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ABSTRACT OF DISSERTATION

CHARACTERIZATION AND DISTRIBUTION OF NOVEL NON-LTR
RETROELEMENTS DRIVING HIGH TELOMERE RFLP DIVERSITY IN CLONAL LINES
OF MAGNAPORTHE ORYZAE

The filamentous ascomycete fungus Magnaporthe oryzae is a pathogen of over 50
genera of grasses. Two important diseases it can cause are gray leaf spot in Lolium
perenne (perennial ryegrass) and blast in Oryza sativa (rice). The telomeres of M.
oryzae isolates causing gray leaf spot are highly variable, and can spontaneously
change during fungal culture. In this dissertation, it is shown that a rice-infecting
isolate is much more stable at the telomeres than an isolate from gray leaf spot. To
determine the molecular basis of telomere instability several gray leaf spot isolates
telomeres were cloned, which revealed two non-LTR retrotransposons inserted into
the telomere repeats. The elements have been termed Magnaporthe oryzae
Telomeric Retrotransposons (MoTeRs). These elements do not have poly-A tails
common to many other non-LTR retrotransposons, but instead have telomere like
sequences at their 5’ end that allow them to insert into telomeres. Intact copies of
MoTeRs were restricted to the telomeres of isolates causing gray leaf spot. Surveys
for the presence of these elements in M. oryzae showed they were present in several
host-specialized forms including gray leaf spot isolates, but were largely absent in
the rice blast isolates. The absence of MoTeRs in rice blast isolates, which are
relatively stable by comparison, suggested that the telomere instability in gray leaf
spot isolates could be due to MoTeRs. Analyzing spontaneous alterations in
telomere restriction fragment profiles of asexual progeny revealed that MoTeRs
were involved. Expansion and contraction of MoTeR arrays were observed and
account for some telomere restriction profile changes. New telomere formation in
asexual progeny followed by MoTeR addition was also observed. Based on this
evidence, MoTeRs are largely responsible for the high variability of telomere
restriction profiles observed in GLS isolates.

KEYWORDS: Non-LTR, retrotransposon, telomere, gray leaf spot,
Magnaporthe oryzae
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CHAPTER ONE

Introduction and Literature Review

1.1 Introduction

Rice (Oryza sativa) is an important food staple worldwide with 650 billion tons
produced annually. To increase the production of rice, the diseases of rice that
reduce yield need to be controlled. The most important disease is rice blast (OU
1980), which is caused by the filamentous ascomycete fungus Magnaporthe oryzae
(anamorph Pyricularia oryzae). The characteristic symptoms of rice blast (RB)
disease are gray to white ellipsoid lesions and lodging of the panicle, which results
in failure to produce seed. Significant yield losses are common in rice fields infected
with M. oryzae (BONMAN et al. 1991; REDDY and BONMAN 1987).

M. oryzae is not limited to causing disease in rice. It can infect over 50
monocot species (URASHIMA et al. 1999). These include other economically important
crops such as wheat (Triticum aestivum), barley (Hordeum vulgare), and several
different millets. M. oryzae can infect all above ground parts of the plant (Ou 1980),
and was described as being able to infect roots as well (DUFRESNE and OSBOURN
2001). Pathogen activity can result in a variety of symptoms, which include blast of
the inflorescence as described above, leaf spots, and foliar blight.

Gray leaf spot (GLS), another disease caused by M. oryzae, has emerged as a
problem in major turfgrass species including tall fescue (Lolium arundinaceum
Darbyshire), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium

multiflorium)(UDDIN et al. 2003). Isolates of M. oryzae that infect these grasses are



morphologically indistinguishable (CoucH and KoHN 2002; RoSSMAN et al. 1990;
YAEGASHI and UDAGAWA 1978), but evolutionarily distinct from the M. grisea isolates
that cause GLS disease in crabgrass (Digitaria sp.) (CoucH and KoHN 2002).

The GLS disease caused by M. oryzae was first noticed in 1957 on St.
Augustinegrass (Stenotaphrum secundatum) in Florida (MALcA and OWEN 1957). GLS
symptoms on St. Augustinegrass start as small brown to red spots and expand
rapidly into larger leaf spots. The leaf spots are tan in color when dry and gray
when wet. Borders of the round to oblong leaf spots are brown to red in color with
a chlorotic halo around some of the outside edges. Leaf spots may coalesce into
larger lesions (MALCA and OWEN 1957). GLS can further cause stolons and leaves to
die leading to a scorched appearance of the turf (ATILANO and BUSEY 1983; FREEMAN
1962).

In the 1970s, outbreaks of GLS were observed in annual ryegrass. The
disease severity was much worse in annual ryegrass than what had been previously
observed in the St. Augustinegrass and resembled symptoms more similar to blast
disease, such as foliar blighting and leaf spot (BAIN et al. 1972).

Starting in the early 1990s, GLS was reported on perennial ryegrass in golf
course fairways (LANDSCHOOT and HOYLAND 1992). The damage from outbreaks of
GLS in perennial ryegrass was extensive. Sporadic outbreaks that have occurred
since then have resulted in a significant loss of turf (DERNOEDEN 1996; UDDIN et al.
2003). Symptoms of GLS start as small water-soaked leaf spots, which further
expand into gray to light brown necrotic spots. The borders of the leaf spots are

purple to dark brown in color often with chlorotic halos. Foliar blighting can occur



when leaf spots coalesce. As the disease progresses complete necrosis of the leaves
and death of the plant may occur (UDDIN et al. 2003).

GLS disease can be controlled through three principal control measures:
cultural practices, fungicides, and cultivar resistance (OU 1980). There are
problems with each of these control measures when used alone. Cultural practices
do not provide a sufficient amount of control when disease pressures are high
(VINCELLI 2000). Fungicides are available for disease control, but they must be
applied as a preventative. This represents an expense that many turfgrass managers
cannot justify, when an outbreak of disease is uncertain. Additionally, M. oryzae
populations can gain resistance to fungicides when used intensively (VINCELLI and
DixoN 2002).

Development of GLS resistant cultivars would alleviate the reliance on
fungicides, and would be a valuable control measure. Many of the current cultivars
are susceptible to M. oryzae (BoNos et al. 2005; HOFMANN and HABLIN 2000). Potential
sources of resistance to GLS have been identified (BoNoOS et al. 2004; FRASER 1996;
PEYYALA and FARMAN 2006), and some are currently being developed in commercial
cultivars (BoNos et al. 2005). The long-term efficacy of disease resistant cultivars
has been relatively low because of the extreme variability of M. oryzae. Races of the
fungus can overcome plant resistance, resulting in new epidemics (ZEIGLER and
CorRREA 2000). Typically, because of the issues with individual control practices,
outlined above, an integrated program is needed to provide better control of the

disease.



The generation of new variants of the fungus is an important mechanism in
defeating the effectiveness of at least two of the control measures, fungicides and
cultivar selection. A better understanding of possible sources of new variability
could lead to better control of the fungus. Thus, the purpose of this dissertation
was to identify some of the possible mechanisms by which new variability in
M. oryzae populations might arise in GLS isolates.

1.2 Host-specialization of M. oryzae

M. oryzae, as a species, can infect over 50 species of grasses, but individual strains of
the pathogen are limited to certain hosts (BORROMEO et al. 1993; DOBINSON et al.
1993; MAcKILL and BONMAN 1986). The individual strains are grouped into host-
specialized forms, or pathotypes, based on the host from which they were collected.
Within each of the host-specialized forms some individuals will cause disease in
some varieties of the host plant but not in other varieties. These individuals are
further grouped into races based on the host plant varieties in which they infect.

Two types of genetic resistance of grass hosts to M. oryzae have been
identified. The resistance can be controlled by a large number of genes with small
individual effects (quantitative), or one to few genes having large effects
(qualitative) (AHN and OU 1982; TALBOT and FOSTER 2001). Resistance to RB and GLS
has been attributed to both quantitative and qualitative resistance (AHN and Ou
1982; BoNos et al. 2005; ZEIGLER and CORREA 2000).

Plants with quantitative resistance, also called partial resistance or
horizontal resistance, are susceptible to infection, but typically the severity of

disease is reduced (CHEN et al. 2003). This type of resistance reduces the growth



and reproduction of a pathogen, which can slow the rate of epidemic development
(AHN and Ou 1982; AsHIZAWA et al. 1999; CASTANO et al. 1989). Partial resistance can
limit the generation of variability in the pathogen by decreasing the number of
disease cycles in a season (generations in which to evolve pathogenicity) and by
reducing sporulation.

A single to a few genes typically controls qualitative resistance, also called
vertical or specific resistance. Qualitative resistance typically inhibits the initial
establishment of the pathogen. Interactions between M. oryzae and its host plants
under qualitative resistance appear to be incompatible. For example, the host may
seem to be immune, produce a hypersensitive reaction, or slow the reproduction of
M. oryzae. The plant genes conferring qualitative resistance are known as resistance
(R) genes (FLOR 1971). Plants containing the R gene are resistant to M. oryzae
isolates carrying a corresponding gene known as an avirulence gene (Avr gene)
(FLOR 1971; Jia et al. 2000). The plant resistance is a result of the activation of host
defense responses, such as hypersensitive response (HR). Avr genes may encode
effector proteins that suppress basal defense responses (PARK et al. 2012), and
losses of Avr genes in other fungal species have led to reduced virulence (BOLTON
and ToMMA 2008; VAN DEN ACKERVEKEN et al. 1993). However, the actual mechanism
by which most Avr gene products in M. oryzae interact with their host are unknown
(STERGIOPOULOS and DE Wit 2009).

Avr genes can function in determining the cultivar specificity, and they can
also control the host specificity of different M. oryzae isolates (KOBAYASHI et al.

1989). One example of host specificity control is a gene family that confers



avirulence in a strain of M. oryzae to weeping lovegrass (Eragrostis curvula). One
member of this family, PWLZ2, is located internally on the chromosome, and is
spontaneously lost in mutant progeny of an avirulent parental isolate. PWLZ2 based
resistance was stable in a rice strain Guy11, but this was due to having two copies of
the gene in different chromosomal locations. Segregation of these genes through
genetic crosses revealed that the two PWLZ genes (PWLZ2-1 and PWLZ2-2) were both
unstable in the progeny, with frequent, spontaneous, virulent mutants being
produced. When both genes are absent the progeny can infect weeping lovegrass
(SWEIGARD et al. 1995). Though PWLZ is not located at the chromosome end, it is
located near transposable elements (DEAN et al. 2005). The stability of the Avr genes
may be affected by the genetic elements that surround them (KANG and YONG-HWAN
2000). Another example is Avr-C039, from a weeping lovegrass pathogen (FARMAN
and LEONG 1998), which confers avirulence of M. oryzae to rice cultivars containing
the corresponding R gene Pi-CO39(t) (CHAUHAN et al. 2002). Functional copies of
AVR-CO39 are present in other host-specific pathotypes (PEYYALA and FARMAN 2006;
Tosa et al. 2005), but largely absent in Oryza pathotype (FARMAN et al. 2002; TosA et
al. 2005). There is currently a disagreement in the literature over whether Avr-
C039 is a species-wise or cultivar-wise host specificity gene (TosA et al. 2005; ZHENG
etal 2011).

Loss of Avr gene function or absence of the Avr gene in an isolate of M. oryzae
allows the pathogen to avoid detection by host plants containing the corresponding
R gene. The loss of the Avr gene would change the race of that pathogen. Novel

virulent variants are known to frequently arise during rice cultivation (BONMAN



1992). In large natural populations of some fungi, deletion of avirulence genes is a
common evolutionary mechanism in gaining virulence (GouT et al. 2007; SCHURCH et
al. 2004; Wouw et al. 2010). This represents a source of variability that M. oryzae
can exploit to circumvent defense mechanisms in the host, and considering the
highly clonal population structure of the fungus these mechanisms may be
important in race dynamics. For example, studies of the avirulence gene Avr-Pita
have shown that spontaneous mutants of an avirulent M. oryzae parental isolate,
that have lost Avr-Pita are virulent on the rice cultivar Yashiro-mochi that carries
the R gene Pi-ta. The Avr-Pita gene is linked to a telomere. Losses of function of the
Avr-Pita in mutants have been attributed to different factors such as chromosome
truncation, mutations in the gene, and a transposable element insertion into the
gene (KANG et al. 2001; ORBACH et al. 2000). Another Avr gene linked to a telomere
and that mutates frequently is Avr1-TSUY. The spontaneous mutants lacking Avr1-
TSUY can infect cultivar Tsuyuake. Six of these spontaneous mutants were analyzed,
and it was revealed that the loss of the gene was due to a deletion mutation. Some of
the deletion mutations were believed to be caused by ectopic recombination
between homologous transposable elements (KANG and YONG-HWAN 2000). The
examples of Avr-Pita and Avr1-TSUY show that race changes can occur in asexual
progeny of a M. oryzae isolate.

1.3 Biology and population dynamics of M. oryzae

Understanding the basic biology of M. oryzae may help to understand where
variation might arise within populations. Pathogenic variants within a population

may arise through mutation or through sexual recombination. In nature, however,



only the asexual stage has been directly observed. During this stage the somatic
hypha grows through the plant and then produces long unbranched conidiophores,
which bear groups of three to five bi-septate pyriform conidia. Conidia are produced
in a temperature range between 9°C and 35°C, with an optimum of 25°C-28°C. A
minimum humidity of 89% is also needed for conidia production. These conidia are
then dispersed to potential hosts by water, wind, or some other mechanism (SUZUKI
1975). Once the conidia come in contact with a hydrophobic surface they secrete an
apical droplet of spore tip mucilage that attaches the spore to the surface (HOwARD
1994). Conidia germinate if there is free moisture available. An appressorium is
produced on the end of the germ tube. A penetration peg then arises from the
appressorium, and will use a combination of enzymatic degradation (SKAMNIOTI and
GURR 2007) and mechanical force (HOWARD et al. 1991) to penetrate the epidermis. It
takes six hours at the optimal temperature of 24°C to go from germination of the
conidia to the invasion of epidermal cells. A minimum of 12 hours at optimal
humidity and temperature is required for optimal disease development. The
disease cycle is completed when conidia are produced on the surface of infected
tissue after a latent period of five to seven days. When weather conditions are
optimal M. oryzae progresses through repeated cycles of infection and conidiation
leading to disease epidemics (Suzuki 1975).

Any mutations during asexual propagation could accumulate and lead to
variation among different clonal lines. Populations that are older and exclusively

clonal should show continuous variation among isolates, ranging from genetically



similar to dissimilar (KUMAR et al. 1999). Prolonged asexual reproduction can also
lead to an inability of the strain to reproduce sexually (SALEH et al. 2012).

M. oryzae’s sexual stage has only been visualized in vitro. Sexual
reproduction in the heterothallic fungus requires the interaction of two mating
types, Mat1-1 and Mat1-2 (KANG et al. 1994), possibly through a pheromone
receptor mediated process (SHEN et al. 1999). The sexual stage initiates as a hyphal
network of the haploid compatible strains differentiate into female reproductive
structures (ascogonia) and the male sexual structures (spermatia released from
collars of phialides) (CHUMA et al. 2009). Sexual reproduction in ascomycetes occurs
when plasmogamy occurs and the nucleus in the spermatia is transferred to the
ascogonia through a specialized hyphal structure called the trichogyne. The nuclei
remain paired in a dikaryon within the dividing ascogenous hyphae. At the tip of the
hyphae the crozier hook will form, and start to develop into the ascus mother cell.
The haploid nuclei from strains of opposite mating types fuse to form a diploid
zygote. The zygote undergoes meiosis to produce recombinant, haploid ascospores,
which are released at maturity from a pore on the top of the flask-shaped
perithecium (CoPPIN et al. 1997).

One important aspect of sexual reproduction is the production of offspring
with recombined genotypes due to the independent segregation of unlinked genes
during meiosis. The recombined genotypes increase the genotypic diversity which
may allow sexual populations to respond more rapidly to selection imposed by

resistant cultivars or fungicides (MILGROOM 1996).



There has been some speculation based on population genetic and molecular
genetic analyses that sexual recombination is active in M. oryzae populations
(DouHAN et al. 2011; KUMAR et al. 1999). Sexually fertile, hermaphroditic isolates of
both mating types have been recovered in natural populations of M. oryzae virulent
on rice (KUMAR et al. 1999). In contrast, all of the M. oryzae isolates, which cause GLS
on perennial ryegrass, that have been tested are mating-type Mat 1-2 (DOUHAN et al.
2011; FARMAN 2002; Viji and UDDIN 2002). This suggests that sexual reproduction
may not play much of a role in the diversity observed in GLS isolates. Sexual
reproduction could occur if an isolate virulent on perennial ryegrass were to cross
with Mat1-1 isolates from other host pathotypes. However, crosses between
different host pathotypes in M. oryzae have shown a reduced ability to overcome
resistance in adult plants at the level of penetration in the hybrid progeny
(Murakawmi et al. 2006). This implies that hybrids may not survive in a natural
environment. GLS isolates from perennial ryegrass have been shown to infect other
hosts including annual ryegrass, wheat, and weeping lovegrass under artificial
conditions (TREDWAY et al. 2005; Viji et al. 2001), which suggests that some level of
cross-infectivity can occur in nature.

Population structure analyses indicate that GLS isolates specialized to
perennial ryegrass (Lolium perenne) are genetically similar using a variety of
markers including Restriction Fragment Length Polymorphisms (RFLP) (FARMAN
2002), Amplified Fragment Length Polymorphisms (DOUHAN et al. 2011; TREDWAY et

al. 2005), and gene sequences (COUCH et al. 2005; Viji et al. 2001). They are most
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similar to isolates from other grass hosts including tall fescue, weeping lovegrass,
and wheat (TREDWAY et al. 2005).

There was some disparity in genetic diversity measures in GLS isolates from
perennial ryegrass based on the different probes used in RFLP analyses. Single-copy
DNA markers show little variation between isolates. Repetitive transposable
element fingerprinting showed higher variation than the single-copy DNA markers,
but there was still less than a 15% difference between isolates (FARMAN and KiM
2005). This was similar to AFLP results from GLS isolates collected from tall fescue
(TREDWAY et al. 2005). A telomere probe showed a different result. It indicated that
the chromosome ends of these same perennial ryegrass isolates were highly
divergent. Also, mutations that changed telomeric RFLP patterns were readily
observed during vegetative growth (FARMAN and Kim 2005).

1.4 Transposable elements

Transposable elements in M. oryzae have been used extensively in population
studies, and have been linked to disruption of Avr genes. The Magnaporthe genome
is known to contain many copies of TEs from both major groups. The transposable
elements (TE) are divided into two major groups based on the mechanism by which
they transpose. In the first class of TEs, a copy of the element transposes via a “copy
and paste” mechanism whereby a reverse transcriptase acts upon a RNA
intermediate to initiate transposition into a new location within the genome. This
class is also known as the retrotransposons. The Class I transposable elements can
be further divided into three subclasses: long terminal repeat (LTR) transposable

elements contain long terminal repeats and encode a reverse transcriptase; long
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interspersed elements (LINEs) lack the long terminal repeats but retain the reverse
transcriptase; and short interspersed elements (SINEs) represent short DNA
sequences that were reverse-transcribed from RNA and do not have a reverse
transcriptase (FINNEGAN 1989; KEMPKEN and Kuck 1998).

The structure and functionality of LTR-transposons are related to
retroviruses, except they lack an env gene. The omission of the env gene causes
them to be primarily non-infectious. In LTRs, direct sequence repeats flank an
internal coding region, which encodes structural and enzymatic proteins. The gag
gene encodes the structural proteins. These proteins form the virus-like particle
(VLP). The VLP is where the reverse transcription of the LTR’s RNA into cDNA will
occur. The pol gene encodes proteins, which provide the enzymatic functions of the
LTR. The three major proteins encoded by the pol genes are a protease that cleaves
the Pol poly protein, the reverse transcriptase (RT) that will be copying the LTR’s
RNA into cDNA, and the integrase which will integrate the cDNA into a host genome
(HAVECKER et al. 2004).

Some long interspersed nuclear elements or LINEs have been known to play
arole in telomere stability in other organisms (ABAD et al. 2004a; TAKAHASHI et al.
1997). LINEs are simpler structurally, and more ancient evolutionarily than the
LTRs described above. They lack terminal repeats altogether, but some elements
may have a poly A-rich sequence at their 3’ end. These elements encode a protein
with distinct functions: an endonuclease and a reverse transcriptase (CURCIO and
DERBYSHIRE 2003). The endonuclease nicks the bottom strand of the target DNA,

which results in 3’ OH that is used to prime the cDNA synthesis using the LINE RNA
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as a template (FENG et al. 1996; LUAN et al. 1993). Most members of the LINE-like
elements are truncated at the 5’ end due to incomplete reverse transcription of its
RNA template. Currently it is unclear how the cDNA integrates into the upstream
end of the target and how second-strand synthesis occurs (CURCIO and DERBYSHIRE
2003). Since the cDNA is incorporated directly into the target DNA in LINEs, unlike
the LTR transposons, horizontal transmission is less likely.

The final group of Class I transposable elements are SINEs. They are actively
involved in inactivation of genes through transposition (WALLACE et al. 1991). The
general features of SINEs are an adenine rich 3’ end similar to LINE elements, a RNA
polymerase Il promoter, and a core region (GILBERT and LABUDA 1999).
Amplification and dispersion of SINE elements occurs by retrotransposition. The
RNA polymerase IlI-dependent SINE transcripts are reverse transcribed by a LINE
element’s reverse transcriptase, and the cDNA is then integrated into new genomic
sites (JAGADEESWARAN et al. 1981; OKADA et al. 1997).

In the second class of TEs, the DNA transposes directly from one place to
another in the genome using a “cut and paste” mechanism in which the DNA of the
transposons is moved to a new location. This class is also known as the inverted
repeat DNA transposons (FINNEGAN 1989; WICKER et al. 2007). These transposons
remove themselves from one place in the genome and insert themselves into a new
target with the help of a transposase. The transposase acts by generating free 3° OH
ends through hydrolysis of the phosphodiester backbone (excision) at both ends of
the transposon. The exposed 3’ OH ends will then be inserted into the transposon’s

target within the genome through a transesterification reaction (insertion). The

13



insertion of the transposon on each target strand is staggered. As a result, short
single-stranded regions, usually two to nine nucleotides in length, will flank the
newly inserted transposon. These regions will be repaired by its host’s replication
machinery causing target site duplications once the segment is repaired (TAVAKOLI
and DERBYSHIRE 2001). The gap left by the excised transposon can be repaired by
non-homologous end joining or by gene conversion (ENGELS et al. 1990; PLASTERK
and GROENEN 1992). Inverted repeat transposons expand the genetic diversity of a
population not only from the insertion of the elements but also the excision of the
elements from the genome.

There are examples of each major class and subclass of TEs in M. oryzae (see
a description of each element below). TEs are scattered throughout the genome, but
may be amplified or clustered in different regions within the genome of M. oryzae
(REHMEYER et al. 2006; THON et al. 2004). For example, in the isolate 70-15, TEs
make up a higher proportion of the subtelomeres than the genome. The LTR TEs
make up approximately 4% of the genome (DEAN et al. 2005) and make up
approximately 14% of the subtelomeres in the isolate 70-15 (REHMEYER et al. 2006).
LINEs make up approximately 1% of the genome (DEAN et al. 2005) and make up
approximately 4% of the subtelomeres (REHMEYER et al. 2006). The inverted repeat
transposons make up 2% of the genome (DEAN et al. 2005) and 5% of the
subtelomeres (REHMEYER et al. 2006).
The distribution of TEs is varied among different host-specialized isolates, and
sometimes distributed differently within a host-specialized group. In the section

below the different transposable elements are described and Table 1-1 outlines

14



some of the distribution differences of TEs among different host-specialized isolates
of M. oryzae.
1.4.1 Distribution of Class I transposable elements in M. oryzae

MAGGY. The most studied long terminal repeat retrotransposon in M. oryzae
is the Magnaporthe Gypsy-like element (MAGGY), which was first characterized by
Farman et al. (FARMAN et al. 1996b). MAGGY is 5.6 kb in length with 253 bp LTRs
that terminate in 6 bp inverted repeats. In isolates containing MAGGY, transposition
has been shown to occur during and after the sexual cycle (ETo et al. 2001). Most
elements are found embedded in AT-rich sequences (FARMAN et al. 1996b). The
copy number of MAGGY is believed to be controlled by post-transcriptional
suppression of MAGGY (NAKAYASHIKI et al. 2001a). This element can be activated by
stress conditions such as heat shock, copper sulfate, and oxidative stress (IKEDA et al.
2001). The distribution of MAGGY in Magnaporthe has been described as limited
(ETo etal 2001) to wide (FARMAN et al. 1996b). The difference in the classification is
largely based on the specific isolates that were used in the studies. MAGGY is
present at high copy numbers (>50) in isolates from these pathotypes: Oryza (ETo et
al. 2001; FARMAN et al. 1996b; KusaBA et al. 1999), Setaria (ETo et al. 2001; FARMAN
2002; FARMAN et al. 1996b; KusaBA et al. 1999), a Pennisetum (KUsABA et al. 1999),
and one buffelgrass (Cenchrus ciliaris). MAGGY was present at lower copy numbers
(<50) in a Bermudagrass (Cynodon dactylon) pathotype isolate (FARMAN et al.
1996Db). In the Lolium pathotype MAGGY was unevenly distributed (FARMAN 2002;
KusABA et al. 1999; TosA et al. 2007). In one study, MAGGY was not observed in the

Eragrostis pathotype isolates (ETo0 et al. 2001); while in another study one isolate
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had a high copy number (FARMAN et al. 1996b). It was believed that the Eragrostis
pathotype isolate obtained MAGGY recently in its evolutionary history. This would
suggest that it could have arisen through horizontal transmission from another
isolate. Horizontal transmission is described as a process by which genetic material
is incorporated from one organism to another without being an offspring of that
organism. Triticum specialized isolates do not have MAGGY elements (ETo et al.
2001) but the MAGGY element can amplify if artificially introduced into their
genomes (NAKAYASHIKI et al. 2001a).

Grasshopper. The element is 8 kb in length. Grasshopper (Grh) contains a
smaller LTR (198 bp) than MAGGY. The LTRs in Grh terminate in 5 bp inverted
repeats, and Grh generates target site duplications during its transposition. The
distribution of this element is limited to a single subgroup in the
Eleusine-specialized isolates (DOBINSON et al. 1993; ETo et al. 2001), but has also
been observed in isolates from Lolium multiflorum (KUsABA et al. 2006) and the
Triticum pathotype.

MGRL-3. The MGLR-3 element was identified and characterized in a mutant
of 0-137 that was virulent on the rice cultivar Tsuyuake (KANG 2001). The element is
approximately 6.3 kb in length. Protein sequence alignments from the reverse
transcriptase (RT) domain indicated it was most similar to the RT proteins encoded
by Grasshopper and MAGGY. MGRL-3 was present in all host pathotypes tested
including isolates from the Oryza, Triticum, Eleusine, Paspalum, Panicum,

Pennisetum, Lolium and Digitaria pathotypes(KaANG 2001; Viji et al. 2001). The
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highest copy numbers of MGLR-3 are found in the isolates from the Pennisetum,
Oryza, and Panicum pathotypes (KaNG 2001).

Two additional MGLR-3 like retrotransposons were identified from a
Japanese field isolate 9439009, and named Inagol and Inago?2 (SANCHEZ et al. 2011).
These retrotransposons appear to be stable within the genome even during induced
stress conditions. Inago1 was present in high copy numbers in isolates from the
Oryza, Setaria, Panicum, Lolium, and Digitaria pathotypes, but had low copy
numbers in the isolates from the Eleusine pathotype. Inago2 had a similar
distribution pattern as Inago1 with the exception that there were lower copy
numbers in the Digitaria pathotype isolates. This study indicated that the ancestor
of these elements was likely present in the genome before the divergence of M.
grisea and M. oryzae (SANCHEZ et al. 2011).

Pyret. Another gypsy-like retrotransposon named Pyret is present in the
isolates in the Eleusine, Eragrostis, Avena, Triticum, Oryza, and Pennisetum
pathotypes. Pyret was absent in Ginger (Zingiber mioga) pathotype isolates and in
the Magnaporthe grisea isolates of the Digitaria pathotype (NAKAYASHIKI et al.
2001b).

RETRO6 and RETRO7. RETRO6 and RETRO7 were identified during the
genome sequencing of 70-15 (DEAN et al. 2005), and there are no studies that
address the distribution or structure of these elements. Based on protein sequence
alignments these retrotransposons are more similar to the gypsy-like TEs in

M. oryzae.
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RETROS5. RETRO5 is the only LTR retroelement currently identified in
M. oryzae that is not gypsy-like. It belongs to the Copia class of retrotransposons.
The difference between Copia class retrotransposons and Gypsy class transposons is
the order in which the proteins are encoded in the sequence. The element is 7.6 kb
in length (FARMAN et al. 2002). There is a wide distribution of RETRO5 as it is
present in M. oryzae isolates of the Eleusine, Eragrostis, Stenotaphrum, Triticum,
Lolium, Setaria, and Oryza pathotypes. RETRO5 is also found in M. grisea isolates of
the Digitaria pathotype. These elements are found in the highest copy numbers in
Setaria specialized isolates. Currently no studies have addressed the structure of the
RETROS element.

MGL. The Magnaporthe grisea LINE retrotransposon (MGL) is 5.9 kb in
length. A small part of the retrotransposon has been used extensively as a probe
(MGR583) in RFLP based population studies (DioH et al. 2000; HAMER et al. 1989a).
MGL was believed to be a LINE-like element due to the lack of long terminal repeats
at the 5’ and 3’ ends of the element (KACHROO et al. 1997). There are two open
reading frames (ORF) in MGL. The function of the protein encoded by ORF1 is
unknown. ORF2 encodes a protein with reverse transcriptase and integrase
domains (FUDAL et al. 2005). It is present in most host specific isolates, but is found
in high copy numbers only in isolates of the Oryza and the Setaria pathotypes (ETo
etal 2001).

