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RESEARCH ARTICLE

Estrogen Receptor Alpha (ESR1)-Dependent
Regulation of the Mouse Oviductal
Transcriptome
Katheryn L. Cerny1, Rosanne A. C. Ribeiro1, Myoungkun Jeoung2, CheMyong Ko3, Phillip
J. Bridges1,2*

1 Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States of
America, 2 Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536, United States of
America, 3 Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL
61802, United States of America

* phillip.bridges@uky.edu

Abstract
Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian ovi-

duct, however ESR1-dependent regulation of the transcriptome of this organ is not well

defined, especially at the genomic level. The objective of this study was therefore to investi-

gate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using

transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of

ESR1. Oviducts were collected from ESR1KO andWT littermates at 23 days of age, or

ESR1KO andWTmice were treated with 5 IU PMSG to stimulate follicular development

and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted

from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430–2.0 arrays

(n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the

expression of selected mRNAs by real-time PCR. Following microarray analysis, a statisti-

cal two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially

expressed transcripts (DEG’s, P < 0.01). Genotype affected the expression of 2215 genes,

treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected

the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated func-

tion, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG’s in

the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly

enriched GOmolecular function categories included binding and catalytic activity. Signifi-

cantly enriched GO cellular component categories indicated the extracellular region. Signifi-

cantly enriched GO biological process categories involved a single organism, modulation of

a measurable attribute and developmental processes. Bioinformatic analysis revealed

ESR1-regulation of the immune response within the oviduct as the primary canonical path-

way. In summary, a transcriptomal profile of estradiol- and ESR1-regulated gene expres-

sion and related bioinformatic analysis is presented to increase our understanding of how

estradiol/ESR1 affects function of the oviduct, and to identify genes that may be proven as

important regulators of fertility in the future.
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Introduction
Gamete storage and maturation, fertilization, and early embryonic development occur in the
oviduct. Ovarian-derived estradiol is a known regulator of a oviductal function, modulating
contraction of its smooth musculature [1,2] and secretion by its epithelial cells [3,4], with the
transcription factors estrogen receptor-α (ESR1) and estrogen receptor-β (ESR2) both
expressed within this organ. ESR1 has been localized to ciliated and secretory epithelial cells,
stromal cells, as well as smooth muscle cells of the oviduct [5,6,7], whereas ESR2 appears to be
largely confined to ciliated epithelial cells [6]. Immunoreactivity of both receptor subtypes to
the nucleus, cytoplasm and plasma membranes [8] indicative of both genomic and non-geno-
mic responses. Estradiol also acts as a regulator of ESR1 protein expression [5,6,7], estradiol
and ESR1 therefore acting as important transcriptional regulators where hormone bound
receptors target the estrogen responsive element (ERE) on the promoter region of their target
genes to either enhance or repress transcription [9,10].

Genome-wide reports on estradiol/ESR1-dependent regulation of oviductal function are
lacking. Our objective was therefore to identify estradiol/ESR1-dependent transcriptomal
changes in the oviduct using a mouse model that is deficient in ESR1 expression (ESR1KO),
testing the hypothesis that estradiol, acting through ESR1, affects the expression of mRNAs
within this organ. Immature mice were utilized to circumvent the reproductive phenotype
observed in ESR1KO mice observed following puberty, where females develop cystic ovaries
and dysfunction of the hypothalamic-pituitary axis due to elevated concentrations of circu-
lating estradiol [11,12]. Immature mice (ESR1KO and WT) were left untreated, or were
treated with PMSG to stimulate follicular development and the production of estradiol.
Microarray-based transcriptional profiling and bioinformatic analyses was therefore per-
formed using oviducts collected from mice bearing a global deletion of ESR1 and their wild-
type (WT) littermates, both before and after PMSG-induced production of ovarian
estradiol.

To provide the reader with full access to the transcriptomal dataset, the raw data (�.cel files)
plus the GCRMA-normalized and log2 transformed transcript data (Park Genomics Suite
[13]), have been deposited into the Gene Expression Omnibus (National Center for Biotech-
nology Information [14]) as accession number GSE72614 (http://www.ncbi.nlm.nih.gov/geo).

Materials and Methods

Animals and Tissue Collection
All animal procedures were approved by the University of Kentucky Institutional Animal Care
and Use Committee. Mice with a global deletion of ESR1 (ESR1KO) on a C57BL/6 background
were generated as previously described [15,16]. Briefly, two transgenic mouse lines were used;
male ESR1flox/flox were bred with female Zp3cre to produce a line expressing Cre recombinase
in the oocyte. The F1 heterozygotes (ESR1flox/+Zp3cre) were bred with ESR1flox/flox resulting in
ESR1flox/floxZp3cre mice, where females produce oocytes that are ESR1-. ESR1flox/floxZp3cre

females were then bred with ESR1flox/- males to produce ESR1KO progeny (ESR1-/- and
ESR1-/- ZP3Cre) or sibling controls (ESR1flox/- and ESR1flox/- ZP3Cre). Genomic DNA was
extracted from ear punches using the Easy DNA kit (Invitrogen, Carlsbad CA) to confirm
genotypes, as previously described [16]. Whole oviducts were collected for extraction of RNA
from immature female mice (ESR1KO and WT) killed at 23 days of age, or ESR1KO andWT
mice treated i.p. with 5 IU PMSG at 23 days of age and killed 48 h later.

