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ABSTRACT	OF	DISSERTATION	

	

CHARACTERIZATION	AND	DISTRIBUTION	OF	NOVEL	NON‐LTR		
RETROELEMENTS	DRIVING	HIGH	TELOMERE	RFLP	DIVERSITY	IN	CLONAL	LINES	

OF	MAGNAPORTHE	ORYZAE	
	

The	filamentous	ascomycete	fungus	Magnaporthe	oryzae	is	a	pathogen	of	over	50	
genera	of	grasses.		Two	important	diseases	it	can	cause	are	gray	leaf	spot	in	Lolium	
perenne	(perennial	ryegrass)	and	blast	in	Oryza	sativa	(rice).		The	telomeres	of	M.	
oryzae	isolates	causing	gray	leaf	spot	are	highly	variable,	and	can	spontaneously	
change	during	fungal	culture.		In	this	dissertation,	it	is	shown	that	a	rice‐infecting	
isolate	is	much	more	stable	at	the	telomeres	than	an	isolate	from	gray	leaf	spot.		To	
determine	the	molecular	basis	of	telomere	instability	several	gray	leaf	spot	isolates	
telomeres	were	cloned,	which	revealed	two	non‐LTR	retrotransposons	inserted	into	
the	telomere	repeats.	The	elements	have	been	termed	Magnaporthe	oryzae	
Telomeric	Retrotransposons	(MoTeRs).		These	elements	do	not	have	poly‐A	tails	
common	to	many	other	non‐LTR	retrotransposons,	but	instead	have	telomere	like	
sequences	at	their	5’	end	that	allow	them	to	insert	into	telomeres.		Intact	copies	of	
MoTeRs	were	restricted	to	the	telomeres	of	isolates	causing	gray	leaf	spot.	Surveys	
for	the	presence	of	these	elements	in	M.	oryzae	showed	they	were	present	in	several	
host‐specialized	forms	including	gray	leaf	spot	isolates,	but	were	largely	absent	in	
the	rice	blast	isolates.	The	absence	of	MoTeRs	in	rice	blast	isolates,	which	are	
relatively	stable	by	comparison,	suggested	that	the	telomere	instability	in	gray	leaf	
spot	isolates	could	be	due	to	MoTeRs.	Analyzing	spontaneous	alterations	in	
telomere	restriction	fragment	profiles	of	asexual	progeny	revealed	that	MoTeRs	
were	involved.	Expansion	and	contraction	of	MoTeR	arrays	were	observed	and	
account	for	some	telomere	restriction	profile	changes.	New	telomere	formation	in	
asexual	progeny	followed	by	MoTeR	addition	was	also	observed.	Based	on	this	
evidence,	MoTeRs	are	largely	responsible	for	the	high	variability	of	telomere	
restriction	profiles	observed	in	GLS	isolates.	
	
KEYWORDS:		Non‐LTR,	retrotransposon,	telomere,	gray	leaf	spot,	
																										Magnaporthe	oryzae	
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CHAPTER	ONE	
	
	

Introduction	and	Literature	Review	
	

1.1	Introduction	

Rice	(Oryza	sativa)	is	an	important	food	staple	worldwide	with	650	billion	tons	

produced	annually.	To	increase	the	production	of	rice,	the	diseases	of	rice	that	

reduce	yield	need	to	be	controlled.		The	most	important	disease	is	rice	blast	(OU	

1980),	which	is	caused	by	the	filamentous	ascomycete	fungus	Magnaporthe	oryzae	

(anamorph	Pyricularia	oryzae).		The	characteristic	symptoms	of	rice	blast		(RB)	

disease	are	gray	to	white	ellipsoid	lesions	and	lodging	of	the	panicle,	which	results	

in	failure	to	produce	seed.		Significant	yield	losses	are	common	in	rice	fields	infected	

with	M.	oryzae	(BONMAN	et	al.	1991;	REDDY	and	BONMAN	1987).			

M.	oryzae	is	not	limited	to	causing	disease	in	rice.	It	can	infect	over	50	

monocot	species	(URASHIMA	et	al.	1999).	These	include	other	economically	important	

crops	such	as	wheat	(Triticum	aestivum),	barley	(Hordeum	vulgare),	and	several	

different	millets.		M.	oryzae	can	infect	all	above	ground	parts	of	the	plant	(OU	1980),	

and	was	described	as	being	able	to	infect	roots	as	well	(DUFRESNE	and	OSBOURN	

2001).		Pathogen	activity	can	result	in	a	variety	of	symptoms,	which	include	blast	of	

the	inflorescence	as	described	above,	leaf	spots,	and	foliar	blight.			

Gray	leaf	spot	(GLS),	another	disease	caused	by	M.	oryzae,	has	emerged	as	a	

problem	in	major	turfgrass	species	including	tall	fescue	(Lolium	arundinaceum	

Darbyshire),	perennial	ryegrass	(Lolium	perenne),	and	annual	ryegrass	(Lolium	

multiflorium)(UDDIN	et	al.	2003).		Isolates	of	M.	oryzae	that	infect	these	grasses	are	
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morphologically	indistinguishable	(COUCH	and	KOHN	2002;	ROSSMAN	et	al.	1990;	

YAEGASHI	and	UDAGAWA	1978),	but	evolutionarily	distinct	from	the	M.	grisea	isolates	

that	cause	GLS	disease	in	crabgrass	(Digitaria	sp.)	(COUCH	and	KOHN	2002).	

The	GLS	disease	caused	by	M.	oryzae	was	first	noticed	in	1957	on	St.	

Augustinegrass	(Stenotaphrum	secundatum)	in	Florida	(MALCA	and	OWEN	1957).	GLS	

symptoms	on	St.	Augustinegrass	start	as	small	brown	to	red	spots	and	expand	

rapidly	into	larger	leaf	spots.		The	leaf	spots	are	tan	in	color	when	dry	and	gray	

when	wet.		Borders	of	the	round	to	oblong	leaf	spots	are	brown	to	red	in	color	with	

a	chlorotic	halo	around	some	of	the	outside	edges.		Leaf	spots	may	coalesce	into	

larger	lesions	(MALCA	and	OWEN	1957).	GLS	can	further	cause	stolons	and	leaves	to	

die	leading	to	a	scorched	appearance	of	the	turf	(ATILANO	and	BUSEY	1983;	FREEMAN	

1962).	

In	the	1970s,	outbreaks	of	GLS	were	observed	in	annual	ryegrass.		The	

disease	severity	was	much	worse	in	annual	ryegrass	than	what	had	been	previously	

observed	in	the	St.	Augustinegrass	and	resembled	symptoms	more	similar	to	blast	

disease,	such	as	foliar	blighting	and	leaf	spot	(BAIN	et	al.	1972).			

Starting	in	the	early	1990s,	GLS	was	reported	on	perennial	ryegrass	in	golf	

course	fairways	(LANDSCHOOT	and	HOYLAND	1992).		The	damage	from	outbreaks	of	

GLS	in	perennial	ryegrass	was	extensive.		Sporadic	outbreaks	that	have	occurred	

since	then	have	resulted	in	a	significant	loss	of	turf	(DERNOEDEN	1996;	UDDIN	et	al.	

2003).		Symptoms	of	GLS	start	as	small	water‐soaked	leaf	spots,	which	further	

expand	into	gray	to	light	brown	necrotic	spots.		The	borders	of	the	leaf	spots	are	

purple	to	dark	brown	in	color	often	with	chlorotic	halos.		Foliar	blighting	can	occur	
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when	leaf	spots	coalesce.		As	the	disease	progresses	complete	necrosis	of	the	leaves	

and	death	of	the	plant	may	occur	(UDDIN	et	al.	2003).	

GLS	disease	can	be	controlled	through	three	principal	control	measures:	

cultural	practices,	fungicides,	and	cultivar	resistance	(OU	1980).			There	are	

problems	with	each	of	these	control	measures	when	used	alone.	Cultural	practices	

do	not	provide	a	sufficient	amount	of	control	when	disease	pressures	are	high	

(VINCELLI	2000).		Fungicides	are	available	for	disease	control,	but	they	must	be	

applied	as	a	preventative.	This	represents	an	expense	that	many	turfgrass	managers	

cannot	justify,	when	an	outbreak	of	disease	is	uncertain.		Additionally,	M.	oryzae	

populations	can	gain	resistance	to	fungicides	when	used	intensively	(VINCELLI	and	

DIXON	2002).			

Development	of	GLS	resistant	cultivars	would	alleviate	the	reliance	on	

fungicides,	and	would	be	a	valuable	control	measure.		Many	of	the	current	cultivars	

are	susceptible	to	M.	oryzae	(BONOS	et	al.	2005;	HOFMANN	and	HABLIN	2000).	Potential	

sources	of	resistance	to	GLS	have	been	identified	(BONOS	et	al.	2004;	FRASER	1996;	

PEYYALA	and	FARMAN	2006),	and	some	are	currently	being	developed	in	commercial	

cultivars	(BONOS	et	al.	2005).		The	long‐term	efficacy	of	disease	resistant	cultivars	

has	been	relatively	low	because	of	the	extreme	variability	of	M.	oryzae.		Races	of	the	

fungus	can	overcome	plant	resistance,	resulting	in	new	epidemics	(ZEIGLER	and	

CORREA	2000).		Typically,	because	of	the	issues	with	individual	control	practices,	

outlined	above,	an	integrated	program	is	needed	to	provide	better	control	of	the	

disease.		
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The	generation	of	new	variants	of	the	fungus	is	an	important	mechanism	in	

defeating	the	effectiveness	of	at	least	two	of	the	control	measures,	fungicides	and	

cultivar	selection.	A	better	understanding	of	possible	sources	of	new	variability	

could	lead	to	better	control	of	the	fungus.			Thus,	the	purpose	of	this	dissertation	

was	to	identify	some	of	the	possible	mechanisms	by	which	new	variability	in	

M.	oryzae	populations	might	arise	in	GLS	isolates.	

1.2	Host‐specialization	of	M.	oryzae		

M.	oryzae,	as	a	species,	can	infect	over	50	species	of	grasses,	but	individual	strains	of	

the	pathogen	are	limited	to	certain	hosts	(BORROMEO	et	al.	1993;	DOBINSON	et	al.	

1993;	MACKILL	and	BONMAN	1986).		The	individual	strains	are	grouped	into	host‐

specialized	forms,	or	pathotypes,	based	on	the	host	from	which	they	were	collected.	

Within	each	of	the	host‐specialized	forms	some	individuals	will	cause	disease	in	

some	varieties	of	the	host	plant	but	not	in	other	varieties.		These	individuals	are	

further	grouped	into	races	based	on	the	host	plant	varieties	in	which	they	infect.			

Two	types	of	genetic	resistance	of	grass	hosts	to	M.	oryzae	have	been	

identified.	The	resistance	can	be	controlled	by	a	large	number	of	genes	with	small	

individual	effects	(quantitative),	or	one	to	few	genes	having	large	effects	

(qualitative)	(AHN	and	OU	1982;	TALBOT	and	FOSTER	2001).		Resistance	to	RB	and	GLS	

has	been	attributed	to	both	quantitative	and	qualitative	resistance	(AHN	and	OU	

1982;	BONOS	et	al.	2005;	ZEIGLER	and	CORREA	2000).			

Plants	with	quantitative	resistance,	also	called	partial	resistance	or	

horizontal	resistance,	are	susceptible	to	infection,	but	typically	the	severity	of	

disease	is	reduced	(CHEN	et	al.	2003).		This	type	of	resistance	reduces	the	growth	
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and	reproduction	of	a	pathogen,	which	can	slow	the	rate	of	epidemic	development	

(AHN	and	OU	1982;	ASHIZAWA	et	al.	1999;	CASTANO	et	al.	1989).	Partial	resistance	can	

limit	the	generation	of	variability	in	the	pathogen	by	decreasing	the	number	of	

disease	cycles	in	a	season	(generations	in	which	to	evolve	pathogenicity)	and	by	

reducing	sporulation.	

A	single	to	a	few	genes	typically	controls	qualitative	resistance,	also	called	

vertical	or	specific	resistance.	Qualitative	resistance	typically	inhibits	the	initial	

establishment	of	the	pathogen.		Interactions	between	M.	oryzae	and	its	host	plants	

under	qualitative	resistance	appear	to	be	incompatible.	For	example,	the	host	may	

seem	to	be	immune,	produce	a	hypersensitive	reaction,	or	slow	the	reproduction	of	

M.	oryzae.	The	plant	genes	conferring	qualitative	resistance	are	known	as	resistance	

(R)	genes	(FLOR	1971).		Plants	containing	the	R	gene	are	resistant	to	M.	oryzae	

isolates	carrying	a	corresponding	gene	known	as	an	avirulence	gene	(Avr	gene)	

(FLOR	1971;	JIA	et	al.	2000).		The	plant	resistance	is	a	result	of	the	activation	of	host	

defense	responses,	such	as	hypersensitive	response	(HR).		Avr	genes	may	encode	

effector	proteins	that	suppress	basal	defense	responses	(PARK	et	al.	2012),	and	

losses	of	Avr	genes	in	other	fungal	species	have	led	to	reduced	virulence	(BOLTON	

and	TOMMA	2008;	VAN	DEN	ACKERVEKEN	et	al.	1993).		However,	the	actual	mechanism	

by	which	most	Avr	gene	products	in	M.	oryzae	interact	with	their	host	are	unknown	

(STERGIOPOULOS	and	DE	WIT	2009).			

Avr	genes	can	function	in	determining	the	cultivar	specificity,	and	they	can	

also	control	the	host	specificity	of	different	M.	oryzae	isolates	(KOBAYASHI	et	al.	

1989).		One	example	of	host	specificity	control	is	a	gene	family	that	confers	
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avirulence	in	a	strain	of	M.	oryzae	to	weeping	lovegrass	(Eragrostis	curvula).		One	

member	of	this	family,	PWL2,	is	located	internally	on	the	chromosome,	and	is	

spontaneously	lost	in	mutant	progeny	of	an	avirulent	parental	isolate.	PWL2	based	

resistance	was	stable	in	a	rice	strain	Guy11,	but	this	was	due	to	having	two	copies	of	

the	gene	in	different	chromosomal	locations.		Segregation	of	these	genes	through	

genetic	crosses	revealed	that	the	two	PWL2	genes	(PWL2‐1	and	PWL2‐2)	were	both	

unstable	in	the	progeny,	with	frequent,	spontaneous,	virulent	mutants	being	

produced.	When	both	genes	are	absent	the	progeny	can	infect	weeping	lovegrass	

(SWEIGARD	et	al.	1995).		Though	PWL2	is	not	located	at	the	chromosome	end,	it	is	

located	near	transposable	elements	(DEAN	et	al.	2005).	The	stability	of	the	Avr	genes	

may	be	affected	by	the	genetic	elements	that	surround	them	(KANG	and	YONG‐HWAN	

2000).		Another	example	is	Avr‐C039,	from	a	weeping	lovegrass	pathogen	(FARMAN	

and	LEONG	1998),	which	confers	avirulence	of	M.	oryzae	to	rice	cultivars	containing	

the	corresponding	R	gene	Pi‐CO39(t)	(CHAUHAN	et	al.	2002).	Functional	copies	of	

AVR‐CO39	are	present	in	other	host‐specific	pathotypes	(PEYYALA	and	FARMAN	2006;	

TOSA	et	al.	2005),	but	largely	absent	in	Oryza	pathotype	(FARMAN	et	al.	2002;	TOSA	et	

al.	2005).	There	is	currently	a	disagreement	in	the	literature	over	whether	Avr‐

CO39	is	a	species‐wise	or	cultivar‐wise	host	specificity	gene	(TOSA	et	al.	2005;	ZHENG	

et	al.	2011).	

Loss	of	Avr	gene	function	or	absence	of	the	Avr	gene	in	an	isolate	of	M.	oryzae	

allows	the	pathogen	to	avoid	detection	by	host	plants	containing	the	corresponding	

R	gene.		The	loss	of	the	Avr	gene	would	change	the	race	of	that	pathogen.		Novel	

virulent	variants	are	known	to	frequently	arise	during	rice	cultivation	(BONMAN	
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1992).		In	large	natural	populations	of	some	fungi,	deletion	of	avirulence	genes	is	a	

common	evolutionary	mechanism	in	gaining	virulence	(GOUT	et	al.	2007;	SCHÜRCH	et	

al.	2004;	WOUW	et	al.	2010).		This	represents	a	source	of	variability	that	M.	oryzae	

can	exploit	to	circumvent	defense	mechanisms	in	the	host,	and	considering	the	

highly	clonal	population	structure	of	the	fungus	these	mechanisms	may	be	

important	in	race	dynamics.		For	example,	studies	of	the	avirulence	gene	Avr‐Pita	

have	shown	that	spontaneous	mutants	of	an	avirulent	M.	oryzae	parental	isolate,	

that	have	lost	Avr‐Pita	are	virulent	on	the	rice	cultivar	Yashiro‐mochi	that	carries	

the	R	gene	Pi‐ta.	The	Avr‐Pita	gene	is	linked	to	a	telomere.	Losses	of	function	of	the	

Avr‐Pita	in	mutants	have	been	attributed	to	different	factors	such	as	chromosome	

truncation,	mutations	in	the	gene,	and	a	transposable	element	insertion	into	the	

gene	(KANG	et	al.	2001;	ORBACH	et	al.	2000).	Another	Avr	gene	linked	to	a	telomere	

and	that	mutates	frequently	is	Avr1‐TSUY.		The	spontaneous	mutants	lacking	Avr1‐

TSUY	can	infect	cultivar	Tsuyuake.	Six	of	these	spontaneous	mutants	were	analyzed,	

and	it	was	revealed	that	the	loss	of	the	gene	was	due	to	a	deletion	mutation.	Some	of	

the	deletion	mutations	were	believed	to	be	caused	by	ectopic	recombination	

between	homologous	transposable	elements	(KANG	and	YONG‐HWAN	2000).	The	

examples	of	Avr‐Pita	and	Avr1‐TSUY	show	that	race	changes	can	occur	in	asexual	

progeny	of	a	M.	oryzae	isolate.	

1.3	Biology	and	population	dynamics	of	M.	oryzae	

Understanding	the	basic	biology	of	M.	oryzae	may	help	to	understand	where	

variation	might	arise	within	populations.	Pathogenic	variants	within	a	population	

may	arise	through	mutation	or	through	sexual	recombination.	In	nature,	however,	
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only	the	asexual	stage	has	been	directly	observed.		During	this	stage	the	somatic	

hypha	grows	through	the	plant	and	then	produces	long	unbranched	conidiophores,	

which	bear	groups	of	three	to	five	bi‐septate	pyriform	conidia.	Conidia	are	produced	

in	a	temperature	range	between	9°C	and	35°C,	with	an	optimum	of	25°C‐28°C.	A	

minimum	humidity	of	89%	is	also	needed	for	conidia	production.		These	conidia	are	

then	dispersed	to	potential	hosts	by	water,	wind,	or	some	other	mechanism	(SUZUKI	

1975).	Once	the	conidia	come	in	contact	with	a	hydrophobic	surface	they	secrete	an	

apical	droplet	of	spore	tip	mucilage	that	attaches	the	spore	to	the	surface	(HOWARD	

1994).	Conidia	germinate	if	there	is	free	moisture	available.	An	appressorium	is	

produced	on	the	end	of	the	germ	tube.	A	penetration	peg	then	arises	from	the	

appressorium,	and	will	use	a	combination	of	enzymatic	degradation	(SKAMNIOTI	and	

GURR	2007)	and	mechanical	force	(HOWARD	et	al.	1991)	to	penetrate	the	epidermis.	It	

takes	six	hours	at	the	optimal	temperature	of	24°C	to	go	from	germination	of	the	

conidia	to	the	invasion	of	epidermal	cells.	A	minimum	of	12	hours	at	optimal	

humidity	and	temperature	is	required	for	optimal	disease	development.		The	

disease	cycle	is	completed	when	conidia	are	produced	on	the	surface	of	infected	

tissue	after	a	latent	period	of	five	to	seven	days.		When	weather	conditions	are	

optimal	M.	oryzae	progresses	through	repeated	cycles	of	infection	and	conidiation	

leading	to	disease	epidemics	(SUZUKI	1975).		

Any	mutations	during	asexual	propagation	could	accumulate	and	lead	to	

variation	among	different	clonal	lines.	Populations	that	are	older	and	exclusively	

clonal	should	show	continuous	variation	among	isolates,	ranging	from	genetically	
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similar	to	dissimilar	(KUMAR	et	al.	1999).		Prolonged	asexual	reproduction	can	also	

lead	to	an	inability	of	the	strain	to	reproduce	sexually	(SALEH	et	al.	2012).		

	 M.	oryzae’s	sexual	stage	has	only	been	visualized	in	vitro.		Sexual	

reproduction	in	the	heterothallic	fungus	requires	the	interaction	of	two	mating	

types,	Mat1‐1	and	Mat1‐2	(KANG	et	al.	1994),	possibly	through	a	pheromone	

receptor	mediated	process	(SHEN	et	al.	1999).		The	sexual	stage	initiates	as	a	hyphal	

network	of	the	haploid	compatible	strains	differentiate	into	female	reproductive	

structures	(ascogonia)	and	the	male	sexual	structures	(spermatia	released	from	

collars	of	phialides)	(CHUMA	et	al.	2009).		Sexual	reproduction	in	ascomycetes	occurs	

when	plasmogamy	occurs	and	the	nucleus	in	the	spermatia	is	transferred	to	the	

ascogonia	through	a	specialized	hyphal	structure	called	the	trichogyne.	The	nuclei	

remain	paired	in	a	dikaryon	within	the	dividing	ascogenous	hyphae.	At	the	tip	of	the	

hyphae	the	crozier	hook	will	form,	and	start	to	develop	into	the	ascus	mother	cell.		

The	haploid	nuclei	from	strains	of	opposite	mating	types	fuse	to	form	a	diploid	

zygote.		The	zygote	undergoes	meiosis	to	produce	recombinant,	haploid	ascospores,	

which	are	released	at	maturity	from	a	pore	on	the	top	of	the	flask‐shaped	

perithecium	(COPPIN	et	al.	1997).		

One	important	aspect	of	sexual	reproduction	is	the	production	of	offspring	

with	recombined	genotypes	due	to	the	independent	segregation	of	unlinked	genes	

during	meiosis.	The	recombined	genotypes	increase	the	genotypic	diversity	which	

may	allow	sexual	populations	to	respond	more	rapidly	to	selection	imposed	by	

resistant	cultivars	or	fungicides	(MILGROOM	1996).		
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There	has	been	some	speculation	based	on	population	genetic	and	molecular	

genetic	analyses	that	sexual	recombination	is	active	in	M.	oryzae	populations	

(DOUHAN	et	al.	2011;	KUMAR	et	al.	1999).	Sexually	fertile,	hermaphroditic	isolates	of	

both	mating	types	have	been	recovered	in	natural	populations	of	M.	oryzae	virulent	

on	rice	(KUMAR	et	al.	1999).		In	contrast,	all	of	the	M.	oryzae	isolates,	which	cause	GLS	

on	perennial	ryegrass,	that	have	been	tested	are	mating‐type	Mat	1‐2	(DOUHAN	et	al.	

2011;	FARMAN	2002;	VIJI	and	UDDIN	2002).		This	suggests	that	sexual	reproduction	

may	not	play	much	of	a	role	in	the	diversity	observed	in	GLS	isolates.	Sexual	

reproduction	could	occur	if	an	isolate	virulent	on	perennial	ryegrass	were	to	cross	

with	Mat1‐1	isolates	from	other	host	pathotypes.	However,	crosses	between	

different	host	pathotypes	in	M.	oryzae	have	shown	a	reduced	ability	to	overcome	

resistance	in	adult	plants	at	the	level	of	penetration	in	the	hybrid	progeny	

(MURAKAMI	et	al.	2006).		This	implies	that	hybrids	may	not	survive	in	a	natural	

environment.	GLS	isolates	from	perennial	ryegrass	have	been	shown	to	infect	other	

hosts	including	annual	ryegrass,	wheat,	and	weeping	lovegrass	under	artificial	

conditions	(TREDWAY	et	al.	2005;	VIJI	et	al.	2001),	which	suggests	that	some	level	of	

cross‐infectivity	can	occur	in	nature.			

	 Population	structure	analyses	indicate	that	GLS	isolates	specialized	to	

perennial	ryegrass	(Lolium	perenne)	are	genetically	similar	using	a	variety	of	

markers	including	Restriction	Fragment	Length	Polymorphisms	(RFLP)	(FARMAN	

2002),	Amplified	Fragment	Length	Polymorphisms	(DOUHAN	et	al.	2011;	TREDWAY	et	

al.	2005),	and	gene	sequences	(COUCH	et	al.	2005;	VIJI	et	al.	2001).	They	are	most	
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similar	to	isolates	from	other	grass	hosts	including	tall	fescue,	weeping	lovegrass,	

and	wheat	(TREDWAY	et	al.	2005).		

	 	There	was	some	disparity	in	genetic	diversity	measures	in	GLS	isolates	from	

perennial	ryegrass	based	on	the	different	probes	used	in	RFLP	analyses.		Single‐copy	

DNA	markers	show	little	variation	between	isolates.	Repetitive	transposable	

element	fingerprinting	showed	higher	variation	than	the	single‐copy	DNA	markers,	

but	there	was	still	less	than	a	15%	difference	between	isolates	(FARMAN	and	KIM	

2005).		This	was	similar	to	AFLP	results	from	GLS	isolates	collected	from	tall	fescue	

(TREDWAY	et	al.	2005).		A	telomere	probe	showed	a	different	result.	It	indicated	that	

the	chromosome	ends	of	these	same	perennial	ryegrass	isolates	were	highly	

divergent.		Also,	mutations	that	changed	telomeric	RFLP	patterns	were	readily	

observed	during	vegetative	growth	(FARMAN	and	KIM	2005).		

1.4	Transposable	elements	

Transposable	elements	in	M.	oryzae	have	been	used	extensively	in	population	

studies,	and	have	been	linked	to	disruption	of	Avr	genes.	The	Magnaporthe	genome	

is	known	to	contain	many	copies	of	TEs	from	both	major	groups.		The	transposable	

elements	(TE)	are	divided	into	two	major	groups	based	on	the	mechanism	by	which	

they	transpose.		In	the	first	class	of	TEs,	a	copy	of	the	element	transposes	via	a	“copy	

and	paste”	mechanism	whereby	a	reverse	transcriptase	acts	upon	a	RNA	

intermediate	to	initiate	transposition	into	a	new	location	within	the	genome.	This	

class	is	also	known	as	the	retrotransposons.	The	Class	I	transposable	elements	can	

be	further	divided	into	three	subclasses:	long	terminal	repeat	(LTR)	transposable	

elements	contain	long	terminal	repeats	and	encode	a	reverse	transcriptase;	long	
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interspersed	elements	(LINEs)	lack	the	long	terminal	repeats	but	retain	the	reverse	

transcriptase;	and	short	interspersed	elements	(SINEs)	represent	short	DNA	

sequences	that	were	reverse‐transcribed	from	RNA	and	do	not	have	a	reverse	

transcriptase	(FINNEGAN	1989;	KEMPKEN	and	KUCK	1998).	

The	structure	and	functionality	of	LTR‐transposons	are	related	to	

retroviruses,	except	they	lack	an	env	gene.		The	omission	of	the	env	gene	causes	

them	to	be	primarily	non‐infectious.	In	LTRs,	direct	sequence	repeats	flank	an	

internal	coding	region,	which	encodes	structural	and	enzymatic	proteins.		The	gag	

gene	encodes	the	structural	proteins.		These	proteins	form	the	virus‐like	particle	

(VLP).		The	VLP	is	where	the	reverse	transcription	of	the	LTR’s	RNA	into	cDNA	will	

occur.		The	pol	gene	encodes	proteins,	which	provide	the	enzymatic	functions	of	the	

LTR.		The	three	major	proteins	encoded	by	the	pol	genes	are	a	protease	that	cleaves	

the	Pol	poly	protein,	the	reverse	transcriptase	(RT)	that	will	be	copying	the	LTR’s	

RNA	into	cDNA,	and	the	integrase	which	will	integrate	the	cDNA	into	a	host	genome	

(HAVECKER	et	al.	2004).		

Some	long	interspersed	nuclear	elements	or	LINEs	have	been	known	to	play	

a	role	in	telomere	stability	in	other	organisms	(ABAD	et	al.	2004a;	TAKAHASHI	et	al.	

1997).		LINEs	are	simpler	structurally,	and	more	ancient	evolutionarily	than	the	

LTRs	described	above.	They	lack	terminal	repeats	altogether,	but	some	elements	

may	have	a	poly	A‐rich	sequence	at	their	3’	end.	These	elements	encode	a	protein	

with	distinct	functions:	an	endonuclease	and	a	reverse	transcriptase	(CURCIO	and	

DERBYSHIRE	2003).		The	endonuclease	nicks	the	bottom	strand	of	the	target	DNA,	

which	results	in	3’	OH	that	is	used	to	prime	the	cDNA	synthesis	using	the	LINE	RNA	
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as	a	template	(FENG	et	al.	1996;	LUAN	et	al.	1993).		Most	members	of	the	LINE‐like	

elements	are	truncated	at	the	5’	end	due	to	incomplete	reverse	transcription	of	its	

RNA	template.	Currently	it	is	unclear	how	the	cDNA	integrates	into	the	upstream	

end	of	the	target	and	how	second‐strand	synthesis	occurs	(CURCIO	and	DERBYSHIRE	

2003).		Since	the	cDNA	is	incorporated	directly	into	the	target	DNA	in	LINEs,	unlike	

the	LTR	transposons,	horizontal	transmission	is	less	likely.		

The	final	group	of	Class	I	transposable	elements	are	SINEs.	They	are	actively	

involved	in	inactivation	of	genes	through	transposition	(WALLACE	et	al.	1991).	The	

general	features	of	SINEs	are	an	adenine	rich	3’	end	similar	to	LINE	elements,	a	RNA	

polymerase	III	promoter,	and	a	core	region	(GILBERT	and	LABUDA	1999).		

Amplification	and	dispersion	of	SINE	elements	occurs	by	retrotransposition.		The	

RNA	polymerase	III‐dependent	SINE	transcripts	are	reverse	transcribed	by	a	LINE	

element’s	reverse	transcriptase,	and	the	cDNA	is	then	integrated	into	new	genomic	

sites	(JAGADEESWARAN	et	al.	1981;	OKADA	et	al.	1997).	

In	the	second	class	of	TEs,	the	DNA	transposes	directly	from	one	place	to	

another	in	the	genome	using	a	“cut	and	paste”	mechanism	in	which	the	DNA	of	the	

transposons	is	moved	to	a	new	location.		This	class	is	also	known	as	the	inverted	

repeat	DNA	transposons	(FINNEGAN	1989;	WICKER	et	al.	2007).	These	transposons	

remove	themselves	from	one	place	in	the	genome	and	insert	themselves	into	a	new	

target	with	the	help	of	a	transposase.		The	transposase	acts	by	generating	free	3’	OH	

ends	through	hydrolysis	of	the	phosphodiester	backbone	(excision)	at	both	ends	of	

the	transposon.	The	exposed	3’	OH	ends	will	then	be	inserted	into	the	transposon’s	

target	within	the	genome	through	a	transesterification	reaction	(insertion).	The	
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insertion	of	the	transposon	on	each	target	strand	is	staggered.	As	a	result,	short	

single‐stranded	regions,	usually	two	to	nine	nucleotides	in	length,	will	flank	the	

newly	inserted	transposon.	These	regions	will	be	repaired	by	its	host’s	replication	

machinery	causing	target	site	duplications	once	the	segment	is	repaired	(TAVAKOLI	

and	DERBYSHIRE	2001).			The	gap	left	by	the	excised	transposon	can	be	repaired	by	

non‐homologous	end	joining	or	by	gene	conversion	(ENGELS	et	al.	1990;	PLASTERK	

and	GROENEN	1992).		Inverted	repeat	transposons	expand	the	genetic	diversity	of	a	

population	not	only	from	the	insertion	of	the	elements	but	also	the	excision	of	the	

elements	from	the	genome.	

There	are	examples	of	each	major	class	and	subclass	of	TEs	in	M.	oryzae	(see	

a	description	of	each	element	below).	TEs	are	scattered	throughout	the	genome,	but	

may	be	amplified	or	clustered	in	different	regions	within	the	genome	of	M.	oryzae	

(REHMEYER	et	al.	2006;	THON	et	al.	2004).			For	example,	in	the	isolate	70‐15,	TEs	

make	up	a	higher	proportion	of	the	subtelomeres	than	the	genome.	The	LTR	TEs	

make	up	approximately	4%	of	the	genome	(DEAN	et	al.	2005)	and	make	up	

approximately	14%	of	the	subtelomeres	in	the	isolate	70‐15	(REHMEYER	et	al.	2006).		

LINEs	make	up	approximately	1%	of	the	genome	(DEAN	et	al.	2005)	and	make	up	

approximately	4%	of	the	subtelomeres	(REHMEYER	et	al.	2006).	The	inverted	repeat	

transposons	make	up	2%	of	the	genome	(DEAN	et	al.	2005)	and	5%	of	the	

subtelomeres	(REHMEYER	et	al.	2006).		

The	distribution	of	TEs	is	varied	among	different	host‐specialized	isolates,	and	

sometimes	distributed	differently	within	a	host‐specialized	group.		In	the	section	

below	the	different	transposable	elements	are	described	and	Table	1‐1	outlines	
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some	of	the	distribution	differences	of	TEs	among	different	host‐specialized	isolates	

of	M.	oryzae.		

1.4.1	Distribution	of	Class	I	transposable	elements	in	M.	oryzae		

MAGGY.	The	most	studied	long	terminal	repeat	retrotransposon	in	M.	oryzae	

is	the	Magnaporthe	Gypsy‐like	element	(MAGGY),	which	was	first	characterized	by	

Farman	et	al.	(FARMAN	et	al.	1996b).		MAGGY	is	5.6	kb	in	length	with	253	bp	LTRs	

that	terminate	in	6	bp	inverted	repeats.	In	isolates	containing	MAGGY,	transposition	

has	been	shown	to	occur	during	and	after	the	sexual	cycle	(ETO	et	al.	2001).	Most	

elements	are	found	embedded	in	AT‐rich	sequences	(FARMAN	et	al.	1996b).		The	

copy	number	of	MAGGY	is	believed	to	be	controlled	by	post‐transcriptional	

suppression	of	MAGGY	(NAKAYASHIKI	et	al.	2001a).		This	element	can	be	activated	by	

stress	conditions	such	as	heat	shock,	copper	sulfate,	and	oxidative	stress	(IKEDA	et	al.	

2001).	The	distribution	of	MAGGY	in	Magnaporthe	has	been	described	as	limited	

(ETO	et	al.	2001)	to	wide	(FARMAN	et	al.	1996b).		The	difference	in	the	classification	is	

largely	based	on	the	specific	isolates	that	were	used	in	the	studies.		MAGGY	is	

present	at	high	copy	numbers	(>50)	in	isolates	from	these	pathotypes:	Oryza	(ETO	et	

al.	2001;	FARMAN	et	al.	1996b;	KUSABA	et	al.	1999),	Setaria		(ETO	et	al.	2001;	FARMAN	

2002;	FARMAN	et	al.	1996b;	KUSABA	et	al.	1999),		a	Pennisetum	(KUSABA	et	al.	1999),	

and	one	buffelgrass	(Cenchrus	ciliaris).		MAGGY	was	present	at	lower	copy	numbers	

(<50)	in	a	Bermudagrass	(Cynodon	dactylon)	pathotype	isolate	(FARMAN	et	al.	

1996b).	In	the	Lolium	pathotype	MAGGY	was	unevenly	distributed	(FARMAN	2002;	

KUSABA	et	al.	1999;	TOSA	et	al.	2007).		In	one	study,	MAGGY	was	not	observed	in	the	

Eragrostis	pathotype	isolates	(ETO	et	al.	2001);	while	in	another	study	one	isolate	
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had	a	high	copy	number	(FARMAN	et	al.	1996b).		It	was	believed	that	the	Eragrostis	

pathotype	isolate	obtained	MAGGY	recently	in	its	evolutionary	history.		This	would	

suggest	that	it	could	have	arisen	through	horizontal	transmission	from	another	

isolate.		Horizontal	transmission	is	described	as	a	process	by	which	genetic	material	

is	incorporated	from	one	organism	to	another	without	being	an	offspring	of	that	

organism.	Triticum	specialized	isolates	do	not	have	MAGGY	elements	(ETO	et	al.	

2001)	but	the	MAGGY	element	can	amplify	if	artificially	introduced	into	their	

genomes	(NAKAYASHIKI	et	al.	2001a).	

	Grasshopper.			The	element	is	8	kb	in	length.	Grasshopper	(Grh)	contains	a	

smaller	LTR	(198	bp)	than	MAGGY.	The	LTRs	in	Grh	terminate	in	5	bp	inverted	

repeats,	and	Grh	generates	target	site	duplications	during	its	transposition.	The	

distribution	of	this	element	is	limited	to	a	single	subgroup	in	the	

Eleusine‐specialized	isolates	(DOBINSON	et	al.	1993;	ETO	et	al.	2001),	but	has	also	

been	observed	in	isolates	from	Lolium	multiflorum	(KUSABA	et	al.	2006)	and	the	

Triticum	pathotype.			

MGRL‐3.	The	MGLR‐3	element	was	identified	and	characterized	in	a	mutant	

of	0‐137	that	was	virulent	on	the	rice	cultivar	Tsuyuake	(KANG	2001).	The	element	is	

approximately	6.3	kb	in	length.	Protein	sequence	alignments	from	the	reverse	

transcriptase	(RT)	domain	indicated	it	was	most	similar	to	the	RT	proteins	encoded	

by	Grasshopper	and	MAGGY.	MGRL‐3	was	present	in	all	host	pathotypes	tested	

including	isolates	from	the	Oryza,	Triticum,	Eleusine,	Paspalum,	Panicum,	

Pennisetum,	Lolium	and	Digitaria	pathotypes(KANG	2001;	VIJI	et	al.	2001).			The	
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highest	copy	numbers	of	MGLR‐3	are	found	in	the	isolates	from	the	Pennisetum,	

Oryza,	and	Panicum	pathotypes	(KANG	2001).		

		 Two	additional	MGLR‐3	like	retrotransposons	were	identified	from	a	

Japanese	field	isolate	9439009,	and	named	Inago1	and	Inago2	(SANCHEZ	et	al.	2011).		

These	retrotransposons	appear	to	be	stable	within	the	genome	even	during	induced	

stress	conditions.	Inago1	was	present	in	high	copy	numbers	in	isolates	from	the	

Oryza,	Setaria,	Panicum,	Lolium,	and	Digitaria	pathotypes,	but	had	low	copy	

numbers	in	the	isolates	from	the	Eleusine	pathotype.	Inago2	had	a	similar	

distribution	pattern	as	Inago1	with	the	exception	that	there	were	lower	copy	

numbers	in	the	Digitaria	pathotype	isolates.	This	study	indicated	that	the	ancestor	

of	these	elements	was	likely	present	in	the	genome	before	the	divergence	of	M.	

grisea	and	M.	oryzae	(SANCHEZ	et	al.	2011).			

Pyret.	Another	gypsy‐like	retrotransposon	named	Pyret	is	present	in	the	

isolates	in	the	Eleusine,	Eragrostis,	Avena,	Triticum,	Oryza,	and	Pennisetum	

pathotypes.	Pyret	was	absent	in	Ginger	(Zingiber	mioga)	pathotype	isolates	and	in	

the	Magnaporthe	grisea	isolates	of	the	Digitaria	pathotype	(NAKAYASHIKI	et	al.	

2001b).		

