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RESEARCH ARTICLE

Tri-Variate Relationships among Vegetation,
Soil, and Topography along Gradients of
Fluvial Biogeomorphic Succession
Daehyun Kim1*, John A. Kupfer2

1 Biogeomorphology Research and Analysis Group, Department of Geography, University of Kentucky,

Lexington, KY, 40506, United States of America, 2 Department of Geography, University of South Carolina,

Columbia, SC, 29208, United States of America

* biogeokim@uky.edu

Abstract
This research investigated how the strength of vegetation–soil–topography couplings var-

ied along a gradient of biogeomorphic succession in two distinct fluvial systems: a forested

river floodplain and a coastal salt marsh creek. The strength of couplings was quantified as

tri-variance, which was calculated by correlating three singular axes, one each extracted

using three-block partial least squares from vegetation, soil, and topography data blocks.

Within each system, tri-variance was examined at low-, mid-, and high-elevation sites,

which represented early-, intermediate-, and late-successional phases, respectively, and

corresponded to differences in ongoing disturbance frequency and intensity. Both systems

exhibited clearly increasing tri-variance from the early- to late-successional stages. The

lowest-lying sites underwent frequent and intense hydrogeomorphic forcings that dynami-

cally reworked soil substrates, restructured surface landforms, and controlled the coloniza-

tion of plant species. Such conditions led vegetation, soil, and topography to show discrete,

stochastic, and individualistic behaviors over space and time, resulting in a loose coupling

among the three ecosystem components. In the highest-elevation sites, in contrast, distur-

bances that might disrupt the existing biotic–abiotic relationships were less common.

Hence, ecological succession, soil-forming processes, and landform evolution occurred in

tight conjunction with one another over a prolonged period, thereby strengthening cou-

plings among them; namely, the three behaved in unity over space and time. We propose

that the recurrence interval of physical disturbance is important to—and potentially serves

as an indicator of—the intensity and mechanisms of vegetation–soil–topography feedbacks

in fluvial biogeomorphic systems.

Introduction

There is a growing recognition of the reciprocal nature of vegetation–environment relation-
ships [1–5]. For example, riparian vegetation controls the cohesiveness, erosion, and transport
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of sediments, thereby affecting the size, shape, and stability of fluvial landforms, as well as the
geochemistryof river bank soil substrates [6–8]. These abiotic components then feed back to
determine habitat conditions and constrain the subsequent plant species interactions and vege-
tation dynamics through time. Therefore, vegetation, soil, and landforms are increasingly con-
sidered to behave as an intertwined complex that is materialized by their mutual interactions
under the combined operation of allogenic and autogenic processes [9–11]. These ideas have
been conceptualized as, to mention just a few, ‘ecosystem engineers’ that actively modify their
surrounding physical environment [12–14], ‘niche construction’ by which such modifications
increase the engineers’ chance of survival [15,16], and ‘biogeomorphic ecosystems’ in which
habitat settings, species assemblages, and matter/energy fluxes are all emergent properties of
organism–environment feedbacks [17]. This new biogeomorphic paradigm has beenmani-
fested especially at the land–water interface where dynamic hydrological processes drive the
active motion of water, air, and sediment, and accelerate the interactions between these physi-
cal factors and vegetation cover [18–22].

The purpose of this paper is to investigate how the strength of vegetation–soil–topography
couplings varies along the gradient of the fluvial biogeomorphic succession (FBS) model, origi-
nally developed by Corenblit et al. [10,23]. The model consists of four stages of biogeomorphic
succession (i.e., geomorphic, pioneer, biogeomorphic, and ecological), each being characterized
by a specific suite of interrelations between plant species and landform substrate (Fig 1b). The
first stage (the geomorphic stage) involves post-disturbance rejuvenation (e.g., following high-
magnitude flooding: [24]) where the formation and stability of landforms are determined pri-
marily by sediment cohesiveness and hydrodynamic forces that control the dispersal of plant
diaspores [25,26]. In the pioneer stage, these diaspores establish and germinate on newly cre-
ated bare surfaces. Geomorphology still exerts dominant allogenic controls on the survival and
growth of seedlings [27–29]. During the subsequent biogeomorphic phase, vegetation–environ-
ment feedbacks occur through the tight interplay between the biomechanical traits of plants
and the cohesiveness and shape of the substrate, which is mediated by the hydrogeomorphic
flows of matter and energy [18,30]. The final stage (the ecological stage) is characterized by a
disconnection from hydrogeomorphic disturbances, fluvial landform stabilization, and auto-
genic succession (i.e., biotic interactions dominate). This successional sequence can be
completely or partially reinitiated at any time depending on the magnitude and/or frequency
of major disturbance [31,32]. The potential efficacy of the FBS model has been discussed in a
wide range of systems, encompassing upland rivers [33–35], salt marshes [11,17], and lateral
moraines [36]. The model, however, has not been dealt with in the context of the strength of
vegetation–substrate relationships based on field data.

