,0.7,0.3) (0,0.8,0.2) (0,0.9,0.1) (0.1,0.1,0.8) (0.1,0.2,0.7) (0.1,0.3,0.6)
TCT 0.424 0.389 0.355 0.323 0.294 0.266 0.238 0.216 0.389 0.354 0.320
MCT 0.107 0.080 0.057 0.039 0.025 0.014 0.006 0.001 0.106 0.076 0.052
CTV 0.007 0.016 0.029 0.044 0.061 0.082 0.107 0.131 0.010 0.021 0.035
𝑇𝑇𝑇𝑇 0.180 0.162 0.147 0.135 0.127 0.121 0.117 0.116 0.168 0.150 0.136

(0.1,0.4,0.5) (0.1,0.5,0.4) (0.1,0.6,0.3) (0.1,0.7,0.2) (0.1,0.8,0.1) (0.2,0.1,0.7) (0.2,0.2,0.6) (0.2,0.3,0.5) (0.2,0.4,0.4) (0.2,0.5,0.3) (0.2,0.6,0.2)
TCT 0.286 0.257 0.229 0.200 0.170 0.313 0.281 0.249 0.219 0.189 0.162
MCT 0.033 0.020 0.010 0.003 0.001 0.079 0.051 0.031 0.018 0.009 0.004
CTV 0.053 0.073 0.097 0.125 0.159 0.029 0.045 0.066 0.089 0.118 0.151
𝑇𝑇𝑇𝑇 0.124 0.117 0.112 0.109 0.110 0.140 0.126 0.115 0.109 0.105 0.106

(0.2,0.7,0.1) (0.3,0.1,0.6) (0.3,0.2,0.5) (0.3,0.3,0.4) (0.3,0.4,0.3) (0.4,0.3,0.3) (0.3,0.5,0.2) (0.3,0.6,0.1) (0.4,0.1,0.5) (0.4,0.2,0.4) (0.4,0.4,0.2)
TCT 0.133 0.233 0.205 0.177 0.150 0.112 0.125 0.107 0.156 0.134 0.094
MCT 0.003 0.064 0.039 0.023 0.014 0.027 0.010 0.010 0.065 0.041 0.022
CTV 0.194 0.062 0.084 0.111 0.144 0.173 0.182 0.217 0.111 0.139 0.210
𝑇𝑇𝑇𝑇 0.110 0.120 0.109 0.104 0.103 0.104 0.106 0.111 0.111 0.104 0.108

(0.4,0.5,0.1) (0.5,0.1,0,4) (0.5,0.2,0.3) (0.5,0.3,0.2) (0.5,0.4,0.1) (0.6,0.1,0.3) (0.6,0.2,0.2) (0.6,0.3,0.1) (0.7,0.1,0.2) (0.7,0.2,0.1) (0.8,0.1,0.1)
TCT 0.085 0.088 0.073 0.065 0.062 0.040 0.038 0.039 0.018 0.021 0.008
MCT 0.021 0.083 0.057 0.045 0.039 0.109 0.083 0.068 0.134 0.109 0.160
CTV 0.237 0.176 0.207 0.236 0.257 0.241 0.262 0.279 0.287 0.300 0.321
𝑇𝑇𝑇𝑇 0.114 0.115 0.112 0.115 0.119 0.130 0.128 0.129 0.146 0.143 0.163

three aspects of T BL including economy, environment, and so-
ciety. Each cluster is then divided into sub-clusters. Each sub-
cluster covers a specific area of impact of its cluster. Accord-
ingly, each sub-cluster is then divided to individual metrics that
specifically measure a single performance indicator. Once the
top-bottom structure is developed and all the individual met-
rics are measured, a bottom-up aggregation approach including
normalization and weighting is utilized to calculate FS S I.

Let γ ∈ {1, 2, 3} denote the index of clusters with 1 for econ-
omy, 2 for environment, and 3 for society. Zγ is the number of
sub-clusters in each cluster, therefore, ζγ ∈ {1, 2, ...,Zγ} denotes
sub-cluster ζ in cluster γ. Let Kγ,ζ denote the number of individ-
ual metrics of sub-cluster ζ in cluster γ, i.e. kζ,γ ∈ {1, 2, ...,Kγ,ζ}.