RETRO6	and	RETRO7.		RETRO6	and	RETRO7	were	identified	during	the	

genome	sequencing	of	70‐15	(DEAN	et	al.	2005),	and	there	are	no	studies	that	

address	the	distribution	or	structure	of	these	elements.		Based	on	protein	sequence	

alignments	these	retrotransposons	are	more	similar	to	the	gypsy‐like	TEs	in	

M.	oryzae.		
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RETRO5.	RETRO5	is	the	only	LTR	retroelement	currently	identified	in	

M.	oryzae	that	is	not	gypsy‐like.	It	belongs	to	the	Copia	class	of	retrotransposons.		

The	difference	between	Copia	class	retrotransposons	and	Gypsy	class	transposons	is	

the	order	in	which	the	proteins	are	encoded	in	the	sequence.		The	element	is	7.6	kb	

in	length	(FARMAN	et	al.	2002).	There	is	a	wide	distribution	of	RETRO5	as	it	is	

present	in	M.	oryzae	isolates	of	the	Eleusine,	Eragrostis,	Stenotaphrum,	Triticum,	

Lolium,	Setaria,	and	Oryza	pathotypes.	RETRO5	is	also	found	in	M.	grisea	isolates	of	

the	Digitaria	pathotype.	These	elements	are	found	in	the	highest	copy	numbers	in	

Setaria	specialized	isolates.	Currently	no	studies	have	addressed	the	structure	of	the	

RETRO5	element.	

MGL.	The	Magnaporthe	grisea	LINE	retrotransposon	(MGL)	is	5.9	kb	in	

length.	A	small	part	of	the	retrotransposon	has	been	used	extensively	as	a	probe	

(MGR583)	in	RFLP	based	population	studies	(DIOH	et	al.	2000;	HAMER	et	al.	1989a).		

MGL	was	believed	to	be	a	LINE‐like	element	due	to	the	lack	of	long	terminal	repeats	

at	the	5’	and	3’	ends	of	the	element	(KACHROO	et	al.	1997).		There	are	two	open	

reading	frames	(ORF)	in	MGL.		The	function	of	the	protein	encoded	by	ORF1	is	

unknown.		ORF2	encodes	a	protein	with	reverse	transcriptase	and	integrase	

domains	(FUDAL	et	al.	2005).		It	is	present	in	most	host	specific	isolates,	but	is	found	

in	high	copy	numbers	only	in	isolates	of	the	Oryza	and	the	Setaria	pathotypes	(ETO	

et	al.	2001).	

Mg‐SINE.		Kachroo	et	al.	identified	Mg‐SINE	as	an	insertion	in	the	Pot2	

transposon	(see	below).		Mg‐SINE	is	a	small	element	only	470	bp	in	length	(KACHROO	

et	al.	1995).	The	3’	end	of	Mg‐SINE	is	identical	to	the	3’	end	of	MGL	suggesting	that	it	
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may	use	the	MGL	reverse	transcriptase	for	transposition	(THON	et	al.	2004).	

Mg‐SINE	is	present	in	isolates	of	the	Oryza,	Setaria,	Triticum,	Eragrostis,	Eleusine,	

Panicum,	and	Lolium	pathotypes	(ETO	et	al.	2001).					

MINE.			The	Mixed	Interspersed	Nuclear	Element	(MINE)	retrotransposon	is	a	

1.9	kb	element	with	a	5’	conserved	end	called	WEIRD	(bp	1‐1114),	and	a	3’	end	

variable	region	similar	to	MGL	(bp	1115‐1971)	including	the	terminal	TAC	repeats	

(FUDAL	et	al.	2005).		The	MINE	element	likely	uses	the	reverse	transcriptase	and	

integration	machinery	from	the	MGL	element.	High	copies	of	the	MINE	element	

were	found	in	isolates	of	the	Pennisetum	and	Oryza	pathotypes.		A	single	copy	was	

present	in	an	Eleusine	pathotype	isolate,	and	MINE	was	absent	in	a	Triticum	

pathotype	isolate.		The	presence	of	this	transposon	in	Lolium	pathotype	isolates	is	

unknown.	

1.4.2	Distribution	of	Class	II	transposable	elements	in	M.	oryzae	

Pot2.			Pot2	was	characterized	by	Kachroo	et.	al	in	1994	(KACHROO	et	al.	

1994).		The	element	is	approximately	1.9	kb	in	length,	and	has	43	bp	of	inverted	

terminal	repeats.	Pot2	is	present	in	most	host	specialized	forms	of	M.	oryzae	(ETO	et	

al.	2001).		The	highest	copy	numbers	are	found	in	the	Oryza	pathotype	isolates.	

Pot4.		The	Pot4	element	is	similar	to	Pot2	and	was	identified	during	the	

genome	sequencing	of	70‐15.		Not	much	is	currently	published	that	describes	Pot4	

other	than	it	is	approximately	1.9	kb	in	length	(DEAN	et	al.	2005).	

Pot3.		The	transposon	is	approximately	1.9	kb	in	length	and	contains	terminal	

repeats	of	42	bp	(FARMAN	et	al.	1996a).			The	MGR586	repeat	is	part	of	Pot3	and	has	

been	used	extensively	in	population	analyses	(FARMAN	2002;	KUMAR	et	al.	1999;	PARK	
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et	al.	2008).		This	element	has	a	high	copy	number	in	Oryza	pathotype	isolates	and	

their	relatives	(ETO	et	al.	2001).	The	Pot3	transposon	is	apparently	absent	from	

Eleusine	and	Brachiaria	pathotypes	(FARMAN	et	al.	1996a).	

Occan.		Occan	was	discovered	by	Kito	et	al.	2003	in	a	spontaneous	Pi‐a	

virulent	mutant	of	M.	oryzae.	The	element	is	approximately	2.7	kb	in	length,	and	is	a	

member	of	the	Fot1	family	of	transposons	(KITO	et	al.	2003).		Occan	has	a	high	copy	

number	in	isolates	of	the	Oryza	pathotype,	and	has	a	lower	number	of	copies	in	

isolates	of	the	Setaria	and	Eleusine	pathotypes	(KITO	et	al.	2003).	No	published	data	

is	currently	available	on	its	distribution	in	the	Lolium	pathotype	isolates.	

1.5	Implications	of	TEs	in	the	variability	of	M.	oryzae	

One	pattern	that	emerges	with	TEs	in	M.	oryzae	is	that	the	distribution	and	the	copy	

numbers	in	host	specialized	isolates	varies	in	both	the	location	within	a	genome	

(XUE	et	al.	2012)	and	among	isolates.		The	ability	of	the	TEs	to	influence	genome	

evolution	in	M.	oryzae	has	not	been	comprehensively	explored.	There	is	a	

correlation	between	ectopic	recombination	rate	and	TE	content	suggesting	that	they	

play	a	role	in	generating	the	genetic	diversity	observed	in	M.	oryzae	(THON	et	al.	

2006).		Accumulation	of	these	elements	may	lead	to	chromosome	length	

polymorphisms.	TEs	may	also	provide	homologous	regions	for	intra‐genomic	

recombination	of	large	sections	of	the	chromosome	(DABOUSSI	1997).	Ectopic	

recombination	is	suggested	to	have	occurred	between	TEs	in	the	chromosome‐

unique	sequence	located	adjacent	to	subtelomeres	of	M.	oryzae	(REHMEYER	et	al.	

2006).	The	Avr	genes	may	be	lost	or	modified	during	ectopic	recombination	events	

between	TEs,	and	if	the	Avr	genes	are	located	near	areas	of	high	transposon	density	
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the	likelihood	that	this	could	occur	is	increased	(FARMAN	et	al.	2002;	SWEIGARD	et	al.	

1995).		

M.	oryzae	primarily	propagates	asexually.	This	increases	the	odds	that	

mutations	or	genome	rearrangements	may	become	fixed	in	a	population	as	long	as	

the	vegetative	fitness	and	conidia	production	is	not	negatively	impacted.		Genomic	

rearrangements	during	asexual	propagation	may	allow	populations	of	M.	oryzae	to	

change	more	quickly.		TEs	can	be	inactivated	during	sexual	reproduction	in	other	

fungi	by	the	Repeat‐induced	point	mutation	mechanism	(RIP)	(CAMBARERI	et	al.	

1989;	SELKER	et	al.	1987).	RIP	causes	specific	mutations	from	G:C	to	A:T	in	repetitive	

sequences.		There	is	evidence	of	RIP	activity	in	repetitive	elements	within	the	M.	

oryzae	genome	(DEAN	et	al.	2005;	IKEDA	et	al.	2002).		Though	RIP	mutations	are	

typically	restricted	to	repetitive	sequences,	they	have	been	suggested	to	“leak”	into	

adjacent	single	copy	sequences	(FUDAL	et	al.	2009).		In	Neurospora	crassa	(IRELAN	et	

al.	1994)	and	Leptosphaeria	maculans	(WOUW	et	al.	2010),	for	example,	RIP	

mutations	were	detected	in	single	copy	sequences	bordering	repetitive	elements.		

The	leaky	nature	of	RIP	could	influence	the	evolution	of	Avr‐genes	or	other	niche	

associated	genes	located	near	repetitive	elements	in	M.	oryzae	during	rare	sexual	

reproduction	events.	

TEs	structure	and	their	activity	in	a	genome	has	profound	evolutionary	

consequences	(THON	et	al.	2006).		TEs	can	change	the	host	specificity	in	the	progeny	

(mitotic	or	meiotic)	through	transposition	and	ectopic	recombination.		They	can	

disrupt	genes	or	promoters,	causing	the	abolishment	of	gene	function.		In	one	

example,	a	spontaneous	mutant	of	a	M.	oryzae	isolate	carrying	the	Avr‐Pita	gene	
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gained	virulence	on	a	rice	cultivar	containing	the	Pita	R‐gene.		The	virulence	gain	

was	due	to	a	Pot3	insertion	into	the	promoter	of	the	Avr‐Pita	gene	(ORBACH	et	al.	

2000).		Virulent	isolates	have	also	arisen	due	to	Pot3	transposition	into	the	coding	

region	of	Avr‐Pita	gene	(ZHOU	et	al.	2007).		In	another	example,	a	Pot3	insertion	into	

the	promoter	region	of	Avr‐Piz‐t	in	progeny	of	an	avirulent	strain	has	been	shown	to	

disrupt	proper	function,	which	allowed	these	isolates	to	be	virulent	on	rice	cultivars	

containing	the	corresponding	R‐gene	Piz‐t	(LI	et	al.	2009).	Transposition	of	MGL	into	

a	gene	controlling	conidiophore	development	led	to	aberrant	conidia	morphology	

which	resulted	in	progeny	that	produced	fewer	appressoria	and	were	less	

pathogenic	on	plants	(NISHIMURA	et	al.	2000).	Transposition	of	MGLR‐3	into	Pot2,	

which	caused	a	substantial	deletion	at	the	chromosome	end,	led	to	virulence	on	the	

rice	cultivar	Tsuyuake	in	progeny	of	the	M.	oryzae	strain	0‐137	(KANG	2001).			

These	examples	indicate	that	TEs	are	active	and	can	be	attributed	as	one	

potential	source	of	the	genetic	diversity	observed	in	M.	oryzae,	and	that	TEs	can	

increase	or	decrease	the	fitness	of	a	fungal	strain.		If	transposition	of	TEs	allows	the	

fungus	to	adapt	more	quickly,	M.	oryzae	populations	may	favor	individuals	that	do	

not	undergo	sexual	reproduction	to	ensure	that	TEs	remain	active.			

1.6	Telomere	variability	in	M.	oryzae	

Interestingly,	about	half	of	the	characterized	Avr	genes	in	M.	oryzae	map	near	

chromosome	ends	(FARMAN	2007).	Mutations	in	telomeric	restriction	fragments	

have	been	observed	in	Southern	hybridization	experiments	of	asexual	(FARMAN	

2007;	FARMAN	and	KIM	2005)	and	sexual	progeny	(CHUMA	et	al.	2011a).	This	suggests	
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that	chromosome	ends	might	be	important	in	the	variability	of	host‐specificity	

within	M.	oryzae.		

M.	oryzae,	like	all	eukaryotes,	has	linear	chromosomes,	and	the	extreme	ends	

of	the	chromosomes	are	capped	by	a	telomere.		Telomeres	are	made	up	of	tandemly	

repeated,	simple	sequences,	usually	consisting	of	a	GT	rich	sequence	oriented	in	the	

5’	to	3’	direction	towards	the	chromosome	end	(ZAKIAN	1995).		The	telomere	

sequence	found	at	the	end	of	M.	oryzae	telomeres	is	(TTAGGG)n	(FARMAN	and	LEONG	

1995).			

Telomere	sequences	are	bound	with	multiple	proteins,	which	protect	the	

chromosome	ends	from	degradation	(DE	LANGE	2005;	LOAYZA	and	DE	LANGE	2003;	

SANDELL	and	ZAKAIN	1993)	and	end‐to‐end	fusions	(MCCLINTOCK	1939;	MCCLINTOCK	

1941).	The	protein	complexes	that	“cap”	the	telomeres	are	also	known	to	protect	

them	from	homologous	recombination	and	nonhomologous	end	joining	(FERREIRA	et	

al.	2004;	PALM	and	DE	LANGE	2008).	The	telomere	associated	proteins	regulate	

telomere	length	(KRAUSKOPF	and	BLACKBURN	1996;	VAN	STEENSEL	and	DE	LANGE	1997),	

and	are	involved	in	silencing	genes	located	near	the	telomere	(BAUR	et	al.	2001;	

GOTTSCHLING	et	al.	1990).		

	In	most	organisms,	simple	sequence	repeats	are	maintained	by	a	specialized	

reverse	transcriptase	called	telomerase.		New	telomere	repeats	are	added	on	to	the	

chromosome	ends	by	the	enzymatic	subunit	of	telomerase	(the	telomerase	reverse	

transcriptase‐TERT)	which	uses	an	“internal”	RNA	template	(TER)	to	reverse	

transcribe	telomeric	sequence	at	the	chromosome	end	(BLACKBURN	and	COLLINS	
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2011;	GREIDER	and	BLACKBURN	1987).	Higher	telomere	instability	is	observed	in	

mutants	which	lack	telomerase	(BLASCO	et	al.	1997;	MEYER	and	BAILIS	2008).	

Drosophila	melanogaster	(the	fruit	fly)	lacks	telomerase,	and	uses	a	

retroelement‐mediated	maintenance	of	chromosome	ends.	The	telomeres	are	

composed	of	tandem	head	to	tail	arrays	of	repeated	sequences	made	up	of	two	

non‐long	terminal	repeat	(non‐LTR)	retrotransposons	which	orient	with	the	poly‐A	

sequence	toward	the	centromere.		The	two	elements	that	make	up	the	telomeres	are	

HeT‐A	(approximately	6	kb)	and	TART	(approximately	10	kb).	The	retroelements	

are	transcribed	into	a	RNA	that	is	reverse	transcribed	onto	the	chromosome	ends	in	

much	the	same	way	as	telomerase	adds	simple	sequence	repeats.	The	elements	

utilize	a	reverse	transcriptase	that	uses	the	3’	end	of	the	nicked	DNA	as	a	primer	to	

copy	the	element	into	the	target	site	(BIESSMANN	et	al.	1992;	LEVIS	et	al.	1993).		

	Proximal	to	the	telomere	is	the	subtelomere.		This	region	is	rapidly	evolving	

and	composed	of	highly	polymorphic	repetitive	DNA	(BROUN	et	al.	1992;	EICHLER	and	

SANKOFF	2003;	MEFFORD	and	TRASK	2002).		The	subtelomere	is	commonly	divided	

into	the	distal	and	proximal	domains.		The	distal	domain,	immediately	proximal	to	

the	telomere	repeats,	is	often	devoid	of	genes	and	the	repetitive	sequences	in	this	

domain	are	commonly	found	at	more	than	one	subtelomere	(AMARGER	et	al.	1998;	

PEARCE	et	al.	1996).		The	proximal	domain	is	frequently	composed	of	genes	or	

repeats	which	are	found	at	a	smaller	subset	of	chromosome	ends	(LOUIS	1995;	

THOMPSON	et	al.	1997).		Subtelomeres	often	contain	genes	important	for	adaptation	

to	an	organism’s	environment,	such	as	genes	involved	in	carbon	utilization,	

tolerance	to	toxic	environments,	and	evading	host	detection	(CHARRON	et	al.	1989;	
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RACHIDI	et	al.	2000;	WADA	and	NAKAMURA	1996).				M.	oryzae	subtelomeres	are	

enriched	in	genes	that	encode	secondary	metabolites	and	hypothetical	secreted	

proteins	that	could	be	involved	in	pathogenesis	(REHMEYER	et	al.	2006).			

Subtelomeric	regions	may	be	unstable	due	to	gene	conversion	and	other	types	of	

rearrangements	during	meiosis	(CHUMA	et	al.	2011a).		The	instability	of	these	

regions	may	allow	for	rapid	evolution	of	genes	involved	in	pathogenicity,	which	has	

been	previously	observed	with	instability	of	Avr‐Pita	genes	(CHUMA	et	al.	2011b).		

Chromosome	ends	in	GLS	isolates,	which	are	virulent	on	perennial	ryegrass,	

show	“hypervariability”	in	telomeric	RFLPs,	while	the	RB	isolates	did	not	show	this	

same	pattern.		This	suggested	that	there	might	be	structural	differences	at	the	

chromosome	ends	between	RB	isolates	and	GLS	isolates	that	are	leading	to	the	

instability.			To	examine	whether	there	was	an	underlying	structural	basis	for	the	

telomere	variability,	homologous	chromosome	ends	were	compared	between	the	

RB	isolate	70‐15	and	the	GLS	isolate	FH.		Figure	1‐1	compares	four	different	

chromosome	ends	between	FH	and	70‐15.		In	general	the	subterminal	regions	of	the	

FH	isolate	are	devoid	of	the	transposable	elements	present	in	the	telomeres	of	

70‐15,	with	the	exception	of	a	RETRO5	long	terminal	repeat	(LTR)	element	near	

telomere	8.		Telomere	3	in	70‐15	is	composed	of	an	rDNA	array	that	ends	in	

telomere	repeats,	while	in	FH	the	rDNA	array	ends	in	a	telomere	repeat	followed	by	

two	copies	of	a	4.6	kb	element	and	a	2.5	kb	element.	The	two	4.6	kb	elements	and	

2.5	kb	element	are	surrounded	by	telomere	repeats	(Figure	1‐1,	Panel	A).			In	

telomere	5,	70‐15	contains	many	transposable	elements	in	the	subterminal	region	

that	appear	to	be	absent	in	the	corresponding	region	in	FH.		The	subtelomere	of	
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telomere	5	in	70‐15	contains	a	telomere‐linked	helicase	(TLH)	gene.	The	TLH	gene	

is	missing	in	the	corresponding	chromosome	end	in	FH,	and	within	the	telomere	

repeat	is	one	copy	of	a	5.0	kb	element	in	the	FH	telomere.		In	telomere	8	of	70‐15,	

the	subterminal	region	contained	several	transposable	elements	that	were	absent	in	

FH.		The	FH	sequence	diverged	209	bp	from	the	proximal	subtelomere	region	in	

70‐15,	and	there	was	approximately	2.5	kb	of	sequence	followed	by	a	RETRO5	

element.	In	the	telomere	of	FH	there	was	an	element	that	was	4.2	kb	in	length	

followed	by	three	elements	that	were	1.7	kb	in	length	directed	in	a	head‐to‐tail	

orientation	towards	the	chromosome	end.		In	telomere	11	of	70‐15,	the	structure	of	

subterminal	region	was	very	different	from	FH,	and	contained	several	different	

types	of	transposable	elements.		The	FH	subterminal	region	aligned	with	disparate	

regions	of	the	70‐15	genome.		This	telomere	in	FH	contained	three	copies	of	a	5	kb	

element,	the	most	distal	of	which,	was	joined	to	a	truncated	1.7	kb	element.	(STARNES	

et	al.	2012)	

The	repeated	elements	embedded	in	the	telomere	repeats	of	the	FH	isolate	

were	initially	defined	as	Magnaporthe	oryzae	Telomeric	Exclusive	Repeats	

(MoTeRs)	(FARMAN	2007).		MoTER1	was	initially	described	as	4.6	kb	in	length,	and	

has	an	open	reading	frame	with	a	reverse	transcriptase	domain.	MoTER1	lacks	long	

terminal	repeats,	and	was	suggested	to	resemble	non‐LTR	retrotransposons.	

MoTER2	is	only	1.7kb	in	length,	encodes	a	204	amino	acid	hypothetical	protein,	and	

lacks	a	reverse	transcriptase	domain.	They	are	always	found	with	the	5’	end	of	an	

element	directed	toward	the	telomere.		A	single	MoTeR	is	embedded	in	the	telomere	

sequence	at	some	chromosome	ends,	while	in	other	telomeres	tandem	arrays	of	
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MoTeRs	can	be	found.	Tandem	arrays	could	be	made	up	of	single	MoTeRs	or	a	

mixture	of	both	MoTER1	and	MoTER2	(FARMAN	2007).	There	was	limited	

information	available	on	the	distribution	of	MoTeRs	when	this	work	began.	It	was	

known	that	full	length	MoTeRs	were	not	present	in	Oryza	specialized	isolate	70‐15.		

MoTeRs	were	present	in	a	few	Lolium‐specialized	and	Triticum‐specialized	isolates	

(Farman	personal	communication).		Additionally,	there	had	been	no	published	

studies	describing	the	relatedness	of	the	MoTeRs	to	the	other	retrotransposable	

elements	within	M.	oryzae.		

The	presence	of	MoTeRs	in	the	telomeres	of	the	GLS	isolate	and	absence	in	

the	RB	isolate	could	suggest	that	they	play	a	role	in	the	instability	of	telomeres.		It	is	

intriguing	that	the	subtelomeres	of	the	GLS	isolate	FH	is	devoid	of	most	of	the	other	

transposable	elements	that	were	found	in	the	RB	isolate.		One	might	speculate	that	

the	absence	of	these	transposable	elements	in	this	region	might	lead	to	more	

stability.	Thus	it	is	still	unclear	what	role	the	different	transposable	elements	may	

play	in	the	stability	of	the	chromosome	ends	in	the	GLS	isolates.	

1.7	Variability	of	GLS	pathogens	and	the	presence	of	MoTeRs	

MoTeRs	were	present	in	GLS	isolates,	but	they	were	absent	in	the	telomeres	of	the	

rice‐infecting	laboratory	strain	that	has	been	sequenced.		The	presence	of	the	

MoTeRs	at	telomeres	in	GLS	isolates	is	intriguing,	as	the	telomere	restriction	

profiles	within	GLS	populations	appear	to	be	highly	variable,	while	the	internal	

chromosome	regions	show	low	variability	(FARMAN	and	KIM	2005).	This	could	

indicate	that	the	MoTeRs	are	responsible	for	the	telomere	variability	observed	in	

the	GLS	isolates.	MoTeRs	were	not	in	the	genome	of	the	rice‐infecting	strain	70‐15,	
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based	on	a	preliminary	RFLP	analysis,	and	other	rice‐infecting	field	isolates	did	not	

have	high	variability	at	chromosome	ends	(FARMAN	2007).		

The	population	dynamics	underlying	these	field	isolates	are	not	known,	nor	

are	the	potential	differences	in	adaptive	pressures	that	could	affect	telomere	

variability.		Rice	is	a	self‐fertilizing	species	that	typically	grows	in	a	monoculture	

agricultural	environment	and	rice	blast	is	typically	an	epidemic	disease.	These	two	

factors	could	cause	frequent	bottlenecking	of	the	rice	blast	populations	leading	to	

low	variability.		Gray	leaf	spot	is	an	endemic	disease	in	turfgrasses.		Additionally,	

perennial	ryegrass	is	an	obligate	outcrossing	species	(more	recombination	leading	

to	higher	genetic	diversity)	and	is	not	typically	grown	as	a	single	genotype	in	

monoculture	(higher	genetic	diversity).		Thus	GLS	pathogens	are	likely	faced	with	

more	genetic	variability	in	their	hosts,	which	could	possibly	lead	to	higher	genetic	

variability	in	the	pathogen	populations.	This	suggests	that	the	observed	telomere	

restriction	profile	variability	could	be	based	simply	on	the	host’s	population	

dynamics.		Host	diversity	has	been	linked	to	increased	genetic	diversity	in	M.	oryzae	

because	GLS	isolates	on	tall	fescue	(another	obligately	outcrossing	species)	had	

more	haplotype	diversity	than	St.	Augustinegrass	(typically	vegetatively	

propagated)	specialized	isolates	(TREDWAY	et	al.	2005).	While	there	could	be	more	

variability	in	the	GLS	pathogens	of	perennial	ryegrass	based	just	on	population	

dynamics,	a	mechanism	for	increased	telomere	instability	cannot	be	ruled	out.	

The	extreme	telomeric	variation	in	the	GLS	isolates	and	the	presence	of	

MoTeRs	suggested	that	these	elements	could	provide	a	mechanism	by	which	

variability	in	M.	oryzae	populations	might	arise	in	the	GLS	isolates	virulent	on	
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perennial	ryegrass.	Based	on	the	information	outlined	above,	the	focus	of	the	

dissertation	was	narrowed	to	characterizing	some	of	the	mechanisms	that	could	be	

involved	in	generating	the	“hypervariability”	in	telomere	restriction	profiles	

observed	in	GLS	isolates.	

1.8	Overview	of	dissertation	research	

The	overall	aim	of	this	dissertation	was	to	characterize	the	involvement	of	MoTeRs	

in	telomere	instability.	Their	perceived	importance	in	telomere	instability	of	GLS	

isolates	stems	from	the	facts	that:		1)	they	are	located	at	the	telomeres	in	GLS	

isolates,	2)	transposable	elements	have	been	shown	to	cause	instability	in	

Magnaporthe	oryzae,	and	3)	the	telomeres	exhibit	extreme	instability.	

Prior	to	beginning	the	experiments	outlined	in	the	dissertation	(Chapter	2	for	

general	methods	and	within	chapters	for	specific	experimental	methods)	it	was	

known	that	there	was	a	MoTeR1,	which	is	described	as	4.6	kb	in	length	with	an	ORF	

containing	an	RT	domain,	and	a	MoTeR2	that	is	described	as	1.7	kb	in	length	with	an	

smaller	ORF	of	no	known	function	(FARMAN	2007).	The	MoTeRs	do	not	have	long	

terminal	repeats,	which	suggested	that	they	were	a	type	of	non‐LTR	

retrotransposon	though	the	relationship	of	MoTeRs	to	other	retrotransposons	in	

M.	oryzae	was	not	known.			

The	experiments	described	in	Chapter	3	sought	to	define	more	clearly	the	

structure	of	MoTeRs	within	the	GLS	isolates,	and	to	determine	their	relationship	

with	other	non‐LTR	retrotransposons.		

While	it	is	interesting	to	postulate	possible	mechanisms,	such	as	MoTeR	

transposition	or	recombination,	that	could	generate	telomere	instability	in	
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populations	of	GLS	isolates,	I	needed	to	know	whether	the	telomeres	were	more	

unstable	in	GLS	isolates	than	in	other	host‐specialized	types	of	M.	oryzae	without	

MoTeRs	in	their	telomeres.		Previous	work	had	shown	that	RB	isolates	of	M.	oryzae	

from	the	field	showed	less	telomere	variation	than	GLS	isolates	(FARMAN	2007;	

FARMAN	and	KIM	2005),	and	sequencing	the	telomeres	of	the	Oryza	isolate	70‐15	

failed	to	yield	any	remnant	of	MoTeRs.	Given	this	information	I	designed	

experiments	using	Southern	hybridization	techniques,	outlined	in	Chapter	4,	that	

compared	the	stability	of	telomeres	in	the	mitotic	progeny	of	an	Oryza	pathotype	

isolate	(70‐15)	to	the	stability	of	telomeres	in	mitotic	progeny	of	a	Lolium	pathotype	

isolate	(LpKY97‐1A)	after	two	infection	cycles	in	their	respective	hosts.	To	

determine	whether	instability	of	GLS	telomeres	was	a	general	phenomenon	among	

other	Lolium	specialized	isolates,	I	examined	the	telomere	stability	in	mitotic	

progeny	from	two	other	GLS	isolates.	

The	Southern	hybridization	experiments,	in	Chapter	4,	revealed	higher	

telomere	instability	in	GLS	isolates.		I	wanted	to	determine	if	at	least	some	of	this	

instability	could	be	due	to	MoTeRs.		To	accomplish	this,	the	experiments	outlined	in	

Chapter	5	utilized	shotgun‐cloning	followed	by	Southern	hybridization	and	

sequence	analysis	to	follow	changes	in	individual	chromosome	ends	among	

different	mitotic	progeny	of	LpKY97‐1A.	

Finally,	I	wanted	to	determine	how	widespread	MoTeRs	were	among	

different	host	specialized	types	of	M.	oryzae,	as	many	transposons	have	an	uneven	

distribution	(see	above).		The	only	distribution	data	available	for	MoTeRs	was	from	

a	preliminary	study	that	showed	that	they	were	not	in	the	rice‐infecting	laboratory	
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reference	strain	(70‐15),	and	were	present	in	a	few	Lolium	and	Triticum	specialized	

isolates	(Farman	personal	communication).		In	Chapter	6,	the	experiments	

investigated	the	distribution	of	MoTeRs	within	M.	oryzae	by	using	Southern	

hybridizations.		The	likely	evolutionary	relationship	of	MoTeR1	between	isolates	

was	determined	by	sequencing	and	evolutionary	analysis	of	MoTeR1s	from	isolates	

of	various	host‐specialized	forms.	
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Figure	1‐1.		Comparison	of	homologous	chromosome	end	structure	in	FH	and	70‐15.	
Four	pairs	of	chromosome	ends	are	shown	in	panels	A‐D.		The	telomere	and	the	
telomere‐like	sequences	are	represented	with	circles,	open	and	black	respectively.	
The	direction	of	the	telomere	is	indicated	by	a	black	arrow	in	FH	contigs	that	did	not	
end	in	the	terminal	telomere	repeat	array.	Features	discussed	in	the	text	are	labeled.	
Repetitive	elements	in	FH	telomeres	in	light	brown	boxes	represent	elements	that	
were	designated	as	MoTeRs.	Light	grey	shaded	regions	indicate	alignment	of	
sequence	between	70‐15	and	FH.	The	FH	telomere	11	had	alignments	with	two	
disparate	regions	in	70‐15,	so	both	of	those	alignments	are	shown.	Purple	triangles	
represent	sequences	that	were	present	in	FH,	but	absent	in	the	70‐15	genome.	
Figure	is	modified	from	(STARNES	et	al.	2012).	
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CHAPTER	TWO	
	

Materials	and	Methods	
	 	
2.1	Fungal	cultures	

Fungal	strains	of	Magnaporthe	oryzae	or	Magnaporthe	grisea	used	in	the	study	are	

listed	in	Table	2‐1.		Fungal	isolates	were	reactivated	on	oatmeal	agar	(OA),	and	

grown	under	constant	fluorescent	illumination	for	7	d.	Conidia	were	harvested	by	

adding	10	ml	of	0.1%	gelatin	and	gently	rubbing	the	plate	with	a	bent	glass	rod.	The	

conidial	suspensions	were	filtered	through	two	layers	of	cheesecloth,	adjusted	to	1	x	

105	conidia	per	ml	by	using	a	hemocytometer,	and	then	200	µl	of	the	spore	

suspension	was	spread	on	a	4%	water	agar	(WA)	plate.	This	plate	was	then	placed	

at	room	temperature	overnight	in	the	dark.		Germinated	single	spores	were	

visualized	under	a	dissecting	microscope,	cut	out	using	a	scalpel	blade,	and	

transferred	to	a	fresh	OA	plate.	After	approximately	3	d,	an	OA	agar	plug	containing	

newly	grown	mycelium	was	removed	from	an	area	adjacent	to	the	single	spore.		The	

plug	was	placed	in	a	test	tube	containing	10	ml	of	complete	media	(CM)	for	7‐10	

days	under	continuous	shaking	at	room	temperature	to	allow	for	growth	of	the	

culture.		

2.2	Plant	inoculation	and	conidia	collection	

Single	spore	cultures	of	70‐15	and	LpKY97‐1A	were	grown	on	OA	plates	for	7	d.		

Conidia	were	collected	by	flooding	the	OA	plate	with	10	ml	of	0.1%	gelatin	and	

gently	rubbing	the	plate	with	a	bent	glass	rod.		The	suspensions	were	filtered	

through	two	layers	of	cheesecloth.	Conidia	were	counted	using	a	hemocytometer	

and	the	conidial	suspensions	were	adjusted	to	a	final	concentration	of	1	x	105	
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conidia	per	ml	with	0.1%	gelatin.			Conidial	suspensions	were	sprayed	on	plants	

using	an	artisan’s	airbrush,	after	they	had	been	placed	into	separate	plastic	

inoculation	bags.	The	plants	in	their	respective	sealed	inoculation	bags	were	placed	

at	room	temperature	in	the	dark	for	approximately	18	h,	and	then	placed	in	a	

growth	chamber	with	a	12	h	day/night	cycle	at	27°C	day	and	21°C	night	(modified	

from	(KERSHAW	et	al.	1998)).		The	bags	were	partially	opened	for	a	period	of	

approximately	four	hours	to	allow	the	humidity	to	equilibrate.	Plants	were	then	

removed	from	the	bags	and	infections	were	allowed	to	proceed	for	seven	days.		

Leaves	showing	lesions	were	clipped	and	placed	in	a	moist	chamber	to	sporulate.		

After	3‐5	d	in	the	moist	chamber,	spores	were	removed	from	the	lesions	using	a	dry	

glass	rod,	and	then	suspended	into	2	ml	of	a	0.1%	gelatin	solution.	

2.3	Small	scale	DNA	extraction	

Mycelium	was	grown	at	room	temperature	with	shaking	for	7‐10	d.		The	mycelial	

ball	removed	from	the	10	ml	CM	using	sterilized	forceps,	and	blot	dried	on	paper	

towels.	The	dried	mycelium	was	placed	in	a	96	well	round	bottom	natural	

polypropylene	Whatman	uniplate	(Florham	Park,	NJ),	snap	frozen	in	liquid	nitrogen,	

and	placed	in	a	freeze	dryer	for	24	h.	Mycelium	was	ground	to	a	powder	by	shaking	

using	steel	beads	in	a	2000	GenoGrinder	(SPEX	Certiprep,	Metuchen,	NJ).		Lysis	

buffer	(0.5	M	NaCl,	1%	sodium	dodecyl	sulfate	[SDS],	10	mM	Tris‐Cl,	pH	7.5,	10	mM	

EDTA)	was	warmed	to	65°C.	One	milliliter	of	preheated	lysis	buffer	was	added	to	the	

ground	mycelium	and	incubated	for	30	min	at	65°C.		Then	2/3	volumes	of	(24:24:1)	

phenol:chloroform:isoamyl	alcohol	was	added,	and	samples	were	incubated	for	

another	30	min	at	65°C.	The	plate	was	then	centrifuged	for	30	min	at	3000	rpm	to	
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pellet	the	cell	debris.		After	centrifugation,	400	µl	of	supernatant	was	transferred	to	

a	new	96	well	plate,	and	240	µl	of	isopropanol	was	added.		The	DNA	was	then	

pelleted	by	centrifugation	for	20	min	at	3000	rpm.		The	supernatant	was	decanted	

and	the	pellet	was	washed	twice	with	70%	EtOH.		The	DNA	pellets	were	then	dried,	

and	redissolved	in	TE	buffer	(10	mM	Tris‐Cl,	1	mM	EDTA,	pH	8.0)	containing	

RNase	A	(100	µg/ml).	DNA	was	quantified	using	SYBR®	Gold	nucleic	acid	gel	stain	

(Molecular	Probes,	Inc.,	Eugene,	OR)	in	a	FluorImager	595	(Molecular	Dynamics	Inc.,	

Sunnyvale,	CA).		

2.4	Large	scale	DNA	preparation	

In	some	experiments	larger	quantities	of	DNA	was	needed.		Fungal	cultures	were	

activated	and	single	spore	cultures	were	generated	as	described	above	in	section	

2.1.	These	cultures	were	allowed	to	grow	for	three	days	after	which	a	small	agar	

plug	was	removed	and	placed	in	50	ml	of	CM.		The	culture	was	shaken	for	2	d	at	

room	temperature.	Then	the	cultures	were	blended	using	a	blender,	an	additional	

50	ml	of	CM	was	added,	and	they	were	placed	back	on	the	shaker	for	an	additional	

3	d.		The	fungal	cultures	were	then	collected	using	vacuum	filtration,	placed	in	50	ml	

BD	FalconTM	conical	tubes	(Becton,	Dickinson,	and	Company,	Franklin	Lakes,	NJ)	and	

snap	frozen	in	liquid	nitrogen.	The	samples	were	placed	in	a	freeze	dryer	for	24	h.		

Mycelium	was	ground	to	a	powder	using	a	glass	rod.		The	DNA	was	extracted	using	

the	procedures	discussed	above,	but	scaled	up	10	fold.		

2.5	End‐enriched	clone	library	preparation	

Differential	ethanol	precipitation	was	used	to	remove	polysaccharides	from	the	

large	scale	genomic	DNA	preparations	(AMASINO	1986).	After	purification,	the	DNA	
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was	redissolved	in	TE	buffer	at	a	concentration	of	1	µg/µl.	The	quality	of	DNA	

recovery	was	checked	on	a	0.7%	agarose	gel	run	at	40	v	for	160	min	in	0.5X	Tris‐

borate	EDTA	buffer	(TBE	[44.5	mM	Tris‐borate	and	1	mM	EDTA]).	The	genomic	

DNA	samples	(~	2	µg)	were	end‐repaired	to	produce	blunt	ends	using	the	End‐it	

Repair	Kit	(Epicenter	Technologies,	Madison,	WI).	The	end‐repaired	DNA	was	then	

ligated	to	EcoRV‐digested	pBluescript	KS	II+	vector	(~50	ng)	in	a	10	µl	volume.	The	

ligase	was	heat‐inactivated	by	incubation	at	70°C	for	20	min.		The	samples	were	

digested	overnight	at	37°C	with	20	units	of	PstI	following	the	manufacturer’s	

protocol	(New	England	Biolabs,	Beverly,	MA).		The	PstI	was	heat‐inactivated	by	

incubation	at	70°C	for	20	min.	The	reaction	mix	was	diluted	10‐fold	with	1X	ligation	

buffer,	and	the	PstI	digested	DNA	was	then	re‐ligated	using	T4	DNA	ligase	(New	

England	Biolabs,	Beverly,	MA).		Ligase	was	heat‐inactivated	by	heat	treatment	at	

70°C	for	20	min.	After	ligation,	excess	salts	were	removed	by	dialyzing	against	TE	

buffer	at	4°C	for	1	h.	Then	the	end‐enriched	plasmid	preparation	was	transformed	

into	the	E.	coli	strain	EPI300	by	electroporation.	Cells	were	incubated	for	1	h	in	SOC	

media,	and	100	µl	of	the	samples	were	spread	onto	LB	plates	with	selection	for	

ampicillin	resistance	(added	to	the	final	concentration	of	100	µg/ml).		

	Colonies	that	contained	telomeres	were	identified	by	colony	hybridization	

using	a	(TTAGGG)200‐300	probe	(FARMAN	2011).	Colonies	that	were	positive	for	

telomeres	via	Southern	hybridization	were	picked	and	transferred	to	a	10	ml	tube	

containing	LB	and	shaken	overnight	at	37°C.		Plasmids	were	extracted	using	the	

Zyppy	Plasmid	Miniprep	Kit	II	(Zymo	Research,	Orange,	California).	
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2.6	Cloning	of	MoTeR	Bands	unlinked	to	telomeres	

A	pBluescript	KS	II+	plasmid	vector	(Stratagene,	La	Jolla,	California)	was	linearized	

using	PstI.		The	sample	was	run	at	80	v	for	80	min	on	a	0.7%	agarose	gel	in	0.5X	TBE	

using	1	kb	Plus	DNA	LadderTm	(Life	Technologies,	Carlsbad,	CA)	as	a	molecular	size	

marker.	Linearized	plasmid	was	excised	from	the	gel,	and	purified	using	Qiaquick	

columns	(Qiagen,	Valencia,	CA).			Genomic	DNA	was	digested	with	PstI,	and	

electrophoresed	in	0.7%	agarose	at	35	v	for	24	h	in	0.5X	TBE.		The	area	of	the	

agarose	gel	corresponding	to	the	approximate	size	of	the	non‐telomeric	MoTeR	was	

extracted,	and	purified	using	Qiaquick	columns	(Qiagen,	Valencia,	CA).		The	

linearized	plasmid	was	ligated	to	the	genomic	DNA	preparation	using	T4	DNA	ligase.	