Given the distinct regimes of hydrogeomorphic disturbance among the four successional
phases, we predict that vegetation–soil–topography relationships are likely weak in the early
FBS stages and become stronger as succession proceeds toward later stages. In the early geo-
morphic and pioneer phases, the system’s substrate is generally dynamic and unstable due to
the short recurrence interval of physical disturbance (Fig 1b). Under such conditions, seedling
recruitment and soil-forming processes are highly stochastic [37], and time between distur-
bances is insufficient for the establishment of significant couplings among vegetation, soil, and
topography. In the later biogeomorphic and ecological stages, a tighter coupling is a more
probable outcome due to greater substrate stability resulting from the longer disturbance recur-
rence interval. At these later stages, the vegetation–substrate complex is shaped increasingly by
gradual, autogenic interactions among vegetation, soil, and topography, rather than by allo-
genic forces and randomness, which were predominant in earlier previous stages [38,39].
These predictions about the changing correlation structure between species and environment,
although appearing intuitive, have rarely been empirically tested along fluvial disturbance or
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successional gradients. In this paper, we address this knowledge gap along the FBS gradient for
two distinct fluvial systems: a bottomland hardwood floodplain forest and a coastal salt marsh
creek.We posit that this research could serve as a springboard for answering a broader, long-
standing question in ecology and Earth sciences: Does increasing biogeomorphic stability (i.e.,
coevolution of vegetation and substrate toward stabilization) lead to a unified or synchronized
behavior of biological and physical components over space? (see [40]).

Vegetation, soil, and topography are multivariate in nature. In many cases, ecologists exam-
ine the abundance of multiple (l) plant species across a number of plots. In these same plots,
they also acquire a set of soil data, composed ofm physical and chemical properties, as well as

Fig 1. Fluvial biogeomorphic succession model. (a) Approximate placement of the six sites of two study areas (floodplain forest and

salt marsh) along the gradient of fluvial biogeomorphic succession (FBS), (b) Simplified version of the FBS model developed by Corenblit

et al. [10,23].

doi:10.1371/journal.pone.0163223.g001
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topographic data of n landform parameters. To correlate these three distinct data domains (or
blocks), we employ three-block partial least squares (3-B PLS), which is a recent multi-block
technique that treats data blocks at the same level (i.e., symmetrical approach), rather than
dividing them into the groups of independent and dependent variables as in the conventional
regression framework [41]. The method, when extractingmajor components from a certain
block, seeks simultaneously to maximize the explained variance of the other blocks. Therefore,
the components originating from different blocks possess the greatest mutual linear predictive
power [42–44]. Although PLS has been underrepresented in ecological literature, there is a
growing body of researchers who demonstrate the usefulness of the approach, given its inher-
ent design to overcome the typical problems in ecological data: (1) the number of independent
variables is greater than the number of observations and/or (2) environmental variables are sig-
nificantly correlated with one another (e.g., [45,46]).

Materials and Methods

Data collection

A brief explanation of the two study areas and data acquisition is presented below. More
detailed information can be found in the supporting information of this paper (S1 Text, S1 and
S2 Figs).