Mg-SINE. Kachroo et al. identified Mg-SINE as an insertion in the Pot2
transposon (see below). Mg-SINE is a small element only 470 bp in length (KACHROO

et al. 1995). The 3’ end of Mg-SINE is identical to the 3’ end of MGL suggesting that it
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may use the MGL reverse transcriptase for transposition (THON et al. 2004).
Mg-SINE is present in isolates of the Oryza, Setaria, Triticum, Eragrostis, Eleusine,
Panicum, and Lolium pathotypes (ETo et al. 2001).

MINE. The Mixed Interspersed Nuclear Element (MINE) retrotransposon is a
1.9 kb element with a 5’ conserved end called WEIRD (bp 1-1114), and a 3’ end
variable region similar to MGL (bp 1115-1971) including the terminal TAC repeats
(FupaL et al. 2005). The MINE element likely uses the reverse transcriptase and
integration machinery from the MGL element. High copies of the MINE element
were found in isolates of the Pennisetum and Oryza pathotypes. A single copy was
present in an Eleusine pathotype isolate, and MINE was absent in a Triticum
pathotype isolate. The presence of this transposon in Lolium pathotype isolates is
unknown.
1.4.2 Distribution of Class II transposable elements in M. oryzae

Pot2. Pot2 was characterized by Kachroo et. al in 1994 (KACHROO et al.
1994). The element is approximately 1.9 kb in length, and has 43 bp of inverted
terminal repeats. Pot2 is present in most host specialized forms of M. oryzae (ETO et
al. 2001). The highest copy numbers are found in the Oryza pathotype isolates.

Pot4. The Pot4 element is similar to Pot2 and was identified during the
genome sequencing of 70-15. Not much is currently published that describes Pot4
other than it is approximately 1.9 kb in length (DEAN et al. 2005).

Pot3. The transposon is approximately 1.9 kb in length and contains terminal
repeats of 42 bp (FARMAN et al. 1996a). The MGR586 repeat is part of Pot3 and has

been used extensively in population analyses (FARMAN 2002; KUMAR et al. 1999; PARK
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et al. 2008). This element has a high copy number in Oryza pathotype isolates and
their relatives (ETo et al. 2001). The Pot3 transposon is apparently absent from
Eleusine and Brachiaria pathotypes (FARMAN et al. 1996a).

Occan. Occan was discovered by Kito et al. 2003 in a spontaneous Pi-a
virulent mutant of M. oryzae. The element is approximately 2.7 kb in length, and is a
member of the Fot1 family of transposons (KiTo et al. 2003). Occan has a high copy
number in isolates of the Oryza pathotype, and has a lower number of copies in
isolates of the Setaria and Eleusine pathotypes (KiTo et al. 2003). No published data
is currently available on its distribution in the Lolium pathotype isolates.

1.5 Implications of TEs in the variability of M. oryzae

One pattern that emerges with TEs in M. oryzae is that the distribution and the copy
numbers in host specialized isolates varies in both the location within a genome
(XUE et al. 2012) and among isolates. The ability of the TEs to influence genome
evolution in M. oryzae has not been comprehensively explored. There is a
correlation between ectopic recombination rate and TE content suggesting that they
play a role in generating the genetic diversity observed in M. oryzae (THON et al.
2006). Accumulation of these elements may lead to chromosome length
polymorphisms. TEs may also provide homologous regions for intra-genomic
recombination of large sections of the chromosome (DABouSsI 1997). Ectopic
recombination is suggested to have occurred between TEs in the chromosome-
unique sequence located adjacent to subtelomeres of M. oryzae (REHMEYER et al.
2006). The Avr genes may be lost or modified during ectopic recombination events

between TEs, and if the Avr genes are located near areas of high transposon density
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the likelihood that this could occur is increased (FARMAN et al. 2002; SWEIGARD et al.
1995).

M. oryzae primarily propagates asexually. This increases the odds that
mutations or genome rearrangements may become fixed in a population as long as
the vegetative fitness and conidia production is not negatively impacted. Genomic
rearrangements during asexual propagation may allow populations of M. oryzae to
change more quickly. TEs can be inactivated during sexual reproduction in other
fungi by the Repeat-induced point mutation mechanism (RIP) (CAMBARERI et al.
1989; SELKER et al. 1987). RIP causes specific mutations from G:C to A:T in repetitive
sequences. There is evidence of RIP activity in repetitive elements within the M.
oryzae genome (DEAN et al. 2005; IKEDA et al. 2002). Though RIP mutations are
typically restricted to repetitive sequences, they have been suggested to “leak” into
adjacent single copy sequences (FUDAL et al. 2009). In Neurospora crassa (IRELAN et
al. 1994) and Leptosphaeria maculans (Wouw et al. 2010), for example, RIP
mutations were detected in single copy sequences bordering repetitive elements.
The leaky nature of RIP could influence the evolution of Avr-genes or other niche
associated genes located near repetitive elements in M. oryzae during rare sexual
reproduction events.

TEs structure and their activity in a genome has profound evolutionary
consequences (THON et al. 2006). TEs can change the host specificity in the progeny
(mitotic or meiotic) through transposition and ectopic recombination. They can
disrupt genes or promoters, causing the abolishment of gene function. In one

example, a spontaneous mutant of a M. oryzae isolate carrying the Avr-Pita gene
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gained virulence on a rice cultivar containing the Pita R-gene. The virulence gain
was due to a Pot3 insertion into the promoter of the Avr-Pita gene (ORBACH et al.
2000). Virulent isolates have also arisen due to Pot3 transposition into the coding
region of Avr-Pita gene (ZHoU et al. 2007). In another example, a Pot3 insertion into
the promoter region of Avr-Piz-t in progeny of an avirulent strain has been shown to
disrupt proper function, which allowed these isolates to be virulent on rice cultivars
containing the corresponding R-gene Piz-t (L1 et al. 2009). Transposition of MGL into
a gene controlling conidiophore development led to aberrant conidia morphology
which resulted in progeny that produced fewer appressoria and were less
pathogenic on plants (NISHIMURA et al. 2000). Transposition of MGLR-3 into Pot2,
which caused a substantial deletion at the chromosome end, led to virulence on the
rice cultivar Tsuyuake in progeny of the M. oryzae strain 0-137 (KANG 2001).

These examples indicate that TEs are active and can be attributed as one
potential source of the genetic diversity observed in M. oryzae, and that TEs can
increase or decrease the fitness of a fungal strain. If transposition of TEs allows the
fungus to adapt more quickly, M. oryzae populations may favor individuals that do
not undergo sexual reproduction to ensure that TEs remain active.

1.6 Telomere variability in M. oryzae

Interestingly, about half of the characterized Avr genes in M. oryzae map near
chromosome ends (FARMAN 2007). Mutations in telomeric restriction fragments
have been observed in Southern hybridization experiments of asexual (FARMAN

2007; FARMAN and Kim 2005) and sexual progeny (CHUMA et al. 2011a). This suggests
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that chromosome ends might be important in the variability of host-specificity
within M. oryzae.

M. oryzae, like all eukaryotes, has linear chromosomes, and the extreme ends
of the chromosomes are capped by a telomere. Telomeres are made up of tandemly
repeated, simple sequences, usually consisting of a GT rich sequence oriented in the
5’ to 3’ direction towards the chromosome end (ZAKIAN 1995). The telomere
sequence found at the end of M. oryzae telomeres is (TTAGGG)n (FARMAN and LEONG
1995).

Telomere sequences are bound with multiple proteins, which protect the
chromosome ends from degradation (DE LANGE 2005; LoAYZA and DE LANGE 2003;
SANDELL and ZAKAIN 1993) and end-to-end fusions (McCLINTOCK 1939; McCLINTOCK
1941). The protein complexes that “cap” the telomeres are also known to protect
them from homologous recombination and nonhomologous end joining (FERREIRA et
al. 2004; PALM and DE LANGE 2008). The telomere associated proteins regulate
telomere length (KRAUSKOPF and BLACKBURN 1996; VAN STEENSEL and DE LANGE 1997),
and are involved in silencing genes located near the telomere (BAUR et al. 2001;
GOTTSCHLING et al. 1990).

In most organisms, simple sequence repeats are maintained by a specialized
reverse transcriptase called telomerase. New telomere repeats are added on to the
chromosome ends by the enzymatic subunit of telomerase (the telomerase reverse
transcriptase-TERT) which uses an “internal” RNA template (TER) to reverse

transcribe telomeric sequence at the chromosome end (BLACKBURN and COLLINS

23



2011; GREIDER and BLACKBURN 1987). Higher telomere instability is observed in
mutants which lack telomerase (BLASCO et al. 1997; MEYER and BAILIs 2008).

Drosophila melanogaster (the fruit fly) lacks telomerase, and uses a
retroelement-mediated maintenance of chromosome ends. The telomeres are
composed of tandem head to tail arrays of repeated sequences made up of two
non-long terminal repeat (non-LTR) retrotransposons which orient with the poly-A
sequence toward the centromere. The two elements that make up the telomeres are
HeT-A (approximately 6 kb) and TART (approximately 10 kb). The retroelements
are transcribed into a RNA that is reverse transcribed onto the chromosome ends in
much the same way as telomerase adds simple sequence repeats. The elements
utilize a reverse transcriptase that uses the 3’ end of the nicked DNA as a primer to
copy the element into the target site (BIESSMANN et al. 1992; LEvIS et al. 1993).

Proximal to the telomere is the subtelomere. This region is rapidly evolving
and composed of highly polymorphic repetitive DNA (BROUN et al. 1992; EICHLER and
SANKOFF 2003; MEFFORD and TRASK 2002). The subtelomere is commonly divided
into the distal and proximal domains. The distal domain, immediately proximal to
the telomere repeats, is often devoid of genes and the repetitive sequences in this
domain are commonly found at more than one subtelomere (AMARGER et al. 1998;
PEARCE et al. 1996). The proximal domain is frequently composed of genes or
repeats which are found at a smaller subset of chromosome ends (Louis 1995;
THOMPSON et al. 1997). Subtelomeres often contain genes important for adaptation
to an organism’s environment, such as genes involved in carbon utilization,

tolerance to toxic environments, and evading host detection (CHARRON et al. 1989;
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RACHIDI et al. 2000; WADA and NAKAMURA 1996). M. oryzae subtelomeres are
enriched in genes that encode secondary metabolites and hypothetical secreted
proteins that could be involved in pathogenesis (REHMEYER et al. 2006).
Subtelomeric regions may be unstable due to gene conversion and other types of
rearrangements during meiosis (CHUMA et al. 2011a). The instability of these
regions may allow for rapid evolution of genes involved in pathogenicity, which has
been previously observed with instability of Avr-Pita genes (CHUMA et al. 2011b).
Chromosome ends in GLS isolates, which are virulent on perennial ryegrass,
show “hypervariability” in telomeric RFLPs, while the RB isolates did not show this
same pattern. This suggested that there might be structural differences at the
chromosome ends between RB isolates and GLS isolates that are leading to the
instability. To examine whether there was an underlying structural basis for the
telomere variability, homologous chromosome ends were compared between the
RBisolate 70-15 and the GLS isolate FH. Figure 1-1 compares four different
chromosome ends between FH and 70-15. In general the subterminal regions of the
FH isolate are devoid of the transposable elements present in the telomeres of
70-15, with the exception of a RETROS5 long terminal repeat (LTR) element near
telomere 8. Telomere 3 in 70-15 is composed of an rDNA array that ends in
telomere repeats, while in FH the rDNA array ends in a telomere repeat followed by
two copies of a 4.6 kb element and a 2.5 kb element. The two 4.6 kb elements and
2.5 kb element are surrounded by telomere repeats (Figure 1-1, Panel A). In
telomere 5, 70-15 contains many transposable elements in the subterminal region

that appear to be absent in the corresponding region in FH. The subtelomere of
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telomere 5 in 70-15 contains a telomere-linked helicase (TLH) gene. The TLH gene
is missing in the corresponding chromosome end in FH, and within the telomere
repeat is one copy of a 5.0 kb element in the FH telomere. In telomere 8 of 70-15,
the subterminal region contained several transposable elements that were absent in
FH. The FH sequence diverged 209 bp from the proximal subtelomere region in
70-15, and there was approximately 2.5 kb of sequence followed by a RETRO5
element. In the telomere of FH there was an element that was 4.2 kb in length
followed by three elements that were 1.7 kb in length directed in a head-to-tail
orientation towards the chromosome end. In telomere 11 of 70-15, the structure of
subterminal region was very different from FH, and contained several different
types of transposable elements. The FH subterminal region aligned with disparate
regions of the 70-15 genome. This telomere in FH contained three copies of a 5 kb
element, the most distal of which, was joined to a truncated 1.7 kb element. (STARNES
etal 2012)

The repeated elements embedded in the telomere repeats of the FH isolate
were initially defined as Magnaporthe oryzae Telomeric Exclusive Repeats
(MoTeRs) (FARMAN 2007). MoTER1 was initially described as 4.6 kb in length, and
has an open reading frame with a reverse transcriptase domain. MoTER1 lacks long
terminal repeats, and was suggested to resemble non-LTR retrotransposons.
MoTER?2 is only 1.7kb in length, encodes a 204 amino acid hypothetical protein, and
lacks a reverse transcriptase domain. They are always found with the 5’ end of an
element directed toward the telomere. A single MoTeR is embedded in the telomere

sequence at some chromosome ends, while in other telomeres tandem arrays of
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MoTeRs can be found. Tandem arrays could be made up of single MoTeRs or a
mixture of both MoTER1 and MoTER2 (FARMAN 2007). There was limited
information available on the distribution of MoTeRs when this work began. It was
known that full length MoTeRs were not present in Oryza specialized isolate 70-15.
MoTeRs were present in a few Lolium-specialized and Triticum-specialized isolates
(Farman personal communication). Additionally, there had been no published
studies describing the relatedness of the MoTeRs to the other retrotransposable
elements within M. oryzae.

The presence of MoTeRs in the telomeres of the GLS isolate and absence in
the RB isolate could suggest that they play a role in the instability of telomeres. Itis
intriguing that the subtelomeres of the GLS isolate FH is devoid of most of the other
transposable elements that were found in the RB isolate. One might speculate that
the absence of these transposable elements in this region might lead to more
stability. Thus it is still unclear what role the different transposable elements may
play in the stability of the chromosome ends in the GLS isolates.

1.7 Variability of GLS pathogens and the presence of MoTeRs

MoTeRs were present in GLS isolates, but they were absent in the telomeres of the
rice-infecting laboratory strain that has been sequenced. The presence of the
MoTeRs at telomeres in GLS isolates is intriguing, as the telomere restriction
profiles within GLS populations appear to be highly variable, while the internal
chromosome regions show low variability (FARMAN and Kim 2005). This could
indicate that the MoTeRs are responsible for the telomere variability observed in

the GLS isolates. MoTeRs were not in the genome of the rice-infecting strain 70-15,
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based on a preliminary RFLP analysis, and other rice-infecting field isolates did not
have high variability at chromosome ends (FARMAN 2007).

The population dynamics underlying these field isolates are not known, nor
are the potential differences in adaptive pressures that could affect telomere
variability. Rice is a self-fertilizing species that typically grows in a monoculture
agricultural environment and rice blast is typically an epidemic disease. These two
factors could cause frequent bottlenecking of the rice blast populations leading to
low variability. Gray leaf spot is an endemic disease in turfgrasses. Additionally,
perennial ryegrass is an obligate outcrossing species (more recombination leading
to higher genetic diversity) and is not typically grown as a single genotype in
monoculture (higher genetic diversity). Thus GLS pathogens are likely faced with
more genetic variability in their hosts, which could possibly lead to higher genetic
variability in the pathogen populations. This suggests that the observed telomere
restriction profile variability could be based simply on the host’s population
dynamics. Host diversity has been linked to increased genetic diversity in M. oryzae
because GLS isolates on tall fescue (another obligately outcrossing species) had
more haplotype diversity than St. Augustinegrass (typically vegetatively
propagated) specialized isolates (TREDWAY et al. 2005). While there could be more
variability in the GLS pathogens of perennial ryegrass based just on population
dynamics, a mechanism for increased telomere instability cannot be ruled out.

The extreme telomeric variation in the GLS isolates and the presence of
MoTeRs suggested that these elements could provide a mechanism by which

variability in M. oryzae populations might arise in the GLS isolates virulent on
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perennial ryegrass. Based on the information outlined above, the focus of the
dissertation was narrowed to characterizing some of the mechanisms that could be
involved in generating the “hypervariability” in telomere restriction profiles
observed in GLS isolates.

1.8 Overview of dissertation research

The overall aim of this dissertation was to characterize the involvement of MoTeRs
in telomere instability. Their perceived importance in telomere instability of GLS
isolates stems from the facts that: 1) they are located at the telomeres in GLS
isolates, 2) transposable elements have been shown to cause instability in
Magnaporthe oryzae, and 3) the telomeres exhibit extreme instability.

Prior to beginning the experiments outlined in the dissertation (Chapter 2 for
general methods and within chapters for specific experimental methods) it was
known that there was a MoTeR1, which is described as 4.6 kb in length with an ORF
containing an RT domain, and a MoTeR2 that is described as 1.7 kb in length with an
smaller ORF of no known function (FARMAN 2007). The MoTeRs do not have long
terminal repeats, which suggested that they were a type of non-LTR
retrotransposon though the relationship of MoTeRs to other retrotransposons in
M. oryzae was not known.

The experiments described in Chapter 3 sought to define more clearly the
structure of MoTeRs within the GLS isolates, and to determine their relationship
with other non-LTR retrotransposons.

While it is interesting to postulate possible mechanisms, such as MoTeR

transposition or recombination, that could generate telomere instability in
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populations of GLS isolates, | needed to know whether the telomeres were more
unstable in GLS isolates than in other host-specialized types of M. oryzae without
MoTeRs in their telomeres. Previous work had shown that RB isolates of M. oryzae
from the field showed less telomere variation than GLS isolates (FARMAN 2007;
FARMAN and Kim 2005), and sequencing the telomeres of the Oryza isolate 70-15
failed to yield any remnant of MoTeRs. Given this information I designed
experiments using Southern hybridization techniques, outlined in Chapter 4, that
compared the stability of telomeres in the mitotic progeny of an Oryza pathotype
isolate (70-15) to the stability of telomeres in mitotic progeny of a Lolium pathotype
isolate (LpKY97-1A) after two infection cycles in their respective hosts. To
determine whether instability of GLS telomeres was a general phenomenon among
other Lolium specialized isolates, I examined the telomere stability in mitotic
progeny from two other GLS isolates.

The Southern hybridization experiments, in Chapter 4, revealed higher
telomere instability in GLS isolates. I wanted to determine if at least some of this
instability could be due to MoTeRs. To accomplish this, the experiments outlined in
Chapter 5 utilized shotgun-cloning followed by Southern hybridization and
sequence analysis to follow changes in individual chromosome ends among
different mitotic progeny of LpKY97-1A.

Finally, I wanted to determine how widespread MoTeRs were among
different host specialized types of M. oryzae, as many transposons have an uneven
distribution (see above). The only distribution data available for MoTeRs was from

a preliminary study that showed that they were not in the rice-infecting laboratory
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reference strain (70-15), and were present in a few Lolium and Triticum specialized
isolates (Farman personal communication). In Chapter 6, the experiments
investigated the distribution of MoTeRs within M. oryzae by using Southern
hybridizations. The likely evolutionary relationship of MoTeR1 between isolates
was determined by sequencing and evolutionary analysis of MoTeR1s from isolates

of various host-specialized forms.
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Figure 1-1. Comparison of homologous chromosome end structure in FH and 70-15.
Four pairs of chromosome ends are shown in panels A-D. The telomere and the
telomere-like sequences are represented with circles, open and black respectively.
The direction of the telomere is indicated by a black arrow in FH contigs that did not
end in the terminal telomere repeat array. Features discussed in the text are labeled.
Repetitive elements in FH telomeres in light brown boxes represent elements that
were designated as MoTeRs. Light grey shaded regions indicate alignment of
sequence between 70-15 and FH. The FH telomere 11 had alignments with two
disparate regions in 70-15, so both of those alignments are shown. Purple triangles
represent sequences that were present in FH, but absent in the 70-15 genome.
Figure is modified from (STARNES et al. 2012).
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CHAPTER TWO

Materials and Methods
2.1 Fungal cultures
Fungal strains of Magnaporthe oryzae or Magnaporthe grisea used in the study are
listed in Table 2-1. Fungal isolates were reactivated on oatmeal agar (OA), and
grown under constant fluorescent illumination for 7 d. Conidia were harvested by
adding 10 ml of 0.1% gelatin and gently rubbing the plate with a bent glass rod. The
conidial suspensions were filtered through two layers of cheesecloth, adjusted to 1 x
105 conidia per ml by using a hemocytometer, and then 200 pl of the spore
suspension was spread on a 4% water agar (WA) plate. This plate was then placed
at room temperature overnight in the dark. Germinated single spores were
visualized under a dissecting microscope, cut out using a scalpel blade, and
transferred to a fresh OA plate. After approximately 3 d, an OA agar plug containing
newly grown mycelium was removed from an area adjacent to the single spore. The
plug was placed in a test tube containing 10 ml of complete media (CM) for 7-10
days under continuous shaking at room temperature to allow for growth of the
culture.
2.2 Plant inoculation and conidia collection
Single spore cultures of 70-15 and LpKY97-1A were grown on OA plates for 7 d.
Conidia were collected by flooding the OA plate with 10 ml of 0.1% gelatin and
gently rubbing the plate with a bent glass rod. The suspensions were filtered
through two layers of cheesecloth. Conidia were counted using a hemocytometer

and the conidial suspensions were adjusted to a final concentration of 1 x 10>
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conidia per ml with 0.1% gelatin. Conidial suspensions were sprayed on plants
using an artisan’s airbrush, after they had been placed into separate plastic
inoculation bags. The plants in their respective sealed inoculation bags were placed
at room temperature in the dark for approximately 18 h, and then placed in a
growth chamber with a 12 h day/night cycle at 27°C day and 21°C night (modified
from (KERSHAW et al. 1998)). The bags were partially opened for a period of
approximately four hours to allow the humidity to equilibrate. Plants were then
removed from the bags and infections were allowed to proceed for seven days.
Leaves showing lesions were clipped and placed in a moist chamber to sporulate.
After 3-5 d in the moist chamber, spores were removed from the lesions using a dry
glass rod, and then suspended into 2 ml of a 0.1% gelatin solution.

2.3 Small scale DNA extraction

Mycelium was grown at room temperature with shaking for 7-10 d. The mycelial
ball removed from the 10 ml CM using sterilized forceps, and blot dried on paper
towels. The dried mycelium was placed in a 96 well round bottom natural
polypropylene Whatman uniplate (Florham Park, NJ), snap frozen in liquid nitrogen,
and placed in a freeze dryer for 24 h. Mycelium was ground to a powder by shaking
using steel beads in a 2000 GenoGrinder (SPEX Certiprep, Metuchen, NJ). Lysis
buffer (0.5 M NaCl, 1% sodium dodecyl sulfate [SDS], 10 mM Tris-Cl, pH 7.5, 10 mM
EDTA) was warmed to 65°C. One milliliter of preheated lysis buffer was added to the
ground mycelium and incubated for 30 min at 65°C. Then 2/3 volumes of (24:24:1)
phenol:chloroform:isoamyl alcohol was added, and samples were incubated for

another 30 min at 65°C. The plate was then centrifuged for 30 min at 3000 rpm to
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pellet the cell debris. After centrifugation, 400 pl of supernatant was transferred to
anew 96 well plate, and 240 pl of isopropanol was added. The DNA was then
pelleted by centrifugation for 20 min at 3000 rpm. The supernatant was decanted
and the pellet was washed twice with 70% EtOH. The DNA pellets were then dried,
and redissolved in TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 8.0) containing

RNase A (100 pg/ml). DNA was quantified using SYBR® Gold nucleic acid gel stain
(Molecular Probes, Inc., Eugene, OR) in a Fluorlmager 595 (Molecular Dynamics Inc.,
Sunnyvale, CA).

2.4 Large scale DNA preparation

In some experiments larger quantities of DNA was needed. Fungal cultures were
activated and single spore cultures were generated as described above in section
2.1. These cultures were allowed to grow for three days after which a small agar
plug was removed and placed in 50 ml of CM. The culture was shaken for 2 d at
room temperature. Then the cultures were blended using a blender, an additional
50 ml of CM was added, and they were placed back on the shaker for an additional

3 d. The fungal cultures were then collected using vacuum filtration, placed in 50 ml
BD Falcon™ conical tubes (Becton, Dickinson, and Company, Franklin Lakes, NJ) and
snap frozen in liquid nitrogen. The samples were placed in a freeze dryer for 24 h.
Mycelium was ground to a powder using a glass rod. The DNA was extracted using
the procedures discussed above, but scaled up 10 fold.

2.5 End-enriched clone library preparation

Differential ethanol precipitation was used to remove polysaccharides from the

large scale genomic DNA preparations (AMASINO 1986). After purification, the DNA
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was redissolved in TE buffer at a concentration of 1 ug/ul. The quality of DNA
recovery was checked on a 0.7% agarose gel run at 40 v for 160 min in 0.5X Tris-
borate EDTA buffer (TBE [44.5 mM Tris-borate and 1 mM EDTA]). The genomic
DNA samples (~ 2 ug) were end-repaired to produce blunt ends using the End-it
Repair Kit (Epicenter Technologies, Madison, WI). The end-repaired DNA was then
ligated to EcoRV-digested pBluescript KS II* vector (~50 ng) in a 10 pl volume. The
ligase was heat-inactivated by incubation at 70°C for 20 min. The samples were
digested overnight at 37°C with 20 units of Pstl following the manufacturer’s
protocol (New England Biolabs, Beverly, MA). The Pstl was heat-inactivated by
incubation at 70°C for 20 min. The reaction mix was diluted 10-fold with 1X ligation
buffer, and the Pstl digested DNA was then re-ligated using T4 DNA ligase (New
England Biolabs, Beverly, MA). Ligase was heat-inactivated by heat treatment at
70°C for 20 min. After ligation, excess salts were removed by dialyzing against TE
buffer at 4°C for 1 h. Then the end-enriched plasmid preparation was transformed
into the E. coli strain EPI300 by electroporation. Cells were incubated for 1 h in SOC
media, and 100 pl of the samples were spread onto LB plates with selection for
ampicillin resistance (added to the final concentration of 100 pg/ml).

Colonies that contained telomeres were identified by colony hybridization
using a (TTAGGG)z00-300 probe (FARMAN 2011). Colonies that were positive for
telomeres via Southern hybridization were picked and transferred to a 10 ml tube
containing LB and shaken overnight at 37°C. Plasmids were extracted using the

Zyppy Plasmid Miniprep Kit II (Zymo Research, Orange, California).
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2.6 Cloning of MoTeR Bands unlinked to telomeres

A pBluescript KS II* plasmid vector (Stratagene, La Jolla, California) was linearized
using Pstl. The sample was run at 80 v for 80 min on a 0.7% agarose gel in 0.5X TBE
using 1 kb Plus DNA Ladder™ (Life Technologies, Carlsbad, CA) as a molecular size
marker. Linearized plasmid was excised from the gel, and purified using Qiaquick
columns (Qiagen, Valencia, CA). Genomic DNA was digested with Pstl, and
electrophoresed in 0.7% agarose at 35 v for 24 h in 0.5X TBE. The area of the
agarose gel corresponding to the approximate size of the non-telomeric MoTeR was
extracted, and purified using Qiaquick columns (Qiagen, Valencia, CA). The
linearized plasmid was ligated to the genomic DNA preparation using T4 DNA ligase.
In order to remove excessive salts, samples were transferred to a dialysis column,
and incubated at 4°C for 1 h in TE buffer pH 7.5. Then 1 pl of the ligation mix was
transformed into 50 pl of Transformax EPI300 electrocompetent cells (Epicenter,
Madison, WI) by electroporation. Subsequently 950 pl of SOC was immediately
added, and cells were incubated for 1 h at 37°C. One hundred microliters of the
sample were spread onto LB plates containing ampicillin (100 pg/ml) and X-gal (5-
bromo-4-chloro-3-indolyl-3-D- galactopyranoside at a concentration of 40 ug/ml).
Colony lifts were performed using Whatman filter paper. Colonies that were positive
for telomere sequence via Southern hybridization were picked and transferred to a
10ml tube containing LB and shaken overnight at 37°C. Plasmids were extracted

using the Zyppy Plasmid Miniprep Kit II (Zymo Research, Orange, CA).
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2.7 Primer design

Primers were designed using VectorNTI version 7 (Invitrogen Corporation,
Carlsbad, CA). Primers are listed in Table 2-1. Primers were ordered from
Integrated DNA Technologies (Coralville, 1A).

2.8 Hybridization probes

The telomere probe was generated by PCR using two primers (TelomereF and
TelomereR) with no template. The parameters used in the PCR cycling were: 94°C
for 5 min, followed by 35 cycles of 94 °C for 30 s, 50°C for 30 s, and 72°C for 1 min.
The final extension phase was at 72°C for 2 min. The reaction products were
separated by electrophoresis on a 0.7% agarose gel in 0.5xTBE at 60 v for 120 min.
Fragments ranging from 1.5-2.0 kb were excised from the gel, and were then gel
purified using Qiaquick columns (Qiagen, Valencia, CA).