In	order	to	remove	excessive	salts,	samples	were	transferred	to	a	dialysis	column,	

and	incubated	at	4°C	for	1	h	in	TE	buffer	pH	7.5.	Then	1	µl	of	the	ligation	mix	was	

transformed	into	50	µl	of	Transformax	EPI300	electrocompetent	cells	(Epicenter,	

Madison,	WI)	by	electroporation.	Subsequently	950	µl	of	SOC	was	immediately	

added,	and	cells	were	incubated	for	1	h	at	37°C.		One	hundred	microliters	of	the	

sample	were	spread	onto	LB	plates	containing	ampicillin	(100	µg/ml)	and	X‐gal	(5‐

bromo‐4‐chloro‐3‐indolyl‐β‐D‐	galactopyranoside	at	a	concentration	of	40	μg/ml).	

Colony	lifts	were	performed	using	Whatman	filter	paper.	Colonies	that	were	positive	

for	telomere	sequence	via	Southern	hybridization	were	picked	and	transferred	to	a	

10ml	tube	containing	LB	and	shaken	overnight	at	37°C.		Plasmids	were	extracted	

using	the	Zyppy	Plasmid	Miniprep	Kit	II	(Zymo	Research,	Orange,	CA).	
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2.7	Primer	design		

Primers	were	designed	using	VectorNTI	version	7	(Invitrogen	Corporation,	

Carlsbad,	CA).		Primers	are	listed	in	Table	2‐1.	Primers	were	ordered	from	

Integrated	DNA	Technologies	(Coralville,	IA).	

2.8	Hybridization	probes		

The	telomere	probe	was	generated	by	PCR	using	two	primers	(TelomereF	and	

TelomereR)	with	no	template.	The	parameters	used	in	the	PCR	cycling	were:	94°C	

for	5	min,	followed	by	35	cycles	of	94	°C	for	30	s,	50°C	for	30	s,	and	72°C	for	1	min.	

The	final	extension	phase	was	at	72°C	for	2	min.		The	reaction	products	were	

separated	by	electrophoresis	on	a	0.7%	agarose	gel	in	0.5xTBE	at	60	v	for	120	min.	

Fragments	ranging	from	1.5‐2.0	kb	were	excised	from	the	gel,	and	were	then	gel	

purified	using	Qiaquick	columns	(Qiagen,	Valencia,	CA).			

MoTeR	probes	were	generated	as	follows:	The	primers	MoTeR1003F	and	

MoTeR1003R	were	used	to	generate	the	MoTeR1	probe	by	PCR	using	a	highly	

diluted	plasmid	clone	as	a	template.	The	MoTeR1(RT)	probe	was	amplified	by	PCR	

from	highly	diluted	plasmid	clones	as	a	template	with	the	primers	MoTeR1001F	and	

MoTeR1001R.		MoTeR2	template	was	amplified	by	PCR	from	highly	diluted	plasmid	

clones	as	a	template	with	the	primers	MoTeR2002F	and	MoTeR2002R.		The	

5’MoTeR	probe	was	amplified	by	PCR	using	the	primers	MoTeR2001F	and	

MoTeR2001R.			The	parameters	used	in	PCR	cycling	were:	95°C	for	5	min,	followed	

by	35	cycles	of	95°C	for	30	s,	56°C	for	60	s,	and	72°C	for	1	min,	with	a	final	extension	

phase	of	72°C	for	5	min.	The	PCR	products	were	fractionated	on	0.7%	agarose	gel	in	

0.5X	TBE	at	80V	for	80	min.	After	electrophoresis,	the	agarose	gel	was	stained	for	
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30	min	in	EtBr	and	0.5X	TBE.	Staining	solution	was	removed,	fresh	0.5X	TBE	was	

added,	and	the	gel	was	destained	for	20	min.	The	bands	corresponding	to	MoTeRs	

were	excised	and	extracted	using	the	Qiaquick	gel	extraction	kits	(Qiagen,	Valencia,	

CA).			

Genomic	Probes	were	generated	as	follows:	Probe	117B	was	amplified	by	

PCR	from	the	highly	diluted	plasmid	clone	117B1	with	the	primers	m117B1F	and	

m117B1R	using	ExTaq	polymerase.	Probe	31B001	template	was	amplified	from	

plasmid	31B	by	PCR	with	the	primers	31B001F	and	31B001R	using	ExTaq	

polymerase.	Probe	31B002	was	amplified	by	PCR	from	plasmid	31B	using	ExTaq	

polymerase	and	the	primers	31B002F	and	31B002R.		The	parameters	used	in	PCR	

cycling	were:	95°C	for	5	min,	followed	by	35	cycles	of	95°C	for	30	s,	60°C	for	60	s,	

and	72°C	for	1	min,	with	a	final	extension	phase	of	72°C	for	5	min.	The	PCR	products	

were	fractionated	on	0.7%	agarose	gel	in	0.5X	TBE	at	80V	for	80	min.	After	

electrophoresis,	the	agarose	gel	was	stained	for	30	min	in	EtBr	and	0.5X	TBE.	

Staining	solution	was	drained,	fresh	0.5X	TBE	was	added,	and	the	gel	was	destained	

for	20	min.	The	band	corresponding	to	the	genomic	probe	was	excised	and	

extracted	using	the	Qiaquick	gel	extraction	kits	(Qiagen,	Valencia,	CA).			

Purified	amplification	products	were	labeled	with	Redivue	‐32P	dCTP	(GE	

Healthcare,	Buckinghamshire,	United	Kingdom)	using	the	Prime‐a‐Gene	Labeling	

System	(Promega,	Madison,	WI).	 	

2.9	Southern	hybridization	

One	microgram	of	genomic	DNA	in	a	total	reaction	volume	of	50	µl	was	digested	

with	20	units	of	restriction	enzyme	in	the	appropriate	reaction	buffer	supplied	by	
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the	manufacturer	(New	England	Biolabs,	Inc.,	Ipswich,	MA).		Approximately	400	ng	

of	digested	genomic	DNA	was	loaded	onto	a	0.7%	agarose	gel,	and	DNA	was	

separated	electrophoretically	at	35	V	in	0.5x	TBE	for	24	h	or	48	h	at	4°C.		The	

agarose	gel	was	then	stained	in	0.5%	TBE	for	30	min	in	EtBr	added	to	a	final	

concentration	of	5	µg/ml,	and	destained	in	fresh	0.5X	TBE	for	20	min.	The	gel	was	

electroblotted	onto	a	Pall	Biodyne	B	charged	nylon	membrane	(PALL	Life	Sciences,	

Ann	Arbor,	MI)	using	a	GENIE	electroblotter	(Idea	Scientific,	Minneapolis,	MN)	for	

2	h	at	12	V.		The	membrane	was	placed	into	a	small	container	and	the	membrane	

bound	DNA	was	denatured	for	10	min	in	0.4N	NaOH.		The	0.4N	NaOH	was	drained,	

and	the	membrane	was	neutralized	for	10	min	in	2X	SSC	(1X	SSC	[saline‐sodium	

citrate]	is	0.15	M	sodium	chloride	and	0.015	M	sodium	citrate).	DNA	was	then	UV	

fixed	to	the	membrane	by	using	the	optimal	crosslink	setting	in	a	Spectrolinker	

(Spectronics	Corporation,	Westbury,	New	York).	The	membrane	was	prehybridized	

for	30	min	in	hybridization	buffer	(0.125	M	NaHPO4,	pH	6.2,	7%	SDS,	and	1	mM	

EDTA)	at	65°C.	The	probe	was	denatured	with	0.1	vol.	2N	NaOH	for	8	min,	and	then	

it	was	neutralized	with	0.1	vol.	1	M	Tris‐Cl	pH	7.4.	The	hybridization	buffer	used	in	

prehybridization	was	decanted	and	replaced	with	5	ml	of	fresh	hybridization	buffer.	

Then	probe	was	added	and	incubated	at	65°C	for	24	h.		Blots	were	washed	twice	

with	2xSSC	for	30	min	at	65°C,	and	then	washed	once	with	a	high‐stringency	wash	

(0.1%	SSC	and	0.1%	SDS)	for	30	min	at	65°C.		The	membranes	were	blotted	dry,	

wrapped	in	SaranTm	wrap	(S.	C.	Johnson	&	Son	Inc.,	Racine,	WI),	exposed	on	Storage	

Phosphor	Screens	(Molecular	Dynamics,	Sunnyvale,	California)	at	room	temperature	
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for	3	d.		The	screens	were	scanned	using	a	Typhoon	PhosphorImager	(GE	

Healthcare,	Buckinghamshire,	United	Kingdom).	

2.10	Cloning	of	MoTeR‐to‐MoTeR	junctions	

The	junctions	between	MoTeRs	were	amplified	by	PCR	using	different	combinations	

of	the	forward	and	reverse	primers:	MoTeRJ1F,	MoTeRJ2F,	MoTeRJ1R,	and	

MoTeRJ2R.		ExTaq	polymerase	was	used.	ExTaq	creates	a	mixture	of	blunt	ended	

PCR	amplicons	and	3	A	overhangs	in	PCR	amplicons	which	allows	a	PCR	amplicons	

to	be	directly	cloned	into	T‐vectors	at	an	approximate	80%	efficiency	(Takara,	

Madison,	WI).		The	parameters	used	for	PCR	were:	95°C	for	5	min,	followed	by	35	

cycles	of	95°C	for	30	s,	60°C	for	60	s,	and	72°C	for	1	min,	with	a	final	extension	phase	

of	72°C	for	5	min.	PCR	amplicons	were	ligated	into	pGEM	T‐easy	vectors	system	

using	the	manufacturer’s	protocols	(Promega,	Madison,	WI).		Transformax	EPI300	

electrocompetent	cells	(Epicenter,	Madison,	WI)	were	electroporated	with	plasmid,	

incubated	for	1	h	in	SOC	media,	and	plated	onto	LB	plates	with	selection	for	

ampicillin	resistance	(100	µg/ml)	and	blue/white	colony	screening	using	X‐gal	(40	

µg/ml).			Plates	were	incubated	at	37°C	overnight.		White	colonies	were	picked	and	

transferred	to	LB	broth	+	amp	and	incubated	overnight.		The	plasmids	were	then	

extracted	using	the	Zyppy	Plasmid	Miniprep	II	kit	(Zymo	Research,	Orange,	

California)	or	by	using	Qiagen	plasmid	preparation	kits	(Valencia,	California)	with	a	

Whatman	96	Well	lysate	clarification	UNIFILTER	(Florham	Park,	New	Jersey).		

2.11	Sequencing	

Purified	products	were	sequenced	following	the	protocols	outlined	in	the	BigDye	

Terminator	v3.1	Cycle	Sequencing	Kit	(Applied	Biosystems,	Foster	City,	CA).		
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Completed	BigDye	terminated	reactions	were	sent	to	the	University	of	Kentucky	

Advanced	Genetic	Technologies	Center	(AGTC)	for	sequencing.	Sequences	used	in	

subsequent	analyses	were	edited	using	ContigExpress®	in	VectorNTI	version	7	

(Invitrogen,	Carlsbad,	CA),	and	derived	from	forward	and	reverse	sequencing	

reactions.	

2.12	Tandem	repeat	analyses	

Sequences	of	MoTeR1	and	MoTeR2	were	analyzed	by	the	program	Tandem	Repeats	

Finder	version	4	(BENSON	1999).		The	default	parameters	were	used.		Additional	

editing	and	analysis	was	completed	manually	using	VectorNTI	version	7	(Invitrogen,	

Carlsbad,	CA).		Alignments	of	MoTeRs	were	prepared	using	Kalign	(LASSMANN	and	

SONNHAMMER	2005),	and	manually	edited	in	Jalview	version	2	(WATERHOUSE	et	al.	

2009)	or	VectorNTI	version	7	(Invitrogen,	Carlsbad,	CA).	

2.13	Relatedness	of	MoTER1	to	other	retrotransposons	

Full‐length	protein	sequences	with	reverse	transcriptase	domains	were	downloaded	

from	NCBI,	or	translated	from	DNA	sequence	using	VectorNTI	version	7	(Invitrogen,	

Carlsbad,	CA)	where	protein	sequence	was	unavailable	in	the	GenBank	database	

(Table	2‐3).	Putative	RT	domains	were	identified	using	protein	BLAST	domain	

search,	the	protein	sequences	were	then	trimmed	to	remove	regions	flanking	the	RT	

domain	and	aligned	using	Kalign	(LASSMANN	and	SONNHAMMER	2005).		Where	

necessary,	the	multiple	alignments	were	manually	edited	in	Jalview	version	2.4	

(WATERHOUSE	et	al.	2009),	and	AlignX®	in	VectorNTI	version	7(Invitrogen,	Carlsbad,	

CA).		Phylogenetic	analyses	using	the	neighbor‐joining	method	(NJ)	was	performed	

using	MEGA	version	4	(TAMURA	et	al.	2007).	Bootstrapping	(1,000	replications)	was	
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used	to	evaluate	the	statistical	support	for	the	NJ	tree.	The	Poisson	correction	

method	(PCM)	was	used	to	calculate	evolutionary	distance.			PCM	calculates	distance	

as	 መ݀ ൌ െln	ሺ1 െ 	two	between	differ	that	sites	of	proportion	the	is	p	where	ሻ݌

sequences.	

2.14	Statistical	methods	in	RFLP	comparisons	

Analyses	of	data	using	one‐way	ANOVA,	two‐way	repeated	measures	ANOVA,	least	

square	mean	t‐test	post	hoc,	and	two‐sample	t‐tests	were	completed	using	SAS	v9.2	

(SAS	Institute,	Cary,	N.C.).		p‐values	less	than	0.05	were	considered	statistically	

significant.	

2.15	Phylogenetic	analyses	of	MoTeR1	and	gene	loci	

DNA	sequences	were	trimmed	manually,	and	then	aligned	using	Kalign	(LASSMANN	

and	SONNHAMMER	2005).	Where	necessary,	the	multiple	alignments	were	manually	

edited	in	Jalview	version	2.4	(WATERHOUSE	et	al.	2009).	Phylogenetic	analyses	using	

the	NJ	method	was	performed	using	MEGA	version	4	(TAMURA	et	al.	2007).	

Bootstrapping	(1,000	replications)	was	used	for	statistical	support	in	the	trees	

generated.	The	Kimura‐2	parameter	method	was	used	to	calculate	evolutionary	

distance.	
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CHAPTER	THREE	

	
	

Characterization	and	Variation	of	MoTeR	Repeats	within	GLS	Isolates	
	

3.1	Introduction	

Non‐long	terminal	repeat	(non‐LTR)	retrotransposons	have	been	identified	in	all	

major	groups	of	eukaryotes	(ARKHIPOVA	and	MESELSON	2000;	GLADYSHEV	and	ARKIPOVA	

2010).	Based	on	phylogenetic	analyses	of	protein‐coding	sequences,	non‐LTR	

retrotransposons	have	been	suggested	to	be	the	oldest	type	of	mobile	elements	that	

use	a	reverse	transcriptase	to	create	new	copies	(MALIK	and	EICKBUSH	2001;	MALIK	et	

al.	2000).			

Functional	non‐LTR	retrotransposons	encode	proteins	with	several	different	

enzymatic	activities,	which	allow	them	to	utilize	a	relatively	simple	insertion	

mechanism	(CHABOISSIER	et	al.	2000;	FENG	et	al.	1996;	LUAN	et	al.	1993).		First,	a	

chromosomal	target	site	is	cleaved	by	an	endonuclease	encoded	by	the	

retrotransposon.	Depending	on	the	element,	the	endonuclease	may	be	a	restriction‐

like	endonuclease	(REL‐endo)	(MALIK	et	al.	1999)	or	an	apurinic/apyrimidinic	(APE)	

endonuclease		(ZINGLER	et	al.	2005a).		Next,	the	3’	end	of	the	cleaved	DNA	is	used	as	a	

primer	for	the	reverse	transcriptase	(encoded	by	the	retrotransposon)	to	

polymerize	a	cDNA	copy	of	the	RNA	transcript	at	the	target	site.	This	method	is	

typically	called	target	primed	reverse	transcription	(TPRT).	The	second	strand	is	

then	synthesized,	though	the	mechanism	by	which	this	occurs	is	still	unclear	(HAN	

2010).		
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There	is	considerable	structural	variability	among	non‐LTR	retrotransposons	

which	could	cause	variation	in	the	precise	steps	described	above	(EICKBUSH	and	

MALIK	2002).	The	oldest	lineages	of	non‐LTR	retrotransposons	have	a	REL‐endo	

domain	located	on	the	carboxy	terminal	(C‐terminal)	side	of	the	RT	domain,	which	

is	encoded	by	a	single	open	reading	frame	(ORF).		The	more	recent	lineages	of	non‐

LTR	retrotransposons	lack	the	REL‐endo	domains	and	have	a	more	complex	

structure.	They	have	acquired	a	second	open	reading	frame	(ORF1)	that	is	located	

upstream	of	the	RT	domain	(ORF2).	ORF1	is	thought	to	play	a	role	similar	to	gag	

proteins	of	retroviruses	(DAWSON	et	al.	1997),	it	has	nucleic	acid	chaperone	activity	

(MARTIN	and	BUSHMAN	2001),	and	RNA	binding	activity	(KOLOSHA	and	MARTIN	2003).	

In	ORF2,	the	APE	domain	is	located	on	the	amino	terminal	side	(N‐terminal)	of	the	

RT	(MALIK	et	al.	1999).			

Two	other	regions	play	an	important	role	in	non‐LTR	retrotransposon	

function,	and	these	are	the	5’	and	3’	untranslated	regions	(UTRs).	The	5’	and	3’	UTRs	

are	highly	variable	between	various	non‐LTR	retrotransposons.		The	5’	UTR	

contains	internal	promoter	activity	(MIZROKHI	et	al.	1988),	but	this	promoter	can	

frequently	be	replaced	(HAAS	et	al.	2001;	KHAN	et	al.	2006),	giving	rise	to	5’	UTR	

sequence	variability	among	elements	from	different	species.		Some	variation	at	the	

5’	UTR	between	elements	within	the	same	genome	may	also	be	due	to	frequent	

truncation	as	a	result	of	incomplete	reverse	transcription	(AKSOY	et	al.	1990;	SZAK	et	

al.	2002).		

The	3’	UTR	typically	has	a	specific	sequence/structure	that	is	recognized	by	

the	reverse	transcriptase	(ANZAI	et	al.	2005;	LUAN	and	EICKBUSH	1995;	OSANAI	et	al.	
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2004).			At	the	3’	boundaries	of	non‐LTR	retrotransposons	there	are	one	of	three	

different	sequence	types.	In	some	non‐LTR	retrotransposons,	a	variable	length	

polydeoxyadenosine	(polyA)	sequence	is	located	at	the	3’	boundary.	Two	examples	

of	variable	polyA	sequence	at	the	3’	boundary	are	the	L1	retrotransposon	where	the	

polyA	tract	varied	from	27	to	54	nucleotides	(DOMBROSKI	et	al.	1991)	and	the	TRAS1	

retrotransposon	where	the	length	of	the	poly(A)	tract	varied	from	44	to	72	

nucleotides	(OKAZAKI	et	al.	1995).		Other	non‐LTR	retrotransposons	have	short	

sequence	repeats	(STRs).	For	example,	the	non‐LTR	retrotransposons	Dong	(XIONG	

and	EICKBUSH	1993),	Q	(BESANSKY	et	al.	1994),	and	I	(FAWCETT	et	al.	1986)	end	in	TAA	

repeats,	the	CR1	retrotransposon	ends	in	the	repeat	ATTCTGT	(BURCH	et	al.	1993),	

and	the	R1	retrotransposons	end	in	GTC	or	TA	repeats	(EICKBUSH	and	EICKBUSH	

1995).			The	last	type	of	3’	end	found	in	non‐LTR	retrotransposons	is	an	apparent	

absence	of	either	STRs	or	polyA	sequence	(HAN	2010).	

The	Magnaporthe	oryzae	Telomeric	Retrotransposons	(MoTeRs)	are	

classified	as	non‐LTR	retrotransposons	due	to	the	lack	of	long	terminal	repeats	

bordering	the	ends	of	the	repeats.	The	larger	of	the	repeats	(MoTeR1)	is	5	kb	and	

has	a	reverse	transcriptase‐like	domain.		MoTeR2	is	a	smaller	repeat	being	only	

1.7	kb	in	length,	and	lacks	a	reverse	transcriptase	domain.		These	repeats	are	found	

in	telomeres	and	are	bordered	by	telomere	repeats	(TTAGGG)n	(FARMAN	2007;	

STARNES	et	al.	2012).	There	was	little	else	known	about	the	specific	structure	of	these	

elements.		The	experiments	in	this	chapter	sought	to	address	the	structure,	genomic	

distribution,	and	variability	of	the	MoTeRs	within	GLS	isolates	of	M.	oryzae.	
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3.2	Results	

3.2.1	MoTeRs	structure	and	classification	

To	describe	the	commonality	between	MoTeR1	and	MoTeR2,	the	DNA	sequences	

were	aligned.	This	revealed	that	the	elements	had	extensive	similarity	at	their	5’	

ends,	as	there	are	only	two	mismatches	(one	mismatch	at	position	7	where	there	is	a	

G/A	mismatch	and	another	at	position	63	where	there	is	a	G/A	mismatch)	in	the	

first	870	bp	of	alignment.	There	is	also	perfect	sequence	identity	of	77	bp	at	the	3’	

ends	of	the	two	MoTeRs.		The	sequences	did	not	share	similarity	outside	of	these	

two	regions.	There	were	numerous	short	tandem	repeat	(STR)	motifs	within	

MoTeRs	that	were	found	using	Tandem	Repeats	Finder	(Table	3‐1).	Six	of	the	STRs,	

all	located	in	the	5’	UTR,	were	shared	between	the	elements.	The	two	STRs	closest	to	

the	telomere,	STR(A)	[CCCGAA]	and	STR(B)	[CCCAAA],	are	very	similar	in	sequence	

to	the	telomere	repeat	(CCCTAA)n	found	in	M.	oryzae.		MoTeR1	had	five	unique	

STRs,	only	one	of	which	(repeat	I)	was	located	in	the	ORF.		MoTER2	had	an	

additional	five	unique	STRs,	three	of	which	were	located	within	the	ORF	

(Figure	3‐1).		

In	the	region	where	no	sequence	similarity	was	found	between	MoTeR1	and	

MoTeR2,	each	element	had	an	ORF	encoding	different	proteins.	In	MoTeR1	an	ORF	

coding	for	a	1070	amino	acid	protein	was	detected,	and	in	MoTeR2	an	ORF	coding	

for	a	204	amino	acid	protein	was	discovered.	These	ORFs	are	shown	in	Figure	3‐1	as	

solid	arrows.	

Hypothetical	protein	sequences	were	translated	from	the	DNA	sequence	

using	VectorNTI	version	7.0.	Blast	searches	in	GenBank	using	the	non‐redundant	
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protein	sequence	database	were	then	used	to	determine	if	there	was	similarity	to	

other	known	elements.	The	MoTER2	predicted	protein	was	not	similar	to	any	

known	protein.	A	reverse	transcriptase	domain	(Pfam	ID:	PF00078)	was	detected	

within	the	MoTER1	predicted	protein,	and	this	protein	showed	significant	similarity	

to	protein	sequence	from	CNL1,	a	telomeric	retrotransposon	from	Cryptococcus	

neoformans,	the	SLACS	retrotransposon	in	Trypanosoma	brucei	and	Leishmania	

braziliensis,	and	CRE1	and	CRE2	retrotransposon	from	Crithidia	fasciculate	(GABRIEL	

et	al.	1990).	These	retrotransposons	are	described	as	being	in	the	CRE‐like	clade	of	

non‐LTR	retrotransposons.	Additionally,	MoTeR1	was	similar	to	two	other	members	

of	CRE‐like	retrotransposons,	which	were	recently	discovered	in	

Fusarium	oxysporum	(FoNLR9)	and	Fusarium	verticillioides		(FvNLR4)	(NOVIKOVA	et	

al.	2009).	The	similarity	of	the	MoTeR	RT	domain	to	other	non‐LTR	

retrotransposons	suggested	that	the	MoTeRs	are	non‐LTR	retrotransposons,	and	

consequently	the	elements	were	designated	Magnaporthe	oryzae	Telomeric	

Retrotransposons	(MoTeRs).		This	finding	was	significant	as	the	MoTeRs	are	the	

first	CRE‐like	retrotransposons	to	be	found	in	M.	oryzae.	

The	top	Blast	match	for	the	MoTeR1	RT	was	to	a	hypothetical	protein	in	

Nectria	haematococca.		Further	analysis	of	the	Nectria	protein	indicated	that	it	was	

encoded	by	a	previously	unknown	non‐LTR	retrotransposon	that	was	present	in	

telomeric	and	non‐telomeric	locations	in	the	N.	haematococca	genome.		Full‐length	

elements	were	only	present	near	telomeric	locations	(data	not	shown).		This	

retrotransposon	was	thus	named	Nectria	haematococca	Telomeric	Retrotransposon	
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(NhTeR1),	and	the	DNA	sequence	of	the	full‐length	(4.3	kb)	element	is	provided	in	

Appendix	A.			

To	understand	the	relationship	of	the	MoTeR1	hypothetical	reverse	

transcriptase	with	known	reverse	transcriptases	within	M.	oryzae	and	other	

organisms,	a	phylogenetic	analysis	needed	to	be	performed.	To	accomplish	this,	

full‐length	protein	sequences	with	reverse	transcriptase	domains	were	downloaded	

from	NCBI,	or	translated	from	DNA	sequence	where	protein	sequence	was	

unavailable	in	the	GenBank	database	(Table	2‐3).	The	putative	RT	domains	were	

identified	using	protein	BLAST	domain	search,	the	protein	sequences	were	then	

trimmed	to	remove	regions	flanking	the	putative	RT	domain,	and	aligned.		Where	

necessary,	the	multiple	alignments	were	manually	edited	to	align	the	conserved	

motifs	within	the	RT	(XIONG	and	EICKBUSH	1990).		Phylogenetic	analyses	using	the	

neighbor‐joining	method	(NJ)	were	performed.	Bootstrapping	(1,000	replications)	

was	used	to	evaluate	the	statistical	support	for	the	NJ	tree.	The	Poisson	correction	

method	(PCM)	was	used	to	calculate	evolutionary	distance.		

Based	on	the	phylogenetic	analysis,	the	MoTeR1	reverse	transcriptase	was	

did	not	group	with	any	of	the	previously	discovered	reverse	transcriptases	in	

M.	oryzae,	marked	in	bold	text	in	Figure	3‐2.	MoTeR1	was	most	similar	to	NhTeR1,	

Cnl1,	and	FoNLR9	(Figure	3‐2),	which	are	elements	also	located	in	or	near	telomeres	

in	other	fungi.	This	group	was	closely	associated	with	the	relatively	ancient	CRE	

clade,	which	insert	in	a	sequence‐specific	manner	(EICKBUSH	2002).	MoTeR1	was	

somewhat	more	distantly	related	to	the	Giardia	early	non‐LTR	insertion	elements	
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(Genie),	which	inserts	into	a	repeated	sequence	located	near	telomeres	(BURKE	et	al.	

2002).		

The	CRE‐like	retrotransposons	typically	have	N‐terminal	zinc‐finger	nucleic	

acid	binding	motifs	with	the	consensus	sequence	C(X2)C(X12)H(X4‐5)H,	and	a	

C‐terminal	REL	domain	with	the	consensus	sequence	C(X1‐3)C(X7‐8)H(X3‐4)C(X9‐

10)RHD/N(X19‐33)E(X9‐21)R/KPD	β‐turn	D/E		(where	X	may	be	any	amino	acid).	

These	motifs	are	believed	to	be	involved	in	sequence	specific	integration	

(CHRISTENSEN	et	al.	2005;	YANG	et	al.	1999).		Motivated	by	the	similarity	of	the	

MoTeR1	RT	domain	to	these	retrotransposons,	the	MoTeR1	protein	sequence	was	

analyzed	for	these	motifs.	Two	putative	zinc‐finger	binding	motifs	were	discovered	

within	MoTER1	with	the	sequence	C(X2)C(X9)H(X4)H	and	C(X2)C(X12)H(X4)H.		The	

sequences	of	the	MoTeR1,	NhTeR1,	FoNLR9,	Cnl1,	SLACS,	CZAR,	CRE1,	and	CRE2	

were	aligned	using	Kalign,	and	manually	edited	to	show	the	alignment	of	the	

conserved	motifs	of	the	C‐terminal	REL	domain	(Figure	3‐3).	MoTeR1	shared	many	

of	the	REL	domain	conserved	motifs	with	other	CRE‐like	retrotransposons.		These	

conserved	motifs	in	MoTER1	are	indicated	by	bold	print	while	the	differences	are	in	

plain	text	in	the	sequence	C(X2)C(X7)H(X3)C(X9)RHD(X18)E(X48)RAD	β‐turn	D.		Most	

CRE‐like	transposons	have	a	short,	non‐conserved	region	in	the	REL	domain	

between	the	EP	and	the	RPD	conserved	motifs	(Figure	3‐3),	mostly	between	8‐15	

amino	acids	(i.e.	EP(X8‐15)RPD).		MoTeR1	has	a	large	extension	of	this	

non‐conserved	region	(X47)	whereas	other	retrotransposons	closely	related	to	

MoTeR1	have	much	shorter	non‐conserved	regions	(NhTeR1	and	FoNLR9	both	have	

X7).	MoTeR1,	NhTeR1,	and	FoNLR9	did	not	have	the	characteristic	RPD	domain	
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associated	with	CRE‐like	retrotransposons,	and	instead	had	an	RAD	domain	

(Figure	3‐3).		

3.2.2	Genomic	distribution	of	MoTeRs	among	GLS	isolates	

Full	length	MoTeRs	were	found	in	the	telomeres	of	the	Lolium	pathotype	isolate	FH,	

but	not	in	the	genome	sequence	of	70‐15.	To	determine	if	MoTeRs	were	present	in	

telomeric	locations	in	other	Lolium‐specialized	isolates,	DNA	samples	were	digested	

with	PstI.			When	probing	genomic	DNA	digested	with	PstI	with	telomere	probe,	the	

hybridizing	fragments	will	include	the	telomere	sequence	to	first	PstI	site	in	from	

the	chromosome	end.	The	MoTeRs	do	not	have	PstI	sites	in	their	sequence	and	so	

the	MoTeRs	arrays	within	that	fragment	should	remain	intact	within	the	telomere	

fragments.	Following	digestion,	the	DNA	was	fractionated	by	electrophoresis,	and	

then	electroblotted	on	a	nylon	membrane.		The	blots	were	then	hybridized	

sequentially	with	a	MoTeR1‐specific	probe,	MoTeR1‐specific	probe	(RT	sequence),	a	

MoTeR1‐specific	(3’)	probe,	a	MoTeR2‐specific	probe,	and	the	telomere	probe.		

Between	each	of	the	hybridizations	the	blots	were	stripped	to	remove	the	previous	

signals.		

Every	GLS	isolate	analyzed	with	telomere	probe	in	the	Southern	

hybridization	had	different	telomere	fingerprint	patterns	(Figure	3‐4‐A).	The	

hybridization	patterns	for	the	telomere	(Figure	3‐4‐A),	MoTeR1	(Figure	3‐4‐B),	and	

MoTeR2	(Figure	3‐4‐E)	probes	revealed	that	MoTeR1	and	MoTeR2	mainly	

cohybridized	with	the	telomeric	fragments	and	not	to	other	internal	PstI	fragments.	

With	regards	to	MoTeR2	there	was	only	one	notable	exception	in	which	the	MoTeR2	

did	not	cohybridize	with	telomere	(marked	with	a	red	asterisk	in	Figure	3‐4‐E).	
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There	were	five	discernible	exceptions	where	fragments	hybridized	strongly	to	the	

MoTeR1	probe,	but	did	not	hybridize	to	the	telomere	probe	(highlighted	with	

asterisks	in	Figure	3‐4‐B).		These	were	found	in	the	isolates	CHRF,	KS330,	RGNJ,	and	

TFMS.		The	non‐telomere	hybridizing	MoTeR1	fragment	in	RGNJ	(marked	with	a	red	

arrow	in	lane	12	Figure	3‐4‐B)	was	cloned	and	partially	sequenced.		This	revealed	

384	base	pairs	of	unknown	sequence	followed	by	a	highly	truncated	MoTeR1	on	one	

end	of	the	plasmid	insert,	and	a	MGRL‐3	on	the	other	side	of	the	plasmid	insert	

(Figure	3‐5).			A	faint,	non‐telomeric	MoTeR1‐hybridizing	fragment	was	observed	in	

10/14	isolates	(Figure	3‐4B	marked	with	a	red	arrow	in	lane	14).	This	fragment	was	

cloned	from	TFMS	and	sequenced.	The	resulting	TFMS	fragment	was	1886	bp	in	

length	(Figure	3‐5).		The	sequence	did	not	contain	any	telomere	repeats	indicating	it	

was	likely	at	an	internal	locus.	Blasting	this	sequence	against	GenBank	indicated	

sequence	similarity,	from	position	315‐629,	to	the	telomeric	clone	72H05	located	on	

telomere	12	in	70‐15	from	position	8024‐8339	(REHMEYER	et	al.	2006).	There	were	

only	15	mismatches	between	the	sequences.	The	local	blast	search	of	the	TFMS	

fragment	sequence	to	MoTeR1	indicated	there	was	sequence	similarity	from	

positions	629‐1716	in	the	TFMS	fragment	to	positions	4021‐5035	in	MoTeR1.	

However,	there	were	a	high	number	of	mismatches	(217)	and	gaps	(15)	in	the	

alignment,	which	results	in	the	faint	intensity	of	the	MoTeR1	fragment	in	the	

Southern	blots.	

The	Southern	hybridization	data	were	tabulated	to	provide	information	on	

MoTeRs	in	telomeres	of	the	GLS	isolates	(Table	3‐2).		Telomere	hybridizing	PstI	

fragments	were	counted	as	one	telomere	for	the	purposes	of	this	experiment.	This	
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method	may	underestimate	the	number	of	telomeres	if	some	telomeric	fragments	

comigrate	during	electrophoresis	prior	to	Southern	analysis.	A	total	of	136	

telomere‐hybridizing	bands	were	counted	with	an	average	of	approximately	11	

bands	per	isolate.	Most	of	these	telomere‐hybridizing	fragments	cohybridized	with	

at	least	one	of	the	MoTeRs	(123	out	of	136),	which	suggested	that	most	of	the	

telomeres	in	GLS	isolates	have	MoTeRs.		In	6	out	of	the	14	isolates	analyzed	all	of	the	

visible	telomere‐hybridizing	fragments	cohybridized	with	MoTeRs.	Some	of	the	

telomere	fragments	cohybridized	with	either	MoTeR1	or	MoTeR2,	while	others	

cohybridized	with	both	MoTeRs.	There	were	only	13	telomere‐hybridizing	

fragments	that	appeared	to	lack	MoTeRs	altogether	(Table	3‐2).		

The	method	used	above	will	underestimate	the	number	of	telomeres,	as	

several	telomeric	PstI	fragments	may	migrate	together	during	electrophoresis	due	

to	their	similar	size.		To	gain	a	better	estimate	of	MoTeR	copy	numbers	in	the	

Lolium‐specialized	isolates,	the	number	of	copies	was	estimated	by	visual	means,	

taking	the	relative	hybridization	intensities	into	account.	Densitometric	scanning	of	

the	lanes	in	the	Southern	blot	was	also	used	to	provide	an	independent	assessment	

of	copy	numbers.	These	estimations	are	provided	in	Table	3‐3.	As	seen	in	the	table,	

visual	estimation	tended	to	underestimate	the	number	of	copies	present	within	

intensely	hybridizing	fragments,	and	thus	the	densitometric	scanning	method	was	

considered	more	reliable	in	determining	the	number	of	copies	present	based	on	the	

intensity	of	the	hybridizing	fragments	in	the	Southern	Blots.	Based	on	densitometric	

scanning,	there	were,	on	average,	~14	telomeres	per	isolate	with	a	range	from	~10	

to	~17.		The	average	copy	number	of	MoTeR1	was	15.5	with	a	range	from	10	to	27.		
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The	copy	number	of	MoTeR2	was	lower	with	an	average	of	11.3	per	isolate,	and	a	

range	from	0	to	23.		CHRF	exhibited	the	highest	MoTeR	copy	numbers	with	~50,	

while	PL3	had	the	least	with	~15	MoTeR1s	and	no	MoTeR2s.		

3.2.3	Variability	of	MoTeRs	among	Lolium	pathotype	isolates	

There	is	one	BamHI	site	present	within	MoTeR1	and	MoTeR2	(position	4579‐4585	

in	MoTeR1	and	position	1020‐1025	in	MoTeR2).	When	the	genomic	DNA	is	digested	

with	BamHI	some	of	the	fragments	should	contain	the	terminal	MoTeRs	with	their	

respective	telomere	repeats	(Figure	3‐6).		It	was	believed	that	variation	of	the	

terminal	MoTeRs	among	different	Lolium	pathotype	isolates	could	be	detected	by	

Southern	analysis	of	BamHI	digests	with	a	telomere	probe.		A	preliminary	analysis	

of	BamHI‐digested	DNAs	from	Lolium‐specialized	isolates	with	a	telomere	probe	

produced	a	small	number	of	intense	signals,	which	was	believed	to	be	due	to	the	

presence	of	conserved	MoTeR	sequences	at	multiple	chromosome	ends	(i.e.	the	

terminal	MoTeRs).		However,	the	sizes	of	the	intense	signals	varied	between	

different	GLS	isolates,	implying	that	different	isolates	contain	different	MoTeR	

variants	(data	not	shown).		

To	expand	upon	this	finding	Southern	hybridization	analyses	of	genomic	

DNA	digested	with	BamHI	from	different	strains	was	used	to	detect	variation	of	

MoTeRs	in	the	Lolium	pathotype	isolates	using	4	different	probes.		Additionally,	

different	cultures	of	the	same	fungal	isolate	were	used	in	KS320,	LpKY97‐1A,	

LpOH97‐1,	and	RGNJ	to	see	if	variation	could	exist	within	mitotic	progeny	of	the	

same	isolate.	The	four	probes	used	in	the	analyses	include:	telomere,	MoTeR(5’),	

MoTeR1(RT),	and	MoTeR2.	The	MoTeR(5’)	probe	could	hybridize	to	both	MoTeR1	
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and	MoTeR2	due	to	the	similarity	of	the	5’	ends.	This	probe	could	potentially	

hybridize	to	six	different	fragments:	including	those	that	have	terminal	MoTeRs	and	

various	different	configurations	of	MoTeR‐MoTeR	junctions	(See	Figure	3‐6).				The	

MoTeR1(RT)	probe	was	limited	to	hybridization	with	terminal	MoTeR1s	or	in	

fragments	within	MoTeR1‐MoTeR	junctions.	The	MoTeR2	probe	was	limited	to	

hybridization	with	subterminal	elements.	

When	probed	with	the	telomere	probe	two	intense	signals	were	present	in	

18	of	the	27	of	the	isolates	(Figure	3‐7‐A	in	the	region	marked	with	black	boxes).	