ESR1-Regulation of the Oviducts' Transcriptome
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RNA Extraction
Oviducts were pooled from 3–4 mice per treatment group and genotype and total RNA was
extracted using TRIzol Reagent (Invitrogen, Carlsbad, CA) and purified through RNeasy col-
umns (Qiagen, Valencia, CA), as described before [15,17]. RNA was analyzed for quality and
quantified by spectrophotometry using an Eppendorf BioPhotometer Plus (Eppendorf, Ger-
many) as well as by visual distinction of 18S and 28S rRNA bands after ethidium bromide
staining in an agarose gel. Spectrophotometry revealed a mean 260/280 ratio of 1.75 ± 0.10 for
all samples. Aliquots of the same total RNA were used for both microarray and real-time
reverse-transcription PCR (real-time RT-PCR).

Microarray Hybridization
A total of 12 microarray hybridizations were performed using the Affymetrix Genechip Mouse
Genome 430–2.0 arrays (GeneChip; Affymetrix, Inc., Santa Clara, CA) according to the manu-
facturer’s instructions at the University of Kentucky Microarray Core Facility, as described
before [15,17,18]. Three replicates using different mice were generated for each treatment
group.

Microarray data were analyzed by importing raw expression intensity values (�.cel files) into
Partek Genomics Suite 6.6 (Partek Inc., St. Louis, MO), where the GC-Robust Multiarray Anal-
ysis algorithm (GC-RMA), quantile normalization, and Median Polish was applied for Gene-
Chip background correction, log base 2 transformation, conversion of expression values and
probeset summarization. Annotation was performed using NetAffx annotation database
(Release 34) on December 3rd, 2014. Quality of data was assessed using light intensity expres-
sion values on a per chip and per gene basis and visualized as box plots (Fig 1). Principal com-
ponent analysis (PCA) was conducted to determine the quality of the microarray hybridization
and visualize the general data variation among the chips (Fig 2, [13]).

Statistical, Gene Ontology and Pathway Analysis
To detect differentially expressed genes (DEG’s) and the interaction between genotype and
PMSG treatment, the normalized and background adjusted microarray data were imported
into Partek Genomics suite 6.6 (Partek, Inc.) and a two-way ANOVA performed with factor 1
being genotype and factor 2 being PMSG treatment. Statistical significance of difference for
each gene was set to P-value<0.01 with Benjamini-Hochberg multiple testing correction for
false discovery rate (FDR)< 0.13. Genes considered significant in the overall model (P< 0.01,
FDR< 0.13) were then subjected to pairwise comparisons using Fischer’s Least Significant Dif-
ference (LSD) test to estimate the significance of difference for each gene in each comparison.
Genes showing a mean difference in signal intensity of at least 2-fold change and a P-
value< 0.01 were considered differentially expressed.

With our primary objective of identifying estradiol/ESR1-dependent affects on the tran-
scriptome, the 1185 DEG’s identified in the oviducts of PMSG-treated ESR1KO versus PMSG-
treated WTmice was subjected to gene ontology and pathway analysis. Differentially expressed
genes were interrogated for their gene ontology (GO) classes using Partek Genomics Suite 6.6
(Partek, Inc.). Partek derives gene ontology classifications from geneontology.org and/or the
affymetrix database. GO hierarchies leads to the division of the gene list into significant classifi-
cations when the observed number of differentially expressed genes in a GO category is greater
than expected. Statistical analysis for significant classifications was performed using Fischer’s
exact test, right-tailed. A P-value< 0.01 is suggestive of an over representation of genes from
within a particular GO category, indicative of a functional effect.

ESR1-Regulation of the Oviducts' Transcriptome
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These same DEG’s (PMSG-treated ESR1KO versus PMSG-treated WT) were then subjected
to Ingenuity Pathway Analysis (IPA1, QIAGEN Redwood City, www.qiagen.com/ingenuity)
which uses multiple databases to extrapolate significant pathways based on the number of sig-
nificant genes within our list and known to be involved in a particular pathway. To determine
significant pathways in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT
treated mice, a Fischer’s exact test was performed with significance set to P-value< 0.05.