The floodplain data set comes from a study of post-logging succession at the Bates Fork
tract within Congaree National Park, South Carolina, USA [47]. A total of 63 sample locations
were established at sites: (1) adjacent to the active natural levee of the Congaree River (n = 31),
(2) in backswamp locations of the floodplain interior between the current and abandoned
levees (n = 14), and (3) on and adjacent to a remnant natural levee along Bates Old River, an
abandoned channel of the Congaree River (n = 18) (S1 Fig). At each sample location, plant spe-
cies composition was recorded in three circular plots (2.82 m radius) spaced evenly along a 30
m transect by measuring the diameter at breast height (DBH, 1.37 m) of all individual stems
with DBH> 1 cm (S1 Fig). Within each plot, four soil cores were taken from the top 15 cm of
forest floor, composited, dried, and analyzed for pH, extractable phosphorus, potassium, cal-
cium, magnesium, zinc, copper, sodium, organic matter, cation exchange capacity (CEC),
exchangeable acidity (the amount of total CEC occupied by H+ and Al3+), and total percent
base saturation (the percent of exchange sites occupied by base cations). For each plot, two var-
iables related to topography, and by extension, flood regime, were determined and averaged by
location: (1) elevation, which was extracted from a high-resolution, LiDAR-derived digital ter-
rain model for the study area, and (2) the depth of inundation during a 98,000 cfs flood,which
was estimated using a flood inundation model (HEC-RAS) [47]. Our application to conduct
research at Congaree National Park was submitted to Bill Hulslander (Chief of Resources and
Science at the park) and approved by the National Park Service.Data collection did not involve
endangered or protected species.

The study marsh is located at the Skallingen peninsula in southwestern Denmark (S2 Fig)
and shows a complex network of tidal channels, most actively migrating through bar deposi-
tion and cutbank erosion across the marsh’s platform [48]. In the summer of 2006, we selected
11 point bars that were consideredmore or less representative of the cross-channel topogra-
phies at the marsh in terms of creek width, sinuosity, and depth (S2 Fig). From each bar, a line
transect (ca. 25 m in length) was established perpendicular to the streamline. The transect fully
encompassed three distinct topographic zones: newly deposited point bar, bank levee, and
inner marsh field (or marsh interior). Along each transect, a total of 9–10 locations were cho-
sen for soil and topographic surveys. Soil properties examined were soil pH, bulk density, elec-
trical conductivity, nitrate, phosphorus, potassium, calcium,magnesium, sulfur, and sodium.

Biogeomorphic Feedback in Fluvial Systems
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Also, two topographic variables were identified: surface elevation and distance to the channel.
In this case, distance was regarded as a proxy for sedimentation rate [49,50]. At each location,
two replicate square quadrats (1 m × 1m, each subdivided into 25 grids) were established for
recording the frequency of each vascular plant species present. The frequencies, varying from 0
to 25, from these quadrats were then averaged. Overall, species frequency data have been col-
lected from 102 plots across the three sites: 26 in point bar, 41 in marsh platform, and 35 in
bank levee. No specific permissions were required for these research activities at Skallingen,
because the marsh was a public area. Data collection at the field did not involve endangered or
protected species.

Placing study sites along the FBS gradient

The three Congaree River floodplain sites captured a gradient of conditions related to differ-
ences in surface elevation, hydroperiod, geomorphic setting, and distance to the main-stem
channel (see S1 Text, S1 and S2 Tables for more details). All three were clear cut at roughly the
same time and were undergoing post-logging succession, albeit at different rates and along dif-
ferent successional trajectories [47]. Assuming that these among-site environmental heteroge-
neities have influenced the rate of vegetation dynamics, we differentiated the three sites along
the FBS gradient as follows. Locations at the active levee site were situated on a meander scroll
complex just beyond the margin of the currently active natural levee (S1 Fig). These sample
locations were at the lowest elevations, closest to the main river, and experienced the greatest
level of flood-associateddisturbance. Vegetation was dominated by early-successional species,
with the greatest component of shrubs and vines of any of the three sites. Given the hydrogeo-
morphic setting, substrate instability, and vegetational characteristics, we determined that the
active levee site could be placed somewhere between the late-pioneer and the early-biogeo-
morphic phases (Fig 1a). The remnant levee site was on the natural levee of a meander bend
which had been abandoned in the 1850s. This site was at the highest elevation and, thus, under-
went the least frequent inundation that might occasionally induce overbank sedimentation.
Regrowth was dominated to a much greater degree by regeneration of mid- to late-successional
species (e.g.,Quercus and Carya) more commonly associated with upland and transitional sys-
tems than at the active levee site. Considering the long time since abandonment, substrate sta-
bility, and anticipated maturity, this system could be best placed in the late-biogeomorphic or
the early-ecological stage. The hydrogeomorphic conditions (i.e., elevation, hydroperiod, and
disturbance regime) and ecological communities of the backswamp site in the floodplain inte-
rior were intermediate between those of the current and abandoned levees. Therefore, we pos-
ited that this site represented the intermediate-biogeomorphic stage.

