Available Resources of the Fire Clay Coal in Part of the Eastern Kentucky Coal Field

Stephen F. Greb
University of Kentucky, greb@uky.edu

Gerald A. Weisenfluh
University of Kentucky, jerryw@uky.edu

Robert E. Andrews
University of Kentucky

John K. Hiett
University of Kentucky, hiett@uky.edu

James C. Cobb
University of Kentucky, cobb@uky.edu

See next page for additional authors

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kgs_ri

Part of the [Environmental Monitoring Commons](https://uknowledge.uky.edu/emosc), [Geology Commons](https://uknowledge.uky.edu/gc), and the [Natural Resources and Conservation Commons](https://uknowledge.uky.edu/nrcsc)

Repository Citation

https://uknowledge.uky.edu/kgs_ri/6

This Report is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Report of Investigations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Authors

This report is available at UKnowledge: https://uknowledge.uky.edu/kg_s/6
Available Resources of the Fire Clay Coal in Part of the Eastern Kentucky Coal Field

Stephen F. Greb,
Gerald A. Weisenfluh, Robert E. Andrews,
John K. Hiett, James C. Cobb, and Richard E. Sergeant

https://doi.org/10.13023/kgs.ri03.12
Selected Coal Publications Available from the Kentucky Geological Survey

KGS Bulletin 2 (ser. 11): Geology and stratigraphy of the Western Kentucky Coal Field, by S.F. Greb and others, 1992, 77 p. $8.00

KGS Information Circular 8 (ser. 11): Stratigraphic framework of coal-bearing rocks in the Western Kentucky Coal Field, by D.A. Williams and others, 1982, 201 p. $15.00

KGS Information Circular 13 (ser. 11): General coal reflectance and rank study of the Eastern Kentucky Coal Field, by D.A. Williams, 1984, 47 p. $3.75

KGS Information Circulars 18–23 (ser. 11): Analyses of coal samples from the Princess, Hazard, Big Sandy, Southwestern, Upper Cumberland, and Licking River Districts. Consult KGS “List of Publications” for prices.

KGS Information Circular 29 (ser. 11): Predicting the impact of changes in the EPA compliance standard for sulfur emissions on the coal resources of eastern Kentucky, by J.C. Cobb and others, 1989, 9 p. $2.50

KGS Information Circular 59 (ser. 11): Kentucky’s coal industry: Historical trends and future opportunities, by G.A. Weisenfluh and others, 1998, 9 p. $5.00

KGS Map and Chart Series 20 (ser. 11): Total coal thickness of the Lower Elkhorn coal in eastern Kentucky, by E.E. Thacker and others, 1998, 1 sheet. $10.00

KGS Reprint 7 (ser. 11): Coal in Kentucky, by R.A. Brant and N.C. Hester, 1980, 11 p. $1.00

KGS Reprint 20 (ser. 11): Kentucky coal, by J.C. Cobb and others, 1985, 20 p. $2.50

KGS Reprint 36 (ser. 11): Determination of fluorine in coal and coal fly ash by proton-induced gamma-ray emission analysis, by A.S. Wong and others, 1993, 7 p. $1.00

KGS Special Publication 21 (ser. 11): Impact of hazardous air pollutants on mineral producers and coal-burning plants in the Ohio Valley, 1995, 25 p. $3.00

USGS Miscellaneous Field Studies Map MF-2275: Revised correlation chart of coal beds, coal zones, and key stratigraphic units, Pennsylvanian rocks of eastern Kentucky, by C.L. Rice and J.K. Hiett, 1994, 1 sheet. $3.00

For information on obtaining copies of this publication and other Kentucky Geological Survey maps and publications, call:

Publication Sales Office
(606) 257-3896
View the KGS World Wide Web site at www.uky.edu/kgs
Available Resources of the Fire Clay Coal in Part of the Eastern Kentucky Coal Field

University of Kentucky
Charles T. Wethington Jr., President
Fitzgerald Bramwell, Vice President for Research and Graduate Studies
Jack Supplee, Director, Administrative Affairs, Research and Graduate Studies

Kentucky Geological Survey Advisory Board
Jacqueline Swigart, Chair, Louisville
Henry M. Morgan, Vice Chair, Utica
William W. Bowdy, Fort Thomas
Steve Cawood, Frankfort
Hugh B. Gabbard, Winchester
Kenneth Gibson, Madisonville
Ron D. Gilkerson, Lexington
Mark E. Gormley, Versailles
Rosanne Kruzich, Louisville
W.A. Mossbarger, Lexington
John F. Tate, Bonnyman
David A. Zegeer, Lexington
Ralph N. Thomas, Emeritus Member, Owensboro
George H. Warren Jr., Emeritus Member, Owensboro

Kentucky Geological Survey
James C. Cobb, State Geologist and Director
John D. Kiefer, Assistant State Geologist
Donald C. Haney, State Geologist Emeritus

Administrative Division
Personnel and Finance Section:
James L. Hamilton, Administrative Staff Officer II
Jackie Silvers, Administrative Staff Officer I

Clerical Section:
Juanita G. Smith, Office Assistant, Henderson office

Office of Communications and Technology Transfer:
Carol L. Ruthven, Manager
Margaret Luther Smath, Geologic Editor III
Douglas W. Reynolds Jr., Geologist II, Communications Coordinator for the Kentucky Board of Registration for Professional Geologists
Terry D. Hounshell, Chief Cartographic Illustrator
Michael L. Murphy, Graphic Design Technician
Collie Rulo, Graphic Design Technician
Shirley Davis Dawson, Staff Support Associate II

Well Sample and Core Library:
Patrick J. Gooding, Manager
Robert R. Daniel, Senior Laboratory Technician

Office of Geologic Information:
Bart Davidson, Manager
Richard A. Smath, Geologist II, Earth Science Information Center Coordinator
Kevin J. Wente, Geologist I
William A. Briscoe III, Publication Sales Supervisor
Roger S. Banks, Account Clerk I
Luanne Davis, Staff Support Associate II
Theola L. Evans, Staff Support Associate I

Computer and Laboratory Services Section:
Steven Cordiviola, Head
Richard E. Sergeant, Geologist IV
Joseph B. Dixon, Information Technology Manager I
James M. McElhone, Information Systems Technical Support Specialist IV
Henry E. Francis, Scientist II
Karen Cisler, Scientist I
Jason S. Backus, Research Analyst
C. Lee Helms, Research Analyst
Steven R. Mock, Research Analyst
Mark F. Thompson, Research Analyst