Recalling ND(x[k]
π ), at the metric level, we use M[k]

π,ζ,γ =

10(1−ND(x[k]
π )) to calculate the sustainability score of sequence

π for metric k. M[k]
π,ζ,γ ∈ [0, 10] normalizes each metric to a s-

cale of 0 to 10, where 0 is the worst performance and 10 is the
best performance in terms of sustainability. M[k]

π,ζ,γ attributes the
sustainability of an individual metric to its normalized devia-
tion. For example, MCT directly affects the production cost;
therefore, a solution with min(ND(x[2]

π )) generates the highest
sustainability score for production cost.

Once the top-bottom structure is developed and all the indi-
vidual metrics are measured, a bottom-up aggregation approach
by equations 9 to 14 is utilized to calculate FS S I. Equation 9 is
the aggregation of individual metrics sustainability score to the
sub-cluster sustainability index (S CL), where ω[ζ,γ]

k ∈ [0, 1] is
the weight assigned to the metric k of sub-cluster ζ in cluster γ.
Equation 10 imposes that the sum of all weights must be equal
1. Equation 11 is the aggregation of sub-cluster sustainability
indices to the cluster sustainability index (CL), where ω[γ]

ζ is
the weight of sub-cluster ζ in cluster γ. Equation 12 indicates
that the sum of sub-cluster weights must be 1. Equation 13 ag-
gregates cluster sustainability indices into FS S I, where, ω[γ] is
the weight of cluster γ. Equation 14 indicates that the sum of

cluster weights is equal to 1.
S CLπ,γ,ζ =

∑K
k=1 ω

[ζ,γ]
k M[k]

π,ζ,γ (9)
∑K

k=1 ω
[ζ,γ]
k = 1 (10)

CLπ,γ =
∑Zγ
ζ=1 ω

[γ]
ζ S CLπ,γ,ζ (11)

∑Zγ
ζ=1 ω

[γ]
ζ = 1 (12)

FS S Iπ =
∑3
γ=1 ω

[γ]CLπ,γ (13)
∑3
γ=1 ω

[γ] = 1 (14)

3. Case studies

To show the inconsistencies among objectives of min(TCT ),
min(MCT ), and min(CTV) and to verify the effectiveness of
balancing trade-offs among inconsistent objectives, we carry
out a series of case studies. The number of jobs n changes from
j = 5, ..., 10, resulting in six choices, number of machines m
changes from 3 to 19 (m = 2l + 1, l = 1, 2, ..., 9), yielding
nine choices. This configuration results in 54 combinations. For
each combination, 100 instances are randomly generated. The
processing times are randomly drawn from a uniform distribu-
tion in [1,99]. Therefore, in total we have 5400 instances. Giv-
en ωk changes from [0.0: 0.1: 1.0], we have 66 combinations
of three weights with

∑3
k=1 ωk = 1, i.e. Ω ∈ {Ω1,Ω2, ...,Ω66}.

The 66 minimization functions of min(TO[Ω]) cover the three
single-objective minimizations of min(TCT ), min(MCT ) and
min(CTV) with a weight equal to [1, 0, 0], [0, 1, 0], and [0,
0, 1], respectively. Since the number of jobs is relatively small
(n ≤ 10), we are able to use enumeration to find MAX(x[k]) and
MIN(x[k]) for all k as well as min(TO[Ω]) for each weight. Ta-
ble 1 shows the average normalized deviations for all 66 weight-
s. As it was intuitively expected, weights of [1, 0, 0], [0, 1, 0],
and [0, 0, 1] (single-objective optimization) generate no devi-
ations on min(TCT ), min(MCT ) and min(CTV), respectively,
but large deviations on the other objectives. Weight of [0.3, 0.4,
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0.3] generates the minimum value of AND(Ω), and it also pro-
vides a relatively wider variation range for each individual ob-
jective which makes it easier to control the process.

3.1. Inconsistencies among objectives

Figure 1 clearly shows that single optimization of
min(TCT ), min(MCT ), and min(CTV) are inconsistent with
each other, since there is no single point that yields the best val-
ue for all three objectives. In order to statistically confirm the
inconsistency among min(TCT ), min(MCT ), and min(CTV),
we perform Spearman’s rank correlation analyses for the se-
quences generating min(TCT ), min(MCT ), and min(CTV). Ta-
ble 2 shows the Spearman’s rank correlation coefficient (ρ)
between sequences. Small values of (ρ) confirms that the se-
quences generating minimum values for single objectives are
not significantly correlated.