Real-time RT-PCR
Pathway analysis revealed that the most significant pathways were reflective of immune
responses. Therefore, to validate the microarray analysis, real-time RT-PCR was performed to
quantify the level of expression of a selection of immune-regulating mRNAs: chemokine (C-C
motif) ligand 5, Ccl5; cytochrome P450, family 26, subfamily A, polypeptide 1, Cyp26a; hema-
topoetic prostaglandin D synthase, Hpgds; interleukin 18 receptor accessory protein, Il18rap;
prostaglandin-endoperoxide synthase 2, Ptgs2; lecithin retinol acyltransferase (phosphatidyl-
choline-retinol O-acyltransferase), Lrat; S100 calcium binding protein A8, S100a8; and uropla-
kin 1A, Upk1a. Real-time RT-PCR was performed using an Eppendorf Mastercycler ep
realplex2 system (Eppendorf) using iQ SYBR Green Supermix (Bio-RAD, Hercules, CA), as
described before [15,17].

Briefly, cDNA was synthesized using the SuperScript III 1st Strand Synthesis System (Invi-
trogen), with 0.5 μg of RNA used for each reverse transcription reaction. Real-time RT-PCR

Fig 1. Box plot of the log2 expression signal for eachmicroarray chip.

doi:10.1371/journal.pone.0147685.g001
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was performed with a total volume of 25 μl per reaction, with each reaction containing 5 μL of
cDNA, 1 μL of a 10 μM stock of each primer (forward and reverse), 12.5 μL of 2× SYBR Green
PCRMaster Mix, and 5.5 μL of nuclease-free water. Gene expression was analyzed by the 2−ΔΔCT
method [19]. The typical dissociation curves of these cDNA, plusGapdh as the housekeeping gene
was confirmed. Oligonucleotide primer pairs (Integrated DNA technologies, Coralville, IA) are
described in Table 1.

For statistical analysis of real-time RT-PCR results, datasets were first tested for normality
and equal variance. When appropriate, data were transformed before statistical analysis. A
one-way ANOVA using SigmaStat 3.5 (Systat Software, Inc., Point Richmond, CA, USA) was

Fig 2. Principal component analysis (PCA) of the microarray-derived transcriptomal results for oviducts collected from ESR1KOmice andWT
littermates at 23 days of age, or treated with 5 IU PMSG at 23 days of age and collected 48 h later.Red: ESR1KO, Blue: WT, Green: PMSG-treated
ESR1KO, Purple: PMSG-treatedWT.

doi:10.1371/journal.pone.0147685.g002
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used to determine differences in levels of mRNA. When differences were detected a Fischer’s
Least Significant Difference (LSD) test was used to determine which genes differed.

Results

Detection of DEG’s by Microarray Analysis
After chip normalization, a statistical two-way ANOVA and pairwise comparison (LSD test)
was performed to generate a list of 2428 differentially expressed genes (P< 0.01, FDR< 0.13).
Genotype affected the expression of 2215 genes, PMSG affected the expression of 465 genes,
and Genotype x PMSG affected the expression of 438 genes (Table 2). Following removal of

Table 1. Primer sequences (forward and reverse) and PCR product sizes used for real-time RT-PCR analyses.

Name Accession # Primer sequence (5'–3') Product size

Ccl5 NM_013653.3 F: CCT CAC CAT ATG GCT CGG AC 121

R: ACG ACT GCA AGA TTG GAG CA

Cyp26a1 NM_007811.2 F: AGC TCC TGA TTG AGC ACT CG 292

R: GGA GGA TTC AAT CGC AGG GT

Hpgds NM_019455.4 F: CAC TAG TTT CCT GGC TAG GGT 383

R: TGT CAC AGC TCC TTT CCT TGT

Il18rap NM_010553.3 F: TGC AAT GAA GCG GCA TCT GT 133

R: CCG GTG ATT CTG TTC AGG CT

Lrat NM_023624.4 F: GTC GCC CAT CTA ATG CCT GA 324

R: CTG TGG ACT GAT CCG AGA GC

Ptgs2 NM_011198.4 F: CAT CCC CTT CCT GCG AAG TT 178

R: CAT GGG AGT TGG GCA GTC AT

S100a8 NM_013650.2 F: CTT TCG TGA CAA TGC CGT CTG 99

R: AGA GGG CAT GGT GAT TTC CT

Upk1a NM_026815.2 F: TGA GCA AGA GTG TTG TGG CA 240

R: CAC GAT ATG CCC CAC GTG TA

Gapdh GU214026.1 F: CCC CCA ATG TGT CCG TCG TGG 201

R: TGA GAG CAA TGC CAG CCC CG

doi:10.1371/journal.pone.0147685.t001

Table 2. Number of differentially expressed genes (DEG's) identified by microarray analysis and pair-wise comparisons between genotypes and
treatments.