These	intense	telomere	signals	cohybridized	with	the	MoTeR(5’)	probe	(Figure	

3‐7‐B).		The	higher	intensity	of	the	signals	and	the	cohybridization	of	the	MoTeR(5’)	

probe	indicates	that	multiple	chromosome	ends	contain	the	same	size	terminal	

MoTeR	copies	within	an	isolate.		The	larger	sized	fragments	(black	box	MoTeR1	

Figure	3‐7‐A)	corresponds	with	MoTeR1	based	on	cohybridization	of	the	

MoTeR1(RT)	(Figure	3‐7‐B)	and	MoTeR(5’)	(Figure	3‐7‐C)	with	this	fragment,	while	

the	smaller	fragments	(black	box	MoTeR2	Figure	3‐7‐A)	corresponds	with	the	

expected	size	of	the	terminal	MoTeR2	and	cohybridized	with	MoTeR(5’)	(Figure	3‐

7‐B).	Size	variation	in	the	terminal	MoTeR	copies	was	observed	between	isolates	

(Figure	3‐7‐A).		For	example,	the	terminal	MoTeR1	copies	in	FH	(lane	5	Figure	3‐7‐A	

marked	with	a	red	arrow)	are	smaller	than	terminal	MoTeR1s	in	CHW	(lane	3	

Figure	3‐7‐A	marked	with	a	red	arrow).		The	difference	in	size	variation	was	also	the	

same	for	MoTeR2	in	these	isolates,	with	the	terminal	MoTeR2s	in	FH	being	smaller	

than	the	corresponding	band	in	CHW	(lanes	5	and	3	respectively,	in	Figure	3‐7‐A	

marked	with	a	green	arrow).	The	terminal	MoTeRs	in	RGNJ	were	intermediate	in	
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size	between	FH	and	CHW	(lane	7	Figure	3‐7	A).	Since	it	had	already	been	

established	that	full	length	MoTeR1	and	MoTeR2	share	the	same	5’	ends	in	the	

isolate	FH	(Figure	3‐1),	the	likely	explanation	of	the	size	variation	of	terminal	

MoTeRs	among	different	isolates	is	due	to	differences	in	the	shared	5’	sequence	

between	MoTeR1	and	MoTeR2.	

Five	isolates	(CHRF,	FaKY97‐1A,	KS320,	and	RCHMD)	lacked	the	intense	

signal	expected	from	full‐length	telomeric	MoTeR1s,	but	instead	showed	multiple	

bands	with	weaker	signals	around	the	expected	size,	indicating	that	these	isolates	

have	variation	in	the	terminal	MoTeR1s	(Figure	3‐7‐A).	Based	on	the	lack	of	

MoTeR(5’)	hybridization,	LpMS97‐1	(lane	16)	and	the	WK	isolates	(lanes	32‐34)	did	

not	have	any	full‐length	MoTeRs	in	their	genomes	(Figure	3‐7‐B).		The	WK	isolates	

did	retain	5’	truncated	MoTeRs	as	was	seen	with	hybridization	signals	to	

MoTeR1(RT)	and	MoTeR2	probes	(lanes	32‐34	Figure	3‐7	C	and	D	respectively).	The	

truncated	MoTeRs	in	the	WK	isolates	cohybridized	with	the	telomere	probe	

indicating	that	truncated	MoTeRs	are	still	located	at	telomeres.	In	the	LpMS97‐1	

isolate,	no	hybridization	to	the	MoTeR2	probe	was	observed,	which	suggests	that	it	

either	does	not	have	MoTeR2	or	any	MoTeR2s	are	truncated.	There	was	a	faint	

signal	with	the	MoTeR1(RT)	probe	in	LpKYMS97‐1A	that	cohybridized	with	the	

telomeric	fragment	signifying	that	it	did	have	a	truncated	MoTeR1.	There	were	no	

MoTeR	hybridization	signals	in	the	rice	infecting	isolate	70‐15.	

Different	laboratory	cultures	of	the	same	isolate	generally	showed	the	same	

telomere	profiles,	as	seen	in	strains	KS320,	LpOH97‐1,	and	RGNJ.		LpKY97‐1A	

showed	an	appearance	of	a	new	telomere	band	in	one	subculture	(marked	with	a	
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red	asterisk	in	Figure	3‐7‐A).		This	new	telomeric	fragment	cohybridized	with	

MoTeR1(RT),	but	didn’t	cohybridize	with	MoTeR(5’)	probe.		There	were	several	

additional	new	bands	in	the	LpKY97‐1A	culture	that	were	seen	with	the	

MoTeR1(RT)	and	MoTeR2	hybridizations.	While	no	new	telomeric	fragments	were	

seen	in	RGNJ,	the	MoTeR2	probe	revealed	some	polymorphisms	between	the	

cultures	(lanes	7	and	8	Figure	3‐7‐D).		

3.2.4	Structural	Variability	of	MoTeRs	within	FH	

Variability	in	the	terminal	MoTER1s	and	MoTeR2s	were	observed	in	the	Southern	

Blots	of	BamHI	digested	genomic	DNA	from	various	GLS	isolates	(Figure	3‐7).		To	

understand	the	cause	of	this	variability,	I	first	analyzed	three	size	variants	of	

MoTeR1s	(4.6	kb,	4.9	kb,	and	5.0	kb)	that	had	been	captured	in	telomeric	clones	

from	FH	and	sequenced	(sequence	data	generated	by	Dr.	Farman).	The	sequences	

were	aligned	using	VectorNTI	and	manually	edited.		These	MoTeR1s	had	variation	

near	the	5’	end	of	the	sequence	(Figure	3‐8).	The	4.6	kb	MoTeR1	was	shorter	due	to	

a	truncation	at	the	5’	end.		The	4.9	kb	MoTeR1	was	missing	one	copy	of	STR(G)	and	

one	copy	of	STR(H)	that	were	found	in	the	4.6	kb	and	5.0	kb	MoTeR1s.	In	addition,	

the	4.9	kb	MoTeR1	had	a	tandem	duplication	of	the	sequence	TTACCTGCTTT,	which	

had	not	previously	been	identified	as	a	tandem	repeat.		The	4.6	kb	and	5.0	kb	

element	only	have	one	copy	of	the	TTACCTGCTTT	sequence.		Other	than	the	

difference	at	the	5’	end,	there	are	very	few	mismatches	within	the	different	size	

variants	(data	not	shown).		

	

	



	

	 70

3.2.5	Factors	involved	in	size	variation	of	MoTeRs	

If	a	GLS	isolate	had	a	longer	terminal	MoTeR1	it	also	tended	to	have	a	longer	

terminal	MoTeR2	indicating	that	the	differences	among	different	isolates	could	be	

due	to	variation	in	the	common	sequences	at	the	5’	ends	of	the	MoTeRs.		For	

example,	CHW	showed	longer	MoTeR1	and	MoTeR2	fragments	than	LpKY97‐1A,	

which	in	turn	had	longer	fragments	than	did	FH	and	RGNJ	(Figure	3‐7).		Variation	in	

short	tandem	repeats	found	near	the	5’	end	of	the	MoTeR1s	had	already	been	seen	

within	FH	(Figure	3‐8),	so	it	was	believed	that	extension	or	deletion	of	repeats	

within	the	MoTeRs	could	account	for	this	variation.		Extension	of	any	of	the	5’	end	

STRs	could	lead	to	the	size	variation	observed	in	Southern	analyses	of	BamHI	

digests	with	a	telomere	probe.			

To	examine	whether	variation	in	5’	STRs	could	account	for	size	variation	

MoTeR	sequences	obtained	previously	or	generated	from	MoTeR‐MoTeR	junctions	

were	aligned	and	analyzed	for	insertion	or	deletion	of	sequences.		The	new	

sequence	was	generated	by	PCR	amplification	of	MoTeR‐MoTeR	junctions,	which	

could	potentially	yield	a	large	number	MoTeRs	5’	ends	with	differences	in	the	copy	

numbers	of	the	5’	STRs.	Although	the	PCR	amplicons	would	not	reflect	the	terminal	

MoTeRs,	the	data	from	the	Southern	analysis	of	BamHI	digests	showed	that	if	an	

isolate	had	a	longer	terminal	MoTeR	fragment,	then	this	difference	was	also	seen	in	

the	comparison	between	internal	MoTeRs.		This	suggested	that	the	majority	of	

copies	in	a	genome	would	share	the	same	organization.	Forward	primers	were	

designed	to	anneal	the	5’	end	of	a	MoTeR,	and	reverse	primers	were	designed	to	

read	from	the	3’	end	of	another	MoTeR.		
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A	total	of	370	MoTeR‐MoTeR	junction	plasmid	clones	were	sequenced	and	

analyzed.		Thirty‐one	different	junction	sequences	were	obtained	and	are	listed	in	

Table	3‐4.		At	the	extreme	5’	end	of	the	MoTeRs,	telomere	repeats	are	followed	by	

the	variant	telomere	repeats	STR(A)	and	STR(B).		There	was	no	consistent	

difference	among	isolates	in	the	number	of	telomeric	repeats	(CCCTAA)	at	the	

MoTeR‐MoTeR	junctions	(Table	3‐4).	In	28	of	the	31	junctions	there	was	at	least	one	

full	telomere	repeat	unit	between	the	3’	ends	of	one	MoTeR	to	the	5’	end	of	the	

neighboring	element.		The	largest	number	of	telomere	repeat	units	between	MoTeRs	

was	28	(in	PL1	and	RGNJ).	In	the	three	junctions	that	were	missing	a	telomere	

repeat	adjacent	to	the	3’	end	of	the	MoTeR	there	were	variant	telomere	sequences	

(CCCAAA,	CCCGAA,	or	CCCTA).	

STR(A),	CCCGAA,	characterized	in	MoTeR1	and	MoTeR2	in	the	isolate	FH	was	

not	found	at	the	extreme	5’	ends	in	the	LpKY97‐1A	isolate.	5’	ends	captured	from	

LpKY97‐1A	started	with	the	telomere	repeats	followed	by	the	variant	repeat	

STR(B),	CCCAAA.	LpKY97‐1A	had	the	greatest	number	of	the	STR(B)	at	the	5’	end	

(11	copies),	while	PL1	consistently	had	the	lowest	number	of	copies	of	STR(B).	PL1	

has	a	smaller	terminal	MoTeR1	and	MoTeR2	than	LpKY97‐1A	(Figure	3‐7).		Taking	

into	account	the	highest	copy	number	of	STR(B)	in	both	LpKY97‐1A	(11)	and	PL1	

(6)	the	difference	based	on	STR(B)	in	non‐terminal	copies	is	only	30	bp.		While	there	

is	some	variation	in	at	least	STR(B),	it	is	not	great	enough	to	account	for	the	size	

difference	of	MoTeRs	as	seen	in	the	Southern	analyses.			

Other	5’	end	STRs	are	located	downstream	of	the	variant	telomere	repeats	

(STR(A)	and	STR(B))	(Figure	3‐1),	and	are	variable	both	within	and	among	different	
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isolates	(Figure	3‐9).	There	was	an	extension	of	the	STR(C)	in	CHW	in	both	MoTeR1	

and	MoTeR2	sequences	(shown	in	light	blue	in	Figure	3‐9‐C	and	3‐9‐B	respectively),	

which	could	account	for	the	larger	size	seen	in	the	Southern	blots.		Sequence	

obtained	from	LpKY97‐1A	showed	at	least	four	different	MoTeR1	elements	in	

various	stages	of	truncation,	and	are	specified	by	a	number	in	parenthesis	beside	

the	name	(Figure	3‐9‐C).		In	addition	a	new	STR,	AAAAGTCGCTAGACTTTTACTAT,	

which	had	not	been	previously	identified	with	Tandem	Repeats	Finder,	was	found	in	

the	MoTeR1	of	plasmid	clone	LpKY97‐1A	(2).		This	STR	was	repeated	2.8	times	in	

that	copy.		In	the	other	LpKY97‐1A	MoTeR1	clones	(1	and	3)	this	STR	was	repeated	

1.8	times.		This	STR	was	also	extended	in	the	MoTeR2	of	CHW	and	FH.		Other	

smaller	repeat	extensions	were	observed.		In	the	MoTeR2	of	LpKY97‐1A	an	

extension	of	a	poly(T)	tract	was	seen.		In	FH,	RGNJ,	KS331,	and	CHW,	two	copies	of	

the	STR	(TTACCTGCTTT)	was	observed	whereas	in	LpKY97‐1A	it	was	not	a	repeat.	

The	junction	sequences	also	provided	information	on	the	3’	end	of	the	

insertions.		Some	non‐LTR	retrotransposons	will	create	extended	poly(A)	tails	at	the	

3’	ends	post‐transcriptionally.		The	extended	repeats	are	then	incorporated	upon	

insertion	of	the	element	into	the	genome,	which	leads	to	variable	length	poly(A)	

runs	at	the	3’	insertion.		This	could	represent	a	source	of	size	variation.		However,	

none	of	the	MoTeR	junction	sequences	had	extensions	or	variations	in	the	four	

adenine	bases	at	the	3’	end	(5’	AATAAAGCGCGAATTAAAA	3’)	indicating	that	the	

MoTeRs	do	not	have	a	poly(A)	tail.	

While	there	was	variation	in	the	repeats	at	the	5’	end	of	the	element,	some	

size	difference	could	also	have	been	due	to	a	loss/gain	or	a	change	in	the	position	of	
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a	BamHI	restriction	site.		Potential	loss	of	the	site	was	tested	by	PCR	followed	with	

restriction	digests	of	the	PCR	products	as	outlined	below.	Sequence	spanning	the	

BamHI	site	in	MoTeR1	was	PCR‐amplified	from	various	GLS	isolates	using	the	

primers	MoTeR1002F	and	MoTeR1002R.	MoTeR2	sequence	was	amplified	using	the	

primers	MoTeR2V01F	and	MoTeR2002R.		Based	on	the	MoTeR1	and	MoTeR2	

sequence	of	FH	(Appendix	1)	there	should	be	one	BamHI	site	in	each	of	the	PCR	

amplicons.		A	total	of	8	strains	that	showed	size	variation	in	telomeric	MoTeR	

fragments	were	used	to	amplified	MoTeR1	and	MoTeR2	from	genomic	DNA	using	

the	primer	sets	outlined	above.		The	PCR	amplicons	were	then	digested	with	BamHI	

to	survey	for	the	presence	of	the	restriction	site.	The	PCR	amplicons	corresponding	

to	MoTeR1	and	MoTeR2	as	well	as	the	digested	products	were	separated	by	

electrophoresis	on	an	agarose	gel.		

The	MoTeR1	amplicons	were	roughly	the	same	size	between	the	different	

strains	(Figure	3‐9‐A,	lanes	2‐9),	which	indicates	that	size	variation	in	the	elements	

is	not	due	to	indels	in	this	region	of	MoTeR1.	MoTeR2	products	showed	a	similar	

pattern,	with	all	the	PCR	products	having	a	similar	size	demonstrating	that	size	

variation	is	not	due	to	this	region	of	MoTeR2.		The	BamHI	site	was	retained	in	all	

MoTeR1	PCR	amplicons	tested	as	two	bands	were	seen	after	the	PCR	amplicons	

were	digested	with	BamHI	(Figure	3‐9‐A,	lanes	10‐17).	BamHI	cleaved	most	of	the	

PCR	products	of	MoTeR2.		The	exception	to	this	is	found	in	the	isolate	KS320	where	

three	bands	were	observed	following	BamHI	digestion	(Figure	3‐9‐A,	lane	14).	Two	

of	these	bands	corresponded	to	the	expected	sizes	of	the	digested	PCR	product,	

while	the	third	band	corresponded	to	the	size	of	the	undigested	PCR	amplicon.	
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3.3	Discussion	

3.3.1	MoTeRs	are	members	of	a	new	class	of	non‐LTR	retrotransposons	

One	of	the	overall	objectives	of	the	experiments	conducted	was	to	characterize	

MoTeR1	and	MoTeR2	structure.	The	general	features	of	MoTeRs	are	outlined	in	

Figure	3‐1.	MoTeR1	included	a	variable	5’	end,	an	open	reading	frame	for	a	reverse	

transcriptase	(with	a	zinc	finger	domain,	an	RT	domain,	and	an	REL‐endo	domain),	

and	a	3’	end	that	is	not	adenylated	post‐transcriptionally.		MoTeR2	had	5’	and	3’	

ends	identical	to	MoTeR1,	but	did	not	encode	the	reverse	transcriptase.		Since	

MoTeR2	lacks	the	reverse	transcriptase,	it	may	rely	on	MoTeR1	for	its	transcription.	

MoTeR2	may	be	similar	to	SINE‐like	elements.		In	the	case	of	Mg‐SINE	the	3’	end	of	

the	element	is	similar	to	the	3’end	of	the	MGL	retrotransposon	(THON	et	al.	2004),	

and	may	use	the	MGL	machinery	for	its	retrotransposition	(KACHROO	et	al.	1995).		

The	MoTeR2	element,	however,	does	not	have	a	RNA	polymerase	III	promoter	

typical	of	SINEs	(GILBERT	and	LABUDA	1999).		Because	MoTeR2s	are	not	likely	to	be	

transcribed	by	polymerase	III	they	could	represent	a	class	of	Short	Internally	

Deleted	Elements	(SIDEs)	similar	to	those	found	in	the	R2	retrotransposon	system	

(EICKBUSH	and	EICKBUSH	2012).	

Alternatively,	the	MoTeR2	could	be	involved	in	MoTeR1	transposition	similar	

to	the	Het‐A	and	TART	non‐LTRS	of	Drosophila.	In	this	system	transposition	may	

only	be	possible	if	two	separate	non‐LTRs	cooperate.		One	of	the	non‐LTRs	(TART)	

encodes	a	RT,	and	the	other	element	(Het‐A)	encodes	a	gag	protein	that	efficiently	

targets	telomeres	(CASACUBERTA	and	PARDUE	2005).		



	

	 75

The	MoTeR1	element	has	all	the	necessary	components	to	be	an	active	

retrotransposon,	and	it	would	be	expected	that	MoTeR1	would	be	expressed.		In	a	

preliminary	experiment	expression	of	both	MoTeRs	was	detected	(Appendix	B),	but	

subsequent	experiments	did	not	give	reliable	results.	This	could	be	due	to	very	low	

levels	of	expression	in	these	isolates.	Further	work	is	needed	to	determine	the	

expression	profiles	of	MoTeRs.	These	results	were	exciting	as	MoTeRs	may	be	the	

first	example	of	an	active	telomeric	non‐LTR	retroelement	in	fungi.			

The	close	relationship	of	the	RT	and	REL‐endo	in	MoTeR1	to	telomeric	fungal	

retrotransposons	(NhTER1,	Cnl1,	and	FoNLR9)	suggests	that	MoTeR1	is	a	member	

of	a	telomere	specific	clade	of	non‐LTR	retrotransposon.	The	MoTeR1,	NhTeR1,	

Cnl1,	and	FoNLR9	were	closely	related	to	members	of	the	CRE	clade.	Members	of	the	

CRE	clade	have	a	single	ORF	encoding	a	reverse	transcriptase	with	a	C‐terminal	

endonuclease	domain.		CRE‐like	retrotransposons	often	exhibit	target	specificities	

for	tandemly	repeated	DNA	sequences	such	as	rRNA	genes	(BURKE	et	al.	1995),	

spliced	leader	exons	(AKSOY	et	al.	1990;	VILLANUEVA	et	al.	1991),	and,	in	the	case	of	

the	Genie	retrotransposon,	repeats	that	are	located	near	telomeres	(BURKE	et	al.	

2002).	

	According	to	the	phylogenetic	analysis,	telomeric	transposons	appear	to	

have	evolved	several	times	within	the	non‐LTR	retrotransposon	clade	(Figure	3‐2).	

The	TART	and	TAHRE	elements	in	Drosophila	and	the	SART	and	TRAS	elements	in	

Bombyx	mori	utilize	different	mechanisms	to	accomplish	their	insertion	at	

chromosome	ends.		In	these	systems	the	non‐LTR	retrotransposon	has	taken	on	an	

additional	telomere	maintenance	function	due	to	lack	of	telomerase	expression	in	
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the	case	of	Drosophila	melanogaster	(BIESSMANN	and	MASON	1997)	and	a	weak	

telomerase	expression	in	the	case	of	Bombyx	mori	(OSANAI	et	al.	2006).	Whether	

MoTeRs	play	a	role	in	telomere	maintenance	is	not	known.		These	isolates	could	also	

possibly	have	weak	expression	of	telomerase,	and	thus	the	MoTeRs	could	be	

involved	in	compensating	for	this	weakness.	However,	the	length	of	the	telomeres	in	

the	GLS	isolates	of	M.	oryzae	does	not	support	this	conclusion.		A	further	study	into	

the	expression	levels	of	telomerase	in	different	M.	oryzae	isolates	could	help	in	

elucidating	at	least	part	of	this	question.	Some	preliminary	evidence	using	

telomerase	knockouts	in	MoTeR	containing	isolates	have	shown	amplification	of	

MoTeR	sequences	in	telomerase‐minus	strains	(Farman,	unpublished	data).			

3.3.2	Variability	of	the	5’	ends	of	MoTeRs	

Another	objective	of	the	experiments	conducted	was	to	characterize	MoTeR1	and	

MoTeR2	variability.	MoTeRs	are	highly	variable	at	their	5’	ends,	while	being	highly	

similar	in	other	regions.	The	FH	isolate	showed	two	strong	hybridization	bands	in	

the	telomere	blot	corresponding	to	MoTeR1	and	MoTeR2,	while	there	are	at	least	

three	known	sizes	of	MoTeR1	in	the	FH	genome.	This	suggested	that	in	GLS	isolates	

there	is	at	least	one	MoTeR	“type”	present	at	most	chromosome	ends,	and	that	the	

variant	forms	are	at	sub‐terminal	locations.		Junction	PCR	detected	at	least	four	

MoTeR	variants	in	LpKY97‐1A	(Figure	3‐8)	at	sub‐terminal	locations;	only	two	of	

these	were	represented	in	the	telomere	Southern	hybridization	(Figure	3‐7).			

LpKY97‐1a(1)	was	of	similar	size	to	the	full‐length	element	in	FH,	but	no	terminal	

MoTeRs	are	similar	in	size	between	FH	and	LpKY97‐1A	in	telomere	Southern	

hybridizations	suggesting	that	LpKY97‐1a(1)	may	be	a	non‐terminal	MoTeR1.		
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Variation	between	5’	ends	was	observed	between	different	GLS	isolates.		For	

example,	extension	of	STR(C)	within	the	MoTeRs	was	observed	in	CHW	showing	an	

increase	in	length	of	the	element.		Extensions	of	repeats	could	increase	the	size	of	

the	MoTeRs	in	a	given	isolate.		It	is	not	known	whether	these	internal	duplications	

would	cause	lower	efficiency	of	transposition	by	increasing	the	likelihood	of	

inefficient	reverse	transcription	through	premature	disassociation	of	the	RT	at	the	

repeated	sequence.			

The	terminal	MoTeRs	of	most	of	the	GLS	isolates	analyzed	harbor	telomere	

variant	STRs	at	their	5’	ends	[STR(A)	(CCCAAA)	and	STR(B)	(CCCGAA)].	In	the	

Southern	analysis	of	MoTeR1(5’)	the	MoTeR1(5’)	probe	failed	to	hybridize	to	the	

WK	isolates	suggesting	that	they	had	lost	the	5’	end	of	MoTeR1	and	MoTeR2.		The	

loss	of	the	5’	end	of	an	element	could	limit	the	ability	of	the	element	to	transpose	

efficiently	into	telomeres.	For	example,	the	R2	non‐LTR	retrotransposon	inserts	

specifically	into	the	28S	RNA	genes	in	diverse	groups	of	eukaryotes	(EICKBUSH	and	

EICKBUSH	2012;	KOJIMA	and	FUJIWARA	2004).		The	R2	reverse	transcriptase	binds	a	

segment	of	the	R2	RNA	near	the	5’	end	of	the	transcript.	This	causes	a	

conformational	change	in	the	R2	reverse	transcriptase,	which	allows	it	to	bind	to	

downstream	of	the	genomic	target.	The	binding	of	downstream	DNA	allows	for	

more	efficient	transposition	(CHRISTENSEN	et	al.	2006).	Transposition	was	more	

precise	in	R2	retrotransposons	with	intact	5’	ends	(BURKE	et	al.	1999).		The	loss	of	

the	5’	end	in	MoTeRs	could	lead	to	instability	of	telomeres	by	inefficient	

transposition	at	the	chromosome	ends.		
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Long	telomere	repeat	tracts	were	present	in	a	few	of	the	junctions	between	

MoTeRs	in	RGNJ	(CCCTAA)18	and	PL1	(CCCTAA)28.		These	interstitial	telomeres	

could	possibly	cause	stalling	of	the	replication	fork	during	replication.		This	would	

lead	to	a	double	strand	break	(DSB),	which	has	been	observed	at	interstitial	

telomere	repeats	in	yeast	(IVESSA	et	al.	2002).		This	could	lead	to	telomere	instability	

in	these	isolates,	and	be	a	source	for	generating	variability	within	these	GLS	isolates.	

3.3.3	Possible	endonuclease	site	of	MoTeRs	

When	the	MoTeRs	occurred	in	tandem,	they	were	always	found	in	head	to	tail	

orientation	similar	to	the	Het‐A,	TAHRE	and	TART	retrotransposons	that	make	up	

the	chromosome	ends	in	D.	melanogaster	(ABAD	et	al.	2004b;	MASON	and	BIESSMANN	

1995;	PARDUE	and	DEBARYSHE	2003).		However,	in	the	GLS	isolates	of	M.	oryzae,	

telomerase	appears	to	be	active	with	long	hexanucleotide	repeats	of	CCCTAA	found	

at	the	chromosome	ends.		Analysis	of	MoTeR	to	MoTeR	junctions	showed	that	

telomere	sequences	(CCCTAA)	were	commonly	found	at	the	border	between	two	

MoTeRs	(Table	3‐4).	In	Southern	analysis	of	PstI	genomic	digests	the	MoTeRs	almost	

always	cohybridized	with	telomeres	(Figure	3‐4).	These	experiments,	along	with	

previous	data	showing	MoTeRs	are	bordered	by	telomere	repeats	(FARMAN	2007),	

suggest	that	MoTeRs	insert	into	tandemly	repeated	telomere	sequences.			

Characterization	of	N.	haematococca	and	C.	neoformans	genomes	showed	that	copies	

of	this	class	of	retrotransposons	were	also	bordered	by	telomere	repeats	(data	not	

shown).	

The	endonuclease	of	the	MoTeR1	is	likely	targeting	telomeric	repeats,	and	

may	nick	the	target	site	between	the	A	and	C	of	the	CCCTAA	strand	and	between	G	
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and	T	on	the	opposite	strand.	Other	distantly	related	telomere	specific	non‐LTR	

elements	with	APE	endonucleases	show	site	specificity	similar	to	MoTeRs.	In	

particular,	the	SART1	endonuclease	digests	between	the	A	and	T	on	the	CCTAA	

strand,	and	at	T	and	G	on	the	TTAGG	strand.	TRAS,	another	member	in	this	group,	

has	an	endonuclease	that	nicks	between	C	and	T	on	the	CCTAA	strand,	and	between	

A	and	T	on	the	TTAGG	strand	(FUJIWARA	et	al.	2005).	At	least	2	units	of	the	telomere	

repeat	are	needed	for	endonucleolytic	activity	of	the	TRAS1	endonuclease	(ANZAI	et	

al.	2001).	The	endonuclease	of	MoTeRs	may	not	have	strict	sequence	requirements.	

There	were	several	cases	where	the	CCCTAA	sequence	was	not	present	in	the	

MoTeR‐to‐MoTeR	junctions,	but	telomere	like	STR(B)	(CCCAAA)	was	present,	which	

could	suggest	that	a	thymine	in	the	4th	position	may	not	be	crucial	for	recognition	by	

the	endonuclease	or	that	the	target	site	is	AACCC.	Another	possible	explanation	of	

the	lack	of	telomere	repeats	could	be	a	deletion	at	the	insertion	site,	which	has	been	

noted	in	other	non‐LTR	retrotransposons	(BURKE	et	al.	1987;	JAKUBCZAK	et	al.	1990).	

Further,	work	is	necessary	to	determine	the	sequence	specificity	of	the	MoTeR1	REL	

endonuclease.	

It	is	curious	that	the	group	of	telomeric	retrotransposons,	in	which	MoTeRs	

belong,	all	have	a	substitution	for	the	proline	that	is	common	in	the	PD(X12‐14)D	

domain	of	the	non‐LTRs	with	REL	type	endonucleases.	In	MoTeR1,	NhTeR1,	and	

FoNLR9	alanine	is	substituted	for	proline.	CRE2,	a	member	of	the	CRE	clade,	has	a	

substitution	of	the	proline	with	a	lysine	in	this	domain.		Evolutionary	analysis	of	the	

REL	type	endonucleases	indicate	that	they	share	similarities	with	Type	II	restriction	

endonucleases	(EICKBUSH	2002).	There	are	other	suspected	Type	II	endonucleases	
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which	do	not	have	the	proline	in	the	PD(X12‐14)D	domain	(MENON	et	al.	2010)	.	The	

effect	of	proline	substitutions	on	the	activity	of	the	endonuclease	is	not	known.		A	

site‐directed	mutagenesis	study	on	the	restriction	enzyme	of	EcoRV	in	which	the	

proline	is	changed	to	an	alanine	showed	reduced	activity	(SELENT	et	al.	1992).	Most	

research	on	the	activity	of	this	domain	has	focused	on	the	aspartic	acid	residues,	and	

their	importance	in	proper	endonuclease	function.	Specifically	in	R2Bm,	mutations	

to	the	first	aspartic	acid	residue	of	this	domain	disrupted	the	ability	to	cleave	DNA,	

but	did	not	affect	the	binding	of	the	RT	protein	or	target	primed	reverse	

transcription	(YANG	et	al.	1999).	

3.3.4	MoTeRs	distribution		

The	last	major	objective	of	the	experiments	in	this	chapter	was	to	determine	the	

distribution	of	MoTeRs	within	the	GLS	isolates.	Based	on	cohybridization	in	

Southern	analyses	MoTeRs	were	associated	with	a	majority	of	the	telomeres	in	the	

GLS	isolates.	Out	of	the	136	telomere	restriction	fragments	from	various	GLS	

isolates	that	were	tallied,	123	cohybridize	with	MoTeR	probes	(Table	3‐2).	In	the	

telomere	restriction	fragments	that	cohybridize	to	MoTeRs,	they	could	have	only	

MoTeR1	(42/123),	only	MoTeR2	(25/123),	or	both	MoTeRs	(56/123).	This	

correlates	to	the	different	MoTeR1	and	MoTeR2	configurations	in	the	telomeres	in	

FH	(FARMAN	2007).	The	close	association	with	telomeres	makes	the	MoTeRs	likely	

candidates	for	involvement	in	telomere	restriction	fragment	variation.			

The	copy	number	of	MoTeRs	was	variable	among	the	different	GLS	isolates	

tested,	and	the	GLS	isolates	have	more	copies	on	average	of	MoTeR1	(~16)	than	

MoTeR2	(~11).	CHRF	in	particular	has	a	high	number	of	MoTeR1	copies	(~27)	and	
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MoTeR2	copies	(~23),	while	PL3	has	a	low	number	of	MoTER1	copies	(~11)	and	did	

not	appear	to	have	MoTeR2.	It	might	be	expected	that	isolates	with	more	MoTeRs	

might	show	more	telomere	variation	as	there	would	be	a	greater	chance	of	

recombination	between	elements,	a	greater	likelihood	of	inefficient	DNA	replication	

due	to	the	interstitial	telomere	repeats	between	MoTeRs	in	arrays,	and	possibly	

more	MoTeRs	actively	transposing	into	telomere	repeats.	Furthermore,	the	

individual	telomeres	that	harbor	longer	arrays	of	the	MoTeRs	might	be	less	stable	

than	telomeres	with	fewer	MoTeRs.		Further	research	into	this	area	could	examine	

the	stability	of	individual	telomeres	through	several	mitotic	generations.		

The	total	number	of	MoTeRs	that	a	telomere	can	effectively	harbor	and	the	

mechanism	by	which	MoTeR	copy	number	can	be	controlled	is	unknown.	Several	

different	mechanisms	to	limit	the	copy	number	of	transposable	elements	have	been	

discovered	in	other	TE	systems:	including	methylation	(NAKAYASHIKI	et	al.	2001a),	

transcriptional	repression	(PRUD’HOMME	et	al.	1995),	homology‐dependent	gene	

silencing	(JENSEN	et	al.	1999),	RNAi	(SAVITSKY	et	al.	2006),	and	overproduction	

inhibition	(LOHE	and	HARTL	1996).				

3.3.5	Telomere	instability	in	subcultures	

In	LpKY97‐1A	a	new	telomere	band	appeared	in	a	subculture	indicating	instability	

of	its	telomeres.		This	telomere	fragment	cohybridized	with	the	MoTeR1	probe,	but	

not	the	MoTeR5’	probe	(Figure	3‐7).	There	are	two	likely	explanations	for	the	

appearance	of	this	de	novo	MoTeR1.		One	explanation	is	that	a	MoTeR1	became	

truncated	past	the	5’	end	probe,	and	then	telomere	sequence	was	added	to	the	end	

by	telomerase.		The	other	possible	explanation	is	that	a	truncated	form	of	MoTeR1	
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transposed	into	a	telomere	sequence.	Telomere	instability	in	culture	has	been	

previously	observed	in	another	GLS	isolate,	FaMS96‐1	(FARMAN	2002).		Additionally,	

new	MoTeRs	bands	appeared	in	the	Southern	analyses	of	subcultures	of	both	RGNJ	

and	LpKY97‐1A	indicating	that	MoTeRs	may	play	a	role	in	the	instability	of	

telomeres	in	GLS	isolates	(Figure	3‐7	C	and	D).		Further	testing	on	the	relative	

instability	of	telomere	restriction	fragments	and	MoTeR	restriction	fragments	of	

GLS	isolates	in	culture	is	needed	to	determine	if	this	is	a	common	phenomenon	

among	GLS	cultures.		A	more	in‐depth	analysis	could	reveal	that	MoTeRs	are	the	

main	cause	behind	the	“hypervariability”	observed	in	the	telomeres	of	field	isolates.		
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Figure	3‐2.	Phylogenetic	relationship	of	MoTeR1	to	other	reverse	transcriptases.			
Bold	text	indicates	elements	present	in	Magnaporthe	oryzae.		Gray	ovals	indicate	the	
telomeric	non‐LTR	retrotransposons.	There	were	a	total	of	485	positions	in	the	final	
data	set,	consisting	of	conserved	RT	domains.	Positions	with	gaps	or	missing	data	
were	only	eliminated	in	pairwise	comparison.	The	phylogenetic	tree	was	
constructed	using	MEGA4	(TAMURA	et	al.	2007),	by	the	Neighbor‐joining	method		
(SAITOU	and	NEI	1987).	Poisson	correction	was	used	to	calculate	the	evolutionary	
distance.	The	bootstrap	consensus	tree	is	inferred	from	1000	replicates	(FELSENSTEIN	
1985),	and	branches	with	less	than	50%	bootstrap	replicates	are	collapsed.	
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CHAPTER	FOUR	
	

Generation	of	New	Telomeric	Profiles	in	Mitotic	Progeny	
	

4.1	Introduction	

DNA	fingerprinting	analysis	has	been	used	extensively	to	understand	the	population	

structure	of	(FARMAN	2002;	LEVY	et	al.	1991;	TANAKA	and	NAKAYASHIKI	2009;	TOSA	et	

al.	2007;	VIJI	et	al.	2001)	and	the	phylogenetic	relationships	among	(KATO	et	al.	

2000)	different	host	specific	isolates	of	M.	oryzae.	However,	the	use	of	different	

probes	sometimes	gives	incongruent	results.		For	example,	gray	leaf	spot	(GLS)	field	

isolates	collected	from	perennial	ryegrass	exhibit	extreme	telomere	variability	even	

when	little	variation	exists	at	internal	DNA	loci	(FARMAN	and	KIM	2005).		

Several	factors	may	lead	to	restriction	fragment	length	polymorphisms	in	

homologous	fragments	between	different	individuals.		Point	mutations	could	cause	

a	loss	or	gain	of	a	restriction	site	leading	to	new	fingerprint	patterns.		The	insertion	

or	deletion	of	sequences	between	two	restriction	sites	may	lead	to	larger	and	

smaller	sized	fragments,	respectively.	The	insertion	or	deletion	of	an	element	with	a	

restriction	site	will	lead	to	restriction	fragment	length	polymorphisms.	There	may	

also	be	more	extensive	rearrangements	of	the	DNA	(GRANT	and	SHOEMAKER	1997).	

Transposable	elements	play	a	role	in	generating	restriction	fragment	length	

polymorphisms	(LLOYD	et	al.	1987).	They	can	insert	into	a	new	location	adding	new	

restriction	sites	and	cause	the	loss	of	restriction	sites	if	they	transpose	out	of	a	

location	within	the	genome	(BENDER	et	al.	1983;	COLLINS	and	RUBIN	1982;	DORING	and	

STARLINGER	1984;	KUFF	et	al.	1983).		Major	changes	in	restriction	length	fragments	
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can	occur	by	chromosomal	deletion	resulting	from	ectopic	recombination	among	

transposable	elements	(KUPIEC	and	PETES	1988).			

The	M.	oryzae	genome	has	Class	I	and	Class	II	transposable	elements	(DEAN	et	

al.	2005).	The	Class	I	elements	transpose	through	the	use	of	an	RNA	intermediate,	

and	can	be	divided	into	three	types	(LTRs,	LINES,	and	SINES)	(KEMPKEN	and	KUCK	

1998).	LTRs	have	long‐terminal	repeats	bordering	the	ends	of	the	elements	and	

encode	a	reverse	transcriptase.		The	LINES	do	not	have	the	long‐terminal	repeats,	

but	do	encode	a	reverse	transcriptase.		The	SINEs	do	not	encode	a	reverse	

transcriptase.	The	known	LTRs	retrotransposons	in	M.	oryzae	include	MAGGY	

(FARMAN	et	al.	1996b),	Grasshopper	(DOBINSON	et	al.	1993),	MGLR‐3	(KANG	2001),	

Inago1	(SANCHEZ	et	al.	2011),	Pyret	(NAKAYASHIKI	et	al.	2001b),	RETRO6	(DEAN	et	al.	

2005),	RETRO7(DEAN	et	al.	2005),	and	RETRO5	(FARMAN	et	al.	2002).	There	are	two	

known	LINE‐like	elements	in	M.	oryzae,	MGL	(MGR583)	(HAMER	et	al.	1989a;	

KACHROO	et	al.	1997),	and	MoTeRs	(FARMAN	2007).		The	SINE‐like	element	in	the	

genome	of	M.	oryzae	is	Mg‐SINE	(KACHROO	et	al.	1995).	MINE	is	a	chimeric	element	

between	a	MGL	and	WEIRD	(FUDAL	et	al.	2005).		

Class	II	elements	are	excised	from	the	genome	and	transpose	from	one	place	

in	the	genome	to	another	(FINNEGAN	1989).	There	are	four	Class	II	transposable	

elements	in	M.	oryzae	including	Pot2	(KACHROO	et	al.	1994),	Pot3(MGR586)	(FARMAN	

et	al.	1996a),	Pot4	(DEAN	et	al.	2005),	and	Occan	(KITO	et	al.	2003).	