MoTeR probes were generated as follows: The primers MoTeR1003F and
MoTeR1003R were used to generate the MoTeR1 probe by PCR using a highly
diluted plasmid clone as a template. The MoTeR1(RT) probe was amplified by PCR
from highly diluted plasmid clones as a template with the primers MoTeR1001F and
MoTeR1001R. MoTeR2 template was amplified by PCR from highly diluted plasmid
clones as a template with the primers MoTeR2002F and MoTeR2002R. The
5’MoTeR probe was amplified by PCR using the primers MoTeR2001F and
MoTeR2001R. The parameters used in PCR cycling were: 95°C for 5 min, followed
by 35 cycles of 95°C for 30 s, 56°C for 60 s, and 72°C for 1 min, with a final extension
phase of 72°C for 5 min. The PCR products were fractionated on 0.7% agarose gel in

0.5X TBE at 80V for 80 min. After electrophoresis, the agarose gel was stained for
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30 min in EtBr and 0.5X TBE. Staining solution was removed, fresh 0.5X TBE was
added, and the gel was destained for 20 min. The bands corresponding to MoTeRs
were excised and extracted using the Qiaquick gel extraction kits (Qiagen, Valencia,
CA).

Genomic Probes were generated as follows: Probe 117B was amplified by
PCR from the highly diluted plasmid clone 117B1 with the primers m117B1F and
m117B1R using ExTaq polymerase. Probe 31B001 template was amplified from
plasmid 31B by PCR with the primers 31B001F and 31B001R using ExTaq
polymerase. Probe 31B002 was amplified by PCR from plasmid 31B using ExTaq
polymerase and the primers 31B002F and 31B002R. The parameters used in PCR
cycling were: 95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 60°C for 60 s,
and 72°C for 1 min, with a final extension phase of 72°C for 5 min. The PCR products
were fractionated on 0.7% agarose gel in 0.5X TBE at 80V for 80 min. After
electrophoresis, the agarose gel was stained for 30 min in EtBr and 0.5X TBE.
Staining solution was drained, fresh 0.5X TBE was added, and the gel was destained
for 20 min. The band corresponding to the genomic probe was excised and
extracted using the Qiaquick gel extraction kits (Qiagen, Valencia, CA).

Purified amplification products were labeled with Redivue a-32P dCTP (GE
Healthcare, Buckinghamshire, United Kingdom) using the Prime-a-Gene Labeling
System (Promega, Madison, WI).

2.9 Southern hybridization
One microgram of genomic DNA in a total reaction volume of 50 pl was digested

with 20 units of restriction enzyme in the appropriate reaction buffer supplied by
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the manufacturer (New England Biolabs, Inc., Ipswich, MA). Approximately 400 ng
of digested genomic DNA was loaded onto a 0.7% agarose gel, and DNA was
separated electrophoretically at 35 Vin 0.5x TBE for 24 h or 48 h at 4°C. The
agarose gel was then stained in 0.5% TBE for 30 min in EtBr added to a final
concentration of 5 ug/ml, and destained in fresh 0.5X TBE for 20 min. The gel was
electroblotted onto a Pall Biodyne B charged nylon membrane (PALL Life Sciences,
Ann Arbor, MI) using a GENIE electroblotter (Idea Scientific, Minneapolis, MN) for
2hat12 V. The membrane was placed into a small container and the membrane
bound DNA was denatured for 10 min in 0.4N NaOH. The 0.4N NaOH was drained,
and the membrane was neutralized for 10 min in 2X SSC (1X SSC [saline-sodium
citrate] is 0.15 M sodium chloride and 0.015 M sodium citrate). DNA was then UV
fixed to the membrane by using the optimal crosslink setting in a Spectrolinker
(Spectronics Corporation, Westbury, New York). The membrane was prehybridized
for 30 min in hybridization buffer (0.125 M NaHPOg4, pH 6.2, 7% SDS, and 1 mM
EDTA) at 65°C. The probe was denatured with 0.1 vol. 2N NaOH for 8 min, and then
it was neutralized with 0.1 vol. 1 M Tris-Cl pH 7.4. The hybridization buffer used in
prehybridization was decanted and replaced with 5 ml of fresh hybridization buffer.
Then probe was added and incubated at 65°C for 24 h. Blots were washed twice
with 2xSSC for 30 min at 65°C, and then washed once with a high-stringency wash
(0.1% SSC and 0.1% SDS) for 30 min at 65°C. The membranes were blotted dry,
wrapped in Saran™ wrap (S. C. Johnson & Son Inc., Racine, WI), exposed on Storage

Phosphor Screens (Molecular Dynamics, Sunnyvale, California) at room temperature
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for 3 d. The screens were scanned using a Typhoon Phosphorlmager (GE
Healthcare, Buckinghamshire, United Kingdom).

2.10 Cloning of MoTeR-to-MoTeR junctions

The junctions between MoTeRs were amplified by PCR using different combinations
of the forward and reverse primers: MoTeR]J1F, MoTeR]J2F, MoTeR]1R, and
MoTeR]J2R. ExTaq polymerase was used. ExTaq creates a mixture of blunt ended
PCR amplicons and 3’ A overhangs in PCR amplicons which allows a PCR amplicons
to be directly cloned into T-vectors at an approximate 80% efficiency (Takara,
Madison, WI). The parameters used for PCR were: 95°C for 5 min, followed by 35
cycles of 95°C for 30 s, 60°C for 60 s, and 72°C for 1 min, with a final extension phase
of 72°C for 5 min. PCR amplicons were ligated into pGEM T-easy vectors system
using the manufacturer’s protocols (Promega, Madison, WI). Transformax EPI300
electrocompetent cells (Epicenter, Madison, WI) were electroporated with plasmid,
incubated for 1 h in SOC media, and plated onto LB plates with selection for
ampicillin resistance (100 pg/ml) and blue/white colony screening using X-gal (40
ug/ml). Plates were incubated at 37°C overnight. White colonies were picked and
transferred to LB broth + amp and incubated overnight. The plasmids were then
extracted using the Zyppy Plasmid Miniprep II kit (Zymo Research, Orange,
California) or by using Qiagen plasmid preparation kits (Valencia, California) with a
Whatman 96 Well lysate clarification UNIFILTER (Florham Park, New Jersey).

2.11 Sequencing

Purified products were sequenced following the protocols outlined in the BigDye

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA).
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Completed BigDye terminated reactions were sent to the University of Kentucky
Advanced Genetic Technologies Center (AGTC) for sequencing. Sequences used in
subsequent analyses were edited using ContigExpress®in VectorNTI version 7
(Invitrogen, Carlsbad, CA), and derived from forward and reverse sequencing
reactions.

2.12 Tandem repeat analyses

Sequences of MoTeR1 and MoTeR2 were analyzed by the program Tandem Repeats
Finder version 4 (BENSON 1999). The default parameters were used. Additional
editing and analysis was completed manually using VectorNTI version 7 (Invitrogen,
Carlsbad, CA). Alignments of MoTeRs were prepared using Kalign (LASSMANN and
SONNHAMMER 2005), and manually edited in Jalview version 2 (WATERHOUSE et al.
2009) or VectorNTI version 7 (Invitrogen, Carlsbad, CA).

2.13 Relatedness of MOTER1 to other retrotransposons

Full-length protein sequences with reverse transcriptase domains were downloaded
from NCBJ, or translated from DNA sequence using VectorNTI version 7 (Invitrogen,
Carlsbad, CA) where protein sequence was unavailable in the GenBank database
(Table 2-3). Putative RT domains were identified using protein BLAST domain
search, the protein sequences were then trimmed to remove regions flanking the RT
domain and aligned using Kalign (LASSMANN and SONNHAMMER 2005). Where
necessary, the multiple alignments were manually edited in Jalview version 2.4
(WATERHOUSE et al. 2009), and AlignX® in VectorNTI version 7(Invitrogen, Carlsbad,
CA). Phylogenetic analyses using the neighbor-joining method (N]) was performed

using MEGA version 4 (TAMURA et al. 2007). Bootstrapping (1,000 replications) was
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used to evaluate the statistical support for the NJ tree. The Poisson correction
method (PCM) was used to calculate evolutionary distance. PCM calculates distance
as d = —In(1 — p) where p is the proportion of sites that differ between two
sequences.

2.14 Statistical methods in RFLP comparisons

Analyses of data using one-way ANOVA, two-way repeated measures ANOVA, least
square mean t-test post hoc, and two-sample t-tests were completed using SAS v9.2
(SAS Institute, Cary, N.C.). p-values less than 0.05 were considered statistically
significant.

2.15 Phylogenetic analyses of MoTeR1 and gene loci

DNA sequences were trimmed manually, and then aligned using Kalign (LASSMANN
and SONNHAMMER 2005). Where necessary, the multiple alignments were manually
edited in Jalview version 2.4 (WATERHOUSE et al. 2009). Phylogenetic analyses using
the NJ method was performed using MEGA version 4 (TAMURA et al. 2007).
Bootstrapping (1,000 replications) was used for statistical support in the trees
generated. The Kimura-2 parameter method was used to calculate evolutionary

distance.
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CHAPTER THREE

Characterization and Variation of MoTeR Repeats within GLS Isolates

3.1 Introduction

Non-long terminal repeat (non-LTR) retrotransposons have been identified in all
major groups of eukaryotes (ARKHIPOVA and MESELSON 2000; GLADYSHEV and ARKIPOVA
2010). Based on phylogenetic analyses of protein-coding sequences, non-LTR
retrotransposons have been suggested to be the oldest type of mobile elements that
use a reverse transcriptase to create new copies (MALIK and EIckBUSH 2001; MALIK et
al. 2000).

Functional non-LTR retrotransposons encode proteins with several different
enzymatic activities, which allow them to utilize a relatively simple insertion
mechanism (CHABOISSIER et al. 2000; FENG et al. 1996; LUAN et al. 1993). First, a
chromosomal target site is cleaved by an endonuclease encoded by the
retrotransposon. Depending on the element, the endonuclease may be a restriction-
like endonuclease (REL-endo) (MALIK et al. 1999) or an apurinic/apyrimidinic (APE)
endonuclease (ZINGLER et al. 2005a). Next, the 3’ end of the cleaved DNA is used as a
primer for the reverse transcriptase (encoded by the retrotransposon) to
polymerize a cDNA copy of the RNA transcript at the target site. This method is
typically called target primed reverse transcription (TPRT). The second strand is
then synthesized, though the mechanism by which this occurs is still unclear (HAN

2010).
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There is considerable structural variability among non-LTR retrotransposons
which could cause variation in the precise steps described above (EICKBUSH and
MALIK 2002). The oldest lineages of non-LTR retrotransposons have a REL-endo
domain located on the carboxy terminal (C-terminal) side of the RT domain, which
is encoded by a single open reading frame (ORF). The more recent lineages of non-
LTR retrotransposons lack the REL-endo domains and have a more complex
structure. They have acquired a second open reading frame (ORF1) that is located
upstream of the RT domain (ORF2). ORF1 is thought to play a role similar to gag
proteins of retroviruses (DAWSON et al. 1997), it has nucleic acid chaperone activity
(MARTIN and BusHMAN 2001), and RNA binding activity (KoLosHA and MARTIN 2003).
In ORF2, the APE domain is located on the amino terminal side (N-terminal) of the
RT (MALIK et al. 1999).

Two other regions play an important role in non-LTR retrotransposon
function, and these are the 5’ and 3’ untranslated regions (UTRs). The 5’ and 3’ UTRs
are highly variable between various non-LTR retrotransposons. The 5’ UTR
contains internal promoter activity (MIZROKHI et al. 1988), but this promoter can
frequently be replaced (HAAs et al. 2001; KHAN et al. 2006), giving rise to 5’ UTR
sequence variability among elements from different species. Some variation at the
5’ UTR between elements within the same genome may also be due to frequent
truncation as a result of incomplete reverse transcription (AKSoyY et al. 1990; SzAK et
al. 2002).

The 3’ UTR typically has a specific sequence/structure that is recognized by

the reverse transcriptase (ANZzAl et al. 2005; LUAN and EICKBUSH 1995; OSANAI et al.
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2004). Atthe 3’ boundaries of non-LTR retrotransposons there are one of three
different sequence types. In some non-LTR retrotransposons, a variable length
polydeoxyadenosine (polyA) sequence is located at the 3’ boundary. Two examples
of variable polyA sequence at the 3’ boundary are the L1 retrotransposon where the
polyA tract varied from 27 to 54 nucleotides (DOMBROSKI et al. 1991) and the TRAS1
retrotransposon where the length of the poly(A) tract varied from 44 to 72
nucleotides (OKAZAKI et al. 1995). Other non-LTR retrotransposons have short
sequence repeats (STRs). For example, the non-LTR retrotransposons Dong (XIONG
and EIckBUSH 1993), Q (BESANSKY et al. 1994), and I (FAWCETT et al. 1986) end in TAA
repeats, the CR1 retrotransposon ends in the repeat ATTCTGT (BURCH et al. 1993),
and the R1 retrotransposons end in GTC or TA repeats (EICKBUSH and EICKBUSH
1995). The last type of 3’ end found in non-LTR retrotransposons is an apparent
absence of either STRs or polyA sequence (HAN 2010).

The Magnaporthe oryzae Telomeric Retrotransposons (MoTeRs) are
classified as non-LTR retrotransposons due to the lack of long terminal repeats
bordering the ends of the repeats. The larger of the repeats (MoTeR1) is 5 kb and
has a reverse transcriptase-like domain. MoTeR2 is a smaller repeat being only
1.7 kb in length, and lacks a reverse transcriptase domain. These repeats are found
in telomeres and are bordered by telomere repeats (TTAGGG)n (FARMAN 2007;
STARNES et al. 2012). There was little else known about the specific structure of these
elements. The experiments in this chapter sought to address the structure, genomic

distribution, and variability of the MoTeRs within GLS isolates of M. oryzae.
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3.2 Results

3.2.1 MoTeRs structure and classification

To describe the commonality between MoTeR1 and MoTeR2, the DNA sequences
were aligned. This revealed that the elements had extensive similarity at their 5’
ends, as there are only two mismatches (one mismatch at position 7 where there is a
G/A mismatch and another at position 63 where there is a G/A mismatch) in the
first 870 bp of alignment. There is also perfect sequence identity of 77 bp at the 3’
ends of the two MoTeRs. The sequences did not share similarity outside of these
two regions. There were numerous short tandem repeat (STR) motifs within
MoTeRs that were found using Tandem Repeats Finder (Table 3-1). Six of the STRs,
all located in the 5’ UTR, were shared between the elements. The two STRs closest to
the telomere, STR(A) [CCCGAA] and STR(B) [CCCAAA], are very similar in sequence
to the telomere repeat (CCCTAA)n found in M. oryzae. MoTeR1 had five unique
STRs, only one of which (repeat I) was located in the ORF. MoTER2 had an
additional five unique STRs, three of which were located within the ORF

(Figure 3-1).

In the region where no sequence similarity was found between MoTeR1 and
MoTeR2, each element had an ORF encoding different proteins. In MoTeR1 an ORF
coding for a 1070 amino acid protein was detected, and in MoTeR2 an ORF coding
for a 204 amino acid protein was discovered. These ORFs are shown in Figure 3-1 as
solid arrows.

Hypothetical protein sequences were translated from the DNA sequence

using VectorNTI version 7.0. Blast searches in GenBank using the non-redundant
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protein sequence database were then used to determine if there was similarity to
other known elements. The MoTER2 predicted protein was not similar to any
known protein. A reverse transcriptase domain (Pfam ID: PF00078) was detected
within the MoTER1 predicted protein, and this protein showed significant similarity
to protein sequence from CNL1, a telomeric retrotransposon from Cryptococcus
neoformans, the SLACS retrotransposon in Trypanosoma brucei and Leishmania
braziliensis, and CRE1 and CRE2 retrotransposon from Crithidia fasciculate (GABRIEL
et al. 1990). These retrotransposons are described as being in the CRE-like clade of
non-LTR retrotransposons. Additionally, MoTeR1 was similar to two other members
of CRE-like retrotransposons, which were recently discovered in

Fusarium oxysporum (FoNLR9) and Fusarium verticillioides (FvNLR4) (NoVIKOVA et
al. 2009). The similarity of the MoTeR RT domain to other non-LTR
retrotransposons suggested that the MoTeRs are non-LTR retrotransposons, and
consequently the elements were designated Magnaporthe oryzae Telomeric
Retrotransposons (MoTeRs). This finding was significant as the MoTeRs are the
first CRE-like retrotransposons to be found in M. oryzae.

The top Blast match for the MoTeR1 RT was to a hypothetical protein in
Nectria haematococca. Further analysis of the Nectria protein indicated that it was
encoded by a previously unknown non-LTR retrotransposon that was present in
telomeric and non-telomeric locations in the N. haematococca genome. Full-length
elements were only present near telomeric locations (data not shown). This

retrotransposon was thus named Nectria haematococca Telomeric Retrotransposon
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(NhTeR1), and the DNA sequence of the full-length (4.3 kb) element is provided in
Appendix A.

To understand the relationship of the MoTeR1 hypothetical reverse
transcriptase with known reverse transcriptases within M. oryzae and other
organisms, a phylogenetic analysis needed to be performed. To accomplish this,
full-length protein sequences with reverse transcriptase domains were downloaded
from NCBI, or translated from DNA sequence where protein sequence was
unavailable in the GenBank database (Table 2-3). The putative RT domains were
identified using protein BLAST domain search, the protein sequences were then
trimmed to remove regions flanking the putative RT domain, and aligned. Where
necessary, the multiple alignments were manually edited to align the conserved
motifs within the RT (XI0NG and EickBUSH 1990). Phylogenetic analyses using the
neighbor-joining method (N]) were performed. Bootstrapping (1,000 replications)
was used to evaluate the statistical support for the NJ tree. The Poisson correction
method (PCM) was used to calculate evolutionary distance.

Based on the phylogenetic analysis, the MoTeR1 reverse transcriptase was
did not group with any of the previously discovered reverse transcriptases in
M. oryzae, marked in bold text in Figure 3-2. MoTeR1 was most similar to NhTeR1,
Cnl1, and FoNLRO9 (Figure 3-2), which are elements also located in or near telomeres
in other fungi. This group was closely associated with the relatively ancient CRE
clade, which insert in a sequence-specific manner (EickBusH 2002). MoTeR1 was

somewhat more distantly related to the Giardia early non-LTR insertion elements
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(Genie), which inserts into a repeated sequence located near telomeres (BURKE et al.
2002).

The CRE-like retrotransposons typically have N-terminal zinc-finger nucleic
acid binding motifs with the consensus sequence C(Xz)C(X12)H(X4-5)H, and a
C-terminal REL domain with the consensus sequence C(X1-3)C(X7-8)H(X3-4)C(Xo-
10)RHD/N(X19-33) E(X9-21)R/KPD B-turn D/E (where X may be any amino acid).
These motifs are believed to be involved in sequence specific integration
(CHRISTENSEN et al. 2005; YANG et al. 1999). Motivated by the similarity of the
MoTeR1 RT domain to these retrotransposons, the MoTeR1 protein sequence was
analyzed for these motifs. Two putative zinc-finger binding motifs were discovered
within MoTER1 with the sequence C(X2)C(X9)H(X4)H and C(X2)C(X12)H(X4)H. The
sequences of the MoTeR1, NhTeR1, FONLRY, Cnl1, SLACS, CZAR, CRE1, and CRE2
were aligned using Kalign, and manually edited to show the alignment of the
conserved motifs of the C-terminal REL domain (Figure 3-3). MoTeR1 shared many
of the REL domain conserved motifs with other CRE-like retrotransposons. These
conserved motifs in MoTER1 are indicated by bold print while the differences are in
plain text in the sequence C(X2)C(X7)H(X3)C(Xo)RHD(X1g)E(X4g8)RAD (-turn D. Most
CRE-like transposons have a short, non-conserved region in the REL domain
between the EP and the RPD conserved motifs (Figure 3-3), mostly between 8-15
amino acids (i.e. EP(Xs.15)RPD). MoTeR1 has a large extension of this
non-conserved region (X47) whereas other retrotransposons closely related to
MoTeR1 have much shorter non-conserved regions (NhTeR1 and FONLR9 both have

X7). MoTeR1, NhTeR1, and FONLR9 did not have the characteristic RPD domain
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associated with CRE-like retrotransposons, and instead had an RAD domain

(Figure 3-3).

3.2.2 Genomic distribution of MoTeRs among GLS isolates

Full length MoTeRs were found in the telomeres of the Lolium pathotype isolate FH,
but not in the genome sequence of 70-15. To determine if MoTeRs were present in
telomeric locations in other Lolium-specialized isolates, DNA samples were digested
with Pstl. When probing genomic DNA digested with Pstl with telomere probe, the
hybridizing fragments will include the telomere sequence to first Pstl site in from
the chromosome end. The MoTeRs do not have Pstl sites in their sequence and so
the MoTeRs arrays within that fragment should remain intact within the telomere
fragments. Following digestion, the DNA was fractionated by electrophoresis, and
then electroblotted on a nylon membrane. The blots were then hybridized
sequentially with a MoTeR1-specific probe, MoTeR1-specific probe (RT sequence), a
MoTeR1-specific (3’) probe, a MoTeR2-specific probe, and the telomere probe.
Between each of the hybridizations the blots were stripped to remove the previous
signals.

Every GLS isolate analyzed with telomere probe in the Southern
hybridization had different telomere fingerprint patterns (Figure 3-4-A). The
hybridization patterns for the telomere (Figure 3-4-A), MoTeR1 (Figure 3-4-B), and
MoTeR2 (Figure 3-4-E) probes revealed that MoTeR1 and MoTeR2 mainly
cohybridized with the telomeric fragments and not to other internal Pstl fragments.
With regards to MoTeR2 there was only one notable exception in which the MoTeR2

did not cohybridize with telomere (marked with a red asterisk in Figure 3-4-E).
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There were five discernible exceptions where fragments hybridized strongly to the
MoTeR1 probe, but did not hybridize to the telomere probe (highlighted with
asterisks in Figure 3-4-B). These were found in the isolates CHRF, KS330, RGN], and
TFMS. The non-telomere hybridizing MoTeR1 fragment in RGN] (marked with a red
arrow in lane 12 Figure 3-4-B) was cloned and partially sequenced. This revealed
384 base pairs of unknown sequence followed by a highly truncated MoTeR1 on one
end of the plasmid insert, and a MGRL-3 on the other side of the plasmid insert
(Figure 3-5). A faint, non-telomeric MoTeR1-hybridizing fragment was observed in
10/14 isolates (Figure 3-4B marked with a red arrow in lane 14). This fragment was
cloned from TFMS and sequenced. The resulting TFMS fragment was 1886 bp in
length (Figure 3-5). The sequence did not contain any telomere repeats indicating it
was likely at an internal locus. Blasting this sequence against GenBank indicated
sequence similarity, from position 315-629, to the telomeric clone 72HO05 located on
telomere 12 in 70-15 from position 8024-8339 (REHMEYER et al. 2006). There were
only 15 mismatches between the sequences. The local blast search of the TFMS
fragment sequence to MoTeR1 indicated there was sequence similarity from
positions 629-1716 in the TFMS fragment to positions 4021-5035 in MoTeR1.
However, there were a high number of mismatches (217) and gaps (15) in the
alignment, which results in the faint intensity of the MoTeR1 fragment in the
Southern blots.

The Southern hybridization data were tabulated to provide information on
MoTeRs in telomeres of the GLS isolates (Table 3-2). Telomere hybridizing Pstl

fragments were counted as one telomere for the purposes of this experiment. This

64



method may underestimate the number of telomeres if some telomeric fragments
comigrate during electrophoresis prior to Southern analysis. A total of 136
telomere-hybridizing bands were counted with an average of approximately 11
bands per isolate. Most of these telomere-hybridizing fragments cohybridized with
at least one of the MoTeRs (123 out of 136), which suggested that most of the
telomeres in GLS isolates have MoTeRs. In 6 out of the 14 isolates analyzed all of the
visible telomere-hybridizing fragments cohybridized with MoTeRs. Some of the
telomere fragments cohybridized with either MoTeR1 or MoTeR2, while others
cohybridized with both MoTeRs. There were only 13 telomere-hybridizing
fragments that appeared to lack MoTeRs altogether (Table 3-2).

The method used above will underestimate the number of telomeres, as
several telomeric Pstl fragments may migrate together during electrophoresis due
to their similar size. To gain a better estimate of MoTeR copy numbers in the
Lolium-specialized isolates, the number of copies was estimated by visual means,
taking the relative hybridization intensities into account. Densitometric scanning of
the lanes in the Southern blot was also used to provide an independent assessment
of copy numbers. These estimations are provided in Table 3-3. As seen in the table,
visual estimation tended to underestimate the number of copies present within
intensely hybridizing fragments, and thus the densitometric scanning method was
considered more reliable in determining the number of copies present based on the
intensity of the hybridizing fragments in the Southern Blots. Based on densitometric
scanning, there were, on average, ~14 telomeres per isolate with a range from ~10

to ~17. The average copy number of MoTeR1 was 15.5 with a range from 10 to 27.
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The copy number of MoTeR2 was lower with an average of 11.3 per isolate, and a
range from 0 to 23. CHRF exhibited the highest MoTeR copy numbers with ~50,
while PL3 had the least with ~15 MoTeR1s and no MoTeR2s.
3.2.3 Variability of MoTeRs among Lolium pathotype isolates
There is one BamHI site present within MoTeR1 and MoTeR2 (position 4579-4585
in MoTeR1 and position 1020-1025 in MoTeR2). When the genomic DNA is digested
with BamHI some of the fragments should contain the terminal MoTeRs with their
respective telomere repeats (Figure 3-6). It was believed that variation of the
terminal MoTeRs among different Lolium pathotype isolates could be detected by
Southern analysis of BamHI digests with a telomere probe. A preliminary analysis
of BamHI-digested DNAs from Lolium-specialized isolates with a telomere probe
produced a small number of intense signals, which was believed to be due to the
presence of conserved MoTeR sequences at multiple chromosome ends (i.e. the
terminal MoTeRs). However, the sizes of the intense signals varied between
different GLS isolates, implying that different isolates contain different MoTeR
variants (data not shown).

To expand upon this finding Southern hybridization analyses of genomic
DNA digested with BamHI from different strains was used to detect variation of
MoTeRs in the Lolium pathotype isolates using 4 different probes. Additionally,
different cultures of the same fungal isolate were used in KS320, LpKY97-1A,
LpOH97-1, and RGN] to see if variation could exist within mitotic progeny of the
same isolate. The four probes used in the analyses include: telomere, MoTeR(5’),

MoTeR1(RT), and MoTeR2. The MoTeR(5’) probe could hybridize to both MoTeR1
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and MoTeR2 due to the similarity of the 5’ ends. This probe could potentially
hybridize to six different fragments: including those that have terminal MoTeRs and
various different configurations of MoTeR-MoTeR junctions (See Figure 3-6). The
MoTeR1(RT) probe was limited to hybridization with terminal MoTeR1s or in
fragments within MoTeR1-MoTeR junctions. The MoTeR2 probe was limited to
hybridization with subterminal elements.

When probed with the telomere probe two intense signals were present in
18 of the 27 of the isolates (Figure 3-7-A in the region marked with black boxes).
These intense telomere signals cohybridized with the MoTeR(5’) probe (Figure
3-7-B). The higher intensity of the signals and the cohybridization of the MoTeR(5’)
probe indicates that multiple chromosome ends contain the same size terminal
MoTeR copies within an isolate. The larger sized fragments (black box MoTeR1
Figure 3-7-A) corresponds with MoTeR1 based on cohybridization of the
MoTeR1(RT) (Figure 3-7-B) and MoTeR(5’) (Figure 3-7-C) with this fragment, while
the smaller fragments (black box MoTeR2 Figure 3-7-A) corresponds with the
expected size of the terminal MoTeR2 and cohybridized with MoTeR(5’) (Figure 3-
7-B). Size variation in the terminal MoTeR copies was observed between isolates
(Figure 3-7-A). For example, the terminal MoTeR1 copies in FH (lane 5 Figure 3-7-A
marked with a red arrow) are smaller than terminal MoTeR1s in CHW (lane 3
Figure 3-7-A marked with a red arrow). The difference in size variation was also the
same for MoTeR2 in these isolates, with the terminal MoTeR2s in FH being smaller
than the corresponding band in CHW (lanes 5 and 3 respectively, in Figure 3-7-A

marked with a green arrow). The terminal MoTeRs in RGN] were intermediate in
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size between FH and CHW (lane 7 Figure 3-7 A). Since it had already been
established that full length MoTeR1 and MoTeR2 share the same 5’ ends in the
isolate FH (Figure 3-1), the likely explanation of the size variation of terminal
MoTeRs among different isolates is due to differences in the shared 5’ sequence
between MoTeR1 and MoTeR2.

Five isolates (CHRF, FaKY97-1A, KS320, and RCHMD) lacked the intense
signal expected from full-length telomeric MoTeR1s, but instead showed multiple
bands with weaker signals around the expected size, indicating that these isolates
have variation in the terminal MoTeR1s (Figure 3-7-A). Based on the lack of
MoTeR(5’) hybridization, LpMS97-1 (lane 16) and the WK isolates (lanes 32-34) did
not have any full-length MoTeRs in their genomes (Figure 3-7-B). The WK isolates
did retain 5’ truncated MoTeRs as was seen with hybridization signals to
MoTeR1(RT) and MoTeR2 probes (lanes 32-34 Figure 3-7 C and D respectively). The
truncated MoTeRs in the WK isolates cohybridized with the telomere probe
indicating that truncated MoTeRs are still located at telomeres. In the LpMS97-1
isolate, no hybridization to the MoTeR2 probe was observed, which suggests that it
either does not have MoTeR2 or any MoTeR2s are truncated. There was a faint
signal with the MoTeR1(RT) probe in LpKYMS97-1A that cohybridized with the
telomeric fragment signifying that it did have a truncated MoTeR1. There were no
MoTeR hybridization signals in the rice infecting isolate 70-15.