Parameter No. of DEG's

Model 2428

Genotype 2215

PMSG treatment 465

Genotype by PMSG interaction 438

Pairwise comparisons No. of DEG's Up-regulated Down-regulated

PMSG-treated ESR1KO vs. ESR1KO 37 31 (84%) 6 (16%)

PMSG-treated WT vs. WT 318 164 (52%) 154 (48%)

PMSG-treated ESR1KO vs. PMSG-treated WT 1185 689 (58%) 496 (42%)

ESR1KO vs. WT 664 328 (49%) 336 (51%)

Significance set to P-value < 0.01 with FDR determined from the Benjamini-Hochberg multiple testing correction < 0.13. For pairwise comparisons,

unannotated and duplicate probe sets were removed from gene lists, and only genes with at least a 2-fold change in level of expression were considered

differentially expressed.

doi:10.1371/journal.pone.0147685.t002
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unannotated and duplicate probesets, DEG’s were further subdivided between up- and down-
regulated genes. The identity of the 20 most highly up- and down-regulated genes in the ovi-
ducts of ESR1KO versus WT mice, and PMSG-treated ESR1KO versus PMSG-treated WT
mice are provided in Tables 3–6. The identity of all genes determined to be differentially
expressed by two-way ANOVA is provided in S1 Table.

Verification of selected DEG’s
The expression of mRNA for Ccl5, Cyp26a1, Hpgds, Il18rap, Lrat, Ptgs2, S100a8, and Upk1a in
the oviducts of PMSG-treated ESR1KO versus PMSG-treated WTmice was determined by
real-time RT-PCR. A comparison of the results obtained by real-time RT-PCR and microarray
analysis is presented in Table 7 as a validation of the microarray platform. Overall, real-time
RT-PCR revealed the same directional trends in gene expression that were observed by the
microarray analysis.

Gene Ontology Analysis of DEG’s in the oviducts of PMSG-treated
ESR1KO versus PMSG-treated WTmice
Consistent with our overall goal of identifying estradiol/ESR1-dependent affects on the ovi-
duct, the molecular functions, cellular components, and biological processes of DEG’s
expressed in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WTmice were
determined by Gene Ontology (GO) Analyses with significance set to enrichment P-
value< 0.01. The significantly enriched molecular function categories using GO are shown in

Table 3. Top 20 most highly up-regulated mRNAs in the oviducts of ESR1KO versusWTmice. Overall Model: P < 0.01 and at least a 2-fold change in
gene expression.

Gene Symbol Gene Description P-value Fold-Change

Sult1e1 sulfotransferase family 1E, member 1 < 0.001 33.1834

Chodl chondrolectin < 0.001 25.6824

Avpr1a arginine vasopressin receptor 1A < 0.001 24.7639

Synpr synaptoporin < 0.001 22.5126

Glb1l3 galactosidase, beta 1 like 3 < 0.001 21.5821

BC048679 cDNA sequence BC048679 < 0.001 21.0171

Ager advanced glycosylation end product-specific receptor < 0.001 17.8374

2310043J07Rik RIKEN cDNA 2310043J07 gene < 0.001 15.0383

Pcdh8 protocadherin 8 < 0.001 14.7291

Lemd1 LEM domain containing 1 < 0.001 14.6033

Slc47a1 solute carrier family 47, member 1 < 0.001 14.215

Adamts16 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 mo < 0.001 13.9153

Tnfrsf21 tumor necrosis factor receptor superfamily, member 21 < 0.001 12.0567

9330159F19Rik RIKEN cDNA 9330159F19 gene < 0.001 11.991

S100a8 S100 calcium binding protein A8 (calgranulin A) 0.002 11.9115

Mmp7 matrix metallopeptidase 7 < 0.001 11.8858

Kcnd2 potassium voltage-gated channel, Shal-related family, member 2 < 0.001 11.8108

AA986860 expressed sequence AA986860 < 0.001 11.5917

Cdh16 cadherin 16 < 0.001 11.5566

Trank1 tetratricopeptide repeat and ankyrin repeat containing 1 < 0.001 11.4235

Fold-Change in gene expression and P-Values are indicated. Positive changes in fold-change represent increased expression in the oviducts of ESR1KO

mice.

doi:10.1371/journal.pone.0147685.t003
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Fig 3A. The categories with the highest enrichment score within molecular functions were
binding, catalytic and transporter activities. Significantly enriched cellular component catego-
ries are shown in Fig 3B. The most highly enriched cellular component categories were the
extracellular region/matrix and the cell membrane. Significantly enriched biological processes
are indicated in Fig 3C, with the most highly enriched categories including those involving a
single organism, modulating a measurable attribute (biological regulation) and specific out-
come (developmental process).

Ingenuity Pathway Analysis of DEG’s in the oviducts of PMSG-treated
ESR1KO versus PMSG-treated WTmice
Canonical pathway analysis of DEG’s from PMSG-treated ESR1KO versus PMSG-treated WT
mice was performed using QIAGEN’S Ingenuity Pathway Analysis (IPA, QIAGEN, Redwood
City, www.qiagen.com/ingenuity). The six most significant pathways identified by Ingenuity
Pathway Analysis software are provided in Fig 4, and are reflective of ESR1-dependent regula-
tion of the immune response. The top upstream regulators were tumor necrosis factor (TNF),
interferon gamma (IFNG), interleukin 1β (IL1B), amyloid β (A4) precursor protein (APP) and
interleukin 13 (IL13). The top regulator effect networks included a disintegrin-like and metal-
lopeptidase (reprolysin type) with thrombospondin type 1 (ADAMTS12), homeodomain inter-
acting protein kinase 2 (HIPK2), interleukin 22 (IL22), interleukin 27 (IL27), toll-like receptor
3 (TLR3), toll-like receptor 4 (TLR4) and conserved helix-loop-helix ubiquitous kinase

Table 4. Top 20 most highly down-regulated mRNAs in the oviducts of ESR1KO versusWTmice. Overall Model: P < 0.01 and at least a 2-fold change
in gene expression.

