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ABSTRACT OF DISSERTATION 
 
 
 

 
PALINSPASTIC RECONSTRUCTION AROUND A THRUST BELT RECESS:  

AN EXAMPLE FROM THE APPALACHIAN THRUST BELT  
IN NORTHWESTERN GEORGIA 

 
In a well-defined subrecess in the Appalachian thrust belt in northwestern 

Georgia, two distinct regional strike directions intersect at approximately 50°.  Fault 
intersections and interference folds enable tracing of both structural strikes.  Around the 
subrecess, tectonically thickened weak stratigraphic layers—shales of the Cambrian 
Conasauga Formation—accommodated ductile deformation associated with the folding 
and faulting of the overlying Cambrian–Ordovician regional competent layer.  The 
structures in the competent layer are analogous to those over ductile duplexes 
(mushwads) documented along strike to the southwest in Alabama. 

 
The intersection and fold interference exemplify a long-standing problem in 

volume balancing of palinspastic reconstructions of sinuous thrust belts.  Cross sections 
generally are constructed perpendicular to structural strike, parallel to the assumed slip 
direction.  An array of cross sections around a structural bend may be restored and 
balanced individually; however, restorations perpendicular to strike across intersecting 
thrust faults yield an imbalance in the along-strike lengths of frontal ramps.  The 
restoration leads to a similar imbalance in the surface area of a stratigraphic horizon, 
reflecting volume imbalance in three dimensions. 

 
The tectonic thickening of the weak-layer shales is evident in palinspastically 

restored cross sections, which demonstrate as much as 100% increase in volume over the 
restored-state cross sections.  The cause of the surplus shale volume is likely pre-
thrusting deposition of thick shale in a basement graben that was later inverted.  The 
volume balance of the ductile duplex is critical for palinspastic reconstruction of the 
recess, and for the kinematic history and mechanics of the ductile duplex. 
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Chapter I: 

INTRODUCTION 

 

Sinuous curves in the gross-scale structural trend of the Appalachian fold-and-

thrust belt have been recognized for well over 100 years (Figure 1-1; Willis, 1893).  The 

curves in the Appalachian orogen have since been related to the geometry of the pre-

orogenic continental margin (cf. Thomas, 1977).  The continental margin can be defined 

as a zigzag array of transform faults and rifts (Figure 1-2) that form promontories that are 

concave toward the continent and embayments that are convex toward the continent.  

During subsequent thrusting, broad, sweeping curves called salients are formed at 

embayments (Figure 1-2).  In some places, the change in structural trend is more abrupt 

and is expressed as a more pronounced bend, rather than a sinuous curve.  As illustrated 

in Figure 1-2, these abrupt trend changes in recesses are at the along-strike ends of 

salients of the Appalachian thrust belt, and correspond to the promontories of the pre-

orogenic continental margin.   

The thrust belt of the southern Appalachians includes Cambrian to Pennsylvanian 

strata in thrust sheets that generally are imbricated northwestward and strike 

northeastward.  In northwestern Georgia, the Appalachian thrust belt includes the 

gradually curved Tennessee salient, convex toward the craton in the direction of thrust 

translation, and the composite Alabama recess, which is concave toward the craton 

(Figure 1-3).  In the northeastern part of the composite Alabama recess, at a subrecess in 

northwestern Georgia (Figure 1-3, and also labeled as A in Figure 1-2), north-

northeastward-striking thrust faults and related folds in the southern arm of the Tennessee 

salient intersect east-northeastward-striking thrust faults and related folds that diverge 

from the predominant strike of the eastern arm of the Alabama recess (Figure 1-4). 

The structural problems posed by along-strike bends in thrust belts are multifold.  

Mechanical and kinematic questions about the formation and evolution of thrust belt 

bends remain to be answered.  Primarily, the argument hinges on whether thrust belt 

bends are the product of one primary deformation direction or of multiple episodes of 

deformation, including at least two thrust directions.  Furthermore, the palinspastic 
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restoration of a non-parallel array of cross sections around a thrust belt bend leaves 

substantial volume-balance problems. 

The focus of this research is to investigate the lithostratigraphy and structure of 

the Georgia subrecess in northwestern Georgia to gain some insight into the formation of 

the subrecess through the study of both structural trends and the interaction between 

them.  During the course of the field research, a geologic map (Plate 1) and an array of 

palinspastically restored cross sections have been assembled (Plate 2).  The purpose of 

this dissertation, along with the map and cross sections from this project, is to present the 

reader with an understanding of the Georgia subrecess in three dimensions and of the 

general elements of evolution. 
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Figure 1-1.  Map of the Appalachian thrust belt drawn in 1893 by Bailey Willis, 
who used shading to emphasize morphology.  The salients and recesses of the orogen are 
unmistakably—and artistically—illustrated on this map. 
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Figure 1-2.  Detail of outline structural geology map of the Appalachian thrust 
belt indicating the locations of abrupt changes in the structural trend, as well as 
interpretation of shape of the pre-Appalachian Iapetan rifted margin, from Thomas 
(1977).  The bends in strike are labeled as (A) northwestern Georgia, (B) central western 
Virginia, and (C) northeastern Pennsylvania/southeastern New York.  Also note the 
prominent salients and recesses, and their location with respect to the promontories and 
embayments of the continental margin. 
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Figure 1-3.  Structural outline map of the Appalachian thrust belt in Alabama and 

Georgia, adapted from Thomas (2007).  The gray polygon shows the location of the more 
detailed map in Figure 1-4.  Names of faults are in all capital letters.  The Floyd 
synclinorium is labeled as Fs, Gadsden mushwad as Gm.  The label “Birmingham” shows 
the location of both the surface thin-skinned Birmingham anticlinorium and the 
subsurface Birmingham basement graben. 
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Figure 1-4.  Geologic map of the subrecess in Georgia, compiled from field data 

of the author, as well as Butts (1948), Cressler (1963, 1964a, b, 1970, 1974); Georgia 
Geological Survey (1976), Thomas and Cramer (1979), Osborne et al. (1988), and 
Thomas and Bayona (2005).  Plunge directions of fold hinges are denoted by closed 
arrows and the major folds are labeled.  Fault names are in all-capital letters.  The 
Kingston–Chattooga anticlinorium is the structurally high outcrop area dominantly of 
Units 1 and 2 between Lookout Mountain syncline and Taylor Ridge monocline.  The 
Floyd synclinorium (including Little Sand Mountain, Rock Mountain, and Judy Mountain 
synclines, as well as other unnamed folds) encompasses the entire outcrop area of Unit 4 
southeast of the Kingston and Chattooga faults. 
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Chapter II: 

BACKGROUND STRUCTURAL GEOLOGY 

 

2.1 ALONG-STRIKE BENDS IN THRUST BELTS 

Map-view curves in trends of mountain belts were recognized more than 200 

years ago on some of the first geographic maps of mountains; a study by Marshak (2004) 

includes a concise history on this subject.  Curves in the characteristically sinuous map 

traces of orogenic thrust belts can be classified as either salients or recesses.  Salients are 

broad, sweeping curves, which are convex in the direction of thrust transport; recesses are 

more angular bends that are concave in the direction of thrust transport.   

2.1.1 Controls on formation and development of salients  

Thrust-belt salients have been studied fairly widely over the last few decades, and 

much of the research has focused on defining the controls on the formation and 

development of salients.  Macedo and Marshak (1999) documented details of the shapes 

and geologic settings of salients in various locations and noted that, for most salients, the 

apex is coincident with the pre-thrusting sedimentary depocenter in the basin from which 

it formed, as demonstrated by Thomas (1977).  Marshak (2004) noted that although most 

thrust belt curves are “basin controlled,” other controls on thrust belt curves include 

interactions with obstacles or indenters.  Marshak (2004) also noted that not all curved 

thrust belts are true “oroclines,” and that “orocline” should refer only to specific thrust 

belts in which some segments have been rotated on a vertical axis. 

2.1.1.1 Mechanisms in basin-controlled salients 

Many studies have shown that the geometry of basins that underlie some salients 

affects the formation and development of the salient.  Macedo and Marshak (1999) 

documented along-strike change in depth to detachment as the controlling factor for 

salients forming within thick sedimentary successions; in such places, the salients form 

over deeper passive-margin basins and tend to propagate along the axes of the borders of 

the basins, which are at high angles to the thrust belt (cf. also Thomas, 1977).  The width 

of the thrust belt varies as a function of depth to the detachment and thus maintains 

volume for a given angle of critical taper; this concept was demonstrated by Marshak and 

Wilson (1992) using simple sandbox models.  Examples of salients formed at basins with 
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thick sedimentary successions include the Pennsylvania salient (Gray and Stamatakos, 

1997; Macedo and Marshak, 1999) and the Sulaiman salient in Pakistan (Davis and 

Lillie, 1994; Macedo and Marshak, 1999). The Nackara salient in the Adelaide thrust belt 

in southern Australia formed along a rift axis at a high angle to the thrust belt (Marshak 

and Flötmann, 1996). 

Along-strike changes in the strength of the detachment also control formation of a 

salient.  Davis and Engelder (1985) and Jaumé and Lillie (1988) noted that width of a 

thrust belt is dependent on the strength of the detachment horizon, because the angle of 

critical taper decreases as the detachment strength decreases.  For example, for a given 

magnitude of shortening, a thrust belt over a strong detachment (which sustains a higher 

critical taper angle) will be narrower than that over a weak detachment (Callasou et al., 

1993).  Thus, a thrust belt over a weak horizon, such as a “glide horizon” in an evaporite, 

will protrude farther into the foreland.  This mechanism may also work in union with the 

depth-to-detachment mechanism because evaporites are more common in basins with 

thicker sedimentary successions (Marshak, 2004).  Frey (1973) documented that the 

Pennsylvania salient in the Appalachians coincides with detachments in the evaporites of 

the Silurian Salina Formation.  The Sulaiman salient in Pakistan (Davis and Lillie, 1994) 

is also an example of a salient that is localized over a weak sedimentary glide horizon; 

also, the widest segments of the Zagros Mountains in southern Iran coincide with the 

presence of salt diapirs (Talbot and Alavi, 1996; McQuarrie, 2004).  Other examples 

include the Monterrey salient in the Cordillera Occidental in Mexico (Marrett, 1995; 

Melnyk and Cameron, 1998), the Salt Range in Pakistan (Jaumé and Lillie, 1988; 

McDougall and Khan, 1990), and the Jura Mountains in Switzerland (Laubscher, 1972, 

2008). 

Along-strike changes in dip of the basal detachment cause the width of a thrust 

belt to change and, as a result, control formation of a salient (e.g., Boyer, 1995; Mitra, 

1997).  A steeper detachment dip yields a wider thrust belt because the critical-taper 

angle of a wedge is the sum of the dip of the basal detachment and the slope of the wedge 

surface (Marshak, 2004).  Consequently, a steeper basal detachment may correspond to a 

deep basin, so that these two mechanisms may work in conjunction.  Boyer (1995) and 
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Mitra (1997) cited the Wyoming and Provo salients in the Sevier thrust belt in Utah as 

examples of salients that are controlled by detachment dip. 

Along-strike change in the strength of the thrust wedge itself is a factor in 

formation of a salient (e.g., Boyer, 1995; Mitra, 1997).  Thrust wedges of stronger rocks 

have greater critical-taper angles than thrust wedges of weaker rocks; thrust wedges of 

weaker rocks are thus wider and protrude farther into the foreland for a given magnitude 

of shortening (Marshak, 2004).  For example, Marshak (2004) mentioned facies changes 

in a basin, such as a well-cemented sandstone grading laterally into a weak organic shale 

would lead to curvature during thrust translation; he also noted that thick-skinned thrust 

belts tend to be narrower because of the inclusion of strong basement rocks.  On a related 

note, Marshak (2004) postulated that along-strike changes in heat flow (and thus, changes 

in rheology) could conceivably have the same effect (i.e., hotter, weaker rocks would 

have a lower angle of critical taper).   

2.1.1.2 Mechanisms in salients related to irregularities of colliding margins  

The shape of an indentor can also be a factor in the formation of a salient.  

Marshak (2004) noted that the “impression of a promontory or of an exotic crustal block 

of limited along-strike [extent] into a sedimentary basin generates a salient to the foreland 

of the collision,” as illustrated by simple sandbox models.  In indenter-controlled salients, 

thrust translation begins at the apex of the indenter and magnitude of translation 

decreases away from the apex; as a result, curvature is related to differential displacement 

along the length of the indenter.  Marshak (2004) illustrated that structural trend lines 

converge at the apex of indenter-controlled salients, which contrasts with the 

configuration in basin-controlled salients (Macedo and Marshak, 1999).  Laubscher 

(1972) noted that curved faults form in advance of an indenter.  The shape of an indenter-

controlled salient is a function of the shape of the indenter; Macedo and Marshak (1999) 

demonstrated from sandbox models that a rounded indenter creates a parabolic curve and 

a rectangular indenter yields a flat curve.  Indenters that collide obliquely create 

asymmetric salients (Marshak, 2004). 

Margin-controlled salients were first hypothesized by Dana (1866).  In his 

textbook, Dana (1866) suggested that curves in mountain belts were formed where the 

mountains were molded along an uneven margin of a preexisting craton.  Although Dana 
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would not have understood the origin of the tectonic stresses involved, his hypothesis of 

how promontories and embayments control thrust belt shape is still valid.  This idea was 

updated greatly by Rankin (1976), Thomas (1977), and Thomas and Whiting (1995), and 

was applied by these authors to the salients and recesses of the Appalachian thrust belt.  

Another example of a margin-controlled salient was proposed by Royden and Burchfiel 

(1989) for the curvature of the Carpathian range along the southern margin of Europe.  

Essentially, the effects of margin geometry on the geometry of thrust belts works much 

like that of the basin controls.  Salients form in embayments of the continental margin 

where passive-margin sedimentary successions are thicker and wider, and recesses form 

over the promontories of the continental margin where the basin is shallower and more 

narrow (cf. Thomas, 1977). 

Obstacles, such as foreland basement highs, also form curves in thrust belts.  

Kulik and Schmidt (1988) demonstrated that the interference structures in the Rocky 

Mountain foreland are largely controlled by the interaction of basement structures with 

predominantly eastward-directed thrusting.  Montgomery (1993) and Paulsen and 

Marshak (1999) further showed that pre-thrusting stratigraphic thinning--also interacting 

with basement structures--may account for the abrupt curvature to the north and south of 

the Provo salient, in Idaho-Wyoming and Utah, respectively (i.e., the Uinta recess, etc.).  

In the Provo salient itself, however, Kwon and Mitra (2004) demonstrated three different 

superposed transport directions on the basis of orientations of plastic deformation and 

fractures.  Marshak (2004) further noted that recess margins evolve into strike-slip fault 

systems where the edge of the obstacle is steep and into gradual curves where the edge of 

the obstacle is characterized by a gentle slope. 

2.1.1.3 Other mechanisms controlling curves in thrust belts 

Curves are also formed at the intersections of non-parallel thrust belts.  Marshak 

(2004) noted that different segments of a thrust belt “may form at different times, either 

because convergence or collision occurs at different parts of a margin at different times 

during a single orogenic event, or because different [parts of the thrust belt] form in 

response to entirely separate collisional or convergent events.”  Marshak and Tabor 

(1989) noted “intersection oroclines” at locations where faults of two non-parallel salient 

segments overlap.  Marshak (2004) cites the New York and Virginia recesses of the 
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Appalachian thrust belt as examples of intersection oroclines.  Such curves also have 

been described in the Brasilia belt in east-central Brazil (Araújo and Marshak, 1997) and 

in the Cape fold belt of southern Africa (de Beer, 1992).   

Curves in thrust belts can also be formed where strike-slip fault zones intersect.  

An example of strike-slip fault motion superposed on thrust belts is documented where 

the Makran thrust belt in southern Pakistan intersects the Chaman strike-slip system, 

which is the transform fault that bounds the western part of India (Lawrence et al., 1981; 

Marshak, 1988). 

Marshak (2004) noted that some curves “may not reflect rotation of structural 

trends around a vertical axis but may instead be an artifact of the erosion of a regional-

scale plunging fold [with an axis that trends obliquely] to the thrust front.”  Such folds 

have been documented from tangential buckling over the intersections of frontal and 

oblique ramps in the footwall of the Wyoming salient (Apotria et al., 1992; Apotria, 

1995) and of the Appalachian thrust belt in Alabama (Cook and Thomas, 2009).  Such 

folds may also form in thrust belts that are buckled in subsequent folding episodes; for 

example, Burg et al. (1997) suggest that the Nanga Parbat syntaxis in the northwestern 

Himalayas is a suture that was folded and subsequently exhumed.  Similarly, Paulsen and 

Marshak (1998) proposed that uplift and erosion intensified the curvature of the northern 

part of the Uinta recess.   

Furthermore, one or more factors can contribute to the genesis of a bend in the 

structural trend of a fold–thrust belt.  Lacquement et al. (2005) noted that the Meuse 

Valley recess in the Ardennes Variscan thrust belt in northern France and southern 

Belgium was formed by a combination of vertical axis rotation and oblique folding over a 

frontal-ramp–oblique-ramp intersection in the footwall.  

2.1.2 Paucity of research on recesses 

A literature search of the kinematics of curves in thrust belts demonstrates that 

salients have been studied far more extensively than recesses.  At the time of this writing, 

a quick keyword search on GeoRef yielded 895 hits for the term “salient” and only 141 

for the term “recess.”  Macedo and Marshak (1999) documented details of shapes and 

geologic settings of salients in various locations.  Although some recesses result from 

bending of strike in a thrust belt propagating around a foreland obstacle (e.g., the Uinta 
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recess, cf. Paulsen and Marshak, 1999), many recesses are the intersections of the distal 

arms of two adjacent salients, implying that recesses are the consequence of curvature of 

salients. 

2.1.3 Possible causes of recesses in thrust belts 

Two alternative sets of solutions may be suggested for junctions of structural 

trends.  One involves two temporally successive episodes of deformation, each with a 

different translation direction that corresponds to the observed structural trends, such that 

the younger set of structures overprints the other with compressional interference 

structures.  In such models, the two translation directions correspond directly with the 

structural trends observed in the opposite arms of the recess.  Geiser and Engelder (1983) 

noted two phases of deformation from layer-parallel shortening (LPS) fabrics in 

Pennsylvania and New York.  A similar study by Dean and Kulander (1978) 

demonstrated two discrete deformation events recorded by stylotized joints in the 

Greenbrier Limestone in the Alleghany plateau of southwestern West Virginia.  They 

found an early LPS fabric normal to the general trends of the southern Appalachians, and 

this fabric was later refolded about trends of the central Appalachians.  In contrast, the 

other solution set involves a single episode of deformation.  Kulander and Dean (1986) 

demonstrated that bends in thrust belts can be generated by differential displacement.  

Differential displacement may result from gradients in displacement magnitude (along 

faults within one fault system or as a transfer among different fault systems), or a transfer 

of displacement mechanism (i.e., efficiency of accommodation of shortening, perhaps 

between predominant thrust faulting and predominant folding).  A drastic along-strike 

increase in plastic deformation would represent another possible transfer of deformation 

mechanism.   

In the Appalachian thrust belt, the abrupt angular intersections in structural trends 

are at the ends of salients in the thrust belt (Figure 1-2, also cf. Thomas, 1977).  Perhaps 

these bends are, in part, the necessary results of the intersections of the active salient 

segments of the Appalachians.  Furthermore, the style of salients and how the individual 

faults evolve (cf. Kwon and Mitra, 2004) must also be considered.  Five idealized end-

member models of salients are shown in Figure 2-1, and each involves different along-

strike variations in compression and thrust-front translation, displacement paths, rotations 
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of translation directions and fault orientations, etc.  The models in Figure 2-1, however, 

do not address the along-strike ends of the salients.  Thus, the deformation at the 

boundary between any of the various types of salients must also determine—at least in 

part—the nature of the interstitial recess (i.e., the boundary conditions of the salients are 

also factors in the evolution of the recess). 

Interference patterns of folds, according to Ramsay (1962), result from the 

relationship between direction of second-phase motion and the orientation of the earlier 

folds.  Further, Stewart (1993) demonstrated dual-phase deformation and described 

possible accommodation structures, such as faults superposed on folds.  He also states, 

however, that this is analogous to deformation observed over frontal-ramp–oblique-ramp 

intersections in the footwall (cf. Alvarez-Marrón, 1991; Lacquement et al., 2005; also see 

preliminary discussions by Butler, 1982a, b), for which only one phase of 

deformation/transport is necessary.  Second-order structures result from single-phase 

deformation that involves translation of rocks over a footwall structure, such as the 

intersection between a frontal ramp and an oblique or lateral ramp (Apotria et al., 1992; 

Apotria, 1995; Cook and Thomas, 2009).  These second-order structures are produced 

over the corner of the footwall structure, which corresponds to the intersection of the 

structural trends at the surface, and the nature of the second-order structures is dependent 

upon the footwall geometry.  Compressional structures (such as higher order folds or 

thrust faults) are generated if the footwall structure is concave with respect to regional 

transport.  Conversely, extensional structures (such as tear faults) are formed if the 

footwall structure is convex with respect to the direction of thrusting. 

Stauffer (1988) demonstrated that some interference patterns are affected by 

bends in rock layers that form at fold intersections, to which he referred as “coaptation 

folds”.  Lisle et al. (1990), however, stressed the influence of layer thickness and 

competence in constraining the formation and geometry of such folds.  Lisle et al. (1990) 

concluded that such “coaptation folds” are actually topologically necessary at the flanks 

of domes and basins, and should thus be called “curvature-accommodation folds”.  

Stewart (1993) further refined these ideas by creating a model that accounts for volume 

of rock that must be accommodated at fold intersections. 
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2.1.4 Structural problems of bends in thrust belts 

The problems presented by marked changes in structural trends are multifold.  

The primary problem is defining whether the present structures were generated by a 

single deformational episode or by multiple phases of deformation.  The proposed 

explanations for abrupt changes in structural trends are, in turn, also numerous.  Several 

studies demonstrate multi-phase deformation—and thus, interference patterns—in the 

Appalachians (e.g., Dean and Kulander, 1978; Murray and Skehan, 1979; Drake and 

Lyttle, 1980; McMaster et al., 1980; Mosher, 1981; Wise, 2004).  In contrast, many 

explanations involve a single phase of deformation (e.g., Dahlstrom, 1969, 1970; 

Kulander and Dean, 1986; Gray and Stamatakos, 1997; Marshak, 2004).  Furthermore, if 

thrust translation is perpendicular to structural trends, then one must consider a space 

problem at bends in thrust belts that necessitates along-strike strain.  Thus, palinspastic 

restoration of the volume of rock in the regional thrust sheets must account for strains out 

of the planes of cross section and possible multi-directional thrust translation. 

The primary problem of bends in thrust belts involves the nature of deformation—

basically how many stages were involved.  This can be determined by close examination 

of local structures--both mesoscopic and microscopic.  If the deformation did, in fact, 

occur in two phases, then interference structures (i.e., fold overprint or accommodation 

structures, such as superposed thrust faults) should be apparent.  Contrarily, if there were 

one single transport direction, then an altogether different—yet no less complex—set of 

structures must result, such as a gradient in displacement or deformation mechanism. 

A secondary problem involves defining how (and to what magnitude) deformation 

and/or strain are accommodated in the rocks at such an intersection during tectonic 

transport.  This problem is more important, however, for single-phase deformation, for 

which accommodation cannot be explained by interference structures.   