Different laboratory cultures of the same isolate generally showed the same
telomere profiles, as seen in strains KS320, LpOH97-1, and RGN]. LpKY97-1A

showed an appearance of a new telomere band in one subculture (marked with a
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red asterisk in Figure 3-7-A). This new telomeric fragment cohybridized with
MoTeR1(RT), but didn’t cohybridize with MoTeR(5’) probe. There were several
additional new bands in the LpKY97-1A culture that were seen with the
MoTeR1(RT) and MoTeR2 hybridizations. While no new telomeric fragments were
seen in RGNJ, the MoTeR2 probe revealed some polymorphisms between the
cultures (lanes 7 and 8 Figure 3-7-D).

3.2.4 Structural Variability of MoTeRs within FH

Variability in the terminal MoTER1s and MoTeR2s were observed in the Southern
Blots of BamHI digested genomic DNA from various GLS isolates (Figure 3-7). To
understand the cause of this variability, I first analyzed three size variants of
MoTeR1s (4.6 kb, 4.9 kb, and 5.0 kb) that had been captured in telomeric clones
from FH and sequenced (sequence data generated by Dr. Farman). The sequences
were aligned using VectorNTI and manually edited. These MoTeR1s had variation
near the 5’ end of the sequence (Figure 3-8). The 4.6 kb MoTeR1 was shorter due to
a truncation at the 5’ end. The 4.9 kb MoTeR1 was missing one copy of STR(G) and
one copy of STR(H) that were found in the 4.6 kb and 5.0 kb MoTeR1s. In addition,
the 4.9 kb MoTeR1 had a tandem duplication of the sequence TTACCTGCTTT, which
had not previously been identified as a tandem repeat. The 4.6 kb and 5.0 kb
element only have one copy of the TTACCTGCTTT sequence. Other than the
difference at the 5’ end, there are very few mismatches within the different size

variants (data not shown).
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3.2.5 Factors involved in size variation of MoTeRs

If a GLS isolate had a longer terminal MoTeR1 it also tended to have a longer
terminal MoTeR2 indicating that the differences among different isolates could be
due to variation in the common sequences at the 5’ ends of the MoTeRs. For
example, CHW showed longer MoTeR1 and MoTeR2 fragments than LpKY97-1A,
which in turn had longer fragments than did FH and RGN] (Figure 3-7). Variation in
short tandem repeats found near the 5’ end of the MoTeR1s had already been seen
within FH (Figure 3-8), so it was believed that extension or deletion of repeats
within the MoTeRs could account for this variation. Extension of any of the 5’ end
STRs could lead to the size variation observed in Southern analyses of BamHI
digests with a telomere probe.

To examine whether variation in 5° STRs could account for size variation
MoTeR sequences obtained previously or generated from MoTeR-MoTeR junctions
were aligned and analyzed for insertion or deletion of sequences. The new
sequence was generated by PCR amplification of MoTeR-MoTeR junctions, which
could potentially yield a large number MoTeRs 5’ ends with differences in the copy
numbers of the 5 STRs. Although the PCR amplicons would not reflect the terminal
MoTeRs, the data from the Southern analysis of BamHI digests showed that if an
isolate had a longer terminal MoTeR fragment, then this difference was also seen in
the comparison between internal MoTeRs. This suggested that the majority of
copies in a genome would share the same organization. Forward primers were
designed to anneal the 5’ end of a MoTeR, and reverse primers were designed to

read from the 3’ end of another MoTeR.
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A total of 370 MoTeR-MoTeR junction plasmid clones were sequenced and
analyzed. Thirty-one different junction sequences were obtained and are listed in
Table 3-4. At the extreme 5’ end of the MoTeRs, telomere repeats are followed by
the variant telomere repeats STR(A) and STR(B). There was no consistent
difference among isolates in the number of telomeric repeats (CCCTAA) at the
MoTeR-MoTeR junctions (Table 3-4). In 28 of the 31 junctions there was at least one
full telomere repeat unit between the 3’ ends of one MoTeR to the 5’ end of the
neighboring element. The largest number of telomere repeat units between MoTeRs
was 28 (in PL1 and RGN]). In the three junctions that were missing a telomere
repeat adjacent to the 3’ end of the MoTeR there were variant telomere sequences
(CCCAAA, CCCGAA, or CCCTA).

STR(A), CCCGAA, characterized in MoTeR1 and MoTeR2 in the isolate FH was
not found at the extreme 5’ ends in the LpKY97-1A isolate. 5’ ends captured from
LpKY97-1A started with the telomere repeats followed by the variant repeat
STR(B), CCCAAA. LpKY97-1A had the greatest number of the STR(B) at the 5’ end
(11 copies), while PL1 consistently had the lowest number of copies of STR(B). PL1
has a smaller terminal MoTeR1 and MoTeR2 than LpKY97-1A (Figure 3-7). Taking
into account the highest copy number of STR(B) in both LpKY97-1A (11) and PL1
(6) the difference based on STR(B) in non-terminal copies is only 30 bp. While there
is some variation in at least STR(B), it is not great enough to account for the size
difference of MoTeRs as seen in the Southern analyses.

Other 5’ end STRs are located downstream of the variant telomere repeats

(STR(A) and STR(B)) (Figure 3-1), and are variable both within and among different
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isolates (Figure 3-9). There was an extension of the STR(C) in CHW in both MoTeR1
and MoTeR2 sequences (shown in light blue in Figure 3-9-C and 3-9-B respectively),
which could account for the larger size seen in the Southern blots. Sequence
obtained from LpKY97-1A showed at least four different MoTeR1 elements in
various stages of truncation, and are specified by a number in parenthesis beside
the name (Figure 3-9-C). In addition a new STR, AAAAGTCGCTAGACTTTTACTAT,
which had not been previously identified with Tandem Repeats Finder, was found in
the MoTeR1 of plasmid clone LpKY97-1A (2). This STR was repeated 2.8 times in
that copy. In the other LpKY97-1A MoTeR1 clones (1 and 3) this STR was repeated
1.8 times. This STR was also extended in the MoTeR2 of CHW and FH. Other
smaller repeat extensions were observed. In the MoTeR2 of LpKY97-1A an
extension of a poly(T) tract was seen. In FH, RGNJ, KS331, and CHW, two copies of
the STR (TTACCTGCTTT) was observed whereas in LpKY97-1A it was not a repeat.

The junction sequences also provided information on the 3’ end of the
insertions. Some non-LTR retrotransposons will create extended poly(A) tails at the
3’ ends post-transcriptionally. The extended repeats are then incorporated upon
insertion of the element into the genome, which leads to variable length poly(A)
runs at the 3’ insertion. This could represent a source of size variation. However,
none of the MoTeR junction sequences had extensions or variations in the four
adenine bases at the 3’ end (5 AATAAAGCGCGAATTAAAA 3’) indicating that the
MoTeRs do not have a poly(A) tail.

While there was variation in the repeats at the 5’ end of the element, some

size difference could also have been due to a loss/gain or a change in the position of
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a BamHI restriction site. Potential loss of the site was tested by PCR followed with
restriction digests of the PCR products as outlined below. Sequence spanning the
BamHI site in MoTeR1 was PCR-amplified from various GLS isolates using the
primers MoTeR1002F and MoTeR1002R. MoTeR2 sequence was amplified using the
primers MoTeR2V0O1F and MoTeR2002R. Based on the MoTeR1 and MoTeR2
sequence of FH (Appendix 1) there should be one BamHI site in each of the PCR
amplicons. A total of 8 strains that showed size variation in telomeric MoTeR
fragments were used to amplified MoTeR1 and MoTeR2 from genomic DNA using
the primer sets outlined above. The PCR amplicons were then digested with BamHI
to survey for the presence of the restriction site. The PCR amplicons corresponding
to MoTeR1 and MoTeR2 as well as the digested products were separated by
electrophoresis on an agarose gel.

The MoTeR1 amplicons were roughly the same size between the different
strains (Figure 3-9-A, lanes 2-9), which indicates that size variation in the elements
is not due to indels in this region of MoTeR1. MoTeR2 products showed a similar
pattern, with all the PCR products having a similar size demonstrating that size
variation is not due to this region of MoTeR2. The BamHI site was retained in all
MoTeR1 PCR amplicons tested as two bands were seen after the PCR amplicons
were digested with BamHI (Figure 3-9-A, lanes 10-17). BamHI cleaved most of the
PCR products of MoTeR2. The exception to this is found in the isolate KS320 where
three bands were observed following BamHI digestion (Figure 3-9-A, lane 14). Two
of these bands corresponded to the expected sizes of the digested PCR product,

while the third band corresponded to the size of the undigested PCR amplicon.
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3.3 Discussion

3.3.1 MoTeRs are members of a new class of non-LTR retrotransposons

One of the overall objectives of the experiments conducted was to characterize
MoTeR1 and MoTeR2 structure. The general features of MoTeRs are outlined in
Figure 3-1. MoTeR1 included a variable 5’ end, an open reading frame for a reverse
transcriptase (with a zinc finger domain, an RT domain, and an REL-endo domain),
and a 3’ end that is not adenylated post-transcriptionally. MoTeR2 had 5’ and 3’
ends identical to MoTeR1, but did not encode the reverse transcriptase. Since
MoTeR2 lacks the reverse transcriptase, it may rely on MoTeR1 for its transcription.
MoTeR2 may be similar to SINE-like elements. In the case of Mg-SINE the 3’ end of
the element is similar to the 3’end of the MGL retrotransposon (THON et al. 2004),
and may use the MGL machinery for its retrotransposition (KACHROO et al. 1995).
The MoTeR2 element, however, does not have a RNA polymerase III promoter
typical of SINEs (GILBERT and LABUDA 1999). Because MoTeR2s are not likely to be
transcribed by polymerase III they could represent a class of Short Internally
Deleted Elements (SIDEs) similar to those found in the R2 retrotransposon system
(EickBUSH and EICKBUSH 2012).

Alternatively, the MoTeR2 could be involved in MoTeR1 transposition similar
to the Het-A and TART non-LTRS of Drosophila. In this system transposition may
only be possible if two separate non-LTRs cooperate. One of the non-LTRs (TART)
encodes a RT, and the other element (Het-A) encodes a gag protein that efficiently

targets telomeres (CASACUBERTA and PARDUE 2005).
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The MoTeR1 element has all the necessary components to be an active
retrotransposon, and it would be expected that MoTeR1 would be expressed. In a
preliminary experiment expression of both MoTeRs was detected (Appendix B), but
subsequent experiments did not give reliable results. This could be due to very low
levels of expression in these isolates. Further work is needed to determine the
expression profiles of MoTeRs. These results were exciting as MoTeRs may be the
first example of an active telomeric non-LTR retroelement in fungi.

The close relationship of the RT and REL-endo in MoTeR1 to telomeric fungal
retrotransposons (NhTER1, Cnl1, and FONLR9) suggests that MoTeR1 is a member
of a telomere specific clade of non-LTR retrotransposon. The MoTeR1, NhTeR1,
Cnl1, and FONLR9 were closely related to members of the CRE clade. Members of the
CRE clade have a single ORF encoding a reverse transcriptase with a C-terminal
endonuclease domain. CRE-like retrotransposons often exhibit target specificities
for tandemly repeated DNA sequences such as rRNA genes (BURKE et al. 1995),
spliced leader exons (AKSoY et al. 1990; VILLANUEVA et al. 1991), and, in the case of
the Genie retrotransposon, repeats that are located near telomeres (BURKE et al.
2002).

According to the phylogenetic analysis, telomeric transposons appear to
have evolved several times within the non-LTR retrotransposon clade (Figure 3-2).
The TART and TAHRE elements in Drosophila and the SART and TRAS elements in
Bombyx mori utilize different mechanisms to accomplish their insertion at
chromosome ends. In these systems the non-LTR retrotransposon has taken on an

additional telomere maintenance function due to lack of telomerase expression in
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the case of Drosophila melanogaster (BIESSMANN and MASON 1997) and a weak
telomerase expression in the case of Bombyx mori (OSANAI et al. 2006). Whether
MoTeRs play a role in telomere maintenance is not known. These isolates could also
possibly have weak expression of telomerase, and thus the MoTeRs could be
involved in compensating for this weakness. However, the length of the telomeres in
the GLS isolates of M. oryzae does not support this conclusion. A further study into
the expression levels of telomerase in different M. oryzae isolates could help in
elucidating at least part of this question. Some preliminary evidence using
telomerase knockouts in MoTeR containing isolates have shown amplification of
MoTeR sequences in telomerase-minus strains (Farman, unpublished data).

3.3.2 Variability of the 5’ ends of MoTeRs

Another objective of the experiments conducted was to characterize MoTeR1 and
MoTeR?2 variability. MoTeRs are highly variable at their 5’ ends, while being highly
similar in other regions. The FH isolate showed two strong hybridization bands in
the telomere blot corresponding to MoTeR1 and MoTeR2, while there are at least
three known sizes of MoTeR1 in the FH genome. This suggested that in GLS isolates
there is at least one MoTeR “type” present at most chromosome ends, and that the
variant forms are at sub-terminal locations. Junction PCR detected at least four
MoTeR variants in LpKY97-1A (Figure 3-8) at sub-terminal locations; only two of
these were represented in the telomere Southern hybridization (Figure 3-7).
LpKY97-1a(1) was of similar size to the full-length element in FH, but no terminal
MoTeRs are similar in size between FH and LpKY97-1A in telomere Southern

hybridizations suggesting that LpKY97-1a(1) may be a non-terminal MoTeR1.
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Variation between 5’ ends was observed between different GLS isolates. For
example, extension of STR(C) within the MoTeRs was observed in CHW showing an
increase in length of the element. Extensions of repeats could increase the size of
the MoTeRs in a given isolate. It is not known whether these internal duplications
would cause lower efficiency of transposition by increasing the likelihood of
inefficient reverse transcription through premature disassociation of the RT at the
repeated sequence.

The terminal MoTeRs of most of the GLS isolates analyzed harbor telomere
variant STRs at their 5’ ends [STR(A) (CCCAAA) and STR(B) (CCCGAA)]. In the
Southern analysis of MoTeR1(5’) the MoTeR1(5’) probe failed to hybridize to the
WK isolates suggesting that they had lost the 5’ end of MoTeR1 and MoTeR2. The
loss of the 5’ end of an element could limit the ability of the element to transpose
efficiently into telomeres. For example, the R2 non-LTR retrotransposon inserts
specifically into the 28S RNA genes in diverse groups of eukaryotes (EICKBUSH and
EickBUSH 2012; KojIMA and FujiwARA 2004). The R2 reverse transcriptase binds a
segment of the R2 RNA near the 5’ end of the transcript. This causes a
conformational change in the R2 reverse transcriptase, which allows it to bind to
downstream of the genomic target. The binding of downstream DNA allows for
more efficient transposition (CHRISTENSEN et al. 2006). Transposition was more
precise in R2 retrotransposons with intact 5’ ends (BURKE et al. 1999). The loss of
the 5’ end in MoTeRs could lead to instability of telomeres by inefficient

transposition at the chromosome ends.

77



Long telomere repeat tracts were present in a few of the junctions between
MoTeRs in RGNJ (CCCTAA)1s and PL1 (CCCTAA)2s. These interstitial telomeres
could possibly cause stalling of the replication fork during replication. This would
lead to a double strand break (DSB), which has been observed at interstitial
telomere repeats in yeast (IVESSA et al. 2002). This could lead to telomere instability
in these isolates, and be a source for generating variability within these GLS isolates.
3.3.3 Possible endonuclease site of MoTeRs
When the MoTeRs occurred in tandem, they were always found in head to tail
orientation similar to the Het-A, TAHRE and TART retrotransposons that make up
the chromosome ends in D. melanogaster (ABAD et al. 2004b; MASON and BIESSMANN
1995; PARDUE and DEBARYSHE 2003). However, in the GLS isolates of M. oryzae,
telomerase appears to be active with long hexanucleotide repeats of CCCTAA found
at the chromosome ends. Analysis of MoTeR to MoTeR junctions showed that
telomere sequences (CCCTAA) were commonly found at the border between two
MoTeRs (Table 3-4). In Southern analysis of Pstl genomic digests the MoTeRs almost
always cohybridized with telomeres (Figure 3-4). These experiments, along with
previous data showing MoTeRs are bordered by telomere repeats (FARMAN 2007),
suggest that MoTeRs insert into tandemly repeated telomere sequences.
Characterization of N. haematococca and C. neoformans genomes showed that copies
of this class of retrotransposons were also bordered by telomere repeats (data not
shown).

The endonuclease of the MoTeR1 is likely targeting telomeric repeats, and

may nick the target site between the A and C of the CCCTAA strand and between G
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and T on the opposite strand. Other distantly related telomere specific non-LTR
elements with APE endonucleases show site specificity similar to MoTeRs. In
particular, the SART1 endonuclease digests between the A and T on the CCTAA
strand, and at T and G on the TTAGG strand. TRAS, another member in this group,
has an endonuclease that nicks between C and T on the CCTAA strand, and between
A and T on the TTAGG strand (FUJIWARA et al. 2005). At least 2 units of the telomere
repeat are needed for endonucleolytic activity of the TRAS1 endonuclease (ANZAI et
al. 2001). The endonuclease of MoTeRs may not have strict sequence requirements.
There were several cases where the CCCTAA sequence was not present in the
MoTeR-to-MoTeR junctions, but telomere like STR(B) (CCCAAA) was present, which
could suggest that a thymine in the 4t position may not be crucial for recognition by
the endonuclease or that the target site is AACCC. Another possible explanation of
the lack of telomere repeats could be a deletion at the insertion site, which has been
noted in other non-LTR retrotransposons (BURKE et al. 1987; JAKUBCZAK et al. 1990).
Further, work is necessary to determine the sequence specificity of the MoTeR1 REL
endonuclease.

[t is curious that the group of telomeric retrotransposons, in which MoTeRs
belong, all have a substitution for the proline that is common in the PD(X12.14)D
domain of the non-LTRs with REL type endonucleases. In MoTeR1, NhTeR1, and
FoNLR9 alanine is substituted for proline. CRE2, a member of the CRE clade, has a
substitution of the proline with a lysine in this domain. Evolutionary analysis of the
REL type endonucleases indicate that they share similarities with Type Il restriction

endonucleases (EICKBUSH 2002). There are other suspected Type Il endonucleases
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which do not have the proline in the PD(X12-14)D domain (MENON et al. 2010) . The
effect of proline substitutions on the activity of the endonuclease is not known. A
site-directed mutagenesis study on the restriction enzyme of EcoRV in which the
proline is changed to an alanine showed reduced activity (SELENT et al. 1992). Most
research on the activity of this domain has focused on the aspartic acid residues, and
their importance in proper endonuclease function. Specifically in R2ZBm, mutations
to the first aspartic acid residue of this domain disrupted the ability to cleave DNA,
but did not affect the binding of the RT protein or target primed reverse
transcription (YANG et al. 1999).
3.3.4 MoTeRs distribution
The last major objective of the experiments in this chapter was to determine the
distribution of MoTeRs within the GLS isolates. Based on cohybridization in
Southern analyses MoTeRs were associated with a majority of the telomeres in the
GLS isolates. Out of the 136 telomere restriction fragments from various GLS
isolates that were tallied, 123 cohybridize with MoTeR probes (Table 3-2). In the
telomere restriction fragments that cohybridize to MoTeRs, they could have only
MoTeR1 (42/123), only MoTeR2 (25/123), or both MoTeRs (56/123). This
correlates to the different MoTeR1 and MoTeR2 configurations in the telomeres in
FH (FARMAN 2007). The close association with telomeres makes the MoTeRs likely
candidates for involvement in telomere restriction fragment variation.

The copy number of MoTeRs was variable among the different GLS isolates
tested, and the GLS isolates have more copies on average of MoTeR1 (~16) than

MoTeR2 (~11). CHRF in particular has a high number of MoTeR1 copies (~27) and

80



MoTeR2 copies (~23), while PL3 has a low number of MoTER1 copies (~11) and did
not appear to have MoTeR2. It might be expected that isolates with more MoTeRs
might show more telomere variation as there would be a greater chance of
recombination between elements, a greater likelihood of inefficient DNA replication
due to the interstitial telomere repeats between MoTeRs in arrays, and possibly
more MoTeRs actively transposing into telomere repeats. Furthermore, the
individual telomeres that harbor longer arrays of the MoTeRs might be less stable
than telomeres with fewer MoTeRs. Further research into this area could examine
the stability of individual telomeres through several mitotic generations.

The total number of MoTeRs that a telomere can effectively harbor and the
mechanism by which MoTeR copy number can be controlled is unknown. Several
different mechanisms to limit the copy number of transposable elements have been
discovered in other TE systems: including methylation (NAKAYASHIKI et al. 2001a),
transcriptional repression (PRUD’'HOMME et al. 1995), homology-dependent gene
silencing (JENSEN et al. 1999), RNAi (SAVITSKY et al. 2006), and overproduction
inhibition (LOHE and HARTL 1996).

3.3.5 Telomere instability in subcultures

In LpKY97-1A a new telomere band appeared in a subculture indicating instability
of its telomeres. This telomere fragment cohybridized with the MoTeR1 probe, but
not the MoTeR5’ probe (Figure 3-7). There are two likely explanations for the
appearance of this de novo MoTeR1. One explanation is that a MoTeR1 became
truncated past the 5’ end probe, and then telomere sequence was added to the end

by telomerase. The other possible explanation is that a truncated form of MoTeR1
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transposed into a telomere sequence. Telomere instability in culture has been
previously observed in another GLS isolate, FaMS96-1 (FARMAN 2002). Additionally,
new MoTeRs bands appeared in the Southern analyses of subcultures of both RGN]
and LpKY97-1A indicating that MoTeRs may play a role in the instability of
telomeres in GLS isolates (Figure 3-7 C and D). Further testing on the relative
instability of telomere restriction fragments and MoTeR restriction fragments of
GLS isolates in culture is needed to determine if this is a common phenomenon
among GLS cultures. A more in-depth analysis could reveal that MoTeRs are the

main cause behind the “hypervariability” observed in the telomeres of field isolates.
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Figure 3-2. Phylogenetic relationship of MoTeR1 to other reverse transcriptases.
Bold text indicates elements present in Magnaporthe oryzae. Gray ovals indicate the
telomeric non-LTR retrotransposons. There were a total of 485 positions in the final
data set, consisting of conserved RT domains. Positions with gaps or missing data
were only eliminated in pairwise comparison. The phylogenetic tree was
constructed using MEGA4 (TAMURA et al. 2007), by the Neighbor-joining method
(Sartou and NEI 1987). Poisson correction was used to calculate the evolutionary
distance. The bootstrap consensus tree is inferred from 1000 replicates (FELSENSTEIN
1985), and branches with less than 50% bootstrap replicates are collapsed.
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CHAPTER FOUR

Generation of New Telomeric Profiles in Mitotic Progeny
4.1 Introduction
DNA fingerprinting analysis has been used extensively to understand the population
structure of (FARMAN 2002; LEVY et al. 1991; TANAKA and NAKAYASHIKI 2009; TosA et
al. 2007; Vit et al. 2001) and the phylogenetic relationships among (KATo et al.
2000) different host specific isolates of M. oryzae. However, the use of different
probes sometimes gives incongruent results. For example, gray leaf spot (GLS) field
isolates collected from perennial ryegrass exhibit extreme telomere variability even
when little variation exists at internal DNA loci (FARMAN and KiM 2005).

Several factors may lead to restriction fragment length polymorphisms in
homologous fragments between different individuals. Point mutations could cause
a loss or gain of a restriction site leading to new fingerprint patterns. The insertion
or deletion of sequences between two restriction sites may lead to larger and
smaller sized fragments, respectively. The insertion or deletion of an element with a
restriction site will lead to restriction fragment length polymorphisms. There may
also be more extensive rearrangements of the DNA (GRANT and SHOEMAKER 1997).
Transposable elements play a role in generating restriction fragment length
polymorphisms (LLOYD et al. 1987). They can insert into a new location adding new
restriction sites and cause the loss of restriction sites if they transpose out of a
location within the genome (BENDER et al. 1983; COLLINS and RUBIN 1982; DORING and

STARLINGER 1984; KUFF et al. 1983). Major changes in restriction length fragments
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can occur by chromosomal deletion resulting from ectopic recombination among
transposable elements (KuPIEC and PETES 1988).

The M. oryzae genome has Class I and Class II transposable elements (DEAN et
al. 2005). The Class I elements transpose through the use of an RNA intermediate,
and can be divided into three types (LTRs, LINES, and SINES) (KEMPKEN and Kuck
1998). LTRs have long-terminal repeats bordering the ends of the elements and
encode a reverse transcriptase. The LINES do not have the long-terminal repeats,
but do encode a reverse transcriptase. The SINEs do not encode a reverse
transcriptase. The known LTRs retrotransposons in M. oryzae include MAGGY
(FARMAN et al. 1996b), Grasshopper (DOBINSON et al. 1993), MGLR-3 (KaNG 2001),
Inagol (SANCHEZ et al. 2011), Pyret (NAKAYASHIKI et al. 2001b), RETRO6 (DEAN et al.
2005), RETRO7(DEAN et al. 2005), and RETROS5 (FARMAN et al. 2002). There are two
known LINE-like elements in M. oryzae, MGL (MGR583) (HAMER et al. 1989a;
KACHROO et al. 1997), and MoTeRs (FARMAN 2007). The SINE-like element in the
genome of M. oryzae is Mg-SINE (KACHROO et al. 1995). MINE is a chimeric element
between a MGL and WEIRD (FuDAL et al. 2005).

Class Il elements are excised from the genome and transpose from one place
in the genome to another (FINNEGAN 1989). There are four Class II transposable
elements in M. oryzae including Pot2 (KACHROO et al. 1994 ), Pot3(MGR586) (FARMAN
etal 1996a), Pot4 (DEAN et al. 2005), and Occan (KiTo et al. 2003).

In Southern analysis from the previous chapter, changes of telomere
restriction profiles in separate cultures of the same GLS isolate were observed

(Figure 3-7-A). This suggested that mutations during mitotic growth could lead to
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the telomere variability. By comparison, rice blast (RB) isolates do not have extreme
telomere variability. When internal DNA profiles among RB isolates are similar, the
telomere profiles will also show high similarity (FARMAN 2007). DNA fingerprints
using a variety of probes (MGR586, MAGGY, Pot2, MGL, MG-SINE) in the Rice Blast
isolate 70-15 are highly stable even after ten mitotic generations, though a
subtelomeric probe (TLH1) showed some instability (PARK et al. 2010). However,
high mutation rates have been observed at particular loci in RB isolates (CHUMLEY
and VALENT 1990; HAMER et al. 1989b), and genes involved in host-specificity have
shown instability when located near chromosome ends (ZHou et al. 2007).
Preliminary experiments indicated that there was a difference in relative
stability of DNA fingerprints in mitotic progeny between a RB isolate (70-15) and a
GLS isolate (LpKY97-1A) in planta and in culture. The objective of the experiments
in this chapter was to compare the relative stability of DNA fingerprints in mitotic
progeny of a RB isolate and a GLS isolate. The stability of telomeres was tested using
a telomere-specific probe, and the internal chromosomal stability was tested using a
probe from the Pot2 transposable element, which is distributed throughout the
genome. If more chromosomal instability exists in telomeric or internal loci in the
GLS isolate, one would expect its mitotic progeny to show more variation than the
RB isolate’s mitotic progeny.
4.2 Results
4.2.1 Rates of telomere change in a GLS isolate versus a RB isolate
Preliminary experiments suggested that there was a difference in telomere

restriction fragment length stability in mitotic progeny between a rice blast isolate
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and a GLS isolate (data not shown). To test whether the telomeres of a GLS isolate
were less stable than those of a RB isolate, | monitored changes in telomere
restriction profiles after single spore isolation of the initial culture in a RB isolate
(70-15) and a GLS isolate (LpKY97-1A). Using single spores allows for removal of
genetic variation that could have arisen during prior culturing. The purpose of the
experimental design was to generate a total of three generations of single spore
isolates [one generation of spores that made up the initial inoculum for plant
infection (G1), and two generations of single spores recovered from lesions (G2 and
G3)] from two different host-specific types [LpKY97-1A (GLS isolate) and 70-15 (a
rice infecting isolate)].

After generating the initial single spore cultures in 70-15 and LpKY97-1A
(known as the GO cultures), conidia were collected by methods described in Chapter
2. A total of 40 monoconidial isolates were collected from the two fungal strains (20
from 70-15 and 20 from LpKY97-1A) and labeled as first generation (G1) progeny.
The remaining conidial suspensions were used for plant infection as outlined below.
The rice (Oryza sativa) cultivar 51583 was inoculated with the 70-15 conidial
suspension and the perennial ryegrass (Lolium perenne) cultivar Linn was
inoculated with the LpKY97-1A. Leaves showing lesions were clipped and placed in
a moist chamber to allow for sporulation of the fungus. After 3-5 d in the moist
chamber, spores were collected. Forty total single spores were collected (20 from
LpKY97-1A and 20 from 70-15) and cultures were designated as the second
generation (G2) progeny. The remaining suspensions were used to inoculate a

second set of plants. Inoculation, plant growth, and spore collection was repeated as
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described above. Then 40 more single spores were collected (20 from LpKY97-1A
and 20 from 70-15) and designated as the third generation (G3) progeny.