In	Southern	analysis	from	the	previous	chapter,	changes	of	telomere	

restriction	profiles	in	separate	cultures	of	the	same	GLS	isolate	were	observed	

(Figure	3‐7‐A).	This	suggested	that	mutations	during	mitotic	growth	could	lead	to	



	

	 99

the	telomere	variability.	By	comparison,	rice	blast	(RB)	isolates	do	not	have	extreme	

telomere	variability.		When	internal	DNA	profiles	among	RB	isolates	are	similar,	the	

telomere	profiles	will	also	show	high	similarity	(FARMAN	2007).		DNA	fingerprints	

using	a	variety	of	probes	(MGR586,	MAGGY,	Pot2,	MGL,	MG‐SINE)	in	the	Rice	Blast	

isolate	70‐15	are	highly	stable	even	after	ten	mitotic	generations,	though	a	

subtelomeric	probe	(TLH1)	showed	some	instability	(PARK	et	al.	2010).		However,	

high	mutation	rates	have	been	observed	at	particular	loci	in	RB	isolates	(CHUMLEY	

and	VALENT	1990;	HAMER	et	al.	1989b),	and	genes	involved	in	host‐specificity	have	

shown	instability	when	located	near	chromosome	ends	(ZHOU	et	al.	2007).		

Preliminary	experiments	indicated	that	there	was	a	difference	in	relative	

stability	of	DNA	fingerprints	in	mitotic	progeny	between	a	RB	isolate	(70‐15)	and	a	

GLS	isolate	(LpKY97‐1A)	in	planta	and	in	culture.	The	objective	of	the	experiments	

in	this	chapter	was	to	compare	the	relative	stability	of	DNA	fingerprints	in	mitotic	

progeny	of	a	RB	isolate	and	a	GLS	isolate.	The	stability	of	telomeres	was	tested	using	

a	telomere‐specific	probe,	and	the	internal	chromosomal	stability	was	tested	using	a	

probe	from	the	Pot2	transposable	element,	which	is	distributed	throughout	the	

genome.	If	more	chromosomal	instability	exists	in	telomeric	or	internal	loci	in	the	

GLS	isolate,	one	would	expect	its	mitotic	progeny	to	show	more	variation	than	the	

RB	isolate’s	mitotic	progeny.		

4.2	Results	

4.2.1	Rates	of	telomere	change	in	a	GLS	isolate	versus	a	RB	isolate		

Preliminary	experiments	suggested	that	there	was	a	difference	in	telomere	

restriction	fragment	length	stability	in	mitotic	progeny	between	a	rice	blast	isolate	
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and	a	GLS	isolate	(data	not	shown).	To	test	whether	the	telomeres	of	a	GLS	isolate	

were	less	stable	than	those	of	a	RB	isolate,	I	monitored	changes	in	telomere	

restriction	profiles	after	single	spore	isolation	of	the	initial	culture	in	a	RB	isolate	

(70‐15)	and	a	GLS	isolate	(LpKY97‐1A).	Using	single	spores	allows	for	removal	of	

genetic	variation	that	could	have	arisen	during	prior	culturing.	The	purpose	of	the	

experimental	design	was	to	generate	a	total	of	three	generations	of	single	spore	

isolates	[one	generation	of	spores	that	made	up	the	initial	inoculum	for	plant	

infection	(G1),	and	two	generations	of	single	spores	recovered	from	lesions	(G2	and	

G3)]	from	two	different	host‐specific	types	[LpKY97‐1A	(GLS	isolate)	and	70‐15	(a	

rice	infecting	isolate)].	

After	generating	the	initial	single	spore	cultures	in	70‐15	and	LpKY97‐1A	

(known	as	the	G0	cultures),	conidia	were	collected	by	methods	described	in	Chapter	

2.		A	total	of	40	monoconidial	isolates	were	collected	from	the	two	fungal	strains	(20	

from	70‐15	and	20	from	LpKY97‐1A)	and	labeled	as	first	generation	(G1)	progeny.	

The	remaining	conidial	suspensions	were	used	for	plant	infection	as	outlined	below.		

The	rice	(Oryza	sativa)	cultivar	51583	was	inoculated	with	the	70‐15	conidial	

suspension	and	the	perennial	ryegrass	(Lolium	perenne)	cultivar	Linn	was	

inoculated	with	the	LpKY97‐1A.	Leaves	showing	lesions	were	clipped	and	placed	in	

a	moist	chamber	to	allow	for	sporulation	of	the	fungus.		After	3‐5	d	in	the	moist	

chamber,	spores	were	collected.	Forty	total	single	spores	were	collected	(20	from	

LpKY97‐1A	and	20	from	70‐15)	and	cultures	were	designated	as	the	second	

generation	(G2)	progeny.		The	remaining	suspensions	were	used	to	inoculate	a	

second	set	of	plants.	Inoculation,	plant	growth,	and	spore	collection	was	repeated	as	
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described	above.	Then	40	more	single	spores	were	collected	(20	from	LpKY97‐1A	

and	20	from	70‐15)	and	designated	as	the	third	generation	(G3)	progeny.		

A	total	of	120	single	spore	progeny	were	collected	over	three	generations	in	

two	different	M.	oryzae	isolates	(60	from	LpKY97‐1A	and	60	from	70‐15).	Of	the	40	

single	spores	collected	at	each	spore	generation,	DNA	from	38	of	the	mitotic	

progeny	was	extracted,	digested	with	PstI,	electrophoresed,	and	examined	by	

Southern	hybridization	with	a	telomere	probe.	PstI	was	chosen	due	to	the	lack	of	a	

restriction	site	within	the	MoTeRs.	The	resulting	telomere	fragments	from	genomic	

DNA	digested	with	PstI	would	include	the	telomere	through	the	MoTeRs	if	present,	

and	to	the	first	PstI	site	at	the	chromosome	end.	Thus	a	potential	change	in	the	

length	of	a	MoTeR	array	at	a	telomere	could	be	detected	in	the	Southern	analysis.		A	

contraction	of	a	MoTeR	array	would	lead	to	shorter	fragments,	while	an	expansion	

in	a	MoTeR	array	would	lead	to	longer	fragments.	Each	hybridizing	fragment	in	the	

Southern	blot	probed	with	telomere	was	counted	as	a	single	telomere	regardless	of	

intensity.		The	appearance	of	a	new	band	in	the	DNA	fingerprint	of	mitotic	progeny	

that	was	absent	in	the	parental	isolate	was	counted	as	a	gain,	while	the	absence	of	a	

band	in	the	DNA	fingerprint	of	mitotic	progeny	that	was	present	in	the	parental	

isolate	was	counted	as	a	loss.	

The	Southern	analyses	with	the	telomere	probe	of	PstI	digested	DNA	from	

mitotic	progeny	of	70‐15	revealed	that	the	telomeres	were	stable	(Figure	4‐1).	No	

changes	in	the	telomere	restriction	profiles	were	observed	in	mitotic	progeny	

produced	during	culturing	on	oatmeal	agar	plates	(Figure	4‐1‐A).		Only	one	

difference	in	the	telomere	restriction	profile	was	observed	in	a	mitotic	progeny	of	
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70‐15	following	two	disease	cycles	in	the	plant	(marked	with	an	asterisk	Figure	

4‐1‐B,	lane	6).		This	band	had	a	faint	hybridization	signal,	which	implies	that	it	had	

not	become	fixed	in	the	culture.	

In	Southern	analyses	of	PstI	digested	DNA	from	LpKY97‐1A,	a	higher	

telomere	instability	was	observed	among	mitotic	progeny	(Figure	4‐1‐C	and	D)	than	

was	previously	observed	in	the	mitotic	progeny	of	70‐15	(4‐1	A	and	B).	By	the	third	

generation	none	of	the	mitotic	progeny	of	LpKY97‐1A	shared	the	same	telomere	

fingerprint	as	the	original	starting	culture.	There	were	six	band	gains	(.32	per	

progeny)	in	G1,	35	band	gains	(1.89	per	progeny)	in	G2,	and	50	band	gains	(2.6	per	

progeny)	in	G3	(Table	4‐1).		Based	on	post	hoc	t	test	of	pairwise	One‐way	ANOVA,	

there	were	significantly	more	gains	and	losses	in	LpKY97‐1A	mitotic	progeny	

collected	from	plants	than	in	mitotic	progeny	collected	from	cultures	(p‐value	

<0.001).		

4.2.2	Telomere	fragment	variation	in	mitotic	progeny	of	other	GLS	isolates	

There	was	a	difference	in	telomere	stability	between	70‐15	and	LpKY97‐1A,	but	it	

was	unknown	whether	this	was	a	general	phenomenon	within	GLS	isolates.		To	

determine	if	the	instability	of	telomeres	was	common	among	Lolium	pathotypes,	

two	additional	isolates	(KS320	and	RGNJ)	were	tested	by	Southern	analysis	with	a	

telomere	probe.	The	general	outline	of	the	methods	used	in	this	experiment	is	

described	below.		KS320	and	RGNJ	were	genetically	purified	using	the	

single‐sporing	method.	The	mycelium	was	allowed	to	grow	across	an	oatmeal	agar	

plate,	and	the	spores	were	harvested	using	the	same	methods	described	in	Chapter	

2.	Twenty	germinated	mitotic	progeny	were	collected,	cultured,	and	their	DNA	was	



	

	 103

extracted.	PstI‐digested	DNA	from	19	single	spores	were	analyzed	by	Southern	

hybridization	with	a	telomere	probe	(Figure	4‐2).	Band	gains	and	losses	in	mitotic	

progeny	were	tabulated	(Table	4‐2).		Two‐sample	t‐tests	were	used	to	compare	

differences	in	band	gains	and	losses	in	the	RB	isolate	(70‐15)	and	the	GLS	isolates	

(LpKY97‐1A,	RGNJ,	and	KS320).		

In	KS320,	three	of	the	19	mitotic	progeny	(16%)	analyzed	showed	a	different	

telomere	restriction	profile	relative	to	the	initial	isolate	(Figure	4‐2).	In	RGNJ,	

mitotic	progeny	showed	a	different	telomere	restriction	profile	in	five	out	19	

progeny	analyzed	(26%).		This	was	a	higher	number	than	was	seen	in	KS320	but	

lower	than	in	LpKY97‐1A	(31%).		LpKY97‐1A	and	RGNJ	had	significantly	more	band	

gains	(p‐value	<	0.01	and	p‐value	<	0.05	respectively)	than	70‐15	(Table	4‐2).	

However,	KS320	was	relatively	stable	by	comparison,	and	did	not	have	a	

significantly	higher	number	of	band	changes	than	70‐15	(p‐value	<	0.15).		No	

significant	difference	between	the	isolates	was	observed	in	telomere	band	losses.	

4.2.3	Comparison	of	telomere	and	Pot2	profile	variation		

A	previous	study	of	GLS	isolates	had	indicated	that	telomere	profiles	were	more	

variable	than	internal	chromosomal	locations	(FARMAN	and	KIM	2005).	Mitotic	

progeny	of	70‐15	were	tested	to	determine	if	telomeres	were	relatively	unstable	in	

comparison	with	other	regions	of	the	chromosome,	and	whether	the	mitotic	

progeny	of	70‐15	were	more	stable	than	the	mitotic	progeny	of	LPKY97‐1A.	

To	determine	if	mitotic	progeny	had	more	restriction	fragment	length	

polymorphisms	at	telomeres	than	in	other	areas	of	the	genome,	the	DNA	from	the	

third	generation	of	single	spores	from	LpKY97‐1A	was	digested	with	EcoRI	and	
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analyzed	by	Southern	analyses	subsequently	with	a	telomere	probe	and	then	a	

probe	from	the	Pot2	transposon	(Figure	4‐3).	There	is	restriction	site	for	EcoRI	

within	MoTeR1	element,	but	not	in	MoTeR2.	If	MoTeR1s	were	located	in	the	

terminal	position	(i.e.	the	nearest	element	to	the	end	of	the	chromosome)	at	

multiple	chromosome	ends	an	intensely	hybridizing	telomeric	band	would	be	

expected	at	approximately	1.4	kb	in	the	Southern	analysis.		

Telomeres	were	significantly	more	variable	than	Pot2	loci	in	the	third	

generation	mitotic	progeny	of	LpKY97‐1A	(p‐value	<0.001).	There	were	3.3	times	

more	band	changes	observed	in	the	telomere	profiles	than	was	observed	with	the	

Pot2	probe	(Table	4‐3).	After	three	spore	generations,	the	rice‐infecting	isolate	

70‐15	showed	no	band	changes	with	the	Pot2	probe	and	a	single	weakly	hybridizing	

band	was	absent	in	16/19	mitotic	progeny	when	the	Southern	blot	was	probed	with	

the	telomere	probe	(marked	with	an	asterisk	in	Figure	4‐3).		

In	general	more	variability	in	telomere	restriction	fragments	was	seen	in	the	

Southern	analyses	of	the	EcoRI	digests	(Figure	4‐3)	than	in	the	previous	PstI	digests	

(Figure	4‐1‐D).		In	LpKY97‐1A,	a	higher	number	of	band	changes	were	detected	in	

the	Southern	analyses	of	EcoRI	digests	with	124	telomere	band	changes	observed,	

while	there	were	only	73	telomere	band	changes	observed	in	the	Southern	analyses	

of	PstI	digests.	This	suggested	that	telomere	instability	was	underestimated	in	the	

previous	Southern	analysis	of	PstI	fragments.		
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4.3	Discussion	

4.3.1	Instability	of	telomere	restriction	fragments	in	mitotic	progeny	of	GLS	

isolates		

One	of	the	objectives	of	the	experiments	in	this	chapter	was	to	determine	if	there	

was	a	difference	in	the	stability	of	telomere	restriction	fragments	in	mitotic	progeny	

between	GLS	isolates	and	the	rice‐infecting	strain	70‐15.	LpKY97‐1A	generated	new	

telomere	fingerprints	rapidly,	while	the	rice‐infecting	strain	70‐15	had	very	little	

change	in	the	telomere	fingerprints	of	mitotic	progeny.		The	low	telomere	variability	

in	progeny	of	70‐15	is	similar	to	results	that	were	based	on	RFLP	profiles	of	

subtelomeric	elements	(PARK	et	al.	2010).		

Based	on	Southern	analysis,	new	telomere	fingerprints	arose	in	mitotic	

progeny	of	the	GLS	isolates	KS320	and	RGNJ,	which	was	also	observed	in	

LpKY97‐1A.	This	suggested	that	the	high	variability	of	the	telomeres	previously	

observed	from	GLS	isolates	(FARMAN	and	KIM	2005)	is	based	on	underlying	genetic	

instability	at	the	chromosome	ends.	There	also	appears	to	be	varying	degrees	of	

telomere	instability	between	different	GLS	isolates	because	the	frequency	of	band	

changes	was	higher	in	RGNJ	and	LpKY97‐1A	than	in	KS320	(Table	4‐2).				

Variability	of	restriction	fragments	has	been	observed	in	telomere‐adjacent	

sequences	from	other	organisms	such	as	Saccharomyces	cerevisiae	(LOUIS	and	HABER	

1990),	Plasmodium	falciparum	(CORCORAN	et	al.	1988),	Lycopersicon	esculentum	

(BROUN	et	al.	1992),	and	Xenopus	laevis	(BASSHAM	et	al.	1998).		Repeated	sequences	

near	the	chromosome	ends	are	thought	to	play	a	role	in	the	observed	variability	of	

restriction	fragments	near	the	chromosome	ends	in	these	organisms.	GLS	isolates	
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harbor	MoTeRs	within	their	telomeres,	and	they	likely	drive	telomere	instability.		

MoTeRs	are	not	only	retrotransposons	that	could	actively	transpose	to	a	new	end,	

but	the	structure	of	these	elements	may	lead	to	further	instability.	MoTeRs	

hybridized	with	all	of	the	telomeric	fragment	gains	in	RGNJ	and	one	of	the	two	gains	

in	KS320	(data	not	shown).	The	differences	in	relative	stability	between	the	isolates	

could	be	due	to	varying	lengths	of	short	internal	telomere	tracts	between	MoTeRs.		

These	interstitial	telomeres	between	the	MoTeRs	could	cause	stalling	of	the	

replication	fork	during	DNA	replication	leading	to	double	strand	breaks	(DSB)	

similar	to	what	occurs	at	interstitial	telomere	tracts	in	S.	cerevisiae	(IVESSA	et	al.	

2002).	Long	stretches	of	telomere	(CCCTAA)	or	telomere	variant	repeats	(CCCAAA	

and	CCCGAA)	are	found	at	the	5’	end	of	the	MoTeR.	These	sequences	could	lead	to	

increased	instability	when	located	between	elements.	A	few	of	the	RGNJ	MoTeR‐

MoTeR	junctions	had	long	stretches	of	telomere	repeats,	while	junctions	between	

MoTeRs	in	LpKY97‐1A	had	longer	stretches	of	the	variant	telomere	repeat	

(CCCAAA)	(Table	3‐4).		Presumably	these	could	represent	potential	double	strand	

break	points	caused	by	inefficient	DNA	replication	leading	to	instability	of	these	

telomeric	fingerprints.		Truncations	of	the	telomere	are	known	to	occur	frequently	

in	M.	oryzae	(ORBACH	et	al.	2000).	

Another	mechanism	of	increased	variability	could	be	caused	by	ectopic	

recombination	between	MoTeRs	arrayed	within	telomeres.		For	example,	in	

Saccharomyces	cerevisiae,	restriction	fragments	associated	with	the	subtelomeric	Y’	

elements	undergo	frequent	change	(HOROWITZ	and	HABER	1985;	HOROWITZ	et	al.	

1984).		The	restriction	fragments	changed	due	to	mechanisms	that	included	a	
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duplication	of	a	Y’	element	by	ectopic	recombination	between	Y’	at	different	

chromosome	ends	and	an	unequal	sister	chromatid	exchange	event.		Ectopic	

duplications	were	able	to	add	a	Y’	on	ends	that	previously	did	not	have	a	Y’	repeat.		

Tandem	duplications	of	the	Y’	elements	were	seen	to	expand	or	contract.			Gene	

conversion	was	also	involved	in	the	loss	of	restriction	fragments	(LOUIS	and	HABER	

1990).	M.	oryzae	isolates	with	longer	MoTeR	arrays	or	higher	copy	numbers	of	

MoTeRs	might	be	more	prone	to	ectopic	recombination.	RGNJ	and	LpKY97‐1A	have	

higher	MoTeR1	copy	numbers	than	KS320	(data	not	shown),	further	supporting	this	

argument.		

Homologous	recombination	between	subtelomeric	repeats	has	been	shown	

to	cause	contraction	and	expansion	in	repeat	arrays	(CORCORAN	et	al.	1988).	The	

possible	expansion	of	MoTeRs	arrays	by	homologous	recombination	would	lead	to	

more	interstitial	telomere	repeats,	and	could	thus	lead	to	further	instability	in	the	

isolates.			

Alternatively,	higher	instability	in	these	isolates	could	be	due	to	a	deficiency	

in	protein	involved	in	telomere	maintenance.		For	instance,	deficiency	in	the	yKU	

protein	in	yeast	leads	to	an	increase	in	homologous	recombination	between	the	

subtelomeric	Y’	elements	(FELLERHOFF	et	al.	2000;	MARVIN	et	al.	2009).	However,	

based	on	segregation	analysis	of	a	cross	between	a	GLS	isolate,	and	a	lab	isolate	this	

in	not	likely	(STARNES	et	al.	2012).	

The	impact	of	this	high	telomeric	instability	on	the	GLS	isolates	is	not	known.		

No	aberrant	colony	morphologies	or	loss	of	aggressiveness	was	observed	in	mitotic	

progeny	of	LpKY97‐1A	in	the	laboratory	(data	not	shown).			The	GLS	pathogens	are	
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highly	aggressive	on	perennial	ryegrass	in	the	field	(VINCELLI	1999),	even	with	the	

high	levels	of	telomere	instability	previously	observed	(FARMAN	and	KIM	2005).		

4.3.2	Comparative	instability	of	telomere	and	Pot2	restriction	fragments	

Another	experimental	objective	was	to	compare	the	relative	stability	in	telomere	

and	Pot2	fingerprints	in	the	mitotic	progeny	of	70‐15	and	LpKY97‐1A.		Both	the	

telomeric	and	Pot2	fingerprints	displayed	more	instability	in	the	GLS	isolate	

LpKY97‐1A	than	was	detected	in	70‐15.	It	was	conceivable	that	telomere	

fingerprints	would	be	unstable	in	GLS	isolates,	but	the	difference	in	instability	

between	70‐15	and	LpKY97‐1A	in	the	Pot2	fingerprints	was	unexpected.	One	

assumption	might	be	that	the	chromosome	undergoes	mutations	at	a	constant	rate	

regardless	of	position.	The	difference	in	stability	between	the	two	markers	could	be	

due	to	the	greater	likelihood	of	survivorship	among	progeny	with	telomeric	

mutations	versus	progeny	with	internal	mutational	events	(RICCHETTI	et	al.	2003).	

Germination	rates	of	the	spores	were	not	calculated,	and	only	germinated	spores	

were	collected.	This	may	suppress	the	ability	to	observe	internal	chromosomal	

instability	due	primarily	to	deleterious	mutations	at	internal	regions	causing	the	

spores	to	fail	to	germinate.	Alternatively,	the	Pot2	polymorphisms	could	be	due	to	

Pot2	elements	being	present	in	chromosomal	regions	that	are	unstable	in	

LpKY97‐1A.	Transposons	tend	to	be	found	in	clusters	within	the	genome	of	

M.	oryzae	(NITTA	et	al.	1997;	THON	et	al.	2004)	and	these	clusters	frequently	show	

multiple	insertions	from	different	transposable	elements	(FARMAN	et	al.	1996b;	

KACHROO	et	al.	1994;	KACHROO	et	al.	1995).	Transposable	element	clusters	tend	to	

have	higher	rates	of	gene	duplications	and	gene	evolution	(THON	et	al.	2006).			
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However	one	other	important	factor	must	be	taken	into	account	in	the	

presumed	instability	of	Pot2	in	LpKY97‐1A,	most	of	the	Pot2	band	gains	observed	in	

the	Southern	blot	had	weak	hybridization	signal.		These	are	typically	indicative	of	

incipient	Pot2	fragments	that	were	developing	during	vegetative	culture.		Removing	

these	band	gains	from	the	analysis	led	to	no	statistical	support	for	a	difference	

between	Pot2	instability	between	LpKY97‐1A	and	70‐15.	The	strong	hybridization	

signals	in	the	Southern	hybridization	with	Pot2	did	not	change	in	LpKY97‐1A	after	

three	generations	(Figure	4‐3).		This	would	suggest	that	the	majority	of	the	genome	

is	relatively	stable.		The	extreme	variability	observed	in	telomeres	may	not	correlate	

with	the	stability	of	internal	loci	or	subtelomeres	in	the	GLS	isolates,	which	has	been	

observed	previously	(FARMAN	and	KIM	2005).		To	test	whether	subterminal	regions	

are	unstable	in	LpKY97‐1A,	more	subterminal	probes	are	needed	for	use	in	

Southern	analysis.	

	MoTeR1	(~5	kb)	and	MoTeR2	(~1.7	kb)	are	substantially	longer	than	the	

telomere	repeats	(CCCTAA)n.		The	expansion	and	contraction	of	the	telomere	

repeats	may	not	be	apparent	in	Southern	analysis	with	PstI	or	EcoRI	digested	DNA,	

but	the	changes	in	MoTeRs	within	these	telomeres	would	be	easily	visible.		Normal	

telomere	turnover	would	be	much	more	apparent	in	the	GLS	isolates	than	in	70‐15	

which	lacks	MoTeRs	in	the	telomeres.	Further	work	could	address	telomere	

turnover	rate	at	the	terminal	telomere	repeats	of	LpKY97‐1A	and	70‐15.	
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Figure	4‐1.	Southern	analyses	comparing	stability	of	telomeric	DNA	fingerprints	in	
70‐15	and	LpKY97‐1A.	Genomic	DNA	was	digested	with	PstI,	electrophoresed	in	
0.7%	agarose,	electroblotted	to	a	nylon	membrane,	and	hybridized	with	a	telomere	
probe.	Black	arrows	indicate	the	size	markers	in	kilobases.		Lane	1	is	the	initial	
starting	culture	DNA	fingerprint	(G0).		The	first	generation	of	spores	(G1)	from	
culture	in	70‐15	(A),	and	LpKY97‐1A	(C)	are	represented	in	lanes	2‐20.		The	third	
generation	of	spores	from	plants	in	70‐15	(B)	and	LpKY97‐1A	(D)	are	represented	
in	lanes	2‐20.	The	asterisk	represents	a	single	faint	de	novo	telomere	band	in	70‐15.	
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Figure	4‐3.	Southern	analyses	of	Pot2	probe	and	telomeric	probes	in	70‐15	and	
LpKY97‐1A.		Genomic	DNA	was	digested	with	EcoRI,	electrophoresed	in	0.7%	
agarose,	electroblotted	to	a	nylon	membrane,	and	hybridized	sequentially	with	Pot2	
(A	and	C)	and	telomere	(B	and	D).		Between	hybridizations	blots	were	stripped.	
Black	arrows	to	the	left	of	the	image	indicate	the	size	in	kilobases.	Lane	one	
indicates	the	initial	starting	culture	(G0).	Lanes	2‐20	represent	third	generation	
spores	(G3)	of	70‐15	collected	from	the	51583	Oryza	sativa	cultivar	(A	and	B).		
Lanes	2‐20	in	C	and	D	represent	third	generation	spores	(G3)	collected	from	the	
Linn	variety	of	Lolium	perenne.	The	red	asterisk	in	lane	1	of	Figure	B	represents	a	
telomeric	band	that	was	lost	frequently	in	mitotic	progeny.	
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CHAPTER	FIVE	

Molecular	Basis	for	Telomere	Variability	in	LpKY97‐1A	

5.1	Introduction	

Extreme	variability	is	seen	in	telomere	fingerprints	between	Lolium	pathotype	

isolates	of	Magnaporthe	oryzae	(FARMAN	and	KIM	2005).		The	experiments	from	

Chapter	4	revealed	that	the	variability	is	readily	observed	among	mitotic	progeny	of	

this	pathotype.	The	Lolium	pathotype	isolate	LpKY97‐1A	generated	new	telomere	

restriction	fragment	(trf)	profiles	rapidly,	while	the	laboratory	strain	70‐15	

underwent	very	little	change	in	trf	profiles	after	three	spore	generations	(Figure	

4‐1).	Similarly,	other	Lolium	pathotype	isolates,	KS320	and	RGNJ,	generated	new	trf	

profiles	in	culture	(Figure	4‐2).		The	molecular	basis	for	the	telomere	instability	was	

not	known.		

MoTeRs	are	found	in	the	telomeres	of	the	Lolium	pathotype	isolates,	but	

were	not	detected	in	70‐15	(Figure	3‐7).	It	was	believed	that	the	activity	of	MoTeRs	

could	account	for	the	trf	profile	variation.	Telomere	fingerprint	variation	has	been	

observed	among	mitotic	progeny	in	Saccharomyces	cerevisiae.		The	variation	was	

due	to	telomere	length	heterogeneity	and	recombination	among	subtelomeric	

repeats	(HOROWITZ	et	al.	1984;	SHAMPAY	and	BLACKBURN	1988).		The	diversity	of	

surface	antigens	in	Trypanosomes	is	primarily	the	result	of	subtelomeric	gene	

conversion	and	the	frequency	of	variant	surface	glycoprotein	switching	is	affected	

by	telomere	length	(HOVEL‐MINER	et	al.	2012).		The	experiments	described	in	this	

chapter	sought	to	address	possible	molecular	mechanisms	that	are	causing	the	trf	
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polymorphisms	observed	in	the	mitotic	progeny	of	LPKY97‐1A	and	how	MoTeRs	

might	be	impacting	the	telomere	stability.	

5.2	Results	

5.2.1	MoTeRs	association	with	de	novo	telomere	profiles	in	LpKY97‐1A	

In	third	generation	progeny	of	LPKY97‐1A	de	novo	telomere	profiles	were	observed	

in	Southern	analysis	(Figure	4‐1‐D).		It	was	unknown	whether	MoTeRs	were	in	the	

telomeres	of	the	de	novo	bands	observed	in	the	Southern	analysis	of	mitotic	progeny	

because	some	fragments	were	smaller	than	would	be	expected	if	a	full	length	

MoTeR1	was	present.		To	determine	if	MoTeR1	or	MoTeR2	were	present	in	the	de	

novo	telomere	fragments	of	mitotic	progeny,	DNA	from	19	progeny	(G3(1‐19))	and	

the	LpKY97‐1A	starting	culture	(G0)	was	analyzed	by	Southern	analysis.		The	DNA	

was	digested	with	PstI,	electrophoresed	on	a	0.7%	agarose	gel,	and	transferred	to	a	

nylon	membrane.		The	Southern	Blot	was	then	probed	with	a	telomere‐specific,	a	

MoTeR1‐specfic,	and	a	MoTeR2‐specific	probe.	The	blot	was	stripped	between	

hybridizations	with	the	different	probes.		Results	are	shown	in	Figure	5‐1.		The	

telomere	fingerprint	polymorphisms	of	the	mitotic	progeny	were	tabulated.		A	new	

telomere	band	in	the	DNA	fingerprint	of	mitotic	progeny	that	was	absent	in	the	

parental	isolate	was	counted	as	a	gain,	while	the	absence	of	a	band	in	the	DNA	

fingerprint	of	mitotic	progeny	was	counted	as	a	loss.		De	novo	telomere	fragments	in	

mitotic	progeny	that	cohybridized	to	MoTeRs	were	described	as	MoTeR	associated	

gains	(MAG).	Telomere	fragments	that	were	absent	in	mitotic	progeny,	but	that	had	

previously	cohybridized	to	MoTeRs	in	the	starting	culture	were	described	as	MoTeR	

associated	losses	(MAL).	Results	are	summarized	in	Table	5‐1.	
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Most	of	the	new	telomere	fragments	observed	in	the	mitotic	progeny	(32	out	

of	50)	had	MoTeRs	in	their	telomere	based	on	cohybridization	in	the	Southern	

analysis	(Table	5‐1).		No	telomere	fragment	below	4	kb	cohybridized	with	the	

MoTeR	probes	(Figure	5‐1).		There	were	25	telomere	band	losses	in	the	Southern	

analysis	of	mitotic	progeny	and	a	majority	of	them	(20	out	of	25)	were	MAL.	The	five	

bands	that	were	not	MAL	correspond	to	losses	of	the	rDNA	telomere	fragment	

(Figure	5‐1‐A	band	R).			

There	was	a	non‐telomeric	PstI	fragment	that	hybridized	to	both	MoTeR1	

and	MoTeR2	in	G0	and	in	15	of	the	19	mitotic	progeny	(indicated	by	red	arrows	in	

Figure	5‐1‐B	and	5‐1‐C).		In	the	DNA	fingerprint	of	progeny	isolate	G1(9)	a	gain	of	a	

non‐telomeric	MoTeR1	was	observed	(marked	by	an	asterisk,	Figure	5‐1‐B).	

5.2.2	Methylation	in	telomere	profile	changes	

PstI,	which	recognizes	the	sequence	CTGCAG,	is	sensitive	to	cytosine	methylation,	

5mCTGCAG	and	CTGC6mAG	(MCCLELLAND	et	al.	1994).	Therefore	I	speculated	that	

methylation	of	genomic	DNA	could	play	a	role	in	telomere	fragment	length	

polymorphisms	observed	in	the	Southern	analyses.	To	determine	if	this	was	the	

case,	two	isoschizomers	were	used	for	comparative	digests	of	genomic	DNA	

prepared	for	Southern	analyses.		The	restriction	enzyme	Kpn2I(BspMII)	is	sensitive	

to	cytosine	methylation	and	will	not	cut	at	the	methylated	sites	Tm5CCGGA	and	

TCm5CGGA,	while	AccIII	is	insensitive	to	cytosine	methylation	(LABBÉ	et	al.	1988).		

For	the	purposes	of	this	experiment	three	different	LpKY97‐1A	strains	(1G0,	1G2(5),	

and	1G3(4)),	which	had	shown	telomere	length	polymorphisms,	were	activated	on	

OA.		The	strains	were	then	treated	as	described	in	Section	2.4	for	large	scale	DNA	
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preparation.		The	DNA	was	digested	with	PstI,	AccIII,	or	Kpn2I.		The	digested	

fragments	were	separated	by	electrophoresis	on	a	0.7%	agarose	gel,	electroblotted	

to	a	nylon	membrane,	and	probed	with	telomere	probe.	

1G0,	1G2(5),	and	1G3(4)	had	several	telomere	restriction	polymorphisms	in	

the	Southern	analysis	of	PstI	digests.		1G2(5),	as	seen	in	lane	2	Figure	5‐2‐A,	had	

three	visible	telomeric	band	changes	from	the	initial	starting	culture.	1G3(4)	

exhibited	at	least	nine	telomeric	band	changes	from	the	starting	culture	in	the	

Southern	analyses	of	PstI	digests.	These	data	show	that	there	are	telomere	

restriction	fragment	polymorphisms	in	PstI	digests	between	the	three	strains.	

Comparative	analyses	of	the	DNA	fingerprints	with	restriction	enzymes	that	

were	differentially	methylation	sensitive	yielded	no	visible	band	changes	in	the	

LpKY97‐1A	isolates	(Figure	5‐2‐B	lanes	three	to	eight).	For	example,	1G0	had	16	

visible	telomere	bands	in	Southern	blots	of	the	AccIII/Kpn2I	digests,	with	no	

telomere	restriction	fragment	length	polymorphisms	between	the	two	enzyme	

digests	(Figure	5‐2‐B,	lanes	4	and	5).		There	was	DNA	fingerprint	variation	between	

different	strains	using	the	methylation	insensitive	restriction	enzyme	(AccIII).		For	

instance,	the	telomere	fingerprints	of	1G0	with	1G2(5)	showed	five	distinct	band	

differences.	1G3(4)	had	a	greater	number	of	band	changes	from	1G0	with	a	total	of	

seven	band	changes	observed.	

5.2.3	Characterization	of	de	novo	telomere	fragments	

	In	experiments	from	Chapter	4,	it	was	observed	that	the	telomere	restriction	

fragment	profiles	of	GLS	isolate	LpKY97‐1A	were	unstable,	and	de	novo	telomeres	

were	readily	observed	in	mitotic	progeny	(Figure	4‐2).		To	determine	some	of	the	
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possible	mechanism	involved	in	generating	the	telomere	length	polymorphisms	a	

subset	of	strains	from	the	previous	studies	were	selected	for	further	analysis.		1G0	is	

a	single‐spored	culture	of	LpKY97‐1A	that	was	used	as	the	starting	strain	for	the	

experiments	outlined	in	Chapter	4.		Isolates	1G2(5)	and	1G2(6)	were	collected	from	

the	second	generation	of	mitotic	progeny	and	1G3(4)	and	1G3(5)	were	collected	

from	the	third	generation.		When	compared	with	one	another	all	of	these	strains	

exhibited	telomere	restriction	fragment	polymorphisms.	To	describe	the	differences	

in	more	detail	the	DNA	was	digested	with	PstI,	electrophoresed	on	0.7%	agarose	gel,	

electroblotted	to	a	nylon	membrane	and	probed	with	telomere	and	MoTeR1	probe.		

Blots	were	stripped	between	probings.	

There	are	several	examples	of	different	de	novo	telomeres	represented	in	

Figure	5‐3‐A.	In	1G2(5),	a	new	telomeric	DNA	fragment	was	seen	in	Southern	

hybridization	(Figure	5‐3‐A,	lane	5,	labeled	with	a	B).	This	band	did	not	cohybridize	

with	a	MoTeR1	(Figure	5‐3‐B,	lane	5).	The	failure	to	cohybridize	likely	indicates	that	

MoTeR1	was	not	responsible	for	the	appearance	of	this	new	band.	However,	there	

were	other	examples	in	which	MoTeRs	did	appear	to	play	a	role	in	the	appearance	

of	de	novo	telomeric	fragments.		In	1G3(4)	and	1G3(5)	new	telomere	fragments	

cohybridized	with	MoTeR1	(Figure	5‐3,	labeled	with	RM	and	BM	respectively).	

Shotgun	cloning	was	used	to	capture	a	number	of	the	telomeric	restriction	

fragments.		Genomic	DNA	was	end‐repaired	and	blunt	end	ligated	into	a	plasmid	

vector.		The	ligation	products	were	then	digested	with	PstI	followed	by	ligation	of	

the	PstI	overhangs	of	the	genomic	DNA	and	plasmid	vector.		The	resultant	plasmids	

were	electroporated	into	E.	coli.		Ampicillin	was	used	to	select	for	colonies	that	
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contained	plasmid	inserts.	Colonies	that	contained	telomeres	were	identified	by	

colony	hybridization	using	a	Telomere	probe,	and	their	plasmids	were	extracted.			

This	process	resulted	in	end‐enriched	plasmid	libraries.	The	three	large‐scale	DNA	

preparations	1G0,	1G2(5),	and	1G3(4)	were	used	to	create	three	separate	end‐

enriched	plasmid	libraries.		The	1G0	end‐enriched	plasmid	library	contained	the	

progenitor	telomere	restriction	fragments;	while	the	end‐enriched	plasmid	libraries	

of	1G2(5)	and	1G3(4)	had	the	potential	to	yield	a	number	of	de	novo	fragments.			

This	method	yielded	51	total	plasmids	(9	from	1G0,	17	from	1G2(5),	and	25	from	

G3(4)).	

	The	inserts	of	all	plasmids	were	partially	sequenced	to	determine	if	the	

telomere	tracts	were	at	either	end	of	the	insert.	Though	all	inserts	had	telomere	

sequence,	not	all	had	the	long	telomere	repeat	tracts	associated	with	chromosome	

ends.		In	the	end‐enriched	library	of	1G0,	5	out	of	the	9	plasmids	had	telomere	

tracts.		Only	8	out	of	the	17	inserts	in	1G2(5)	plasmid	libraries	had	telomere	tracts.		

There	were	20	out	of	25	inserts,	which	contained	telomere	tracts	in	the	

end‐enriched	library	of	1G3(4).		

To	determine	the	relatedness	of	the	partially	sequenced	inserts	to	known	

elements	and	each	other,	the	sequences	obtained	from	the	end‐enriched	plasmid	

inserts	were	analyzed	by	using	local	blast	to	search	databases	containing	MoTeRs,	

the	70‐15	genome,	and	the	sequences	of	the	other	plasmid	inserts.	The	rDNA	

chromosome	ends	were	captured	in	all	three	of	the	plasmid	libraries.		Two	

chromosomes	ends	unique	to	LpKY97‐1A	were	found	in	1GL3(4)	and	were	

designated	31B	and	117B1	(naming	is	based	on	the	plasmid	clone	where	the	
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sequence	was	obtained).		The	31B	chromosome	end	was	captured	in	two	plasmid	

clones.	The	117B1	chromosome	end	was	captured	multiple	times	(16	of	the	20	

inserts	in	the	1G3(4)	plasmid	library).		

Sequences	that	were	found	to	be	unique	at	a	chromosome	end	were	used	to	

develop	probes	(31B001	and	117B1)	for	Southern	analysis.	This	would	provide	the	

ability	to	track	changes	at	specific	chromosome	ends	in	mitotic	progeny.	The	data	

gathered	from	the	Southern	analysis	of	unique	probes	and	sequencing	were	then	

used	to	characterize	some	of	the	possible	mechanisms	behind	telomere	instability	in	

LpKY97‐1A	by	following	a	few	of	the	chromosome	ends	in	1G0,	1G2(5),	and	1G3(4).	

The	characterizations	of	the	de	novo	telomeres	are	detailed	below.		

5.2.3.1	rDNA	telomere	truncations	

The	telomeric	rDNA	fragment	(indicated	with	an	arrow	labeled	with	an	R	in	Figure	

5‐1‐A)	was	absent	in	five	of	the	19	third	generation	mitotic	progeny.		In	the	isolates	

used	to	prepare	the	end‐enriched	plasmid	libraries	both	1G0	and	1G2(5)	have	the	

same	telomeric	rDNA	band,	while	this	band	was	absent	in	1G3(4)	(Figure	5‐2‐A).		

The	rDNA	telomeric	fragment,	labeled	R	in	Figure	5‐1‐A,	was	captured	in	the	

end‐enriched	plasmid	library	of	both	1G0	and	1G2(5)	and	had	been	sequenced.	