2.1.4.1 Problems with palinspastic restoration around bends in thrust belts 

Palinspastic restorations of cross sections along bends in thrust belts can be 

problematic (Thomas, 1989).  A space problem arises if cross sections are restored 

perpendicular to the strike of intersecting fault sets (assuming that slip is perpendicular to 

strike).  If the bend in strike is concave towards the foreland (i.e., a recess), the fault trace 

lengthens when restored.  Conversely, the restored fault trace shortens if the bend is 
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convex toward the foreland (i.e., a salient).  Figure 2-2 illustrates the calculation of the 

amount of tangential extension or shortening associated with translation through a salient 

or recess.  Thus, there is an inherent distortion of volume, although each cross section 

within an array of cross sections across a structural bend may be balanced individually.  

There are two main solutions to this problem.  The first involves treating the ends of the 

fault segments as fault tips, such that displacement diminishes to zero toward the fault tip.  

The second involves restoration of a wedge-shaped block (i.e., with sides bounded by 

cross sections perpendicular to the two regional structural trends) such that higher order 

compression or extension must be accommodated within the block by other mechanisms 

(i.e., superposed folds and/or faults, diffusive mass transfer, etc.).   

2.1.5 Recesses in the Appalachian thrust belt 

 Pronounced, abrupt bends in the strike of the Appalachians in the United States 

are in recesses in northeastern Pennsylvania, central western Virginia, and across 

Alabama (the Pennsylvania, Virginia, and Alabama recesses, respectively, in Figure 1-2).  

The Alabama recess is the most complex and the least studied of the three recesses in the 

Appalachian thrust belt.  At the northeastern end of the Alabama recess in northwestern 

Georgia, structural trends the trailing thrust sheets bend abruptly (Figures 1-2 and 1-3).  

The most abrupt bend in frontal structures is observed in western Alabama and eastern 

Mississippi (Figure 1-2).  The structural intersection in northwestern Georgia is the focus 

of the present research and is herein referred to as the Georgia subrecess.   

2.1.5.1 New York recess 

In the New York recess in northeastern Pennsylvania, the trend of the 

Appalachian thrust belt curves abruptly southwestward from approximately 030 to 075 

(Figure 1-2), and marks the loosely defined boundary between the central Appalachians 

and the northern Appalachians.  The former trend continues northward and curves 

northeastward around the Quebec salient, the latter trend continues southwestward 

around the Pennsylvania salient into Virginia.   

Macedo and Marshak (1999) described the Pennsylvania salient as a basin-

controlled and a margin-controlled salient, the development of which is related to a thick 

underlying sedimentary succession, as well as evaporites deposited in the basin.  Gray 

and Stamatakos (1997) compiled paleomagnetic data from various studies and concluded 
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that those data are consistent with oroclinal bending of the Pennsylvania salient.  Both of 

these models only require one general direction of tectonic transport.  In a study to the 

contrary, Geiser and Engelder (1983) compiled, correlated and interpreted orientation 

data from various deformation structures such as “mechanical twins, solution cleavage, 

crenulation cleavage, pencils, joints, and deformed fossils” to investigate and quantify 

layer-parallel shortening in this region (in the area shown in Figure 2-3).  In this study, 

Geiser and Engelder (1983) demonstrated two discrete, major phases of Alleghanian 

deformation (the Lackawanna phase and the Main phase) that occurred during a time of 

sustained plate interactions.  Lastly, the authors noted that these pulses are likely to be 

diachronous with respect to each other, and that the sequence of overprinting is consistent 

at all locations, although the data are sparse.   

The Lackawanna phase is manifest by structures that denote generally 

northwestward displacement, although the deformation is kinematically complex and 

includes regional strike-slip components.  Geiser and Engelder (1983) estimated the 

associated deformation to be early Late Pennsylvanian or younger in age, and they 

conclude that it represents an early phase of the Alleghanian orogeny.  The authors 

interpreted the Lackawanna phase to have a component of strike-slip motion, possibly 

between the North American craton and the Avalon microcontinent.   The authors 

suggested some possible tectonic interpretations for this phase including:  (a) initial 

lateral motion caused by a rigid indentor; and (b) initial oblique subduction.  

 The Main phase results from a displacement directed predominantly east-west in 

eastern Pennsylvania.  To the north, the displacement was rotated clockwise as it 

translated around the northeastern end of the Pennsylvania salient (i.e., the phase is 

directly affected by the regional structural trends).  This phase is estimated to be early 

Permian or younger in age (Geiser and Engelder, 1983).  This episode is interpreted as 

the final closure of—and possible contact between—the rigid plates of Africa and North 

America, which is considered to be the Alleghanian orogeny sensu lato. 

Later studies by Wise (2004) and Wise and Werner (2004) proposed a different 

model that incorporates two directions of tectonic shortening at times that differ from the 

two phases of Geiser and Engelder (1983).  The phases in the model of Wise (2004) and 
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Wise and Werner (2004) are called the Reading Prong stage, which is directed to ~325 

and the Nittany-Juniata stage, which is directed to ~290–295. 

It is debatable whether either of these two-phase models really explains the bend 

in strike.  Geiser and Engelder (1983) noted that they could not determine whether their 

two phases actually represented two distinct translations or were part of a single, 

continuous rotation of tectonic translation.  Furthermore, the two orientations of these 

two-phase models may only reflect the deformation corresponding to the salient arms on 

either side of the recesses. 

2.1.5.2 Virginia recess 

In the Virginia recess of central western Virginia, the trend of the Appalachian 

thrust belt curves abruptly southwestward from approximately 030 to 060 (Figure 2-4).  

To the northeast of this change, the Appalachian structural trend consistently curves 

northeastward through the Pennsylvania salient into Pennsylvania and New York.  To the 

southwest, the structural trend curves consistently through the Tennessee salient into 

Georgia.  Kulander and Dean (1988) illustrated that this area of abrupt trend change 

defines a structural recess (the Virginia recess of Thomas, 1977), and stated that it marks 

the boundary between the southern Appalachians and central Appalachians.  In the 

recess, key southern Appalachian structures—such as the Saltville and St. Clair faults—

terminate northeastward.  To the northeast of this juncture, shortening of the sedimentary 

cover rock is increasingly accommodated by folding, leading to a gross-scale increase in 

fold frequency and widening of the fold belt (Figure 2-5).  The northwestern segment of 

the Virginia recess is also underlain by the southeasternmost extent of the evaporites of 

the Silurian Salina Formation.  The change from folds on the northeast to faults on the 

southwest, however, may reflect a difference in the level of the thrust belt exposed at the 

present surface, and thus may be more apparent than real.  The faults on the southwest 

may represent a structurally/stratigraphically lower level of exposure than the folds.  The 

folds on the northeast may represent detachment folds above a deeper detachment with 

frontal ramps similar to those faults to the southwest.  The change in deformation style 

may be attributed to causes such as the effects of the continental-margin geometry and 

changes in stratigraphic thicknesses (e.g., the thickening Devonian section to the 

northeast, cf. discussion of Catskill–Pocono clastic wedge in Thomas, 1977).  The general 
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differences in style of deformation between the southern and central Appalachians are 

described by Rodgers (1970), and the primary geological and geomorphological contrasts 

are outlined by Lowry (1971). 

The Massanutten-Blue Ridge and Pulaski thrust sheets are bounded by the North 

Mountain-Pulaski fault system (Figure 2-4) and were translated as a composite sheet, 

which spans across the Virginia recess of Thomas (1977), as well as the change in 

Appalachian trend around the recess (Kulander and Dean, 1988).  Kulander and Dean 

(1988) stated that displacement magnitude of the “master” thrust sheet is constant 

throughout this region, and that there is no evidence for “abrupt or irregular changes” in 

displacement along strike.  They further stated that the mechanism of displacement is 

transferred gradually between the primary thrust faults on a regional scale.  Along the 

leading edge of the composite thrust sheet, the displacement on the North Mountain fault 

decreases toward the southwest, whereas the displacement along the Pulaski fault 

increases markedly southwestward (see cross sections in Kulander and Dean, 1988).  This 

mechanism of fault displacement transfer (Figure 2-6) is described in detail by Dahlstrom 

(1969, 1970).  Thus, according to Kulander and Dean (1988), the regional bend in 

Appalachian structural trends here results from the change in deformation style rather 

than magnitude of translation. 

2.1.5.3 Alabama recess and the Georgia subrecess 

The Alabama recess is a more composite recess, and is structurally distinct from 

the other two Appalachian recesses.  In northwestern Georgia, north-striking structures 

that curve northeastward around the Tennessee salient into central Virginia intersect and 

interfere with northeast-striking structures that extend eastward from Alabama (Figure 1-

2), thereby defining the Georgia subrecess.  The northeastward-striking segment extends, 

as a nearly linear feature, southwestward across Alabama to the Ouachita structures in the 

subsurface in Mississippi, where there is another sharp bend in structural trends (Figures 

1-2 and 1-3). 

In northwestern Georgia and northeastern Alabama, frontal structures such as the 

Sequatchie anticline and the Lookout Mountain syncline are nearly straight and strike 

approximately 040 (Figure 1-3).  Intermediate structures such as the Kingston, Peavine, 

Chattooga and Opossum Valley/Jones Valley faults and the Kingston–Chattooga 
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anticlinorium are nearly straight, but have slight cratonward-concave curvature and some 

are offset at lateral ramps in Alabama.  The eastern (trailing) end of the Kingston–

Chattooga anticlinorium is defined by Taylor Ridge monocline, which dips into the Floyd 

synclinorium.  Interior structures in the region have the most abrupt bend in strike, and 

bend southwestward from approximately 020 to 070.  These structures include the 

Helena, Western Coosa, and Eastern Coosa (or Coosa) faults in the area of study (Figure 

1-4) as well as the Talladega–Cartersville–Great Smoky fault (the leading metamorphic 

thrust sheets of the Appalachian Piedmont) to the southeast.  In the footwall of the Coosa 

fault in Georgia, an interference pattern is defined by the sinuous trace of the Rome fault 

and two main fold trains that plunge into the depression of the Floyd synclinorium 

(Figures 1-3 and 1-4).  The trends of the two fold trains correspond to the approximately 

020 and 070 strikes in the Georgia subrecess, and they intersect and interfere throughout 

the area of the Floyd synclinorium (Figure 1-4).  An abrupt change in strike marks the 

Georgia subrecess, from which displacement is absorbed toward the foreland such that 

structures like the Kingston fault are not affected.  To the southwest of the Georgia 

subrecess, Appalachian structures curve gently from approximately 070 to 090 in the 

subsurface of eastern Mississippi (Figures 1-3), where they intersect and truncate 

Ouachita structures.  This intersection defines the Alabama recess at the thrust front, 

whereas the Alabama recess is defined in trailing structures in northwestern Georgia in 

the subrecess. 

The most prominent bend in strike is the intersection between the Talladega–

Cartersville fault and the Great Smoky fault.  Tull and Holm (2005) reviewed the area in 

terms of what they call the Cartersville transverse zone, and reinforced the idea of an 

oblique/lateral ramp at the Rising Fawn transverse zone by presenting evidence based on 

the differences in the Appalachian thrust belt on either side of the transverse zone 

(Figures 2-7 and 2-8).  The authors cited the absence of the rift-fill rocks of the Ocoee 

basin across the Alabama promontory (or southwest of the Rising Fawn transverse zone), 

and the lack of the thick clastic succession caused a contrast in mechanical properties that 

is marked by the abrupt change in structural style at the Rising Fawn transverse zone (i.e., 

the large-scale isoclinal folding of the Blue Ridge to the northeast that is absent in the 

Talladega belt to the southwest—perhaps as a result of the more massive basement).  



 20

They mentioned that the abrupt change in stratigraphic level of the Cartersville–Great 

Smoky fault further suggests a continental-margin transform fault.  Tull and Holm (2005) 

also mentioned the difference in distribution of metamorphic isograds and mafic 

metaigneous rocks across the transverse zone. 

The southern Appalachian thrust belt commonly is interpreted in the context of a 

break-forward sequence of thrusting and unidirectional northwestward thrust translation 

(e.g., Boyer and Elliott, 1982; Thomas, 1985; Woodward and Gray, 1985, etc.) with 

break-back sequences (e.g., Thomas, 2001; Thomas and Bayona, 2005, etc.).  Upon 

closer inspection, however, the idea of unidirectional displacement may not be applicable 

everywhere.   

This area was first mapped and discussed by Hayes (1891, 1894), who conducted 

the earliest geologic research in northwestern Georgia.  Both the accompanying maps to 

these studies clearly show the two structural trends in northwestern Georgia.  Hayes 

(1891) noted that variation in “rigidity” in the stratigraphic succession in the Southern 

Appalachians directly correlates to deformation style (i.e., folding in weaker rocks, 

faulting in stronger rocks).   Hayes (1894) specifically noted the Cambrian “soft shales 

and limestones” in the area around Rome (in contrast to “great masses of conglomerate 

and quartzite” of the Cambrian to the north in Tennessee) as the cause of the 

concentration of folding in the region. 

The area was later mapped at greater detail by Hayes (1902) and Butts (1948).  

Cressler (1964a, b, 1970) later depicted this area on 1:62,500-scale county geologic maps 

on planimetric bases of Floyd, Chattooga, and Walker Counties, Georgia, and described 

the general geology.  Cressler (1970) also noted high-angle southwest-trending faults to 

the south of the interfering folds.  These faults are splays of the Coosa fault and are the 

southwesternmost structures that follow the general structural trend prominent to the 

northeast of this bend in the Appalachians.  Kesler (1975) further described the general 

geology of this area, and emphasized the local change in trend of the Rome and Coosa 

faults.   

Later publications refined the general understanding of this region.  The geologic 

map published by the Georgia Geological Survey (1976) clearly depicts how the 

structural trends are distributed within and partitioned among the thrust sheets.  Both the 
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north-northeast and the east-northeast trends are visible in the interference folds within 

the composite Kingston–Chattooga–Clinchport thrust sheet and on the trace of the Rome 

fault (the leading edge of the Rome thrust sheet).  The map also clearly shows the 

southwest-trending splays of the Coosa fault, which extend into the hanging wall, the 

Coosa thrust sheet.  Furthermore, it shows a cross fold in the hanging wall of the 

Clinchport fault, which is the northernmost clearly defined structure that follows the 

general east-northeast trend prominent to the southwest of this bend in Appalachian 

structural trends.  The map also illustrates that the bend in structural trend does not affect 

the rocks in the footwall of the Kingston and Chattooga faults and is more pronounced to 

the southeast at the Cartersville–Great Smoky fault.  Thomas (1990) defined this bend in 

the trend of the Appalachian thrust belt as the Rising Fawn transverse zone.  A later 

mapping project by Baldwin and Thomas (1997, and unpublished map) showed a general 

tightening of folds in the zone of interference.   

More recent research has more clearly defined some of the details of the regional 

geologic structures.  Bayona et al. (2003) demonstrated local vertical-axis rotation in this 

region, and stated that it may be attributed to differential slip related to rheology contrasts 

between detachment levels at oblique/lateral ramps, the ramp geometry, and gradients in 

the depth to basement.  From paleomagnetic data, the authors calculated a clockwise 

rotation of 25 ± 7.8° in the Kingston–Chattooga–Clinchport thrust sheet south of the 

interference folds, which is insufficient to cause the entire bend.  Bayona et al. (2003) 

further illustrated thin-skinned structures overlying regional northeast-striking basement 

faults offset by northwest-striking basement faults at transverse zones, and also 

emphasized the folding and refolding of the Rome fault in the area of the interference 

folds.  Thomas and Bayona (2005) described the regional details of the Rising Fawn 

transverse zone.  Of particular interest, they also noted the highly sinuous nature of the 

Rome fault in this region, indicating a subhorizontal folded fault surface.  Folds in the 

footwall are coaxial with the folds in the fault surface.  The authors further stated that the 

footwall folds are truncated by the fault, and the folds were subsequently tightened, 

folding both the footwall rocks and the Rome thrust sheet.  Thus, the deformation in this 

region is evidently multiphase, and the phases may or may not be co-directional.  Thomas 

and Bayona (2005) also described the change in trend of the Cartersville–Great Smoky 
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fault.  They further noted that segments of the Coosa fault in Alabama follow the 

southwest trends seen in the splays in Georgia.  The Eastern Coosa fault bends to the 

southwest and terminates, and farther to the west, the hanging wall of the Western Coosa 

fault includes southwest-trending splays.  Even farther to the west, the Western Coosa 

fault bends to the southwest, where it truncates the Helena fault (Thomas and Bayona, 

2005).   

From all these previous studies, the two sets of regional structural trends are 

readily apparent; however, at the scale of existing maps, no well-defined map patterns or 

structures clearly define the nature of interference at the intersection.  Consequently, 

more research on the structures in the zone of interference is necessary to determine the 

structural history of the thrust belt in this area, to more fully analyze the deformation 

mechanisms, and to resolve the number of deformation episodes. 

2.1.6 Examples of structural intersections in other thrust belts 

Intersections of regional structures are common at bends in orogenic belts.  

Interference structures have been described in the Rocky Mountain foreland (e.g., Kulik 

and Schmidt, 1988; Montgomery, 1993; Paulsen and Marshak, 1999; Kwon and Mitra, 

2004), in the Cantabrian zone of the Asturian Arc (Hercynian Cordillera) in northwestern 

Spain (e.g., Julivert, 1981; Julivert and Marcos, 1973; Alvarez-Marrón, 1991; Van der 

Voo, 2004), and in the Salt Ranges in northern Pakistan (e.g., Stewart, 1993; McDougall 

and Khan, 1990).   

These thrust-belt bends, however, are not all located in recesses, and the 

structures therein may be produced by mechanisms that differ from those in the 

Appalachian intersections (cf. discussion of the Uinta recess in section 2.1.1.2).   Julivert 

and Marcos (1973) described the interference structures in the Cantabrian zone as the 

result of superposed flexural deformation episodes.  On the contrary, Van der Voo (2004) 

presented evidence of large-scale rotation on the basis of paleomagnetic data.  Stewart 

(1993) concluded that the fold interference structures in northern Pakistan are a result of 

footwall ramp intersections (cf. Apotria et al., 1992; also see discussion of this area in 

McDougall and Khan, 1990).   
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2.2 DUCTILE DUPLEXES IN THRUST BELTS 

A brittle duplex is defined by brittle “horses” that are bounded by coherent thrust 

faults, which connect the floor and roof thrusts.  A ductile duplex is also defined by a 

roof thrust and a floor thrust.  In contrast, the volume between the roof thrust and floor 

thrust in a ductile duplex is filled with ductilely deformed rocks from a thick weak layer 

in the stratigraphy during thrust translation.  Ductile duplexes are characterized by small-

scale disharmonic folds, small faults, and the lack of coherent brittle horses.  The 

necessary weak layer typically is a shale-dominated succession that may include some 

thin-bedded intervals of more competent rocks.  The essential ideas of ductile duplexes 

and how they are formed are summarized in the study of Thomas (2001).  The combined 

function of the state of stress and the mechanical properties of a regional stratigraphic 

succession are considered to be the primary control on structural style of folds and faults 

within a thin-skinned thrust belt (e.g., Jamison, 1992).  Thomas (2001) noted that the 

“geometry of both thrust-fault surfaces and fault-related folds is closely controlled by 

mechanical properties of stratigraphic units.”  The fold form of detachment folds is 

defined by a rigid layer, and a detachment anticline is filled with ductilely deformed 

rocks from a weak layer (Thomas, 2001).  A detachment anticline generally forms in a 

rigid layer over the tip of a thrust fault within an underlying weak unit (Thorbjornsen and 

Dunne, 1997).  A relatively greater volume of weak-layer rocks can be tectonically 

thickened, which elevates and distorts an overlying rigid layer (e.g., Stewart, 1999); and 

subsequent deformation can propagate into the foreland and incorporate footwall rocks 

(Ramsay, 1992).  Both of these mechanisms operate in the development of ductile 

duplexes. 

 

2.3 STRATIGRAPHIC CONTROLS ON STRUCTURES 

The bulk stratigraphy of a thrust sheet is directly related to the mechanical 

properties of the sheet and is a primary factor in how the thrust sheet deforms.  The 

alternate rigid layers and weak layers control partitioning of brittle and ductile 

deformation, respectively, with respect to depth within a thrust sheet (cf. Wiltschko and 

Geiser in Hatcher et al., 1989). 
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A comprehensive analysis of the regional stratigraphy is therefore important to 

the problems addressed in the present study.  Any kinematic and mechanical 

investigation of geologic structures, such as that included herein for the recess in 

northwestern Georgia, must include research of the mechanical properties of the 

stratigraphic succession.  Furthermore, the mechanical properties of the thrust sheets are 

directly related to the deformation styles observed both at the surface and in the 

subsurface.  The present investigation intends to demonstrate the relation of regional 

stratigraphy to the clearly defined structural interference pattern in Georgia. 
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Figure 2-1.  Idealized end-member models of salient development illustrating the 
evolution of the faults in each case, from Kwon and Mitra (2004).  The dashed lines are 
pre-deformational material lines, the solid lines are the same material lines after thrust 
translation.  Black arrows represent thrust transport directions and open arrows represent 
fault propagation directions.  Double-headed arrows represent tangential extension. 
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Figure 2-2.  Sample calculations of implied tangential strain around a salient and 
a recess, adapted from Thomas (1989).  Note that the sense of extension/shortening is 
reversed for palinspastic reconstructions.   
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Figure 2-3.  Location 

map of the structural 

analyses of Geiser and 

Engelder (1983). 
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Figure 2- 4.  Location map of the abrupt bend in the Appalachian thrust belt of 

central western Virginia and major structural features, from Kulander and Dean (1988).  
Note the composite Pulaski/Massanutten–Blue Ridge thrust sheet and bounding fault 
system (the North Mountain and Pulaski faults). Also note the termination of the Saltville 
and St. Clair faults near the Virginia recess. 

 
 

Virginia recess bounded by 
heavy dashed lines 
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Figure 2-5.  Location map of the Appalachian thrust belt of central western 

Virginia illustrating the widening of the thrust belt to the northeast of the bend in strike, 
from Kulander and Dean (1986).   
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Figure 2-6.  Diagram of the transfer of displacement within a thrust fault system, 

from Dahlstrom (1969). 
 

 

 
 

 

Figure 2-7.  Regional map of the southwestern Appalachian orogen and the 
eastern Ouachita orogen, marking the location of a proposed transverse zone (labeled as 
CTZ) in northwestern Georgia, from Tull and Holm (2005).  Also shown here is the 
location of cross section A–A' from Figure 2-8. 
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Figure 2-8. (previous page)  “Diagrams illustrating the evolution of the Late Proterozoic 
Cartersville transfer fault into an oblique footwall ramp during late Paleozoic 
Alleghanian collisional events, from Tull and Holm (2005). 
 