Among the three site types of the Skallingen salt marsh (i.e., point bar, platform, and levee),
the point bar was at the lowest elevation and experienced the most frequent and deepest sub-
mergence by sea water during high tidal flows. Furthermore, this was where dynamic reworking
and deposition of sediments happened to modify the existing landforms and substrate availabil-
ity. Only those early-successional species (e.g., Spartina anglica, Puccinellia maritima, Salicornia
herbacea, and Suaeda maritima) that were tolerant to such unstable conditions could colonize
and reproduce at point bars [11,51]. Hence, we designated the point bars of Skallingen as
belonging to the pioneer stage of the FBS (Fig 1a). By contrast, natural levees were situated at
the highest elevation and most free from the direct impacts of fluvial–geomorphic creek pro-
cesses. Their stable substrate allowed the establishment of high-marsh plants such as Festuca
rubra, Artemisia maritima, and Juncus gerardii. We considered that the levees could be placed
somewhere from the late-biogeomorphic to the early-ecological phases of the FBS.Marsh plat-
forms were at the intermediate elevation among the three sites and characterized by a dense
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cover of both herbaceous (e.g., Limonium vulgare) and shrub (e.g.,Atriplex portulacoides) spe-
cies. Here, strong positive biotic–abiotic feedbacks were common whereby the dense vegetation
cover effectively trapped and stabilized suspended silty and clayey particles during waterlogging,
thereby increasingmarsh surface elevation. Moreover, individual plants provided organic mat-
ter to the marsh floor and ameliorated soil salinity levels [48,52,53]. These, in turn, benefited the
vegetation growth.We determined that the platforms represented the early- to mid-biogeo-
morphic successional stage.

Statistical procedure for 3B-PLS

In each of the six data sets (three from the Congaree River floodplain and three from the Skal-
lingen salt marsh), vegetation, soil, and topography blocks were of different size; namely, the
number of variables in each block was different. For example, the point bar data from Skallin-
gen consisted of seven plant species, 10 soil physical and chemical properties, and two topo-
graphic parameters. To scale these varying block sizes (BS) into 1, the following modification
was applied for each data value (DV) within each block (adapted from [54]):

DV �
ffiffiffiffiffiffiffiffiffiffi
1=BS

p
ð1Þ

After this data pre-processing, the first stage of 3-B PLS was to perform a principal compo-
nent analysis (PCA) for each block and extract the first principal components of vegetation,
soil, and topography. In this paper, these components were called the starting three unit vec-
tors, one each for vegetation, soil, and topography blocks:Uv, Us, and Ut, respectively. Treating
these unit vectors as linear combinations, we computed:

sv ¼ Xv � Uv

ss ¼ Xs � Us

st ¼ Xt � Ut

ð2Þ

where Xv, Xs, Xt indicated the original vegetation, soil, and topography data blocks, respec-
tively. In other words, X was a data matrix withN rows (samples) and k columns (variables or
species) (i.e.,X = N × k). Normalizing each s to sample variance 1, we then calculated the corre-
lations (r) among sv, ss, and st in pairs:

rvs ¼ correlationðsv; ssÞ

rst ¼ correlationðss; stÞ

rtv ¼ correlationðst; svÞ

ð3Þ

After this first iteration of 3-B PLS, we began the second iteration by updating the original
unit vectors,Uv, Us, and Ut, based on the inter-block correlation structure as follows:

Uv  Xvðrvsss þ rtvstÞ

Us  Xsðrstst þ rvssvÞ

Ut  Xtðrtvsv þ rstssÞ

ð4Þ

These new unit vectors represented the summation of “predictions of the individual vari-
ables using combinations of the scores s with the correlations r as weights” ([41], p. 185).
We then returned to Eq 2 in order to re-iterate these optimization procedures until we have
acquired stable correlation coefficients (rvs, rst, and rtv) that did not vary between iterations
(see Fig 5 of [46] for an example). At such convergence, the final vectors,Uv,Us, and Ut, were
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designated as the first singular axes representing the data blocks of vegetation, soil, and topog-
raphy, respectively.