Table 2: Spearman’s ρ among sequence for scheduling objectives
TCT vs. MCT TCT vs. CTV MCT vs. CTV

Spearman’s ρ 0.0823 0.2336 0.0528

a. TCT vs. MCT b. TCT vs. CTV

c. MCT vs. CTV d. TCT vs. MCT vs. CTV

Fig. 1: Scatter plots of normalized deviations of 66 weights, Pareto-
dominant solution are shown by red markers

3.2. Pareto dominance

In the case of multi-objective optimization with inconsistent
objectives, Pareto dominance is useful for decision making [17,
18]. For minimization problems, if x[A]

k and x[B]
k ∈ RK are two

vectors that measure a positive attribute (k) such as the utility of
decision A and B,respectively, decision A dominates decision B
if the following conditions are satisfied:

x[A]
k ≤ x[B]

k , ∀ k ∈ {1, 2, ..,K} (15)

x[A]
k < x[B]

k , ∃ k ∈ {1, 2, ..,K} (16)
Equation 15 states that decision A is not worse than decision
B in any dimension, while equation 16 states that decision A is
better than decision B at least in one dimension.Pareto optimal

outcome cannot be improved without sacrificing of at least one
objective. Pareto dominant solutions are shown in figures 1 by
red markers, each cross shows the data point obtained from one
weight. It is observed that there is no Pareto-optimal solution
when all three objectives are taken into consideration.

3.3. Process capability

Given inconsistencies among individual objective optimiza-
tions, and given different preferences on performance devia-
tions, it is rare to have a unique Pareto-dominant solution, but a
set of solutions, as shown in figure 1. Therefore, the question is
left: what solution should be used? In order to answer this ques-
tion, we utilize a series of statistical analyses including: S PC,
and capability analyses(cp,cpk). Table 3 provides the summary
of average performance and control limits (x̄-R charts) of those
weights with the best performance on single objectives and
the weight with min(AND(Ω)) i.e. [1,0,0],[0,1,0],[0,0,1], and
[0.3,0.4,0.3] respectively, for the sake of brevity the S PC chart
are not presented. Single objective optimization of min(TCT ),

Table 3: Average performance and control limits of all objectives
PI min(x[1]) min(x[2]) min(x[3]) min(x[4])

x-LCL

TCT 0.000 0.151 0.442 0.117
MCT 0.203 0.000 0.142 0.006
CTV 0.327 0.147 0.000 0.117

AND(Ω) 0.178 0.107 0.196 0.090

x̄

TCT 0.000 0.187 0.490 0.150
MCT 0.245 0.000 0.176 0.014
CTV 0.368 0.180 0.000 0.144

AND(Ω) 0.204 0.122 0.222 0.103

x-UCL

TCT 0.000 0.223 0.537 0.183
MCT 0.287 0.000 0.211 0.021
CTV 0.410 0.213 0.000 0.171

AND(Ω) 0.231 0.138 0.248 0.116

R-LCL

TCT 0.000 0.383 0.504 0.347
MCT 0.446 0.000 0.366 0.080
CTV 0.441 0.348 0.000 0.288

AND(Ω) 0.276 0.162 0.276 0.137

R

TCT 0.000 0.603 0.796 0.547
MCT 0.702 0.000 0.576 0.126
CTV 0.695 0.548 0.000 0.454

AND(Ω) 0.435 0.256 0.435 0.216

R-UCL

TCT 0.000 0.823 1.085 0.746
MCT 0.958 0.000 0.786 0.172
CTV 0.949 0.748 0.000 0.619

AND(Ω) 0.593 0.349 0.594 0.294
*LCL: Lower control limit, UCL: Upper control limit, x̄: Average, R: Variation range

min(MCT ), and min(CTV) generate no deviations on their in-
tended objective but large deviations on the others. On the
other hand, min(TO) not only provides the tightest bound on
AND(Ω) but also the second tightest on the other objectives. Let
B[PI]

min(x[k]) denote the difference between UCL[PI]
min(x[k])−LCL[PI]

min(x[k])
(the difference between upper and lower control limits), where
PI is the performance indicator with 1 for TCT , 2 for MCT ,
3 for CTV , and 4 for AND(Ω). min(x[k]) represents the opti-
mization objective with 1 for min(TCT ), 2 for min(MCT ), 3
for min(CTV), and 4 for min(TO). Also let µ[PI]

min(x[k]) denote the
average performance of optimization objective min(x[k]) on per-
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0.3] generates the minimum value of AND(Ω), and it also pro-
vides a relatively wider variation range for each individual ob-
jective which makes it easier to control the process.