(A)  Schematic block diagram of the Late Proterozoic rifted-margin configuration at the 
junction between the Alabama promontory (upper plate rifted margin) and the Tennessee 
embayment (lower plate rifted margin). (B) Schematic along-strike (SW–NE) cross 
section (location in Figure 2-7) prior to Paleozoic deformation and metamorphism from 
the Gulf Coastal Plain in Alabama to the North Carolina–Virginia border illustrating the 
configuration relative to the Cartersville transfer fault of the rift-facies sequence (Ocoee 
Supergroup), drift-facies sequences (Chilhowee Group = Kahatchee Mountain Group 
[KMG] = Nantahala-Brasstown Formations undifferentiated [NBFU], and Sylacauga 
Marble Group [SMG] and Murphy Marble [MM]), and clastic wedge sequences 
(Talladega Group [TG] and Mineral Bluff Group [MBG]). Post-Iapetus rifting mafic 
igneous suite in the Tennessee salient shown as short line segments representing dikes 
(d), sills (s), and volcanic rocks (v). (C) Schematic along-strike diagram following 
regional metamorphism and isoclinal folding and just prior to the advance of the WBRTB 
allochthon over frontal and oblique ramps seen in A, showing the configurations of 
stratigraphic sequences in B, metamorphic isograds, and the initial trajectories of 
Alleghanian faults. Stratigraphic units and faults dip toward the viewer, whereas 
metamorphic isograds dip away from the viewer. (D) Configuration in C following 
advancement of the WBRTB allochthon over the oblique ramp and a large frontal ramp 
(shown in A) north of the CTZ, illustrating arching of the Blue Ridge and metamorphic 
isograds along the Tennessee salient.”  
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Chapter III: 

REGIONAL STRATIGRAPHY 

 

3.1 INTRODUCTION TO REGIONAL STRATIGRAPHY 

In northwestern Georgia, the Paleozoic stratigraphy is comprised of rocks from 

the Cambrian up to the Pennsylvanian (Figure 3-1).  Some of the first general surveys and 

discussions of the Paleozoic stratigraphy in Georgia were conducted by Hayes (1891, 

1894, 1902).  Spencer (1893) also reviewed the Paleozoic stratigraphy in northwestern 

Georgia, and recorded detailed accounts of the stratigraphy in ten individual counties.  

Spencer (1893) also compared and correlated his Paleozoic section to those of Hayes 

(e.g., 1891) in Georgia, Smith (e.g., 1876, 1890) in Alabama, and Safford (e.g., 1869) in 

Tennessee (Figure 3-2).  Similarly, Maynard (1912) summarized the Paleozoic 

succession and also recorded county-scale details of the stratigraphy in northwestern 

Georgia; his report paid particular attention to carbonate rocks and the resources thereof.  

The study by Butts (1948) contains a detailed map (scale 1:250,000) and concise report, 

on which almost all research on the geology of northwestern Georgia has been based in 

years since. Butts (1948) also extended his paleontological research into Georgia in this 

report, and his biostratigraphic data are still used at present.  Later county-scale maps 

(scale 1:62,500) and reports were prepared for the region in cooperation with the United 

States Geological Survey by Cressler (1963, 1964a and b, 1970, and 1974) and Croft 

(1963), who also included fossil and hydrogeologic data in their studies; these reports 

contain the most recent mapping at this scale.  In 1976, the Georgia Geological Survey 

published a geologic map of the entire state of Georgia at a scale of 1:500,000.  More 

recently, Chowns (1989) briefly outlined the Paleozoic stratigraphy in Georgia and 

discussed distribution of lithofacies with respect to the regional thrust sheets and 

depositional environments.  Most recently, the study of Thomas and Bayona (2005) is 

similar to that of Chowns (1989), but covers a much larger area, is more detailed on a 

broad scope, and also includes details of the tectonic implications and interactions of the 

Paleozoic succession in both Georgia and Alabama. 

The following sections in this chapter provide a systematic summary of the 

Paleozoic succession in the region of study.  Local lithologic details are described where 
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applicable.  Many exposures were poor and/or both upper and lower contacts were not 

exposed, which precludes any precise measurements of thickness. County locations are 

shown in Figure 3-3. 

 

3.2 CAMBRIAN SYSTEM 

The oldest rocks exposed in the study area are dolostones of the Lower Cambrian 

Shady Dolomite; the oldest rocks that are most widely exposed in the region are fine-

grained clastic rocks of the upper Lower Cambrian Rome Formation.   The hanging wall 

of the regional décollement, however, cuts up-section in the direction of transport and 

includes older rocks in the more interior thrust sheets (Thomas and Bayona, 2005).  The 

regional décollement is within the Cambrian Chilhowee Group under the Great 

Smoky/Cartersville thrust sheet, cuts upward and flattens near the base of the Rome 

Formation (and locally includes Shady Dolomite) under the Coosa thrust sheet, and cuts 

upward and flattens farther northwestward into the Conasauga Formation under the more 

frontal thrust sheets (Thomas and Bayona, 2005).  The only well drilled to basement in 

Georgia was located near the northwestern corner of the state in Dade County; this well 

showed Rome Formation resting on basement (cf. Ortiz and Chowns, 1978; Coleman, 

1988).  Thus, although the regional décollement includes older rocks on the southeast 

(i.e., Chilhowee Group and more of the Shady Dolomite) elsewhere, the sub-décollement 

Rome Formation evidently laps down onto basement rocks toward the northwest in the 

area of this study. 

The Cambrian succession of Shady Dolomite–Rome Formation–Conasauga 

Formation thins northwestward, and the Shady Dolomite pinches out (Kidd and 

Neathery, 1976).  The Rome Formation–Conasauga Formation succession generally is 

incompetent and contains the regional décollement; as a result, this succession typically 

is pervasively faulted and folded to an extent that precludes accurate thickness 

measurements.  In the southwest of the study area near Rome, the Rome Formation–

Conasauga Formation succession is estimated to be complete and is approximately 600–

750 m thick (Cressler, 1970).  To the northwest, west of the Sequatchie Valley in 

Alabama, the combined thickness of the same succession is estimated to be 520 m (Kidd 
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and Neathery, 1976); this area marks the foreland tip of the décollement structures 

(Chowns, 1989). 

3.2.1 Lower Cambrian Shady Dolomite 

The Lower Cambrian Shady Dolomite was originally named Shady Limestone by 

Keith (1903) for Shady Valley in Johnson County, Tennessee, and renamed by Stose 

(1923) because of the predominant lithology.  The formation typically overlies the clastic 

succession of the Weisner Formation at the top of the Chilhowee Group, but this contact 

has not been found in Georgia (Butts, 1948).  Butts (1948) characterized the formation in 

Georgia as bluish-gray, medium- to coarse-crystalline dolostone, which he noted was 

lithologically similar to the Shady Dolomite in Alabama.  Butts (1948) further noted that 

the upper contact of the formation is not exposed in Georgia, which suggests that the 

outcrops of Shady Dolomite in the study area are contained in fault-bounded horses along 

the Coosa fault.  The carbonate rocks of the Shady Dolomite are the upper part of a 

transgressive succession that records early “post-rift subsidence of a passive margin 

along the Blue Ridge rift of southeastern Laurentia (North America)” (Thomas and 

Bayona, 2005; cf. Thomas, 1991).  According to Maples and Waters (1984), the 

formation represents an offshore shelf deposit with reefs. 

Cressler (1970) noted dolostone in Floyd County that he correlated with the 

Shady Dolomite because of stratigraphic position and similar lithology; the contact with 

the overlying Rome Formation, according to Cressler (1970), is apparent at some of the 

exposures.  The Shady Dolomite in Alabama thins and pinches out northwestward toward 

the foreland because of onlap (Kidd and Neathery, 1976); no evidence to the contrary has 

been documented for Georgia.  Cressler (1970) documented only a few outcrops of Shady 

Dolomite in the study area, all of which are located in the immediate hanging wall of the 

Coosa fault, and, thus, the total thickness cannot be measured.  The Shady Dolomite in 

these exposures is comprised of approximately 6 m of a lower dolostone and about 3.0–

4.5 m of an upper, mainly shaly, dolostone that is thinly to massively bedded; these 

dolostone units are separated by approximately 3 m of dark shale and very thinly bedded 

“earthy” dolostone that weathers to shale.  The upper dolostone is overlain by about 1.5 

m of dark-gray shale that grades “abruptly upward into maroon shale and siltstone” of the 

Rome Formation.  The dolostone primarily is medium- to dark-gray and very thickly to 
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massively bedded; it is commonly characterized by silt or clay that “weathers out as shale 

or accumulates on the surface as an olive-gray, tan, or yellowish-brown crust” (Cressler, 

1970).  The Shady Dolomite is also characterized by numerous fractures filled with fine-

crystalline, light-gray quartz; these veins produce a “boxwork” relief pattern, especially 

on weathered surfaces.  According to Cressler (1970), the formation in northwestern 

Georgia is completely free of chert. 

3.2.2 Upper Lower Cambrian Rome Formation 

The upper Lower Cambrian Rome Formation was named by Hayes (1891) for 

outcrops to the south of Rome, Georgia; the author did not specify a type section.  In the 

study area, the formation is presumed to overlie the Shady Dolomite conformably in the 

more southeastern thrust sheets and to rest unconformably on basement beneath the more 

northwestern thrust sheets.  The Rome Formation typically consists of shale, siltstone, 

and sandstone that are interbedded with minor amounts of limestone and dolostone 

(Butts, 1948; Thomas and Bayona, 2005).  Butts (1948) described the sandstone as fine-

grained and generally green or red; he described the shale as gray, pinkish, or yellowish 

where weathered, and presumed the shale to be naturally green in color.  Cressler (1970) 

mentioned quartzite that is mainly in the upper half of the Rome Formation.  In the 

subsurface in Alabama, the Rome Formation also includes evaporites, and the 

distribution of the evaporites is constrained by synrift basement faults (Thomas et al., 

2001).  No evaporites have been documented in the Rome Formation in Georgia.  

Thomas and Bayona (2005) noted that the “abrupt appearance of clastic sediment above 

the transgressive Shady carbonates indicates a new source of detrital sediment on the 

passive-margin shelf, and marks and interruption in the stability of the shelf” subsequent 

to the onlap of the Shady Dolomite facies.  The initial deposition of clastic Rome 

Formation succession roughly corresponds to the initiation of the Ouachita rift, which is a 

“late stage of crustal extension and rifting recorded in the basement faults of the 

Birmingham graben” (Thomas and Bayona, 2005; cf. Thomas, 1991).  Chowns (1989) 

stated that the Rome Formation, from the limited available data, appears to represent 

peritidal deposition during a regression. 

The Rome Formation in Floyd County holds up an array of knobby ridges in the 

hanging wall of the Coosa fault.  In these outcrops, a large proportion of the shale, as well 
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as thin-bedded sandstone and siltstone, is bright red, purple, green, yellow, and brown in 

color; thicker sandstones are generally pale gray and weather to tan or rusty brown 

(Cressler, 1970).  Cressler (1970) also noted that alternate layers of multi-colored rocks 

are distinctive to the formation.  The Rome Formation ranges from 150 m to more than 

300 m in thickness in the type locality in Floyd County, which is the only place in the 

study area where the base of the formation is exposed (and therefore a presumably 

complete section can be estimated).   

Most of the outcrops of the Rome Formation have been identified in the hanging 

wall of the Coosa fault, and are limited to Floyd and Gordon Counties in this study.  In 

Floyd County, outcrops of the formation were found in an abandoned quarry near GA 

Highway 27 southeast of Horseleg Mountain and in horsetail splays of the Coosa fault in 

or near roadcuts along US 411/GA 53 west of Cave Spring.  Southeast of Horseleg 

Mountain, the Rome Formation is rusty red and yellow, and grayish tan shale that is 

pervasively folded and intensely folded in places into tight meter-scale folds.  At the 

largest roadcut in the Coosa fault splays, the exposure is comprised of rusty red, 

yellowish-tan, and greenish gray shale, mudstone, siltstone and fine-grained sandstone.  

This exposed section is approximately 75 m thick, but accurate measurement is not 

possible because of some intensely folded beds and short (about 1 m) covered intervals. 

Furthermore, some parts of the section have been weathered to saprolite (primarily the 

shale).  In the next splay to the west, about 1.5 km away, an outcrop of the formation is 

comprised of about 10 m of red, yellow, and greenish-tan saprolitic shale interbedded 

with meter-thick units of tan mudstone, siltstone, and very fine-grained sandstone in beds 

about 1 to 5 cm thick; the shaly saprolite appears to be disharmonically folded between 

the two largest siltstone intervals.  The Rome Formation in Gordon County is in scattered 

outcrops, where it is irregularly laminated.  One outcrop noted is comprised of 

approximately 20–30 m of rusty-reddish-brown shale interbedded with very fine-grained, 

thin-bedded sandstone that is weathered to a tan color; total thickness could not be 

determined accurately because of pervasive ductile deformation that primarily was 

concentrated in the shale.  Another outcrop is comprised of about 4–5 m of deformed 

purplish-red and yellowish shale.  In yet another such location, the formation is exposed 

in a low railroad cut as medium- to dark-gray shale that is weathered to tan and red.  
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Cressler (1974) described the Rome Formation in Gordon County as approximately 90–

150 m thick and lithologically similar to the formation in the type locality, except that it 

contains much less sandstone and the sandstone beds are generally thinner (no thicker 

than about 2.5 to 5.0 cm). 

The only other documented exposure in the area of study is in a belt in the 

hanging wall of the Clinchport fault in eastern Walker County and southwestern 

Whitfield County (Cressler, 1964b, 1974).  Cressler (1964b) stated the Rome Formation 

in Walker County generally is sandstone, siltstone, and claystone.  He described the 

sandstone as fine grained; green, brown, red, dark-gray, or nearly white; and in beds 

primarily less than 10 cm thick.  He described the siltstone and claystone facies as fissile 

and green, yellow, brown, and red (Cressler, 1964b).  Cressler (1964b) also noted 

pervasive, tight folds and steeply dipping to vertical beds in almost all the exposures of 

the Rome Formation in this locality, which, in addition to the base of the formation not 

being exposed, precludes an estimate of total thickness.  Cressler (1974) described the 

Rome Formation in Whitfield County as similar to the formation as exposed in Floyd 

County in terms of character and thickness. 

3.2.3 Middle to Lower Upper Cambrian Conasauga Formation 

The Middle to lower Upper Cambrian Conasauga Formation was named by Hayes 

(1891) for outcrops along the Conasauga River in Whitfield and Murray Counties in 

Georgia; Hayes did not specify a type section.  The formation is presumed to 

conformably overlie the Rome Formation (via a gradational contact) where exposed in 

the area of study (Cressler, 1970; Chowns, 1989).  Butts (1948) described the Conasauga 

Formation as greenish shale that weathers to pale yellowish-gray or pinkish color and is 

interbedded with blue limestone.  According to Chowns (1989), limestones in the 

Conasauga Formation in Georgia are more predominant toward the southeast, as has been 

documented in Tennessee by Rodgers (1953).  Butts (1948) also noted that the presence 

of the limestone facies, in combination with an absence of red shale and sandstone, are 

the primary criteria for distinguishing (and also establishing the boundary) between the 

Conasauga Formation and the Rome Formation.  Rodgers (1953) divided the Conasauga 

Formation into six recognized subdivisions to the north of the study area in Tennessee; 

these subdivisions were made on the basis of six alternate units of shale and limestone.  
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Munyan (1951) mentioned the regional members of the Conasauga Formation but was 

not able to map any of them separately because of poor exposure around Dalton; he did 

mention, however, correlation to the uppermost Maynardville Limestone Member.  

Cressler (1970, 1974) mapped subdivisions of the Conasauga Formation in places on the 

basis of predominant lithology (e.g., mostly shale, or greater proportion of shale to 

limestone and vice versa); and the Georgia Geological Survey (1976) mapped 

comparable subdivisions on the basis of lithology, but also suggested possible 

correlations with the subunits of the Conasauga Formation in Tennessee.  The Conasauga 

Formation represents an upward gradation from the clastic facies of the underlying Rome 

Formation into the carbonate facies of the overlying Knox Group; the transition, 

however, ranges with location from near the base to near the top of the formation 

(Thomas and Bayona, 2005).  Hasson and Haase (1988) noted that the lithofacies of the 

Conasauga Formation throughout Tennessee is “consistent with a shelf–intrashelf-basin–

carbonate ramp” environment.   

The shaly facies of the Conasauga Formation hosts the regional décollement, but 

the uppermost, dominantly carbonate facies functions mechanically as a stiff layer in 

cooperation with the overlying Knox Group carbonate succession (Thomas and Bayona, 

2005).  Where the formation is exceptionally thick and dominated by shale, ductile 

deformation of the Conasauga Formation fills cores of detachment folds and ductile 

duplexes (Thomas and Bayona, 2005; Cook and Thomas, in press).  

The general thickness of the Conasauga Formation is controlled systematically by 

a set of basement faults, which indicates movement along these late synrift faults 

(Thomas et al., 2000).  More recently, Cook and Thomas (in press) have demonstrated a 

similar setting in northwestern Georgia, in which the Conasauga Formation deposited in a 

basement graben is thicker than the average regional thickness.   

Cressler (1970) divided the Conasauga Formation in Floyd County into two belts.  

Each belt has a distinct lithologic succession, and the rocks therein represent different 

depositional environments.   

The eastern belt is in the hanging wall of the Coosa fault.  The lower part of the 

eastern belt is composed of more than 30 m of medium-gray massive-bedded limestone 

overlain by “several hundred feet” of olive and tan shale (Cressler, 1970).  The middle 
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part is composed of “thick, apparently discontinuous layers of massively bedded, 

medium-gray, oolitic and non-oolitic limestone that grades into and is interbedded with 

olive and tan shale” (Cressler, 1970).  The upper part is composed of “several hundred 

feet of calcareous olive-gray and tan shale interbedded with thick sections of massively 

bedded, blue-gray ribboned limestone” with some gray dolostone (Cressler, 1970).  In a 

low outcrop along US 411/GA 53 northeast of Cave Spring, an exposure of the formation 

is about 2–3 m of light- to medium-gray shale that is weathered to tan, brown, and pale 

olive-gray.  Poor exposure and numerous faults (and probable pervasive ductile 

deformation) preclude accurate thickness measurements of the eastern belt of the 

Conasauga Formation; Cressler (1970) estimated a total thickness of approximately 450 

m. 

The western belt of the formation in Floyd County is exposed in the hanging walls 

of the trailing imbricates of both the Kingston and Chattooga faults; the western belt is 

poorly exposed, which precludes accurate measurement of total thickness.  This western 

belt is divided by Cressler (1970) into three distinct, successive units.  The lower unit is 

composed of olive-green silty shale that weathers to tan or pinkish orange and is 

interbedded with fine- to medium-grained sandstone that weathers to rusty brown.  The 

middle unit is composed of medium- to dark-gray massively bedded limestone that is 

interbedded with olive-gray to tan shale.  The upper unit is composed of “olive and tan 

shale containing a large quantity of thin-bedded limestone and calcareous siltstone” that 

is overlain by a zone of “dark olive-gray, somewhat silty, shale containing abundant mica 

flakes” (Cressler, 1970). 

The Conasauga Formation in Chattooga County underlies valleys located in the 

hanging walls of both Kingston fault splays (wider outcrop at trailing splay), a narrow 

outcrop in the hanging wall of the leading Chattooga fault splay and a wide outcrop in the 

hanging wall of the trailing Chattooga fault splay, and in a synclinal “arm” off the wide 

outcrop that plunges out south of the southwestern end of the Taylor Ridge monocline.  

According to Cressler (1964a), the Conasauga Formation in these exposures consists 

primarily of calcareous siltstone and claystone that weathers to shale; he also noted a 

limestone unit near the top of the formation that is characterized by numerous stylolites.  

Although not mentioned by Cressler, this limestone unit presumably correlates to the 
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Maynardville Limestone Member.  The limestone is characterized by light- to dark-gray 

color, commonly thick to massive beds, and abundant silt and clay; it is about 90 m thick 

and is also characterized by numerous stylolites (Cressler, 1964a).  Cressler (1964a) 

noted that this limestone was well exposed in a US27/GA1 roadcut northeast of Trion, 

however, exposure at this outcrop is currently poor.  The siltstone and claystone facies of 

the Conasauga Formation are light-gray to olive-gray and weather to brown; the siltstone 

is very thin-bedded where weathered and medium-bedded where unweathered (Cressler, 

1964a).  About 1.5 km south of Lyerly in the hanging wall of the trailing Chattooga fault 

splay, the exposure shows about 0.5 m of light-gray to tan, calcareous (possibly 

dolomitic) claystone in beds about 0.1 m thick.  The claystone also contains abundant 

veins of microcrystalline calcite. 

The Conasauga Formation in Walker County is exposed in a wide outcrop in a 

valley in the hanging wall of the trailing Kingston fault splay, a narrow outcrop in the 

valley along strike from the northern end of the trailing Chattooga fault splay, and along 

the Clinchport fault west of Villanow in a valley in the hanging wall and in a small fold 

in the footwall.  The Conasauga Formation in these outcrops generally is siltstone, 

claystone, shale, and limestone; and the lower part of the formation is dominantly 

siltstone and claystone with a few scattered limestone beds (Cressler, 1964b).  According 

to Cressler (1964b), the uppermost part of the formation is characterized by 

approximately 90 m of light- to dark-gray, limestone in thick beds (about 0.3 to 2.0 m 

thick) that have a ribboned appearance because of bands of clay and silt that “stand in 

relief” on weathered surfaces; this limestone unit is correlated by Cressler (1970) with the 

Maynardville Limestone Member.  The siltstone and claystone are calcareous and 

weather to a shaly rock that is brown or green; the green-colored rock appears more clay-

rich than the brown (Cressler, 1964b). 

The Conasauga Formation makes up a significant amount of the hanging wall of 

the Coosa fault at the surface in Gordon County.  Cressler (1974) describes the formation 

there as alternating layers of shale and limestone that are thick enough to control 

topography.  The Conasauga Formation in Gordon County is observed as medium-gray, 

medium- to coarse-crystalline limestone (grainstone) interbedded with dark-gray shale; it 
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is also exposed as a light-gray, slightly shaly mudstone in a quarry in the northwestern 

corner of the county. 

Cressler (1970, 1974) mapped the distribution of subdivisions of the Conasauga 

Formation on the basis of dominant lithology (i.e., shale, limestone, dolostone, etc.).  The 

western belt of the Conasauga Formation generally is distributed such that the uppermost 

subunit is mapped in the immediate hanging wall of the Rome fault, the lower subunit in 

the immediate footwall of the Coosa fault (trailing part of the Rome thrust sheet), and the 

middle subunit between.  There is no apparent pattern of distribution in the eastern belt of 

the Conasauga Formation of Cressler (1970). 

3.2.3.1 Maynardville Limestone Member of the Conasauga Formation 

The only part of the Conasauga Formation that is mentioned or mapped separately 

in Georgia is the uppermost Maynardville Limestone Member (e.g., Munyan, 1951; 

Georgia Geological Survey, 1976; Chowns et al., 1992; Wilson, 1992); these studies 

mainly documented the lithologic contrast to the overlying Knox Group strata as a basis 

of placing the upper contact.  The Maynardville Limestone was named by Oder (1934) 

for exposures in Union County, Tennessee, and was later considered as the uppermost 

member of the Conasauga Formation (Munyan, 1951).  Munyan (1951) correlated the 

“uppermost, heavy limestone” of the Conasauga Formation with the Maynardville 

Limestone as defined by Rodgers (1953).  Wilson (1992) basically stated only that the 

upper contact is placed at the top of a succession of light-gray chert-free beds (see also 

description of lower contact of Copper Ridge Dolomite in section 2.3.1).    Munyan 

(1951) further noted a “tripoli zone” at the base of cherty limestone, which he assigned to 

the base of the overlying Knox Group.  Chowns et al. (1992) described the formation in 

an incomplete section near Graysville as “massive weathering, crudely bedded, 

bioturbated” dolomitic limestone; they described the limestone as medium- to dark-gray, 

very thin-bedded, chert-free micrite, which is interbedded with tan-weathering dolostone 

partings that increase toward the top.  Chowns et al. (1992) estimated the thickness of the 

Maynardville Limestone Member as approximately 119 m.   