These singular axes are conceptually and statistically distinct from principal components in
that a PCA extracts principal components from the internal correlation structure within each
block of data without considering the covariation across data domains. Each principal compo-
nent thus maximally represents the overall pattern of only a given data block. In contrast, 3-B
PLS yields the singular axes of a data block based on the weighted combination of the other two
blocks as expressed in Eq 4. Each singular axis should therefore represent the correlations of
the elements of a given data block with other blocks.

In this paper, our analysis and results are concerned primarily with the first singular axes
that have the greatest mutual correlation among vegetation, soil, and topography blocks. How-
ever, if interested, one can also extract the second (and higher) axes by applying the same pro-
cedure, explained above, to the residuals after the first singular vectors have been regressed out
of the original data blocks. An example Microsoft Excel1 implementation of the 3B-PLS proce-
dure is given in the supporting information (see S1 File).

Estimating bi-variance and tri-variance

The strength of vegetation–soil–topography couplings along the FBS gradient was conceptual-
ized and quantified as bi-variance and tri-variance (for more details, see [46]). Bi-variance indi-
cates the amount of the covariation between any two data blocks, that is, between any two
singular axes of vegetation, soil, and topography (β+γ+δ+z in Fig 2). Tri-variance is the amount
of the common variance shared by all of the three singular axes (δ). Lastly, uni-variance is the
variance in a data block that is unrelated to the other two blocks (i.e., unexplained variance or
“error” in standard parametric statistics; α, ε, and η).

In the biogeomorphic feedback framework employed in this research, vegetation, soil, and
topography can each be treated as either independent or dependent variables. For example, the
unexplained variance of topography (α) was estimated by designating the singular axis of
topography as the dependent variable and those of soil and vegetation as the independent vari-
ables. To calculate β and γ, we employed the concept of extra sums of squares (ESS) that mea-
sured the marginal reduction in the residual sum of squares that occurred due to the addition
of an independent variable to the existing regression model [46]. Put another way, if vegetation
was already included as an independent variable in a regression model, ESS computed how
much additional variation of topography would be explained after adding soil as a new inde-
pendent variable. This additional variation was equivalent to the pure effect of soil on topogra-
phy (β), excluding that of vegetation. By switching the role of soil and vegetation (i.e., this time,
soil as an existing independent variable in the regression model and vegetation as a newly-
added independent variable), ESS calculated γ, or the pure effect of vegetation on topography,
excluding soil’s effect. The tri-variance (δ) was then calculated by subtracting α, β, and γ values
from the total sums of squares (TSS) of topography. The other variances, ε, z, and η, were esti-
mated following the same procedure explained above. Finally, we expressed these raw variance
values in proportion (%) to TSS:

Final variance ð%Þ ¼ 100 � ðRaw variance=TSSÞ ð5Þ

All of these procedures were conducted using R 2.14.2 [55]. An example R-code for this pro-
cedure is given in the supporting information (see S2 File).

Biogeomorphic Feedback in Fluvial Systems
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Fig 2. Representation of bi-variance (β+γ+δ+ζ, all in %) and tri-variance (δ, in %) in vegetation–soil–

topography relationships. Symbols, α, ε, and η, represent uni-variances. The three circles here are of the same

size because the corresponding three singular axes have been standardized (see text).

doi:10.1371/journal.pone.0163223.g002
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Constructing Venn diagrams

We characterized the changing bi- and tri-variate relationships among vegetation, soil, and
topography along the FBS gradient using Venn diagrams. To best reflect potentially varying
values of α through η (Fig 2), we generated proportional circular Venn diagrams for each of the
six study sites using a statistical loss function and a minimization procedure developed by Wil-
kinson [56]. This approach has been increasingly used for both exploration and inference on
real data sets. We employed an R functionvenneuler(), which was available as a package
in CRAN (www.r-project.org). In each site, the three circles—one each for the singular axis of
vegetation, soil, and topography—should be of the same size because the corresponding three
singular axes had been standardized before estimating the proportions.