Gene Symbol Gene Description P-
value

Fold-
Change

Pcdh17 protocadherin 17 < 0.001 -10.6901

Csf3 colony stimulating factor 3 (granulocyte) 0.002 -11.5917

Tshr thyroid stimulating hormone receptor < 0.001 -11.8455

Col6a4 collagen, type VI, alpha 4 < 0.001 -12.206

Akr1c14 aldo-keto reductase family 1, member C14 < 0.001 -12.2614

Upk1a uroplakin 1A 0.001 -12.9078

Slc6a2 solute carrier family 6 (neurotransmitter transporter, noradrenalin), member 2 < 0.001 -13.1394

Lrat lecithin-retinol acyltransferase (phosphatidylcholine-retinol-O-acyltransferase) < 0.001 -13.3562

Ano4 anoctamin 4 0.002 -13.6892

Gp1bb glycoprotein Ib, beta polypeptide < 0.001 -15.0412

Stat5a signal transducer and activator of transcription 5A < 0.001 -16.1053

Rtn1 reticulon 1 < 0.001 -18.0311

Syn2 synapsin II < 0.001 -23.8067

Ramp3 receptor (calcitonin) activity modifying protein 3 < 0.001 -24.6301

Mlc1 megalencephalic leukoencephalopathy with subcortical cysts 1 homolog (human) < 0.001 -29.3425

Hpgds hematopoietic prostaglandin D synthase 0.001 -32.2313

Cyp26a1 cytochrome P450, family 26, subfamily a, polypeptide 1 0.001 -39.5376

Dcpp1 /// Dcpp2 ///
Dcpp3

demilune cell and parotid protein 1 /// demilune cell and parotid protein 2 /// demilune cell and
parotid protein 3

< 0.001 -47.7492

2300002M23Rik RIKEN cDNA 2300002M23 gene 0.003 -71.6374

Dcpp3 demilune cell and parotid protein 3 < 0.001 -77.6391

Fold-Change in gene expression and P-Values are indicated. Negative changes in fold-change represent decreased expression in the oviducts of

ESR1KO mice.

doi:10.1371/journal.pone.0147685.t004
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(CHUK) as their primary regulators. With pathway analysis indicating the immune response
as a primary canonical pathway, a listing of differentially expressed mRNAs specifically encod-
ing chemokines, interleukins and their receptors in the oviducts of PMSG-treated ESR1KO
versus PMSG-treated WT mice is provided as Table 8. All the significant pathways (P-
value< 0.05) and the corresponding molecules differentially expressed within the pathways
from PMSG-treated ESR1KO versus PMSG-treated WTmice are provided in S2 Table.

Discussion
The objective of this study was to determine estradiol/ESR1-dependent changes to the tran-
scriptome of the mouse oviduct, with the overall goals of increasing our understanding of ste-
roidal regulation of this often overlooked reproductive organ, and to provide the identity of
ESR1-regulated genes that may prove to be important modulators of oviductal function and
fertility in the future. While our focus was on the identification and bioinformatic analysis of
DEG’s in the oviducts of PMSG-treated WT versus PMSG-treated ESR1KO mice, the identity
of all DEG’s identified by this analysis have been provided (S1 Table), and the raw data (�.cel
files) plus the GC-RMA-normalized and log2 transformed transcript data have been deposited
into the Gene Expression Omnibus. Important to note, whole oviducts were collected for tran-
scriptomal analysis fromWT and ESR1KOmice. Future research of targeted mRNAs identified
by this analysis will therefore need to include determination of potential differences in spatial
location of a gene or protein between the ampulla and isthmus, as well as cellular localization
within a specific section of the oviduct. Furthermore, this study was performed to determine

Table 5. Top 20 most highly up-regulated mRNAs in the oviducts of PMSG-treated ESR1KO versus PMSG-treatedWTmice. Overall Model: P < 0.01
and at least a 2 fold-change in gene expression.