Geological Division
Coal and Minerals Section:
Donald R. Chesnut Jr., Head
Garland R. Dever Jr., Geologist V
Cortland F. Eble, Geologist V
Gerald A. Weisenfluh, Geologist V
David A. Williams, Geologist V, Henderson office
Stephen F. Greb, Geologist IV
William M. Andrews Jr., Geologist II
Ernest E. Thacker, Geologist I

Geologic Mapping and Hydrocarbon Resources Section:
James A. Drahovzal, Head
Warren H. Anderson, Geologist IV
David C. Harris, Geologist IV
Brandon C. Nuttal, Geologist IV
Thomas N. Sparks, Geologist III
Douglas C. Curl, Geologist II
John B. Hickman, Geologist II
Steven L. Martin, Geologist II
Jason A. Patton, Geologist II
Anna E. Watson, Geologist I
Xin-Yue Yang, Post-Doctoral Scholar
R. Shawn Duncan, Geological Technician
Christopher P. Hettinger, Geological Technician
Michael P. Solis, Geological Technician

Water Resources Section:
James S. Dinger, Head
Daniel I. Carey, Hydrologist V
David R. Wunsch, Hydrogeologist V
James C. Currens, Hydrogeologist IV
R. Stephen Fisher, Hydrogeologist IV
John F. Stickney, Hydrogeologist IV
Alex W. Fogle, Hydrologist III
Robert E. Andrews, Hydrogeologist II
E. Glynn Beck, Hydrogeologist II, Henderson office
Dennis H. Cumbie, Hydrogeologist II
Carlos M. Galcerán Jr., Hydrogeologist II
C. Douglas R. Graham, Hydrogeologist II
Philip K. Fields, Geological Technician, Henderson office
Gregory L. Secrist, Geological Technician
Steven E. Webb, Geological Technician

Geologic Hazards:
Edward W. Woolery, Geologist IV
CONTENTS

Abstract 1
Introduction 1
 Fire Clay Coal Project 2
 Regional Setting 2
 Study Area 2
 Purposes 2
Methods 3
Data Preparation 4
 Vector-Line and Map Data 4
 Point-Source Data 4
Restrictions to Mining 4
Data Analysis 5
 Tonnage Estimates 6
 Resource Categories 6
 Overburden Categories 6
 Reliability Categories 6
Results 7
 Original Resources 7
 Mined-Out and Remaining Resources 7
 Available Resources 7
 Areas of Available Coal Resources 8
Historical Perspective 12
 Comparison to Previous Studies 13
References Cited 17

FIGURES

1. Diagram showing stratigraphic position of the Fire Clay coal 2
2. Map showing location of the study area 3
3. Isopach map of the Fire Clay coal in the Eastern Kentucky Coal Field 4
4. Map showing locations of data points used in this study 7
5. Map showing original Fire Clay coal resources in the study area 8
6. Map showing areas of mined-out Fire Clay coal in the study area 10
7. Map showing remaining Fire Clay coal resources in the study area 11
8. Graph showing types and amounts of land-use and technological restrictions in the study area 11
9. Graph showing tonnages of Fire Clay coal available for mining in the study area 12
10. Map showing tonnages of Fire Clay coal available for mining in the study area 13
11. Graphs showing mining of the Fire Clay coal through the years in the study area 14
13. Map showing locations of completed coal-availability studies 15
TABLES

1. Potential restrictions with applicable buffer zones and overburden categories to which they apply 5
2. Map types used for GRASS data analysis 6
3. Estimated tonnages of original Fire Clay coal in the study area by depth, thickness, and reliability categories 9
4. Comparison of Brant and others’ (1983b) estimated tonnages of original Fire Clay coal with this study’s estimated tonnages, and percentage of change by thickness and reliability categories 9
5. Estimated tonnages of remaining Fire Clay coal in the study area by depth, thickness, and reliability categories 10
6. Estimated tonnages of available Fire Clay coal in the study area by depth, thickness, and reliability categories 12
7. Summary of eastern Kentucky coal-availability studies and current study 16
ACKNOWLEDGMENTS

This study was funded by the Kentucky Geological Survey. Some of the data used for this study were collected with grants from the National Coal Resources Data System (NCRDS) (1434-94-A-1201 and 1434-95-A-01322) and Coal Availability Program (1434-HQ-96-AG-1616), funded by the U.S. Geological Survey.

We wish to thank the personnel at the mines who provided data and insight during this study. We also wish to acknowledge the following members of the Kentucky Geological Survey for their contributions to this report: Donald R. Chesnut Jr., Warren H. Anderson, Bart Davidson, Garland R. Dever Jr., and Cortland F. Eble for technical review; Margaret Luther Smath for editorial review; and Terry Hounshell for drafting the figures.

© 1999
Kentucky Geological Survey, University of Kentucky
For further information contact:
Manager, Office of Communications and Technology Transfer
Kentucky Geological Survey
228 Mining and Mineral Resources Building
University of Kentucky
Lexington, KY 40506-0107

ISSN 0075-5591
MISSION STATEMENT

The Kentucky Geological Survey at the University of Kentucky is a State-mandated organization whose mission is the collection, preservation, and dissemination of information about mineral and water resources and the geology of the Commonwealth. KGS has conducted research on the geology and mineral resources of Kentucky for more than 150 years, and has developed extensive public databases for oil and natural gas, coal, water, and industrial minerals that are used by thousands of citizens each year. The Survey’s efforts have resulted in topographic and geologic map coverage for Kentucky that has not been matched by any other state in the Nation.

One of the major goals of the Kentucky Geological Survey is to make the results of basic and applied research easily accessible to the public. This is accomplished through the publication of both technical and nontechnical reports and maps, as well as providing information through open-file reports and public databases.
Available Resources of the Fire Clay Coal in Part of the Eastern Kentucky Coal Field

Stephen F. Greb¹, Gerald A. Weisenfluh¹, Robert E. Andrews¹, John K. Hiett², James C. Cobb¹, and Richard E. Sergeant¹

ABSTRACT

Available resources for the Fire Clay coal were calculated for a 15-quadrangle area in the Eastern Kentucky Coal Field. Original coal resources were estimated to be 1.8 billion tons (BT). Coal mined or lost in mining was estimated at 449 million tons (MT), leaving 1.3 BT of remaining Fire Clay resources in the study area. Of the remaining resources, 400 MT is restricted from mining, primarily because the coal is less than 28 in. thick, normally considered too thin to mine underground using present technology. The total coal available for mining in the study area is 911 MT, or 52 percent of the original resource. Of the 911 MT, 14.9 percent is thicker than 42 in., and only 6.1 percent is accessible by surface-mining methods. The largest block of available coal is in the Leatherwood quadrangle, is less than 42 in. thick, and mostly occurs below drainage.