Results

General overview

The topographic, edaphic, and vegetational characteristics in each of the floodplain forest and
the salt marsh creek sites have already been described in our previous publications (e.g.,
[47,48]). The new contribution of this present work is discussing the biogeomorphic couplings
among these biotic and abiotic factors across within-system succession gradients. The previous
publications did not examine such couplings at such a detailed level. In this paper, we provide
the detailed information of inter-site physical and biological differences in S1 and S2 Tables. A
brief overview follows below.

Most noticeable and relevant to this research was the significant differentiation of elevation
ranges among the three sites of both study areas (Fig 3; P< 0.0001 based on the one-way analy-
sis of variance for each study area). In the Congaree River floodplain sites, elevation increased
progressively from the active levee to backswamp to remnant levee sites. Reflecting this eleva-
tion trend, obligate wetland species were most dominant at the active levee and backswamp
sites (e.g.,Quercus lyrata and Carya aquatica), while the remnant levee site contained a much
greater component of facultative and facultative wetland species (e.g., Fraxinus pennsylvanica
and Platanus occidentalis; S1 Table).

Similarly, vegetation between sites was highly differentiated across the salt marsh creeks on
the basis of elevation and related gradients (S2 Table). The low-lying point bar sites showed
much higher occurrence probabilities of pioneer plants (Puccinellia, Suaeda, Salicornia, and
Spartina) than the platform and levee sites. The bar sites, however, almost lacked high-marsh
plants (Festuca, Artemisia, and Juncus), which predominated the natural levee site. The plat-
form site was most diverse in species composition with a high proportion of mid-marsh plants
(especially, Atriplex) and a lingering presence of pioneers and Artemisia.

Bi-variance and tri-variance along the FBS gradient

There were striking similarities between the two study areas in trends of bi-variance and tri-
variance values along the FBS gradient (Fig 4). Most notably, tri-variance increased from the
active levee site (21.5%), to the backswamp site (26.4%), to the remnant levee site (50.9%) in
the floodplain forest, and from the point bar site (9.9%), to the platform site (16.3%), to the nat-
ural levee site (58.3%) in the marsh creek. This increasing pattern corresponded to that of sur-
face elevation (Fig 3) and the implied gradients of disturbance, mentioned in sectionPlacing
study sites along the FBS gradient.

Like tri-variance, bi-variance was greatest at the highest-elevation sites: the remnant levee
site at the floodplain forest (91.0%) and the marsh levee site at Skallingen (83.8%). The lowest
bi-variances, however, were detected at the mid-elevation sites (57.5% at the floodplain
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backswamp and 46.5% at the marsh platform), not at the lowest-lying sites (58.2% at the active
floodplain levee and 59.6% at the marsh point bar). It should be noted that such lowest bi-vari-
ance values of the backswamp and marsh platform sites were caused primarily by the very low
pure bi-variance between topography and vegetation at these sites (9.4% and 2.8%, respec-
tively). At the other four sites, the pure topography–vegetation bi-variance was generally high,
at least 18.4% and even up to 48.0%.

Discussion

The tri-variances estimated from the three sites in each study area support our hypothesis that
the strength of vegetation–soil–topography couplings increases along the FBS gradient. This
further implies that the recurrence interval of physical disturbance is important to—and poten-
tially serves as an indicator of—the intensity and mechanisms of biotic–abiotic feedback in flu-
vial biogeomorphic systems. Situated at the lowest elevations, the active levee site along the
Congaree River floodplain and the point bar site at the Skallingenmarsh undergo the most
frequent and intense hydrogeomorphic forcings, which dynamically rework soil substrates,
restructure surface landforms, and control the mortality and colonization of plant species.
Along the Congaree River, these effects are compounded by high sedimentation rates that

Fig 3. Elevation (m above sea level) range of each site of two study areas (floodplain forest and salt marsh).

doi:10.1371/journal.pone.0163223.g003
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constantly reshape soil conditions and act as a stress mechanism on regenerating vegetation.
These dynamics foster constant disturbance conditions, under which vegetation, soil, and
topography are most likely to show discrete, stochastic, and individualistic behaviors over
space and time. Therefore, a loose coupling among the three factors would be expected.