A total of 120 single spore progeny were collected over three generations in
two different M. oryzae isolates (60 from LpKY97-1A and 60 from 70-15). Of the 40
single spores collected at each spore generation, DNA from 38 of the mitotic
progeny was extracted, digested with Pstl, electrophoresed, and examined by
Southern hybridization with a telomere probe. Pstl was chosen due to the lack of a
restriction site within the MoTeRs. The resulting telomere fragments from genomic
DNA digested with Pstl would include the telomere through the MoTeRs if present,
and to the first Pstl site at the chromosome end. Thus a potential change in the
length of a MoTeR array at a telomere could be detected in the Southern analysis. A
contraction of a MoTeR array would lead to shorter fragments, while an expansion
in a MoTeR array would lead to longer fragments. Each hybridizing fragment in the
Southern blot probed with telomere was counted as a single telomere regardless of
intensity. The appearance of a new band in the DNA fingerprint of mitotic progeny
that was absent in the parental isolate was counted as a gain, while the absence of a
band in the DNA fingerprint of mitotic progeny that was present in the parental
isolate was counted as a loss.

The Southern analyses with the telomere probe of Pstl digested DNA from
mitotic progeny of 70-15 revealed that the telomeres were stable (Figure 4-1). No
changes in the telomere restriction profiles were observed in mitotic progeny
produced during culturing on oatmeal agar plates (Figure 4-1-A). Only one

difference in the telomere restriction profile was observed in a mitotic progeny of
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70-15 following two disease cycles in the plant (marked with an asterisk Figure
4-1-B, lane 6). This band had a faint hybridization signal, which implies that it had
not become fixed in the culture.

In Southern analyses of Pstl digested DNA from LpKY97-1A4, a higher
telomere instability was observed among mitotic progeny (Figure 4-1-C and D) than
was previously observed in the mitotic progeny of 70-15 (4-1 A and B). By the third
generation none of the mitotic progeny of LpKY97-1A shared the same telomere
fingerprint as the original starting culture. There were six band gains (.32 per
progeny) in G1, 35 band gains (1.89 per progeny) in G2, and 50 band gains (2.6 per
progeny) in G3 (Table 4-1). Based on post hoc t test of pairwise One-way ANOVA,
there were significantly more gains and losses in LpKY97-1A mitotic progeny
collected from plants than in mitotic progeny collected from cultures (p-value
<0.001).

4.2.2 Telomere fragment variation in mitotic progeny of other GLS isolates
There was a difference in telomere stability between 70-15 and LpKY97-1A, but it
was unknown whether this was a general phenomenon within GLS isolates. To
determine if the instability of telomeres was common among Lolium pathotypes,
two additional isolates (KS320 and RGNJ) were tested by Southern analysis with a
telomere probe. The general outline of the methods used in this experiment is
described below. KS320 and RGN]J were genetically purified using the
single-sporing method. The mycelium was allowed to grow across an oatmeal agar
plate, and the spores were harvested using the same methods described in Chapter

2. Twenty germinated mitotic progeny were collected, cultured, and their DNA was
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extracted. Pstl-digested DNA from 19 single spores were analyzed by Southern
hybridization with a telomere probe (Figure 4-2). Band gains and losses in mitotic
progeny were tabulated (Table 4-2). Two-sample t-tests were used to compare
differences in band gains and losses in the RB isolate (70-15) and the GLS isolates
(LpKY97-1A, RGN]J, and KS320).

In KS320, three of the 19 mitotic progeny (16%) analyzed showed a different
telomere restriction profile relative to the initial isolate (Figure 4-2). In RGN],
mitotic progeny showed a different telomere restriction profile in five out 19
progeny analyzed (26%). This was a higher number than was seen in KS320 but
lower than in LpKY97-1A (31%). LpKY97-1A and RGN] had significantly more band
gains (p-value < 0.01 and p-value < 0.05 respectively) than 70-15 (Table 4-2).
However, KS320 was relatively stable by comparison, and did not have a
significantly higher number of band changes than 70-15 (p-value < 0.15). No
significant difference between the isolates was observed in telomere band losses.
4.2.3 Comparison of telomere and Pot2 profile variation
A previous study of GLS isolates had indicated that telomere profiles were more
variable than internal chromosomal locations (FARMAN and KimM 2005). Mitotic
progeny of 70-15 were tested to determine if telomeres were relatively unstable in
comparison with other regions of the chromosome, and whether the mitotic
progeny of 70-15 were more stable than the mitotic progeny of LPKY97-1A.

To determine if mitotic progeny had more restriction fragment length
polymorphisms at telomeres than in other areas of the genome, the DNA from the

third generation of single spores from LpKY97-1A was digested with EcoRI and
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analyzed by Southern analyses subsequently with a telomere probe and then a
probe from the Pot2 transposon (Figure 4-3). There is restriction site for EcoRI
within MoTeR1 element, but not in MoTeR2. If MoTeR1s were located in the
terminal position (i.e. the nearest element to the end of the chromosome) at
multiple chromosome ends an intensely hybridizing telomeric band would be
expected at approximately 1.4 kb in the Southern analysis.

Telomeres were significantly more variable than Pot2 loci in the third
generation mitotic progeny of LpKY97-1A (p-value <0.001). There were 3.3 times
more band changes observed in the telomere profiles than was observed with the
Pot2 probe (Table 4-3). After three spore generations, the rice-infecting isolate
70-15 showed no band changes with the Pot2 probe and a single weakly hybridizing
band was absent in 16/19 mitotic progeny when the Southern blot was probed with
the telomere probe (marked with an asterisk in Figure 4-3).

In general more variability in telomere restriction fragments was seen in the
Southern analyses of the EcoRI digests (Figure 4-3) than in the previous Pstl digests
(Figure 4-1-D). In LpKY97-1A, a higher number of band changes were detected in
the Southern analyses of EcoRI digests with 124 telomere band changes observed,
while there were only 73 telomere band changes observed in the Southern analyses
of Pstl digests. This suggested that telomere instability was underestimated in the

previous Southern analysis of Pstl fragments.
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4.3 Discussion

4.3.1 Instability of telomere restriction fragments in mitotic progeny of GLS
isolates

One of the objectives of the experiments in this chapter was to determine if there
was a difference in the stability of telomere restriction fragments in mitotic progeny
between GLS isolates and the rice-infecting strain 70-15. LpKY97-1A generated new
telomere fingerprints rapidly, while the rice-infecting strain 70-15 had very little
change in the telomere fingerprints of mitotic progeny. The low telomere variability
in progeny of 70-15 is similar to results that were based on RFLP profiles of
subtelomeric elements (PARK et al. 2010).

Based on Southern analysis, new telomere fingerprints arose in mitotic
progeny of the GLS isolates KS320 and RGN], which was also observed in
LpKY97-1A. This suggested that the high variability of the telomeres previously
observed from GLS isolates (FARMAN and KiM 2005) is based on underlying genetic
instability at the chromosome ends. There also appears to be varying degrees of
telomere instability between different GLS isolates because the frequency of band
changes was higher in RGN] and LpKY97-1A than in KS320 (Table 4-2).

Variability of restriction fragments has been observed in telomere-adjacent
sequences from other organisms such as Saccharomyces cerevisiae (Louls and HABER
1990), Plasmodium falciparum (CORCORAN et al. 1988), Lycopersicon esculentum
(BROUN et al. 1992), and Xenopus laevis (BASSHAM et al. 1998). Repeated sequences
near the chromosome ends are thought to play a role in the observed variability of

restriction fragments near the chromosome ends in these organisms. GLS isolates
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harbor MoTeRs within their telomeres, and they likely drive telomere instability.
MoTeRs are not only retrotransposons that could actively transpose to a new end,
but the structure of these elements may lead to further instability. MoTeRs
hybridized with all of the telomeric fragment gains in RGN]J and one of the two gains
in KS320 (data not shown). The differences in relative stability between the isolates
could be due to varying lengths of short internal telomere tracts between MoTeRs.
These interstitial telomeres between the MoTeRs could cause stalling of the
replication fork during DNA replication leading to double strand breaks (DSB)
similar to what occurs at interstitial telomere tracts in S. cerevisiae (IVESSA et al.
2002). Long stretches of telomere (CCCTAA) or telomere variant repeats (CCCAAA
and CCCGAA) are found at the 5’ end of the MoTeR. These sequences could lead to
increased instability when located between elements. A few of the RGN] MoTeR-
MoTeR junctions had long stretches of telomere repeats, while junctions between
MoTeRs in LpKY97-1A had longer stretches of the variant telomere repeat
(CCCAAA) (Table 3-4). Presumably these could represent potential double strand
break points caused by inefficient DNA replication leading to instability of these
telomeric fingerprints. Truncations of the telomere are known to occur frequently
in M. oryzae (ORBACH et al. 2000).

Another mechanism of increased variability could be caused by ectopic
recombination between MoTeRs arrayed within telomeres. For example, in
Saccharomyces cerevisiae, restriction fragments associated with the subtelomeric Y’
elements undergo frequent change (HorowiTzZ and HABER 1985; HOROWITZ et al.

1984). The restriction fragments changed due to mechanisms that included a
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duplication of a Y’ element by ectopic recombination between Y’ at different
chromosome ends and an unequal sister chromatid exchange event. Ectopic
duplications were able to add a Y’ on ends that previously did not have a Y’ repeat.
Tandem duplications of the Y’ elements were seen to expand or contract. Gene
conversion was also involved in the loss of restriction fragments (Louis and HABER
1990). M. oryzae isolates with longer MoTeR arrays or higher copy numbers of
MoTeRs might be more prone to ectopic recombination. RGN] and LpKY97-1A have
higher MoTeR1 copy numbers than KS320 (data not shown), further supporting this
argument.

Homologous recombination between subtelomeric repeats has been shown
to cause contraction and expansion in repeat arrays (CORCORAN et al. 1988). The
possible expansion of MoTeRs arrays by homologous recombination would lead to
more interstitial telomere repeats, and could thus lead to further instability in the
isolates.

Alternatively, higher instability in these isolates could be due to a deficiency
in protein involved in telomere maintenance. For instance, deficiency in the yKU
protein in yeast leads to an increase in homologous recombination between the
subtelomeric Y’ elements (FELLERHOFF et al. 2000; MARVIN et al. 2009). However,
based on segregation analysis of a cross between a GLS isolate, and a lab isolate this
in not likely (STARNES et al. 2012).

The impact of this high telomeric instability on the GLS isolates is not known.
No aberrant colony morphologies or loss of aggressiveness was observed in mitotic

progeny of LpKY97-1A in the laboratory (data not shown). The GLS pathogens are
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highly aggressive on perennial ryegrass in the field (VINCELLI 1999), even with the
high levels of telomere instability previously observed (FARMAN and Kim 2005).
4.3.2 Comparative instability of telomere and Pot2 restriction fragments
Another experimental objective was to compare the relative stability in telomere
and Pot2 fingerprints in the mitotic progeny of 70-15 and LpKY97-1A. Both the
telomeric and Pot2 fingerprints displayed more instability in the GLS isolate
LpKY97-1A than was detected in 70-15. It was conceivable that telomere
fingerprints would be unstable in GLS isolates, but the difference in instability
between 70-15 and LpKY97-1A in the Pot2 fingerprints was unexpected. One
assumption might be that the chromosome undergoes mutations at a constant rate
regardless of position. The difference in stability between the two markers could be
due to the greater likelihood of survivorship among progeny with telomeric
mutations versus progeny with internal mutational events (RICCHETTI et al. 2003).
Germination rates of the spores were not calculated, and only germinated spores
were collected. This may suppress the ability to observe internal chromosomal
instability due primarily to deleterious mutations at internal regions causing the
spores to fail to germinate. Alternatively, the Pot2 polymorphisms could be due to
Pot2 elements being present in chromosomal regions that are unstable in
LpKY97-1A. Transposons tend to be found in clusters within the genome of

M. oryzae (NITTA et al. 1997; THON et al. 2004) and these clusters frequently show
multiple insertions from different transposable elements (FARMAN et al. 1996b;
KACHROO et al. 1994; KACHROO et al. 1995). Transposable element clusters tend to

have higher rates of gene duplications and gene evolution (THON et al. 2006).
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However one other important factor must be taken into account in the
presumed instability of Pot2 in LpKY97-1A, most of the Pot2 band gains observed in
the Southern blot had weak hybridization signal. These are typically indicative of
incipient Pot2 fragments that were developing during vegetative culture. Removing
these band gains from the analysis led to no statistical support for a difference
between Pot2 instability between LpKY97-1A and 70-15. The strong hybridization
signals in the Southern hybridization with Pot2 did not change in LpKY97-1A after
three generations (Figure 4-3). This would suggest that the majority of the genome
is relatively stable. The extreme variability observed in telomeres may not correlate
with the stability of internal loci or subtelomeres in the GLS isolates, which has been
observed previously (FARMAN and KiM 2005). To test whether subterminal regions
are unstable in LpKY97-1A, more subterminal probes are needed for use in
Southern analysis.

MoTeR1 (~5 kb) and MoTeR2 (~1.7 kb) are substantially longer than the
telomere repeats (CCCTAA)n. The expansion and contraction of the telomere
repeats may not be apparent in Southern analysis with Pstl or EcoRI digested DNA,
but the changes in MoTeRs within these telomeres would be easily visible. Normal
telomere turnover would be much more apparent in the GLS isolates than in 70-15
which lacks MoTeRs in the telomeres. Further work could address telomere

turnover rate at the terminal telomere repeats of LpKY97-1A and 70-15.
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Figure 4-1. Southern analyses comparing stability of telomeric DNA fingerprints in
70-15 and LpKY97-1A. Genomic DNA was digested with Pstl, electrophoresed in
0.7% agarose, electroblotted to a nylon membrane, and hybridized with a telomere
probe. Black arrows indicate the size markers in kilobases. Lane 1 is the initial
starting culture DNA fingerprint (GO). The first generation of spores (G1) from
culture in 70-15 (A), and LpKY97-1A (C) are represented in lanes 2-20. The third
generation of spores from plants in 70-15 (B) and LpKY97-1A (D) are represented
in lanes 2-20. The asterisk represents a single faint de novo telomere band in 70-15.
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Figure 4-3. Southern analyses of Pot2 probe and telomeric probes in 70-15 and
LpKY97-1A. Genomic DNA was digested with EcoR], electrophoresed in 0.7%
agarose, electroblotted to a nylon membrane, and hybridized sequentially with Pot2
(A and C) and telomere (B and D). Between hybridizations blots were stripped.
Black arrows to the left of the image indicate the size in kilobases. Lane one
indicates the initial starting culture (GO). Lanes 2-20 represent third generation
spores (G3) of 70-15 collected from the 51583 Oryza sativa cultivar (A and B).
Lanes 2-20 in C and D represent third generation spores (G3) collected from the
Linn variety of Lolium perenne. The red asterisk in lane 1 of Figure B represents a
telomeric band that was lost frequently in mitotic progeny.
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CHAPTER FIVE

Molecular Basis for Telomere Variability in LpKY97-1A
5.1 Introduction
Extreme variability is seen in telomere fingerprints between Lolium pathotype
isolates of Magnaporthe oryzae (FARMAN and KiM 2005). The experiments from
Chapter 4 revealed that the variability is readily observed among mitotic progeny of
this pathotype. The Lolium pathotype isolate LpKY97-1A generated new telomere
restriction fragment (trf) profiles rapidly, while the laboratory strain 70-15
underwent very little change in trf profiles after three spore generations (Figure
4-1). Similarly, other Lolium pathotype isolates, KS320 and RGN], generated new trf
profiles in culture (Figure 4-2). The molecular basis for the telomere instability was
not known.

MoTeRs are found in the telomeres of the Lolium pathotype isolates, but
were not detected in 70-15 (Figure 3-7). It was believed that the activity of MoTeRs
could account for the trf profile variation. Telomere fingerprint variation has been
observed among mitotic progeny in Saccharomyces cerevisiae. The variation was
due to telomere length heterogeneity and recombination among subtelomeric
repeats (HOROWITZ et al. 1984; SHAMPAY and BLACKBURN 1988). The diversity of
surface antigens in Trypanosomes is primarily the result of subtelomeric gene
conversion and the frequency of variant surface glycoprotein switching is affected
by telomere length (HOVEL-MINER et al. 2012). The experiments described in this

chapter sought to address possible molecular mechanisms that are causing the trf
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polymorphisms observed in the mitotic progeny of LPKY97-1A and how MoTeRs
might be impacting the telomere stability.

5.2 Results

5.2.1 MoTeRs association with de novo telomere profiles in LpKY97-1A

In third generation progeny of LPKY97-1A de novo telomere profiles were observed
in Southern analysis (Figure 4-1-D). It was unknown whether MoTeRs were in the
telomeres of the de novo bands observed in the Southern analysis of mitotic progeny
because some fragments were smaller than would be expected if a full length
MoTeR1 was present. To determine if MoTeR1 or MoTeR2 were present in the de
novo telomere fragments of mitotic progeny, DNA from 19 progeny (G3(1-19)) and
the LpKY97-1A starting culture (GO) was analyzed by Southern analysis. The DNA
was digested with Pstl, electrophoresed on a 0.7% agarose gel, and transferred to a
nylon membrane. The Southern Blot was then probed with a telomere-specific, a
MoTeR1-specfic, and a MoTeR2-specific probe. The blot was stripped between
hybridizations with the different probes. Results are shown in Figure 5-1. The
telomere fingerprint polymorphisms of the mitotic progeny were tabulated. A new
telomere band in the DNA fingerprint of mitotic progeny that was absent in the
parental isolate was counted as a gain, while the absence of a band in the DNA
fingerprint of mitotic progeny was counted as a loss. De novo telomere fragments in
mitotic progeny that cohybridized to MoTeRs were described as MoTeR associated
gains (MAG). Telomere fragments that were absent in mitotic progeny, but that had
previously cohybridized to MoTeRs in the starting culture were described as MoTeR

associated losses (MAL). Results are summarized in Table 5-1.
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Most of the new telomere fragments observed in the mitotic progeny (32 out
of 50) had MoTeRs in their telomere based on cohybridization in the Southern
analysis (Table 5-1). No telomere fragment below 4 kb cohybridized with the
MoTeR probes (Figure 5-1). There were 25 telomere band losses in the Southern
analysis of mitotic progeny and a majority of them (20 out of 25) were MAL. The five
bands that were not MAL correspond to losses of the rDNA telomere fragment
(Figure 5-1-A band R).

There was a non-telomeric Pstl fragment that hybridized to both MoTeR1
and MoTeR2 in GO and in 15 of the 19 mitotic progeny (indicated by red arrows in
Figure 5-1-B and 5-1-C). In the DNA fingerprint of progeny isolate G1(9) a gain of a
non-telomeric MoTeR1 was observed (marked by an asterisk, Figure 5-1-B).

5.2.2 Methylation in telomere profile changes

Pstl, which recognizes the sequence CTGCAG, is sensitive to cytosine methylation,
SmCTGCAG and CTGCémAG (McCLELLAND et al. 1994). Therefore I speculated that
methylation of genomic DNA could play a role in telomere fragment length
polymorphisms observed in the Southern analyses. To determine if this was the
case, two isoschizomers were used for comparative digests of genomic DNA
prepared for Southern analyses. The restriction enzyme Kpn2I(BspMII) is sensitive
to cytosine methylation and will not cut at the methylated sites Tm5CCGGA and
TCm5CGGA, while Acclll is insensitive to cytosine methylation (LABBE et al. 1988).
For the purposes of this experiment three different LpKY97-1A strains (1G0, 1G2(5),
and 1G3(4)), which had shown telomere length polymorphisms, were activated on

OA. The strains were then treated as described in Section 2.4 for large scale DNA
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preparation. The DNA was digested with Pstl, Acclll, or Kpn2l. The digested
fragments were separated by electrophoresis on a 0.7% agarose gel, electroblotted
to a nylon membrane, and probed with telomere probe.

1GO0, 1G2(5), and 1G3(4) had several telomere restriction polymorphisms in
the Southern analysis of Pstl digests. 1G2(5), as seen in lane 2 Figure 5-2-A, had
three visible telomeric band changes from the initial starting culture. 1G3(4)
exhibited at least nine telomeric band changes from the starting culture in the
Southern analyses of Pstl digests. These data show that there are telomere
restriction fragment polymorphisms in Pstl digests between the three strains.

Comparative analyses of the DNA fingerprints with restriction enzymes that
were differentially methylation sensitive yielded no visible band changes in the
LpKY97-1A isolates (Figure 5-2-B lanes three to eight). For example, 1G0O had 16
visible telomere bands in Southern blots of the Acclll/Kpn2I digests, with no
telomere restriction fragment length polymorphisms between the two enzyme
digests (Figure 5-2-B, lanes 4 and 5). There was DNA fingerprint variation between
different strains using the methylation insensitive restriction enzyme (Acclll). For
instance, the telomere fingerprints of 1G0 with 1G2(5) showed five distinct band
differences. 1G3(4) had a greater number of band changes from 1G0 with a total of
seven band changes observed.
5.2.3 Characterization of de novo telomere fragments
In experiments from Chapter 4, it was observed that the telomere restriction
fragment profiles of GLS isolate LpKY97-1A were unstable, and de novo telomeres

were readily observed in mitotic progeny (Figure 4-2). To determine some of the
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possible mechanism involved in generating the telomere length polymorphisms a
subset of strains from the previous studies were selected for further analysis. 1GO is
a single-spored culture of LpKY97-1A that was used as the starting strain for the
experiments outlined in Chapter 4. Isolates 1G2(5) and 1G2(6) were collected from
the second generation of mitotic progeny and 1G3(4) and 1G3(5) were collected
from the third generation. When compared with one another all of these strains
exhibited telomere restriction fragment polymorphisms. To describe the differences
in more detail the DNA was digested with Pstl, electrophoresed on 0.7% agarose gel,
electroblotted to a nylon membrane and probed with telomere and MoTeR1 probe.
Blots were stripped between probings.

There are several examples of different de novo telomeres represented in
Figure 5-3-A.In 1G2(5), a new telomeric DNA fragment was seen in Southern
hybridization (Figure 5-3-A, lane 5, labeled with a B). This band did not cohybridize
with a MoTeR1 (Figure 5-3-B, lane 5). The failure to cohybridize likely indicates that
MoTeR1 was not responsible for the appearance of this new band. However, there
were other examples in which MoTeRs did appear to play a role in the appearance
of de novo telomeric fragments. In 1G3(4) and 1G3(5) new telomere fragments
cohybridized with MoTeR1 (Figure 5-3, labeled with RM and BM respectively).

Shotgun cloning was used to capture a number of the telomeric restriction
fragments. Genomic DNA was end-repaired and blunt end ligated into a plasmid
vector. The ligation products were then digested with Pstl followed by ligation of
the Pstl overhangs of the genomic DNA and plasmid vector. The resultant plasmids

were electroporated into E. coli. Ampicillin was used to select for colonies that
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contained plasmid inserts. Colonies that contained telomeres were identified by
colony hybridization using a Telomere probe, and their plasmids were extracted.
This process resulted in end-enriched plasmid libraries. The three large-scale DNA
preparations 1G0, 1G2(5), and 1G3(4) were used to create three separate end-
enriched plasmid libraries. The 1G0 end-enriched plasmid library contained the
progenitor telomere restriction fragments; while the end-enriched plasmid libraries
of 1G2(5) and 1G3(4) had the potential to yield a number of de novo fragments.

This method yielded 51 total plasmids (9 from 1G0, 17 from 1G2(5), and 25 from
G3(4)).

The inserts of all plasmids were partially sequenced to determine if the
telomere tracts were at either end of the insert. Though all inserts had telomere
sequence, not all had the long telomere repeat tracts associated with chromosome
ends. In the end-enriched library of 1G0, 5 out of the 9 plasmids had telomere
tracts. Only 8 out of the 17 inserts in 1G2(5) plasmid libraries had telomere tracts.
There were 20 out of 25 inserts, which contained telomere tracts in the
end-enriched library of 1G3(4).

To determine the relatedness of the partially sequenced inserts to known
elements and each other, the sequences obtained from the end-enriched plasmid
inserts were analyzed by using local blast to search databases containing MoTeRs,
the 70-15 genome, and the sequences of the other plasmid inserts. The rDNA
chromosome ends were captured in all three of the plasmid libraries. Two
chromosomes ends unique to LpKY97-1A were found in 1GL3(4) and were

designated 31B and 117B1 (naming is based on the plasmid clone where the
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sequence was obtained). The 31B chromosome end was captured in two plasmid
clones. The 117B1 chromosome end was captured multiple times (16 of the 20
inserts in the 1G3(4) plasmid library).

Sequences that were found to be unique at a chromosome end were used to
develop probes (31B001 and 117B1) for Southern analysis. This would provide the
ability to track changes at specific chromosome ends in mitotic progeny. The data
gathered from the Southern analysis of unique probes and sequencing were then
used to characterize some of the possible mechanisms behind telomere instability in
LpKY97-1A by following a few of the chromosome ends in 1G0, 1G2(5), and 1G3(4).
The characterizations of the de novo telomeres are detailed below.
5.2.3.1 rDNA telomere truncations
The telomeric rDNA fragment (indicated with an arrow labeled with an R in Figure
5-1-A) was absent in five of the 19 third generation mitotic progeny. In the isolates
used to prepare the end-enriched plasmid libraries both 1G0 and 1G2(5) have the
same telomeric rDNA band, while this band was absent in 1G3(4) (Figure 5-2-A).
The rDNA telomeric fragment, labeled R in Figure 5-1-A, was captured in the
end-enriched plasmid library of both 1G0 and 1G2(5) and had been sequenced.
Alignment of this sequence with rDNA sequence of 70-15 revealed that the rDNA
was truncated at position 7579 and capped with telomere repeats, (CCCTAA)29
(Figure 5-4-A). The rDNA telomere of 1G3(4) had been captured during the end
enrichment process and both sides of the insert were partially sequenced. This
revealed a 5’ truncated MoTeR1 (position 2248) capped with a telomere

(CCCTAA)27 at the chromosome end and rDNA sequence at the subtelomere. PCR
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was then used to characterize the MoTeR to rDNA junction. The junction between
the rDNA and the 3’ end of MoTeR1 was amplified by PCR and then sequenced. The
sequence data revealed that MoTeR1 was located one CCCTAA repeat upstream of
the same rDNA truncation described in 1G0 and 1G2(5) (Figure 5-4). This
suggested that the MoTeR1 had inserted into the rDNA telomere. The rDNA
fragment had likely shifted in 1G3(4), as observed in Southern hybridization in
Figure 5-3-A, (lane 4 labeled RM). The MoTeR1 probed hybridized with the de novo
telomere fragment (Figure 5-3-B, lane 4). The size increase was less than would be
expected if an intact MoTeR1 had inserted into the rDNA telomere, and the band
was similar in size to the rDNA telomere captured in 31B.

An alternative explanation to MoTeR1 insertion into the rDNA telomere,
however, is that LpKY97-1A could have multiple chromosome ends with rDNA
sequences, and that the MoTeR1-rDNA band (RM) observed in 1G3(4) could have
resulted from the alteration of a MoTeR-containing rDNA telomere already present
in the starting culture. To test this idea, PCR was used to test for the presence of a
MoTeR1-rDNA junction in the starting culture. Using an rDNA and MoTeR 3’ primer
pair, DNA from 1G3(4) yielded a PCR amplicon of the expected size (data not
shown), while DNA from 1G0 failed to produce any products. This indicated that
there were no existing MoTeR-rDNA junctions in the initial starting culture.
5.2.3.2 Capture and duplication of internal sequence at a telomere
Southern analyses of Pstl digested DNA revealed that isolates 1G2(5) and 1G3(4)
both have a de novo telomere band of 700 bp (Figure 5-3-A). Plasmid clone 117B1,

from the end-enriched plasmid library of 1G3(4), had a similarly sized insert. The
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plasmid insert was sequenced and local blast analysis against the genome sequence
of 70-15 revealed no sequence homology to 70-15 other than to the telomere
repeats. The telomere sequence found at the end of 117B1 band B was
(CCCTAA)29(CCTAA)(CCCTAA). To determine if the plasmid insert in 117B1 was the
telomere fragment labeled B in Figure 5-3-A, a probe was generated from the 117B1
sequence to be used for Southern analysis. Primers (m117B1F and m117B1R) were
designed from the unique sequence of 117B1. PCR was then used to amplify the
sequence from the plasmid 117B1 for use as a probe. The 117B1 probe was then
hybridized to the previous Southern Blot (Figure 5-3-C). In 1G2(5) and 1G3(4), the
telomeric fragment (Figure 5-3-A, labeled B) cohybridized with the 117B1 fragment
(Figure 5-3-C) and thus these fragments represented the same de novo telomere
captured in the plasmid 117B1. The initial culture (1G0) produced three strong
hybridization signals with the 117B1 probe (Figure 5-3-C). None of the 117B1
signals coincided with the telomeric fragments, suggesting that they were internal
genomic fragments. These internal fragments were also found in 1G2(5), 1G2(3),
and 1G3(5) (Figure 5-3-3) indicating that these fragments were not lost in these
isolates.