Gene Symbol Gene Description P-value Fold-Change

BC048679 cDNA sequence BC048679 <0.001 222.15

Apod apolipoprotein D <0.001 98.02

Cdh16 cadherin 16 <0.001 50.13

Chodl Chondrolectin <0.001 48.14

Sult1e1 sulfotransferase family 1E, member 1 <0.001 46.32

G6pc2 glucose-6-phosphatase, catalytic, 2 <0.001 42.88

Pla2g10 phospholipase A2, group X <0.001 40.8

Fgf18 fibroblast growth factor 18 <0.001 38.17

Avpr1a arginine vasopressin receptor 1A <0.001 35.78

Aldh1a3 aldehyde dehydrogenase family 1, subfamily A3 <0.001 34.76

Lrrtm1 leucine rich repeat transmembrane neuronal 1 <0.001 29.44

Serpina1b serine (or cysteine) preptidase inhibitor, clade A, member 1B <0.001 27.57

Ager advanced glycosylation end product-specific receptor <0.001 22.77

Synpr Synaptoporin <0.001 22.32

S100a8 S100 calcium binding protein A8 (calgranulin A) <0.001 20.77

Adamts16 a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif 16 <0.001 19.82

Il18r1 interleukin 18 receptor 1 <0.001 19.45

S100a9 S100 calcium binding protein A9 (calgranulin B) 0.0015 17.86

Atp6v1b1 ATPase, H+ transporting, lysosomal V1 subunit B1 <0.001 17.8

Wnt7a wingless-related MMTV integration site 7A <0.001 17.49

Fold-Change in gene expression and P-Values are indicated. Positive changes in fold-change represent increased expression in the oviducts of PMSG-

treated ESR1KO mice.

doi:10.1371/journal.pone.0147685.t005
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estradiol/ESR1-dependent regulation; genomic signaling via ESR2 and non-genomic effects of
estradiol on the oviduct via activation of G-protein-coupled receptor 30 (GPR30, [20]) should
not be overlooked, nor potential interactions. Indeed, regardless of treatment with PMSG, we
observed that ablation of ESR1 resulted in a 1.6-fold increase in the expression of mRNA for
Gpr30 in the oviduct (S1 Table).

Table 6. Top 20 most highly down-regulated mRNAs in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WTmice. Overall Model:
P < 0.01 and at least a 2 fold-change in gene expression.

Gene Symbol Gene Description P-value Fold-Change

Dcpp3 demilune cell and parotid protein 3 <0.001 -770.92

2300002M23Rik RIKEN cDNA 2300002M23 gene <0.001 -524.94

Cyp26a1 cytochrome P450, family 26, subfamily a, polypeptide 1 <0.001 -131.13

Tshr thyroid stimulating hormone receptor <0.001 -121.71

Dcpp1/2/3 demilune cell and parotid protein 1/demilune cell and parotid protein 2/demilune cell and parotid protein 3 <0.001 -106.94

Syn2 synapsin II <0.001 -91.45

Slc6a2 solute carrier family 6 (neurotransmitter transporter, noradrenalin), member 2 <0.001 -77.2

Upk1a uroplakin 1A <0.001 -77.14

Hpgds hematopoietic prostaglandin D synthase <0.001 -73.37

Klk1b24 kallikrein 1-related peptidase b24 <0.001 -73.19

Greb1 gene regulated by estrogen in breast cancer protein <0.001 -64.6

Klk1b1 kallikrein 1-related peptidase b1 <0.001 -62.94

Klk1b21 kallikrein 1-related peptidase b21 <0.001 -53.58

Lrat lecithin-retinol acyltransferase (phosphatidylcholine-retinol-O-acyltransferase) <0.001 -53.53

Gria1 glutamate receptor, ionotropic, AMPA1 (alpha 1) <0.001 -46.45

Akr1c14 aldo-keto reductase family 1, member C14 <0.001 -45.65

Stat5a signal transducer and activator of transcription 5A <0.001 -44.22

Col6a4 collagen, type VI, alpha 4 <0.001 -43.1

Rasd1 RAS, dexamethasone-induced 1 <0.001 -42.74

Adh7 alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide <0.001 -42.46

Fold-Change in gene expression and P-Values are indicated. Negative changes in fold-change represent decreased expression in the oviducts of PMSG-

treated ESR1KO mice.

doi:10.1371/journal.pone.0147685.t006

Table 7. Comparison of gene expression for selected mRNAs bymicroarray and real-time RT-PCR in the oviducts of PMSG-treated ESR1KO ver-
sus PMSG-treated WTmice.

Microarray Real-time RT-PCR

Gene Symbol Fold-Change P-Value Fold-Change P-Value

Ccl5 2 0.166 4.2 < 0.001

Cyp26a1 -131.1 < 0.001 -27.4 < 0.001

Hpgds -73.4 < 0.001 -13.4 < 0.001

Il18rap 1 0.22 6.2 < 0.001

Lrat -53.5 < 0.001 -21.8 < 0.001

Ptgs2 1.57 0.24 2.19 < 0.001

S100a8 20.7 0.0006 18.02 < 0.001

Upk1a -77.1 < 0.001 -38.9 < 0.001

Fold-Change in gene expression and P-Values are indicated after analysis by microarray and by independent real-time RT-PCR. Positive changes in fold

change represent increased expression in the oviducts of PMSG-treated ESR1KO mice.