Fig 4. Proportion (%) of variances estimated from the relationships among the first singular axes of vegetation, soil, and

topography, identified by 3-B PLS for the floodplain forest data (a–c) and for the salt marsh data (d–f). The three circles of each site

are of the same size because the corresponding three singular axes had been standardized before estimating the proportions.

doi:10.1371/journal.pone.0163223.g004
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The remnant levee and marsh levee sites, in contrast, exhibit the low recurrence interval (or
near-rarity) of disturbance events that may disrupt the existing vegetation–soil–topography
relationships there. Hence, ecological succession, soil-forming processes, and landform evolu-
tion will occur in tight conjunction with one another over a prolonged time period, thereby
maximizing the level of coupling among them. To wit, the three behave in unity over space and
time.With surprising consistency, all of the six tri-variances calculated in this paper demon-
strate that these ideas potentially hold true across the biogeomorphic succession gradient in
both coastal and riparian environments.

The lowest bi-variances at the intermediate-elevation sites—caused by the very low pure bi-
variance between topography and vegetation at these sites—can be explained given their
poorly-draining conditions. In the Congaree River floodplain, the backswamp site soils are
classified as poorly-drained loams, whereas those of the active and remnant levee sites are mod-
erately well-drained, silty-clay loams [47,57]. In the salt marsh area, the platform site consists
primarily of silty and clayey materials, thereby delaying the percolation of sea water during ebb
tides, but the point bar and levee sites are composedmostly of sandy substrates, inducing a
rapid percolation process [58,59]. Within poorly-drained locations, such as those at the back-
swamp and marsh platform sites, hydrologic factors that are critical to plant growth likely vary
over space, in little conjunction with micro-scale topographic relief patterns (e.g., low differ-
ence in moisture between local mounds and depressions due to delayed percolation). This
would potentially reduce the strength of the correlation between topography and vegetation. If
the backswamp and marsh platform sites had been well-drained as in the other four sites,
much tighter topography–vegetation couplings would likely have been detected because the
submergence regime would more closely track the ambient topographic variations. Then, such
increased correlations between topography and vegetation could have augmented the overall
bi-variances of these mid-elevation sites, possibly beyond those of the lowest-lying sites (i.e.,
the active levee and point bar).

Our results—in particular, those related to changing biotic–abiotic relationships along suc-
cessional and disturbance gradients—support previous studies that have documented the
greater importance of stochastic processes during initial successional stages (e.g., [60]) and
bear an important implication for species distributionmodeling (SDM) in future research [61–
65]. Previous SDM studies have often postulated, or even taken for granted, the existence of
significant couplings between community structure and environmental factors, thereby explic-
itly used soil and topographic attributes as independent variables for predicting species distri-
bution. However, we suggest avoiding heavy reliance on such independent variables during
relatively early or retarded stages of biogeomorphic succession when a system is highly prone
to external hydrodynamic pulsing and disturbance. Under such conditions, seedling recruit-
ment and soil-forming processes are highly stochastic [7,37], and results of SDM are likely to
be spurious, rather than representing real causality in vegetation–environment relationships
[66–68].

Indeed, this same argument was made by Kim and Arthur [69], who posited that special
care should be taken when performing SDM “immediately after a fire disturbance or where
disturbance has a high frequency” (p. 669). In an oak-dominated temperate forest of eastern
Kentucky, USA, Kim and Arthur [69] investigated how the strength of tree species–environ-
ment couplings varied in response to recurring prescribed fire events (2–4 times) across 32
plots from 2002 and 2010. They found that, before 2002, the forests had maintained close
biotic–abiotic relationships in the long absence of major fires for more than 30 years. Since
2002, however, a dramatic weakening of such relationships has been observed during and
immediately after the periods of fire disturbance. Furthermore, after the devastative eruption
of Mount St. Helens, Washington, USA in 1980, researchers found little correlation of
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recovering vegetation with environment in the early stages of primary succession, presum-
ably because stochastic recruitment and chance survival were playing the leading roles
[70,71]. All of these empirical, consistent evidences lead us to generalize that patterns of vege-
tation–environment relationships are contingent upon the magnitude, frequency, and timing
of disturbance during the course of system dynamics over a wide range of ecological settings
(e.g., river floodplain, tidal marsh creek, mountain forest, and post-volcanism regenerative
slope; see also [46,72–74]). We propose that bi-variance and tri-variance provide useful
insights into changing relationships among different data domains across scales and distur-
bance regimes.