In 1G3(5) another strong hybridization signal was observed with the 117B1
probe (labeled BM, Figure 5-3-C, lane 5). The band in question also hybridized with
MoTeR1 (labeled BM, Figure 5-3-B, lane 5) and was the approximate size expected if
an intact MoTeR1 had transposed into the newly generated 117B1 chromosome end
(labeled B, Figure 5-3-A lanes 2 and 4). None of the internal 117B1 bands appeared

to be missing in this isolate (Figure 5-3-C lane 5) likely indicating that this fragment
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did not arise from the truncation of another chromosome. To confirm that the novel
BM telomere contained a MoTeR1, the junction between 117B1 and MoTeR1 was
PCR-amplified from the genomic DNA of isolate 1G3(5) using the primers (117B1]JF
and 117B1]JR). The resulting amplicon was sequenced, revealing a junction
consisting of the telomeric motifs (CCCTAA)3(CCTAA)(CCCTAA) between the 3’ end
of MoTeR1 and the 117B1 unique sequence (Figure 5-4).
5.2.3.3 Truncation of MoTeR2 arrays
The telomeric bands marked with an arrow (Figure 5-5-A lanes 2-20) showed
variable hybridization intensities among isolates. This likely indicates
rearrangements had taken place in the telomeric fragments that were associated
with this band. To analyze the changes of the telomeres in mitotic progeny more
closely, I needed to be able to track a single chromosome end. One plasmid in the
end-enriched library of 1G(3)5, 31B, contained a 9.1 kb insert. Sequencing of the T3
end of the insert revealed the 5’ end of MoTeR element capped with telomere
repeats (CCCTAA)3o. The T7 end of the insert was sequenced and local blast analysis
against the 70-15 genome failed to find significant matches indicating that the
sequence was unique to LpKY97-1A. Primers (31B001F and 31B001R) were
designed to PCR-amplify 600 bp of sequence from the T7 end of the insert. The
resulting PCR amplicon, 31B001, was then used as a probe for Southern analysis of
the telomere blot shown in Figure 5-5-A.

The 31B001 probe hybridized to two fragments (~9 kb and ~11 kb) in the
starting culture (GO) (lane 1, Figure 5-5-B, labeled A and B respectively). The 31B1

telomere fragment obtained in the end-enriched library of 1G3(5) corresponds to
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the weakly hybridizing B in the isolate GO, but the strong hybridization signal in GO
corresponds to Band A. The weak hybridization signal of Band B in GO likely
indicates that the culture was heterokaryotic for the 31B telomere, and that the
shorter fragment had been cloned. In the 3 generation of mitotic progeny, eight of
the 19 progeny had the same 3100B1 fingerprint as GO (Figure 5-5-B). Four
isolates, G3(5), G3(6), G3(8), and G3(9), only had the ~9 kb variant of the 31B
telomere. Isolate G3(4) had three bands in its 31B001 fingerprint (~13 kb, ~11 kb,
and ~9 kb), with the ~13 kb band being the only strong hybridization signal. The
regularity of the band size variants of ~2 kb suggested a genetic element was
expanding/contracting at this chromosome end. The expected difference of sizes
based on MoTeR2 element would be 1.7 kb, but the separation of the bands wasn'’t
enough to obtain accurate sizes.

The structure of the 31B telomere restriction fragment had not yet been fully
explored. Information about the structure of the MoTeRs in the fragment was
needed to determine if MoTeR2 arrays were likely at this telomere. Restriction
analysis and partial sequencing of the 31B plasmid insert revealed that downstream
of the telomere repeats (CCCTAA)3o, there was an intact MoTeR2 element separated
from a highly 5’ truncated MoTeR1 (position 4726) by a single CCCTAA motif. The
truncated MoTeR1 element was itself separated from the unique 31B chromosome
end by a single CCCTAA repeat (Figure 5-4).

An Apal restriction site was present at ~1.9 kb upstream of the truncated
MoTeR1. It was believed that by digesting the genomic DNA of the mitotic progeny

with Apal, prior to Southern blotting, a better resolution in the sizes of the variant
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31B telomere fragments could be obtained. Therefore, primers (31B002F and
31B1002R) were designed for PCR amplification of an 868 bp probe fragment
(31B002) from the unique DNA upstream of the truncated MoTeR1, since the
original probe no longer hybridized with 31B telomeric fragments in Apal digests. A
representative set of DNA from isolates having different 31B fingerprints were
digested with Pstl or Apal prior to Southern blotting and then probed with 3100B2.
The resulting Southern blots were then compared.

The 31B002 DNA fingerprint profiles (Figure 5-6, lanes 10-18) in the Pstl
digested samples were the same as previously observed for those isolates (shown in
Figure 5-5-B), except for 2 weak hybridization signals. In G3(6) the weak
hybridization signal was at ~7.4 kb, which is below the 9.1 kb fragment observed in
the previous blot probed with 31B001 (lane 12, Figure 5-6). This is exactly the size
change that would be expected if the 9.1 kb fragment had lost a MoTeR2 in the 31B
telomere. However, this band was not present in the Southern analysis of Apal
digested DNA (lane 3, Figure 5-6) likely indicating a chromosomal rearrangement
proximal to the Apal site. In isolate G3(13), a large weak signal was seen in the
31B002 Southern hybridization that was absent in the previous blot probed with
31B001.

Apal digestion provided a better resolution of the 31B band changes (lanes
1-9, Figure 5-6). Several new weakly hybridizing bands were also observed (lanes
1-9, Figure 5-6). The longer 31B002 probe appears to be more sensitive than the

31B001 probe.
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In GO the most intensely hybridizing fragment (A) was ~5.8 kb in length and
the weakly hybridizing fragment (B) was ~4.1 kb (Figure 5-6). Since MoTeR2 is
~1.7 kb in length, the size difference between bands A and B was exactly what
would be expected if the 31B002 fragment contained an extra MoTeR2 copy.
Another weakly hybridizing fragment was observed in GO, which was ~ 5 kb in
length (Figure 5-6-1, lane 1, labeled C). This fragment was not seen in the previous
Southern blot of Pstl digests probed with 31B002, and could suggest the loss the
Apal site 1.9 kb from the start of the tMoTeR1.

In G3(6), only band B, which is the shortest MoTeR2 array variant, was
observed in the Southern analyses of Apal digested genomic DNA with the probe
31B002 (Figure 5-6, lane 3). G3(13) had a 31B002 profile with four bands, each of
these were at intervals of ~1.7 from the longest fragment at ~9.2 kb (~4 MoTeR2s
in the array) to the smallest at ~4.1 kb (Band A). The dominate 31B fragment in this
isolate was ~7.5 kb in size, which likely represents ~3 MoTeR2s arrayed in this
telomere.

It was believed that the longer MoTeR2 arrays would continue to truncate
down to the single MoTeR2 in the telomere (represented by Band B, Figure 3-6),
which would remain stable. To test this idea, 7 different third generation progeny
with variant 31B telomeres were grown from paper disks placed on the center of
separate oatmeal agar plates. The isolates were allowed to grow across the plates,
and spores were harvested. A total of 12 germinated spores from each isolate were
cultured, and then DNA was extracted from at least 10 progeny per isolate. The

DNA samples were digested with Apal, the restriction fragments were separated by
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agarose gel electrophoresis, and electroblotted to a nylon membrane. The blots
were stripped between each probing and the results are shown in Figures 5-7 and
5-8.

G3(6) had a strongly hybridizing fragment at ~4.1 kb (Band B), with an array
of a truncated MoTeR1 and a MoTeR2 in the 31B telomere. The 31B002 probe
revealed no changes in the 12 progeny surveyed (Figure 5-7, lanes 3-14). Telomere
fragment variation was observed in these isolates (Figure 5-7-B), but the 31B
telomere was stable.

G3(14) and G3(15) had a presumed array of the truncated MoTeR1 followed
by ~2.01 MoTeR2s in the 31B telomere (Novikova et al. unpublished), which was
~5.8 kb in length (Band A). In 3 of the 21 (or 14%) mitotic progeny of G3(14) and
G3(15), Band B was the predominant variant, while in the other 18 progeny a
weakly hybridizing Band B was seen along with the strong hybridization signal for
Band A (Figure 5-8).

G3(11), G3(12), G3(13), and G3(16) had intense signals at ~7.5 kb, which
was believed to have a truncated MoTeR1 and ~3.01 MoTeR2s in the 31B telomere
(Novikova et. al. unpublished). Six of the 44 progeny (or 13%) had intense signals
at sizes different from their respective starting strain (Figure 5-7). G3(12-2) and
G3(13-2) had the A variant representing a truncation of one MoTeR2, while
G3(12-12) had a strongly hybridizing fragment at ~4.1 kb or a loss of two MoTeR2
elements. One progeny, G3(11-4), had a truncation of an unexpected size of ~6.7 kb.
G3(11-5) and G3(11-6) had longer fragments (~9.2 kb and ~15 kb respectively)

likely representing further extensions of the MoTeR array in the 31B telomere.
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5. 3 Discussion
5.3.1 MoTeRs in telomere restriction fragment length polymorphisms
The major objective of the experiments in this chapter was to characterize the
possible mechanisms by which telomere restriction fragment length polymorphisms
could arise in LpKY97-1A. Eight of the nine visible telomere fragments in
Pstl-digested genomic DNA cohybridized with MoTeRs, and they were associated
with a majority of gains (64%) and losses (80%) of telomeric bands in mitotic
progeny. This close association of MoTeRs with many of the telomere restriction
fragment length changes in mitotic progeny suggested that MoTeRs had a role in
this instability. However, a direct correlation with band changes and MoTeRs
activity could not be established due to several possible factors such as: telomere
fragments of the same size comigrating during agarose gel electrophoresis and
appearing as a single band in the Southern analysis, differential methylation, MoTeR
truncations caused by other mechanisms, or another transposable element causing
the instability of chromosome ends. The cloning of telomere restriction fragments
was necessary to establish a direct link of band changes with MoTeRs. Shotgun
cloning led to the creation of end-enriched plasmid libraries from three different
LpKY97-1A strains. The chromosome ends captured by this approach were used to
characterize three different mechanisms by which instability of telomere
fingerprints can arise: MoTeR transposition into telomeres, duplication and capture
of internal sequence at a telomere, and expansion or contractions of MoTeRs arrays.
However, there were other possible mechanisms that needed to be explored,

as MoTeRs cohybridization was absent in 36% of the telomere restriction fragment
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length gains. Methylation has been known to play a role in restriction fragment
length polymorphism at chromosome ends (LANGE et al. 1990). The effect of
methylation was ascertained by comparing telomere fingerprints of genomic DNA
samples digested with restriction enzyme isoschizomers, one being sensitive to
cytosine methylation and the other being insensitive to methylation. The telomere
fingerprints failed to yield any band differences. Thus, cytosine methylation may
not be an important mechanism in telomere restriction length polymorphisms in
LpKY97-1A, which suggests that other mechanisms could account for the band
changes.

There is some evidence to suggest that other retrotransposons are active.
The retrotransposon MAGGY, for example, has been shown to be active and has been
linked to some telomere profile changes in the mitotic progeny of LpKY97-1A
(NovikovA et al. 2011). Thus, other elements could be actively causing telomere
instability within the GLS isolates. The structure of MoTeRs may serve as a hotbed
for other transposable elements, which could lead to further instability of the
telomeres.
5.3.2 rDNA rearrangements
The telomeric rDNA band in Southern hybridizations (labeled R in Figure 5 1-A) was
lost in 14 of the 58 mitotic LpKY97-1A progeny (24%) over the course of three
generations (data not shown), indicating that the telomeric region of the rDNA array
is unstable in this isolate of M. oryzae. Instability in the telomeres at the end of the
rDNA arrays has also been seen in the related filamentous fungus Neurospora crassa

(Wu et al. 2009).
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In LpKY97-1A the instability of a characterized rDNA band was potentially
caused by the activity of a MoTeR1. In the mitotic progeny, 1GL3(4), the absence of
the telomeric rDNA band (Figure 5-1-A lane 1 labeled R) was believed to have been
produced by a MoTeR1 that transposed into a telomere of the rDNA array. This
caused the telomeric rDNA fragment to be longer (Figure 5-1-A lane 4 labeled RM).
The size difference between the two bands was less than expected if an intact
MoTeR1 had transposed into the rDNA telomere. Sequencing analysis revealed that
a 5’ truncated MoTeR1 (tMoTeR1) was in this telomere, and the truncation point of
MoTeR1 was in register with the telomere repeats (CCCTAA)-tMoTeR. The tMoTeR1
could have become established in this telomere through retrotransposition or
recombination.

There are several different models by which the tMoTeR1 could have been
inserted into the rDNA telomere. The 5’ end insertion mechanisms of non-long
terminal repeat retrotransposons are not known. Truncation of 5’ ends may occur
by the reverse transcriptase (RT) failing to copy the entire RNA template or
premature initiation of second-strand synthesis (LUAN et al. 1993). One current
model suggests that annealing of microhomologies between the reverse transcribed
cDNA to the top-strand will prime second-strand synthesis of the retrotransposon
(StAGE and EickBUSH 2009). If binding occurs within the cDNA instead of at the end,
then a 5’ truncated element would be inserted. A microhomology of one base pair
was found between the MoTeR1 truncation point and the telomere sequence, but in
order for the truncation to be in register with the telomere a 5 bp target site

truncation (TST) or target site duplication (TSD) would have needed to occur.
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Another possible scenario, is that the RNA template was derived previously from a
tMoTeR1 from another telomere. This tMoTeR1 would potentially have a telomere
repeat at the 5’ end of its RNA transcript, could utilize the RT machinery of a full
length MoTeR1, and the telomere repeats of the reverse transcribed cDNA would
provide the needed microhomology for the top-strand insertion of the tMoTeR1. An
alternative mechanism to explain the tMoTeR insertion is the template jump model
(BiBILLO and EIcKBUSH 2004; ZINGLER et al. 2005b). Based on this model, the MoTeR1
was incompletely reverse transcribed and the RT was able to template jump onto
the top-strand to begin the second-strand synthesis reaction. One less likely
mechanism is more complex. A full length MoTeR1 could have retrotransposed into
the telomere repeat in one of the nuclei that gave rise to a mitotic progeny. During
the further culturing of this isolate the MoTeR1 could have become truncated
followed by addition of telomere repeats by telomerase. This mechanism is not
likely because the integrity of terminal telomere repeats is typically maintained in
M. oryzae (STARNES et al. 2012). The maintenance of telomere repeat caps has also
been seen in another fungus, Kluyveromyces lactis, where all but the innermost
telomere repeats undergo gradual turnover primarily through the loss of repeats by
replicative processes and the addition of new repeats by the action of telomerase
(MCEACHERN et al. 2002).

Recombination with another telomere end is an alternative mechanism to
retrotransposition. This was considered to be an improbable mechanism whereby
the tMoTeR1 was copied into the rDNA telomere. Analysis of the junction sequence

between the rDNA array and the 3’ end of tMoTeR1 revealed only one CCCTAA
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repeat between the two, which is presumably too little homology for efficient
homologous recombination (LISKAY et al. 1987; RUBNITZ and SUBRAMANI 1984).
Break-induced replication (BIR), however, has been known to copy sequences to
new chromosome ends even when there are only a few nucleotides of homology.
This occurred at an extremely low frequency (RICCHETTI et al. 2003), which suggests
that BIR is not the probable explanation for the insertion of the tMoTeR1 in the
rDNA telomere. Furthermore, the justification that recombination was responsible
for tMoTeR1 copy into the rDNA telomere would have required a significant
degradation of the rDNA telomere tract or a double strand break (DSB) to initiate
BIR. Thus recombination could account for the tMoTeR1 in the rDNA telomere, but it
is much less likely than the transposition model.

5.3.3 Duplication and capture of internal sequence at telomeres

In two progeny of LpK97-1A there was a de novo telomere band (Lanes 2 and 4,
labeled B, Figure 5-3-A). There are a number of ways this telomere could have been
formed. One possible mechanism is that the chromosome end was truncated in
these isolates, followed by the addition of telomere. However, this is not a probable
mechanism for de novo telomere formation, because the variant isolates all retained
the internal 117B1 bands (Figure 5-3-C). If a truncation of a chromosome end had
occurred, it would be expected that one of the 117B1 internal bands seen in the
original starting isolate would have been absent in that progeny. More likely, the
new telomere arose through the copying of an internal fragment onto a truncated
chromosome end. It is unknown what may have caused this truncation event, and

the chromosome end has not been sequenced downstream of the Pstl site. A
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truncation in a MoTeR array, whereby a short telomere sequence was left at the 3’
end or an internal break within a MoTeR, may have initiated double strand break
repair machinery, such as BIR, which could have been active in capturing the
internal sequence. Further characterization of this chromosome end is needed to
understand the potential mechanisms involved in the capture of internal sequence
at the chromosome end.
5.3.4 MoTeR transposition
The telomeric 117B1 was not present in the initial isolate, but was present in at
least two mitotic progeny. The difference between band B and band BM was
approximately 5 kb, which is suggestive of an addition of a full length MoTeR1 into
the 117B1 telomere (Figure 5-3-A). Sequencing revealed that at the junction
between the 3’ end of MoTeR1 and 117B1 in band BM was the sequence
MoTeR1-(CCCTAA)3(CCTAA)(CCCTAA)-117B1. The variant telomere sequence
CCTAA was also found in the same position in band B. The 5’ end of the MoTeR1
sequence and the telomere proximal sequence were not captured. Based on
hybridization intensity of the telomere probe to fragment BM, it is expected to have
a normal length telomere. These data suggested that the MoTeR1 was added into
the telomere after the formation of the de novo 117B1 telomere. This could have
been accomplished by retrotransposition of MoTeR1 or recombination of the
telomere with a MoTeR1 containing telomere. Though as discussed earlier,
recombination was not the favored mechanism.

There are several possible mechanisms by which the MoTeR1 could have

retrotransposed into the 117B1 telomere. Our current model suggests that
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telomere repeats are incorporated into the 3’ end of the RNA transcript, which
would allow for insertion of the MoTeR1 in register with the telomere repeats of the
target site (STARNES et al. 2012). These telomere repeats may bind to the target site
in the telomere and act as a primer to initiate reverse transcription of the MoTeR
transcript by a process known as target primed reverse transcription (TPRT). The
inclusion of target site DNA at the 3’ end of the transcript is known to increase the
accuracy of insertion, but can reduce the efficiency of TPRT (LUAN and EICKBUSH
1996). A variable number of telomere repeats are found at the 3’ junctions of
MoTeRs, which could be caused by the selection of different target sites in the
telomeric repeats or a larger number of telomere repeats incorporated into the
MoTeR transcript.

Preliminary evidence has shown that MoTeRs are expressed (appendix C).
Expression analysis by reverse transcriptase PCR has utilized a MoTeR specific
primer in the initial cDNA synthesis. Use of telomere repeats as a primer for cDNA
synthesis in this assay could establish whether telomere repeats were part of the
transcript. Cloning and sequencing of MoTeR1 reverse transcriptase PCR
amplicons could provide evidence of read through transcription into the telomere
repeats.

MoTeR1 is the first example of a potentially active telomere repeat specific
non-LTR retrotransposon in fungi. Two examples have been provided that are
highly suggestive of MoTeR retrotransposition. One example is the
retrotransposition of a tMoTeR1 into the rDNA telomere and the other example is

the retrotransposition of a suspected full length MoTeR1 into a de novo telomere.
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However, further experiments are needed to confirm that MoTeR1 and MoTeR2 are
capable of retrotransposition. The only other NLRs where direct evidence has
shown that they actively insert into telomere repeats are the TRAS and SART
retrotransposons from Bombyx mori (FUJIWARA et al. 2005).

5.3.5 Molecular mechanisms underlying MoTeR array contraction and
extension

By following the individual chromosome end 31B in mitotic progeny of LpKY97-1A,
it was possible to track the fate of MoTeR2 arrays. The smallest size 31B Apal
digested telomere fragment in third generation mitotic progeny of LpKY97-1A was
~4.1 kb in length (lane 3, Figure 5-5). Restriction analysis and partial sequencing of
this fragment revealed that downstream of the terminal telomere repeats there was
a MoTeR array with an intact MoTeR2 and a 5’ truncated MoTeR1 in the telomere of
31B (Figure 5-4). The ~4.1 kb fragment was seen as a faint band in the Southern
analysis of the Apal-digested genomic DNA in the initial starting culture (labeled B,
lane 1, Figure 5-6), which means it is likely only present in some nuclei. The
Apal-digested 31B chromosome end present in most nuclei within the original
culture was ~5.8 kb. This is exactly the size difference expected if an additional
MoTeR2 were present in the MoTeR array in the telomere of the 31B chromosome
end. Third generation mitotic progeny with 31B fragments larger than ~5.8 kb were
always accompanied with faintly hybridizing fragments of ~5.8 kb and ~4.1 kb
(Figure 5-6, lanes 2,4-6, and 9), suggesting that truncations of the MoTeR2 array
were common during mitotic division. Further Southern analyses of progeny from

the isolates with 31B fragments larger than ~5.8 kb showed that truncations of the
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MoTeR2 arrays occurred more frequently than expansions (Figure 5-7 and 5-8).
Progeny of the isolate G3(6) with the ~4.1 kb fragment did not show any expansion
or contraction of the MoTeR2 array in the Southern analysis of Apal digests (Figure
5-7-A, lanes 3-15), demonstrating that this is a stable configuration of the telomere.
It could be expected that this MoTeR2 array could truncate further by the loss of an
additional MoTeR2. However, a further truncation of this array was not observed in
any of G3(6) mitotic progeny.

One possible mechanism that could lead to truncation of MoTeR2 arrays is
that the replication forks stall at long telomere tracts between MoTeR2 elements in
an array, which then causes truncations in the MoTeR2 array. Truncations were
more pronounced in the longer MoTeR2 arrays of the 31B telomere. Cloning and
sequencing of the ~5.8 kb fragment revealed a long telomere tract
[(CCCTAA)2(CCCTAAA)(CCTAA)12] between the two MoTeR2s in the array
(Novikova et. al. unpublished). In Saccharomyces cerevisiae telomere-promoted
replication fork stalling is dependent on the length of the telomeres (MAKOVETS et al.
2004). The instability observed could be the result of double strand breaks being
created at stalled replication sites (SAINTIGNY et al. 2001; STRUMBERG et al. 2000).
Chromosome instability is known to occur at interstitial telomere repeats (KILBURN
etal 2001; Musio et al. 1996), further suggesting that long interstitial telomere
repeats between the MoTeRs in an array could lead to higher instability of telomere
fingerprints.

The Interstitial telomere repeats in MoTeR may also facilitate the formation

of telomere loops or “t-loops”. T-loops are formed when a long stretch of double
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stranded telomere DNA loops around and the single stranded terminus invades back
into double stranded telomere forming a displacement loop (D-loop) (GRIFFITH et al.
1999). The topological barriers caused by a t-loop could lead to replication fork
stalling (SAMPATHI and CHAI 2011). Processing of t-loops by homologous
recombination in cells with mutant alleles of TRF2, a DNA binding protein involved
in telomere protection, lead to truncations of the telomere at the site of the t-loops
(WANG et al. 2004). Improper disassembly of t-loops not only leads to telomere
truncations, but also to the formation of telomeric circles (VANNIER et al. 2012).
These telomeric circles are known to stimulate recombinational telomere
elongation (NATARAJAN et al. 2003; NATARAJAN and MCEACHERN 2002), which could
lead to further instability in MoTeR containing isolates.

The presence of MoTeR sequence in the telomere may inhibit the proper
function of telomere binding proteins leading to further instability in these
telomeres. This could be an interesting avenue to explore with further research.

Another mechanism that explains both truncations and expansions of
MoTeR2 arrays is unequal crossing over. This mechanism could lead to expansion in
one MoTeR array and contraction of another MoTeR2 either in a non-homologous
chromosome end or the sister chromatid. Expansion and contraction of the rDNA
array in haploid cells can be caused by unequal crossing over of sister chromatids
(Szostak and Wu 1980). Sister chromatid exchange occurs at a higher rate at
telomeres and subtelomeres than in internal chromosomal sequence (RUDD et al.
2007). This further suggests that MoTeRs could be susceptible to high rates of

recombination between sister chromatids. The MoTeR system could provide
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additional evidence of the frequency by which sister chromatid exchange occurs.
This could be accomplished by following a “marked” MoTeR element or following a

particular variant of MoTeR through asexual reproduction cycles.
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CHAPTER SIX

Distribution and Evolutionary History of Magnaporthe oryzae Telomeric
Retrotransposons within Magnaporthe

6.1 Introduction
Magnaporthe oryzae includes several host-specialized subgroups, each of which are
restricted in the range of host species in which they can cause disease.
Representative subgroups are the Eleusine pathotype pathogenic on finger millets
(Eleusine coracana); the Lolium pathotype pathogenic on perennial ryegrass (Lolium
perenne), tall fescue (Lolium arundinaceum), and annual ryegrass (Lolium
multiflorium); the Oryza pathotype pathogenic on rice (Oryza sativa); the Panicum
pathotype pathogenic on torpedo grass (Panicum repens); the Setaria pathotype
pathogenic on foxtails (Setaria spp.); and the Triticum pathotype pathogenic on
wheat (Triticum aestivum) (KATO et al. 2000; TosA et al. 2004). Magnaporthe grisea
isolates, close relatives of M. oryzae, are virulent on crabgrass (Digitaria spp.).
Restriction length polymorphism (RFLP) analysis is one method that can be
used to delineate isolates into their respective pathotypes. The unique banding
pattern of different isolates in Southern hybridizations is referred to as the isolates
“DNA fingerprint”. DNA fingerprinting has been used to support the grouping of
isolates into host-specific forms (BORROMEO et al. 1993; HAMER et al. 1989a; KATO et
al. 2000). Repetitive elements have been used in DNA fingerprinting to resolve the
association of M. oryzae isolates to the limited subset of cultivars in which they are
virulent (CORREA-VICTORIA et al. 1994; LEVY et al. 1991). Two repetitive elements
(MGR586 and MGR583), extensively used in DNA fingerprinting studies, contain

sequence relating to different types of transposable elements (PoT3 and MGL
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respectively) (FARMAN et al. 1996a; KACHROO et al. 1997). The distribution of
transposable elements has frequently been used to understand population structure
within and among M. oryzae pathotypes (KUMAR et al. 1999; PARK et al. 2008; ROUMEN
et al. 1997; TANAKA and NAKAYASHIKI 2009; YAMAGASHIRA et al. 2008). The use of
multiple transposable elements in repetitive DNA fingerprinting is attractive due to
the differing evolutionary history for each transposable element.

MoTeRs are present in the genome of the Lolium pathotype isolates and in a
single Eleusine pathotype isolate (PH42), but were absent in the laboratory Oryza
pathotype isolate 70-15 (Figure 3-7). MoTeRs were amplified to a different degree
within isolates of the Lolium pathotype. These results indicated that MoTeRs might
be unevenly distributed in the Magnaporthe species. This was surprising as the
other described non-LTR retrotransposon (MGL) in M. oryzae is present in most, if
not all, host specialized pathotypes (ETo et al. 2001). Non-LTR retrotransposons
tend to be inherited by vertical descent (MALIK et al. 1999), so one might expect
MoTeRs to be present in most host specialized forms of Magnaporthe. The absence
of MoTeRs in the widely studied laboratory isolate 70-15 necessitated the need to
explore the overall distribution of MoTeRs in various pathotypes. Repetitive DNA
fingerprinting was used to examine the distribution of MoTeRs in Magnaporthe
isolates from 14 different pathotypes. Using information gathered from the
distribution data, partial sequencing of MoTeR1s from different pathotypes, and
evolutionary analysis of these sequences the likely evolutionary history of MoTeRs

was addressed.
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6.2 Results

6.2.1 Distribution of MoTeRs within Magnaporthe

To determine the distribution of MoTeRs in Magnaporthe, sequence-specific
MoTeR1 and MoTeR2 probes were used as probes for Southern hybridization
analyses of Pstl-digested DNA from 116 isolates representing 14 different
pathotypes. Since some telomeric MoTeRs were highly truncated in Lolium
pathotype isolates (Figure 3-4), two different MoTeR1 probes were utilized to
distinguish between putatively intact and truncated MoTeR1s. The MoTeR1(5’RT)
probe was used to identify presumed intact copies that retained the reverse
transcriptase needed for transposition, while the MoTeR1(3’) probe was used to
detect truncated copies of MoTeR1. Since MoTeRs were mostly found within the
telomeres of the Lolium pathotype isolates, | wanted to ascertain if MoTeRs were
also telomeric in other pathotypes. To accomplish this, all of the Southern blots
were subsequently hybridized with a telomere probe. Hybridizing fragments were
counted as single bands regardless of intensity of the hybridization. The results of
these experiments are summarized in Table 6-1 and Table 6-2.

[solates from the Lolium pathotype all had a putatively intact MoTeR1 copy
present within their genome (Table 6-1). There were more MoTeR1(RT) bands
observed on average in the Lolium pathotype (~8 bands per isolate) than in other
pathotypes. In addition to the Lolium pathotypes, other pathotypes had multiple
apparently intact MoTeR1 in their genome. These included isolates from Triticum
(Figure 6-1), Eragrostis (Figure 6-4 lanes 4 and 8) and two out of the four Eleusine

(Figure 6-4 lanes 3 and 7) pathotype isolates. At least one putative intact copy of
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MoTeR1 was present in all isolates surveyed from the Stenotaphrum, Paspalum,
Leptochloea, and Zingiber pathotypes. In contrast, isolates from Setaria and Oryza
showed uneven distribution of MoTeRs among isolates, with some showing a single
intact copy of MoTeR1 while others were apparently completely devoid of the
element. Finally, some pathotypes lacked full length MoTeR1s; these included
Brachiaria, Panicum, Pennisetum, and Digitaria. Most of the putatively intact
MoTeR1 bands in the various pathotypes were telomeric in nature (337/347 or
97%) (Table 6-2) based on cohybridization of MoTeR1(RT) probe and telomere
probe to Pstl fragments in Southern analysis. Only isolates from the Lolium and
Eleusine pathotypes had copies of intact MoTeR1s that were not telomeric in nature
(6 and 4 fragments respectively). These fragments were likely once telomeric in
nature.