INTRODUCTION

Coal is Kentucky’s most important energy resource. Previous estimates of eastern Kentucky’s coal resources were approximately 64 billion tons (BT) of original coal resources greater than 14 in. thick (Brant, 1983a, b; Brant and others, 1983a–d). Records of coal production for eastern Kentucky from the Kentucky Department of Mines and Minerals indicate that from 1976 to 1992 more than 230 million tons (MT) of coal have been mined from the original resource.

Recent studies sponsored by the U.S. Geological Survey’s (USGS) Coal Availability Program (for example, Eggleston and others, 1990) have shown that in many coal-mining areas not all of the remaining resources are available for mining. Coal availability is an approach to coal-resource estimation that considers land-use and technological restrictions that would prevent coal from being available for mining.

Coal-availability studies in nine 7.5-minute quadrangles in eastern Kentucky demonstrated that from 41 to 71 percent of the original coal is available for mining (for example, Andrews and others, 1994). Differences between the estimates of original resources and estimates of available resources are a function of the programs’ different goals and the different methods used. The earlier program was designed to estimate the coal resource in Kentucky greater than 14 in. thick. To determine this resource, the amount of coal produced was doubled and then subtracted from the total original resource. The amount of coal produced was doubled because in the most common form of underground mining, room-and-pillar mining, 50 percent of the coal is extracted and 50 percent is left in the ground as support pillars, which are not mined. Mining methods were not considered, or whether the coal might not be mineable because of restrictions.

In contrast, the Coal Availability Program measures the amount of coal restricted from mining because of technological and land-use reasons. Coal from 14 to 28 in. thick is considered surface-mineable only. Coal must be more than 28 in. thick to be considered available for deep mining. Also, coals that occur in areas restricted by local, State, or Federal regulations (such as near roads, towns, cemeteries, pipelines, etc.) are not included in estimates.

Because coal-availability studies examining all coals in a quadrangle have demonstrated that less coal may be available for mining than previously thought, it stood to reason that a study estimating the available resources of a single major coal in a multiple-quadrangle area might also find differences in the amount of coal available for mining than the original resource estimate indicated. To test this hypothesis, a regional availability

¹ Kentucky Geological Survey, University of Kentucky
² Center for Applied Energy Research, University of Kentucky
study was conducted for the Fire Clay coal bed. This major resource is thick across a wide area, has a low sulfur content, is actively mined, and has a long history of production. Also, because of its market reputation, it is actively explored for.

In many ways, studying an economically important bed such as the Fire Clay coal across numerous quadrangles is as important as charting multiple coals in one area. In any individual quadrangle, a single restriction may be more significant than in other quadrangles, which could lead to biases when extrapolating results to larger areas. By looking at a single coal bed across multiple quadrangles, the likelihood of a unique restriction to mining occurring decreases. By examining a single coal across a wider area, we can account for a larger spectrum of mining conditions and geology than can be accounted for in a single quadrangle. Also, in any one area, coals that may be available for mining have never been mined. Many of these unmined coals are erratic in distribution and exhibit variable thickness or quality across short distances. Because they do not have a development history and are erratic, they require more elaborate mine planning and are less attractive for mining.

Fire Clay Coal Project

This is the last in a series of three publications concerning the Fire Clay coal. The first is a detailed analysis of the coal quality and trace elements in the Fire Clay coal in an eight-quadrangle area of the Eastern Kentucky Coal Field (Eble and others, 1999). The second publication (Greb and others, 1999) is a summary of the geology of the Fire Clay coal, and especially deals with coal-thickness and roof-geology trends in a 15-quadrangle study area that includes the 8-quadrangle study area of the first report. The current publication is a study of the available Fire Clay coal resources in the same 15-quadrangle study area as the second report. These three studies were coordinated in order to determine factors important to future coal development.

Regional Setting

The Fire Clay coal (also known as the Hazard No. 4 and Jackrock coals) is of Middle Pennsylvanian age (Fig. 1) and stratigraphically situated in the Hyden Formation of the Breathitt Group (previously known as the Breathitt Formation), midway between the top of the Kendrick and base of the Magoffin Members (Chesnut, 1992). It is one of the most heavily mined beds in eastern Kentucky; 22 MT of it was produced in 1993, or 18 percent of the coal mined in eastern Kentucky that year, according to records at the Kentucky Department of Mines and Minerals. The coal bed commonly occurs as two benches separated by a flint-clay parting locally known as the “jackrock.” This parting makes the coal easy to identify and aids in regional correlation. The coal is high-volatile A bituminous, generally low in ash content (mean, 10 percent), and generally low in sulfur content (mean, 1 percent). Regional resource analysis of the coal shows that it is continuous across much of the coal field, but with variable thickness (Brant, 1983a; Brant and others, 1983a–d).

Study Area

The study area (Fig. 2) has a long history of mining, is still actively mined, and has numerous roadcut and abandoned highwall exposures in which the coal and surrounding strata can be observed. The area accounts for 30 percent of the original Fire Clay coal resource and 57 percent of the demonstrated Fire Clay coal resource (measured and indicated resources more than 28 in. thick), according to previous coal-resource studies (Brant, 1983a; Brant and others, 1983a–d). The area has also accounted for more than 40 percent of recent Fire Clay coal production, according to records at the Kentucky Department of Mines and Minerals. In general, the coal is thickest to the southeast toward Pine Mountain, and thins northwestward, occurring as a series of elongate regions of thick coal separated by areas of thin or absent coal (Fig. 3).

Purposes

The purposes of the Fire Clay coal-availability study were to (1) delineate areas where the Fire Clay coal is available for future mining in a region where it is still actively mined and of future economic importance, (2) quantify the thickness and mining characteristics of the coal in areas where it might be mined, and (3) compare

<table>
<thead>
<tr>
<th>System</th>
<th>Series</th>
<th>Group</th>
<th>Formation</th>
<th>Lithology</th>
<th>Bed/Member</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pennsylvanian</td>
<td>Mid-Cont.</td>
<td>Aiken</td>
<td>Breathitt</td>
<td>Hyden</td>
<td>Magoffin Member</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Copland coal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hamlin coals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fire Clay rider coal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fire Clay coal (312 ± 1 Ma)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whitesburg coals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kendrick Member</td>
</tr>
</tbody>
</table>

Figure 1. Stratigraphic position of the Fire Clay coal.
the availability of this single premium coal across multiple 7.5-minute quadrangles with the availability of multiple coals in a single 7.5-minute quadrangle.