doi:10.1371/journal.pone.0147685.t007
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Fig 3. Gene Ontology (GO) analysis with Molecular Function, Cellular Component and Biological Processes categories. Pie chart shows the
distribution of the DEG’s in the oviducts of PMSG-treated ESR1KO versus PMSG-treatedWTmice that were matched to A) a Molecular Function, B) a
Cellular Component, and C) a Biological Process, using GO.

doi:10.1371/journal.pone.0147685.g003
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ESR1-dependent regulation of immune function was a leading canonical pathway identified.
Of note, inflammation and the immune response is a required physiological occurrence within
the oviduct as this organ is exposed to freshly ovulated cumulus-oocyte complexes, associated fol-
licular debris, spermatozoa, seminal fluids and possibly an array of foreign pathogens at ovula-
tion and/or mating [21,22,23,24]. However, salpingitis or aberrant inflammation is also one of
the most common forms of pelvic inflammatory disease (PID) and is one of the most important
components of the PID spectrum due to its impact on female fertility (reviewed in [25]). This
uncontrolled inflammation results in oviductal epithelial cell death, tubal scarring and eventually
occlusion [26,27,28,29,30], making identification of the specific transcripts involved in ESR1-de-
pendent regulation of immune function a salient finding of this transcriptomal analysis.

Overall, with significance set to P< 0.01, greater than two thousand transcripts were deter-
mined to be differentially regulated. A pairwise comparison of DEG’s in 23 day old ESR1KO
andWT mice (i.e. without PMSG-stimulated production of ovarian estradiol) revealed 664
DEG’s, and a pairwise comparison of DEG’s in PMSG-treated WT versus PMSG-treated
ESR1KO oviducts revealed 1185 differentially regulated genes, which were subsequently ana-
lyzed for gene ontology as well as with Ingenuity Pathway Analysis (IPA1, QIAGEN), which
uses multiple databases to extrapolate significant canonical pathways based on the number of
genes expected to be expressed within each pathway. With the exception of axonal guidance
signaling (reviewed in [31]), the other top canonical pathways (Fig 4) were all directly related
to immune function, as were the 5 top upstream regulators (TNF, IFNG, IL1B, APP and IL13).

We have previously reported that the expression of the hematopoetic form of prostaglandin
D synthase (HPGDS), a putative regulator of inflammation in the oviduct, is dependent upon
ESR1 [15]. In that study, genetic deletion of ESR1 reduced the expression of mRNA encoding
Hpgds and inhibition of HPGDS in wild-type mice by treatment with HQL-79 (Cayman

Fig 4. Most highly significant canonical pathways identified in the oviducts of PMSG-treated ESR1KO versus PMSG-treatedWT identified using
QIAGEN’S Ingenuity Pathway Analysis.

doi:10.1371/journal.pone.0147685.g004
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Chemical, Ann Arbor, MI) resulted in a 2.3-fold increase in the expression of mRNA for one of
the upstream regulators identified herein (IL13), a 2.9-fold increase in the expression of mRNA for
chemokine (C-X-Cmotif) ligand 12 (Cxcl12), as well as a 1.8-fold increase in the expression of
mRNA for TNF receptor superfamily, member 1b (Tnfrsf1b) which is also known as TNF receptor
2 (TNFR2), one of the two receptors that bind TNFα. Herein, the expression of mRNA for Cxcl12
and Tnfrsf1bwas 4.2- and 2.5-fold higher in the oviducts of PMSG-treated ESR1KO versus
PMSG-treatedWTmice (Table 8 and S1 Table). Taken together, our results are consistent with
regulation of inflammation within the oviduct acting, in part, through ESR1-dependent HPGDS
signaling. Of physiological relevance, the expression of TNFα is reported to increase after infection
of human oviducts with Neisseria gonorrhoeae in vitro [32] and genetic deletion of IL13 in mice
improves the rate of clearance after genital infection with Chlamydia muridarum [33], two bacte-
rial pathogens known to induce an inflammatory response within the oviduct [34,35]. Interest-
ingly, the expression of mRNA encoding IL13 receptor, alpha 2 (Il13ra2), but not Il13, was
increased in the oviducts of PMSG-treated ESR1KO versus PMSG-treatedWTmice (Table 8).

Of the mRNAs selected for independent analysis by real-time RT-PCR, directional trends
were consistent among microarray and RT-PCR analyses (Table 7). Analysis by real-time
RT-PCR also revealed that the expression of Ptgs2 and Il18rap was increased in the oviducts of
PMSG-treated ESR1KO versus PMSG-treated WTmice. Importantly, for these two transcripts,
microarray analysis revealed the same directional trend and a similar magnitude or fold-

Table 8. Differentially expressedmRNAs encoding chemokines, interleukins and their receptors in
the oviducts of PMSG-treated ESR1KO versus PMSG-treatedWTmice. Overall Model: P < 0.01 and at
least a 2-fold change in gene expression.