Cressler (1964a, b, 1974) mapped the Maynardville Limestone Member 

separately.  It is shown on those maps along the base of the Knox Group throughout the 

Kingston–Chattooga anticlinorium in Chattooga and Walker Counties, in McLemore 
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Cove in Walker County, and in central Gordon County.  Cressler (1970) does not map the 

unit separately, but noted in the text that the uppermost (approximately 60–90 m) of 

limestone and dolostone in the eastern outcrop belt are equivalent to the Maynardville 

Limestone Member.  Similarly, Cressler (1963) describes the uppermost unit in the 

Conasauga Formation as approximately 90 m of massive-bedded, gray limestone, and 

notes in the stratigraphic explanation on the accompanying map that this unit is probably 

equivalent to the Maynardville Limestone Member. The Georgia Geological Survey 

(1976) mapped the Maynardville Limestone Member in the hanging wall of the Coosa 

fault. 

 

3.3 UPPER CAMBRIAN AND LOWER ORDOVICIAN KNOX GROUP 

The middle Upper Cambrian to Lower Ordovician Knox Group was named by 

Safford (1869) for exposures in Knox County, Tennessee.  The Knox Group is a thick 

succession of massive dolostone, limestone, and chert.  In the region of this study, it is 

presumed to conformably overlie the Conasauga Formation; in the area around Dalton, 

Munyan (1951) noted that the contact between the Maynardville Limestone Member and 

the Copper Ridge Dolomite appeared to be conformable such that “only a time hiatus 

might exist” at the plane.  In Georgia, the Knox Group consists of four formations in 

succession upward:  the Copper Ridge Dolomite, the Chepultepec Dolomite, the 

Longview Limestone, and the Newala Limestone.  The contact between the Copper 

Ridge Dolomite and the Chepultepec Dolomite is assumed to approximate the Cambrian-

Ordovician boundary.  Butts included detailed descriptions of these units his report of 

Alabama (Butts, 1926), but not for Georgia (Butts, 1948).  Butts (1948) stated that 

although these units had been recognized in Georgia, “the conditions of exposure and 

scarcity of fossils make their accurate separation impossible without much more detailed 

investigation” than time permitted for his report.  In several studies, the Newala 

Limestone is mapped as a distinct unit in Georgia and the other formations are mapped as 

undifferentiated Knox Group (e.g., Butts, 1948; Munyan, 1951; Cressler, 1963, 1964a, b, 

1970, 1974).  The Georgia Geological Survey (1976) mapped both the Copper Ridge 

Dolomite and the Newala Limestone separately in some locations, but the Knox Group is 

shown as an undifferentiated unit in most places.  Cressler (1970) mapped the Newala 
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Limestone as a unit separate from the Knox Group, and Butts (1948) considered it to be 

the basal unit of the overlying Chickamauga Limestone.  To date, the most 

comprehensive study of the formation in this region is that of Raymond (1993) on the 

Knox Group of Alabama.  The top of the Knox Group is characterized by a regional 

unconformity that locally preserves significant topographic relief on the ancient Knox 

erosional surface (cf. reference list in Milici and Smith, 1969).  The post-Knox 

unconformity is correlative with the craton-wide sequence unconformity at the base of 

the Middle Ordovician between the Sauk and Tippecanoe sequences as described by 

Sloss (1963). 

The carbonate succession of the Knox Group represents passive-margin 

deposition (Thomas and Bayona, 2005).  Chowns (1989) noted that numerous carbonate 

bank environments are present throughout the formation, although the depositional fabric 

largely has been “destroyed by late diagenetic dolomitization.” 

Chowns (1989) described the Knox Group as the “thickest, most homogeneous 

rock unit” in northwestern Georgia.  Consequently, the Knox Group is the regional 

mechanical rigid layer, which controls the structural geometry of the thrust sheets 

(Thomas and Bayona, 2005).  In Georgia, the Knox Group typically is transported above 

the décollement (separated by the upper carbonate-dominated part of the underlying 

succession) or is cut by major thrust faults (Cook and Thomas, in press). 

Exposure of the Knox Group in the study area is poor, and it is also poorly 

exposed on local scales across the region.  Butts (1948) stated that a reliable thickness 

measurement for the Knox Group in Georgia was impossible.  Furthermore, because of 

the scarcity of carbonate rock exposures, chert residuum commonly is all that remains to 

mark the Knox Group.  Munyan (1951) noted the absence of complete sections and 

scattered outcrops to the north of the study area around Dalton, Georgia.  Wilson (1992) 

documented the same to the north of the study area in Tennessee.  Butts (1948) estimated 

thickness of the individual units as 610 m for the Copper Ridge Dolomite, 305 m for the 

Chepultepec Dolomite, and 152 m for the Longview Limestone.  The only reference 

sections in Georgia are from wells in Dade County, in which the Knox Group is 

approximately 1270 m thick (Ortiz and Chowns, 1978), and from outcrops at Graysville 

Gap in Catoosa County, where the estimated thickness of the group is 1223 m (Chowns et 
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al., 1992).  The study of Chowns et al. (1992) presents a further discussion of the Knox 

Group exposures at Graysville Gap, which includes descriptions of incomplete sections in 

the area.  Wilson (1992) described outcrops of the Knox Group to the north of Graysville 

Gap across the Tennessee state line; he estimated the total thickness at 850 m but noted 

that it increases southward to approximately 1080 m near the state line.  The more 

complete sections of the Knox Group are located to the north of the area of structural 

interference that is the focus of the present research.   

In Walker County, the undifferentiated Knox Group is mapped in the core of 

McLemore Cove anticline and in an anticline between Dick Ridge and the Clinchport 

fault.  It is also mapped in the valleys on either side of Johns Mountain and in outcrop 

bands southeast of the Kingston fault; these map patterns extend southward into 

Chattooga County.  In Floyd County, the undifferentiated Knox Group is mapped in an 

extensive area southeast of the Coosa fault. 

In many locations throughout the study area, the Knox Group is exposed only as 

residual, massive white chert that weathers in places to tan, gray, and rusty brown.  The 

chert residuum in some locations is bedded, banded (alternating white and gray), or 

slightly silty.  Outcrops that include other rocks (mainly carbonate) were observed, 

however, in various locations throughout Chattooga County.  In one roadcut just west of 

Lyerly, the Knox Group is exposed as approximately 1 m of white, massively-bedded 

chert in beds about 5–20 cm thick overlying approximately 2 m of pale-gray, medium- to 

coarse-grained sandstone that is cemented with dolomite in beds about 2–30 cm thick.  

The sandstone is interbedded with gray chert nodules (1–10 cm in diameter) and stringers 

(1–5 cm thick).  About 3.5 km southeast of Lyerly, the group is exposed as 4–5 m of 

medium-gray, very fine to fine-crystalline dolostone in beds that range from 5 cm to 

about 1 m thick.  The thickest (~1 m) bed is laminated; the laminations are about 2 mm 

thick.  One layer in this outcrop includes dark-gray and black chert nodules as thick as 10 

cm that are laterally continuous across most of the exposure.  To the northeast of Trion 

near the western flank of Taylor Ridge, the group is exposed as approximately 20–30 m 

of pale- to medium-gray, mostly very fine- to fine-crystalline dolostone in beds that range 

from 10 cm to about 1 m thick.  The dolostone at this location is interbedded with white 

and light-gray chert nodules and stringers that range 1–25 cm in thickness.  The most 
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extensive outcrop of the Knox Group is exposed in an abandoned quarry about 2.5 km 

north of Trion.  The exposure in this quarry exceeds at least 30 m, but the base of the 

outcrop is under water.  The Knox Group in this quarry is light- to medium gray, thin- to 

thick-bedded, micritic to fine-crystalline limestone and dolostone in beds that range from 

about 1 cm to about 1 m thick.  The carbonate rocks are interbedded with massive, 

primarily white chert beds and nodules. 

3.3.1 Copper Ridge Dolomite 

The middle Upper Cambrian Copper Ridge Dolomite was named by Ulrich 

(1911) after exposures in northwestern Knox County, Tennessee, on the prominent ridge 

of the same name.  Butts (1926) described the Copper Ridge Dolomite as generally thick-

bedded, light-gray, fine- or coarse-grained and “presumably siliceous” dolostone and 

noted that exposures of the formation are characterized by dense, hard, white or 

yellowish gray chert float with irregular edges in a deep-red soil.  Munyan (1951) 

documented similar lithology in outcrops in the Dalton quadrangle, in Georgia and 

Tennessee.  The descriptions of Wilson (1992) are also similar, and he added that some 

of the chert pieces are as thick as 60 cm.  Butts (1948) did not describe any specific 

outcrops of the formation in Georgia.  Cressler (1970) described the formation in Floyd 

County as “light- to medium-gray, fine- to coarse-grained, thickly to massively bedded 

cherty [dolostone], and brownish-gray, medium- to coarse-grained, asphaltic [dolostone] 

that has a distinctive fetid odor on fresh breaks”; he also noted that the brownish-gray 

dolostone is predominant in the lower part of the formation, and the light-gray is 

predominant in the upper part.  Cressler (1970) also noted the highly siliceous chert both 

in layers and as “boulder-like chunks” and that it is light-gray or dark-gray in color 

depending on amount of weathering.  The formation commonly is deeply weathered and 

covered by a mantle of residual chert and clay that generally is 15–60 m thick but 

exceeds 90 m in thickness (Cressler, 1970).  

In the Graysville Gap exposures, the Copper Ridge Dolomite is comprised of 

approximately 747 m of massive, thick-bedded cherty dolostone, which is mostly 

covered; the dolostones are generally light to medium/dark gray, fine to medium grained, 

and locally bituminous (Chowns et al., 1992).  The base is taken to be below the lowest 

massive dolostone (Maynard, 1912), which is in contrast to the limestones and thin-
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bedded dolostones of the underlying Conasauga Formation; although the rocks are 

similar in color.  Chowns et al. (1992) interpreted the transition from limestone to 

dolostone as indicative of a shift from subtidal carbonates to peritidal deposits.  Wilson 

(1992) estimated a thickness of about 300 m for the Copper Ridge Dolomite on the basis 

of residuum in his study area just to the north.  Cressler (1970) noted that the formation is 

approximately 914 m thick in Catoosa County and suggested that a comparable thickness 

is possible for Floyd County.   

Carbonate outcrops of the Copper Ridge Dolomite are rare.  Cressler (1970) 

demonstrated that the rocks of the Knox Group exposed on Horseleg Mountain belong to 

the Copper Ridge Dolomite.  From this location, he noted various specimens of the 

gastropod Scaevogyra, one of which is indicative of a thin zone in the Upper Cambrian 

succession (Cressler, 1970, citing a personal communication from Ellis L. Yochlelson of 

the United States Geological Survey).  The map of the Geological Survey of Georgia 

(1976) shows only Copper Ridge Dolomite (and no other Knox Group rocks) on 

Horseleg Mountain. 

3.3.2 Chepultepec Dolomite 

The Lower Ordovician Chepultepec Dolomite was named by Butts (1926) for 

exposures near the town of Chepultepec (later renamed Allgood) in Blount County, 

Alabama.  Butts (1926) described the Chepultepec Dolomite as dolostone and limestone 

that is characterized by chert and abundant fossils, primarily gastropods; Butts (1948) 

noted these gastropods include Sinuopea and Chepultepecia and the guide fossil 

Helicotoma uniangulata.  He noted that the residual chert is characteristically “a peculiar 

soft, mealy, cavernous chert, which looks like worm-eaten wood” (Butts, 1926).  

Commonly, the more ubiquitous index fossils, such as Sinuopea, in cavernous chert 

residuum are presumed to define Chepultepec Dolomite outcrops.  Rodgers and Kent 

(1948) noted a thin, but extensive sandstone layer marking the base of the Chepultepec 

Dolomite; and this was later described in Georgia (Cressler, 1963, 1974; Wilson, 1992).  

Munyan (1951) also mentioned sandstone in the Knox Group around Dalton and 

described some exposures; although, he did not find any other sufficient evidence in the 

chert for “definite identification” of the Chepultepec Dolomite.  Munyan (1951) further 

noted that he was able to confirm the identification of the formation as mapped by Butts 
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(1948) on the basis of the cavernous chert residuum in other locations, but that his 

attempts to trace the zone “with any degree of accuracy” were unsuccessful and thus did 

not warrant documentation. 

In the Graysville Gap outcrops, the Chepultepec Dolomite is comprised of 

“repetitious cycles of subtidal to peritidal carbonates” that are extensively dolomitized 

(Chowns et al., 1992).  The rocks generally are dark gray near the bases of the cycles and 

light gray near the tops, but the color is also dependent on amount of bituminous matter 

(Chowns et al., 1992).  This description is similar to that of the underlying Copper Ridge 

Dolomite; some limestone, however, is present in the lower part of the Chepultepec 

Dolomite.  The tops of the cycles are also characterized by “chaotic, vuggy paleosols 

partly replaced by chert and infilled with microquartz and agate,” and the pedogenic 

features include solution collapse breccias (Chowns et al., 1992).  As a result, agate and 

mealy or vuggy chert typify the residual soils of the formation. Chowns et al. (1992) 

made no mention of the sandstone at the base of the formation, but did denote part of the 

sequence as covered in their stratigraphic column. 

Wilson (1992) described the Chepultepec Dolostone as approximately 270–300 m 

of medium- to thick-bedded, light-gray, fine- to medium-grained dolostone, of which 

exposure is limited.  He also noted the presence of a few beds of dark-gray dolostone that 

are primarily limited to the lower third of the formation, and thin sandstone beds at the 

base that separate the formation from the underlying Copper Ridge Dolomite.  Wilson 

(1992) described the chert in the lower part of the formation as porous and characterized 

by dolomite rhomb molds; in the upper part of the formation, the chert is more massive.  

Wilson (1992) also noted that fossils in the Chepultepec Dolomite are rare, but 

documented “occasional” Lecanospira compacta specimens in the residual chert. 

The Chepultepec Dolomite in Catoosa County consists primarily of “light- to 

medium-gray [dolostone] in thick to massive layers” that is interbedded with sparse beds 

of gray and tan, micritic limestone (Cressler, 1963).  Thin sandstone beds are present near 

the base and also in the middle of the Chepultepec Dolomite, and locally are present in 

small pieces in the soil.  The formation there is approximately 150 m thick (Cressler, 

1963).  
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3.3.3 Longview Limestone 

The Lower Ordovician Longview Limestone was named by Butts (1926) for 

exposures in the town of Longview in Shelby County, Alabama.  Raymond (1993) 

described the Longview Limestone as “medium- to thick-bedded, light- to medium-gray 

cherty limestone and lesser amounts of interbedded [dolostone]”; the limestone generally 

is peloidal grainstone to mudstone, locally mottled with dolostone (compiled from 

various references in Raymond, 1993).  The most distinctive characteristic of the 

Longview Limestone in Alabama is the presence of quartz sand, which is more abundant 

than in other units of the Knox Group; the sand generally is scattered grains, thin 

laminae, or thin local beds (Raymond, 1993).  The formation is also characterized by 

“thin-bedded stromatolitic chert and nodular chert”, which yields abundant dense, blocky 

chert residuum (Raymond, 1993).  According to Butts (1926, 1948; also cf. Twenhofel et 

al., 1954; Raymond, 1993, and references therein), the presence of the diagnostic 

gastropod Lecanospira confirms the identification of the Longview Limestone in outcrop.  

This gastropod is ubiquitous throughout the Longview Limestone, in which fossils are 

otherwise sparse (Raymond, 1993). 

In limited exposures in Floyd County, the Longview Limestone consists mainly of 

“massively bedded medium- to light-gray [dolostone]” that is interbedded with thickly 

bedded light- to medium-gray micritic to medium-grained limestone (Cressler, 1970).  

The Longview Limestone includes chert layers as thick as 2 m, and the commonly thick 

residuum is characterized by “large chunks and pieces” of tough, angular chert with a 

small amount of sandstone (Cressler, 1970).  Cressler (1970) also documented that 

roughly half of the upper part of the Longview Limestone in Catoosa County is 

limestone, but nearly all of the formation is dolostone to the southeast in Polk County. 

3.3.3.1 Sandstones in the Knox Group 

Various thin sandstones have been documented in the Chepultepec Dolomite and 

Longview Limestone formations of the Knox Group.  In the county geologic reports of 

Cressler that mention sandstone in the Knox Group (1963, 1964b, 1970, 1974), however, 

there is little consistency in terms of occurrence and at what stratigraphic level within the 

two formations.  It may be concluded that the thin sandstone intervals in this part of the 

Knox Group are, in essence, sporadically distributed and laterally discontinuous.  As a 
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result, no attempts were made in this research to differentiate formations of the Knox 

Group in the field on the basis of sandstone outcrops. 

3.3.4 Newala Limestone 

The Lower Ordovician Newala Limestone was named by Butts (1926) for 

outcrops near the Newala Post Office in Shelby County, Alabama.  Butts (1926) 

described the Newala Limestone as composed of “much limestone and proportionately 

little [dolostone]” and estimated the thickness as 300 m.  Butts (1926) further described 

the limestone as “thick-bedded, compact or noncrystalline or textureless, dark gray, pearl 

gray, and bluish gray.  The pearl-gray color perhaps predominates and is most 

characteristic.”  The dolostone, according to Butts (1926), is found in thick coarse-

grained beds or as mottling in the limestone.  In his description, Butts (1926) 

differentiated the Newala Limestone from the underlying Longview Limestone by the 

purity and lack of chert. 

The Newala Limestone is mapped by Butts (1948) on both limbs of McLemore 

Cove anticline in Walker and Catoosa County, in the footwall of the Kingston fault in 

northwestern Catoosa County, west of Ringgold in northern Catoosa County, in a 

syncline in the footwall of the Coosa fault in Murray County, and in the southeastern 

corner of Floyd County.  The Newala Limestone as mapped by Butts (1948) is also 

shown on maps by Cressler (1963, 1964a, b, 1970, 1974) and the Georgia Geological 

Survey (1976).  Munyan (1951) shows a similar outcrop pattern for the formation as 

Butts (1948) in Murray County, but it is more restricted in extent.  Munyan (1951) 

mapped most of the Newala Limestone of Butts (1948) in this area as Knox Group. 

Butts (1948) described outcrops of the Newala Limestone in Georgia as “a rather 

thick-bedded, pure, blue limestone” that is “massive, thick, or moderately thick-

bedded…[with some] blue-gray, finely crystalline, and some compact dove layers 

(vaughanite).”  Butts (1948) also noted that the weathered outcrops are characterized by 

“nodules, stringers, and thin partings” of black chert.  He further asserted that this 

description is consistent in all the outcrops throughout the state, made mention of 

exposures scattered around northwestern Georgia, and, particularly in the area of study, 

cited good exposures in Walker County.  Coincidentally, Butts (1948) described the 

Murfreesboro Limestone (which overlies the Newala Limestone in his account of the 
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Chickamauga Supergroup) as “dove-colored or blue, compact or crystalline, fossiliferous 

limestone” that is characterized by local “black, ropy” chert.  Cressler (1963, 1964a, b) 

mapped the Newala Limestone as a separate unit between the Knox Group and the 

Chickamauga Supergroup in Catoosa County, but did not describe it except to mention 

that he included it in the Chickamauga Supergroup rather than the Knox Group because 

of lithologic similarity and that it “includes much [dolostone]” in the lower part.  

In Floyd County, the Newala Limestone consists primarily of equal proportions of 

interbedded limestone and dolostone; the limestone is slightly more abundant in the upper 

part (Cressler, 1970).  The limestone is light to medium/dark gray and is thickly to 

massively bedded; the beds commonly are approximately 0.30 to 1.25 m thick, although 

some beds are thinner (Cressler, 1970).  The dolostone is light to medium gray and fine to 

coarse grained, and is characterized by massive beds that are thicker than about 2 m in 

some localities (Cressler, 1970).  The Newala Limestone typically contains “either 

widely scattered chert nodules or a few thin discontinuous chert beds,” and locally 

contains abundant nodular and bedded chert (Cressler, 1970).  In some places, the top of 

the formation is marked by a conglomerate of argillaceous limestone clasts in a matrix of 

pure limestone.  Cressler (1970) estimated that the thickness of the Newala Limestone is 

at least 90 m. 

3.3.5 Alternate interpretations/correlations in the upper Knox Group 

Chowns et al. (1992) and Wilson (1992) employed the Kingsport Formation and 

Mascot Formation subdivisions (as used to the north in Tennessee), for the rocks above 

the Chepultepec Dolomite as suggested by Harris (1969) and Wilson (1979).  The 

Kingsport Formation as used by Chowns et al. (1992) and Wilson (1992) contains the 

entire Longview Limestone as described and also includes some overlying rocks; only 

Wilson (1992) mentioned any further details by indicating inclusion of a limestone facies 

and a finely crystalline dolostone facies in addition to the Longview Limestone as 

previously mapped.  On the contrary, unpublished field investigations of G. A. Cooper 

and B. N. Cooper in the years 1944 to 1947 (cf. Twenhofel et al., 1954) in Tennessee 

demonstrated the Kingsport and Mascot Formations overlying the Longview Limestone 

in the upper Knox Group; this organization of the Knox Group was also used by Rodgers 

and Kent (1948).  Furthermore, Cressler (1963) used the Copper Ridge-Chepultepec-



 52

Longview nomenclature of Butts (1948) in his report for Catoosa County, which includes 

the area studied by Chowns et al. (1992). 

3.3.5.1 Kingsport Formation 

The Lower Ordovician Kingsport Formation was named by Oder and Miller 

(1945) for exposures near Kingsport in Sullivan County, Tennessee.  In the type section, 

they described the formation in four parts (from base to top) as:  1) approximately 55 to 

65 m of predominately brown limestone that is locally altered to crystalline dolostone, 

interbedded with light- to dark-gray, fine-grained dolostone with abundant chert layers; 

2) approximately 10 to 12 m of light- to dark-gray and brownish, fine-grained or finely 

crystalline dolostone with some brown limestone; 3) approximately 13 to 15 m of light 

brownish gray to almost white, fine-grained dolostone; and 4) approximately 31 to 41 m 

of light to dark, fine-grained dolostone with some brown limestone interbeds (Oder and 

Miller, 1945).  Chowns et al. (1992) estimated the thickness of the Kingsport Formation 

as 81 m, and Wilson (1992) estimated 68–75 m on the basis of topographic expression.  

Whether Chowns et al. (1992) and Wilson (1992) consistently placed the upper and lower 

contacts for formation at the same stratigraphic position is ultimately unclear, but the 

lithologic successions both should correspond roughly to the Longview Limestone and 

the lower part of the Newala Limestone (Figure 3-4). 