Methods

The methods for this study are similar to those used in previous quadrangle-scale availability studies (for example, Andrews and others, 1994). In order to calculate resources of a coal bed, the volume of coal in the area must be known. The area of the coal must be defined by its outcrop limit, and the thickness of the coal must be estimated from point-source thickness data. Within this area, smaller volumes of coal that have been mined out or are in some way restricted from mining must be delineated. The most useful tool for measuring and calculating different volumes in an area is a computerized geographic information system (GIS). A GIS stores digital map data that can be used to make automated comparisons and calculations on one or more maps.
Vector-Line and Map Data

Vector-line and map data are lines on a map that represent a particular value or limit (for example, limit of a coal, elevation lines, etc.). Various types of map and vector-line data were digitized using the program GSMAP (version 7.2; Selner and Taylor, 1991). The outcrop of the Fire Clay coal was digitized from stable-base Mylar geologic maps of the 15 quadrangles that make up the study area (Puffett, 1964, 1965a, b; Seiders, 1964, 1965; Danilchik and Lewis, 1965; Mixon, 1965; Prostka, 1965; Prostka and Seiders, 1968; Danilchik, 1976; Maughan, 1976; Waldrop, 1976; Ping, 1977; Lewis, 1978; Taylor, 1978). Locations of roads, towns, airports, cemeteries, streams, power lines, railroads, and parks were digitized from the topographic maps of the 15 quadrangles. The approximate boundaries of underground mines were digitized from copies of hand-drawn mine maps obtained from the Kentucky Department of Mines and Minerals. The approximate boundaries of surface mines were digitized from copies of hand-drawn permit maps obtained from the Kentucky Department of Surface Mining Reclamation and Enforcement. Contacts of areas of reduced coal thickness (that is, rolls and cutouts), derived from notations on mine maps and conversations with mine personnel, were also digitized.

Point-Source Data

Coal-thickness measurements were the major point-source data used in this study. Coal thicknesses were obtained from the Kentucky Geological Survey’s Kentucky Coal Resources Information System, pillar measurements from mine maps, outcrop measurements from along roads and mine highwalls, and subsurface core records provided by mining companies. More than 3,800 thickness points were used in this study. Additional confidential thickness measurements were examined in order to determine the presence or absence of coal in certain areas, but their locations were not plotted. Besides the coal-thickness data, the locations of oil and gas wells that penetrated the coal were obtained from the Kentucky Geological Survey’s Office of Geologic Information; these locations were used to calculate areas of restrictions to mining.

Restrictions to Mining

Most land-use restrictions are outlined under the Kentucky Natural Resources and Environmental Protection Cabinet’s document 405 KAR (Kentucky Administrative Regulations) 24:040, entitled “Areas Unsuitable for Mining.” This document relates to Kentucky Revised Statutes 350.465(2)(b) and 350.610, which define the regulatory program for surface mining in Kentucky. Land-use restrictions can apply to both surface- and deep-mineable coals, as shown in Table 1, but we followed the practice of previous availability studies (for example, Andrews and others, 1994), and applied them only to areas of potentially surface-mineable Fire Clay coal. Except for federally funded highways, nationally protected lands, and cemeteries, variances are often granted for many of the restrictions listed in the regulations.

Technological restrictions apply to potentially deep-mineable coals. These restrictions include barriers around existing underground mines and existing oil and...
gas wells, and coal too thin (less than 28 in. thick) to be profitably mined by current underground mining methods (Table 1). In the study area, none of the Fire Clay coal was considered too deep for mining. Also, the interburden (strata between mined coals) restriction was not a factor because all of the known areas where the Fire Clay rider coal was being mined were where the Fire Clay coal was too thin to mine underground (an interburden restriction means that mined coals must be at least 40 ft apart vertically).

Oil and gas wells are restrictions in both the deep- and surface-mineable categories. This is not a duplication of restrictions because oil and gas wells with less than 100 ft of cover are considered land-use restrictions and oil and gas wells with more than 100 ft of cover are considered technological restrictions.

Data Analysis

The GIS software used for this project was Geographical Resources Analysis Support System (GRASS), a U.S. government software package developed primarily by the U.S. Army Corps of Engineers, the Natural Resources Conservation Service (formerly the U.S. Soil Conservation Service), and the U.S. Geological Survey (U.S. Army Corps of Engineers Construction and Engineering Research Laboratory, 1991). GRASS is a raster-based GIS, which means that the map data are rendered as matrices of equal-size grid cells. Maps stored in a GRASS database must be oriented to a particular coordinate system. The universal transverse Mercator system, based on the Clark 1866 spheroid, was chosen for this study so that it would be oriented similarly to other coal-availability studies in Kentucky. In order to use map information for calculations, the original vector data (lines or areas) are converted to raster (gridded) data files. Because this study covered such a large region, a grid cell size of 30 m was chosen for resolution. Table 2 shows methods used to analyze different types of data that were used to generate maps.

Thickness between data points was interpolated using the “s.surf.tps” algorithm. It has a segmentation procedure that enhances the efficiency of mapping for large data sets. Parameters are computed directly from the interpolation function so that the important relationships between these parameters are preserved. The algorithm interpolates the values of point data to grid cells and computes analysis from given site data to GRASS raster format using a process called “spline with tension” (U.S. Army Corps of Engineers Construction and Engineering Research Laboratory, 1991).