Alignment	of	this	sequence	with	rDNA	sequence	of	70‐15	revealed	that	the	rDNA	

was	truncated	at	position	7579	and	capped	with	telomere	repeats,	(CCCTAA)29	

(Figure	5‐4‐A).	The	rDNA	telomere	of	1G3(4)	had	been	captured	during	the	end	

enrichment	process	and	both	sides	of	the	insert	were	partially	sequenced.	This	

revealed	a	5’	truncated	MoTeR1	(position	2248)	capped	with	a	telomere	

(CCCTAA)27	at	the	chromosome	end	and	rDNA	sequence	at	the	subtelomere.	PCR	
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was	then	used	to	characterize	the	MoTeR	to	rDNA	junction.		The	junction	between	

the	rDNA	and	the	3’	end	of	MoTeR1	was	amplified	by	PCR	and	then	sequenced.		The	

sequence	data	revealed	that	MoTeR1	was	located	one	CCCTAA	repeat	upstream	of	

the	same	rDNA	truncation	described	in	1G0	and	1G2(5)	(Figure	5‐4).		This	

suggested	that	the	MoTeR1	had	inserted	into	the	rDNA	telomere.		The	rDNA	

fragment	had	likely	shifted	in	1G3(4),	as	observed	in	Southern	hybridization	in	

Figure	5‐3‐A,	(lane	4	labeled	RM).	The	MoTeR1	probed	hybridized	with	the	de	novo	

telomere	fragment	(Figure	5‐3‐B,	lane	4).	The	size	increase	was	less	than	would	be	

expected	if	an	intact	MoTeR1	had	inserted	into	the	rDNA	telomere,	and	the	band	

was	similar	in	size	to	the	rDNA	telomere	captured	in	31B.	

An	alternative	explanation	to	MoTeR1	insertion	into	the	rDNA	telomere,	

however,	is	that	LpKY97‐1A	could	have	multiple	chromosome	ends	with	rDNA	

sequences,	and	that	the	MoTeR1‐rDNA	band	(RM)	observed	in	1G3(4)	could	have	

resulted	from	the	alteration	of	a	MoTeR‐containing	rDNA	telomere	already	present	

in	the	starting	culture.		To	test	this	idea,	PCR	was	used	to	test	for	the	presence	of	a	

MoTeR1‐rDNA	junction	in	the	starting	culture.		Using	an	rDNA	and	MoTeR	3’	primer	

pair,	DNA	from	1G3(4)	yielded	a	PCR	amplicon	of	the	expected	size	(data	not	

shown),	while	DNA	from	1G0	failed	to	produce	any	products.	This	indicated	that	

there	were	no	existing	MoTeR‐rDNA	junctions	in	the	initial	starting	culture.	

5.2.3.2	Capture	and	duplication	of	internal	sequence	at	a	telomere	

Southern	analyses	of	PstI	digested	DNA	revealed	that	isolates	1G2(5)	and	1G3(4)	

both	have	a	de	novo	telomere	band	of	700	bp	(Figure	5‐3‐A).		Plasmid	clone	117B1,	

from	the	end‐enriched	plasmid	library	of	1G3(4),	had	a	similarly	sized	insert.		The	



	

	 124

plasmid	insert	was	sequenced	and	local	blast	analysis	against	the	genome	sequence	

of	70‐15	revealed	no	sequence	homology	to	70‐15	other	than	to	the	telomere	

repeats.		The	telomere	sequence	found	at	the	end	of	117B1	band	B	was	

(CCCTAA)29(CCTAA)(CCCTAA).	To	determine	if	the	plasmid	insert	in	117B1	was	the	

telomere	fragment	labeled	B	in	Figure	5‐3‐A,	a	probe	was	generated	from	the	117B1	

sequence	to	be	used	for	Southern	analysis.		Primers	(m117B1F	and	m117B1R)	were	

designed	from	the	unique	sequence	of	117B1.	PCR	was	then	used	to	amplify	the	

sequence	from	the	plasmid	117B1	for	use	as	a	probe.	The	117B1	probe	was	then	

hybridized	to	the	previous	Southern	Blot	(Figure	5‐3‐C).		In	1G2(5)	and	1G3(4),	the	

telomeric	fragment	(Figure	5‐3‐A,	labeled	B)	cohybridized	with	the	117B1	fragment	

(Figure	5‐3‐C)	and	thus	these	fragments	represented	the	same	de	novo	telomere	

captured	in	the	plasmid	117B1.		The	initial	culture	(1G0)	produced	three	strong	

hybridization	signals	with	the	117B1	probe	(Figure	5‐3‐C).	None	of	the	117B1	

signals	coincided	with	the	telomeric	fragments,	suggesting	that	they	were	internal	

genomic	fragments.		These	internal	fragments	were	also	found	in	1G2(5),	1G2(3),	

and	1G3(5)	(Figure	5‐3‐3)	indicating	that	these	fragments	were	not	lost	in	these	

isolates.	

	 In	1G3(5)	another	strong	hybridization	signal	was	observed	with	the	117B1	

probe	(labeled	BM,	Figure	5‐3‐C,	lane	5).		The	band	in	question	also	hybridized	with	

MoTeR1	(labeled	BM,	Figure	5‐3‐B,	lane	5)	and	was	the	approximate	size	expected	if	

an	intact	MoTeR1	had	transposed	into	the	newly	generated	117B1	chromosome	end	

(labeled	B,	Figure	5‐3‐A	lanes	2	and	4).	None	of	the	internal	117B1	bands	appeared	

to	be	missing	in	this	isolate	(Figure	5‐3‐C	lane	5)	likely	indicating	that	this	fragment	
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did	not	arise	from	the	truncation	of	another	chromosome.		To	confirm	that	the	novel	

BM	telomere	contained	a	MoTeR1,	the	junction	between	117B1	and	MoTeR1	was	

PCR‐amplified	from	the	genomic	DNA	of	isolate	1G3(5)	using	the	primers	(117B1JF	

and	117B1JR).		The	resulting	amplicon	was	sequenced,	revealing	a	junction	

consisting	of	the	telomeric	motifs	(CCCTAA)3(CCTAA)(CCCTAA)	between	the	3’	end	

of	MoTeR1	and	the	117B1	unique	sequence	(Figure	5‐4).			

5.2.3.3	Truncation	of	MoTeR2	arrays	

The	telomeric	bands	marked	with	an	arrow	(Figure	5‐5‐A	lanes	2‐20)	showed	

variable	hybridization	intensities	among	isolates.		This	likely	indicates	

rearrangements	had	taken	place	in	the	telomeric	fragments	that	were	associated	

with	this	band.	To	analyze	the	changes	of	the	telomeres	in	mitotic	progeny	more	

closely,	I	needed	to	be	able	to	track	a	single	chromosome	end.	One	plasmid	in	the	

end‐enriched	library	of	1G(3)5,	31B,	contained	a	9.1	kb	insert.	Sequencing	of	the	T3	

end	of	the	insert	revealed	the	5’	end	of	MoTeR	element	capped	with	telomere	

repeats	(CCCTAA)30.		The	T7	end	of	the	insert	was	sequenced	and	local	blast	analysis	

against	the	70‐15	genome	failed	to	find	significant	matches	indicating	that	the	

sequence	was	unique	to	LpKY97‐1A.			Primers	(31B001F	and	31B001R)	were	

designed	to	PCR‐amplify	600	bp	of	sequence	from	the	T7	end	of	the	insert.		The	

resulting	PCR	amplicon,	31B001,	was	then	used	as	a	probe	for	Southern	analysis	of	

the	telomere	blot	shown	in	Figure	5‐5‐A.			

The	31B001	probe	hybridized	to	two	fragments	(~9	kb	and	~11	kb)	in	the	

starting	culture	(G0)	(lane	1,	Figure	5‐5‐B,	labeled	A	and	B	respectively).		The	31B1	

telomere	fragment	obtained	in	the	end‐enriched	library	of	1G3(5)	corresponds	to	
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the	weakly	hybridizing	B	in	the	isolate	G0,	but	the	strong	hybridization	signal	in	G0	

corresponds	to	Band	A.		The	weak	hybridization	signal	of	Band	B	in	G0	likely	

indicates	that	the	culture	was	heterokaryotic	for	the	31B	telomere,	and	that	the	

shorter	fragment	had	been	cloned.		In	the	3rd	generation	of	mitotic	progeny,	eight	of	

the	19	progeny	had	the	same	3100B1	fingerprint	as	G0	(Figure	5‐5‐B).		Four	

isolates,	G3(5),	G3(6),	G3(8),	and	G3(9),	only	had	the	~9	kb	variant	of	the	31B	

telomere.		Isolate	G3(4)	had	three	bands	in	its	31B001	fingerprint	(~13	kb,	~11	kb,	

and	~9	kb),	with	the	~13	kb	band	being	the	only	strong	hybridization	signal.		The	

regularity	of	the	band	size	variants	of	~2	kb	suggested	a	genetic	element	was	

expanding/contracting	at	this	chromosome	end.		The	expected	difference	of	sizes	

based	on	MoTeR2	element	would	be	1.7	kb,	but	the	separation	of	the	bands	wasn’t	

enough	to	obtain	accurate	sizes.	

The	structure	of	the	31B	telomere	restriction	fragment	had	not	yet	been	fully	

explored.		Information	about	the	structure	of	the	MoTeRs	in	the	fragment	was	

needed	to	determine	if	MoTeR2	arrays	were	likely	at	this	telomere.		Restriction	

analysis	and	partial	sequencing	of	the	31B	plasmid	insert	revealed	that	downstream	

of	the	telomere	repeats	(CCCTAA)30,	there	was	an	intact	MoTeR2	element	separated	

from	a	highly	5’	truncated	MoTeR1	(position	4726)	by	a	single	CCCTAA	motif.		The	

truncated	MoTeR1	element	was	itself	separated	from	the	unique	31B	chromosome	

end	by	a	single	CCCTAA	repeat	(Figure	5‐4).			

An	ApaI	restriction	site	was	present	at	~1.9	kb	upstream	of	the	truncated	

MoTeR1.		It	was	believed	that	by	digesting	the	genomic	DNA	of	the	mitotic	progeny	

with	ApaI,	prior	to	Southern	blotting,	a	better	resolution	in	the	sizes	of	the	variant	
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31B	telomere	fragments	could	be	obtained.	Therefore,	primers	(31B002F	and	

31B1002R)	were	designed	for	PCR	amplification	of	an	868	bp	probe	fragment	

(31B002)	from	the	unique	DNA	upstream	of	the	truncated	MoTeR1,	since	the	

original	probe	no	longer	hybridized	with	31B	telomeric	fragments	in	ApaI	digests.	A	

representative	set	of	DNA	from	isolates	having	different	31B	fingerprints	were	

digested	with	PstI	or	ApaI	prior	to	Southern	blotting	and	then	probed	with	3100B2.	

The	resulting	Southern	blots	were	then	compared.			

The	31B002	DNA	fingerprint	profiles	(Figure	5‐6,	lanes	10‐18)	in	the	PstI	

digested	samples	were	the	same	as	previously	observed	for	those	isolates	(shown	in	

Figure	5‐5‐B),	except	for	2	weak	hybridization	signals.	In	G3(6)	the	weak	

hybridization	signal	was	at	~7.4	kb,	which	is	below	the	9.1	kb	fragment	observed	in	

the	previous	blot	probed	with	31B001	(lane	12,	Figure	5‐6).		This	is	exactly	the	size	

change	that	would	be	expected	if	the	9.1	kb	fragment	had	lost	a	MoTeR2	in	the	31B	

telomere.		However,	this	band	was	not	present	in	the	Southern	analysis	of	ApaI	

digested	DNA	(lane	3,	Figure	5‐6)	likely	indicating	a	chromosomal	rearrangement	

proximal	to	the	ApaI	site.		In	isolate	G3(13),	a	large	weak	signal	was	seen	in	the	

31B002	Southern	hybridization	that	was	absent	in	the	previous	blot	probed	with	

31B001.			

ApaI	digestion	provided	a	better	resolution	of	the	31B	band	changes	(lanes	

1‐9,	Figure	5‐6).		Several	new	weakly	hybridizing	bands	were	also	observed	(lanes	

1‐9,	Figure	5‐6).	The	longer	31B002	probe	appears	to	be	more	sensitive	than	the	

31B001	probe.		
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In	G0	the	most	intensely	hybridizing	fragment	(A)	was	~5.8	kb	in	length	and	

the	weakly	hybridizing	fragment	(B)	was	~4.1	kb	(Figure	5‐6).	Since	MoTeR2	is	

~1.7	kb	in	length,	the	size	difference	between	bands	A	and	B	was	exactly	what	

would	be	expected	if	the	31B002	fragment	contained	an	extra	MoTeR2	copy.		

Another	weakly	hybridizing	fragment	was	observed	in	G0,	which	was	~	5	kb	in	

length	(Figure	5‐6‐1,	lane	1,	labeled	C).		This	fragment	was	not	seen	in	the	previous	

Southern	blot	of	PstI	digests	probed	with	31B002,	and	could	suggest	the	loss	the	

ApaI	site	1.9	kb	from	the	start	of	the	tMoTeR1.	

	In	G3(6),	only	band	B,	which	is	the	shortest	MoTeR2	array	variant,	was	

observed	in	the	Southern	analyses	of	ApaI	digested	genomic	DNA	with	the	probe	

31B002	(Figure	5‐6,	lane	3).			G3(13)	had	a	31B002	profile	with	four	bands,	each	of	

these	were	at	intervals	of	~1.7	from	the	longest	fragment	at	~9.2	kb	(~4	MoTeR2s	

in	the	array)	to	the	smallest	at	~4.1	kb	(Band	A).		The	dominate	31B	fragment	in	this	

isolate	was	~7.5	kb	in	size,	which	likely	represents	~3	MoTeR2s	arrayed	in	this	

telomere.		

It	was	believed	that	the	longer	MoTeR2	arrays	would	continue	to	truncate	

down	to	the	single	MoTeR2	in	the	telomere	(represented	by	Band	B,	Figure	3‐6),	

which	would	remain	stable.	To	test	this	idea,	7	different	third	generation	progeny	

with	variant	31B	telomeres	were	grown	from	paper	disks	placed	on	the	center	of	

separate	oatmeal	agar	plates.	The	isolates	were	allowed	to	grow	across	the	plates,	

and	spores	were	harvested.		A	total	of	12	germinated	spores	from	each	isolate	were	

cultured,	and	then	DNA	was	extracted	from	at	least	10	progeny	per	isolate.		The	

DNA	samples	were	digested	with	ApaI,	the	restriction	fragments	were	separated	by	
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agarose	gel	electrophoresis,	and	electroblotted	to	a	nylon	membrane.		The	blots	

were	stripped	between	each	probing	and	the	results	are	shown	in	Figures	5‐7	and	

5‐8.	

G3(6)	had	a	strongly	hybridizing	fragment	at	~4.1	kb	(Band	B),	with	an	array	

of	a	truncated	MoTeR1	and	a	MoTeR2	in	the	31B	telomere.		The	31B002	probe	

revealed	no	changes	in	the	12	progeny	surveyed	(Figure	5‐7,	lanes	3‐14).	Telomere	

fragment	variation	was	observed	in	these	isolates	(Figure	5‐7‐B),	but	the	31B	

telomere	was	stable.	

G3(14)	and	G3(15)	had	a	presumed	array	of	the	truncated	MoTeR1	followed	

by	~2.01	MoTeR2s	in	the	31B	telomere	(Novikova	et	al.	unpublished),	which	was	

~5.8	kb	in	length	(Band	A).	In	3	of	the	21	(or	14%)	mitotic	progeny	of	G3(14)	and	

G3(15),	Band	B	was	the	predominant	variant,	while	in	the	other	18	progeny	a	

weakly	hybridizing	Band	B	was	seen	along	with	the	strong	hybridization	signal	for	

Band	A	(Figure	5‐8).	

G3(11),	G3(12),	G3(13),	and	G3(16)	had	intense	signals	at	~7.5	kb,	which	

was	believed	to	have	a	truncated	MoTeR1	and	~3.01	MoTeR2s	in	the	31B	telomere	

(Novikova	et.	al.	unpublished).			Six	of	the	44	progeny	(or	13%)	had	intense	signals	

at	sizes	different	from	their	respective	starting	strain	(Figure	5‐7).	G3(12‐2)	and	

G3(13‐2)	had	the	A	variant	representing	a	truncation	of	one	MoTeR2,	while	

G3(12‐12)	had	a	strongly	hybridizing	fragment	at	~4.1	kb	or	a	loss	of	two	MoTeR2	

elements.		One	progeny,	G3(11‐4),	had	a	truncation	of	an	unexpected	size	of	~6.7	kb.	

G3(11‐5)	and	G3(11‐6)	had	longer	fragments	(~9.2	kb	and	~15	kb	respectively)	

likely	representing	further	extensions	of	the	MoTeR	array	in	the	31B	telomere.	
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5.	3	Discussion	

5.3.1	MoTeRs	in	telomere	restriction	fragment	length	polymorphisms	

The	major	objective	of	the	experiments	in	this	chapter	was	to	characterize	the	

possible	mechanisms	by	which	telomere	restriction	fragment	length	polymorphisms	

could	arise	in	LpKY97‐1A.	Eight	of	the	nine	visible	telomere	fragments	in	

PstI‐digested	genomic	DNA	cohybridized	with	MoTeRs,	and	they	were	associated	

with	a	majority	of	gains	(64%)	and	losses	(80%)	of	telomeric	bands	in	mitotic	

progeny.		This	close	association	of	MoTeRs	with	many	of	the	telomere	restriction	

fragment	length	changes	in	mitotic	progeny	suggested	that	MoTeRs	had	a	role	in	

this	instability.		However,	a	direct	correlation	with	band	changes	and	MoTeRs	

activity	could	not	be	established	due	to	several	possible	factors	such	as:	telomere	

fragments	of	the	same	size	comigrating	during	agarose	gel	electrophoresis	and	

appearing	as	a	single	band	in	the	Southern	analysis,	differential	methylation,	MoTeR	

truncations	caused	by	other	mechanisms,	or	another	transposable	element	causing	

the	instability	of	chromosome	ends.	The	cloning	of	telomere	restriction	fragments	

was	necessary	to	establish	a	direct	link	of	band	changes	with	MoTeRs.		Shotgun	

cloning	led	to	the	creation	of	end‐enriched	plasmid	libraries	from	three	different	

LpKY97‐1A	strains.		The	chromosome	ends	captured	by	this	approach	were	used	to	

characterize	three	different	mechanisms	by	which	instability	of	telomere	

fingerprints	can	arise:	MoTeR	transposition	into	telomeres,	duplication	and	capture	

of	internal	sequence	at	a	telomere,	and	expansion	or	contractions	of	MoTeRs	arrays.	

	 However,	there	were	other	possible	mechanisms	that	needed	to	be	explored,	

as	MoTeRs	cohybridization	was	absent	in	36%	of	the	telomere	restriction	fragment	
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length	gains.		Methylation	has	been	known	to	play	a	role	in	restriction	fragment	

length	polymorphism	at	chromosome	ends	(LANGE	et	al.	1990).			The	effect	of	

methylation	was	ascertained	by	comparing	telomere	fingerprints	of	genomic	DNA	

samples	digested	with	restriction	enzyme	isoschizomers,	one	being	sensitive	to	

cytosine	methylation	and	the	other	being	insensitive	to	methylation.		The	telomere	

fingerprints	failed	to	yield	any	band	differences.		Thus,	cytosine	methylation	may	

not	be	an	important	mechanism	in	telomere	restriction	length	polymorphisms	in	

LpKY97‐1A,	which	suggests	that	other	mechanisms	could	account	for	the	band	

changes.			

There	is	some	evidence	to	suggest	that	other	retrotransposons	are	active.	

The	retrotransposon	MAGGY,	for	example,	has	been	shown	to	be	active	and	has	been	

linked	to	some	telomere	profile	changes	in	the	mitotic	progeny	of	LpKY97‐1A	

(NOVIKOVA	et	al.	2011).	Thus,	other	elements	could	be	actively	causing	telomere	

instability	within	the	GLS	isolates.		The	structure	of	MoTeRs	may	serve	as	a	hotbed	

for	other	transposable	elements,	which	could	lead	to	further	instability	of	the	

telomeres.	

5.3.2	rDNA	rearrangements	

The	telomeric	rDNA	band	in	Southern	hybridizations	(labeled	R	in	Figure	5	1‐A)	was	

lost	in	14	of	the	58	mitotic	LpKY97‐1A	progeny	(24%)	over	the	course	of	three	

generations	(data	not	shown),	indicating	that	the	telomeric	region	of	the	rDNA	array	

is	unstable	in	this	isolate	of	M.	oryzae.	Instability	in	the	telomeres	at	the	end	of	the	

rDNA	arrays	has	also	been	seen	in	the	related	filamentous	fungus	Neurospora	crassa	

(WU	et	al.	2009).	
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In	LpKY97‐1A	the	instability	of	a	characterized	rDNA	band	was	potentially	

caused	by	the	activity	of	a	MoTeR1.	In	the	mitotic	progeny,	1GL3(4),	the	absence	of	

the	telomeric	rDNA	band	(Figure	5‐1‐A	lane	1	labeled	R)	was	believed	to	have	been	

produced	by	a	MoTeR1	that	transposed	into	a	telomere	of	the	rDNA	array.		This	

caused	the	telomeric	rDNA	fragment	to	be	longer	(Figure	5‐1‐A	lane	4	labeled	RM).		

The	size	difference	between	the	two	bands	was	less	than	expected	if	an	intact	

MoTeR1	had	transposed	into	the	rDNA	telomere.	Sequencing	analysis	revealed	that	

a	5’	truncated	MoTeR1	(tMoTeR1)	was	in	this	telomere,	and	the	truncation	point	of	

MoTeR1	was	in	register	with	the	telomere	repeats	(CCCTAA)‐tMoTeR.	The	tMoTeR1	

could	have	become	established	in	this	telomere	through	retrotransposition	or	

recombination.			

There	are	several	different	models	by	which	the	tMoTeR1	could	have	been	

inserted	into	the	rDNA	telomere.		The	5’	end	insertion	mechanisms	of	non‐long	

terminal	repeat	retrotransposons	are	not	known.	Truncation	of	5’	ends	may	occur	

by	the	reverse	transcriptase	(RT)	failing	to	copy	the	entire	RNA	template	or	

premature	initiation	of	second‐strand	synthesis	(LUAN	et	al.	1993).		One	current	

model	suggests	that	annealing	of	microhomologies	between	the	reverse	transcribed	

cDNA	to	the	top‐strand	will	prime	second‐strand	synthesis	of	the	retrotransposon	

(STAGE	and	EICKBUSH	2009).	If	binding	occurs	within	the	cDNA	instead	of	at	the	end,	

then	a	5’	truncated	element	would	be	inserted.		A	microhomology	of	one	base	pair	

was	found	between	the	MoTeR1	truncation	point	and	the	telomere	sequence,	but	in	

order	for	the	truncation	to	be	in	register	with	the	telomere	a	5	bp	target	site	

truncation	(TST)	or	target	site	duplication	(TSD)	would	have	needed	to	occur.		
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Another	possible	scenario,	is	that	the	RNA	template	was	derived	previously	from	a	

tMoTeR1	from	another	telomere.		This	tMoTeR1	would	potentially	have	a	telomere	

repeat	at	the	5’	end	of	its	RNA	transcript,	could	utilize	the	RT	machinery	of	a	full	

length	MoTeR1,	and	the	telomere	repeats	of	the	reverse	transcribed	cDNA	would	

provide	the	needed	microhomology	for	the	top‐strand	insertion	of	the	tMoTeR1.		An	

alternative	mechanism	to	explain	the	tMoTeR	insertion	is	the	template	jump	model	

(BIBILLO	and	EICKBUSH	2004;	ZINGLER	et	al.	2005b).			Based	on	this	model,	the	MoTeR1	

was	incompletely	reverse	transcribed	and	the	RT	was	able	to	template	jump	onto	

the	top‐strand	to	begin	the	second‐strand	synthesis	reaction.	One	less	likely	

mechanism	is	more	complex.		A	full	length	MoTeR1	could	have	retrotransposed	into	

the	telomere	repeat	in	one	of	the	nuclei	that	gave	rise	to	a	mitotic	progeny.	During	

the	further	culturing	of	this	isolate	the	MoTeR1	could	have	become	truncated	

followed	by	addition	of	telomere	repeats	by	telomerase.		This	mechanism	is	not	

likely	because	the	integrity	of	terminal	telomere	repeats	is	typically	maintained	in	

M.	oryzae	(STARNES	et	al.	2012).		The	maintenance	of	telomere	repeat	caps	has	also	

been	seen	in	another	fungus,	Kluyveromyces	lactis,	where	all	but	the	innermost	

telomere	repeats	undergo	gradual	turnover	primarily	through	the	loss	of	repeats	by	

replicative	processes	and	the	addition	of	new	repeats	by	the	action	of	telomerase	

(MCEACHERN	et	al.	2002).	

Recombination	with	another	telomere	end	is	an	alternative	mechanism	to	

retrotransposition.	This	was	considered	to	be	an	improbable	mechanism	whereby	

the	tMoTeR1	was	copied	into	the	rDNA	telomere.	Analysis	of	the	junction	sequence	

between	the	rDNA	array	and	the	3’	end	of	tMoTeR1	revealed	only	one	CCCTAA	
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repeat	between	the	two,	which	is	presumably	too	little	homology	for	efficient	

homologous	recombination	(LISKAY	et	al.	1987;	RUBNITZ	and	SUBRAMANI	1984).			

Break‐induced	replication	(BIR),	however,	has	been	known	to	copy	sequences	to	

new	chromosome	ends	even	when	there	are	only	a	few	nucleotides	of	homology.	

This	occurred	at	an	extremely	low	frequency	(RICCHETTI	et	al.	2003),	which	suggests	

that	BIR	is	not	the	probable	explanation	for	the	insertion	of	the	tMoTeR1	in	the	

rDNA	telomere.		Furthermore,	the	justification	that	recombination	was	responsible	

for	tMoTeR1	copy	into	the	rDNA	telomere	would	have	required	a	significant	

degradation	of	the	rDNA	telomere	tract	or	a	double	strand	break	(DSB)	to	initiate	

BIR.	Thus	recombination	could	account	for	the	tMoTeR1	in	the	rDNA	telomere,	but	it	

is	much	less	likely	than	the	transposition	model.			

5.3.3	Duplication	and	capture	of	internal	sequence	at	telomeres	

In	two	progeny	of	LpK97‐1A	there	was	a	de	novo	telomere	band	(Lanes	2	and	4,	

labeled	B,	Figure	5‐3‐A).		There	are	a	number	of	ways	this	telomere	could	have	been	

formed.		One	possible	mechanism	is	that	the	chromosome	end	was	truncated	in	

these	isolates,	followed	by	the	addition	of	telomere.		However,	this	is	not	a	probable	

mechanism	for	de	novo	telomere	formation,	because	the	variant	isolates	all	retained	

the	internal	117B1	bands	(Figure	5‐3‐C).	If	a	truncation	of	a	chromosome	end	had	

occurred,	it	would	be	expected	that	one	of	the	117B1	internal	bands	seen	in	the	

original	starting	isolate	would	have	been	absent	in	that	progeny.		More	likely,	the	

new	telomere	arose	through	the	copying	of	an	internal	fragment	onto	a	truncated	

chromosome	end.	It	is	unknown	what	may	have	caused	this	truncation	event,	and	

the	chromosome	end	has	not	been	sequenced	downstream	of	the	PstI	site.		A	
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truncation	in	a	MoTeR	array,	whereby	a	short	telomere	sequence	was	left	at	the	3’	

end	or	an	internal	break	within	a	MoTeR,	may	have	initiated	double	strand	break	

repair	machinery,	such	as	BIR,	which	could	have	been	active	in	capturing	the	

internal	sequence.		Further	characterization	of	this	chromosome	end	is	needed	to	

understand	the	potential	mechanisms	involved	in	the	capture	of	internal	sequence	

at	the	chromosome	end.	

5.3.4	MoTeR	transposition	

The	telomeric	117B1	was	not	present	in	the	initial	isolate,	but	was	present	in	at	

least	two	mitotic	progeny.		The	difference	between	band	B	and	band	BM	was	

approximately	5	kb,	which	is	suggestive	of	an	addition	of	a	full	length	MoTeR1	into	

the	117B1	telomere	(Figure	5‐3‐A).		Sequencing	revealed	that	at	the	junction	

between	the	3’	end	of	MoTeR1	and	117B1	in	band	BM	was	the	sequence	

MoTeR1‐(CCCTAA)3(CCTAA)(CCCTAA)‐117B1.		The	variant	telomere	sequence	

CCTAA	was	also	found	in	the	same	position	in	band	B.	The	5’	end	of	the	MoTeR1	

sequence	and	the	telomere	proximal	sequence	were	not	captured.	Based	on	

hybridization	intensity	of	the	telomere	probe	to	fragment	BM,	it	is	expected	to	have	

a	normal	length	telomere.		These	data	suggested	that	the	MoTeR1	was	added	into	

the	telomere	after	the	formation	of	the	de	novo	117B1	telomere.		This	could	have	

been	accomplished	by	retrotransposition	of	MoTeR1	or	recombination	of	the	

telomere	with	a	MoTeR1	containing	telomere.		Though	as	discussed	earlier,	

recombination	was	not	the	favored	mechanism.		

There	are	several	possible	mechanisms	by	which	the	MoTeR1	could	have	

retrotransposed	into	the	117B1	telomere.		Our	current	model	suggests	that	
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telomere	repeats	are	incorporated	into	the	3’	end	of	the	RNA	transcript,	which	

would	allow	for	insertion	of	the	MoTeR1	in	register	with	the	telomere	repeats	of	the	

target	site	(STARNES	et	al.	2012).		These	telomere	repeats	may	bind	to	the	target	site	

in	the	telomere	and	act	as	a	primer	to	initiate	reverse	transcription	of	the	MoTeR	

transcript	by	a	process	known	as	target	primed	reverse	transcription	(TPRT).	The	

inclusion	of	target	site	DNA	at	the	3’	end	of	the	transcript	is	known	to	increase	the	

accuracy	of	insertion,	but	can	reduce	the	efficiency	of	TPRT	(LUAN	and	EICKBUSH	

1996).			A	variable	number	of	telomere	repeats	are	found	at	the	3’	junctions	of	

MoTeRs,	which	could	be	caused	by	the	selection	of	different	target	sites	in	the	

telomeric	repeats	or	a	larger	number	of	telomere	repeats	incorporated	into	the	

MoTeR	transcript.		

Preliminary	evidence	has	shown	that	MoTeRs	are	expressed	(appendix	C).		

Expression	analysis	by	reverse	transcriptase	PCR	has	utilized	a	MoTeR	specific	

primer	in	the	initial	cDNA	synthesis.		Use	of	telomere	repeats	as	a	primer	for	cDNA	

synthesis	in	this	assay	could	establish	whether	telomere	repeats	were	part	of	the	

transcript.			Cloning	and	sequencing	of	MoTeR1	reverse	transcriptase	PCR	

amplicons	could	provide	evidence	of	read	through	transcription	into	the	telomere	

repeats.			

MoTeR1	is	the	first	example	of	a	potentially	active	telomere	repeat	specific	

non‐LTR	retrotransposon	in	fungi.	Two	examples	have	been	provided	that	are	

highly	suggestive	of	MoTeR	retrotransposition.	One	example	is	the	

retrotransposition	of	a	tMoTeR1	into	the	rDNA	telomere	and	the	other	example	is	

the	retrotransposition	of	a	suspected	full	length	MoTeR1	into	a	de	novo	telomere.	
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However,	further	experiments	are	needed	to	confirm	that	MoTeR1	and	MoTeR2	are	

capable	of	retrotransposition.	The	only	other	NLRs	where	direct	evidence	has	

shown	that	they	actively	insert	into	telomere	repeats	are	the	TRAS	and	SART	

retrotransposons	from	Bombyx	mori	(FUJIWARA	et	al.	2005).		

5.3.5	Molecular	mechanisms	underlying	MoTeR	array	contraction	and	

extension		

By	following	the	individual	chromosome	end	31B	in	mitotic	progeny	of	LpKY97‐1A,	

it	was	possible	to	track	the	fate	of	MoTeR2	arrays.		The	smallest	size	31B	ApaI	

digested	telomere	fragment	in	third	generation	mitotic	progeny	of	LpKY97‐1A	was	

~4.1	kb	in	length	(lane	3,	Figure	5‐5).	Restriction	analysis	and	partial	sequencing	of	

this	fragment	revealed	that	downstream	of	the	terminal	telomere	repeats	there	was	

a	MoTeR	array	with	an	intact	MoTeR2	and	a	5’	truncated	MoTeR1	in	the	telomere	of	

31B	(Figure	5‐4).		The	~4.1	kb	fragment	was	seen	as	a	faint	band	in	the	Southern	

analysis	of	the	ApaI‐digested	genomic	DNA	in	the	initial	starting	culture	(labeled	B,	

lane	1,	Figure	5‐6),	which	means	it	is	likely	only	present	in	some	nuclei.		The	

ApaI‐digested	31B	chromosome	end	present	in	most	nuclei	within	the	original	

culture	was	~5.8	kb.		This	is	exactly	the	size	difference	expected	if	an	additional	

MoTeR2	were	present	in	the	MoTeR	array	in	the	telomere	of	the	31B	chromosome	

end.	Third	generation	mitotic	progeny	with	31B	fragments	larger	than	~5.8	kb	were	

always	accompanied	with	faintly	hybridizing	fragments	of	~5.8	kb	and	~4.1	kb	

(Figure	5‐6,	lanes	2,4‐6,	and	9),	suggesting	that	truncations	of	the	MoTeR2	array	

were	common	during	mitotic	division.	Further	Southern	analyses	of	progeny	from	

the	isolates	with	31B	fragments	larger	than	~5.8	kb	showed	that	truncations	of	the	
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MoTeR2	arrays	occurred	more	frequently	than	expansions	(Figure	5‐7	and	5‐8).		

Progeny	of	the	isolate	G3(6)	with	the	~4.1	kb	fragment	did	not	show	any	expansion	

or	contraction	of	the	MoTeR2	array	in	the	Southern	analysis	of	ApaI	digests	(Figure	

5‐7‐A,	lanes	3‐15),	demonstrating	that	this	is	a	stable	configuration	of	the	telomere.		

It	could	be	expected	that	this	MoTeR2	array	could	truncate	further	by	the	loss	of	an	

additional	MoTeR2.		However,	a	further	truncation	of	this	array	was	not	observed	in	

any	of	G3(6)	mitotic	progeny.	

One	possible	mechanism	that	could	lead	to	truncation	of	MoTeR2	arrays	is	

that	the	replication	forks	stall	at	long	telomere	tracts	between	MoTeR2	elements	in	

an	array,	which	then	causes	truncations	in	the	MoTeR2	array.	Truncations	were	

more	pronounced	in	the	longer	MoTeR2	arrays	of	the	31B	telomere.		Cloning	and	

sequencing	of	the	~5.8	kb	fragment	revealed	a	long	telomere	tract	

[(CCCTAA)2(CCCTAAA)(CCTAA)12]	between	the	two	MoTeR2s	in	the	array	

(Novikova	et.	al.	unpublished).	In	Saccharomyces	cerevisiae	telomere‐promoted	

replication	fork	stalling	is	dependent	on	the	length	of	the	telomeres	(MAKOVETS	et	al.	

2004).	The	instability	observed	could	be	the	result	of	double	strand	breaks	being	

created	at	stalled	replication	sites	(SAINTIGNY	et	al.	2001;	STRUMBERG	et	al.	2000).		

Chromosome	instability	is	known	to	occur	at	interstitial	telomere	repeats	(KILBURN	

et	al.	2001;	MUSIO	et	al.	1996),		further	suggesting	that	long	interstitial	telomere	

repeats	between	the	MoTeRs	in	an	array	could	lead	to	higher	instability	of	telomere	

fingerprints.		

The	Interstitial	telomere	repeats	in	MoTeR	may	also	facilitate	the	formation	

of	telomere	loops	or	“t‐loops”.		T‐loops	are	formed	when	a	long	stretch	of	double	
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stranded	telomere	DNA	loops	around	and	the	single	stranded	terminus	invades	back	

into	double	stranded	telomere	forming	a	displacement	loop	(D‐loop)	(GRIFFITH	et	al.	

1999).		The	topological	barriers	caused	by	a	t‐loop	could	lead	to	replication	fork	

stalling	(SAMPATHI	and	CHAI	2011).			Processing	of	t‐loops	by	homologous	

recombination	in	cells	with	mutant	alleles	of	TRF2,	a	DNA	binding	protein	involved	

in	telomere	protection,	lead	to	truncations	of	the	telomere	at	the	site	of	the	t‐loops	

(WANG	et	al.	2004).		Improper	disassembly	of	t‐loops	not	only	leads	to	telomere	

truncations,	but	also	to	the	formation	of	telomeric	circles	(VANNIER	et	al.	2012).	

These	telomeric	circles	are	known	to	stimulate	recombinational	telomere	

elongation	(NATARAJAN	et	al.	2003;	NATARAJAN	and	MCEACHERN	2002),	which	could	

lead	to	further	instability	in	MoTeR	containing	isolates.	

The	presence	of	MoTeR	sequence	in	the	telomere	may	inhibit	the	proper	

function	of	telomere	binding	proteins	leading	to	further	instability	in	these	

telomeres.	This	could	be	an	interesting	avenue	to	explore	with	further	research.	

Another	mechanism	that	explains	both	truncations	and	expansions	of	

MoTeR2	arrays	is	unequal	crossing	over.	This	mechanism	could	lead	to	expansion	in	

one	MoTeR	array	and	contraction	of	another	MoTeR2	either	in	a	non‐homologous	

chromosome	end	or	the	sister	chromatid.	Expansion	and	contraction	of	the	rDNA	

array	in	haploid	cells	can	be	caused	by	unequal	crossing	over	of	sister	chromatids	

(SZOSTAK	and	WU	1980).	Sister	chromatid	exchange	occurs	at	a	higher	rate	at	

telomeres	and	subtelomeres	than	in	internal	chromosomal	sequence	(RUDD	et	al.	

2007).		This	further	suggests	that	MoTeRs	could	be	susceptible	to	high	rates	of	

recombination	between	sister	chromatids.		The	MoTeR	system	could	provide	
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additional	evidence	of	the	frequency	by	which	sister	chromatid	exchange	occurs.	

This	could	be	accomplished	by	following	a	“marked”	MoTeR	element	or	following	a	

particular	variant	of	MoTeR	through	asexual	reproduction	cycles.		
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CHAPTER	SIX	
	

Distribution	and	Evolutionary	History	of	Magnaporthe	oryzae	Telomeric	

Retrotransposons	within	Magnaporthe	

6.1	Introduction	

Magnaporthe	oryzae	includes	several	host‐specialized	subgroups,	each	of	which	are	

restricted	in	the	range	of	host	species	in	which	they	can	cause	disease.		

Representative	subgroups	are	the	Eleusine	pathotype	pathogenic	on	finger	millets	

(Eleusine	coracana);	the	Lolium	pathotype	pathogenic	on	perennial	ryegrass	(Lolium	

perenne),	tall	fescue	(Lolium	arundinaceum),	and	annual	ryegrass	(Lolium	

multiflorium);	the	Oryza	pathotype	pathogenic	on	rice	(Oryza	sativa);	the	Panicum	

pathotype	pathogenic	on	torpedo	grass	(Panicum	repens);	the	Setaria	pathotype	

pathogenic	on	foxtails	(Setaria	spp.);	and	the	Triticum	pathotype	pathogenic	on	

wheat		(Triticum	aestivum)	(KATO	et	al.	2000;	TOSA	et	al.	2004).	Magnaporthe	grisea	

isolates,	close	relatives	of	M.	oryzae,	are	virulent	on	crabgrass	(Digitaria	spp.).	