The Kingsport Formation of Chowns et al. (1992) is composed primarily of light-

gray, micritic limestone, which “ranges from peloidal mudstone to packstone with some 

intraclastic and sandy intraclastic beds.”  The limestones commonly are fossiliferous; 

they also include isolated dolomite euhedra and grade into coarse-grained “sucrosic” 

dolostone, which is interpreted to be “late diagenetic in origin” (Chowns et al., 1992).  

The authors also mentioned that chert nodules, which are red in some locations, are 

common in the limestone and dolostone; the chert is locally accumulated in irregular 

masses that may be related to solution collapse breccias (Chowns et al., 1992).  

Compared with the two underlying formations in the Knox Group, the Kingsport 

Formation is “lighter in color (less bituminous), less dolomitic, and texturally less 

complex” according to Chowns et al. (1992); the authors also noted that the spongy, 

dolomitic chert residuum as described in the Chepultepec Dolomite is lacking in the 

Kingsport Formation. 
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Wilson (1992) described the formation simply as “light-gray, aphanitic limestone” 

in the lower part and medium-gray, coarsely crystalline (“recrystalline”) dolostone in the 

upper part.  He also mentioned that chert residuum is rare, but the float is chalky and 

blocky or in small nodules where present.  Wilson also noted that the outcrop belt of the 

Kingsport Formation “forms a shallow valley or low hills downdip from the massive 

cherts of the Chepultepec [Dolomite] and in front of higher elevations produced by the 

Mascot [Formation],” and commonly is characterized by a row of depressions, indicating 

geologically recent karst solution collapse.   

3.3.5.2 Mascot Formation 

The Lower Ordovician Mascot Formation (originally Mascot Dolomite) was 

named by Oder and Miller (1945) for exposures near Mascot in Knox County, Tennessee.  

In the type section, they described the formation as approximately 150 to 200 m of light- 

and dark-gray dolostone and limestone that is moderately cherty; a chert-matrix 

sandstone at the base is about 0.2 m thick (Oder and Miller, 1945).  The Mascot 

Formation as used by Chowns et al. (1992) and Wilson (1992) evidently corresponds 

roughly to the upper part of the Newala Limestone (Figure 3-4). 

Chowns et al. (1992) described the Mascot Formation as predominately light-gray 

dolostone interbedded with partially dolomitized limestone; the limestones are described 

as micritic and peloidal, and grade into coarse-grained “late diagenetic” dolostone.  The 

formation is lithologically similar to the underlying Kingsport Formation, except that 

dolostones are more abundant than limestones, and chert is less common.  Chowns et al. 

(1992) also noted subdued topography in outcrop belts of the Mascot Formation with 

respect to other formations in the Knox Group because of the lack of chert; the authors 

also mentioned a lack of continuous exposure. 

According to Wilson (1992), the base of the Mascot Formation is indicated by 

several thin beds of sandstone that is cemented in a matrix of light-colored chert.  He 

further described the lower part of the Mascot Formation as light- to dark-gray, fine-

grained dolostone that, toward the south, is increasingly interbedded with light-gray, 

medium-bedded, dense limestone.  The formation as described by Wilson (1992) also 

includes light-gray, coarse-grained dolostone; dolostone beds in the upper part of the 

formation locally “show a distinctive pink to yellowish and maroon clouding” (Wilson, 
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1992).  The residual chert of the Mascot Formation is bedded or nodular.  The nodules 

are commonly red in color and banded, and some of the bedded chert is locally dark in 

color and weathers to small fragments (Wilson, 1992).  The formation is well exposed in 

the National Cemetery in Chattanooga, and Wilson (1992) noted “distinct zones of 

breccia, which are interpreted as solution-collapse features related to the unconformity” 

at the top of the Mascot Formation. 

Chowns et al. (1992) estimated the thickness at 50 m, and Wilson (1992) asserted 

that the thickness varies between about 135 and 150 m.  Chowns et al. (1992) ascribed 

this difference to the lower stratigraphic level of the Mascot boundary drawn by Wilson 

(1992), as well as to variation in truncation of the upper Knox Group below the 

unconformity. 

3.3.5.3 Problems with Newala Limestone 

The map of Butts (1948) shows outcrop belts of the Newala Limestone in the area 

around Chickamauga.  Successive studies have reinterpreted this succession as discussed 

by Milici and Smith (1969) and summarized by Chowns et al. (1992).  Milici and Smith 

(1969) pointed out that the Newala Limestone as described by Butts (1948) only referred 

to “one lithologic type of the very complex formation, and did not recognize the basal 

dolostone and chert-pebble conglomerates and the extensive development of red shales, 

variegated dolomitic limestones, and ‘red-mottled’ limestone that occur within the 

formation” in the vicinity of Chickamauga.  Butts (1948) did identify “red or red-mottled 

limestone interbedded with blue or dove beds” in eastern belts west of Lafayette and west 

and north of Ringgold.  According to Milici and Smith (1969), however, Butts (1948) 

possibly erroneously included these with the Murfreesboro Limestone.   

Milici and Smith (1969) asserted that the Newala Limestone of Butts (1948) in 

the area around Chickamauga is above the post-Knox unconformity, and should thus be 

included within the Pond Spring Formation.  Both the studies of Milici and Smith (1969) 

and Chowns et al. (1992) stated that the “Newala” as mapped by Butts (1948), must 

include some Lower Ordovician rocks on a more regional scale and therefore straddles 

the unconformity and should be divided.  Furthermore, Butts (1948) documented 

abundant specimens of the gastropod Ceratopea in his Newala Limestone, on which he 

based a correlation with upper Beekmantown (Kingsport and Mascot Formations), thus 
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indicating Lower Ordovician rocks.  Cressler (1970) further discussed Ceratopea as a 

guide fossil to the Newala Limestone.  Milici and Smith (1969), however, noted that their 

map was sufficiently similar to that of Butts (1948) to indicate that specimens of 

Ceratopea described in both studies near Chickamauga are above the post-Knox 

unconformity (and thus the basal Chickamauga Supergroup must therefore include some 

Lower Ordovician rocks).  Chowns et al. (1992) maintained that in the Graysville area, 

the lower part of this Newala as mapped by Butts (1948) should be assigned to the 

Mascot Formation and the upper part to the Pond Spring Member of the Stones River 

Formation (as part of the Chickamauga Supergroup).   

If the upper part of the Newala Limestone of Butts (1948) cannot be demonstrated 

to be of Middle Ordovician age via biostratigraphic markers, then perhaps the only 

evidence available is the stratigraphic position relative to the poorly exposed post-Knox 

unconformity.  Munyan (1951) found the Newala Limestone to be unconformably 

overlain by Ordovician sandstone (i.e., below the post-Knox unconformity) and 

consequently noted that some of the Newala Limestone of Butts (1948) in the area around 

Dalton to the east of Chickamauga is correctly placed, and thus is part of the Knox 

Group. 

3.3.5.4 Summary of problems in mapping the upper Knox Group 

No consensus has evolved for mapping the succession of rocks in the upper Knox 

Group between the base of the Chepultepec Dolomite and the post-Knox unconformity in 

Georgia.  Butts (1948) favored the Longview Limestone–Newala Limestone 

configuration that he also used in Alabama (1926).  More recent studies in northern 

Georgia appear to prefer the Kingsport Formation–Mascot Formation nomenclature from 

Tennessee (as described in section 3.3.5.3).  Furthermore, the uncertainty that has 

surrounded the mapped Newala Limestone indicates the difficulty in mapping the Knox 

Group in this region.   

The biostratigraphic markers, such as fossil specimens of Sinuopea and 

Lecanospira, have been used to distinguish respective lithostratigraphic units in the Knox 

Group, but there is some disagreement or uncertainty (i.e., Munyan, 1951).  According to 

Ed Osborne, director of the Geologic Investigations Program, at the Geological Survey of 

Alabama (personal communication, 2010), all of the many specimens of Lecanospira he 
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has found are at the stratigraphic level of the Longview Limestone; some of the 

specimens, however, were in cavernous chert that is more indicative of Chepultepec 

Dolomite (but presumably at the Longview stratigraphic level).  As an aside, one should 

note that Butts (1948) did not document both chert type and fossil content for any 

location in the area of this study. 

According to John Repetski of the United States Geological Survey, identification 

of such fossils, even at the genus level, is challenging as a result of the different 

preservation modes such as certified (perhaps only partially) molds and casts, etc. 

(personal communication, 2010).  Also, one should note that the base of the Ordovician 

was officially raised by the International Commission on Stratigraphy (ICS) in 2001 (cf. 

www.stratigraphy.org); thus some rocks considered Lower Ordovician in pre-2001 

literature are now “officially” part of the Upper Cambrian. 

Both of the sets of nomenclature/interpretation fit loosely to the rocks of the Knox 

Group in Georgia given the poor quality of exposure; thus these interpretations may not 

be mutually exclusive.  Neither of these interpretations, however, appears to be 

consistently traceable outside of scattered locations (cf. lack of contacts on significant 

portion of map by Chowns et al., 1992), and correlation between them has not proved 

possible.  As a result, mapping the entire Knox Group as an undifferentiated unit is 

suggested for regional studies such as that contained in the present research. 

3.3.6 Top of the Knox Group 

Throughout much of the study area, the Knox Group is approximately 660 m 

thick in the hanging wall of the Kingston fault.  This thickness is based on seismic 

reflection profiles and surface data such as outcrop widths and bedding orientations.  This 

total thickness would only accommodate the Copper Ridge Dolomite and, perhaps in 

places, some of the lower part of the Chepultepec Dolomite.  Biostratigraphic evidence 

presented by Cressler (1970) from the Knox Group at Horseleg Mountain (cf. section 

3.3.1) indicates that the Copper Ridge Dolomite is overlain unconformably by the Middle 

Ordovician Greensport Formation and that the Longview Limestone, Chepultepec 

Dolomite, and possibly some of the upper part of the Copper Ridge were eroded prior to 

Middle Ordovician.  He also noted that significant amounts of the upper Knox Group 

“also may have been eroded from other areas west and north of the Rome fault as is 
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suggested by the extreme narrowness of the outcrops there,” and by the presence of the 

Attalla Chert Conglomerate Member that everywhere indicates the unconformity 

(Cressler, 1970). 

On the contrary, Butts (1948) cited biostratigraphic evidence for upper units 

within the Knox Group in the study area.  For example, he found various specimens of 

Sinuopea and Lecanospira.  There is uncertainty, however, about the exact age of these 

fossils (c.f. discussion in Section 3.3.5.4). 

Furthermore, lithologic boundaries should not be treated as reliable time 

boundaries.  Commonly, the type of residual chert (e.g., mealy or cavernous chert in the 

Chepultepec Dolomite) is used as a diagnostic for positive identification of units within 

the Knox Group (e.g., Butts, 1948; Oder, 1934; Cressler, 1963, 1970; Chowns et al., 

1992), and that may not be reliable (cf. Munyan, 1951).  Some of the units of the Knox 

Group are possibly thinner in the region because of diminished carbonate accumulation.  

Also, solution collapse has been documented in the Knox (e.g., Garry, 2001), which 

could also preserve rocks at a lower stratigraphic position than expected.  Two categories 

of solution collapse may be present:  1) paleokarst features associated with the Middle 

Ordovician erosion surface, and 2) present erosion and/or geologically recent solution 

collapse structures.  Either or both of these types of solution collapse may be present in 

the Knox Group in northwestern Georgia.  Lastly, Repetski (1992) in a study of 

conodonts in the Knox Group at Graysville concluded that “a considerable part of the 

Chepultepec [Dolomite] at Graysville and elsewhere” actually should be reassigned to the 

Upper Cambrian on the basis of ages of conodont zones as defined at that time.   

The post-Knox unconformity is a highly irregular erosional surface characterized 

by locally high topographic relief caused by solution collapse structures (e.g., Butts, 

1926; also see more recent details and descriptions by Munyan, 1951; Drahovzal and 

Neathery, 1971; Garry, 2001; Bayona, 2003; Thomas, 2007).  On a regional scale, the 

general stratigraphic level of the unconformity truncates more of the Knox Group 

succession southward through Georgia. 

Chowns et al. (1992) ascribed some of the variation in thickness of the Mascot 

Formation to karst topography on the post-Knox unconformity (i.e., sinkholes and other 

solution collapse features).  The formation ranges in thickness from 135 to 150 m around 
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Chattanooga, Tennessee (Wilson, 1992); it is approximately 107 m thick in the well in 

Dade County, Georgia; and ranges from about 30 to 50 m thick in the area around 

Graysville, Georgia (Chowns et al., 1992).  Chowns et al. (1992) noted three cave-fill 

structures in two quarries in their study area that are roofed by the Mascot Formation but 

“clearly connect” with the unconformity.  One of these is located in the Stone Man quarry 

and is approximately 6 m below the unconformity.  A similar collapse breccia crops out 

elsewhere in the study area of Chowns et al. (1992) near the unconformity.  The authors 

further noted that the upper part of the Mascot Formation is particularly fractured and 

“infiltrated by greenish-gray shales” that locally penetrate as far down as the limestones 

of the Kingsport Formation; they also posited that some of the “solution collapse and 

silicification” in the Kingsport Formation could possibly be related to the unconformity 

(Chowns et al., 1992). 

In an evident regional trend, the post-Knox unconformity truncates progressively 

more of the upper Knox Group southward along strike in Georgia.  On the north, 

approximately 13 km south of Ringgold in Catoosa County, the Mascot Formation is 

absent and the basal Middle Ordovician Pond Spring Formation of the overlying 

Chickamauga Supergroup rests directly on the Kingsport Formation (Chowns et al., 

1992).  Approximately 16 km south-southwest of Chickamauga in Walker County, Butts 

(1948) documented Sinuopea and Chepultepecia near the top of the Knox Group, which 

suggests that the beds below the unconformity are in or near the Chepultepec Dolomite.  

Farther to the south, at “several points” west of Trion and Summerville (presumably in 

Chattooga County), Butts (1948) suggested that the Middle Ordovician rests on 

Longview Limestone on the basis of Lecanospira specimens.  Farther south, the Middle 

Ordovician directly rests on Copper Ridge Dolomite on Horseleg Mountain (cf. section 

3.3.1).   

Furthermore, Munyan (1951) noted that all of the Newala and Longview 

Limestones and part of the Chepultepec Dolomite apparently are absent in the area west 

of Dalton, where the post-Knox unconformity probably overlies Chepultepec Dolomite.  

The upper units of the Knox Group reappear in the stratigraphy farther to the east near 

Dalton (Munyan, 1951), farther to the northwest near the Tennessee state line in the area 

of Graysville (Chowns et al., 1992) and to the west in the footwall of the Kingston fault 
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(Wilson, 1992).  Cressler (1970) noted that the upper units of the Knox Group are absent 

in the area around Rome, but that all three formations of his Knox Group are present to 

the southeast in the hanging wall of the Coosa fault.  Cressler (1970) documented Copper 

Ridge Dolomite on the basis of massive chert residuum with fossil cryptozoa adjacent to 

the Conasauga Formation in “much of southern and eastern Floyd County” and large 

parts of Polk County; he also noted Longview Limestone on the basis of Lecanospira in 

chert in Polk County and in southeasternmost Floyd County adjacent to Newala 

Limestone.  In areas between, Cressler (1970) noted “an unusual amount of soft, 

cavernous chert” and some bedded sandstone indicative of Chepultepec Dolomite; he did 

not, however, attempt to differentiate these formations because of time constraints in his 

field work. 

 

3.4 MIDDLE AND UPPER ORDOVICIAN 

The Middle and Upper Ordovician succession in northwestern Georgia was 

summarized by Chowns and McKinney (1980; cf. also Chowns, 1972, specifically for 

details of the Upper Ordovician), who identified three major facies suites.  Two of these 

facies suites are mapped in the area of the present study (Figure 3-5).  Generally, the 

shallow-water carbonates of the Middle Ordovician Chickamauga Limestone 

predominate in the northwest and grade southeastward into peritidal clastic redbed facies 

of the Middle and Upper Ordovician Greensport and Sequatchie Formations (Allen and 

Lester, 1957).  In some parts of the study area, the Greensport and Sequatchie Formations 

are divided by the intervening coarse clastic sedimentary succession of the Colvin 

Mountain Sandstone.  Chowns and Carter (1983a) demonstrated that the facies 

boundaries generally coincide with major thrust faults:  the carbonates are northwest of 

the Kingston fault, the peritidal deposits are between the Clinchport and Rome faults, and 

the gradation between the two facies spans primarily between the Kingston and 

Clinchport faults.  The Middle and Upper Ordovician succession overlies the post-Knox 

unconformity and is overlain by another unconformity (Drahovzal and Neathery, 1971; 

Chowns, 1989).  Bayona (2003) noted that the facies distribution of the succession is 

indicative of subsidence of and deposition into a Taconic foreland basin. 
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3.4.1 Chickamauga Limestone 

The Middle Ordovician Chickamauga Limestone was named by Hayes (1891) for 

outcrops along the West Chickamauga Valley south of Chattanooga, Tennessee, near 

Ringgold, Georgia, and consists of a complex of silty to argillaceous limestone and 

calcareous siltstone.  Hayes (1894) included all rocks from the top of the Knox Group to 

the base of the Rockwood Formation (now mainly Red Mountain Formation) in the 

Chickamauga Limestone.  In a detailed study, Milici and Smith (1969) expanded the 

nomenclature to the Chickamauga Supergroup, which they subdivided into the lower 

Stones River Group and upper Nashville Group, as well as the respective subdivisions of 

both groups (Figure 3-6).  Milici and Smith (1969) noted that the Chickamauga 

Supergroup exceeds 440 m in thickness in the type section.  Milici and Smith (1969) also 

described the unconformable contact between the base of the Chickamauga Limestone 

and the underlying Knox Group with attention to degree of truncation of the Knox Group; 

they also listed several other references on this subject.   

With the exception of the Pond Springs Formation, the names of the formations in 

the Chickamauga Supergroup as defined by Milici and Smith (1969) are borrowed from 

rocks units with type sections in central Tennessee (cf. Wilson, 1949).  Wilson (1949, and 

references therein) defined this carbonate succession as the Chickamauga Group in 

Tennessee, and subsequent lateral correlations of have proven to be difficult.  Wilson 

(1949) noted a particular problem with lateral variation between the Bigby and Cannon 

Limestones in central Tennessee, which had previously been considered individual units 

in the same stratigraphic position.  In his report, Wilson (1949) referred to “Bigby facies” 

and Cannon “facies” and combined this succession into the Bigby-Cannon Limestone.  

Furthermore, facies variations throughout the Middle Ordovician in the region combined 

with poor exposure precludes reliable tracing of any subdivisions of the Chickamauga 

Supergroup in the area of study.  Carter and Chowns (1988) noted that “outside the type 

section in Georgia, and in Alabama,” the Stones River and Nashville are “more 

appropriately” considered as formations of a group as defined by Drahovzal and Neathery 

(1971).  For these reasons, the entire carbonate succession between the post-Knox 

unconformity and the overlying Sequatchie Formation is referred to herein as the 

Chickamauga Limestone as opposed to using the “supergroup” or “group” nomenclature.   
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In Floyd County, the Chickamauga Limestone in exposed along an abandoned 

railroad cut through the southwestern end of Simms Mountain.  There, the formation is 

exposed as massive medium-gray, micritic limestone weathered to pale, bluish gray, in 

beds 10–25 cm thick and in a 50-cm-thick interval of irregular beds approximately 2 cm 

thick. 

In Chattooga County, the Chickamauga Limestone is exposed on the southeastern 

flank of Lookout Mountain, in the core of a syncline west of Summerville (east of 

Lookout Mountain), in a belt on the west side of Taylor Ridge and Simms Mountain, and 

on the flanks of Kincaid Mountain.  On Taylor Ridge, in an abandoned quarry along a 

hiking trail in Floyd State Park, the formation is exposed as more than 10 m of light-gray 

and reddish brown micritic limestone in thin beds ranging from less than a centimeter to 

approximately 20 cm.  Some of the beds in this quarry have a waxy sheen. 

In Walker County, the Chickamauga Limestone is exposed in the area around 

Lookout and Pigeon Mountains.  Cressler (1964b) described the formation there as flaggy 

limestone and estimated the thickness to be approximately 425–640 m; this description, 

however, includes all the rocks between the Knox Group and the Red Mountain 

Sandstone.  On the northwestern flank of Pigeon Mountain near the northeastern end, the 

Chickamauga Limestone crops out in several locations; this area is likely the type area for 

parts of the formation.  In this area, it is exposed as light-gray, bioclastic packstone 

intervals in thick beds about 25 cm in thickness or in thin beds about 2–5 cm thick that 

are interbedded with shale.  The formation in this area is also exposed as light- to 

medium-gray, flaggy, calcareous mudstone interbedded with medium- to dark-gray 

micritic limestone with some dolomitic laminae.  Near the intersection between Lookout 

Mountain and Pigeon Mountain (Daugherty Gap), the formation is exposed as light- to 

medium-gray bioclastic packstone with abundant brachiopods.  The Chickamauga 

Limestone also crops out along GA136 west of Maddox Gap.  The formation there is 

medium- to dark-gray, bioclastic packstone that is interbedded with light- to medium-

gray micrite and nodular-bedded, light-gray micrite. 

3.4.1.1 Attalla Chert Conglomerate Member 

The post-Knox unconformity is marked locally by the Attalla Chert Conglomerate 

Member, which was named by Butts (1910) for exposures near the town of Attalla in 
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Etowah County, Alabama.  The formation generally is comprised of “subangular to 

rounded pebbles, cobbles, and boulders” of chert and rare quartz and dolostone in a 

matrix of sand-sized granular chert and quartz (Drahovzal and Neathery, 1971).  It is 

considered the basal member of the Chickamauga Limestone in Alabama by Butts (1910, 

1926) and similarly the basal member of the Stones River Group in Alabama (Drahovzal 

and Neathery, 1971; and Neathery, 1988).  Chowns and Carter (1983b), however, refer to 

the formation as the basal part of the Greensport Formation.  The thickness of the Attalla 

Chert Conglomerate ranges from 0 to about 33 m in Alabama (Drahovzal and Neathery, 

1971).  

Cressler (1970) identified the Attalla Chert Conglomerate on Horseleg Mountain, 

where it is approximately 0.2 to 0.6 m thick and composed of round to angular reworked 

chert clasts from the underlying Knox Group.  The clasts range in size from that of a sand 

grain to about 2 cm in diameter, and are cemented in a matrix of mudstone or limestone.  

The matrix of the formation on Horseleg Mountain grades upward into overlying red 

mudstones and red shaly limestones, which are assigned to the Greensport Formation by 

Chowns and Carter (1983b).   

Cressler (1970) found the Attalla Chert Conglomerate to be thick enough to map 

in only one location in the study area, which is near the southwestern end of Lavender 

Mountain in Floyd County.  The formation is exposed as chert conglomerate of uncertain 

(but not great) thickness at this locality.  In the Floyd County report, Cressler (1970) also 

mentioned that the Attalla Chert Conglomerate is well developed in southern Chattooga 

County; the formation is not mentioned, however, in his report for Chattooga County 

(Cressler 1964a) or shown on the map therein.   