<table>
<thead>
<tr>
<th>Table 1. Potential restrictions with applicable buffer zones and overburden categories to which they apply.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrictions</td>
</tr>
<tr>
<td>Surface</td>
</tr>
<tr>
<td>Airports</td>
</tr>
<tr>
<td>Bridges</td>
</tr>
<tr>
<td>Cemeteries</td>
</tr>
<tr>
<td>Faults</td>
</tr>
<tr>
<td>Oil & gas wells</td>
</tr>
<tr>
<td>Public lands</td>
</tr>
<tr>
<td>Pipelines</td>
</tr>
<tr>
<td>Power lines</td>
</tr>
<tr>
<td>Railroads</td>
</tr>
<tr>
<td>Roads</td>
</tr>
<tr>
<td>Streams</td>
</tr>
<tr>
<td>Parks, National</td>
</tr>
<tr>
<td>Parks, State</td>
</tr>
<tr>
<td>Municipalities</td>
</tr>
<tr>
<td>Technological</td>
</tr>
<tr>
<td>Coal too thin</td>
</tr>
<tr>
<td>Coal too deep</td>
</tr>
<tr>
<td>Faults</td>
</tr>
<tr>
<td>Interburden < 40’</td>
</tr>
<tr>
<td>Mine barriers</td>
</tr>
<tr>
<td>Mining within 40’</td>
</tr>
<tr>
<td>Oil & gas wells</td>
</tr>
</tbody>
</table>

Data Analysis

The GIS software used for this project was Geographical Resources Analysis Support System (GRASS), a U.S. government software package developed primarily by the U.S. Army Corps of Engineers, the Natural Resources Conservation Service (formerly the U.S. Soil Conservation Service), and the U.S. Geological Survey (U.S. Army Corps of Engineers Construction and Engineering Research Laboratory, 1991). GRASS is a raster-based GIS, which means that the map data are rendered as matrices of equal-size grid cells. Maps stored in a GRASS database must be oriented to a particular coordinate system. The universal transverse Mercator system, based on the Clark 1866 spheroid, was chosen for this study so that it would be oriented similarly to other coal-availability studies in Kentucky. In order to use map information for calculations, the original vector data (lines or areas) are converted to raster (gridded) data files. Because this study covered such a large region, a grid cell size of 30 m was chosen for resolution. Table 2 shows methods used to analyze different types of data that were used to generate maps.

Thickness between data points was interpolated using the “s.surf.tps” algorithm. It has a segmentation procedure that enhances the efficiency of mapping for large data sets. Parameters are computed directly from the interpolation function so that the important relationships between these parameters are preserved. The algorithm interpolates the values of point data to grid cells and computes analysis from given site data to GRASS raster format using a process called “spline with tension” (U.S. Army Corps of Engineers Construction and Engineering Research Laboratory, 1991).
Table 2. Map types used for GRASS data analysis.

<table>
<thead>
<tr>
<th>Map Type</th>
<th>Data Source</th>
<th>Method of Generating GRASS Cell</th>
<th>Resolution</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Map boundaries</td>
<td>corner points</td>
<td></td>
<td>30 m</td>
<td>used as data mask</td>
</tr>
<tr>
<td>Outcrop</td>
<td>1:24,000 USGS GQ’s</td>
<td>digitized</td>
<td>30 m</td>
<td>used for original resource maps</td>
</tr>
<tr>
<td>Mines</td>
<td>Ky. Dept. of Mines & Minerals/Dept. of Surface Mines</td>
<td>digitized</td>
<td>30 m</td>
<td>used for remaining resource calculations</td>
</tr>
<tr>
<td>Land-use restrictions</td>
<td>1:24,000 topographic maps</td>
<td>digitized</td>
<td>30 m</td>
<td>used for available resource calculations</td>
</tr>
<tr>
<td>Oil & gas well data</td>
<td>KGS Office of Geologic Information</td>
<td>s.poly output</td>
<td>30 m</td>
<td>restriction</td>
</tr>
<tr>
<td>Reliability arcs</td>
<td>Derived from thickness locations</td>
<td>s.poly output</td>
<td>30 m</td>
<td>reliability categories</td>
</tr>
<tr>
<td>Thickness isopach</td>
<td>KCRIS*, core data, mine maps, and others</td>
<td>s.surf.tps</td>
<td>30 m</td>
<td>used for thickness maps and resource calculations</td>
</tr>
</tbody>
</table>

*TKentucky Coal Resources Information System

Tonnage Estimates

Once all maps were prepared, the U.S. Geological Survey program RESOURCES was used to calculate areas (in square meters) of all resource categories (original, mined-out, remaining, restricted, and available). Using the following definitions, these data were then converted to acres, and tons of resources were calculated:

1 acre=4,047 m2
1 acre-foot of bituminous coal=1,800 short tons

Resource Categories. Tonnage estimates for each bed were reported by the categories of coal thickness, overburden thickness, and reliability. Standard U.S. Geological Survey procedures (Wood and others, 1983) stipulate thickness categories in multiples of 14 in. up to 42 in., and multiples of 42 in. up to 168 in. Thicknesses greater than 168 in. are aggregated. For this study, 14-to-28-in., 28-to-42-in., 42-to-56-in., and greater-than-56-in. categories were used. Coal less than 28 in. thick is not generally mined underground in Kentucky because of technological and economic considerations.

Overburden Categories. Overburden categories are delineated according to potential mining method. Three categories are defined: surface mineable, deep mineable, and coal too deep or thin to mine with current technology. In practice, the thicknesses for each of these categories can vary depending on topographic relief, seam and interburden thickness, quality of the coal being mined, and the market to which the coal is being sold. In general, however, 100 ft of overburden is a reasonable maximum for surface mining of the Fire Clay coal, and 1,000 ft of overburden for underground mining. Few, if any, surface mines in the Fire Clay coal with more than 100 ft of overburden have been developed, and no deep mines have been developed in the coal in areas with more than 1,000 ft of overburden. In fact, the Fire Clay coal is less than 1,000 ft from the surface throughout the study area, making the too-deep-to-mine category unnecessary.

Reliability Categories. In any quantitative analysis, the results are only as good as the supporting data. Across broad areas, the density of data greatly affects the accuracy of thickness interpolations. Reliability categories, which are based on the distance to a known data point, are used to define the density of data points for coal-resource studies. “Measured” resources occur within 0.25 mi of a data point (known coal thickness), “indicated” resources between 0.25 and 0.75 mi, “inferred” resources between 0.75 and 3 mi, and “hypothetical” resources beyond 3 mi. The most reliable category is “measured,” whereas the least reliable is “hypothetical.” Figure 4 shows the locations of data points used in this study. Approximately 125,000 acres, or 35.0 percent of the study area, fall in the measured category; 138,000 acres, or 38.7 percent of the study area, fall in the indicated category; and 94,000 acres, or 26.3 percent of the study area, fall in the inferred category. The greatest density of data is in the mined areas in the Hyden West, Hyden East, Hazard South, Vicco, and Blackey quadrangles. This is the region of thickest and most un-
form coal conditions, and in this area most of the data fall in the measured or indicated categories.