3.1. Inconsistencies among objectives

Figure 1 clearly shows that single optimization of
min(TCT ), min(MCT ), and min(CTV) are inconsistent with
each other, since there is no single point that yields the best val-
ue for all three objectives. In order to statistically confirm the
inconsistency among min(TCT ), min(MCT ), and min(CTV),
we perform Spearman’s rank correlation analyses for the se-
quences generating min(TCT ), min(MCT ), and min(CTV). Ta-
ble 2 shows the Spearman’s rank correlation coefficient (ρ)
between sequences. Small values of (ρ) confirms that the se-
quences generating minimum values for single objectives are
not significantly correlated.

Table 2: Spearman’s ρ among sequence for scheduling objectives
TCT vs. MCT TCT vs. CTV MCT vs. CTV

Spearman’s ρ 0.0823 0.2336 0.0528

a. TCT vs. MCT b. TCT vs. CTV

c. MCT vs. CTV d. TCT vs. MCT vs. CTV

Fig. 1: Scatter plots of normalized deviations of 66 weights, Pareto-
dominant solution are shown by red markers

3.2. Pareto dominance

In the case of multi-objective optimization with inconsistent
objectives, Pareto dominance is useful for decision making [17,
18]. For minimization problems, if x[A]

k and x[B]
k ∈ RK are two

vectors that measure a positive attribute (k) such as the utility of
decision A and B,respectively, decision A dominates decision B
if the following conditions are satisfied:

x[A]
k ≤ x[B]

k , ∀ k ∈ {1, 2, ..,K} (15)

x[A]
k < x[B]

k , ∃ k ∈ {1, 2, ..,K} (16)
Equation 15 states that decision A is not worse than decision
B in any dimension, while equation 16 states that decision A is
better than decision B at least in one dimension.Pareto optimal

outcome cannot be improved without sacrificing of at least one
objective. Pareto dominant solutions are shown in figures 1 by
red markers, each cross shows the data point obtained from one
weight. It is observed that there is no Pareto-optimal solution
when all three objectives are taken into consideration.

3.3. Process capability

Given inconsistencies among individual objective optimiza-
tions, and given different preferences on performance devia-
tions, it is rare to have a unique Pareto-dominant solution, but a
set of solutions, as shown in figure 1. Therefore, the question is
left: what solution should be used? In order to answer this ques-
tion, we utilize a series of statistical analyses including: S PC,
and capability analyses(cp,cpk). Table 3 provides the summary
of average performance and control limits (x̄-R charts) of those
weights with the best performance on single objectives and
the weight with min(AND(Ω)) i.e. [1,0,0],[0,1,0],[0,0,1], and
[0.3,0.4,0.3] respectively, for the sake of brevity the S PC chart
are not presented. Single objective optimization of min(TCT ),

Table 3: Average performance and control limits of all objectives
PI min(x[1]) min(x[2]) min(x[3]) min(x[4])