During the present study, the Attalla Chert Conglomerate was observed 

underlying Greensport Formation in northernmost Floyd County (Furnace Valley as 

labeled by Cressler, 1970) as float beside the road west of Calhoun Gap on Horn 

Mountain.  The formation here is composed of coarse- to very coarse-grained 

conglomeratic sandstone with clasts of vitreous, sand-sized quartz grains and chert clasts 

about 1–2 mm in diameter.   
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3.4.1.2 Pond Spring Formation 

The Middle Ordovician Pond Spring Formation was named by Milici and Smith 

(1969) for exposures near Pond Spring near the town of Chickamauga in Walker County, 

Georgia.  It is a succession dominated by tidal-flat carbonates and red clastic rocks that is 

76–92 m thick (Carter and Chowns, 1988).  The Pond Spring Formation also includes a 

basal conglomerate that is generally less than 1 m thick.  The conglomerate is comprised 

of light-gray dolostone pebbles and boulders as large as 0.3 m in diameter in a porous, 

light-gray or light greenish-gray dolosiltite matrix, which grades upwards into red 

mudstones and silty limestones (Milici and Smith, 1969).  Milici and Smith (1969) 

included this unit in the Chickamauga Supergroup as the basal formation of their Stones 

River Group; Carter and Chowns (1988) included the unit as the basal member of their 

equivalent Stones River Formation of the Chickamauga Group.   

According to Chowns et al. (1992), a more complete section of the Pond Spring 

Member can be found in a quarry opened in 1989 (Stone Man Quarry) about 5 km 

southeast of Graysville in Catoosa County.  The formation in the quarry is comprised of 

three units:  a basal multicolored, conglomeratic dolostone; a middle light-gray, micritic 

limestone; and an upper reddish-gray, bioturbated limestone.  The total thickness is 

estimated to be 59 m (Chowns et al., 1992).   

In the Stone Man quarry, the basal dolostone is fine- to coarse-grained, generally 

gray mottled with red and green, and interbedded locally with red and green clay shales 

(Chowns et al., 1992).  The base of this unit contains angular limestone, dolostone, and 

chert clasts that are derived from the underlying Mascot Formation, according to Chowns 

et al. (1992).  The basal unit varies in thickness, and locally drapes into solution 

depressions on the post-Knox unconformity; it predominantly consists of “colluvium and 

paleosols [that] mantle the unconformity” (Chowns et al., 1992). 

The overlying middle limestone in the Stone Man quarry is a light-gray, slightly 

dolomitic, fossiliferous peloidal mudstone or wackestone; the predominant fauna include 

“ostracods, gastropods, thin-shelled bivalves, and encrusting solenoporoid algae” 

(Chowns et al., 1992).  The unit (primarily in the lower part) includes both “bioturbated 

subtidal and laminated peritidal facies capped by intraclastic exposure surfaces”; and the 

upper part is described as shaly and bioturbated, and includes abundant small, knobby 
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chert nodules.  Chowns et al. (1992) noted that this unit is lithologically similar to 

limestones of the upper Knox Group, and thus careful mapping of the unit is necessary. 

The upper unit in the quarry is comprised of reddish-gray, bioturbated, shaly 

limestone that is “interbedded and interburrowed” with red, green, gray, and black shales; 

it exceeds 30 m in thickness in the cores from the Stone Man quarry (Chowns et al., 

1992).  The fauna of this unit is similar to that of the underlying limestone, but also 

includes some trilobites and articulate and inarticulate brachiopods.  The unit suggests a 

“restricted subtidal-lagoonal environment,” and grades upward into “more open-marine 

gray, shaly, bioturbated limestones” that probably correspond to the base of the overlying 

Murfreesboro Member of the Stones River Group (Chowns et al., 1992). 

3.4.1.3 Correlation of rocks directly above the post-Knox unconformity  

Milici and Smith (1969) demonstrated that the difficulty in mapping the post-

Knox unconformity has led to inaccuracies that have obscured various stratigraphic 

relationships and features.  For instance, the basal Middle Ordovician rocks rest on 

different levels of the Knox Group in different places.   

Across the region, chert-pebble conglomerates are present in places where the 

Middle Ordovician rests directly on Mascot Formation, such as around Graysville 

(Chowns et al., 1992) and Chickamauga (Milici and Smith, 1969).  Also, Bridge (1955) 

noted extensive Middle Ordovician chert and dolostone conglomerate overlying the 

Mascot Formation to the north in Jefferson County, Tennessee; he also described local 

collapse structures filled with about 3 to 5 m of dolostone “rubble” in a dolomitic matrix, 

which grades upward into the conglomerate.  According to Chowns et al. (1992), such 

breccias are more common, however, where the Kingsport Formation and Chepultepec 

Dolomite are both truncated.  The authors attributed this to the erosion of these “cherty” 

formations as a source for the chert pebbles, which they asserted is the origin of the 

Attalla Chert Conglomerate Member, especially in Alabama.  Moreover, Cressler (1970) 

suggested that the Attalla Chert Conglomerate Member in Georgia is also quite well 

developed where the Middle Ordovician rests on the very chert-rich Copper Ridge 

Dolomite in Floyd County.  The stratigraphic level of the Knox Group underlying the 

chert conglomerate in the valley west of Calhoun Gap is not known. 
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Chowns et al. (1992) examined pebbles from both the Pond Spring Formation and 

the Attalla Chert Conglomerate Member and concluded that, with the exception of some 

coarse-grained “late diagenetic” dolostones, the “lithologic character of the Knox Group 

was already established before the Middle Ordovician transgression.”  The authors 

further noted that pebbles of fine- to medium-grained dolostone, chert, and even “agate 

from silicified paleosols” are present in these rocks (Chowns et al., 1992). 

Both the Attalla Chert Conglomerate Member and the Pond Spring Formation 

have been interpreted to be deposits of “transitional environments during transgression 

over an eroded karstic surface of Knox Group dolostones” (Carter and Chowns, 1988).  

Drahovzal and Neathery (1971) illustrated this idea in more detail and mentioned various 

types of conglomerates that mark the post-Knox unconformity, as well as the ambiguity 

caused by poor exposure at the unconformity.   

The ambiguity about the exact lithology and age of the conglomerates is reiterated 

by Chowns and Carter (1983b), who noted variable details in chert-clast and dolostone-

clast conglomerates over the unconformity; each of these varieties has its own 

implications for timing of origin.  The Middle Ordovician conglomerate facies by nature 

is not laterally continuous, and also is likely to be of different ages in different locations.  

Thus, the facies can only be generally correlated in terms of stratigraphic position; no 

regional detailed correlation is possible or necessary.  More importantly, one must 

consider the nature and paleoenvironment of the unconformity (i.e., length of time of 

exposure, development of karst topography, formation of soils, etc.), as well as the age 

and lithology (including source of sediment) of the overlying rocks, as the primary 

factors in the formation of the conglomerate types.  Cressler (1970) described the matrix 

for the Attalla Chert Conglomerate in Floyd County as “identical to material forming the 

basal bed of the succeeding Middle Ordovician formation,” and this explanation can be 

applied throughout the area of study.  The present study suggests using the Attalla Chert 

Conglomerate Member nomenclature for the Middle Ordovician conglomerate facies for 

all locations, regardless of overlying lithofacies, in the interest of convenience of 

mapping and in stratigraphic description. 

In summary, the Attalla Chert Conglomerate Member is a distinctive marker 

above the post-Knox unconformity, and the amount of clastic detritus that comprises the 
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unit is thin and laterally variable.  The unit is overlain by Middle Ordovician limestones.  

One notable exception is at Horseleg Mountain, where the lower Middle Ordovician 

limestone is unconformably absent and the Attalla Chert Conglomerate Member is 

overlain by the upper Middle Ordovician Greensport Formation redbed succession.  

There, the Greensport Formation contains clasts that are lithologically similar to those in 

the underlying Attalla Chert Conglomerate Member. 

3.4.2 Sequatchie Formation 

The Middle to Upper Ordovician Sequatchie Formation was named by Ulrich 

(1911) for exposures in the Sequatchie Valley in Tennessee, and Milici and Wedow 

(1977) later assigned the type section of the formation as defined by Ulrich (1911) to an 

exposure at Hicks Gap in Marion County, Tennessee.  The Sequatchie Formation is 

comprised mainly of red clastic rocks that locally include limestone and gray shale 

(Carter and Chowns, 1988).  Milici and Wedow (1977) also demonstrated that the 

Sequatchie Formation grades southward into a gray fossiliferous limestone facies in the 

southern part of the Sequatchie Valley and Lookout Valley in Tennessee; they named this 

equivalent formation the Shellmound Formation.  Chowns (1972) and Rindsberg (1983) 

proposed subdivisions for the Sequatchie Formation.  Rindsberg and Chowns (1986) 

subdivided the Sequatchie Formation in northwestern Georgia into three named member 

units (Ringgold, Shellmound, and Mannie Shale Members, in ascending order), and 

Chowns and Zeigler (1989) added a fourth member on the southeast (Dug Gap Member) 

that is an equivalent to the upper two members on the northwest.   

The base of the Sequatchie Formation has been demonstrated to be time-

transgressive (Drahovzal and Neathery, 1971; Carter and Chowns, 1988).  Carter and 

Chowns (1988) noted that in the northwestern outcrops of the formation in Georgia, 

approximately 92–122 m (on average) of Chickamauga Limestone is present between the 

T-4 bentonite horizon and the base of the Sequatchie Formation.  To the southeast, 

however, the same bentonite has been placed just below the base of the Sequatchie 

Formation (Carter and Chowns, 1988). 

The Sequatchie Formation is composed of red very fine-grained sandstone, 

siltstone and shale, which locally includes gray limestone and shale (Carter and Chowns, 

1988).  Carter and Chowns (1988) estimated a thickness of less than 60 m for the 
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formation in the northwestern part of the study area.  To the southeast, the formation 

comprises approximately half of the red clastic facies, and thickness ranges from 

approximately 60 to 120 m (Carter and Chowns, 1988).  The Sequatchie Formation thins 

to the north and west in Georgia (Figure 3-5), and the stratigraphic position atop the 

Chickamauga Limestone suggests that progradation of clastic sediments from the east 

stifled carbonate deposition (Carter and Chowns, 1988).  The depositional environments 

indicated by the Sequatchie Formation are related to tidal flats (cf. discussion in Chowns 

and Carter, 1983a); Martin (1992) elaborates on the depositional environments in much 

more detail.   

In Floyd County, the Sequatchie Formation is exposed along an abandoned 

railroad cut at the southwestern end of Simms Mountain as reddish brown siltstone 

interbedded with fine- to medium-grained sandstone that is weathered to tan.  The beds in 

these outcrops range in thickness from 0.5–1.0 m.  In this outcrop area, the intertonguing 

with the Chickamauga Limestone can be observed (as demonstrated in Figure 3-5).  The 

formation is also exposed as float in contact with the overlying Red Mountain Formation 

at the southwestern end of Lavender Mountain, where it is gray, fine-grained sandstone 

and rusty brown shale weathered to tan.  The Sequatchie Formation in also exposed on 

Horseleg Mountain, where it is gray and dark, rusty red mudstone and tan, thin-bedded 

siltstone that is interbedded in places with saprolitic, rusty red and yellow shale. 

In Chattooga County, the Sequatchie Formation is exposed on Taylor Ridge along 

a roadcut of US27 and along the road through Hammond Gap east of Trion.  Cressler 

(1964a) described the formation at these locations as approximately 76 m of calcareous 

shale and fine-grained, thick-bedded, brown sandstone with some quartz conglomerate.  

In the roadcut along US27, the formation is medium-gray shale weathered to light gray 

near the top and rusty red, coarse-grained sandstone near the base.  At Hammond Gap, 

the formation is exposed as several meters of massive, reddish brown mudstone 

interbedded with fine- to medium-grained sandstone in beds ranging from 1 cm to 1 m in 

thickness and thin, weathered, gray shale.   

In Walker County, the Sequatchie Formation is exposed on Taylor Ridge along 

roadcuts near Maddox Gap and Smith Gap.  At Maddox Gap, the formation is exposed as 

several meters of mostly thick-bedded to massive, gray mudstone and siltstone 



 68

interbedded with some thick intervals (1-3 m thick) of dark, rusty reddish-brown, fine- to 

coarse-grained sandstone in beds about 1 cm to 1 m thick.  Some of the mudstone in these 

outcrops is slightly shaly and some of the sandstone is cemented with calcium carbonate.  

At Smith Gap, the formation is exposed as approximately 4 m of dark, rusty red 

mudstone that is slightly shaly in places. 

In Gordon County, the Sequatchie Formation is exposed on the western flank of 

Horn Mountain along the roadcut through Calhoun Gap.  In this outcrop, the formation is 

exposed as weathered maroon shale that is demonstrably stratigraphically higher than the 

underlying Colvin Mountain Sandstone. 

3.4.3 Greensport Formation 

The Middle Ordovician Greensport Formation was named by Drahovzal and 

Neathery (1971) for exposures at Greensport Gap in Etowah County, Alabama.  The 

formation is comprised of red shales that are interbedded with micritic limestone beds 

that are also generally red and shaly, and red sandstones.  Despite the paucity of 

sedimentary structures and fossils in the Greensport Formation, the red coloration and 

general lithology suggests that it was deposited in a peritidal environment (Carter and 

Chowns, 1988).  In Floyd County, the Greensport is composed of a lower unit of reddish 

gray, shaly, micritic limestone, a middle unit of red shale, and an upper unit of 

interbedded red shale and sandstone (Chowns, 1983a, b, and c; Bayona, 2003).The 

thickness of the formation is approximately 83 m (Chowns, 1983a).  

The Greensport Formation is exposed in Floyd County on Horseleg Mountain and 

on the western flank of Johns Mountain near Dunaway Gap.  At Horseleg Mountain, the 

formation is exposed as dark, rusty red, fine- to medium-grained sandstone that is 

weathered to red, yellow and tan and is interbedded with rusty red shale.  Near the base, 

the formation is exposed as rusty red, purple, greenish brown and gray, and bluish gray 

calcareous siltstone and mudstone interbedded with rusty red shale.  These exposures 

range in thickness from approximately 20 cm to about 5 m. 

The Greensport Formation is exposed in Chattooga County in a roadcut on the 

western flank of Johns Mountain and along the US27 roadcut through Taylor Ridge.  At 

Johns Mountain, the formation is exposed as more than 5 meters of rusty red and brown 

mudstone with small, green reduction spots in places.  Along the US27 roadcut, the 
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lowermost part of the formation is exposed as over 10 m of rusty red, slightly shaly 

mudstone and some rusty brown siltstone that is weathered to tan in places.  The beds in 

this outcrop average about 25 cm thick.  The upper part of the formation (in contact with 

the overlying Colvin Mountain Sandstone) is exposed at this location as about 3 m of 

purplish red mudstone and siltstone interbedded with greenish very fine- to fine-grained 

sandstone. 

In Walker County, the formation is exposed on the flank of Taylor Ridge in a 

roadcut along GA136 west of Maddox Gap and along the road through Smith Gap.  At 

Maddox Gap, the formation is exposed as approximately 1.5 m of dark, rusty-red 

mudstone, in beds that are about 5–10 cm thick and are slightly shaly in places; the 

mudstone is overlain by approximately 0.5 m of rusty red, fine-grained sandstone 

weathered to brown in beds about 3–5 cm thick.  At Smith Gap, the formation is exposed 

as weathered purple and green mudstone and shale.  In Gordon County, the formation is 

exposed on the western flank of Horn Mountain at Calhoun Gap as saprolitic maroon and 

yellow shale. 

3.4.4 Colvin Mountain Sandstone 

The Middle Ordovician Colvin Mountain Sandstone was named by Drahovzal and 

Neathery (1971) for exposures through Colvin Mountain at Alexander Gap in Calhoun 

County, Alabama, and is comprised of approximately 1–23 m of quartz arenite and 

conglomerate.  The Colvin Mountain Sandstone observed in Georgia has a distinctive 

yellowish color on some weathered surfaces, and is also weathered to tan and rusty red in 

places.  No body fossils have been found in the formation, but vertical burrows are 

common in some of the sandstone beds (Drahovzal and Neathery, 1971; Carter and 

Chowns, 1988).  Outcrops of the Colvin Mountain Sandstone invariably include one or 

two bentonite layers, which have been correlated to the T4 and T3 of Tennessee 

(Munyan, 1951; Chowns and Carter, 1983a), and thus the formation is likely isochronous 

with and correlative to the Stones River Group–Nashville Group boundary to the 

northwest (Carter and Chowns, 1988).  Jenkins (1984) cites the common herringbone 

cross-bedding as an indication that the Colvin Mountain Sandstone was deposited in a 

wave- or tidal-dominated nearshore environment. 
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The Colvin Mountain Sandstone is exposed most extensively in the southern part 

of the study area in Floyd County.  Near the southwestern end of Horseleg Mountain in 

Floyd County, it is white fine- to very coarse-grained (mostly coarse- to very-coarse), 

quartzose sandstone in beds that range from 5 cm to 1 m thick (most beds greater than 25 

cm thick).  Locally, the formation contains well defined cross-beds and bi-modal ripple 

marks; some surfaces are slickensided or have a polished appearance.  Gradational upper 

and lower contacts are apparent in the exposures on Horseleg Mountain.  The formation 

is redder, finer grained, and more thinly bedded in the lower part, where it is interbedded 

with red shales of the underlying Greensport Formation.  Near the top of the formation, it 

is interbedded with gray shale and brown mudstone presumably of the Sequatchie 

Formation.  At Calhoun Gap on the western flank of Horn Mountain at the Floyd/Gordon 

County line, it is white coarse- to very-coarse-grained, quartz sandstone that is weathered 

to yellow and gray in beds that are approximately 50 cm thick.   

In Chattooga County, the Colvin Mountain Sandstone is exposed along the US27 

roadcut through Taylor Ridge and in a roadcut on the western flank of Johns Mountain.  

In the Taylor Ridge exposures, the formation is white, medium- to very coarse-grained 

sandstone and conglomerate that has a yellowish tint on weathered surfaces.  Some of the 

sandstone near the upper and lower contacts is weathered to rusty red and tan.  The 

sandstone is mostly coarse- to very coarse-grained and the blocks in the float range from 

3 cm to just under 1 m (most blocks range from 5–25 cm).  In the Johns Mountain 

roadcut near Dunaway Gap, the formation is exposed as yellow and white, medium- to 

very coarse-grained sandstone that is weathered to tan and gray. 

In Walker County, the Colvin Mountain Sandstone is exposed in a roadcut along 

GA136 west of Maddox Gap, where it is observed in contact with the underlying 

Greensport Formation.  At this location, it is exposed as approximately 3.5 m of brown, 

medium- to coarse-grained sandstone in beds that range in thickness from 2 cm to about 1 

m.  The coarse-grained sandstone in this outcrop has a yellowish tint.  The formation is 

also exposed at Smith Gap through Taylor Ridge, where it is dark, rusty red, medium- to 

coarse-grained sandstone. 

One of the only fairly complete sections of the Middle Ordovician red-bed 

succession in Georgia is at the southwestern end of Horseleg Mountain in Floyd County 
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(Chowns and Carter, 1983a, c).  In the vicinity of Rome, in different places, the 

Greensport Formation directly overlies the karst surface at the top of the Knox Group or a 

thin carbonate unit separates the two (Chowns and Carter, 1983b, c).  In these localities, 

Cressler (1970) notes two outcrops that are approximately 180 m apart (that possibly 

correspond roughly to the outcrops described by Chowns and Carter, 1983b and c) with 

different lithologies overlying the post-Knox unconformity.  At one outcrop, a yellow 

calcareous mudstone that grades up into red mudstone is present, and can be attributed to 

the Greensport Formation.  At the other outcrop, the basal yellow mudstone is replaced 

with about 15 m of light- to medium-gray, thick-bedded micrite that is overlain by red 

mudstone.  If this carbonate layer underlying the Greensport Formation mudstones is part 

of the Chickamauga Supergroup, then perhaps it is a further indication of the extent and 

nature of the intertonguing between the two lithofacies.  Furthermore, Cressler (1970) 

asserts that the cherty dolostones just below the unconformity belong to the Cambrian 

Copper Ridge Formation, which would indicate the absence of the entire Lower 

Ordovician succession. 

3.4.5 Alternate nomenclature and interpretations 

The Middle Ordovician Moccasin Formation and Middle and Upper Ordovician 

Bays Formation nomenclature has also been imported from Tennessee for use in Georgia.  

The Moccasin Limestone was named by Campbell (1894) for exposures along Moccasin 

Creek in Scott County, Virginia.  The formation generally is comprised of red 

argillaceous limestone that grades upward into the bluish flaggy limestones of the 

overlying Chickamauga Limestone.  Butts (1948) extended the Moccasin Limestone into 

Georgia as a “red facies” of the Lowville Limestone; this Lowville-Moccasin unit 

overlies the Lebanon Limestone of the Chickamauga Group or directly overlies the Knox 

Group where the “Newala and Stones River Group” are absent.  Milici (1973) revised the 

name to Moccasin Formation and included it within the Chickamauga Group as defined 

in Tennessee (Wilson, 1949).   

The Bays Sandstone was named by Keith (1895) for exposures in the Bays 

Mountains in Hawkins and Greene Counties, Tennessee; the formation is described as red 

calcareous and argillaceous sandstone in which the calcareous content increases from the 
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type section southwestward toward Knoxville.  Milici (1973) revised the name to Bays 

Formation within the Chickamauga Group in eastern Tennessee.   

The Middle and Upper Ordovician succession is mapped by the Georgia 

Geological Survey (1976) as part of a Middle and Upper Ordovician undifferentiated unit 

in places and as Moccasin Limestone–Bays Formation undifferentiated in other places.  

Both these map units also include rocks of the Sequatchie Formation. 

Cressler (1964a, b) mapped the entire Middle and Upper Ordovician succession 

between the Knox Group and Red Mountain Formation as Chickamauga Limestone in 

Chattooga and Walker Counties.  He divided the Chickamauga Limestone into two 

facies:  a near-shore facies that is composed of approximately 700 m of siltstone and 

claystone, which is probably the Greensport and Sequatchie Formations, and an off-shore 

facies that is composed of approximately 425–640 m of flaggy limestone, which is 

probably the Chickamauga Limestone (Cressler, 1964b).  Cressler assigned the Middle 

and Upper Ordovician succession near Johns Mountain to the near-shore facies and the 

remaining exposures (farther to the west) to the off-shore facies.  Thus, from his location 

of the near-shore facies and from his lithologic descriptions, one can conclude that the 

off-shore and near-shore facies he described are a reflection of the northwest-to-

southeast, carbonate-to-clastic facies change.  The undifferentiated Middle and Upper 

Ordovician succession of Cressler (1964a, b) reflects the difficulty in defining 

distinguishable units within the carbonate-to-clastic facies change, in addition to the poor 

exposure of this succession. 

Cressler (1970) mapped the Middle and Upper Ordovician succession as an 

undifferentiated unit in Floyd County.  From his description, however, one can deduce 

that he designated the Chickamauga Limestone–Greensport Formation–Colvin Mountain 

Sandstone succession as Murfreesboro, Ridley, and Moccasin Limestones, and labeled 

rocks of the Sequatchie Formation as Bays Formation.  Cressler (1970) described the 

Murfreesboro Limestone on Horseleg Mountain as calcareous mudstone that is yellow at 

the base and grades upward through pink and into red flecked with yellow; he also noted 

that, in a nearby location, the mudstone of the Murfreesboro is replaced by approximately 

15 m of limestone.  Cressler (1970) did not include any description or much discussion of 

the Ridley Limestone.  The Murfreesboro and Ridley Limestones are formations in the 
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Chickamauga Supergroup in Georgia as described by Milici and Smith (1969).  Carter 

and Chowns (1988) have since demonstrated the intertonguing of the Chickamauga 

Limestone carbonates into the Greensport Formation–Colvin Mountain Sandstone 

succession (see also other discussions in Chowns and Carter, 1983a, and Chowns, 1989).  