The Southern analyses with the MoTeR1(3’) probe, capable of detecting
truncated MoTeR1 copies, provided more thorough analyses of MoTeR1
presence/absence within the different pathotypes. According to this analysis, only
the Panicum and Pennisetum pathotypes completely lacked MoTeR1. At least one
partial copy of the element was present in all isolates surveyed from Lolium,
Eragrostis, Eleusine, Triticum, Leptochloea, Zingiber, Paspalum, and Setaria.
Truncated MoTeR1 copies still exhibited a spotty distribution within the Oryza
pathotype. Isolates from the Digitaria pathotype, members of the sister species M.
grisea, all had MoTeR1 present within their genomes (Figure 6-5). Only 103 of the
185 (or 56%) truncated MoTeR1 bands were telomeric, which is lower than the

percentage of apparently intact MoTeR1 bands that were associated with telomeres
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(97%) (Table 6-2). Truncated MoTeR1 thus have a substantial decrease in
telomeric association. It is likely that these truncated MoTeR1s have become
internalized in the genome.

MoTeR2 was detected in 42 of the 116 isolates analyzed (Table 6-1). It was
restricted to isolates that also had MoTeR1 in their genome. Most Lolium pathotype
isolates tested (25/27) had MoTeR2s in their genome. All of the Eleusine pathotype
isolates had MoTeR2s. MoTeR2 was detected in only half of the Triticum pathotype
(9/18) and Eragrostis pathotype isolates (1/2). Only two isolates from the Setaria
pathotype had MoTeR2. In an Oryza pathotype laboratory strain (2539), a single
MoTeR2 band was observed in the Southern hybridizations (Figure 6-3, lane 5).
DNA fragments of isolates surveyed from the Brachiaria, Digitaria, Leptochloea,
Panicum, Paspalum, Pennisetum, Stenotaphrum, and Zingiber pathotypes did not
hybridize to MoTeR2 probe in the Southern analysis (Figure 6-4 and Figure 6-5),
likely indicating that they lacked MoTeR2, or that the remaining fragments were
severely truncated. Most of the MoTeR2 fragments in the Southern analysis
cohybridized with telomere fragments (200/202) (Table 6-2), indicating that they
were probably telomeric. The only exceptions to this were in two Setaria pathotype
isolates (YF1 and YF2).

6.2.2 MoTeR evolution within Magnaporthe oryzae

MoTeR1 was present in most pathotypes of Magnaporthe. Multiple putatively intact
copies of MoTeRs were also present in Eleusine and Eragrostis pathotypes rooted
deeply in the proposed evolutionary history of M. oryzae (CoucH et al. 2005). This

suggested that MoTeR1 was inherited by vertical descent and, therefore, was lost in
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some isolates. In this case, it would be expected that the evolutionary history of
MoTeR1 would resemble those of other nuclear genes within the organism. To test
this, three genomic loci (MPG1, CH7-Bac7, and the rDNA internal transcribed spacer
[ITS] region) were amplified by PCR from genomic DNA in 26 different MoTeR1
containing isolates and the PCR amplicons were cloned and sequenced. Likewise,
MoTeR1 sequences in the various isolates were amplified by PCR from genomic
DNA and resulting PCR amplicons were then cloned and sequenced. The sequences
were aligned and the evolutionary history was inferred using the neighbor-joining
(N]) method (Saitou and NEI 1987). The bootstrap tree was derived from 1000
replicates and is taken to represent the evolutionary history of the 26 taxa analyzed
(FELSENSTEIN 1985). Missing data or alignment gaps were eliminated only in
pairwise sequence comparisons.

The data from individual gene loci provided very little phylogenetic
resolution among pathotypes due to some isolates sharing identical sequence. Data
from all gene loci were concatenated to improve resolution. A neighbor-joining tree
based on 1323 positions in the concatenated sequence of the genomic loci is shown
in Figure 6-6-A. The neighbor-joining phylogenetic tree of MoTeR1 based on 1373
positions is shown Figure 6-6-B. The topology of the gene loci and MoTeR1 trees
were compared to determine if there was a similar evolutionary history.

According to the NJ analyses of the gene loci, isolates within pathotypes were
grouped together with the exception of the Lolium pathotype (Figure 6-6-A). The
Lolium(1) pathotype isolates (LpKY97-1A, FH, NJ1, and NJ2) were all collected in the

United States, while the Lolium(2) pathotype isolate (WK31) was a weakly
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aggressive isolate that was collected in Japan. Lolium(1) pathotype isolates were
most similar to Eleusine pathotype isolates(CD156, PH42, JP29, and G22), while the
Lolium(2) pathotype isolate was more similar to Triticum (BR2 and BR4), Setaria
(MCCLZ, ARC1, STHLAND, YFDC, and GF1), and Oryza pathotype isolates (2539,
91T14, and IT11). The gene loci delineated the Eleusine pathotypes into two groups
based on the species of hosts they were collected from: Eleusine coracana (JP29 and
G22) and Eleusine indica (CD156 and PH42). Stenotaphrum isolates (PG1108,
PG1054, SSFL, and STAGMS) were most similar to Eragrostis pathotype isolates
(G17 and AR4) based on gene loci.

The evolutionary history of MoTeR1 appeared to be somewhat different than
the evolutionary history of gene loci (Figure 6-6-B), and there were a higher number
of base substitutions in the MoTeR1 sequences than were calculated in the nuclear
genes (Figure 6-6). In the previous NJ analysis of nuclear genes the Triticum
pathotype isolates were more closely related to Lolium(2), the Setaria, and Oryza
isolates. However, the MoTeR1s of Lolium(1) pathotypes were highly similar to the
MoTeR1 sequences of Triticum pathotype isolates. The Setaria isolates were all
grouped together based on nuclear genes, but the MoTeR1 of ARC1 was most similar
to the MoTeR1s of Lolium(1) and Triticum pathotype isolates. The Eleusine
pathotype was polyphyletic in regards to MoTeR1, but monophyletic based on
nuclear genes. The MoTeR1s of Eleusine indica isolates (CD156 and PH42) were
similar to the MoTeR1 sequence in the Lolium(2) (WK31) isolate and two Eragrostis
pathotype isolates (G17 and AR4). The MoTeR1s of Eleusine coracana pathotype

isolates (G22 and JP29) were similar to most of the MoTeR1s in Setaria pathotype
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isolates (YFDC, MCCL2, STHLAND). The Oryza pathotype isolates’ MoTeR1s grouped
together with the exception of 2539, a laboratory strain, where the MoTeR1
sequence grouped with the MoTeR1 of Eragrostis isolate G17. The Stenotaphrum
pathotype isolates were grouped together in regards to MoTeR1, and were closely
related to the MoTeR1s of the Oryzae pathotype isolates. This was different from
what had been observed previously in the NJ analysis of nuclear genes where
Stenotaphrum isolates were more closely related to Eragrostis isolates.

One factor that could lead to grouping of MoTeR1s in phylogenetic trees is
that when analyzing the sequence of MoTeR1 in an individual pathotype the
orthologous copies were compared, while paralogous MoTeR1 copies might have
been compared in the analyses between different pathotypes. For example, isolates
IT11 and 91T14 were closely related phylogenetically (Figure 6-6-B) and produced
a MoTeR1 band with a similar size in Southern analysis (Figure 6-3-B). The SIT4
isolate had a MoTeR1 band that was smaller in size. This could suggest it was a
truncated form of MoTeR1 on the same chromosome end as 91T14, or it could
represent a paralogous MoTeR1 copy on a different chromosome end. To determine
whether the MoTeR1in 91T14, IT11, and SIT4 were on the same chromosome end,
Josh Moore, an undergraduate in Dr. Mark Farman'’s lab, developed a probe that was
specific to the MoTeR1 containing chromosome in IT11. [ hybridized this probe
with the Southern blot shown in Figure 6-3. Only one band in 91T14 and IT11
cohybridized to the telomere and the MoTeR1(5’RT) band that was identified earlier
(Figure 6-3-E). This suggested that MoTeR1 was indeed at the homologous

chromosomal end in these two isolates. The IT11 probe did not hybridize with the
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band that hybridized to MoTeR1(5’RT) probe in SIT4 DNA (Figure 6-3-E), which
suggested that the intact MoTeR in SIT4 was on a different chromosome end. Since
the SIT4 MoTeR1 is on a different chromosome end, this copy is likely paralogous to
the MoTeR1 copy in the IT11 and 91T14 genome. The MoTeR1 sequences derived
by PCR of genomic DNA from IT11, 91T14, and SIT4 were highly similar and
grouped together in phylogenetic analysis even though the SIT4 MoTeR1 copy was a
paralog. This suggests that the effect of using sequence derived from orthologous
versus paralogous MoTeR1 copies was not a likely factor in the grouping of the
MoTeR1s in the N]J tree.

6.2.3 Possible mechanisms affecting the evolutionary history of MoTeRs
MoTeRs had more mutations between the various pathotypes than were observed
in the nuclear genes. The repeat-induced point mutation mechanism (RIP) can
promote accelerated evolution and is known to occur in Magnaporthe (IKEDA et al.
2002). RIP causes nucleotide transitions whereby G:C are changed to A:T in
duplicated DNA elements during the sexual reproductive phase (CAMBARERI et al.
1989). Thus it would be expected that MoTeR1 sequences would show a strong
bias towards transitions mutations if RIP were active. A maximum composite
likelihood estimate of the pattern of nucleotide substitution was calculated between
the 26 isolates examined in the neighbor-joining analyses to determine if a bias in
transition versus transversions existed. The rates of a transitional mutation were
higher in each base observed (Table 6-3). The nucleotide frequencies were 0.359
(A), 0.242 (T), 0.225 (C), and 0.173 (G). The transition/transversion rate ratios

were k;=3.623 (purines) and k,=7.335 (pyrimidines). The overall
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transition/transversion bias was R=2.042, where R=[A*G*k; +
T*C*k2]/[(A+G)*(T+C)]. An overall transitions/transversion bias of 2.042 is not
typically indicative of RIP’d sequences. To examine the possibility of RIP more
closely, MoTeR1 sequence from LpKY97-1A (multiple copies of MoTeR1) and IT11
(a single copy of MoTeR1) were aligned using MUSCLE, and the sequences were
compared in MEGA version 4 (See Appendix C for data). A total of 1374 bp were in
the alignment with two indels. After removing the indels from analyses, the
sequence was highly conserved between LpKY97-1A and IT11 (1285 out of 1364
bases conserved or 94%). There were a total of 79 nucleotide differences in
MoTeR1 sequence between LpKY97-1A and IT11. Transitions made up 52 out of the
79 nucleotide differences between the two sequences, while there were 27
transversions. The ratio of transitions to transversions was 1.93:1. The background
transition to transversion ratio in Magnaporthe is 2:1 (CoucH and KoHN 2002). Since
RIP didn’t appear to be the predominant mechanism for the sequence difference in
MoTeR1 between host pathotypes, it seems more likely that random mutation may
have led to the sequence divergence between different host pathotypes.

6.3 Discussion

6.3.1 Distribution of MoTeRs in Magnaporthe

The major objectives of the experiments in this chapter were to determine the
distribution of the MoTeR retrotransposons within Magnaporthe, and based on
these data, to describe the possible evolutionary history of MoTeRs. In previous
chapters, it was noted that MoTeR1s were present in isolates of the Lolium

pathotype, but absent in isolates of the Oryza pathotype. It was therefore predicted
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that MoTeRs would be unevenly distributed among the many different host specific
isolates within M. oryzae. This initial observation was confirmed through further
experimentation. The Lolium pathotype had the most MoTeR1 copies followed by
the Triticum pathotype isolates. Only a few Oryza pathotype isolates had MoTeR1
elements. The uneven distribution of MoTeR1 was surprising because the other
major non-LTR retrotransposon in M. oryzae was more widely distributed (ETO et al.
2001). Several processes could be involved in the differences in copy number of
MoTeR1 such as stochastic loss, an increased rate of retrotransposition, inactivation
of repetitive sequences either by passive or active processes, horizontal
transmission, or self-regulation of transposition (ARKHIPOVA 2005; JoHNSON 2007; LE
Rouzic and CApy 2005).

MoTeR2 distribution was more limited than MoTeR1 and primarily confined
to isolates that had MoTeR1. MoTeR1 was typically found at a higher copy number
in the isolates that also had MoTeR2. Based on the prediction that MoTeR2 requires
MoTeR1 for transposition, only the horizontal transmission of a MoTeR1 or both
MoTeR1 and MoTeR2 would allow for amplification in a new genome. It is not yet
known whether a MoTeR1 element is capable of horizontal transmission. Also, it is
not known whether MoTeRs would have an ability to amplify in the genomes of
isolates that did not previously have MoTeRs. Previous work with the LTR
retrotransposon MAGGY has shown that it can amplify in a genome not previously
containing the element (NAKAYASHIKI et al. 2001a). MoTeRs have been shown to
amplify under conditions where normal telomerase function has been abolished

(Farman unpublished). This could suggest that MoTeRs are amplified in isolates
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with a lower expression of telomerase or in isolates missing important regulators in
telomere maintenance, which would be an interesting avenue of research to pursue.
This study represents one of the few studies where multiple probes were
used from a single retrotransposon. In the case of the MAGGY and Grasshopper LTR
retrotransposons, only probes that represented the internal portion of the element
were used (DOBINSON et al. 1993; FARMAN et al. 1996b). There is a possibility that,
like MoTeRs, the MAGGY and Grasshopper LTR retrotransposons were lost in some
isolates while being retained in others. To determine whether degraded LTR
elements exist within other M. oryzae genomes, further experimentation using
probes from the LTR region of MAGGY and Grasshopper could be conducted.
6.3.2 Possible routes to the present evolutionary pattern of MoTeR1
There are two possible explanations to account for the uneven distribution of
MoTeR1 in M. oryzae. The first explanation supposes that the MoTeRs are ancient
retrotransposons that were present in the common ancestor but were absent in
later generations due to either stochastic loss or by an active mechanism such as
repeat induced point mutation (RIP). While a majority of the sequence differences
between LpKY97-1A and IT11 were transition mutations, it is not as striking of a
pattern that has been observed in sequences where RIP is active and nearly all the
nucleotide substitutions are transitions (BRAUMANN et al. 2008). In fact, the
transition/transversion ratio for MoTeR1 (1.93:1) is lower than previous studies
that calculated the transition/transversion ratio among the gene loci in M. oryzae
isolates (CoucH and KoHN 2002). The t/v ratio of other transposable elements in

M. oryzae are typically higher than gene loci, such as MAGGY (6.8:1), MGL (4.2:1),
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and Pot2 (2.3:1) (THON et al. 2004). The low t/v ratio in MoTeR1 between
LpKY97-1A and IT11 suggests that RIP is not actively involved in the DNA sequence
differences between different host specific isolates. However, this evidence is based
on sequence divergence of a single MoTeR1 copy in a single Oryza pathotype isolate
compared to a single MoTeR1 amplified from LpKY97-1A. If the Oryza pathotype
isolate never had more than one MoTeR1 in its genome, then it wouldn'’t be
expected for RIP to be active on this sequence because RIP acts on repetitive
elements within the genome (CAMBARERI et al. 1989). A wider study examining
sequence from multiple MoTeR1 copies in LpKY97-1A, or another isolate with
multiple MoTeR1 copies, might show evidence of RIP’'d copies, and thus RIP as a
mechanism for loss of MoTeRs cannot be completely ruled out.

An alternative explanation for the evolution of MoTeRs is that they could
have arisen by horizontal transmission from one host isolate to another in the
recent past. Horizontal transmission is often invoked to describe inconsistencies in
the presence of retrotransposons in the evolutionary history of an organism. More
traditionally, horizontal transmission is implied when transposable elements are
discontinuously distributed in distantly related taxa in a way that cannot be
explained by vertical inheritance (HARTL et al. 1997; KIDWELL 1992). The limited
distribution of MAGGY and Grasshopper have been used to suggest that they likely
arose through horizontal transmission (DOBINSON et al. 1993; ETo0 et al. 2001; FARMAN
et al. 1996b). Horizontal transmission of non-LTR retrotransposons is thought to be
arare occurrence (MALIK et al. 1999), and there are only a few possible cases of

horizontal transmission of non-LTR retrotransposons (ZUPUNSKI et al. 2001). The
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reason for this rarity is believed to be due to the mechanism of transposition itself.
In LTR retrotransposons, a DNA intermediate is produced which then inserts into
the genome during transposition (LUAN et al. 1993). In non-LTR transposition, a
RNA intermediate is reverse transcribed and the cDNA integrates directly into the
target site (LUAN et al. 1993). The horizontal transmission of the RNA intermediate
of MoTeR1 followed by successful integration into the genome is not likely. LTRs are
much more likely to be horizontally transferred due to a DNA intermediate which is
packaged in virus-like particles (CHAPMAN et al. 1992; FENG et al. 2000; WILHELM et al.
1994). These factors would increase the probability of LTRs surviving horizontal
transmission.

The Southern analyses with the MoTeR1(3’) probe, which allows for the
detection of truncated MoTeR1s, indicated that many of the isolates had MoTeR1 in
their genomes. The truncated MoTeRs were also seen in M. grisea, which is a
separate species from M. oryzae. These data favor the hypothesis that the MoTeRs
are ancient retrotransposons that were present in a common ancestor to both
M. oryzae and M. grisea. Since most of the copies of MoTeR1 in distantly related taxa
could be a result of vertical descent, it is interesting that only some lineages retained
the MoTeR1 in their genome.

The conclusion that MoTER1 had a predominately vertical mode of descent
was somewhat confounded by sequence similarity of MoTeR1 in ARC1 (a Setaria
pathotype isolate) to the MoTeR1s sequence of other Lolium pathotype isolates.
ARC1’s MoTeR1(5’RT) fragment observed in the Southern blot was stronger in

intensity, as well as being smaller in size, than the fragments observed in the other
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Setaria pathotype isolates (data not shown). Additionally, in a neighbor-joining tree
of nuclear genes the ARC1 sequence was similar to the other Setaria pathotype
isolates (Figure 6-6-A), while ARC1’s MoTeR1 sequence was more similar to the
MoTeR1s in the Lolium(1) pathotype. Horizontal transfer is commonly implied
when the sequence of a retrotransposon in an individual is more similar to a
distantly related group than the sequence similarity observed at other loci (SILVA et
al. 2004). However, there is another plausible explanation to describe the sequence
similarity of the MoTeR1 in ARC1 to MoTeR1 copies in the Lolium(1) pathotype that
would not violate vertical descent. The MoTeR1 fragment in ARC1 could represent a
copy of the element, which was lost in the other Setaria pathotypes isolates. This
MoTeR1 was telomeric, which would make it more likely to be lost through
degradation of the chromosome ends. Setaria isolates are known to undergo
frequent rearrangements at the chromosome ends (Farman, unpublished data),
making the loss of a telomeric MoTeR copy highly possible. The process described
above would fit with the model that MoTeRs were once present in all genomes.
Nevertheless, horizontal transmission cannot be ruled out in the explanation of the
similarity of MoTeR1 sequence in ARC1 to the MoTeR1 sequence of the Lolium
pathotype isolates. Detailed comparative genomic analyses may be required to
determine the possible origin of the ARC1 MoTeR1 element.

The evolutionary history of MoTeR1 elements did not match the evolutionary
history of nuclear genes in M. oryzae based on NJ analyses (Figure 6-6). Instead, the
sequence of MoTeR1s in isolates with higher copy number of putatively intact

MoTeR1s from the Southern analyses tended to be more similar with one another. It

164



also held true that most pathotypes grouped together based on NJ analysis of
MoTeR1 sequence with the exception of ARC1, discussed above, and the Eleusine
pathotype isolates. The separation of Eleusine pathotypes into two distinct clades
has also been observed in evolutionary analyses using other transposable elements
(TANAKA and NAKAYASHIKI 2009). The MoTeR1s of the Eleusine pathotype isolates
PH42 and CD156 were similar to the MoTeR1s of the Lolium pathotype, and they
also had more copies of MoTeR1 in their genomes than G22 and JP29, which were
more closely related to Setaria isolates based on MoTeR1 sequence similarity. The
Oryza field isolates grouped closely to one another, although the isolates were
separated by vast geographical distance and, in the case of SIT4, the MoTeR1 was
likely a paralogous copy of MoTeR1 in regards to the other Oryza pathotype isolates.
The Oryza pathotype laboratory strain 2539 was closely related to the Eragrostis
pathotype isolates, which was anticipated as this isolate was a sexual progeny
produced in crosses between Eragrostis and Oryza pathotype isolates. The MoTeR1
sequences in the Stenotaphrum pathotype isolates were similar to MoTeR1
sequences of Oryza pathotype field isolates, and formed a clade in the neighbor-
joining analysis (Figure 6-6 B). However, based on NJ analysis of nuclear genes the
two pathotypes were not as closely related.

One possible explanation for the sequence similarity of MoTeR1s in isolates
with putatively intact copies could be that isolates with active MoTeR1s constantly
replenish the MoTeR1 at the chromosome ends with a functional copy. In isolates
with a single MoTeR1 that copy could easily become non-functional and then the

sequence would undergo further mutagenesis or degradation. Copy numbers of
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non-LTRs are generally high in eukaryotic organisms, but usually there are only a
few master copies that have the ability to give rise to new copies (BROUHA et al.
2003; ZAGROBELNY et al. 2004). These “functional” copies would need to persist in
the genome in order to continually produce more MoTeRs as telomere truncations
may arise. The likely evolutionary history presented by the neighbor-joining
analyses could represent the approximate time since the transposable element was
functional. Lolium and Triticum pathotype isolates both had a high copy number of
the MoTeR1 elements in their genomes. In this situation, it would also be possible to
maintain sequence similarity of MoTeR copies by gene conversion (KijiMA and INNAN

2010).
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CHAPTER SEVEN

Conclusions

7.1 MoTeRs are active retrotransposons in the isolates from the Lolium
pathotype

In a previous study of GLS isolates, telomere profiles in Southern analyses were
“hypervariable” in comparison with profiles of other molecular (FARMAN and Kim
2005). The major goal of this dissertation was to outline possible mechanisms that
could account for this variability. By comparing mitotic progeny generated from
single spored Lolium pathotype isolates and an Oryza pathotype isolate, it was
shown that new telomere variability arises much more readily in the Lolium
pathotype isolates. In fact, none of the third generation of mitotic progeny in
LpKY97-1A had the same telomere restriction profile as the original starting culture.
This suggested a molecular mechanism for the telomere profile changes. Southern
analyses linked 70% of the telomere band changes in progeny of LpKY97-1A to
MoTeRs. Because MoTeRs are embedded within the telomeres of LpKY97-1A it was
believed that they could account for some of the telomere variation.

The MoTeR1 element has a variable 5’ end, a 3’ end, which is not adenylated
post-transcriptionally, and an open reading frame coding for a reverse transcriptase
with zinc finger, reverse transcriptase (RT), and REL-endo domains. Phylogenetic
analyses of the RT domain indicated that this element was similar to other telomere
specific non-LTR retrotransposons that were closely related to the site-specific CRE-
like retrotransposons (Chapter 2).

Given that MoTeR1 had all the necessary components of non-LTR
transposable elements, it was believed that they could be active within the
telomeres of the Lolium pathotype isolates, where they were found in abundance.
MoTeR2 did not encode a reverse transcriptase, but likely uses the RT machinery of
MoTeR1 in its transposition. Preliminary expression studies indicated that both
MoTeRs are expressed in LpKY97-1A (Appendix B). Additional results further

suggested that MoTeRs were active within LpKY97-1A. Telomere-enriched shotgun
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cloning approaches from different LpKY97-1A mitotic progeny found a probable de
novo insertion of a truncated MoTeR1 in the telomere of the rDNA chromosome end
and a possible transposition event of a MoTeR1 into a de novo telomere.
Furthermore, expansions and contractions of MoTeR2 arrays were observed in
mitotic progeny in Southern analyses. These examples lend support for the idea
that MoTeRs are active retrotransposons in the isolate LpKY97-1A. The activity of
MoTeRs could play a pivotal role in the instability observed in the telomere profiles
in field isolates of GLS isolates. Further characterization of chromosome ends from
mitotic progeny may lead to the discovery of many more such examples of MoTeR
activity.

7.2 Possible role of MoTeRs in increasing the phenotypic variability

The instability of the telomeres in GLS isolates could have profound effects on the
evolution and adaptation of clonal lines. MoTeRs are directly involved in the
instability of the telomeres, but the phenotypic effects of these telomere profile
changes have not been studied. One possible effect could be the change in
expression levels of genes near the telomere end. This has been observed in
Drosophila, whereby expansion and contraction of TART/HET-A arrays can affect
the expression of neighboring genes (GOLUBOVSKY et al. 2001). Variegated expression
patterns of cell surface genes allow parasitic organisms such as Plasmodium spp.,
trypanosomes, and pathogenic fungi to evade host immune responses (BARRY et al.
2003; VERSTREPEN and FINK 2009). The constant expansion and contraction of
MoTeRs arrays could lead to progeny with differing expression profiles. One
example where this could play a role in pathogenic variability is in altered
expression of avirulence genes. If a gene was normally expressed, which conferred
avirulence, then suppressing the gene product could lead to virulent progeny.
Avirulence genes sometimes provide a positive fitness value to the individuals. By
retaining the sequence in the genome, at a time when the fungus is no longer
engaged with a R gene containing plant, the avirulence gene could be reactivated by
moving to an area of the genome where it could be actively expressed. The 31B
chromosome end in LpKY97-1A could be an excellent telomere to study more in

depth. The readily observed expansion or contraction of MoTeR2 arrays in the 31B
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telomere could lead to differential expression of genes in its subtelomere. Further
cloning of that chromosome end would be needed to build a map of genes located on
31B chromosome end followed by expression analysis of those genes. This could be
an interesting avenue to pursue in determining whether these expansions and
contractions of the MoTeR2 arrays can modify the pathogen phenotype.

There are other possible mechanisms that could lead to diversity within the
genomes of GLS isolates. Double stranded breaks could be caused by inefficient DNA
replication through the telomere sequence between MoTeR-to-MoTeR junctions.
This may lead to recombination with sister chromatids, truncated chromosome
ends, or possibly strand invasion of the broken chromosome end into an internal
chromosomal region followed by duplication of that sequence. Each of these
mechanisms could serve to increase the genetic diversity of the mitotic progeny by
shuffling the genome of an asexual line.

Truncations of the chromosome ends could potentially remove genes that
could reduce fitness. The loss of a telomeric avirulence gene through chromosomal
truncation, for example, could allow the progeny of a once avirulent strain to now
cause disease in a host. This has been shown to occur in the Oryza pathotype
isolates (CHUMA et al. 2011b). The accelerated telomere changes in the Lolium
pathotype isolates could cause an increased loss of avirulence genes.

In at least one example an internal telomere sequence was copied onto the
chromosome end in LpKY97-1A. If an internal gene is duplicated at the chromosome
ends, modifications to the sequence could allow for novel adaptations. Other MoTeR
containing telomeres could also serve as a potential homologous sequence with
which to recombine through mitotic crossing over, which would allow for genes to
be shared and even duplicated between different chromosome ends. The extra copy
could provide for higher expression levels of the gene product. This has occurred in
the evolution of other fungi including the genes involved in biofilm formation and
carbohydrate utilization (CARLSON et al. 1985; MICHELS and NEEDLEMAN 1984; NAUMOV
et al. 1990; VERSTREPEN and KLIS 2006). As more sequence becomes available from

GLS isolates of M. oryzae it would be fascinating to look for such examples where
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gene families have become expanded allowing for the exploitation of a particular
niche in different isolates.
7.3 Implications of research to disease management

Mitotic progeny of GLS isolates showed instability in their telomere
restriction fragment (trf) profiles and in their Pot2 restriction profiles. The trf
profiles showed a much higher instability than the Pot2 profiles. Since a majority of
avirulence genes are located near telomeres or near transposable element clusters
(FARMAN 2007), instability of this region brings into question the efficacy of
employing new resistant plant cultivars that are based on using a single R-gene.
Even the more effective approach of deploying multiple R genes in new plant
cultivars may encounter problems with virulent strains of the GLS pathogen
emerging readily. A better approach to control the GLS pathogen would be based on
quantitative disease resistance, which tends to be more durable than R-gene
mediated resistance (PARLEVLIET 2002). Resistance breakdown is less of a problem
in quantitative disease resistance because of lower selection pressure on the
pathogen due to the smaller effects of multiple genes. This is due to the somewhat
inconsistent effects and only partial resistance of multiple quantitative resistant
genes in which the pathogenic variants that overcome this type of resistance only
gain slight advantages. In R-gene mediated resistance there is a stronger selection
for pathogenic variants (POLAND et al. 2008). Using quantitatively resistant cultivars
with other management strategies that limit the fitness of the pathogen could curb
the number of severe epidemics in turfgrasses.

The high mutability of isolates with active MoTeRs could lead to host
switching if an avirulence gene was lost in the truncation of the chromosome end.
There is some evidence to suggest an invasion of a non-Lolium pathotype isolate
may have occurred in the WK isolates, a weak pathogen of perennial ryegrass in
Japan (TosA et al. 2004). This could be an issue if recombination or horizontal
transfer occurs between the Lolium pathotype isolates and the newly invading
isolate due to this new close association. Fungicide resistance and virulence have
been transferred by parasexual recombination between isolates of M. oryzae in the

laboratory (NoGucHI et al. 2006), which adds another level of complexity to dealing
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with gray leaf spot disease over the long term. Additionally, the horizontal transfers
of supernumerary chromosomes have been suggested to occur (AKAGI et al. 2009; HE
etal 1998; MA et al. 2010). Supernumerary chromosomes are extra chromosomes
containing DNA that may not be found in all representatives of a species (COVERT
1998), and in other pathogenic fungi they can play important roles in pathogenicity
(HAN et al. 2001; HATTA et al. 2002; MiAo et al. 1991). With other species of grasses
commonly bordering managed perennial ryegrass fields the fungicide resistance
developed in another host pathotype of M. oryzae could be transferred into the
Lolium pathotype isolate. Thus a turf manager may need to be attentive to possible
invasions of M. oryzae from other hosts. Detection of new invaders into perennial
ryegrass may be important as plant breeders may not take the potential
aggressiveness of other host specialized isolates into account when developing
resistance in plant breeding programs. The extreme variability of telomeres in GLS
isolates and the constant generation of new variant progeny will lead to continued
challenges in controlling GLS in perennial ryegrass. This dissertation has addressed
some of the mechanisms involved in the generation of the telomere variability, but
work is still needed to understand the implications of this variability in disease

management.