RESULTS

Original Resources

Original coal resources are estimates of the total amount of coal greater than 14 in. thick that existed prior to mining. The 14-in. limit was chosen because thinner coal is not generally mined. The original thickness distribution of the resource is shown in Figure 5. Trends of coal thickness are discussed in Greb and others (1999). Trends in quality across part of the area are discussed in Eble and others (1999). The tonnages of coal in terms of depth, thickness, and reliability are shown in Table 3. The total original resource we calculated for the Fire Clay coal in the study area is 1.76 BT. The previous estimate for the Fire Clay coal for this area was 1.71 BT (Table 4). More data points were available for the present study, which resulted in greater measured and indicated resources, and fewer inferred resources (Table 4). Although the total differences between the current estimate and the previous estimate are small, the present study found significantly less coal greater than 42 in. thick than the previous study (Table 4).

Mined-Out and Remaining Resources

Mined-out tonnages were measured from maps of approximate mine limits, and estimated coal thicknesses were interpolated from discrete coal-thickness measure-ments within and around mines. Coal production data were not used because the data could not be correlated to specific mines and map areas, and because these data do not account for coal lost in mining (pillars, barriers, etc.). Figure 6 shows the approximate areas of mined coal. We estimate the total tonnage of Fire Clay coal mined in the 15-quadrangle area at 449 MT, or 26 percent of the original estimate. Subtracting the total tonnage of coal mined from the original resource yields a remaining resource of 1.3 BT for the study area. Table 5 illustrates the remaining resource in terms of depth, thickness, and reliability. Figure 7, a map of the remaining coal, indicates that most of the mined coal has been greater than 42 in. thick.

Available Resources

Available resources are estimated by subtracting restrictions to mining from remaining resources. Land-use restrictions occur across the study area, and are estimated at 9 MT, or less than 1 percent of the remaining resource (Fig. 8). Technological restrictions are concentrated in the northwestern part of the study area where the coal is less than 28 inches thick across large areas (Fig. 7); they are estimated at 391 MT, or 30 percent of the remaining coal (Fig. 8). Of the technologically restricted coal, coal from 14 to 28 in. thick accounts for 334.3 MT, or 25.5 percent of the remaining coal. In the past 10 years, the Fire Clay coal has not been mined underground where it is less than 28 in. thick, so with present technology this appears to be a realistic technological limit. Only one coal in Kentucky, the Blue Gem coal, is extensively mined underground where it is less than 28 in. thick. It has unique quality characteristics, however, that justify its mining.

Subtracting the restrictions from the remaining coal yields available coal resources of 911 MT (Fig. 9). An analysis of the coal available for deep and surface mining (Table 6) shows that 856 MT, or 65.3 percent of the remaining coal, is available for deep mining, whereas only 55 MT, or 4.2 percent of the remaining coal, is available for surface mining (Fig. 10). This is because most of the surface resources of Fire Clay coal have already been mined in the study area. Most of the coal available for deep mining (80.03 percent) is in the 28-to-42-in. category; less than 15 percent of the coal available for deep mining is greater than 42 in. thick.
Areas of Available Coal Resources

Figure 10 illustrates the available coal in the study area. Coal greater than 42 in. thick remains in the Vicco, Hazard South, Cutshin, Leatherwood, and Tilford quadrangles, and in each area is currently being mined.

Areas of 28-to-42-in. coal are more widespread. Small blocks of coal located on the margins of areas of previous mining may remain in the Buckhorn, Krypton, Hyden West, Hyden East, Cutshin, and Carrie quadrangles. In these areas mining typically ceased because of poor roof conditions (often caused by riders near the top of the coal) or variable coal thickness, characteristics typical of the outer margins of the Fire Clay coal in the western part of the study area (Greb and others, 1999). Similar conditions should be expected in the unmined parts of these areas.

The largest region of Fire Clay coal estimated to be available for future mining is in the Leatherwood and southern Tilford quadrangles (Fig. 10). Publicly available data for this region are mostly in the inferred reliability category. The coal occurs within an elongate trend believed to be characterized by variable coal thickness and roof conditions, however. Local areas of coal thicker than 42 in. may occur where riders merge with the main coal bed (Greb and others, 1999). Cutouts and reduced bed height beneath sandstone roofs may occur. Also, the available coal in the Leatherwood and Tilford quadrangles is significantly distant from surface access and major transportation routes.

Figure 5. Original Fire Clay resources in the study area.
Table 3. Estimated tonnages (MT) of original Fire Clay coal in the study area by depth, thickness, and reliability categories.

<table>
<thead>
<tr>
<th>Reliability Categories</th>
<th>Measured</th>
<th>Indicated</th>
<th>Inferred</th>
<th>Total</th>
<th>% of Total Original</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep-Mineable (≥ 100 ft cover)</td>
<td>> 56 in.</td>
<td>3.34</td>
<td>1.30</td>
<td>0.00</td>
<td>4.64</td>
</tr>
<tr>
<td></td>
<td>42–56 in.</td>
<td>156.11</td>
<td>112.49</td>
<td>15.56</td>
<td>284.16</td>
</tr>
<tr>
<td></td>
<td>28–42 in.</td>
<td>418.61</td>
<td>394.59</td>
<td>223.08</td>
<td>1,036.28</td>
</tr>
<tr>
<td></td>
<td>14–28 in.</td>
<td>61.85</td>
<td>141.51</td>
<td>148.55</td>
<td>351.91</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>639.91</td>
<td>649.89</td>
<td>387.19</td>
<td>1,676.99</td>
</tr>
<tr>
<td>Surface-Mineable (< 100 ft cover)</td>
<td>> 56 in.</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>42–56 in.</td>
<td>10.59</td>
<td>5.58</td>
<td>0.72</td>
<td>16.89</td>
</tr>
<tr>
<td></td>
<td>28–42 in.</td>
<td>27.75</td>
<td>18.23</td>
<td>5.67</td>
<td>51.65</td>
</tr>
<tr>
<td></td>
<td>14–28 in.</td>
<td>4.08</td>
<td>5.90</td>
<td>5.41</td>
<td>15.39</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>42.55</td>
<td>29.71</td>
<td>11.80</td>
<td>84.06</td>
</tr>
</tbody>
</table>

Grand total: 1,761.05

Table 4. Comparison of Brant and others’ (1983b) estimated tonnages of original Fire Clay coal with this study’s estimated tonnages. Values in millions of tons.