Restriction	length	polymorphism	(RFLP)	analysis	is	one	method	that	can	be	

used	to	delineate	isolates	into	their	respective	pathotypes.	The	unique	banding	

pattern	of	different	isolates	in	Southern	hybridizations	is	referred	to	as	the	isolates	

“DNA	fingerprint”.	DNA	fingerprinting	has	been	used	to	support	the	grouping	of	

isolates	into	host‐specific	forms	(BORROMEO	et	al.	1993;	HAMER	et	al.	1989a;	KATO	et	

al.	2000).		Repetitive	elements	have	been	used	in	DNA	fingerprinting	to	resolve	the	

association	of	M.	oryzae	isolates	to	the	limited	subset	of	cultivars	in	which	they	are	

virulent	(CORREA‐VICTORIA	et	al.	1994;	LEVY	et	al.	1991).			Two	repetitive	elements	

(MGR586	and	MGR583),	extensively	used	in	DNA	fingerprinting	studies,	contain	

sequence	relating	to	different	types	of	transposable	elements	(PoT3	and	MGL	
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respectively)	(FARMAN	et	al.	1996a;	KACHROO	et	al.	1997).	The	distribution	of	

transposable	elements	has	frequently	been	used	to	understand	population	structure	

within	and	among	M.	oryzae	pathotypes	(KUMAR	et	al.	1999;	PARK	et	al.	2008;	ROUMEN	

et	al.	1997;	TANAKA	and	NAKAYASHIKI	2009;	YAMAGASHIRA	et	al.	2008).		The	use	of	

multiple	transposable	elements	in	repetitive	DNA	fingerprinting	is	attractive	due	to	

the	differing	evolutionary	history	for	each	transposable	element.			

MoTeRs	are	present	in	the	genome	of	the	Lolium	pathotype	isolates	and	in	a	

single	Eleusine	pathotype	isolate	(PH42),	but	were	absent	in	the	laboratory	Oryza	

pathotype	isolate	70‐15	(Figure	3‐7).			MoTeRs	were	amplified	to	a	different	degree	

within	isolates	of	the	Lolium	pathotype.		These	results	indicated	that	MoTeRs	might	

be	unevenly	distributed	in	the	Magnaporthe	species.		This	was	surprising	as	the	

other	described	non‐LTR	retrotransposon	(MGL)	in	M.	oryzae	is	present	in	most,	if	

not	all,	host	specialized	pathotypes	(ETO	et	al.	2001).	Non‐LTR	retrotransposons	

tend	to	be	inherited	by	vertical	descent	(MALIK	et	al.	1999),		so	one	might	expect	

MoTeRs	to	be	present	in	most	host	specialized	forms	of	Magnaporthe.		The	absence	

of	MoTeRs	in	the	widely	studied	laboratory	isolate	70‐15	necessitated	the	need	to	

explore	the	overall	distribution	of	MoTeRs	in	various	pathotypes.	Repetitive	DNA	

fingerprinting	was	used	to	examine	the	distribution	of	MoTeRs	in	Magnaporthe	

isolates	from	14	different	pathotypes.			Using	information	gathered	from	the	

distribution	data,	partial	sequencing	of	MoTeR1s	from	different	pathotypes,	and	

evolutionary	analysis	of	these	sequences	the	likely	evolutionary	history	of	MoTeRs	

was	addressed.	
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6.2	Results	

6.2.1	Distribution	of	MoTeRs	within	Magnaporthe	

To	determine	the	distribution	of	MoTeRs	in	Magnaporthe,	sequence‐specific	

MoTeR1	and	MoTeR2	probes	were	used	as	probes	for	Southern	hybridization	

analyses	of	PstI‐digested	DNA	from	116	isolates	representing	14	different	

pathotypes.		Since	some	telomeric	MoTeRs	were	highly	truncated	in	Lolium	

pathotype	isolates	(Figure	3‐4),	two	different	MoTeR1	probes	were	utilized	to	

distinguish	between	putatively	intact	and	truncated	MoTeR1s.	The	MoTeR1(5’RT)	

probe	was	used	to	identify	presumed	intact	copies	that	retained	the	reverse	

transcriptase	needed	for	transposition,	while	the	MoTeR1(3’)	probe	was	used	to	

detect	truncated	copies	of	MoTeR1.		Since	MoTeRs	were	mostly	found	within	the	

telomeres	of	the	Lolium	pathotype	isolates,	I	wanted	to	ascertain	if	MoTeRs	were	

also	telomeric	in	other	pathotypes.	To	accomplish	this,	all	of	the	Southern	blots	

were	subsequently	hybridized	with	a	telomere	probe.	Hybridizing	fragments	were	

counted	as	single	bands	regardless	of	intensity	of	the	hybridization.	The	results	of	

these	experiments	are	summarized	in	Table	6‐1	and	Table	6‐2.		

Isolates	from	the	Lolium	pathotype	all	had	a	putatively	intact	MoTeR1	copy	

present	within	their	genome	(Table	6‐1).			There	were	more	MoTeR1(RT)	bands	

observed	on	average	in	the	Lolium	pathotype	(~8	bands	per	isolate)	than	in	other	

pathotypes.	In	addition	to	the	Lolium	pathotypes,	other	pathotypes	had	multiple	

apparently	intact	MoTeR1	in	their	genome.	These	included	isolates	from	Triticum	

(Figure	6‐1),	Eragrostis	(Figure	6‐4	lanes	4	and	8)	and	two	out	of	the	four	Eleusine	

(Figure	6‐4	lanes	3	and	7)	pathotype	isolates.		At	least	one	putative	intact	copy	of	
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MoTeR1	was	present	in	all	isolates	surveyed	from	the	Stenotaphrum,	Paspalum,	

Leptochloea,	and	Zingiber	pathotypes.		In	contrast,	isolates	from	Setaria	and	Oryza	

showed	uneven	distribution	of	MoTeRs	among	isolates,	with	some	showing	a	single	

intact	copy	of	MoTeR1	while	others	were	apparently	completely	devoid	of	the	

element.	Finally,	some	pathotypes	lacked	full	length	MoTeR1s;	these	included	

Brachiaria,	Panicum,	Pennisetum,	and	Digitaria.		Most	of	the	putatively	intact	

MoTeR1	bands	in	the	various	pathotypes	were	telomeric	in	nature	(337/347	or	

97%)	(Table	6‐2)	based	on	cohybridization	of	MoTeR1(RT)	probe	and	telomere	

probe	to	PstI	fragments	in	Southern	analysis.		Only	isolates	from	the	Lolium	and	

Eleusine	pathotypes	had	copies	of	intact	MoTeR1s	that	were	not	telomeric	in	nature	

(6	and	4	fragments	respectively).	These	fragments	were	likely	once	telomeric	in	

nature.	

The	Southern	analyses	with	the	MoTeR1(3’)	probe,	capable	of	detecting	

truncated	MoTeR1	copies,	provided	more	thorough	analyses	of	MoTeR1	

presence/absence	within	the	different	pathotypes.		According	to	this	analysis,	only	

the	Panicum	and	Pennisetum	pathotypes	completely	lacked	MoTeR1.		At	least	one	

partial	copy	of	the	element	was	present	in	all	isolates	surveyed	from	Lolium,	

Eragrostis,	Eleusine,	Triticum,	Leptochloea,	Zingiber,	Paspalum,	and	Setaria.		

Truncated	MoTeR1	copies	still	exhibited	a	spotty	distribution	within	the	Oryza	

pathotype.		Isolates	from	the	Digitaria	pathotype,	members	of	the	sister	species	M.	

grisea,	all	had	MoTeR1	present	within	their	genomes	(Figure	6‐5).	Only	103	of	the	

185	(or	56%)	truncated	MoTeR1	bands	were	telomeric,	which	is	lower	than	the	

percentage	of	apparently	intact	MoTeR1	bands	that	were	associated	with	telomeres	
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(97%)	(Table	6‐2).		Truncated	MoTeR1	thus	have	a	substantial	decrease	in	

telomeric	association.		It	is	likely	that	these	truncated	MoTeR1s	have	become	

internalized	in	the	genome.	

MoTeR2	was	detected	in	42	of	the	116	isolates	analyzed	(Table	6‐1).	It	was	

restricted	to	isolates	that	also	had	MoTeR1	in	their	genome.		Most	Lolium	pathotype	

isolates	tested	(25/27)	had	MoTeR2s	in	their	genome.	All	of	the	Eleusine	pathotype	

isolates	had	MoTeR2s.		MoTeR2	was	detected	in	only	half	of	the	Triticum	pathotype	

(9/18)	and	Eragrostis	pathotype	isolates	(1/2).		Only	two	isolates	from	the	Setaria	

pathotype	had	MoTeR2.		In	an	Oryza	pathotype	laboratory	strain	(2539),	a	single	

MoTeR2	band	was	observed	in	the	Southern	hybridizations	(Figure	6‐3,	lane	5).	

DNA	fragments	of	isolates	surveyed	from	the	Brachiaria,	Digitaria,	Leptochloea,	

Panicum,	Paspalum,	Pennisetum,	Stenotaphrum,	and	Zingiber	pathotypes	did	not	

hybridize	to	MoTeR2	probe	in	the	Southern	analysis	(Figure	6‐4	and	Figure	6‐5),	

likely	indicating	that	they	lacked	MoTeR2,	or	that	the	remaining	fragments	were	

severely	truncated.	Most	of	the	MoTeR2	fragments	in	the	Southern	analysis	

cohybridized	with	telomere	fragments	(200/202)	(Table	6‐2),	indicating	that	they	

were	probably	telomeric.		The	only	exceptions	to	this	were	in	two	Setaria	pathotype	

isolates	(YF1	and	YF2).	

6.2.2	MoTeR	evolution	within	Magnaporthe	oryzae	

MoTeR1	was	present	in	most	pathotypes	of	Magnaporthe.		Multiple	putatively	intact	

copies	of	MoTeRs	were	also	present	in	Eleusine	and	Eragrostis	pathotypes	rooted	

deeply	in	the	proposed	evolutionary	history	of	M.	oryzae	(COUCH	et	al.	2005).	This	

suggested	that	MoTeR1	was	inherited	by	vertical	descent	and,	therefore,	was	lost	in	
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some	isolates.	In	this	case,	it	would	be	expected	that	the	evolutionary	history	of	

MoTeR1	would	resemble	those	of	other	nuclear	genes	within	the	organism.			To	test	

this,	three	genomic	loci	(MPG1,	CH7‐Bac7,	and	the	rDNA	internal	transcribed	spacer	

[ITS]	region)	were	amplified	by	PCR	from	genomic	DNA	in	26	different	MoTeR1	

containing	isolates	and	the	PCR	amplicons	were	cloned	and	sequenced.	Likewise,	

MoTeR1	sequences	in	the	various	isolates	were	amplified	by	PCR	from	genomic	

DNA	and	resulting	PCR	amplicons	were	then	cloned	and	sequenced.		The	sequences	

were	aligned	and	the	evolutionary	history	was	inferred	using	the	neighbor‐joining	

(NJ)	method	(SAITOU	and	NEI	1987).		The	bootstrap	tree	was	derived	from	1000	

replicates	and	is	taken	to	represent	the	evolutionary	history	of	the	26	taxa	analyzed	

(FELSENSTEIN	1985).		Missing	data	or	alignment	gaps	were	eliminated	only	in	

pairwise	sequence	comparisons.			

The	data	from	individual	gene	loci	provided	very	little	phylogenetic	

resolution	among	pathotypes	due	to	some	isolates	sharing	identical	sequence.		Data	

from	all	gene	loci	were	concatenated	to	improve	resolution.	A	neighbor‐joining	tree	

based	on	1323	positions	in	the	concatenated	sequence	of	the	genomic	loci	is	shown	

in	Figure	6‐6‐A.		The	neighbor‐joining	phylogenetic	tree	of	MoTeR1	based	on	1373	

positions	is	shown	Figure	6‐6‐B.	The	topology	of	the	gene	loci	and	MoTeR1	trees	

were	compared	to	determine	if	there	was	a	similar	evolutionary	history.	

	 According	to	the	NJ	analyses	of	the	gene	loci,	isolates	within	pathotypes	were	

grouped	together	with	the	exception	of	the	Lolium	pathotype	(Figure	6‐6‐A).	The	

Lolium(1)	pathotype	isolates	(LpKY97‐1A,	FH,	NJ1,	and	NJ2)	were	all	collected	in	the	

United	States,	while	the	Lolium(2)	pathotype	isolate	(WK31)	was	a	weakly	
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aggressive	isolate	that	was	collected	in	Japan.	Lolium(1)	pathotype	isolates	were	

most	similar	to	Eleusine	pathotype	isolates(CD156,	PH42,	JP29,	and	G22),	while	the	

Lolium(2)	pathotype	isolate	was	more	similar	to	Triticum	(BR2	and	BR4),	Setaria	

(MCCL2,	ARC1,	STHLAND,	YFDC,	and	GF1),	and	Oryza	pathotype	isolates	(2539,	

91T14,	and	IT11).		The	gene	loci	delineated	the	Eleusine	pathotypes	into	two	groups	

based	on	the	species	of	hosts	they	were	collected	from:	Eleusine	coracana	(JP29	and	

G22)	and	Eleusine	indica	(CD156	and	PH42).		Stenotaphrum	isolates	(PG1108,	

PG1054,	SSFL,	and	STAGMS)	were	most	similar	to	Eragrostis	pathotype	isolates	

(G17	and	AR4)	based	on	gene	loci.	

	 The	evolutionary	history	of	MoTeR1	appeared	to	be	somewhat	different	than	

the	evolutionary	history	of	gene	loci	(Figure	6‐6‐B),	and	there	were	a	higher	number	

of	base	substitutions	in	the	MoTeR1	sequences	than	were	calculated	in	the	nuclear	

genes	(Figure	6‐6).	In	the	previous	NJ	analysis	of	nuclear	genes	the	Triticum	

pathotype	isolates	were	more	closely	related	to	Lolium(2),	the	Setaria,	and	Oryza	

isolates.	However,	the	MoTeR1s	of	Lolium(1)	pathotypes	were	highly	similar	to	the	

MoTeR1	sequences	of	Triticum	pathotype	isolates.	The	Setaria	isolates	were	all	

grouped	together	based	on	nuclear	genes,	but	the	MoTeR1	of	ARC1	was	most	similar	

to	the	MoTeR1s	of	Lolium(1)	and	Triticum	pathotype	isolates.		The	Eleusine	

pathotype	was	polyphyletic	in	regards	to	MoTeR1,	but	monophyletic	based	on	

nuclear	genes.	The	MoTeR1s	of	Eleusine	indica	isolates	(CD156	and	PH42)	were	

similar	to	the	MoTeR1	sequence	in	the	Lolium(2)	(WK31)	isolate	and	two	Eragrostis	

pathotype	isolates	(G17	and	AR4).		The	MoTeR1s	of	Eleusine	coracana	pathotype	

isolates	(G22	and	JP29)	were	similar	to	most	of	the	MoTeR1s	in	Setaria	pathotype	
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isolates	(YFDC,	MCCL2,	STHLAND).	The	Oryza	pathotype	isolates’	MoTeR1s	grouped	

together	with	the	exception	of	2539,	a	laboratory	strain,	where	the	MoTeR1	

sequence	grouped	with	the	MoTeR1	of	Eragrostis	isolate	G17.		The	Stenotaphrum	

pathotype	isolates	were	grouped	together	in	regards	to	MoTeR1,	and	were	closely	

related	to	the	MoTeR1s	of	the	Oryzae	pathotype	isolates.	This	was	different	from	

what	had	been	observed	previously	in	the	NJ	analysis	of	nuclear	genes	where	

Stenotaphrum	isolates	were	more	closely	related	to	Eragrostis	isolates.			

One	factor	that	could	lead	to	grouping	of	MoTeR1s	in	phylogenetic	trees	is	

that	when	analyzing	the	sequence	of	MoTeR1	in	an	individual	pathotype	the	

orthologous	copies	were	compared,	while	paralogous	MoTeR1	copies	might	have	

been	compared	in	the	analyses	between	different	pathotypes.		For	example,	isolates	

IT11	and	91T14	were	closely	related	phylogenetically	(Figure	6‐6‐B)	and	produced	

a	MoTeR1	band	with	a	similar	size	in	Southern	analysis	(Figure	6‐3‐B).		The	SIT4	

isolate	had	a	MoTeR1	band	that	was	smaller	in	size.	This	could	suggest	it	was	a	

truncated	form	of	MoTeR1	on	the	same	chromosome	end	as	91T14,	or	it	could	

represent	a	paralogous	MoTeR1	copy	on	a	different	chromosome	end.	To	determine	

whether	the	MoTeR1	in	91T14,	IT11,	and	SIT4	were	on	the	same	chromosome	end,	

Josh	Moore,	an	undergraduate	in	Dr.	Mark	Farman’s	lab,	developed	a	probe	that	was	

specific	to	the	MoTeR1	containing	chromosome	in	IT11.		I	hybridized	this	probe	

with	the	Southern	blot	shown	in	Figure	6‐3.	Only	one	band	in	91T14	and	IT11	

cohybridized	to	the	telomere	and	the	MoTeR1(5’RT)	band	that	was	identified	earlier	

(Figure	6‐3‐E).		This	suggested	that	MoTeR1	was	indeed	at	the	homologous	

chromosomal	end	in	these	two	isolates.	The	IT11	probe	did	not	hybridize	with	the	
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band	that	hybridized	to	MoTeR1(5’RT)	probe	in	SIT4	DNA	(Figure	6‐3‐E),	which	

suggested	that	the	intact	MoTeR	in	SIT4	was	on	a	different	chromosome	end.	Since	

the	SIT4	MoTeR1	is	on	a	different	chromosome	end,	this	copy	is	likely	paralogous	to	

the	MoTeR1	copy	in	the	IT11	and	91T14	genome.	The	MoTeR1	sequences	derived	

by	PCR	of	genomic	DNA	from	IT11,	91T14,	and	SIT4	were	highly	similar	and	

grouped	together	in	phylogenetic	analysis	even	though	the	SIT4	MoTeR1	copy	was	a	

paralog.			This	suggests	that	the	effect	of	using	sequence	derived	from	orthologous	

versus	paralogous	MoTeR1	copies	was	not	a	likely	factor	in	the	grouping	of	the	

MoTeR1s	in	the	NJ	tree.	

6.2.3	Possible	mechanisms	affecting	the	evolutionary	history	of	MoTeRs	

MoTeRs	had	more	mutations	between	the	various	pathotypes	than	were	observed	

in	the	nuclear	genes.	The	repeat‐induced	point	mutation	mechanism	(RIP)	can	

promote	accelerated	evolution	and	is	known	to	occur	in	Magnaporthe	(IKEDA	et	al.	

2002).		RIP	causes	nucleotide	transitions	whereby	G:C	are	changed	to	A:T	in	

duplicated	DNA	elements	during	the	sexual	reproductive	phase	(CAMBARERI	et	al.	

1989).			Thus	it	would	be	expected	that	MoTeR1	sequences	would	show	a	strong	

bias	towards	transitions	mutations	if	RIP	were	active.	A	maximum	composite	

likelihood	estimate	of	the	pattern	of	nucleotide	substitution	was	calculated	between	

the	26	isolates	examined	in	the	neighbor‐joining	analyses	to	determine	if	a	bias	in	

transition	versus	transversions	existed.	The	rates	of	a	transitional	mutation	were	

higher	in	each	base	observed	(Table	6‐3).		The	nucleotide	frequencies	were	0.359	

(A),	0.242	(T),	0.225	(C),	and	0.173	(G).			The	transition/transversion	rate	ratios	

were	k1=3.623	(purines)	and	k2=7.335	(pyrimidines).		The	overall	
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transition/transversion	bias	was	R=2.042,	where	R=[A*G*k1	+	

T*C*k2]/[(A+G)*(T+C)].		An	overall	transitions/transversion	bias	of	2.042	is	not	

typically	indicative	of	RIP’d	sequences.	To	examine	the	possibility	of	RIP	more	

closely,	MoTeR1	sequence	from	LpKY97‐1A	(multiple	copies	of	MoTeR1)	and	IT11	

(a	single	copy	of	MoTeR1)	were	aligned	using	MUSCLE,	and	the	sequences	were	

compared	in	MEGA	version	4	(See	Appendix	C	for	data).		A	total	of	1374	bp	were	in	

the	alignment	with	two	indels.		After	removing	the	indels	from	analyses,	the	

sequence	was	highly	conserved	between	LpKY97‐1A	and	IT11	(1285	out	of	1364	

bases	conserved	or	94%).		There	were	a	total	of	79	nucleotide	differences	in	

MoTeR1	sequence	between	LpKY97‐1A	and	IT11.	Transitions	made	up	52	out	of	the	

79	nucleotide	differences	between	the	two	sequences,	while	there	were	27	

transversions.		The	ratio	of	transitions	to	transversions	was	1.93:1.		The	background	

transition	to	transversion	ratio	in	Magnaporthe	is	2:1	(COUCH	and	KOHN	2002).	Since	

RIP	didn’t	appear	to	be	the	predominant	mechanism	for	the	sequence	difference	in	

MoTeR1	between	host	pathotypes,	it	seems	more	likely	that	random	mutation	may	

have	led	to	the	sequence	divergence	between	different	host	pathotypes.		

6.3	Discussion	

6.3.1	Distribution	of	MoTeRs	in	Magnaporthe	

The	major	objectives	of	the	experiments	in	this	chapter	were	to	determine	the	

distribution	of	the	MoTeR	retrotransposons	within	Magnaporthe,	and	based	on	

these	data,	to	describe	the	possible	evolutionary	history	of	MoTeRs.	In	previous	

chapters,	it	was	noted	that	MoTeR1s	were	present	in	isolates	of	the	Lolium	

pathotype,	but	absent	in	isolates	of	the	Oryza	pathotype.	It	was	therefore	predicted	
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that	MoTeRs	would	be	unevenly	distributed	among	the	many	different	host	specific	

isolates	within	M.	oryzae.		This	initial	observation	was	confirmed	through	further	

experimentation.	The	Lolium	pathotype	had	the	most	MoTeR1	copies	followed	by	

the	Triticum	pathotype	isolates.		Only	a	few	Oryza	pathotype	isolates	had	MoTeR1	

elements.		The	uneven	distribution	of	MoTeR1	was	surprising	because	the	other	

major	non‐LTR	retrotransposon	in	M.	oryzae	was	more	widely	distributed	(ETO	et	al.	

2001).	Several	processes	could	be	involved	in	the	differences	in		copy	number	of	

MoTeR1	such	as	stochastic	loss,	an	increased	rate	of	retrotransposition,	inactivation	

of	repetitive	sequences	either	by	passive	or	active	processes,	horizontal	

transmission,	or	self‐regulation	of	transposition	(ARKHIPOVA	2005;	JOHNSON	2007;	LE	

ROUZIC	and	CAPY	2005).			

MoTeR2	distribution	was	more	limited	than	MoTeR1	and	primarily	confined	

to	isolates	that	had	MoTeR1.		MoTeR1	was	typically	found	at	a	higher	copy	number	

in	the	isolates	that	also	had	MoTeR2.	Based	on	the	prediction	that	MoTeR2	requires	

MoTeR1	for	transposition,	only	the	horizontal	transmission	of	a	MoTeR1	or	both	

MoTeR1	and	MoTeR2	would	allow	for	amplification	in	a	new	genome.	It	is	not	yet	

known	whether	a	MoTeR1	element	is	capable	of	horizontal	transmission.		Also,	it	is	

not	known	whether	MoTeRs	would	have	an	ability	to	amplify	in	the	genomes	of	

isolates	that	did	not	previously	have	MoTeRs.		Previous	work	with	the	LTR	

retrotransposon	MAGGY	has	shown	that	it	can	amplify	in	a	genome	not	previously	

containing	the	element	(NAKAYASHIKI	et	al.	2001a).	MoTeRs	have	been	shown	to	

amplify	under	conditions	where	normal	telomerase	function	has	been	abolished	

(Farman	unpublished).	This	could	suggest	that	MoTeRs	are	amplified	in	isolates	
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with	a	lower	expression	of	telomerase	or	in	isolates	missing	important	regulators	in	

telomere	maintenance,	which	would	be	an	interesting	avenue	of	research	to	pursue.	

This	study	represents	one	of	the	few	studies	where	multiple	probes	were	

used	from	a	single	retrotransposon.		In	the	case	of	the	MAGGY	and	Grasshopper	LTR	

retrotransposons,	only	probes	that	represented	the	internal	portion	of	the	element	

were	used	(DOBINSON	et	al.	1993;	FARMAN	et	al.	1996b).		There	is	a	possibility	that,	

like	MoTeRs,	the	MAGGY	and	Grasshopper	LTR	retrotransposons	were	lost	in	some	

isolates	while	being	retained	in	others.		To	determine	whether	degraded	LTR	

elements	exist	within	other	M.	oryzae	genomes,	further	experimentation	using	

probes	from	the	LTR	region	of	MAGGY	and	Grasshopper	could	be	conducted.	

6.3.2	Possible	routes	to	the	present	evolutionary	pattern	of	MoTeR1	

There	are	two	possible	explanations	to	account	for	the	uneven	distribution	of	

MoTeR1	in	M.	oryzae.	The	first	explanation	supposes	that	the	MoTeRs	are	ancient	

retrotransposons	that	were	present	in	the	common	ancestor	but	were	absent	in	

later	generations	due	to	either	stochastic	loss	or	by	an	active	mechanism	such	as	

repeat	induced	point	mutation	(RIP).		While	a	majority	of	the	sequence	differences	

between	LpKY97‐1A	and	IT11	were	transition	mutations,	it	is	not	as	striking	of	a	

pattern	that	has	been	observed	in	sequences	where	RIP	is	active	and	nearly	all	the	

nucleotide	substitutions	are	transitions	(BRAUMANN	et	al.	2008).	In	fact,	the	

transition/transversion	ratio	for	MoTeR1	(1.93:1)	is	lower	than	previous	studies	

that	calculated	the	transition/transversion	ratio	among	the	gene	loci	in	M.	oryzae	

isolates	(COUCH	and	KOHN	2002).		The	t/v	ratio	of	other	transposable	elements	in	

M.	oryzae	are	typically	higher	than	gene	loci,	such	as	MAGGY	(6.8:1),	MGL	(4.2:1),	
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and	Pot2	(2.3:1)	(THON	et	al.	2004).	The	low	t/v	ratio	in	MoTeR1	between	

LpKY97‐1A	and	IT11	suggests	that	RIP	is	not	actively	involved	in	the	DNA	sequence	

differences	between	different	host	specific	isolates.	However,	this	evidence	is	based	

on	sequence	divergence	of	a	single	MoTeR1	copy	in	a	single	Oryza	pathotype	isolate	

compared	to	a	single	MoTeR1	amplified	from	LpKY97‐1A.		If	the	Oryza	pathotype	

isolate	never	had	more	than	one	MoTeR1	in	its	genome,	then	it	wouldn’t	be	

expected	for	RIP	to	be	active	on	this	sequence	because	RIP	acts	on	repetitive	

elements	within	the	genome	(CAMBARERI	et	al.	1989).	A	wider	study	examining	

sequence	from	multiple	MoTeR1	copies	in	LpKY97‐1A,	or	another	isolate	with	

multiple	MoTeR1	copies,	might	show	evidence	of	RIP’d	copies,	and	thus	RIP	as	a	

mechanism	for	loss	of	MoTeRs	cannot	be	completely	ruled	out.			

An	alternative	explanation	for	the	evolution	of	MoTeRs	is	that	they	could	

have	arisen	by	horizontal	transmission	from	one	host	isolate	to	another	in	the	

recent	past.	Horizontal	transmission	is	often	invoked	to	describe	inconsistencies	in	

the	presence	of	retrotransposons	in	the	evolutionary	history	of	an	organism.	More	

traditionally,	horizontal	transmission	is	implied	when	transposable	elements	are	

discontinuously	distributed	in	distantly	related	taxa	in	a	way	that	cannot	be	

explained	by	vertical	inheritance	(HARTL	et	al.	1997;	KIDWELL	1992).	The	limited	

distribution	of	MAGGY	and	Grasshopper	have	been	used	to	suggest	that	they	likely	

arose	through	horizontal	transmission	(DOBINSON	et	al.	1993;	ETO	et	al.	2001;	FARMAN	

et	al.	1996b).	Horizontal	transmission	of	non‐LTR	retrotransposons	is	thought	to	be	

a	rare	occurrence	(MALIK	et	al.	1999),	and	there	are	only	a	few	possible	cases	of	

horizontal	transmission	of		non‐LTR	retrotransposons	(ZUPUNSKI	et	al.	2001).		The	
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reason	for	this	rarity	is	believed	to	be	due	to	the	mechanism	of	transposition	itself.	

In	LTR	retrotransposons,	a	DNA	intermediate	is	produced	which	then	inserts	into	

the	genome	during	transposition	(LUAN	et	al.	1993).		In	non‐LTR	transposition,	a	

RNA	intermediate	is	reverse	transcribed	and	the	cDNA	integrates	directly	into	the	

target	site	(LUAN	et	al.	1993).	The	horizontal	transmission	of	the	RNA	intermediate	

of	MoTeR1	followed	by	successful	integration	into	the	genome	is	not	likely.	LTRs	are	

much	more	likely	to	be	horizontally	transferred	due	to	a	DNA	intermediate	which	is	

packaged	in	virus‐like	particles	(CHAPMAN	et	al.	1992;	FENG	et	al.	2000;	WILHELM	et	al.	

1994).	These	factors	would	increase	the	probability	of	LTRs	surviving	horizontal	

transmission.		

The	Southern	analyses	with	the	MoTeR1(3’)	probe,	which	allows	for	the	

detection	of	truncated	MoTeR1s,	indicated	that	many	of	the	isolates	had	MoTeR1	in	

their	genomes.	The	truncated	MoTeRs	were	also	seen	in	M.	grisea,	which	is	a	

separate	species	from	M.	oryzae.	These	data	favor	the	hypothesis	that	the	MoTeRs	

are	ancient	retrotransposons	that	were	present	in	a	common	ancestor	to	both	

M.	oryzae	and	M.	grisea.		Since	most	of	the	copies	of	MoTeR1	in	distantly	related	taxa	

could	be	a	result	of	vertical	descent,	it	is	interesting	that	only	some	lineages	retained	

the	MoTeR1	in	their	genome.		

The	conclusion	that	MoTER1	had	a	predominately	vertical	mode	of	descent	

was	somewhat	confounded	by	sequence	similarity	of	MoTeR1	in	ARC1	(a	Setaria	

pathotype	isolate)	to	the	MoTeR1s	sequence	of	other	Lolium	pathotype	isolates.	

ARC1’s	MoTeR1(5’RT)	fragment	observed	in	the	Southern	blot	was	stronger	in	

intensity,	as	well	as	being	smaller	in	size,	than	the	fragments	observed	in	the	other	
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Setaria	pathotype	isolates	(data	not	shown).	Additionally,	in	a	neighbor‐joining	tree	

of	nuclear	genes	the	ARC1	sequence	was	similar	to	the	other	Setaria	pathotype	

isolates	(Figure	6‐6‐A),	while	ARC1’s	MoTeR1	sequence	was	more	similar	to	the	

MoTeR1s	in	the	Lolium(1)	pathotype.		Horizontal	transfer	is	commonly	implied	

when	the	sequence	of	a	retrotransposon	in	an	individual	is	more	similar	to	a	

distantly	related	group	than	the	sequence	similarity	observed	at	other	loci	(SILVA	et	

al.	2004).		However,	there	is	another	plausible	explanation	to	describe	the	sequence	

similarity	of	the	MoTeR1	in	ARC1	to	MoTeR1	copies	in	the	Lolium(1)	pathotype	that	

would	not	violate	vertical	descent.	The	MoTeR1	fragment	in	ARC1	could	represent	a	

copy	of	the	element,	which	was	lost	in	the	other	Setaria	pathotypes	isolates.		This	

MoTeR1	was	telomeric,	which	would	make	it	more	likely	to	be	lost	through	

degradation	of	the	chromosome	ends.	Setaria	isolates	are	known	to	undergo	

frequent	rearrangements	at	the	chromosome	ends	(Farman,	unpublished	data),	

making	the	loss	of	a	telomeric	MoTeR	copy	highly	possible.	The	process	described	

above	would	fit	with	the	model	that	MoTeRs	were	once	present	in	all	genomes.	

Nevertheless,	horizontal	transmission	cannot	be	ruled	out	in	the	explanation	of	the	

similarity	of	MoTeR1	sequence	in	ARC1	to	the	MoTeR1	sequence	of	the	Lolium	

pathotype	isolates.		Detailed	comparative	genomic	analyses	may	be	required	to	

determine	the	possible	origin	of	the	ARC1	MoTeR1	element.		

The	evolutionary	history	of	MoTeR1	elements	did	not	match	the	evolutionary	

history	of	nuclear	genes	in	M.	oryzae	based	on	NJ	analyses	(Figure	6‐6).		Instead,	the	

sequence	of	MoTeR1s	in	isolates	with	higher	copy	number	of	putatively	intact	

MoTeR1s	from	the	Southern	analyses	tended	to	be	more	similar	with	one	another.	It	
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also	held	true	that	most	pathotypes	grouped	together	based	on	NJ	analysis	of	

MoTeR1	sequence	with	the	exception	of	ARC1,	discussed	above,	and	the	Eleusine	

pathotype	isolates.	The	separation	of	Eleusine	pathotypes	into	two	distinct	clades	

has	also	been	observed	in	evolutionary	analyses	using	other	transposable	elements	

(TANAKA	and	NAKAYASHIKI	2009).	The	MoTeR1s	of	the	Eleusine	pathotype	isolates	

PH42	and	CD156	were	similar	to	the	MoTeR1s	of	the	Lolium	pathotype,	and	they	

also	had	more	copies	of	MoTeR1	in	their	genomes	than	G22	and	JP29,	which	were	

more	closely	related	to	Setaria	isolates	based	on	MoTeR1	sequence	similarity.	The	

Oryza	field	isolates	grouped	closely	to	one	another,	although	the	isolates	were	

separated	by	vast	geographical	distance	and,	in	the	case	of	SIT4,	the	MoTeR1	was	

likely	a	paralogous	copy	of	MoTeR1	in	regards	to	the	other	Oryza	pathotype	isolates.	

The	Oryza	pathotype	laboratory	strain	2539	was	closely	related	to	the	Eragrostis	

pathotype	isolates,	which	was	anticipated	as	this	isolate	was	a	sexual	progeny	

produced	in	crosses	between	Eragrostis	and	Oryza	pathotype	isolates.	The	MoTeR1	

sequences	in	the	Stenotaphrum	pathotype	isolates	were	similar	to	MoTeR1	

sequences	of	Oryza	pathotype	field	isolates,	and	formed	a	clade	in	the	neighbor‐

joining	analysis	(Figure	6‐6	B).		However,	based	on	NJ	analysis	of	nuclear	genes	the	

two	pathotypes	were	not	as	closely	related.	

	One	possible	explanation	for	the	sequence	similarity	of	MoTeR1s	in	isolates	

with	putatively	intact	copies	could	be	that	isolates	with	active	MoTeR1s	constantly	

replenish	the	MoTeR1	at	the	chromosome	ends	with	a	functional	copy.	In	isolates	

with	a	single	MoTeR1	that	copy	could	easily	become	non‐functional	and	then	the	

sequence	would	undergo	further	mutagenesis	or	degradation.	Copy	numbers	of	
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non‐LTRs	are	generally	high	in	eukaryotic	organisms,	but	usually	there	are	only	a	

few	master	copies	that	have	the	ability	to	give	rise	to	new	copies	(BROUHA	et	al.	

2003;	ZAGROBELNY	et	al.	2004).		These	“functional”	copies	would	need	to	persist	in	

the	genome	in	order	to	continually	produce	more	MoTeRs	as	telomere	truncations	

may	arise.	The	likely	evolutionary	history	presented	by	the	neighbor‐joining	

analyses	could	represent	the	approximate	time	since	the	transposable	element	was	

functional.		Lolium	and	Triticum	pathotype	isolates	both	had	a	high	copy	number	of	

the	MoTeR1	elements	in	their	genomes.	In	this	situation,	it	would	also	be	possible	to	

maintain	sequence	similarity	of	MoTeR	copies	by	gene	conversion	(KIJIMA	and	INNAN	

2010).
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CHAPTER	SEVEN	

Conclusions	

	

7.1	MoTeRs	are	active	retrotransposons	in	the	isolates	from	the	Lolium	

pathotype	

In	a	previous	study	of	GLS	isolates,	telomere	profiles	in	Southern	analyses	were	

“hypervariable”	in	comparison	with	profiles	of	other	molecular	(FARMAN	and	KIM	

2005).		The	major	goal	of	this	dissertation	was	to	outline	possible	mechanisms	that	

could	account	for	this	variability.		By	comparing	mitotic	progeny	generated	from	

single	spored	Lolium	pathotype	isolates	and	an	Oryza	pathotype	isolate,	it	was	

shown	that	new	telomere	variability	arises	much	more	readily	in	the	Lolium	

pathotype	isolates.		In	fact,	none	of	the	third	generation	of	mitotic	progeny	in	

LpKY97‐1A	had	the	same	telomere	restriction	profile	as	the	original	starting	culture.	

This	suggested	a	molecular	mechanism	for	the	telomere	profile	changes.		Southern	

analyses	linked	70%	of	the	telomere	band	changes	in	progeny	of	LpKY97‐1A	to	

MoTeRs.		Because	MoTeRs	are	embedded	within	the	telomeres	of	LpKY97‐1A	it	was	

believed	that	they	could	account	for	some	of	the	telomere	variation.	

The	MoTeR1	element	has	a	variable	5’	end,	a	3’	end,	which	is	not	adenylated	

post‐transcriptionally,	and	an	open	reading	frame	coding	for	a	reverse	transcriptase	

with	zinc	finger,	reverse	transcriptase	(RT),	and	REL‐endo	domains.	Phylogenetic	

analyses	of	the	RT	domain	indicated	that	this	element	was	similar	to	other	telomere	

specific	non‐LTR	retrotransposons	that	were	closely	related	to	the	site‐specific	CRE‐

like	retrotransposons	(Chapter	2).			

Given	that	MoTeR1	had	all	the	necessary	components	of	non‐LTR	

transposable	elements,	it	was	believed	that	they	could	be	active	within	the	

telomeres	of	the	Lolium	pathotype	isolates,	where	they	were	found	in	abundance.	

MoTeR2	did	not	encode	a	reverse	transcriptase,	but	likely	uses	the	RT	machinery	of	

MoTeR1	in	its	transposition.		Preliminary	expression	studies	indicated	that	both	

MoTeRs	are	expressed	in	LpKY97‐1A	(Appendix	B).		Additional	results	further	

suggested	that	MoTeRs	were	active	within	LpKY97‐1A.	Telomere‐enriched	shotgun	
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cloning	approaches	from	different	LpKY97‐1A	mitotic	progeny	found	a	probable	de	

novo	insertion	of	a	truncated	MoTeR1	in	the	telomere	of	the	rDNA	chromosome	end	

and	a	possible	transposition	event	of	a	MoTeR1	into	a	de	novo	telomere.		

Furthermore,	expansions	and	contractions	of	MoTeR2	arrays	were	observed	in	

mitotic	progeny	in	Southern	analyses.		These	examples	lend	support	for	the	idea	

that	MoTeRs	are	active	retrotransposons	in	the	isolate	LpKY97‐1A.	The	activity	of	

MoTeRs	could	play	a	pivotal	role	in	the	instability	observed	in	the	telomere	profiles	

in	field	isolates	of	GLS	isolates.		Further	characterization	of	chromosome	ends	from	

mitotic	progeny	may	lead	to	the	discovery	of	many	more	such	examples	of	MoTeR	

activity.		