Copyright © John Howard Starnes 2013
180



Appendix A
Sequences of MoTeR1, MoTeR2, and NhTeR1
Magnaporthe oryzae Telomeric Retrotransposons sequences

>MoTeR1
GAACCCGAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCC
GGAGGGTTCCCAAGTCGCCTAAACCCGAAGGGTTTAGGATATTATTTCGTTTATTAGAA
TTGGATAATTATTTACCCCTGTTGGACAGGGGGGTTGCAGGGGTTAAATTAAGGTTTTT
TATTATTTATGCGCCGTTTATTTGTTTACCCCCCCAAATATTATAAAAGCGCGTTCCATC
CTCTTAGGAAAAGCGAAGCTTTTCCTTGTAAAAGTCGCTAGACTTTTACTATAAAAGTC
GCTAGACTTTTATACCAATCTTTTAACAAAAAGCGTAGCTTTTTGTTGCCAATCTATTAA
AAAAAGCGGAGCTTTTTTTAACTTTTTCTTTTTTTTTTTTTTTTCTTTTTTTTTTTTTTT
TTTCTTTTTTTTTTTTTTTTTTTTTTATATATATTATTATTATTATTATTAGCGGTGGGG
CTATTTATGCGCTTTAATTTGTGCGGGGCTATTTATGCGCTTTAATTTGTGCGGGGCTAT
TAATGCGCTTTAACTTTACAAATTTTATTTATGCGCTTTAATTGCTGCGGGCCTGTTAAT
GCGCTTTAATTTACAAATTTCATTAATGCGCTTTAACTTTTATATTTACTAATGCGTTAT
TTATATAATTGCTATTATTATCGTTGCTATTATTATTATTGCTATTATTATCGTTATTAT
TATTGCAATTTTATTATATAAACCCTCGTTTGTCCCTCGATTTATCCCGTTTCTTTTCCA
TCCCATCGCGCGTTTTCGTAAGCTTTGGTTTTCGTAGGATTTGCTTTCGTAGGCTTTGCT
TTCGTAGGCTTTCGTCAGCTTTTACCTGCTTTTATTTTTTCTTTTTCTTTTTATTCCCCCC
CCTTTTTTTTACCTGGTTTATTAGCGGTTTACCTGCTTTTATTACCTGGTTCCCCTTTAC
CTGTTTTATTAGCGGTTTACCTGCTTTTATTACCTGGTTCCCCTTTACCTACTTTATAAG
CGGTTTACCTGCTTTTATTACCTGGTTCCCCTTTACCTGTTTTATTAGCGGTTTACCTGC
TTTTATTACCTGGTTCCCCTTTACCTGTTTTATTAGCGGTTTACCAGCTTTTATTACCTG
GTTCCCCTTTACCTACTTTATTAGCGGTTTACCCGTTTCTATTAGTGGGCATTTATTTCC
CGTTTTTATTAGCAGTTAAATTTACCCTTTTAAGGTTATTTACCTGCTTTTATTCACAGG
GCACCCCTGTTTTTACTAGCAGTTAAATTTACCTTTTTAAGGTTATTTACCTGCTTTTAT
TCACAGGGCACCCCTGTTTTTACCAGCAGTTAAATTTACCTTTTTAAGGTTATTTACCTG
CTTTTATTAACAACCCTTTATTTTTTCCTATTAACGGGTATTTATTTACCTGTTTTATTG
GAATTCACCCGTTGGACGGCATGGTTTGCCCAACCTGTAACGGCGTTTACGCCGATTACA
ACGACCATATCCGGAAAAAACACCCGGACGAACGTTATACCGCCCTCCAACTCCAACCAT
TGGGTTTAACCCCCTGCCCTATATGCAAAACCGCTTGCAAAAACGATTTGGGCGTTAAAA
CCCACCTATCCAAAATCCACAAAATATCCGGTGCATCGAAAATTTCAACCCAACCGCGTA
TACGAACGGAAAATACGGATAATACCAATTCGGTCCCCACGTCGTCGTTTAACCCTGTCC
TTCCCGAAATCCAAACGTTAACCCCGGGGTTAAATAACAGCCGTTGGGCCGATAACCCCA
GAAAACGACGGGCCGATACCCCCTCCCCAACACGGGGTCGGAATACACGCCCACGTCGAT
TTTCATATACGGATATCGATTTAACAAACGACGAACCGGCGGATAACCCCAGGGCTAATA
ACCCCAGGGTTAATAACCCCAGGGTTAATAACGAACCCCCCTCCAGCCCAAATTCGTTAC
CTTCGATTTCCGAATTTCACACCCCTGGGACCCTACCCCTAACCAATTCGAATATATCGT
TAAAAGACCAGCACGACAAAATTACCGGCCCTATATTGCAAAAACCGTTAATCCAAAAA
TTAATCGAATATTCGAAAATCCCAATCCCAGAACACCACCTCCACGCCAGGCAGGCTAAA
ATTTTTGCTGACGCCGCAAATCGAATCGCCAAAAATTTTATACAAAGCCCAACGGAGAA
AACATTATTTAATTTACTTATATTACCCCGCATATTCGGTATCGGGTTAATAAACGGAA
AAGTAACTAAAATAATGCAAAACTTCCCATCCCAAATACCCCCTATTCCAAAAATTGATT
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TTCCATCCGAAAAAACCGATTCCGACCCGGTTTTAAACGCCAAAAAATTATTGGAAAAA
GGGTATATTGGCCGTGCGGCAAAGGCTATTATCGATCCAACCCCCGTTGCCCCAGAAACC
CCGGAATCGTTAAATATTTTACGGGAAAAACACCCTATTGGCCAAAATAACCCGTTTAA
TACAAAATCCCAACCAATATCAGGCAGGCAAATTACCGAAAAAGCTATTTTATTAGCTA
TTTCGTCTATTGGCCGGGAAAAAGCTCCGGGCCTTAGCGGGTGGACGAGATCGTTATTAG
ATGCAGCCATTAAAATACCTACCCAAAACGACGTAATTCCGGCTTTACGACTCTTAACGG
ATATGATTCGCCAGGGTACCGCACCGGGTAGGGAATTATTATGCGCTTCGCGTTTAATAG
GGCTATCCAAACCCGACGGCGGCGTACGCCCAATAGCCGTTGGGGACCTATTATATAAAA
TAGCCTTTAAAGCTATTTTAAATACCCTATGGTCCCCAAACTGTTTATTACCTTACCAAT
TAGGTGTAAATAGTATAGGTGGCGTCGAACCCGCTATTTTTACCCTCGAAGAGGCTATA
ATGGGCCCTAATATTAACGGTATAAAATCGATTACCTCCCTCGATTTAAAAAACGCGTTT
AATAGCGTATCCAGGGCTGCAATAGCCTCGTCGGTAGCTAAATACGCACCAACTTTCTAC
CGTTCTACCTGTTGGGCCTATAACCAACCTTCGATTTTAATAACGGAAAACGGTTCCGTC
CTGGCTAGTGCACAAGGTATACGCCAAGGCGATCCGTTAGGCCCGTTGTTATTCAGCCTT
GCTTTTCGACCTACGTTGGAAACGATCCAAAAATCGCTTCCATATACGTATATAGCGGCT
TATTTGGACGACGTTTATATTTTATCCAAAACGCCCGTTAAAGATAAAATAGCCAAAAT
AATCGAAAAAAGCCCGTTTACCCTAAATTCCGCCAAAACGACAGAAACGGATATCGATA
CGTTAAAAACCAATGGTTTAAAAACGCTCGGCTCGTTTATTGGACCAACGGAATTACGG
AAGGAATTTTTGCAAAATAAAATTCAAAATTTCGAATCGTCCATTAACGCCCTGAAAAA
ACTCCCTAAACAATACGGATTGCTAATCTTGCGTAAAAGTACACAATTACTTTTACGCCA
TTTGCTCCGTACTTTAAATTCCCAGGACCTGTGGGAATTATGGGAAAAAACAGATAAAT
TAATAGCGGATTTCGTTATAAATTTAACTGTTACAAAACGGAAAAAACGGCCAATTACG
GATTTCGTTACGCCGTTAATTACGTTACCTATAAAGGACGGAGGTTTTGGATTATTACG
GCATAACGGAATAGCCCAAGATATTTATTTTGCGGCCAAGGATTTAACAACCGAAATTC
GGCACAAAATCCAACGTATATCCAACGATTTTCCACAAAATCAAAGCCCTACCGCCACCG
AGATTTTGCATTTGTTGCATAACGGGGTTTTAGCAGATTGCAAAAACGGGTTAACAAAC
GCCCAATTAAACGCTTTAACCGAAAACGCTAGTTATTTAGGTCGAAAATGGCTTAACAT
TTTACCTATCCAAAAATCAAATCGATTAACGGATTGGGAAATGGCTGAAGCCGTTCGAT
TAAGATTATTAGCCCCGGTTAAACCGTTAACCCACCCCTGCAACCATTGCGGAAATCGGA
CCAATATAAACCACGAGGACGTTTGCAAAGGTGCCGTACGCAAATATACGGCCCGTCACG
ACCAAATAAACAGAAGTTTCGTCAATTCGTTAAAAAGTCGACCAGAAATCGACGTCGAA
ATCGAACCCGATTTAAATAACGAAAATAACGTAAATAACGCCAATACAACCACCGAAAA
TCCCACCCCTAGCCCCAACGGCCAAAACGATACCGGATGCCTTTTTACAACCCCTATTCGC
TCCGGGACCCGTAACGGCCAAAACGGCCTTAGGGCGGATTTTGCCGTTATTAACGGCGTA
TCCAAATATTATTACGACGTGCAAATCGTTGCAATTAATAAGGATTCCGGTAATACAAA
TCCGTTAAATACGTTAGCAGACGCAGCAAATAACAAACGACGTAAATACCAATTTTTGG
ATCCATTTTTCCATCCAATTATAATAAGCGCCGGAGGCCTTATGGAAAAGGATACAGCAC
AGGCGTACAAACAAATCCAAAAATTAATAGGCCCCGTTGCGGCCCATTGGTTGGATACGT
CGATTTCGTTAATTTTGTTACGGTCCAGAACGACGGCAGCAATTTCTATTGCTAAAAACC
GCCCTCGTGCGTAATAGGTAACGTCCCTATTTTTGTCTTTGGTTTTGTTTTTATCTTTGT
TTTTGTTTTTGTTTTCGTTTTTGTTTTTGTTTTCGTTTTTGTTTTTTTTTTTGTTTTTGT
TTTTGTTTTTGCCTTTGTTTTTGTTTTTATCTTTATTTTTGTTTTTGTTTTTACTTTGTT
TTATTTGTTTTATATTTACCTTTTGATTTTTTCTATTTTTCCCACCCTTATTATTATAAC
CCCAACCTACTAATATTTTTTCTTTTTTCTTTTTTCTTTTTACGGTTTTATTTTCCCGTT
TGTTTTTTCTATTTTATTTGTACGACAAAACCCTTAGCAAATAAGCTTAGAATATAATA
AAGCGCGAATTAAAACCCTAACCCTAA
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>MoTeR2
GAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCC
GAAGGGTTCCCAAGTCGCCTAAACCCGAAGGGTTTAGGATATTATTTCGTTTATTAGAA
TTGGATAATTATTTACCCCTGTTGGACAGGGGGGTTGCAGGGGTTAAATTAAGGTTTTT
TATTATTTATGCGCCGTTTATTTGTTTACCCCCCCAAATATTATAAAAGCGCGTTCCATC
CTCTTAGGAAAAGCGAAGCTTTTCCTTGTAAAAGTCGCTAGACTTTTACTATAAAAGTC
GCTAGACTTTTATACCAATCTTTTAACAAAAAGCGTAGCTTTTTGTTGCCAATCTATTAA
AAAAAGCGGAGCTTTTTTTAACTTTTTCTTTTTTTTTTTTTTTTCTTTTTTTTTTTTTTT
TTTCTTTTTTTTTTTTTTTTTTTTTTATATATATTATTATTATTATTATTAGCGGTGGGG
CTATTTATGCGCTTTAATTTGTGCGGGGCTATTTATGCGCTTTAATTTGTGCGGGGCTAT
TAATGCGCTTTAACTTTACAAATTTTATTTATGCGCTTTAATTGCTGCGGGCCTGTTAAT
GCGCTTTAATTTACAAATTTCATTAATGCGCTTTAACTTTTATATTTACTAATGCGTTAT
TTATATAATTGCTATTATTATCGTTGCTATTATTATTATTGCTATTATTATCGTTATTAT
TATTGCAATTTTATTATATAAACCCTCGTTTGTCCCTCGATTTATCCCGTTTCTTTTCCA
TCCCATCGCGCGTTTTCGTAAGCTTTGGTTTTCGTAGGATTTGCTTTCGTAGGCTTTGCT
TTCGTAGGCTTTCGTCAGCTTTTACCTGCTTTTTTACCTGCTTTTATCACTTGTTTTTAT
TTCCCTTTTACTTTCCCTTTACCTGTTTCACAGGTATTTATTATGGATTTATTTATAAAC
CCCCCAAACCCAACCCCCGACCTCGACCCCGACCCTGATCCGGACCCCGACCCTGACCCGG
ATCCCTATCCAAATATTAACGCCGCCGTCGATTCGTCCCGCCAAAAATCAAATATATATA
TCGATTTAAATTCCAAATTTAATTCGGTTAACCCCCGGTATATTAAAGTCGCTAAAAAA
TCCTGGAATATACGTGCCTTTTTAAAACAACTTTTTGCCGTCCCTATCCAGATAACATGG
TTTTTTAGCAATGTTATTATCCACGGGTTTACCAATTCTATATTTGGTATTTATTCGATT
TATTTATTCGATTTTAACCCCCGATTTCGACCGACTATTATCGATTTATTACGCCAAAAG
TCCAGCAAATATACCGATTTAAATCCCGAATTTGAATTGGCTAACCCCCTGCATATTAAA
TTGGCTGAAAAATCCTGGAATATACGTGCCTTTCTAAAACAACTTTTTGCCGTCCCTATC
CAGATAACATGGTTTTTTAGCAATATTTCTATCCTCAGGGTTAACCAATTTTATATTTGG
TATTTATTCGATTTATTTATTGGATTTAATCCGCTAAATAAATTGTTAATCCGTTAATT
ATATTGGAATTAATCCCCGAAAGAGGACCAACCCAATATATATTCCGATAGGGAATTTT
TTCTTTTTCTTTTTTCTTTTTTTTACGGGTTTATTTTTTCTACCCTATTTGTACGACAAA
ACCCTTAGCAAATAAGCTTAGAATATAATAAAGCGCGAATTAAAACCCTAACCCTAA

Nectria haematococca Telomeric Retrotransposon sequence

>NhTeR1
TTAGAACAGAGTAACTATTAACTATCTAAGCTATTTTGCCCTAGGGGTTTCTTCTAGCTA
AGATATAGCTTATAGATAAAAGAGGGGAGATTTTTCTAAGAAATAATAAAAGAAAAAG
CATAAGAGATATAACTAGGAAAGAGGTATAGCTAAGAAAGAGATAAAGCTAGGGGAGA
GATATAGCTAGGAAAAAGAGAAATAACTAAAAGAGAGAGGTATAGCTAGTAAGAAAAA
GGCAAAGAGATAAGAGATAAGAGATAAAAGGTAAAGGATAAAGAAAAGCCTTAAGAAG
CCCTAGGGGTATTCCAGATCGACCTAGCTAGGTTACTAGGGGTATCTCGGGCTATAGAAG
CCGCAGAGGTCGCCCTAGTCCTCATCAGGGCAAGGCTAATAGAGGAATCTAGCTGGTTAG
CCGCAAGGGGGCCAATAAGGTCCTGGAGCTTCTGATAGGTCTTAGCTGTCTCTAGGTCCA
TAAGGCCGCCTGCTGAGATAATAAGAGGCTGAAAAAAGGCCCCGAGAGACCTATATTTT
CTGCGTTTTTCTTCGGCAGCCTCTCTTAAGGTGCTATAAGGGTCTTCTTTAGCAGAATCC
TTTGAAATAGCTACGATTTGAATATCATAGTAATAGCGGCTATTTCCTAGGTTAACTAC
AAAGTCGGCCCTTAGGCTACCTTCTGGGTGGACTAGGGGTTCTTTTTCGACCTCTAGGGT
AGGCTGGCTACTTAGGGCTCTCACAAAGGCCCTAGTTATAGCGTCATGCCTTGCAATCCA
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CCTTCTATTAGCACCCTTGCAGGTATCCTGATGGCCTAAGGCAGCTATAGCTCCACAAGA
GCTACAGGGTAAGCTGATAGGCTTGATTGGGTAGAAAAGCCGGCTTCGGAGGGCTTCAG
TGACCTCAGAGTCTGTAAAAGATAGGGCTTTTTGGGTAGGTAAGACTCCGAGCCACTTAC
GGCCGAGATAGCTAGCATTTTCTAGCCTAGCATGCCTATAGCTAGCGGGGAGGTCCTCTA
AGAAGCCTGCTAGCCTAGCCTTATTAGCTTCCTTTAGCACCTGTTGGGCTGTTTTCCCTA
GTCTAGGCTGGCCTTGGTTAGGCTGGCTTTGGTCTAGGGTAGGCTGGGCTAGGGGCTTCC
GGATAAGGCCTAGGGTAGGCTGCGAGGCCTCCCTAGCTGCTAGGAATAGCTCGTGGGCTA
GGTCCTTGTGTAAGGGTATTCCTAGGCCTCCCTCTCTGACTGGAAGGGCTATAAGGCTTG
AATTAGGCTCTTTAGGGCTCTCACTAGGGCTTCTAGCCACTAGGGCTATAATAGCCTCTC
TTATAAGGGTATCAGCCTCTTCCCAAAGGTCTTCTAGCCCGGTTGGGTCTAGCTGCCTCT
GGAGGTGCCTTAGAAGAAGCTGGATACTGCCTCTAAGAAGAAGCAAAGAGTGCTGCTTT
GGAAGGTCTTGCAGGGCCTCTAGGGCTTCCTGTAGGGTAGCTAGCTTTTCTTGCAAGAAG
GTTCTTTTAGGCCGGATAGGGCCGATATAAGTACCTAAGGCTTTTAAGCCTTCTAGCTTA
AGGTCCTCTATAGCCTTTTCCTTGCTTTTAGCTAGGTTAAGGCTAAAAGGGGAGCCTTTT
AAGACCTCCTTAGCTGCCTCTAAGGTGCCTTGCGGAGCCTTATTAAGTATATAGAGGTCA
TCTAGGTAAGCTACTAAGGTTGCCCTAGGTAGCTTCCTAGCTAGGGCCTCTAGGGTAGGT
CGAAAGGCAAGGGAAAAAAGAAGAGGTCCGAGAGGGTCACCTTGCCTTACGCCCTTGGC
CGAGGCTATAGCTGACCCATCTTCCATAACTAAGATAGAAGGGTCATTATAGGCCCAAGC
TGCTGCCTTATAGAAGGTAGGGGCAAAAGTAGCTACAGAAGCAGCTATAGAAGCCCTAT
CTACTGAGTTAAAGGCATTAGCAAGGTCTATAGAGGCTAGCTGCTGAAAATTAGCCTCA
TTTAAGCCTATAATAGCCTCATAGAGGAGGAAAATAGCGGGTTCAACCCCGCCTGGGCTA
TTCACGCCTAGCTGGAAGGGTAAGAGCATATTCGGCCGATAGGAGGTCATTAGGATCGCC
TTCATAGCTACCCTATAGATAAGATCTCCTATAGCTATAGGTCTAACCCCTCCATCGGGC
TTTTCAAGCCCTATAAGGCGGCTAGCGCATAATAGGTGGGCTCCAGGGGCCGTGCCTTGG
CGAATCATATCAGCTAGCAGCCTTAGGAAAGCTATCACAGGGGAATCTTTCCTAGTTACT
AGGTCTAGAAGAGGCCTAGTCCAGCCACTAAGGCCCGGGGCCTTTTCCTTGCCTATAGAG
GCTATAGCTGCTATAATAGTCTCTGACGTGATTGGTTGGCCGGCCCTTGGGCGGGTCTTG
CCTTGGAAGGGGTCTTTTGATCCAATAGGGTGCTTTTCTAGCAGCCTAGCCCTATTTTCT
ACTGAATTAGGTGCTATAGGGGTCGGATCAATAAGAGCCCTAGCAGCCCGGCCTAGGTA
GCCTCTCTCTAGTAGCTTAGCTGCCCTTTGGGCCGGGCTAGGAGCTATAGAGGGTCTAGC
TGCCTTGGGGGGCTCAGGGGGCTGCTGGAGGGACTCTAGGCTCTCTAGGGTAGGTAGGTT
AGAAGGGAAAGACCTAAGAAGGGTAGCTAGGCCTCCTTTTTGTAACCCTAACCCTAGTA
GCCTAGGCAAGATAAGGAAATATAAGAGGGCCTTTTCAGTAGGCCTCTTTAGAAAGGCA
GCTGCAGCTTTATGGGCTGTAGCTGTGAAAATAGCAGCCTGCCTTGCATGTAGCCTTTTT
TCCGGTATAGGGATCCTTGCAAAGGCTAATAGCTTCTGCATAGAAGCCTTGGCTAGGATT
GGGGCTATAGCTTGGTTGTGTAGCTGCTCTAGGGTAGGCCCCTCTAGGGTAGGCTCCTTG
GGCTCGGGCTCTAGGGTAAGCTCCCTAGGCTCGGGCTCTAAGGTAAGCTCCCTGGGCTCC
CTAGGCTCCCTAGTCTCTAGCTCTAGGGTAGGCTCCTCTAGGGGCCCTAGAGGCTCTAGG
GTATATTCTTCTAGAGGCTCTAGGGTAGGTCCCTGACTAGAGGGCCTGTGGCTAGGCGTG
CTAGGGCAAGAGGAGCTAGAGCTAAGGGACCTAGGGCTAGAGGGTCTTCCCCTTTCCTCA
TAGCTAGAAAAAGACCTATAGCTTTCCCTTGAGGCCGGTCGGTCTAGGGTAGGCTCCTCT
AGGGTAGAGTTAGGCTGTAGCTGCCTTTGCCGCCTAGTAGGTCTTTGTAGCTGTGGAGAA
GGGGTCCTTGCTAGTCTCTTTCTTCCTATAAGGCCTCTATAGCTAACTAAGCCCGGGCTA
GCCTGATTAGGACTAGTGGGGCTAAGGGAAGAAGCTAAAGAGGCCCTAGAGGTATTAGT
GGCCCTAGTAGCTATATAGGTCCTTGGCCTAGGTAAGGTAGAAATATGGGCTTTACCTTC
TATGCCGTGGATCTTAGCACTATGGGTCTTGATGCCGTGACTTCCGCGGCAGGCTGTGCC

184



GCAATAAGGGCAGCTGACTAAGCCAAGGGGCTGTAGCTGTTGGTTGGTATAGGCCTCGGC
CGGGTGTTTTTTGCGTATATGCTCTAGGGTATCTCTATAGCTGCCTTGGCAGGTAGGGCA
TACCTGCGAGGGCATTTTACTATAGGGTAGCTAGAGGTATAGGGTAGGTATAGGGTAGC
CGAGGTATAGGGTAGGTATAAGGTAACTAGAGGTATAAGGTAGCTATAAGAAAGAAGAT
AATAAAGAGAAAATAGCTATAAGGTAGCTAAGATAAGGCTTAGAAACTAAGCATAAGGG
TAAGAGTTAAGGTTATAAGAAGCTTAGAGAATAAGGTCTTTAGAGATACTTATATAACC
CTAGGGTTATTCTAGAAGCTTCTACCTTAACCTAAGTCTAACCCTAAGCCTAACCCAAAG
CCTGACCCTAACCCTGACCCAATGTGTGACCCTAACCCCTATAGAAGGCTCTAGAATCTC
TATAGAAGCCCGAAGGGCTTCTATCTATAGCTGACCCAAAGCCTGACCCTAACCCTGACC
CAATGCCTGACCCTAACCATGACCCTAACCTCTATAGAAGACCTTAGAATCTCTATAGAA
GCCCGAAGGGCTTCTATCTATAGCTGACCCAAAGCCTGACCCTAACCCTGACCCAATGCC
TGACCCTAACCATGACCCTAACCTCTATAGAAGACCTTAGAATCTCTATAGAAGCCCGAA
GGGCTTCTATCTATAGCTGACCCAATGCCTGACCCTAACCTCTAGAACCTCTAACGGAAC
CTCTAAAGGAACCTCTAGGGGGATAGGGTGAGGGATAGGGTGAAGGATAGGGTGAGGCA
TCGGG

Copyright © John Howard Starnes 2013
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Appendix B
MoTeR1 Expression Preliminary Experiment

B.1 Introduction

Active Non-LTR retrotransposons transcribe an RNA intermediate in their
transposition. Magnaporthe oryzae Telomeric Retrotransposons (MoTeRs) were
recently discovered in the telomeres of gray leaf spot (GLS) isolates of Magnaporthe
oryzae. There are two different MoTeR retrotransposons. MoTeR1 is a ~5.0 kb
element that has an open reading frame for a reverse transcriptase, while MoTeR?2 is
a shorter ~1.7 kb element that has an open reading frame for a protein with no
known function. To determine if MoTeRs were actively being expressed reverse
transcriptase PCR experiments from total RNA were used.
B.2 Methods

Mycelium was grown at room temperature with shaking for 7 d. The
mycelium ball removed from the 10 ml CM using sterilized forceps, and blot dried
on paper towels. Total RNA was then extracted from the mycelia cultures of
LpKY97-1A using the protocols outlined in the RNeasy Universal Mini Kit (Qiagen,
Valencia, CA). Total RNA was double digested with DNase to remove DNA
contamination using the protocols outlined in the Turbo DNA-free kit (Invitrogen,
Carlsbad, CA). RNA was incubated at 65°C for 15 minutes and then chilled on ice for
5 min. First-strand synthesis reactions were completed using the SuperScriptll First
Strand Synthesis for RT-PCR kit (Invitrogen, Carlsbad, CA) with 2 uM of
MoTeRstartR (5’TTTTAATTCGCGCTTTATTA3’) or a 50 uM of Oligo(dt)zo primer.

Following first strand synthesis the samples were treated with 1U of the restriction
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enzyme Mbol (New England Biolabs, Beverly, MA) at 37°C for 30 min followed by
heat inactivation of the enzyme at 65°C for 20 min. Nested PCR reactions was used
on the samples to amplify MoTeRs. In the first PCR, MoTeR1 was amplified using
ExTaq polymerase (Takara, Madison, WI) following manufactures protocols with the
primers MoTeR1001F and MoTeR1001R, and MoTeR2 was amplified using the
primers MoTeR2002F and MoTeR2002R. The parameters used in PCR cycling were:
95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 60°C for 60 s, and 72°C for 1
min, with a final extension phase of 72°C for 5 min. In the second PCR reaction, 1 pl
of the first PCR reaction samples were used with nested PCR primers. For MoTeR1
the primers nMoTeR1001F (5’ATTTTTGCTGACGCCGCA3’) and nMoTeR1001R
(5’GGCCAATAGGGTGTTTTTCC3’) were used in the PCR reactions following
protocols outlined above. MoTeR2 was further amplified using the primers
nMoTeR2002F (5’GTCCCGCCAAAAATCAAATA3’) and nMoTeR2002R
(5TGCTGGACTTTTGGCGTAATAA3’). The following parameters were used in the
PCR cycling: 95°C for 5 min, followed by 35 cycles of 95°C for 30 s, 56°C for 60 s, and
72°C for 1 min, with a final extension phase of 72°C for 5 min. The PCR amplicons
were fractionated on 0.7% agarose gel in 0.5X TBE at 80V for 80 min. After
electrophoresis, the agarose gel was stained for 30 min in EtBr and 0.5X TBE.
Staining solution was drained, fresh 0.5X TBE was added, and the gel was destained
for 20 min.
B.3 Results and Discussion

If MoTeRs were active transposable elements they should express their RNA

transcript. Some non-LTRs have poly(A) tails added post-transcriptionally.
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However, it was not believed that MoTeR transcript would be polyadenylated. To
determine whether MoTeRs were expressed in LpKY97-1A nested reverse
transcriptase (RT) PCR reactions were completed. During first strand synthesis
either an Oligo(dt)20 primer was used or a MoTeR specific primer. This could test
whether polyadenylation was occurring if nested PCR of cDNA showed a positive
signal in both cDNA created from MoTeR specific primer (MoTeRstartR) and the
Oligo(dt)zo primer. The results in Figure B-1 show that both MoTeRs were
expressed, as bands of expected size were observed in the reactions with RT added.
MoTeR1 showed a product only in the reaction where the MoTeR specific primer
was used in first strand synthesis, and not with the Oligo(dt)2o primer, indicating
that this transcript is likely not polyadenylated. MoTeR2 showed PCR products in
both the reactions, which could suggest that a poly(A) tract is added post-
transcriptionally. However, in MoTeR2 there is a poly(A) tract internally which the
Oligo(dt)zo could have bound to during reverse transcription. Cloning and
sequencing of the PCR amplicons in lanes 2 and 4 in Figure B-1-B confirmed that

they were MoTeR2 as expected (data not shown).
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