x-LCL

TCT 0.000 0.151 0.442 0.117
MCT 0.203 0.000 0.142 0.006
CTV 0.327 0.147 0.000 0.117

AND(Ω) 0.178 0.107 0.196 0.090

x̄

TCT 0.000 0.187 0.490 0.150
MCT 0.245 0.000 0.176 0.014
CTV 0.368 0.180 0.000 0.144

AND(Ω) 0.204 0.122 0.222 0.103

x-UCL

TCT 0.000 0.223 0.537 0.183
MCT 0.287 0.000 0.211 0.021
CTV 0.410 0.213 0.000 0.171

AND(Ω) 0.231 0.138 0.248 0.116

R-LCL

TCT 0.000 0.383 0.504 0.347
MCT 0.446 0.000 0.366 0.080
CTV 0.441 0.348 0.000 0.288

AND(Ω) 0.276 0.162 0.276 0.137

R

TCT 0.000 0.603 0.796 0.547
MCT 0.702 0.000 0.576 0.126
CTV 0.695 0.548 0.000 0.454

AND(Ω) 0.435 0.256 0.435 0.216

R-UCL

TCT 0.000 0.823 1.085 0.746
MCT 0.958 0.000 0.786 0.172
CTV 0.949 0.748 0.000 0.619

AND(Ω) 0.593 0.349 0.594 0.294
*LCL: Lower control limit, UCL: Upper control limit, x̄: Average, R: Variation range

min(MCT ), and min(CTV) generate no deviations on their in-
tended objective but large deviations on the others. On the
other hand, min(TO) not only provides the tightest bound on
AND(Ω) but also the second tightest on the other objectives. Let
B[PI]

min(x[k]) denote the difference between UCL[PI]
min(x[k])−LCL[PI]

min(x[k])
(the difference between upper and lower control limits), where
PI is the performance indicator with 1 for TCT , 2 for MCT ,
3 for CTV , and 4 for AND(Ω). min(x[k]) represents the opti-
mization objective with 1 for min(TCT ), 2 for min(MCT ), 3
for min(CTV), and 4 for min(TO). Also let µ[PI]

min(x[k]) denote the
average performance of optimization objective min(x[k]) on per-
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formance indicator PI. From Table 3 we can obtain the follow-
ing inequalities which are also summarized in table 4:

µ[1]
[1] < µ

[1]
[4] < µ

[1]
[2] < µ

[1]
[3] (17)

B[1]
[1] < B[1]

[4] < B[1]
[2] < B[1]

[3] (18)

µ[2]
[2] < µ

[2]
[4] < µ

[2]
[3] < µ

[2]
[1] (19)

B[2]
[2] < B[2]

[4] < B[2]
[3] < B[2]

[1] (20)

µ[3]
[3] < µ

[3]
[4] < µ

[3]
[2] < µ

[3]
[1] (21)

B[3]
[3] < B[3]

[4] < B[3]
[2] < B[3]

[1] (22)

µ[4]
[4] < µ

[4]
[2] < µ

[4]
[1] < µ

[4]
[3] (23)

B[4]
[4] < B[4]

[2] < B[4]
[3] < B[4]

[1] (24)
Inequalities 24 and 23 state that min(TO) achieves minimum
average and the tightest bounds on AND(Ω), while inequali-
ties 18 to 22, state that min(TO) achieves the second smallest
average normalized deviation and the second tightest bounds
on the normalized deviations of the other three objectives. This
observation implies that minimizing trade-offs among inconsis-
tent objective leads to the minimum deviation from the ideal
point.

Table 4: Performance averages and bounds of objective functions
min(x[1]) min(x[2]) min(x[3]) min(x[4])
µ B µ B µ B µ B

TCT 0.000 0.000 0.187 0.072 0.490 0.095 0.150 0.066
MCT 0.245 0.084 0.000 0.000 0.176 0.069 0.014 0.015
CTV 0.368 0.083 0.180 0.066 0.000 0.000 0.144 0.054

AND(Ω) 0.204 0.053 0.122 0.031 0.222 0.052 0.103 0.026

In addition to SPC run charts, process capability indices, Cp

and Cpk, are also good to compare different production sched-
ules. Process capability index is the measure of the process ca-
pability to produce outputs that fall between the specification
limits. Given µ and σ as the mean and standard deviation of the
process outputs, Cp =

(US L−LS L)
6σ is the process capability index

that measures if the process is capable of producing outputs that
are centered around the center-line of the specification limits,
LS L and US L denote lower and upper specification limits re-
spectively. Cpk = min[ US L−µ

3σ ,
µ−LS L

3σ ] is a performance indicator
that measures if the mean value of process outputs falls between
the specification limits [19]. Given LS L and US L, greater val-
ues of Cp and Cpk imply that a process generate outputs which
are more centered with smaller variations.

To perform process capability analyses, we first need to de-
fine the specification limits of each performance indicator. E-
quations 25 and 26 represent the LS L and US L of performance
indictor PI using the performance of min(x[4]). This definition
not only provides a tight specification limits with only one stan-
dard deviation but also drives the specification limits towards 0
which is desirable for minimizing the deviation from the best
value for each PI. Table 5 shows the specification limits used
in this study.