7.2	Possible	role	of	MoTeRs	in	increasing	the	phenotypic	variability		

The	instability	of	the	telomeres	in	GLS	isolates	could	have	profound	effects	on	the	

evolution	and	adaptation	of	clonal	lines.		MoTeRs	are	directly	involved	in	the	

instability	of	the	telomeres,	but	the	phenotypic	effects	of	these	telomere	profile	

changes	have	not	been	studied.		One	possible	effect	could	be	the	change	in	

expression	levels	of	genes	near	the	telomere	end.		This	has	been	observed	in	

Drosophila,	whereby	expansion	and	contraction	of	TART/HET‐A	arrays	can	affect	

the	expression	of	neighboring	genes	(GOLUBOVSKY	et	al.	2001).	Variegated	expression	

patterns	of	cell	surface	genes	allow	parasitic	organisms	such	as	Plasmodium	spp.,	

trypanosomes,	and	pathogenic	fungi	to	evade	host	immune	responses	(BARRY	et	al.	

2003;	VERSTREPEN	and	FINK	2009).		The	constant	expansion	and	contraction	of	

MoTeRs	arrays	could	lead	to	progeny	with	differing	expression	profiles.	One	

example	where	this	could	play	a	role	in	pathogenic	variability	is	in	altered	

expression	of	avirulence	genes.		If	a	gene	was	normally	expressed,	which	conferred	

avirulence,	then	suppressing	the	gene	product	could	lead	to	virulent	progeny.	

Avirulence	genes	sometimes	provide	a	positive	fitness	value	to	the	individuals.		By	

retaining	the	sequence	in	the	genome,	at	a	time	when	the	fungus	is	no	longer	

engaged	with	a	R	gene	containing	plant,	the	avirulence	gene	could	be	reactivated	by	

moving	to	an	area	of	the	genome	where	it	could	be	actively	expressed.	The	31B	

chromosome	end	in	LpKY97‐1A	could	be	an	excellent	telomere	to	study	more	in	

depth.			The	readily	observed	expansion	or	contraction	of	MoTeR2	arrays	in	the	31B	
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telomere	could	lead	to	differential	expression	of	genes	in	its	subtelomere.		Further	

cloning	of	that	chromosome	end	would	be	needed	to	build	a	map	of	genes	located	on	

31B	chromosome	end	followed	by	expression	analysis	of	those	genes.	This	could	be	

an	interesting	avenue	to	pursue	in	determining	whether	these	expansions	and	

contractions	of	the	MoTeR2	arrays	can	modify	the	pathogen	phenotype.		

There	are	other	possible	mechanisms	that	could	lead	to	diversity	within	the	

genomes	of	GLS	isolates.	Double	stranded	breaks	could	be	caused	by	inefficient	DNA	

replication	through	the	telomere	sequence	between	MoTeR‐to‐MoTeR	junctions.	

This	may	lead	to	recombination	with	sister	chromatids,	truncated	chromosome	

ends,	or	possibly	strand	invasion	of	the	broken	chromosome	end	into	an	internal	

chromosomal	region	followed	by	duplication	of	that	sequence.	Each	of	these	

mechanisms	could	serve	to	increase	the	genetic	diversity	of	the	mitotic	progeny	by	

shuffling	the	genome	of	an	asexual	line.			

Truncations	of	the	chromosome	ends	could	potentially	remove	genes	that	

could	reduce	fitness.		The	loss	of	a	telomeric	avirulence	gene	through	chromosomal	

truncation,	for	example,	could	allow	the	progeny	of	a	once	avirulent	strain	to	now	

cause	disease	in	a	host.	This	has	been	shown	to	occur	in	the	Oryza	pathotype	

isolates	(CHUMA	et	al.	2011b).		The	accelerated	telomere	changes	in	the	Lolium	

pathotype	isolates	could	cause	an	increased	loss	of	avirulence	genes.	

In	at	least	one	example	an	internal	telomere	sequence	was	copied	onto	the	

chromosome	end	in	LpKY97‐1A.	If	an	internal	gene	is	duplicated	at	the	chromosome	

ends,	modifications	to	the	sequence	could	allow	for	novel	adaptations.		Other	MoTeR	

containing	telomeres	could	also	serve	as	a	potential	homologous	sequence	with	

which	to	recombine	through	mitotic	crossing	over,	which	would	allow	for	genes	to	

be	shared	and	even	duplicated	between	different	chromosome	ends.	The	extra	copy	

could	provide	for	higher	expression	levels	of	the	gene	product.	This	has	occurred	in	

the	evolution	of	other	fungi	including	the	genes	involved	in	biofilm	formation	and	

carbohydrate	utilization	(CARLSON	et	al.	1985;	MICHELS	and	NEEDLEMAN	1984;	NAUMOV	

et	al.	1990;	VERSTREPEN	and	KLIS	2006).	As	more	sequence	becomes	available	from	

GLS	isolates	of	M.	oryzae	it	would	be	fascinating	to	look	for	such	examples	where	
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gene	families	have	become	expanded	allowing	for	the	exploitation	of	a	particular	

niche	in	different	isolates.	

7.3	Implications	of	research	to	disease	management	

	 Mitotic	progeny	of	GLS	isolates	showed	instability	in	their	telomere	

restriction	fragment	(trf)	profiles	and	in	their	Pot2	restriction	profiles.			The	trf	

profiles	showed	a	much	higher	instability	than	the	Pot2	profiles.		Since	a	majority	of	

avirulence	genes	are	located	near	telomeres	or	near	transposable	element	clusters	

(FARMAN	2007),	instability	of	this	region	brings	into	question	the	efficacy	of	

employing	new	resistant	plant	cultivars	that	are	based	on	using	a	single	R‐gene.			

Even	the	more	effective	approach	of	deploying	multiple	R	genes	in	new	plant	

cultivars	may	encounter	problems	with	virulent	strains	of	the	GLS	pathogen	

emerging	readily.		A	better	approach	to	control	the	GLS	pathogen	would	be	based	on	

quantitative	disease	resistance,	which	tends	to	be	more	durable	than	R‐gene	

mediated	resistance	(PARLEVLIET	2002).		Resistance	breakdown	is	less	of	a	problem	

in	quantitative	disease	resistance	because	of	lower	selection	pressure	on	the	

pathogen	due	to	the	smaller	effects	of	multiple	genes.		This	is	due	to	the	somewhat	

inconsistent	effects	and	only	partial	resistance	of	multiple	quantitative	resistant	

genes	in	which	the	pathogenic	variants	that	overcome	this	type	of	resistance	only	

gain	slight	advantages.	In	R‐gene	mediated	resistance	there	is	a	stronger	selection	

for	pathogenic	variants	(POLAND	et	al.	2008).		Using	quantitatively	resistant	cultivars	

with	other	management	strategies	that	limit	the	fitness	of	the	pathogen	could	curb	

the	number	of	severe	epidemics	in	turfgrasses.			

The	high	mutability	of	isolates	with	active	MoTeRs	could	lead	to	host	

switching	if	an	avirulence	gene	was	lost	in	the	truncation	of	the	chromosome	end.	

There	is	some	evidence	to	suggest	an	invasion	of	a	non‐Lolium	pathotype	isolate	

may	have	occurred	in	the	WK	isolates,	a	weak	pathogen	of	perennial	ryegrass	in	

Japan	(TOSA	et	al.	2004).		This	could	be	an	issue	if	recombination	or	horizontal	

transfer	occurs	between	the	Lolium	pathotype	isolates	and	the	newly	invading	

isolate	due	to	this	new	close	association.	Fungicide	resistance	and	virulence	have	

been	transferred	by	parasexual	recombination	between	isolates	of	M.	oryzae	in	the	

laboratory	(NOGUCHI	et	al.	2006),	which	adds	another	level	of	complexity	to	dealing	
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with	gray	leaf	spot	disease	over	the	long	term.		Additionally,	the	horizontal	transfers	

of	supernumerary	chromosomes	have	been	suggested	to	occur	(AKAGI	et	al.	2009;	HE	

et	al.	1998;	MA	et	al.	2010).		Supernumerary	chromosomes	are	extra	chromosomes	

containing	DNA	that	may	not	be	found	in	all	representatives	of	a	species	(COVERT	

1998),	and	in	other	pathogenic	fungi	they	can	play	important	roles	in	pathogenicity	

(HAN	et	al.	2001;	HATTA	et	al.	2002;	MIAO	et	al.	1991).	With	other	species	of	grasses	

commonly	bordering	managed	perennial	ryegrass	fields	the	fungicide	resistance	

developed	in	another	host	pathotype	of	M.	oryzae	could	be	transferred	into	the	

Lolium	pathotype	isolate.	Thus	a	turf	manager	may	need	to	be	attentive	to	possible	

invasions	of	M.	oryzae	from	other	hosts.	Detection	of	new	invaders	into	perennial	

ryegrass	may	be	important	as	plant	breeders	may	not	take	the	potential	

aggressiveness	of	other	host	specialized	isolates	into	account	when	developing	

resistance	in	plant	breeding	programs.		The	extreme	variability	of	telomeres	in	GLS	

isolates	and	the	constant	generation	of	new	variant	progeny	will	lead	to	continued	

challenges	in	controlling	GLS	in	perennial	ryegrass.	This	dissertation	has	addressed	

some	of	the	mechanisms	involved	in	the	generation	of	the	telomere	variability,	but	

work	is	still	needed	to	understand	the	implications	of	this	variability	in	disease	

management.
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Appendix	A	
	

Sequences	of	MoTeR1,	MoTeR2,	and	NhTeR1	
	
Magnaporthe	oryzae	Telomeric	Retrotransposons	sequences	
	
>MoTeR1	
GAACCCGAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCC
GGAGGGTTCCCAAGTCGCCTAAACCCGAAGGGTTTAGGATATTATTTCGTTTATTAGAA
TTGGATAATTATTTACCCCTGTTGGACAGGGGGGTTGCAGGGGTTAAATTAAGGTTTTT
TATTATTTATGCGCCGTTTATTTGTTTACCCCCCCAAATATTATAAAAGCGCGTTCCATC
CTCTTAGGAAAAGCGAAGCTTTTCCTTGTAAAAGTCGCTAGACTTTTACTATAAAAGTC
GCTAGACTTTTATACCAATCTTTTAACAAAAAGCGTAGCTTTTTGTTGCCAATCTATTAA
AAAAAGCGGAGCTTTTTTTAACTTTTTCTTTTTTTTTTTTTTTTCTTTTTTTTTTTTTTT
TTTCTTTTTTTTTTTTTTTTTTTTTTATATATATTATTATTATTATTATTAGCGGTGGGG
CTATTTATGCGCTTTAATTTGTGCGGGGCTATTTATGCGCTTTAATTTGTGCGGGGCTAT
TAATGCGCTTTAACTTTACAAATTTTATTTATGCGCTTTAATTGCTGCGGGCCTGTTAAT
GCGCTTTAATTTACAAATTTCATTAATGCGCTTTAACTTTTATATTTACTAATGCGTTAT
TTATATAATTGCTATTATTATCGTTGCTATTATTATTATTGCTATTATTATCGTTATTAT
TATTGCAATTTTATTATATAAACCCTCGTTTGTCCCTCGATTTATCCCGTTTCTTTTCCA
TCCCATCGCGCGTTTTCGTAAGCTTTGGTTTTCGTAGGATTTGCTTTCGTAGGCTTTGCT
TTCGTAGGCTTTCGTCAGCTTTTACCTGCTTTTATTTTTTCTTTTTCTTTTTATTCCCCCC
CCTTTTTTTTACCTGGTTTATTAGCGGTTTACCTGCTTTTATTACCTGGTTCCCCTTTAC
CTGTTTTATTAGCGGTTTACCTGCTTTTATTACCTGGTTCCCCTTTACCTACTTTATAAG
CGGTTTACCTGCTTTTATTACCTGGTTCCCCTTTACCTGTTTTATTAGCGGTTTACCTGC
TTTTATTACCTGGTTCCCCTTTACCTGTTTTATTAGCGGTTTACCAGCTTTTATTACCTG
GTTCCCCTTTACCTACTTTATTAGCGGTTTACCCGTTTCTATTAGTGGGCATTTATTTCC
CGTTTTTATTAGCAGTTAAATTTACCCTTTTAAGGTTATTTACCTGCTTTTATTCACAGG
GCACCCCTGTTTTTACTAGCAGTTAAATTTACCTTTTTAAGGTTATTTACCTGCTTTTAT
TCACAGGGCACCCCTGTTTTTACCAGCAGTTAAATTTACCTTTTTAAGGTTATTTACCTG
CTTTTATTAACAACCCTTTATTTTTTCCTATTAACGGGTATTTATTTACCTGTTTTATTG
GAATTCACCCGTTGGACGGCATGGTTTGCCCAACCTGTAACGGCGTTTACGCCGATTACA
ACGACCATATCCGGAAAAAACACCCGGACGAACGTTATACCGCCCTCCAACTCCAACCAT
TGGGTTTAACCCCCTGCCCTATATGCAAAACCGCTTGCAAAAACGATTTGGGCGTTAAAA
CCCACCTATCCAAAATCCACAAAATATCCGGTGCATCGAAAATTTCAACCCAACCGCGTA
TACGAACGGAAAATACGGATAATACCAATTCGGTCCCCACGTCGTCGTTTAACCCTGTCC
TTCCCGAAATCCAAACGTTAACCCCGGGGTTAAATAACAGCCGTTGGGCCGATAACCCCA
GAAAACGACGGGCCGATACCCCCTCCCCAACACGGGGTCGGAATACACGCCCACGTCGAT
TTTCATATACGGATATCGATTTAACAAACGACGAACCGGCGGATAACCCCAGGGCTAATA
ACCCCAGGGTTAATAACCCCAGGGTTAATAACGAACCCCCCTCCAGCCCAAATTCGTTAC
CTTCGATTTCCGAATTTCACACCCCTGGGACCCTACCCCTAACCAATTCGAATATATCGT
TAAAAGACCAGCACGACAAAATTACCGGCCCTATATTGCAAAAACCGTTAATCCAAAAA
TTAATCGAATATTCGAAAATCCCAATCCCAGAACACCACCTCCACGCCAGGCAGGCTAAA
ATTTTTGCTGACGCCGCAAATCGAATCGCCAAAAATTTTATACAAAGCCCAACGGAGAA
AACATTATTTAATTTACTTATATTACCCCGCATATTCGGTATCGGGTTAATAAACGGAA
AAGTAACTAAAATAATGCAAAACTTCCCATCCCAAATACCCCCTATTCCAAAAATTGATT
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TTCCATCCGAAAAAACCGATTCCGACCCGGTTTTAAACGCCAAAAAATTATTGGAAAAA
GGGTATATTGGCCGTGCGGCAAAGGCTATTATCGATCCAACCCCCGTTGCCCCAGAAACC
CCGGAATCGTTAAATATTTTACGGGAAAAACACCCTATTGGCCAAAATAACCCGTTTAA
TACAAAATCCCAACCAATATCAGGCAGGCAAATTACCGAAAAAGCTATTTTATTAGCTA
TTTCGTCTATTGGCCGGGAAAAAGCTCCGGGCCTTAGCGGGTGGACGAGATCGTTATTAG
ATGCAGCCATTAAAATACCTACCCAAAACGACGTAATTCCGGCTTTACGACTCTTAACGG
ATATGATTCGCCAGGGTACCGCACCGGGTAGGGAATTATTATGCGCTTCGCGTTTAATAG
GGCTATCCAAACCCGACGGCGGCGTACGCCCAATAGCCGTTGGGGACCTATTATATAAAA
TAGCCTTTAAAGCTATTTTAAATACCCTATGGTCCCCAAACTGTTTATTACCTTACCAAT
TAGGTGTAAATAGTATAGGTGGCGTCGAACCCGCTATTTTTACCCTCGAAGAGGCTATA
ATGGGCCCTAATATTAACGGTATAAAATCGATTACCTCCCTCGATTTAAAAAACGCGTTT
AATAGCGTATCCAGGGCTGCAATAGCCTCGTCGGTAGCTAAATACGCACCAACTTTCTAC
CGTTCTACCTGTTGGGCCTATAACCAACCTTCGATTTTAATAACGGAAAACGGTTCCGTC
CTGGCTAGTGCACAAGGTATACGCCAAGGCGATCCGTTAGGCCCGTTGTTATTCAGCCTT
GCTTTTCGACCTACGTTGGAAACGATCCAAAAATCGCTTCCATATACGTATATAGCGGCT
TATTTGGACGACGTTTATATTTTATCCAAAACGCCCGTTAAAGATAAAATAGCCAAAAT
AATCGAAAAAAGCCCGTTTACCCTAAATTCCGCCAAAACGACAGAAACGGATATCGATA
CGTTAAAAACCAATGGTTTAAAAACGCTCGGCTCGTTTATTGGACCAACGGAATTACGG
AAGGAATTTTTGCAAAATAAAATTCAAAATTTCGAATCGTCCATTAACGCCCTGAAAAA
ACTCCCTAAACAATACGGATTGCTAATCTTGCGTAAAAGTACACAATTACTTTTACGCCA
TTTGCTCCGTACTTTAAATTCCCAGGACCTGTGGGAATTATGGGAAAAAACAGATAAAT
TAATAGCGGATTTCGTTATAAATTTAACTGTTACAAAACGGAAAAAACGGCCAATTACG
GATTTCGTTACGCCGTTAATTACGTTACCTATAAAGGACGGAGGTTTTGGATTATTACG
GCATAACGGAATAGCCCAAGATATTTATTTTGCGGCCAAGGATTTAACAACCGAAATTC
GGCACAAAATCCAACGTATATCCAACGATTTTCCACAAAATCAAAGCCCTACCGCCACCG
AGATTTTGCATTTGTTGCATAACGGGGTTTTAGCAGATTGCAAAAACGGGTTAACAAAC
GCCCAATTAAACGCTTTAACCGAAAACGCTAGTTATTTAGGTCGAAAATGGCTTAACAT
TTTACCTATCCAAAAATCAAATCGATTAACGGATTGGGAAATGGCTGAAGCCGTTCGAT
TAAGATTATTAGCCCCGGTTAAACCGTTAACCCACCCCTGCAACCATTGCGGAAATCGGA
CCAATATAAACCACGAGGACGTTTGCAAAGGTGCCGTACGCAAATATACGGCCCGTCACG
ACCAAATAAACAGAAGTTTCGTCAATTCGTTAAAAAGTCGACCAGAAATCGACGTCGAA
ATCGAACCCGATTTAAATAACGAAAATAACGTAAATAACGCCAATACAACCACCGAAAA
TCCCACCCCTAGCCCCAACGGCCAAAACGATACCGGATGCCTTTTTACAACCCCTATTCGC
TCCGGGACCCGTAACGGCCAAAACGGCCTTAGGGCGGATTTTGCCGTTATTAACGGCGTA
TCCAAATATTATTACGACGTGCAAATCGTTGCAATTAATAAGGATTCCGGTAATACAAA
TCCGTTAAATACGTTAGCAGACGCAGCAAATAACAAACGACGTAAATACCAATTTTTGG
ATCCATTTTTCCATCCAATTATAATAAGCGCCGGAGGCCTTATGGAAAAGGATACAGCAC
AGGCGTACAAACAAATCCAAAAATTAATAGGCCCCGTTGCGGCCCATTGGTTGGATACGT
CGATTTCGTTAATTTTGTTACGGTCCAGAACGACGGCAGCAATTTCTATTGCTAAAAACC
GCCCTCGTGCGTAATAGGTAACGTCCCTATTTTTGTCTTTGGTTTTGTTTTTATCTTTGT
TTTTGTTTTTGTTTTCGTTTTTGTTTTTGTTTTCGTTTTTGTTTTTTTTTTTGTTTTTGT
TTTTGTTTTTGCCTTTGTTTTTGTTTTTATCTTTATTTTTGTTTTTGTTTTTACTTTGTT
TTATTTGTTTTATATTTACCTTTTGATTTTTTCTATTTTTCCCACCCTTATTATTATAAC
CCCAACCTACTAATATTTTTTCTTTTTTCTTTTTTCTTTTTACGGTTTTATTTTCCCGTT
TGTTTTTTCTATTTTATTTGTACGACAAAACCCTTAGCAAATAAGCTTAGAATATAATA
AAGCGCGAATTAAAACCCTAACCCTAA	
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>MoTeR2	
GAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCCAAACCC
GAAGGGTTCCCAAGTCGCCTAAACCCGAAGGGTTTAGGATATTATTTCGTTTATTAGAA
TTGGATAATTATTTACCCCTGTTGGACAGGGGGGTTGCAGGGGTTAAATTAAGGTTTTT
TATTATTTATGCGCCGTTTATTTGTTTACCCCCCCAAATATTATAAAAGCGCGTTCCATC
CTCTTAGGAAAAGCGAAGCTTTTCCTTGTAAAAGTCGCTAGACTTTTACTATAAAAGTC
GCTAGACTTTTATACCAATCTTTTAACAAAAAGCGTAGCTTTTTGTTGCCAATCTATTAA
AAAAAGCGGAGCTTTTTTTAACTTTTTCTTTTTTTTTTTTTTTTCTTTTTTTTTTTTTTT
TTTCTTTTTTTTTTTTTTTTTTTTTTATATATATTATTATTATTATTATTAGCGGTGGGG
CTATTTATGCGCTTTAATTTGTGCGGGGCTATTTATGCGCTTTAATTTGTGCGGGGCTAT
TAATGCGCTTTAACTTTACAAATTTTATTTATGCGCTTTAATTGCTGCGGGCCTGTTAAT
GCGCTTTAATTTACAAATTTCATTAATGCGCTTTAACTTTTATATTTACTAATGCGTTAT
TTATATAATTGCTATTATTATCGTTGCTATTATTATTATTGCTATTATTATCGTTATTAT
TATTGCAATTTTATTATATAAACCCTCGTTTGTCCCTCGATTTATCCCGTTTCTTTTCCA
TCCCATCGCGCGTTTTCGTAAGCTTTGGTTTTCGTAGGATTTGCTTTCGTAGGCTTTGCT
TTCGTAGGCTTTCGTCAGCTTTTACCTGCTTTTTTACCTGCTTTTATCACTTGTTTTTAT
TTCCCTTTTACTTTCCCTTTACCTGTTTCACAGGTATTTATTATGGATTTATTTATAAAC
CCCCCAAACCCAACCCCCGACCTCGACCCCGACCCTGATCCGGACCCCGACCCTGACCCGG
ATCCCTATCCAAATATTAACGCCGCCGTCGATTCGTCCCGCCAAAAATCAAATATATATA
TCGATTTAAATTCCAAATTTAATTCGGTTAACCCCCGGTATATTAAAGTCGCTAAAAAA
TCCTGGAATATACGTGCCTTTTTAAAACAACTTTTTGCCGTCCCTATCCAGATAACATGG
TTTTTTAGCAATGTTATTATCCACGGGTTTACCAATTCTATATTTGGTATTTATTCGATT
TATTTATTCGATTTTAACCCCCGATTTCGACCGACTATTATCGATTTATTACGCCAAAAG
TCCAGCAAATATACCGATTTAAATCCCGAATTTGAATTGGCTAACCCCCTGCATATTAAA
TTGGCTGAAAAATCCTGGAATATACGTGCCTTTCTAAAACAACTTTTTGCCGTCCCTATC
CAGATAACATGGTTTTTTAGCAATATTTCTATCCTCAGGGTTAACCAATTTTATATTTGG
TATTTATTCGATTTATTTATTGGATTTAATCCGCTAAATAAATTGTTAATCCGTTAATT
ATATTGGAATTAATCCCCGAAAGAGGACCAACCCAATATATATTCCGATAGGGAATTTT
TTCTTTTTCTTTTTTCTTTTTTTTACGGGTTTATTTTTTCTACCCTATTTGTACGACAAA
ACCCTTAGCAAATAAGCTTAGAATATAATAAAGCGCGAATTAAAACCCTAACCCTAA	
	
Nectria	haematococca	Telomeric	Retrotransposon	sequence	
>NhTeR1	
TTAGAACAGAGTAACTATTAACTATCTAAGCTATTTTGCCCTAGGGGTTTCTTCTAGCTA
AGATATAGCTTATAGATAAAAGAGGGGAGATTTTTCTAAGAAATAATAAAAGAAAAAG
CATAAGAGATATAACTAGGAAAGAGGTATAGCTAAGAAAGAGATAAAGCTAGGGGAGA
GATATAGCTAGGAAAAAGAGAAATAACTAAAAGAGAGAGGTATAGCTAGTAAGAAAAA
GGCAAAGAGATAAGAGATAAGAGATAAAAGGTAAAGGATAAAGAAAAGCCTTAAGAAG
CCCTAGGGGTATTCCAGATCGACCTAGCTAGGTTACTAGGGGTATCTCGGGCTATAGAAG
CCGCAGAGGTCGCCCTAGTCCTCATCAGGGCAAGGCTAATAGAGGAATCTAGCTGGTTAG
CCGCAAGGGGGCCAATAAGGTCCTGGAGCTTCTGATAGGTCTTAGCTGTCTCTAGGTCCA
TAAGGCCGCCTGCTGAGATAATAAGAGGCTGAAAAAAGGCCCCGAGAGACCTATATTTT
CTGCGTTTTTCTTCGGCAGCCTCTCTTAAGGTGCTATAAGGGTCTTCTTTAGCAGAATCC
TTTGAAATAGCTACGATTTGAATATCATAGTAATAGCGGCTATTTCCTAGGTTAACTAC
AAAGTCGGCCCTTAGGCTACCTTCTGGGTGGACTAGGGGTTCTTTTTCGACCTCTAGGGT
AGGCTGGCTACTTAGGGCTCTCACAAAGGCCCTAGTTATAGCGTCATGCCTTGCAATCCA
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CCTTCTATTAGCACCCTTGCAGGTATCCTGATGGCCTAAGGCAGCTATAGCTCCACAAGA
GCTACAGGGTAAGCTGATAGGCTTGATTGGGTAGAAAAGCCGGCTTCGGAGGGCTTCAG
TGACCTCAGAGTCTGTAAAAGATAGGGCTTTTTGGGTAGGTAAGACTCCGAGCCACTTAC
GGCCGAGATAGCTAGCATTTTCTAGCCTAGCATGCCTATAGCTAGCGGGGAGGTCCTCTA
AGAAGCCTGCTAGCCTAGCCTTATTAGCTTCCTTTAGCACCTGTTGGGCTGTTTTCCCTA
GTCTAGGCTGGCCTTGGTTAGGCTGGCTTTGGTCTAGGGTAGGCTGGGCTAGGGGCTTCC
GGATAAGGCCTAGGGTAGGCTGCGAGGCCTCCCTAGCTGCTAGGAATAGCTCGTGGGCTA
GGTCCTTGTGTAAGGGTATTCCTAGGCCTCCCTCTCTGACTGGAAGGGCTATAAGGCTTG
AATTAGGCTCTTTAGGGCTCTCACTAGGGCTTCTAGCCACTAGGGCTATAATAGCCTCTC
TTATAAGGGTATCAGCCTCTTCCCAAAGGTCTTCTAGCCCGGTTGGGTCTAGCTGCCTCT
GGAGGTGCCTTAGAAGAAGCTGGATACTGCCTCTAAGAAGAAGCAAAGAGTGCTGCTTT
GGAAGGTCTTGCAGGGCCTCTAGGGCTTCCTGTAGGGTAGCTAGCTTTTCTTGCAAGAAG
GTTCTTTTAGGCCGGATAGGGCCGATATAAGTACCTAAGGCTTTTAAGCCTTCTAGCTTA
AGGTCCTCTATAGCCTTTTCCTTGCTTTTAGCTAGGTTAAGGCTAAAAGGGGAGCCTTTT
AAGACCTCCTTAGCTGCCTCTAAGGTGCCTTGCGGAGCCTTATTAAGTATATAGAGGTCA
TCTAGGTAAGCTACTAAGGTTGCCCTAGGTAGCTTCCTAGCTAGGGCCTCTAGGGTAGGT
CGAAAGGCAAGGGAAAAAAGAAGAGGTCCGAGAGGGTCACCTTGCCTTACGCCCTTGGC
CGAGGCTATAGCTGACCCATCTTCCATAACTAAGATAGAAGGGTCATTATAGGCCCAAGC
TGCTGCCTTATAGAAGGTAGGGGCAAAAGTAGCTACAGAAGCAGCTATAGAAGCCCTAT
CTACTGAGTTAAAGGCATTAGCAAGGTCTATAGAGGCTAGCTGCTGAAAATTAGCCTCA
TTTAAGCCTATAATAGCCTCATAGAGGAGGAAAATAGCGGGTTCAACCCCGCCTGGGCTA
TTCACGCCTAGCTGGAAGGGTAAGAGCATATTCGGCCGATAGGAGGTCATTAGGATCGCC
TTCATAGCTACCCTATAGATAAGATCTCCTATAGCTATAGGTCTAACCCCTCCATCGGGC
TTTTCAAGCCCTATAAGGCGGCTAGCGCATAATAGGTGGGCTCCAGGGGCCGTGCCTTGG
CGAATCATATCAGCTAGCAGCCTTAGGAAAGCTATCACAGGGGAATCTTTCCTAGTTACT
AGGTCTAGAAGAGGCCTAGTCCAGCCACTAAGGCCCGGGGCCTTTTCCTTGCCTATAGAG
GCTATAGCTGCTATAATAGTCTCTGACGTGATTGGTTGGCCGGCCCTTGGGCGGGTCTTG
CCTTGGAAGGGGTCTTTTGATCCAATAGGGTGCTTTTCTAGCAGCCTAGCCCTATTTTCT
ACTGAATTAGGTGCTATAGGGGTCGGATCAATAAGAGCCCTAGCAGCCCGGCCTAGGTA
GCCTCTCTCTAGTAGCTTAGCTGCCCTTTGGGCCGGGCTAGGAGCTATAGAGGGTCTAGC
TGCCTTGGGGGGCTCAGGGGGCTGCTGGAGGGACTCTAGGCTCTCTAGGGTAGGTAGGTT
AGAAGGGAAAGACCTAAGAAGGGTAGCTAGGCCTCCTTTTTGTAACCCTAACCCTAGTA
GCCTAGGCAAGATAAGGAAATATAAGAGGGCCTTTTCAGTAGGCCTCTTTAGAAAGGCA
GCTGCAGCTTTATGGGCTGTAGCTGTGAAAATAGCAGCCTGCCTTGCATGTAGCCTTTTT
TCCGGTATAGGGATCCTTGCAAAGGCTAATAGCTTCTGCATAGAAGCCTTGGCTAGGATT
GGGGCTATAGCTTGGTTGTGTAGCTGCTCTAGGGTAGGCCCCTCTAGGGTAGGCTCCTTG
GGCTCGGGCTCTAGGGTAAGCTCCCTAGGCTCGGGCTCTAAGGTAAGCTCCCTGGGCTCC
CTAGGCTCCCTAGTCTCTAGCTCTAGGGTAGGCTCCTCTAGGGGCCCTAGAGGCTCTAGG
GTATATTCTTCTAGAGGCTCTAGGGTAGGTCCCTGACTAGAGGGCCTGTGGCTAGGCGTG
CTAGGGCAAGAGGAGCTAGAGCTAAGGGACCTAGGGCTAGAGGGTCTTCCCCTTTCCTCA
TAGCTAGAAAAAGACCTATAGCTTTCCCTTGAGGCCGGTCGGTCTAGGGTAGGCTCCTCT
AGGGTAGAGTTAGGCTGTAGCTGCCTTTGCCGCCTAGTAGGTCTTTGTAGCTGTGGAGAA
GGGGTCCTTGCTAGTCTCTTTCTTCCTATAAGGCCTCTATAGCTAACTAAGCCCGGGCTA
GCCTGATTAGGACTAGTGGGGCTAAGGGAAGAAGCTAAAGAGGCCCTAGAGGTATTAGT
GGCCCTAGTAGCTATATAGGTCCTTGGCCTAGGTAAGGTAGAAATATGGGCTTTACCTTC
TATGCCGTGGATCTTAGCACTATGGGTCTTGATGCCGTGACTTCCGCGGCAGGCTGTGCC
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GCAATAAGGGCAGCTGACTAAGCCAAGGGGCTGTAGCTGTTGGTTGGTATAGGCCTCGGC
CGGGTGTTTTTTGCGTATATGCTCTAGGGTATCTCTATAGCTGCCTTGGCAGGTAGGGCA
TACCTGCGAGGGCATTTTACTATAGGGTAGCTAGAGGTATAGGGTAGGTATAGGGTAGC
CGAGGTATAGGGTAGGTATAAGGTAACTAGAGGTATAAGGTAGCTATAAGAAAGAAGAT
AATAAAGAGAAAATAGCTATAAGGTAGCTAAGATAAGGCTTAGAAACTAAGCATAAGGG
TAAGAGTTAAGGTTATAAGAAGCTTAGAGAATAAGGTCTTTAGAGATACTTATATAACC
CTAGGGTTATTCTAGAAGCTTCTACCTTAACCTAAGTCTAACCCTAAGCCTAACCCAAAG
CCTGACCCTAACCCTGACCCAATGTGTGACCCTAACCCCTATAGAAGGCTCTAGAATCTC
TATAGAAGCCCGAAGGGCTTCTATCTATAGCTGACCCAAAGCCTGACCCTAACCCTGACC
CAATGCCTGACCCTAACCATGACCCTAACCTCTATAGAAGACCTTAGAATCTCTATAGAA
GCCCGAAGGGCTTCTATCTATAGCTGACCCAAAGCCTGACCCTAACCCTGACCCAATGCC
TGACCCTAACCATGACCCTAACCTCTATAGAAGACCTTAGAATCTCTATAGAAGCCCGAA
GGGCTTCTATCTATAGCTGACCCAATGCCTGACCCTAACCTCTAGAACCTCTAACGGAAC
CTCTAAAGGAACCTCTAGGGGGATAGGGTGAGGGATAGGGTGAAGGATAGGGTGAGGCA
TCGGG	
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Appendix	B	
	

MoTeR1	Expression	Preliminary	Experiment	
	
B.1	Introduction	
	

Active	Non‐LTR	retrotransposons	transcribe	an	RNA	intermediate	in	their	

transposition.		Magnaporthe	oryzae	Telomeric	Retrotransposons	(MoTeRs)	were	

recently	discovered	in	the	telomeres	of	gray	leaf	spot	(GLS)	isolates	of	Magnaporthe	

oryzae.		There	are	two	different	MoTeR	retrotransposons.		MoTeR1	is	a	~5.0	kb	

element	that	has	an	open	reading	frame	for	a	reverse	transcriptase,	while	MoTeR2	is	

a	shorter	~1.7	kb	element	that	has	an	open	reading	frame	for	a	protein	with	no	

known	function.	To	determine	if	MoTeRs	were	actively	being	expressed	reverse	

transcriptase	PCR	experiments	from	total	RNA	were	used.	

B.2	Methods	

	 Mycelium	was	grown	at	room	temperature	with	shaking	for	7	d.		The	

mycelium	ball	removed	from	the	10	ml	CM	using	sterilized	forceps,	and	blot	dried	

on	paper	towels.		Total	RNA	was	then	extracted	from	the	mycelia	cultures	of	

LpKY97‐1A	using	the	protocols	outlined	in	the	RNeasy	Universal	Mini	Kit	(Qiagen,	

Valencia,	CA).		Total	RNA	was	double	digested	with	DNase	to	remove	DNA	

contamination	using	the	protocols	outlined	in	the	Turbo	DNA‐free	kit	(Invitrogen,	

Carlsbad,	CA).		RNA	was	incubated	at	65°C	for	15	minutes	and	then	chilled	on	ice	for	

5	min.		First‐strand	synthesis	reactions	were	completed	using	the	SuperScriptII	First	

Strand	Synthesis	for	RT‐PCR	kit	(Invitrogen,	Carlsbad,	CA)	with	2	µM	of	

MoTeRstartR	(5’TTTTAATTCGCGCTTTATTA3’)	or	a	50	µM	of	Oligo(dt)20	primer.		

Following	first	strand	synthesis	the	samples	were	treated	with	1U	of	the	restriction	
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enzyme	MboI	(New	England	Biolabs,	Beverly,	MA)	at	37°C	for	30	min	followed	by	

heat	inactivation	of	the	enzyme	at	65°C	for	20	min.	Nested	PCR	reactions	was	used	

on	the	samples	to	amplify	MoTeRs.			In	the	first	PCR,	MoTeR1	was	amplified	using	

ExTaq	polymerase	(Takara,	Madison,	WI)	following	manufactures	protocols	with	the	

primers	MoTeR1001F	and	MoTeR1001R,	and	MoTeR2	was	amplified	using	the	

primers	MoTeR2002F	and	MoTeR2002R.		The	parameters	used	in	PCR	cycling	were:	

95°C	for	5	min,	followed	by	35	cycles	of	95°C	for	30	s,	60°C	for	60	s,	and	72°C	for	1	

min,	with	a	final	extension	phase	of	72°C	for	5	min.		In	the	second	PCR	reaction,	1	µl	

of	the	first	PCR	reaction	samples	were	used	with	nested	PCR	primers.		For	MoTeR1	

the	primers	nMoTeR1001F	(5’ATTTTTGCTGACGCCGCA3’)	and	nMoTeR1001R	

(5’GGCCAATAGGGTGTTTTTCC3’)	were	used	in	the	PCR	reactions	following	

protocols	outlined	above.		MoTeR2	was	further	amplified	using	the	primers	

nMoTeR2002F	(5’GTCCCGCCAAAAATCAAATA3’)	and	nMoTeR2002R	

(5’TGCTGGACTTTTGGCGTAATAA3’).	The	following	parameters	were	used	in	the	

PCR	cycling:	95°C	for	5	min,	followed	by	35	cycles	of	95°C	for	30	s,	56°C	for	60	s,	and	

72°C	for	1	min,	with	a	final	extension	phase	of	72°C	for	5	min.		The	PCR	amplicons	

were	fractionated	on	0.7%	agarose	gel	in	0.5X	TBE	at	80V	for	80	min.	After	

electrophoresis,	the	agarose	gel	was	stained	for	30	min	in	EtBr	and	0.5X	TBE.	

Staining	solution	was	drained,	fresh	0.5X	TBE	was	added,	and	the	gel	was	destained	

for	20	min.	

B.3	Results	and	Discussion	

If	MoTeRs	were	active	transposable	elements	they	should	express	their	RNA	

transcript.	Some	non‐LTRs	have	poly(A)	tails	added	post‐transcriptionally.	
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However,	it	was	not	believed	that	MoTeR	transcript	would	be	polyadenylated.	To	

determine	whether	MoTeRs	were	expressed	in	LpKY97‐1A	nested	reverse	

transcriptase	(RT)	PCR	reactions	were	completed.	During	first	strand	synthesis	

either	an	Oligo(dt)20	primer	was	used	or	a	MoTeR	specific	primer.		This	could	test	

whether	polyadenylation	was	occurring	if	nested	PCR	of	cDNA	showed	a	positive	

signal	in	both	cDNA	created	from	MoTeR	specific	primer	(MoTeRstartR)	and	the	

Oligo(dt)20	primer.		The	results	in	Figure	B‐1	show	that	both	MoTeRs	were	

expressed,	as	bands	of	expected	size	were	observed	in	the	reactions	with	RT	added.	

MoTeR1	showed	a	product	only	in	the	reaction	where	the	MoTeR	specific	primer	

was	used	in	first	strand	synthesis,	and	not	with	the	Oligo(dt)20	primer,	indicating	

that	this	transcript	is	likely	not	polyadenylated.	MoTeR2	showed	PCR	products	in	

both	the	reactions,	which	could	suggest	that	a	poly(A)	tract	is	added	post‐

transcriptionally.		However,	in	MoTeR2	there	is	a	poly(A)	tract	internally	which	the	

Oligo(dt)20	could	have	bound	to	during	reverse	transcription.	Cloning	and	

sequencing	of	the	PCR	amplicons	in	lanes	2	and	4	in	Figure	B‐1‐B	confirmed	that	

they	were	MoTeR2	as	expected	(data	not	shown).
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