We recognize that all successional pathways do not necessarily follow the linear, four-phase
sequence described in the FBS model (Fig 1). Rather, a more realistic perspectivewould involve
multiple-pathways that account for the possibility of nonlinear, stochastic adjustments of a flu-
vial biogeomorphic system responding to, for example, changes in discharge, erosion, and in-
stream accumulation of large woody debris [75–79]. We, however, still believe that the original
FBS is a useful simplification of the actually complex, multi-faceted nature of fluvial landscape
dynamics (see [10,23]) and that the model will therefore serve as an important springboard for
better understanding and predicting varying patterns of vegetation–soil–topography relation-
ships over time.

In our three-blockVenn diagram approach, it does not matter whether one designates vege-
tation, soil, and topography as dependent or independent variables. That is, the approach treats
the three components at the same level and, hence, it is symmetrical.We posit that this idea
closely accords with an ever-increasing perspective in ecology: recursive feedbacks among bio-
logical, edaphic, and terrain factors. Traditionally, many ecological studies have been predomi-
nantly concernedwith one-way relationships of vegetation, soil, and topography, focusing on
the influence of one factor upon another. Such a unidirectional logic necessitated a division of
these components into groups of dependent and independent variables, followed by the appli-
cation of typical asymmetricalmethods, like multiple regression and direct gradient analysis
[80–83]. Recently, recognizing the importance of the reciprocal nature of vegetation–soil–
topography linkages (see Introduction), many ecologists have redirected their attention from
discrete one-way couplings to integrated two- or three-way interactions [1,4,11,13,40]. Despite
this paradigm shift, we still seem to be methodologically constrained by conventional multivar-
iate statistics, and face a challenge regarding how to divide our data into groups of dependent
and independent variables. Our approach avoids such a mono-directional assumption struc-
ture by presenting Venn diagrams that fully reflect the idea of mutual feedbacks among vegeta-
tion, soil, and topography at the same level in a range of fluvial biogeomorphic systems. A
conceptual and methodological shift like we are attempting in this paper will be increasingly
important as ecology grows even more integrative.

Supporting Information

S1 Fig. CongareeRiver floodplainarea. (a) Geographic location of the floodplain sites at Con-
garee National Park, South Carolina, USA. The small rectangular box indicates (b), in which
32 sample transects (yellow lines) were located in three different topographic settings (active
levee, remnant levee, backswamp) at the Bates Fork Tract. (c) Sampling vegetation in a 2.82 m
radius circular subplot at one of the backswamp sites. (d) Field design for locating sample sub-
plots along a 50 m-transect (thick, black arrow) extending from the forest edge into early
regrowth in clear cuts. Sub-plots associated with Plots 1 and 2 were located 5–10 m and 30–50
m into the clear cut, respectively.
(PDF)
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S2 Fig. Salt marsh creek area. (a) Geographic location of the Skallingen salt marsh in Den-
mark. The small rectangular box indicates (b) in which 11 point bars of this research are situ-
ated. (c) One of the 11 bars (P8). (d) Field design for sampling vegetation, soil, and topography
across each of the 11 bars.
(PDF)

S1 File. Procedure for 3B-PLS.
(XLS)

S2 File. Procedure for estimating extra sums of squres.
(TXT)

S1 Table. Average values of surface elevation, inundation depth, soil properties, and
selectedplant species abundance (18 most common only; basal area, cm2 ha–1) at each
study site in the Bates Fork tract of CongareeNational Park, South Carolina, USA.
(PDF)

S2 Table. Average values of surface elevation, distance to the creek, soil properties, and all
plant species abundance (% frequency)at each study site of the Skallingen salt marsh, Den-
mark.
(PDF)

S1 Text. Study areas and data collection.Description of the areas studied (temperate flood-
plain and salt marsh creek) and field methods.
(PDF)
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