LS L[PI] = max[0, µ[PI]
min(x[4]) − σ

[PI]
min(x[4])] (25)

US L[PI] = µ[PI]
min(x[4]) + σ

[PI]
min(x[4]) (26)

Table 5: Specification limits of performance indicators
min(x[4]) Specification limits
µ σ LSL USL

TCT 0.1504 0.1267 0.0237 0.2771
MCT 0.0138 0.0231 0.0000 0.0377
CTV 0.1439 0.1142 0.0297 0.2581

AND(Ω) 0.1027 0.0495 0.0532 0.1522

Given the specification limits shown by table 5, we calcu-
late Cp and Cpk for each objective min(x[k]). The results of the
capability analyses are shown by table 6.

Table 6: Capability results for trade-off balancing
PI min(x[1]) min(x[2]) min(x[3]) min(x[4])

Cp

TCT inf 0.32 0.22 0.34
MCT 0.19 inf 0.23 0.56
CTV 0.30 0.32 inf 0.32

AND(Ω) 0.22 0.32 0.20 0.34

Cpk

TCT -inf 0.23 -0.37 0.34
MCT -0.47 -inf -0.31 0.39
CTV -0.22 0.23 -inf 0.32

AND(Ω) -0.16 0.20 -0.22 0.34

It is observed that the single objective optimizations poor-
ly perform in terms of Cp and Cpk. min(x[4]) outperforms all
three single objective optimizations. The outputs of min(x[4])
not only centered around the average value but also provide
greater values of Cpk that means the process is better under con-
trol compared to the single objective optimizations. In order to
further evaluate the capability of different solutions, we have
provided the percentage of observations that fall above the up-
per specification limits (i.e. % > US L) in table 7. Lower values
of % > US L demonstrate that a process has greater capabili-
ty relative to the upper specification limit. We use % > US L
to evaluate the capability of solutions, because in a minimiza-
tion problem the objective is to minimize the deviations from
the best value. Therefore, those observations that fall above the
US L show large deviations from the best solution and are of
extreme importance in decision making. Table 7 shows the per-
formance of all objective functions in terms of % > US L for
all performance indicators, where Max − Min for each objec-
tive function shows the difference between the maximum and
the minimum values of % > US L.

Table 7: Percentage of observations greater than US L (% > US L)
PI min⁡(𝑥𝑥[1]) min⁡(𝑥𝑥[2]) min⁡(𝑥𝑥[3]) min⁡(𝑥𝑥[4])

% > 𝑼𝑼𝑼𝑼𝑼𝑼

TCT 0.00 21.71 86.37 15.33
MCT 91.91 0.00 82.48 15.57
CTV 73.66 24.33 0.00 16.54

𝑨𝑨𝑨𝑨𝑨𝑨̅̅ ̅̅ ̅̅ ̅(𝛀𝛀) 70.76 35.32 77.41 15.68
Min 0.00 0.00 0.00 15.33
Max 91.91 35.32 86.37 16.54

Max-Min 91.91 35.32 86.37 1.21

Table 7 indicates that balancing trade-offs (i.e. min(x[4]))
generates the most uniform results among all 4 optimization
functions in terms of % > US L for all 4 performance indic-
tors. Balancing tarde-offs drives the system performance to a
point that the deviations from the best value for all perfor-
mance indictors are fairly and uniformly small with the value
of Max−Min = 1.21%. On the other hand, single objective op-
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timizations poorly perform with large values of Max − Min.
min(x[1]) shows the worst performance among all objectives
with Max − Min = 91.91%.

3.4. Sustainability index

Following the scheme proposed in section 2, we propose a
basic decomposition structure for this case study represented
by table 8. Since in this case study our purpose is to show the
proof of concept, we only consider the most basic elements in
the decomposition structure.