Gene Symbol Gene Description P-value Fold-Change

Cx3cl1 chemokine (C-X3-C motif) ligand 1 0.004 2.25

Cxcl12 chemokine (C-X-C motif) ligand 12 < 0.001 4.21

Cxcl14 chemokine (C-X-C motif) ligand 14 0.001 -3.31

Cxcl16 chemokine (C-X-C motif) ligand 16 0.011 1.73

Cxcl17 chemokine (C-X-C motif) ligand 17 0.003 3.68

Cxcr4 chemokine (C-X-C motif) receptor 4 0.063 1.61

Cxcr7 chemokine (C-X-C motif) receptor 7 < 0.001 -3.32

Il13ra2 interleukin 13 receptor, alpha 2 0.003 4.48

Il15 interleukin 15 < 0.001 2.70

Il15ra interleukin 15 receptor, alpha chain < 0.001 5.16

Il16 interleukin 16 0.002 1.62

Il17ra interleukin 17 receptor A < 0.001 -2.25

Il17rb interleukin 17 receptor B < 0.001 14.38

Il17re interleukin 17 receptor E 0.002 3.00

Il18 interleukin 18 0.002 1.82

Il18bp interleukin 18 binding protein < 0.001 -20.01

Il18r1 interleukin 18 receptor 1 < 0.001 19.45

Il1r1 interleukin 1 receptor, type I 0.001 2.14

Il1rap interleukin 1 receptor accessory protein < 0.001 1.53

Il33 interleukin 33 < 0.001 11.69

Il7 interleukin 7 0.001 3.94

Ilf2 interleukin enhancer binding factor 2 0.012 1.31

Fold-Change in gene expression and P-Values are indicated. Positive changes in fold-change represent

increased expression in the oviducts of PMSG-treated ESR1KO mice.

doi:10.1371/journal.pone.0147685.t008
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change in expression. Estradiol is a known regulator of PTGS2 in the oviduct [36], and
IL18RAP together with the receptor IL18R1 (interleukin 18 receptor 1) mediates IL18-depen-
dent activation [37,38]. IL18 is a Caspase-1-dependent inflammatory cytokine induced by
infection with C. trachomatis [39]. We observed a 19-fold increase in the expression of Il18r1
in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice (Tables 5–8), which
is also consistent with the regulation of the IL18 receptor by estradiol, as reported in the uterine
endometrium [40]. Among the other DEG’s encoding interleukins, mRNA encoding IL17
receptors A, B and E (Il17ra, Il17rb and Il17re) as well as interleukin 1 receptor, type 1 (Il1r1)
and interleukin 1 receptor accessory protein (Il1rap) differed in the oviducts of PMSG-treated
ESR1KO versus PMSG-treated WTmice (Table 8). Mice deficient in IL17 display an attenu-
ated response to genital infection with C.muridarium [41], whereas IL1 is an established regu-
lator of C. trachomatis-induced inflammation in the oviduct [42]. Our results therefore
revealing estradiol/ESR1-dependent changes within the oviduct of transcripts reported to affect
inflammation in response to targeted bacterial challenges by others.

Differences in the magnitude of change were observed for some transcripts by microarray
analysis versus real-time RT-PCR, as expected [43], whereas technique did not affect the mag-
nitude of change for others. For example, microarray analysis revealed that the S100 calcium
binding proteins A8 and A9 were increased by 21-and 18-fold, respectively, in PMSG-treated
ESR1KO versus PMSG-treated WT oviducts (Table 5). Real-time RT-PCR confirmed the
increased expression of S100A8, with the relative expression for this mRNA increased by
18-fold in the PMSG-treated ESR1KO oviduct (Table 7). The S100 calcium binding proteins
are pro-inflammatory, inducing chemotaxis and adhesion of neutrophils [44] and increasing
IL1β secretion by IFNG-primed monocytes [45]. Again, consistency with targeted bacterial
studies is observed; IL1 signaling and IL1β secretion are involved in the response of the oviduct
to infection with C.muridarium [46].

To conclude, this transcriptomal analysis can provide us with great insight into estradiol/
ESR1-dependent regulation of oviductal gene expression and presumably function. Pathway
analysis illustrated the complex role of estradiol and ESR1 in regulating oviductal function and
identified putative ESR1-dependent molecules involved. This dataset can now be examined in
greater detail by others with the hope of expanding our understanding of ESR1-dependent reg-
ulation of physiological function in this key reproductive organ.

Supporting Information
S1 Table. Listing of the 2428 differentially expressed genes (P< 0.01, FDR< 0.13) identi-
fied by two-way ANOVA and pairwise comparison (LSD test). Gene symbol, gene title and
all pair-wise comparisons, P-values and fold changes in expression are indicated.
(XLS)

S2 Table. Complete results of the canonical pathway analysis of DEG’s from PMSG-treated
ESR1KO versus PMSG-treated WTmice, performed using QIAGEN’S Ingenuity Pathway
Analysis (IPA, QIAGEN, Redwood City, www.qiagen.com/ingenuity). All the significant
pathways (P-value� 0.05) and the corresponding molecules differentially expressed within the
pathways from PMSG-treated ESR1KO versus PMSG-treated WT mice are indicated.
(XLS)
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