This intertonguing of the facies was noted during the field research of this project at an 

outcrop along an abandoned railroad cut at Simms Mountain, where micritic limestone of 

the Chickamauga Limestone is interbedded with brown sandstone that is likely 

Sequatchie formation. 

Similarly, Cressler (1974) assigns the rocks from the Clinchport fault westward to 

the Kingston fault (predominantly carbonate and red-bed facies) to the Moccasin 

Limestone, and the rocks to the east of the Clinchport fault (dominated by more clastic 

facies) to the Bays Formation.   

In the more eastern outcrop belt, the lithologic similarities between the upper part 

of the Greensport Formation and the lower part of the Sequatchie Formation make the 

identification of the Colvin Mountain Sandstone essential for assigning boundaries.  

Thus, in the absence of Colvin Mountain Sandstone outcrops, Chowns and Carter (1983) 

proposed mapping this succession as a single unit, the Bays Formation.  For the sake of 

simplicity, the present study suggests mapping this as Greensport–Colvin Mountain–

Sequatchie Formation undifferentiated or as part of a larger undifferentiated Middle and 

Upper Ordovician succession.   

 

3.5 SILURIAN SYSTEM 

The Silurian system in Georgia is comprised entirely by the Lower Silurian Red 

Mountain Formation, which was named by Smith (1876) for exposures on Red Mountain 

east of Birmingham, Alabama.  The Red Mountain Formation in Georgia was first 

mapped as Rockwood Formation (e.g., Hayes, 1891; Spencer, 1893), which also included 

rocks of the Sequatchie Formation (Butts, 1948).  Chowns (1972b; 2006), Chowns and 

McKinney (1980), Rindsberg and Chowns (1986), and Chowns et al. (1999) documented 

more details of the formation.  To date, the most comprehensive description of the entire 

Red Mountain Formation in Georgia is that of Chowns (in press).  Chowns (2006) noted 

depositional environments on the basis of three facies categories, which he defined as 
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outer shelf, inner shelf, and shoreface facies.  As defined at present, the formation 

disconformably overlies the Upper Ordovician succession and disconformably underlies 

the Devonian succession (Chowns, 1989). 

The Red Mountain Formation generally is composed of interbedded, rusty red 

shale, siltstone, sandstone, and conglomerate that weather to tan and rusty brown.  In 

Floyd County, the formation is composed of a basal succession of massively bedded 

coarse-grained sandstone and quartz-pebble conglomerate, a middle succession of shale, 

siltstone, and medium- to coarse-grained sandstone, and an upper succession of 

interbedded shale, siltstone, and fine-grained sandstone (Cressler, 1970).  Bedding 

thickness in the Red Mountain ranges from less than a centimeter in the shales to 

approximately 2 m in the massive sandstones and conglomerates.  The formation varies 

in thickness from 75 m near the northwestern corner of Georgia to a maximum of 375 m 

in the Clinchport thrust sheet (Chowns, 1989).  Cressler (1970) estimated the thickness of 

the formation as approximately 180 to 365 m in Floyd County (1970), approximately 305 

m at Taylor Ridge in Chattooga County (1964a), and as approximately 305 m in Walker 

County (1964b).  Rock from this formation has been developed as an important iron ore 

in Alabama and to a lesser extent in Georgia (Cressler, 1970).  The Red Mountain 

Formation is resistant to weathering and holds up many of the highest topographic 

features in the study area, including Taylor Ridge, Dick Ridge, and Dirtseller, Horn, 

Horseleg, Johns, Lavender, Mill, and Simms Mountains.  The proportion of shale to 

sandstone increases to the west, where the Red Mountain outcrops are more associated 

with low, rolling hills such as Shinbone Ridge. 

3.5.1 Lower contact of Red Mountain Formation  

Chowns and Carter (1983a) comment on the contact between the Red Mountain 

Formation and the underlying Sequatchie Formation.  In particular, they object to placing 

the contact at the base of the approximately 30 m thick succession of rusty red, medium- 

to coarse-grained sandstone and conglomerate, as suggested by Cressler (1970, 1974) at 

Horn, Johns, Turkey, Turnip, and Heath Mountains.  Chowns and Carter (1983a) noted 

that the Greensport, Colvin Mountain, and Sequatchie Formations include coarse-grained 

sandstones and assert that this 30-m-thick coarse clastic succession grades downward into 

the red beds of the Sequatchie Formation as they observed on Rocky Face Mountain at 
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Dug Gap, and thus should be included with the Upper Ordovician lithofacies.  The 

authors further suggested that this boundary is more correctly placed where the coarse 

clastic succession is overlain by shales with thin distal turbidite sequences.  This 

interpretation follows the argument for a late Ordovician erosional unconformity 

(Rindsberg, 1983) followed by a major marine transgression during the early Silurian, 

during which the Red Mountain Formation was deposited.  The prescription of Chowns 

and Carter (1983) for assigning the Sequatchie Formation–Red Mountain Formation 

boundary was applied during the field work of the author with limited success.  At 

Hammond Gap east of Trion, the contact between the upper Sequatchie Formation and 

the lower part of the Red Mountain Formation is clearly gradational, and thus any 

placement of the boundary would be arbitrary.  The succession of coarse sandstone 

described by Chowns and Carter (1983) can also be observed to grade upwards into rocks 

that more clearly fit the description of the Red Mountain Formation. 

 

3.6 DEVONIAN SYSTEM 

The Devonian system in Georgia is characterized by scattered accumulations of 

chert and sandstone in the Lower and Middle Devonian succession (Armuchee Chert and 

Frog Mountain Sandstone formations) overlain by an extensive, but generally thin, 

accumulation of Upper Devonian black shale (Chattanooga Shale).  Ferrill and Thomas 

(1988) noted that the Chattanooga Shale and the overlying, thin, Lower Mississippian 

Maury Shale may represent distal synorogenic sediment from Acadian tectonism.  

Chowns (1989) noted that the Chattanooga Shale represents low sedimentation rates in a 

broad intracratonic shelf under shallow anoxic water. 

Over a large part of the map area, the thin formations that separate the Devonian 

Armuchee Chert and the Mississippian Fort Payne Chert (i.e., the Devonian Chattanooga 

Shale and Mississippian Maury Shale) are not well exposed.  As a result, the Devonian 

and Mississippian chert formations are mapped as an undifferentiated unit (e.g., Cressler 

1964a, b, 1970). 

3.6.1 Lower to Middle Devonian 

The Lower and Middle Devonian succession in Georgia is comprised of the 

Armuchee Chert and the Frog Mountain Sandstone, which primarily appears as a thin 
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layer within the Armuchee Chert.  Nunan (1972) described both of these formations as 

shallow-marine shelf deposits. 

3.6.1.1 Armuchee Chert 

The Lower to Middle Devonian Armuchee Chert was named by Hayes (1902) for 

outcrops near Armuchee in Floyd County, Georgia.  The base of the formation is an 

unconformity and the formation rests on the Red Mountain Formation throughout the 

extent in the study area.  Although unclear, the type section presumably is the extensive 

exposure along Armuchee Creek where it intersects the end of Lavender Mountain 

(Cressler, 1970).  The Armuchee Chert is composed primarily of white and medium- to 

dark-gray, thin-bedded to massive chert that weathers to light gray.  The chert appears 

nodular in places and is locally sandy.  It is also iron-rich in places, giving the chert a 

rusty, reddish brown color.  Butts (1948) documented a fossil assemblage from the 

formation that confirms “Onondaga age,” which correlates to the lower part of the Middle 

Devonian.  The Armuchee Chert ranges in thickness from approximately 30 to 45 m in 

the northern part of Floyd County, and from approximately 15 to 30 m in the central part 

of the county (Cressler, 1970).  The formation forms hogbacks on the flanks of the high 

ridges on Red Mountain Formation.   

In Floyd County, the Armuchee Chert can be identified at various roadcuts 

through Horseleg, Lavender, Simms, and Turkey Mountains.  In two exposures on 

Horseleg Mountain, only white chert residuum was observed.  In outcrops at the 

northeastern end of Lavender Mountain, the Armuchee Chert is pale- to dark-gray, 

purplish gray, unevenly bedded chert weathered to brownish-gray/tan and white, locally 

fossiliferous chert weathered to tan/gray in massive beds approximately 1 m thick or in 

thin, uneven beds less than about 5 cm thick; and black and tan/gray chert in nodular beds 

that are generally thinner than about 10 cm, but are as thick as approximately 20 cm.  The 

Armuchee Chert at these outcrops is pervasively fractured and locally stained with iron 

oxide; the formation there also includes local white, slightly sandy chert.  At the 

southwestern end of Lavender Mountain at the abandoned Central of Georgia Railway 

cut, the exposure of Armuchee Chert is several meters of white and tan/brown sandy 

chert and white massive chert that is characterized by some fossiliferous layers 

(predominantly brachiopods).  Approximately 3 km northwest along Lavender Mountain 
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from the abandoned railroad cut in a roadcut through Fouche Gap, the formation exposed 

is approximately 0.5 m of white massive chert weathered to tan with a crust of iron oxide 

on some surfaces.  The formation is also in a roadcut on the northeastern end of Simms 

Mountain, where it is exposed as approximately 2–3 m of white massive chert weathered 

to tan and rusty brown in wavy beds that range in thickness from 1–10 cm; the formation 

here is interbedded with weathered, pale gray shale near the contact with the Frog 

Mountain Sandstone.  At the southern end of Turkey Mountain, the formation is 

irregularly bedded, nodular, massive, white and light-gray chert residuum that is 

weathered to tan and rusty red.  In addition, Chowns (1983) documented Armuchee Chert 

in a roadcut through the southeastern flank of Turnip Mountain at the southern end of the 

mountain (GA20 in Floyd County).  There, he attributes light-gray, nodular chert float to 

the formation at the western end of the roadcut. 

In Chattooga County, the Armuchee Chert is exposed in the roadcut of 

US27/GA1 through Taylor Ridge monocline, where it is approximately 5 m exposed of 

white, massive chert.  The formation is also exposed in a cut bank on the Pinhoti Trail on 

the northwestern flank of Strawberry Mountain anticline, just north of Subligna.  There, 

the Armuchee Chert is white or pale- to medium-gray, chert in nodular beds 

approximately 5–10 cm thick.  Also, on the southeastern flank of Taylor Ridge south of 

the intersection with Strawberry Mountain, the formation is exposed as white chert 

blocks in float. 

In Walker County, the only outcrops identified are in the GA 136 roadcuts 

through Taylor Ridge at Maddox Gap and farther east through Dick Ridge.  The Maddox 

Gap exposure is white, grainy or pock-marked chert that is weathered to tan, yellowish 

tan, and rusty yellowish brown.  The Dick Ridge anticline exposure is white, sandy, 

pock-marked or porous chert that is weathered to yellowish tan. 

The Armuchee Chert can be observed in contact with the Red Mountain 

Formation at a roadcut on the eastern flank of Horn Mountain at Calhoun Gap in Gordon 

County.  There, the exposure is several meters of massive white/pale gray, irregularly 

bedded or nodular, iron-stained chert that is weathered to tan/brown or a pale purplish-

gray in places; the beds generally are about 10 cm thick and are locally pitted or 
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furrowed.  Cressler (1974) estimated the thickness of the formation here to be about 18 m 

and noted that both the upper and lower contacts can be identified. 

3.6.1.2 Frog Mountain Sandstone 

The Lower to Middle Devonian Frog Mountain Sandstone was named by Hayes 

(1894) for exposure on Frog Mountain in Cherokee County, Alabama.  In Georgia, the 

Frog Mountain Sandstone primarily appears to be a clastic tongue extending 

northeastward into the middle and upper part of the Armuchee Chert (Figure 3-1).  Butts 

(1948) noted “beds of calcareous, fossiliferous sandstone [that] weathers to a friable 

condition and brown color from the iron oxide present” in the Armuchee Chert exposed 

at Horseleg Mountain.  It is composed of 1.5 to 7.5 m of fine- to medium-grained, light- 

to medium-gray sandstone (Cressler, 1970).  The sandstone can be observed at the 

Central of Georgia Railway cut at the southeastern end of Lavender Mountain (Floyd 

County), where it is white, fine- to medium-grained, well-rounded, quartzose sandstone 

in ledges or boulders approximately 0.5 to 1.0 m thick that are weathered to tan or gray.  

Butts (1948) noted that the Armuchee Chert at the southwestern end of Lavender 

Mountain is overlain by approximately 4.5–6.0 m of sandstone that is similar to the Frog 

Mountain Sandstone.  On Taylor Ridge, in a roadcut along GA136 east of Maddox Gap, 

the formation is exposed as a ledge of rusty yellow and red, fine- to medium-grained 

sandstone that is approximately 5–10 cm thick and locally contains some coarse grains.  

Also, on the southeastern flank of Taylor Ridge south of the intersection with Strawberry 

Mountain, the formation is exposed as irregularly-bedded, light- to medium-gray, fine-

grained sandstone that is weathered to yellowish and greenish gray.  In most of the 

outcrops in the central and eastern parts of the study area along Taylor Ridge, Dick 

Ridge, and Simms Mountain, the Frog Mountain appears in the Armuchee Chert as thin 

nodular-bedded vitreous rusty red/brown chert.  This was described by Cressler as 

quartzite (1970).  This rusty red/brown rock is exposed east of Hammond Gap on Taylor 

Ridge near where it intersects with Strawberry Mountain, where it is exposed as 

approximately 2–3 m of dark, rusty reddish brown, vitreous chert in slightly nodular beds 

that are about 1–3 cm thick.  A similar rock is exposed, albeit significantly thinner, on 

Dick Ridge in a roadcut along GA136 and near the northeastern end of Simms Mountain; 

the vitreous chert in the Simms Mountain outcrop is dark, purplish red in color.  In the 
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eastern part of the study area, Cressler (1974) noted that the Frog Mountain Sandstone 

facies is present only in scattered layers of ferruginous sandstone or very sandy chert in 

the Armuchee Chert, and is feldspathic in places. Thomas and Bayona (2005) noted that 

the formation is bracketed by unconformities. 

3.6.2 Upper Devonian 

The Upper Devonian Chattanooga Shale was named by Hayes (1891) for outcrops 

in Chattanooga, Tennessee.  The base of the formation is an unconformity, and the 

formation rests on Armuchee Chert in the study area.  The Chattanooga Shale consists of 

highly fissile black clay and slightly silty shale with local thin layers of siltstone and fine-

grained sandstone; the rocks weather to brown, purplish-brown, or tan (Cressler, 1970).  

The formation is estimated to be as thick as 15 m near Menlo in Chattooga County 

(Cressler, 1964a) and perhaps elsewhere in far northwestern Georgia (Thomas and 

Bayona, 2005), but in thrust sheets to the southeast, the thickness diminishes to about 3 m 

(e.g., in Floyd County according to Cressler, 1970).  Although the thin Chattanooga Shale 

is poorly exposed apart from large but scattered roadcuts, it is presumed to be present 

everywhere in northwestern Georgia. 

In Floyd County, the Chattanooga Shale is exposed at the northeastern end of 

Lavender Mountain.  In these outcrops, it is black thin-bedded shale and also medium- to 

dark-gray shale that is interbedded with some silty shale weathered to tan.  Also, Chowns 

(1983) measured approximately 2 m of Chattanooga Shale at the roadcut through the 

southern end of Turnip Mountain, which he described as black slickensided shale that is 

weathered to dark brown. 

In Chattooga County, the Chattanooga Shale is present in the US27/GA1 roadcut 

through Taylor Ridge.  There it is black shale with some sulfur stains, and Rich (1986a) 

estimated a thickness of about 9 m.  The formation is also exposed in a cut bank on the 

Pinhoti Trail on the northwestern flank of Strawberry Mountain anticline, just north of 

Subligna.  There, the Chattanooga Shale is black fissile shale weathered to chocolate 

brown.  Thomas (unpublished field notes) measured 21 m of Chattanooga Shale in a 

roadcut through Shinbone Ridge on GA48 northwest of Menlo.  The formation there is 

black, carbonaceous clay shale that is thinly fissile and is locally crumpled and 

slickensided, which suggests that the thickness of the formation here is likely a result of 
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tectonic thickening (Thomas, unpublished field notes).  The formation has also been 

identified in lenticular bodies approximately 1 m long and 0.5 m thick in a chert quarry 

(Fort Payne Chert) near Silver Hill, but the shale is highly deformed and thickness there 

is unknown.  The Chattanooga Shale is also exposed in some roadcuts farther north 

across Shinbone Ridge in Chattooga County and into Walker County, where it is exposed 

as approximately 1-2 m of dark gray or black shale weathered to dark chocolate brown. 

In Walker County, Chattanooga Shale outcrops are also identified in the GA 136 

roadcuts through Taylor Ridge at Maddox Gap and farther east through Dick Ridge.  The 

Maddox Gap exposure is approximately 3 m of black shale that is weathered to chocolate 

brown.  The Dick Ridge anticline exposure is black shale that is weathered to chocolate 

brown and purple in places; near the base of this exposure is approximately .25 m of 

light- to medium-gray, fine-grained sandstone that is weathered to greenish tan.   

Most of the Chattanooga Shale exposed in the study area is deformed, and some 

has a carbonaceous, coaly sheen in appearance.  For example, the formation has been 

identified in lenticular bodies approximately 1 m long and 0.5 m thick in a chert quarry 

(Fort Payne Chert) near the southwestern end of Simms Mountain at Silver Hill in 

Chattooga County, but the shale is highly deformed and thickness there is unknown.   

Similarly, the lens-shaped Chattanooga Shale bodies crop out in a quarry in northwestern 

corner of Gordon County, east of Horn Mountain near the Rome fault.  There, the 

formation is exposed in lenticular forms (as seen in the chert pit near Silver Hill) that are 

as thick as 1 m.  In a low roadcut near the northeastern end of Simms Mountain in Floyd 

County, the residuum of Chattanooga Shale is exposed as small chips of coal-like black 

shale.  Similar chips of black shale with a coaly luster are exposed in a roadcut at the 

northeastern end of Strawberry Mountain near the intersection with Dick Ridge in Walker 

County. 

 

3.7 MISSISSIPPIAN SYSTEM 

The Lower and Middle Mississippian System in Georgia is distinctly marked by 

the laterally extensive Fort Payne Chert at the base, and the overlying succession is 

characterized by a regional-scale lithofacies change directed from dominantly carbonate 

on the northwest toward dominantly clastic on the southeast (Figure 3-7).  The 
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Mississippian System in Georgia was first subdivided by Hayes (1891), and complete 

details of nomenclature evolution are described by Thomas (1979).  Thomas (1979) 

remains the most comprehensive description of the Mississippian System in Georgia to 

date, and summarizes details of biostratigraphy and paleoecology, depositional and 

tectonic frameworks, and stratigraphic correlations to the Mississippian System in 

Alabama (a subject on which he is not just an expert, but also the damn king).  Rich 

(1986b) summarized the Mississippian succession in Georgia, but utilized different 

correlations and subdivisions (Figure 3-8).   

The Mississippian stratigraphy above the Fort Payne Chert generally can be 

subdivided into a northwestern carbonate facies and a southeastern clastic facies (Figure 

3-7), both of which grade upward into the Pennsylvanian clastic succession of fine clastic 

rocks to massive sandstones (Thomas and Cramer, 1979).  The carbonate facies is 

composed of high-energy shallow-marine limestones; the clastic facies is characterized 

by prodelta mud with lesser amounts of pro-delta sands.  The clastic facies (essentially 

the Floyd Shale and Pennington Formation) progrades westward and intertongues with 

the carbonate facies (Monteagle and Bangor Limestones) toward the northwest (Thomas 

and Bayona, 2005).  Similarly, Cressler (1964a, b) subdivides the Mississippian system in 

Chattooga and Walker Counties into two coeval facies.  The eastern facies, which 

Cressler (1964a, b) assigned to the Floyd Shale, is exposed in a broad belt from the base 

of Taylor Ridge eastward to the Rome fault; this area also includes part of Floyd County.  

The thickness of the Mississippian succession east of Taylor Ridge at Little Sand 

Mountain is nearly 500 m (Thomas, 1979).  The western facies, which is exposed on the 

southeastern flank of Lookout and Pigeon Mountains, is composed of approximately 245 

m of limestone (corresponds to Monteagle and Bangor Limestones in ascending order) 

overlain by at least 60 m of shale (corresponds to Pennington Formation).  The 

northwest-to-southeast change from thin, shallow-water shelf facies to thick, prograding 

clastic facies demonstrated by Thomas (1979) was interpreted by Rich (1992) to indicate 

late Paleozoic reactivation of down-to-southeast, steep basement faults. 

Rich (1986b) estimated the thickness of the Mississippian system to be 

approximately 365 m in the northwest at Lookout and Pigeon Mountains; he estimated 

about 880 m to the southeast at Rock Mountain (Figure 3-8).  The uppermost part of the 
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rocks he assigned to Pennington Formation, however, has been interpreted alternatively 

to be the lower part of the Upper Mississippian to Lower Pennsylvanian Raccoon 

Mountain Formation (McLemore, 1971; Thomas, 1979).  Thus, these thickness values 

should be reduced, especially for the southeast facies where the Raccoon Mountain 

Formation is significantly thicker.  Furthermore, the thickness of the Bangor Limestone 

in the interpretation of Rich (1986b) is estimated as approximately 50 m in the northwest 

and approximately 180 m in the southeast (Figure 3-8).  This interpretation involves his 

correlation of the entire upper clastic unit of the Floyd Shale with the “Hartselle” interval 

that he used to mark the base of the Bangor Limestone, and thus all Monteagle Limestone 

equivalents are placed in the middle and/or lower units of the Floyd Shale.  These 

correlations using sparse data are uncertain, and as such, the author prefers to map the 

Monteagle and Bangor Limestones as a single undifferentiated unit in the northwest and 

to not make any specific correlations to any part of the Floyd Shale as shown by Thomas 

(1979). 

Thickness data for the southeastern clastic facies are sparse because of poor 

exposure (Thomas, 1979).  Thomas (1979) estimated a thickness range of 360 to 460 m 

for the northwestern facies and a maximum thickness of 775 m for the southeastern facies 

in the Floyd synclinorium.   

3.7.1 Lower Mississippian 

3.7.1.1 Maury Shale 

The Lower Mississippian Maury Shale was named by Safford and Killebrew 

(1900) for exposures in Maury County, Tennessee, and the type section is described in 

detail by Hass (1956).  The Maury Shale is presumed to conformably overlie the 

Chattanooga Shale.  The formation is considered only as an upper member of, or simply 

part of, the Chattanooga Shale by Butts (1948), Cressler (1963, 1964b, 1970, 1974), and 

Croft (1964).  Cressler (1964a) did not report any Maury Shale lithotype in Chattooga 

County, but noted that the top of the Chattanooga Shale succession, where exposed, is 

usually covered by residuum from the overlying Fort Payne Chert.  The Maury Shale is 

characterized by thin, greenish-gray glauconitic shale that is generally about 1 m thick, 

and commonly includes small phosphatic nodules (Thomas, 1979); it is laterally 

extensive and is a distinct marker horizon in the stratigraphy.  Butts (1948) described the 
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upper part of the Chattanooga Shale (for which he mentioned possible correlation to the 

Maury Shale of Tennessee) as less than a meter of greenish clay with black nodules that 

are approximately 2 cm in diameter; he further noted that the nodules are presumably 

phosphatic.  Thomas and Bayona (2005) noted that the Maury Shale is unconformably 

absent in many locations; the present research, however, has identified the formation at 

most of the few locations where the Chattanooga Shale is well exposed. 