Table 8: Top to bottom decomposition of FS S I
Index Cluster Sub-cluster Metric PI

FSSI

Economy Manufacturing
cost

Production cost MCT
Holding cost TCT

Environment Waste 
management CO2 emission MCT

Society Flow time Flow time TCT
Flow time variance CTV

We consider equal weights for individual metrics in each
sub-cluster, and also for sub-clusters in each cluster. For the
cluster weights, we change ω[γ] from [0.0:0.1:1], we have 66
combinations of weights with

∑3
γ=1 ω

[γ] = 1. Table 9 shows the
FS S I value of min(x[1]), min(x[2]), min(x[3]), and min(x[4]) for
all 66 combinations of ω[γ].

Table 9: FS S I for trade-off balancing
min(x[1]) min(x[2]) min(x[3]) min(x[4])

FSSI

µ 8.16 9.08 7.49 9.19
σ 1.10 0.67 1.29 0.58

max 8.78 10.00 8.23 9.86
min 7.55 8.16 6.67 8.23

min(x[4]) (i.e. balancing trade-offs) generates the highest av-
erage FS S I of 9.19 with the smallest standard deviation of
0.58. It also generates the highest minimum of 8.23 for FS S I.
These results indicate that trade-off balancing is the most sus-
tainable scheme among all the objective functions that we re-
viewed.

4. Conclusion and future work

Given an n-job, m-machines permutation flow shop schedul-
ing problem, we statistically showed that inconsistencies ex-
ist among three objectives of min(TCT ), min(MCT ), and
min(CTV). With inconsistencies it is impossible to simultane-
ously optimize all three objectives. Therefore, we proposed a
scheme of trade-off balancing that provides a meaningful com-
promise among inconsistent objectives by driving the system
performance towards a point with minimum deviations from
the best possible value of each objective. Statistical analyses
showed that balancing trade-offs provides a better control over
the individual objectives in terms of average, standard devi-
ation, Cp and Cpk compared to those of single objective op-
timizations that implies our scheduling method can get good
results to NP-complete scheduling problems. Moreover, based

on normalized deviations, we developed a flow shop schedul-
ing sustainability index (FS S I). Case study results showed that
balancing trade-offs provides the most sustainable solutions for
the flow shop scheduling problem. Our future work will be on
developing a comprehensive FS S I decomposition structure in
order to address various aspects of flow shop scheduling prob-
lem.

Acknowledgment

We appreciate support from the Department of Mechani-
cal Engineering and the Institute for Sustainable Manufacturing
(ISM) at University of Kentucky .

References

[1] Pinedo ML. Scheduling: theory, algorithms, and systems. Springer, 2016.
[2] Yenisey MM, Yagamahan B. Multi-objective permutation flow shop

scheduling problem: Literature review, classification and current trends.
OMEGA-Int J Manage S 2014;45:119–135.

[3] Garey MR, Johnson DS, Sethi R. The complexity of flowshop and jobshop
scheduling. MATH Oper Res 1976;1.2:117–129.

[4] Hoogeveen JA, Kawagushi T. Minimizing total completion time in
a two-machine flowshop: analysis of special cases. Math Oper Res
1999;24.2:887-910.

[5] Mosheiov G. Minimizing mean absolute deviation of job completion times
from the mean completion time. Nav Res Log 2000;47.8:657–665.

[6] De P, Gosh JB, Wells CE. On the minimization of completion time variance
with a bicriteria extension. Oper Res 1999;40.6:1148–1155.

[7] Kubiak W. Completion time variance minimization on a single machine is
difficult. Oper Res Lett 1993;14.1:49–59.

[8] Li W, Dai H, Zhang D. The relationship between maximum completion
time and total completion time in flowshop production. Procedia Manuf.
2015;1:146–156.

[9] Ye H, Li W, Abedini A. An effective and efficient heuristic for no-wait
flow shop production to minimize total completion time, Comput Ind Eng
2017;108:57–69.

[10] Garbie HI. Sustainability optimization in manufacturing enterprises, Pro-
cedia CIRP 2015;26:504–509.

[11] Ding JY, Song S, Wu C. Carbon-efficient scheduling of flow shops by
multi-objective optimization. Eur J Oper Res 2016;248.3:758–771.

[12] Mansouri SA, Aktas E, Besikci U. Green scheduling of a two-machine
flowshop: Trade-off between makespan and energy consumption. Eur J Op-
er Res 2016;248.3:772–778.

[13] Jawahir IS, Badurdeen F, Rouch KE. Innovation in sustainable manufac-
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