<table>
<thead>
<tr>
<th>Brant and others (1983b)</th>
<th>14–28”</th>
<th>28–42”</th>
<th>42–56”</th>
<th>56–70”</th>
<th>> 70”</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>21.26</td>
<td>78.48</td>
<td>77.24</td>
<td>10.03</td>
<td>0.12</td>
<td>187.13</td>
</tr>
<tr>
<td>Indicated</td>
<td>100.13</td>
<td>368.39</td>
<td>237.92</td>
<td>21.35</td>
<td>0</td>
<td>727.79</td>
</tr>
<tr>
<td>Inferred</td>
<td>259.89</td>
<td>446.77</td>
<td>90.84</td>
<td>1.83</td>
<td>0</td>
<td>799.33</td>
</tr>
<tr>
<td>Total</td>
<td>381.28</td>
<td>893.64</td>
<td>406.00</td>
<td>33.21</td>
<td>0.12</td>
<td>1,714.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>This study</th>
<th>14–28”</th>
<th>28–42”</th>
<th>42–56”</th>
<th>> 56”</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>65.93</td>
<td>446.36</td>
<td>166.70</td>
<td>3.47</td>
<td>682.46</td>
</tr>
<tr>
<td>Indicated</td>
<td>147.41</td>
<td>412.82</td>
<td>118.07</td>
<td>1.30</td>
<td>679.60</td>
</tr>
<tr>
<td>Inferred</td>
<td>153.96</td>
<td>228.75</td>
<td>16.28</td>
<td>0</td>
<td>398.99</td>
</tr>
<tr>
<td>Total</td>
<td>367.30</td>
<td>1,087.93</td>
<td>301.05</td>
<td>4.77</td>
<td>1,761.05</td>
</tr>
</tbody>
</table>

□=Demonstrated reserves

<table>
<thead>
<tr>
<th>Percent change</th>
<th>14–28”</th>
<th>28–42”</th>
<th>42–56”</th>
<th>> 56”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured</td>
<td>+210%</td>
<td>+469%</td>
<td>+116%</td>
<td>−66%</td>
</tr>
<tr>
<td>Indicated</td>
<td>+47%</td>
<td>+12%</td>
<td>−50%</td>
<td>−94%</td>
</tr>
<tr>
<td>Inferred</td>
<td>−41%</td>
<td>−49%</td>
<td>−82%</td>
<td>−100%</td>
</tr>
<tr>
<td>Total</td>
<td>−4%</td>
<td>+22%</td>
<td>−26%</td>
<td>−86%</td>
</tr>
</tbody>
</table>

+ = Increase
− = Decrease
Table 5. Estimated tonnages (MT) of remaining Fire Clay coal in the study area by depth, thickness, and reliability categories.

<table>
<thead>
<tr>
<th>Reliability Categories</th>
<th>Measured</th>
<th>Indicated</th>
<th>Inferred</th>
<th>Total</th>
<th>% of Total Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep-Mineable (> 100 ft cover)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 56 in.</td>
<td>1.88</td>
<td>0.66</td>
<td>0.00</td>
<td>2.54</td>
<td>0.19</td>
</tr>
<tr>
<td>42–56 in.</td>
<td>84.05</td>
<td>52.27</td>
<td>1.74</td>
<td>138.06</td>
<td>10.53</td>
</tr>
<tr>
<td>28–42 in.</td>
<td>257.23</td>
<td>309.05</td>
<td>202.97</td>
<td>769.25</td>
<td>58.65</td>
</tr>
<tr>
<td>14–28 in.</td>
<td>54.42</td>
<td>134.54</td>
<td>148.26</td>
<td>337.22</td>
<td>25.71</td>
</tr>
<tr>
<td>Total</td>
<td>397.58</td>
<td>496.52</td>
<td>352.97</td>
<td>1,247.07</td>
<td>95.08</td>
</tr>
<tr>
<td>Surface-Mineable (< 100 ft cover)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 56 in.</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>< 0.01</td>
</tr>
<tr>
<td>42–56 in.</td>
<td>7.00</td>
<td>3.68</td>
<td>0.35</td>
<td>11.03</td>
<td>0.84</td>
</tr>
<tr>
<td>28–42 in.</td>
<td>19.63</td>
<td>14.12</td>
<td>4.77</td>
<td>38.52</td>
<td>2.94</td>
</tr>
<tr>
<td>14–28 in.</td>
<td>3.74</td>
<td>5.73</td>
<td>5.39</td>
<td>14.86</td>
<td>1.13</td>
</tr>
<tr>
<td>Total</td>
<td>30.42</td>
<td>23.53</td>
<td>10.51</td>
<td>64.46</td>
<td>4.91</td>
</tr>
</tbody>
</table>

Total: 1,311.53

Figure 6. Areas of mined-out Fire Clay coal in the study area.
Results

Figure 7. Remaining Fire Clay coal resources in the study area.

Figure 8. Types and amounts of land-use and technological restrictions in the study area.
HISTORICAL PERSPECTIVE

Trends in recent Fire Clay coal mining may relate to the availability of coal in the region. In 1982, 136 mines produced 4.89 MT of Fire Clay coal (Fig. 11). In 1992, 52 mines produced 8.95 MT of the coal (Fig. 11). In general, the increase in production (83 percent) and decrease in number of mines (62 percent) was associated with the increasing size of underground mines in the area.

Throughout the last decade the greatest production has been concentrated in the Hyden West, Hyden East, Hazard South, Vicco, and Blackey quadrangles (Fig. 12). Figure 5 shows that this is the region where the coal is thickest. In western quadrangles, the coal thins or becomes extremely variable in thickness. In these areas, production has decreased through the last 10 years, and in six quadrangles has ceased (Fig. 12). By far the most production has come from the Vicco and Blackey quadrangles, both of which are in areas where the coal is thick. Production in the Blackey quadrangle has decreased in recent years because the coal is mostly mined out there (Fig. 6). Some coal is still available in the Vicco quadrangle, and is currently being mined.

Almost all deep mines in the study area have been above-drainage drift mines. The largest areas of available coal are below drainage, however, and not surface

<table>
<thead>
<tr>
<th>Table 6. Estimated tonnages (MT) of available Fire Clay coal in the study area by depth, thickness, and reliability categories.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability Categories</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Deep-Mineable (> 100 ft cover)</td>
</tr>
<tr>
<td>> 56 in.</td>
</tr>
<tr>
<td>42–56 in.</td>
</tr>
<tr>
<td>28–42 in.</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>Surface-Mineable (< 100 ft cover)</td>
</tr>
<tr>
<td>> 56 in.</td>
</tr>
<tr>
<td>42–56 in.</td>
</tr>
<tr>
<td>28–42 in.</td>
</tr>
<tr>
<td>14–28 in.</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Grand total: 911.27
Figure 10. Fire Clay coal available for mining in the study area. Only coal that can be deep mined is shown, because the areas of surface-mineable coal are too small to be seen at this scale.

accessible. As of 1995, a single mine in the Tilford quadrangle is the only slope access to below-drainage coal. The lack of slope and shaft mines in the area is undoubtedly because significant amounts of economically viable coal were available above drainage in the past. As the easily accessible resources are mined out, however, companies who want to mine the Fire Clay coal will need to consider slope or shaft mining in areas where coal may be of variable thickness and associated with variable roof conditions.

Comparison to Previous Studies

Coal-availability studies have been completed for nine 7.5-minute quadrangles in eastern Kentucky and one quadrangle along the Kentucky-Virginia border (Fig. 13). The results of those studies are summarized in Table 7 and compared with the results of the current study. Comparing multiple coals in single 7.5-minute quadrangles to a single coal in multiple quadrangles is a comparison of apples and oranges, but certain qualitative analogies can still be made. The single-quadrangle studies show a higher percentage of remaining coal than the Fire Clay coal study. This difference is because many coal beds included in the single-quadrangle studies have not been significantly developed. The Fire Clay study reflects the greater depletion of a major coal resource with a market reputation.
In both the single-quadrangle and Fire Clay studies, the technological restriction of coal too thin to mine has the most significant impact on available resources. This restriction assumes present technology and market conditions, and may indicate the importance of developing cost-effective thin-seam mining strategies in the future.

Land-use restrictions, which are often a problem for an individual mine, have less impact across a broad area. Part of the reason for this difference is that in eastern Kentucky most coals are mined above drainage. Roads, railroads, oil and gas wells, and other land-use restrictions often follow streams or terraces of streams at or near drainage, and hence are not restrictive to mining higher up on a hillside, above drainage.

The available resource of 911 MT of Fire Clay coal, at 52 percent of the original and 70 percent of the remaining resource, is similar to the percentages of original and remaining resources for multiple coals in any single quadrangle. The similarity indicates that significantly less coal is available for mining than often assumed. A change in technology or markets, however, would cause the amount of available coal for all studies to increase.

The Fire Clay coal study best compares with the Appalachia quadrangle study (Sites and Hostettler, 1991). Both studies estimated approximately 75 percent of coal resources remaining and 52 percent of the remaining resources available. Also, the original resources of 1.35 BT for the Appalachia quadrangle and 1.76 BT for
the Fire Clay study are similar, especially when compared with the original resources for the other quadrangles. Both areas are located in the southeastern, deeper part of the central Appalachian Basin, where coal beds are generally thicker and more widespread than in other areas. Both areas have similar topography, which results in similar land-use restrictions. Also, the similarity of results may suggest that where there are large original resources (whether one bed across a large area, or multiple beds in a small area), there has been more active mining and hence fewer remaining resources.
Table 7. Summary of eastern Kentucky coal-availability studies and current study, giving total tonnages (MT) and proportions. All tonnages and percentages rounded to nearest whole number.

<table>
<thead>
<tr>
<th>Quadrangle</th>
<th>Key to Fig. 13</th>
<th>Original Resources</th>
<th>Remaining Resources</th>
<th>Land-Use Restrictions</th>
<th>Technological Restrictions</th>
<th>Available Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appalachia</td>
<td>A</td>
<td>1.349 100%</td>
<td>1.005 74%</td>
<td>26 3%</td>
<td>277 28%</td>
<td>702 52%</td>
</tr>
<tr>
<td>Boltsfork†</td>
<td>B</td>
<td>243 100%</td>
<td>231 95%</td>
<td>15 6%</td>
<td>43 19%</td>
<td>173 71%</td>
</tr>
<tr>
<td>Booneville</td>
<td>C</td>
<td>80 100%</td>
<td>70 88%</td>
<td>1 1%</td>
<td>29 41%</td>
<td>40 50%</td>
</tr>
<tr>
<td>Handshoe</td>
<td>D</td>
<td>645 100%</td>
<td>633 98%</td>
<td>10 2%</td>
<td>220 35%</td>
<td>403 62%</td>
</tr>
<tr>
<td>Hoskinston†</td>
<td>E</td>
<td>342 100%</td>
<td>332 97%</td>
<td>19 6%</td>
<td>171 52%</td>
<td>142 42%</td>
</tr>
<tr>
<td>Matewan</td>
<td>F</td>
<td>987 100%</td>
<td>858 87%</td>
<td>17 2%</td>
<td>226 26%</td>
<td>615 62%</td>
</tr>
<tr>
<td>Middlesboro North</td>
<td>G</td>
<td>339 100%</td>
<td>328 97%</td>
<td>36 11%</td>
<td>138 42%</td>
<td>154 45%</td>
</tr>
<tr>
<td>Millard†</td>
<td>H</td>
<td>843 100%</td>
<td>777 92%</td>
<td>30 4%</td>
<td>400 51%</td>
<td>347 41%</td>
</tr>
<tr>
<td>Noble†</td>
<td>I</td>
<td>460 100%</td>
<td>399 87%</td>
<td>58 15%</td>
<td>71 18%</td>
<td>270 59%</td>
</tr>
<tr>
<td>Salyersville South</td>
<td>J</td>
<td>183 100%</td>
<td>160 87%</td>
<td>13 8%</td>
<td>66 41%</td>
<td>81 44%</td>
</tr>
<tr>
<td>This study</td>
<td></td>
<td>1,761 100%</td>
<td>1,312 75%</td>
<td>9 < 1%</td>
<td>391 30%</td>
<td>912 52%</td>
</tr>
</tbody>
</table>

†Results updated in 1993
1Percentage of original
2Percentage of remaining
3Sites and Hostettler (1991)
4Anderson and others (1991)
5Weisenfluh and others (1992)
6Weisenfluh and others (1993)
7Davidson and others (1991)
8Carter and Gardner (1989)
9Kentucky Geological Survey (1990)
10Sergeant and others (1989)
11Sergeant and others (1988)
12Andrews and others (1994)
REFERENCES CITED