The formation can be identified at roadcuts on US27 through Taylor Ridge, where 

it is approximately 0.5 m of greenish gray shale with abundant concentric phosphate 

nodules that are less than about 1 cm in diameter.  Rich (1986a) reported a thickness of 

about 1.2 m at this location.  Thomas (unpublished field notes) measured 1.3 m of Maury 

Shale in a roadcut through Shinbone Ridge on GA48 northwest of Menlo in Chattooga 

County.  The formation there is medium-gray and greenish-gray clay shale that is mottled 

green in places; part of the formation there is fissile and blocky (Thomas, unpublished 

field notes).  The Maury Shale is also exposed in some roadcuts farther north across 

Shinbone Ridge in Chattooga and Walker Counties, where it is exposed as approximately 

1 m of greenish gray, saprolitic shale weathered to tan or pale gray, with some phosphate 

nodules with diameters less than about 2 cm.  Cressler (1970, 1974) reported nodules 

ranging from 0.5 to 15.0 cm in diameter, although 1–2 cm is more typical.       

In a cut bank on the northwestern flank of Strawberry Mountain north of 

Subligna, the formation is exposed as faintly bluish, green-gray saprolitic shale.  Chowns 

(1983) measured nearly 2 m of greenish gray clay shale at the roadcut through Turnip 

Mountain, which he attributed to the Maury Shale. 

In Walker County, Maury Shale outcrops are also identified in the GA 136 

roadcuts through Taylor Ridge at Maddox Gap and farther east through Dick Ridge.  The 

Maddox Gap exposure is approximately 1 m of greenish shale that is weathered to tan 

with phosphate nodules less than about 1 cm in diameter.  The Dick Ridge exposure is 

greenish gray shale that is weathered to tan with chalky white phosphate nodules that are 

about 1 cm or less in diameter.   

In Walker County, Cressler (1964b) reported approximately 0.30–0.75 m of 

greenish clay shale with phosphatic nodules approximately 1.25–5.00 cm in diameter.  In 

Floyd, Gordon, and Murray Counties, Cressler (1970, 1974) reported approximately 
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0.30–0.75 m of greenish clay shale with phosphatic nodules ranging from approximately 

0.65 to 15.25 cm in diameter. 

Incidentally, Cressler (1964a) did not recognize either Armuchee Chert or Maury 

Shale at the outcrop areas in Chattooga County (Taylor Ridge and Shinbone Ridge).  If 

he included the Armuchee Chert with the overlying Fort Payne Chert, it is not apparent 

from his description. 

3.7.1.2 Fort Payne Chert 

The Lower to Middle Mississippian Fort Payne Chert was named by Smith (1890) 

for exposures in Fort Payne, Alabama.  Presumably, the Fort Payne Chert conformably 

overlies the Maury Shale in the area of study, and the formation is a distinctive marker in 

the Paleozoic succession of Georgia.  The Fort Payne Chert generally is characterized by 

light-gray or white chert in nodules or in irregular beds that are typically less than 25 cm 

thick; in Georgia, the thickness of the formation exceeds 60 m.  Cherty dolostone and 

cherty limestone comprise a significant part of the formation (McLemore, 1971).  Small 

quartz geodes (approximately 1–7 cm in diameter) are common in the formation, but are 

more abundant near the base (Cressler, 1964b); the geodes contain relict anhydrite 

crystals that are replaced by quartz and calcite (Chowns, 1972c).  Weathered outcrops of 

the Fort Payne Chert commonly are littered with molds or silicified parts of echinoderm 

columnals and other fossils (pelmatozoans according to Rich, 1986b).  Thomas (1979) 

stated that the formation is the weathering product of siliceous carbonates, during which 

the resistant silica was concentrated.  Rich (1986b) noted that cores through the formation 

demonstrate “siliceous carbonate rock in chert nodules,” but that such subsurface samples 

are not as silica-rich as surface exposures.  East of Pigeon Mountain, the formation 

evidently intertongues with and grades laterally into the Lavender Shale Member (Figure 

3-1).   

Rich (1986b) noted that the formation crops out in many places as a “resistant cap 

on dip slopes underlain by the Red Mountain Formation”; Shinbone Ridge is the most 

prominent example of such a ridge.  Thomas (unpublished field notes) measured 29 m of 

Fort Payne Chert exposed in a roadcut through Shinbone Ridge on GA48 northwest of 

Menlo.  The formation there is light-gray chert in beds approximately 0.3 m thick that are 



 85

nodular in places and characterized by clay partings; the lower 3 m is composed of dark 

gray chert (Thomas, unpublished field notes). 

The Fort Payne Chert in Floyd County is composed of approximately 60 m of 

thin- and thick-bedded chert (Cressler, 1970) and is exposed at Turnip and Simms 

Mountains.  Chowns (1983) measured approximately 4.5 m of Fort Payne Chert beneath 

the Lavender Shale Member at the GA20 roadcut through Turnip Mountain in Floyd 

County, which he described as dark gray thinly bedded (beds 3–15 cm thick) slightly 

nodular chert with shaly partings.  At the northeastern end of Simms Mountain, the 

formation is exposed as approximately 6 m of white and gray chert weathered to tan in 

beds that are about 10 cm thick.     

The Fort Payne Chert is well exposed on the flanks of Strawberry Mountain, on 

Taylor Ridge, and on Shinbone Ridge in Chattooga County.  On Strawberry Mountain, 

the formation is exposed as white, nodular bedded chert that locally includes pale grayish 

purple geodes.  At the Taylor Ridge roadcut along US27, the formation is comprised of 

about 45 m of gray-black, evenly bedded chert (beds 5–30 cm thick) that is dense and 

brittle (Cressler, 1964a).  Farther southwest along Taylor Ridge near the intersection with 

Simms Mountain, the formation is exposed in an abandoned quarry, where it is light- to 

medium-gray dense chert in nodular beds that range 1–10 cm in thickness with some 

shaly partings.  Total thickness of the Fort Payne is questionable in the quarry because of 

pervasive deformation.  On Shinbone Ridge, the formation is exposed as white massive 

chert weathered to rusty brown and tan that is locally sandy and in beds that range 2–25 

cm in thickness.  In an abandoned quarry in Shinbone Ridge near Menlo, the formation is 

exposed as approximately 0.5 m of white, massive, irregularly or slightly nodular-bedded 

chert in beds about 5 cm thick.  This chert exposure is overlain by approximately 10 m of 

red clay and saprolitic chert.   

In Walker County, the formation is exposed on Pigeon Mountain, Dick Ridge, 

Shinbone Ridge, and Taylor Ridge, and is nearly 50 m thick (Thomas, 1979). The Fort 

Payne Chert there is composed of “stratified chert and dark compact calcareous shale or 

argillaceous limestone,” the latter of which can be attributed to the Lavender Shale 

Member.  The beds range from 5 to 30 cm and the bedding surfaces are irregularly 

furrowed and, thus, the contacts appear uneven (Cressler, 1964b).    In a roadcut along 
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GA193 across Pigeon Mountain, the formation is exposed as more than 10 m of massive, 

pale gray chert in beds and some nodules that range 5–25 cm in thickness.  In Dick Ridge 

anticline near the intersection with Strawberry Mountain, the Fort Payne Chert is exposed 

as white, gray, and brown, deformed chert that is weathered to rusty red, yellow, and 

brown in places in thin, wavy or nodular beds.  On Shinbone Ridge, the formation is 

exposed as massive, white chert weathered to rusty brown and tan in beds 2–25 cm thick.  

In a roadcut along GA136 across Taylor Ridge monocline near Maddox Gap, the 

formation is exposed as approximately 2 m of white chert weathered to tan with some 

rusty red and brown in wavy, irregular and nodular beds and nodules about 5–10 cm 

thick.   

3.7.1.3 Lavender Shale Member of the Fort Payne Chert 

The Lavender Shale Member of the Fort Payne Chert was named by Butts (1948) 

for roadcuts along the Central of Georgia Railway at the southwestern end of Lavender 

Mountain (approximately 0.6 km west of Lavender Station) in Floyd County, Georgia.  

The Lavender Shale Member is comprised of dark-gray, calcareous shale and 

argillaceous mudstone that weathers to “light-gray, greenish-gray, and yellowish-gray 

shale and mudstone” (Thomas, 1979).  According to Cressler (1970), the formation at the 

type locality consists primarily of massive-bedded greenish-gray mudstone and shale, and 

also contains fossils including bryozoa and abundant crinoid columnals that are a 

centimeter or greater in diameter (cf. also Butts, 1948).  Petrographic research by Hurst 

(1953) demonstrated that unweathered samples of typical Lavender Shale may contain as 

much as 75% carbonate and that it is more of a mudstone than a shale.  The argillaceous 

and siliceous character observed at most exposures is thus likely to be a product of 

weathering (Rich, 1986b). 

Thomas (1979) noted that the Lavender Shale does not constitute an individual 

unit; Cressler (1970) stated that rocks of the Lavender lithotype are distributed randomly 

within the Fort Payne Chert.  The Lavender Shale also contains discontinuous chert beds.  

The formation possibly represents an easterly, more argillaceous facies of the Fort Payne 

Chert (Figure 3-1; cf. also Cressler, 1970; Thomas, 1979).  Hurst (1953) noted a 

reciprocal relationship between the Fort Payne Chert and the Lavender Shale; the 

thickness of the Lavender Shale increases eastward in concert with the decrease in the 
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thickness of the more typical Fort Payne Chert lithotype.  The Fort Payne Chert contains 

little argillaceous rock west of the Kingston–Chattooga anticlinorium, but is mostly 

replaced by Lavender Shale to the east of the anticlinorium (Figure 3-1).  Thomas (1979) 

estimated the facies boundary between the Lavender Shale and the Fort Payne Chert to be 

a “very irregular north-trending line” through the Floyd synclinorium. 

Near the depression of the Floyd synclinorium just northwest of Horseleg 

Mountain, the Lavender Shale Member is approximately 80 m thick (cf. Thomas, 1979).  

Thomas (1979) noted that it is not clear whether the top of the Lavender Shale Member is 

equivalent to the top of the Fort Payne Chert or whether the formation also includes 

equivalents of younger rocks. 

In Floyd County, the Lavender Shale Member is exposed on the flanks of Turnip, 

Lavender, Turkey, and Simms Mountains.  Chowns (1983) noted an incomplete section 

of the Lavender Shale Member at the GA20 roadcut through Turnip Mountain.  At the 

eastern end of this roadcut, he attributed approximately 20 m (exposed) of gray to reddish 

gray weathered shales to the formation.  At the northeastern end of Lavender Mountain, 

the formation is exposed as medium- to dark-gray calcareous shale that is weathered to 

light gray.  At the southwestern end of Lavender Mountain, the formation is exposed as 

dark-gray to black, fossiliferous, calcareous shale that is interbedded with some dark 

chert.  The formation is also exposed in roadcuts along GA140 through the southern end 

of Turkey Mountain.  There, the Lavender Shale is exposed as approximately 10–20 m of 

massive-bedded, dark-gray shale and mudstone weathered to black and medium gray 

interbedded with some nodular-bedded light-gray chert.  At the northeastern end of 

Simms Mountain, the formation is exposed as dark-gray, calcareous mudstone and shale 

in thin wavy beds that are generally less than 2 cm thick and in thick, blocky beds 

ranging 5–50 cm in thickness.  These outcrops are a meter or more in total thickness and 

include local stringers and thin beds of black chert that is waxy in appearance and ranges 

1–10 cm in thickness. 

In Chattooga County, the Lavender Shale Member is exposed around Strawberry 

Mountain and Taylor Ridge.  On the northwestern flank of Strawberry Mountain north of 

Subligna, the Lavender Shale is exposed as medium- to dark-gray mudstone weathered to 

pale gray in irregular or nodular beds.  In the roadcut along US27 through Taylor Ridge, 
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the formation is exposed as more than 10 m of black and dark gray, siliceous mudstone in 

irregular or nodular beds that range from 5–10 cm in thickness.  The mudstone is 

interbedded with dark gray shale in beds that are 1–3 cm thick. 

In Walker County, the Lavender Shale Member is exposed around Dick Ridge.  In 

the roadcut along GA136 through Dick Ridge, the formation is exposed as dark gray and 

black mudstone and chert weathered to purplish gray in nodular beds that are about 3–10 

cm thick.  Near the intersection between Dick Ridge anticline and Taylor Ridge 

monocline, the formation is exposed as approximately 4 m of black and dark gray chert 

and siliceous mudstone weathered to tan, medium gray, and white, in nodular beds that 

are about 1–3 cm thick. 

3.7.2 Upper Mississippian northwestern carbonate facies 

The northwestern carbonate facies of the Upper Mississippian succession (Figures 

3-1, 3-7, and 3-8) can be divided into three successive subunits (Thomas, 1979).  The 

basal unit is comprised of bedded chert and cherty carbonate rocks (Fort Payne Chert and 

Tuscumbia Limestone).  The middle unit, which is the thickest, consists predominately of 

non-cherty limestone (Monteagle-Bangor Limestones).  The uppermost unit is comprised 

of maroon, green, and gray mudstones and shales; and the mudstone/shale succession at 

the top grades upward into the shale, sandstone, and coal succession of the Lower 

Pennsylvanian (Pennington and Raccoon Mountain Formations).  

Thomas and Bayona (2005) noted that the Fort Payne Chert and Tuscumbia 

Limestone represent the “last stage of passive-margin shelf deposition before the initial 

progradation of synorogenic clastic deposits from the Ouachita orogen into western 

Alabama and from the Alleghanian Appalachian orogen into northeastern Georgia” (cf. 

Thomas, 1974). 

3.7.2.1 Tuscumbia Limestone 

The Middle Mississippian Tuscumbia Limestone was named by Smith (1894) for 

exposures near the town of Tuscumbia in Colbert County, Alabama.  It is composed of 

light-gray, medium- to thick-bedded bioclastic or micritic limestone with some beds that 

are partly oolitic.  The Tuscumbia Limestone is distinguished by locally abundant light-

gray or white chert nodules and concentrically banded chert concretions, but these chert-

rich layers are not laterally continuous and thus do not serve as persistent marker beds 
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(Thomas, 1972).  The formation commonly also contains beds of calcareous mudstone 

and finely crystalline dolostone; calcite pseudomorphs after gypsum are locally present in 

the dolomitic mudstones (McLemore, 1971).  Thomas (1979) also noted rare argillaceous 

limestone and thinly bedded calcareous shale. The formation ranges in thickness from 35 

to 65 m (Thomas, 1979); Rich (1986b) estimated approximately 61 m in thickness.   

The upper and lower contacts of the Tuscumbia Limestone are gradational.  The 

nodular chert of the Tuscumbia Limestone, however, contrasts with the bedded chert of 

the underlying Fort Payne Chert.  The contact with the overlying Monteagle Limestone is 

characterized by a regional gradation from cherty limestone to predominantly non-cherty, 

oolitic limestone (Thomas, 1979).  The contact is arbitrarily placed by McLemore (1971) 

above the highest cherty calcareous mudstone and below the lowest oolitic limestone of a 

considerable thickness.  Thomas (1979), however, stated that thin cherty limestone 

commonly is present above this arbitrary contact, as are thin oolitic limestone beds below 

this “contact” in the Tuscumbia Limestone; thus, this contact as defined may not be 

extensively functional for detailed mapping. 

The Tuscumbia Limestone in northwestern Georgia is restricted to the flanks of 

Lookout and Pigeon Mountains.  The formation is mapped there as St. Louis Limestone 

by Croft (1964) in Dade County and Cressler (1964b) in Walker County, and by the 

Georgia Geological Survey (1976), using the nomenclature of Butts (1926, 1948).  In 

McLemore Cove, near the intersection of Pigeon and Lookout Mountains (Walker 

County), the Tuscumbia Limestone is about 10 m exposed of light- to medium-gray, fine-

crystalline grainstone and bioclastic packstone in beds approximately 0.2–0.5 m thick.  

The outcrop includes abundant brachiopod and bryozoa fossils in some layers.  Dark-gray 

chert is also abundant in the exposure in nodules that are approximately 2–10 cm in 

diameter and in beds about 5 cm thick.  In a roadcut of GA 193 on Pigeon Mountain in 

Walker County, the formation is about 1 m exposed of bluish-gray, massive micrite with 

abundant chert nodules; the limestone is underlain by light-gray chert residuum that is 

weathered to tan and white. 

3.7.2.2 Monteagle–Bangor Limestones undifferentiated 

The Upper Mississippian Monteagle Limestone was named for a section near the 

town of Monteagle in Franklin, Grundy, and Marion Counties, Tennessee.  The name was 
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first proposed in a dissertation by Vail (1959) and first published by Peterson (1962); the 

type section was established by Stearns (1963).  The Monteagle Limestone is generally 

characterized by light-gray, cross-bedded oolitic limestone in massive beds that are 

commonly greater than 3 m, with thick interbeds of bioclastic limestone (Thomas, 1972).  

The contact between the Monteagle Limestone and the overlying Bangor Limestone is 

clearly defined in Alabama by the intervening Hartselle Sandstone; the Hartselle 

Sandstone, however, pinches out eastward and does not continue into Georgia (cf. 

discussion of intervening Hartselle Sandstone and Pride Mountain Formation in Thomas, 

1972).  Rich (1986b) noted an argillaceous unit approximately 10.5 m thick at about the 

same stratigraphic level as the Hartselle Sandstone.  Actual correlation to the Hartselle 

Sandstone has not been documented, and Thomas (1979) discussed difficulty in reliable 

tracing of the argillaceous limestone interval.  Thomas also found additional argillaceous 

layers lower in the stratigraphy in other locations (personal communication, 2010); one of 

these layers is described by Thomas (1972) in his discussion of the Monteagle Limestone.  

As a result, the two limestone formations are mapped as Monteagle-Bangor Limestones 

undifferentiated in northwestern Georgia on the flanks of Lookout and Pigeon Mountains 

in Dade and Walker Counties (Figures 3-1 and 3-7).  Croft (1964), Cressler (1964a, b), 

and the Georgia Geological Survey (1976) mapped the limestones as divided into Ste. 

Genevieve Limestone, Gasper Limestone, Golconda Formation, Hartselle Sandstone and 

Bangor Limestone, using the nomenclature of Butts (1926) for northeastern Alabama and 

Butts (1948) for northwestern Georgia.  Croft (1964), however, notes that these 

formations are “lithologically similar and difficult to map separately” in Dade County.   

The Upper Mississippian Bangor Limestone was named by Smith (1890) for 

exposures in the town of Bangor in Blount County, Alabama, and originally included all 

Mississippian rocks above the Fort Payne Chert.  The Bangor Limestone is characterized 

by medium-gray, medium-bedded mainly bioclastic and oolitic limestone that includes 

local micrite, shaly argillaceous limestone, calcareous clay shale, and earthy dolostone; 

the upper part of the formation also includes interbeds of dusky-red and olive-green 

blocky mudstone (Thomas, 1972).  Butts (1926) restricted the Bangor to carbonate rocks 

above the Hartselle Sandstone Member of the Floyd Shale and below the Pennington 

Shale.   
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The Monteagle–Bangor succession ranges in thickness from 135 to 275 m, and is 

mainly comprised of light-gray, massive beds of oolitic and bioclastic limestone with 

scattered, thin intervals of chert (Thomas, 1979).  Cross-bedding is common in the thick 

oolitic limestone beds.  Thin beds of dolostone comprise a small part of the succession, 

and gypsum crystals are very rare in the dolostone (only seen in core samples).  Thin 

chert intervals throughout the formation contain scattered nodules; some of the intervals 

are laterally persistent over short distances, but none are sufficiently extensive to be used 

as stratigraphic markers (Thomas, 1979).  Rich (1986b) noted that the Monteagle–Bangor 

succession is also characterized by ooid and skeletal grainstones.  In the Bangor 

Limestone along Pigeon and Lookout Mountains, conspicuous shoaling-upward 

sequences capped by ooid grainstones have been documented (Rich, 1984, 1986c; Algeo, 

1985). 

The Monteagle–Bangor succession also includes a few beds of argillaceous 

limestone and calcareous shale; the shaly layers are generally less than 10 m thick and are 

randomly distributed throughout the succession (Thomas, 1979).  Some of the shale 

intervals in the upper part of the succession include thin sandstone beds (Thomas, 1979).  

Two shaly units in the lower part of the succession (correlative to the Monteagle 

Limestone) can be traced for more than 25 km along Pigeon Mountain; most of the shaly 

intervals in the Monteagle-Bangor Limestones, however, have limited lateral extent in 

Georgia (Thomas, 1979).  Intervals of gray calcareous shale interbedded with maroon and 

green mudstone characterize the top of the succession where the Monteagle–Bangor 

Limestones succession grades upward into the Pennington Formation (Thomas, 1979).   

In McLemore Cove, near the intersection of Pigeon and Lookout Mountains 

(Walker County), the Monteagle–Bangor Limestones succession is about 6–7 m exposed 

of dark-gray, bioclastic packstone and some bioclastic wackestone in beds approximately 

0.5–3.0 m thick.  The outcrop includes some large calcite crystals in the wackestone 

layers.  Farther upsection, the outcrop consists of about 3–4 m exposed of medium-gray, 

massive ooid grainstone in a micritic matrix; the grainstone is crossbedded in places and 

contains some concentric ooids.  In a GA136 roadcut on the southeastern flank of 

Lookout Mountain in Walker County, the formation is about 4–5 m exposed of medium-

gray, massive bioclastic packstone in beds approximately 0.5–1.0 m thick; the packstone 
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is interbedded with some intervals of calcareous shale that are 5–10 cm thick.  Farther 

upsection, the outcrop consists of dark-gray bioclastic wackestone in beds approximately 

0.25–1.00 m thick; fresh surfaces of the wackestone have an asphaltic odor. 

3.7.2.3 Pennington and Raccoon Mountain Formations 

The Upper Mississippian Pennington Formation was named by Campbell (1893) 

for exposures near Pennington Gap in Lee County, Virginia.  The Pennington Formation 

above the northwestern carbonate facies rests gradationally on the Monteagle-Bangor 

Limestones.  The lower part of the formation is comprised of maroon and green shale and 

mudstone that weathers to yellow-brown and coarsens upwards into dark-gray shale, 

siltstone, and fine-grained sandstone. The dark-colored sandy upper part of the facies 

presumably corresponds to part of the overlying Raccoon Mountain Formation (cf. 

Culbertson, 1963; McLemore, 1971; Thomas, 1979).  The formation is characterized by 

abundant impressions of fenestrate bryozoa (Thomas, 1979).  In northeastern Alabama 

and southern Tennessee, the base of the Pennington Formation is marked by a distinctive 

dolostone interval; although dolostone beds are present in the upper part of the Bangor 

Limestone in Georgia, the marker unit has not been identified (Thomas, 1979).  Rich 

(1986b) noted a unit of skeletal limestone approximately 2.5 m thick at the base of the 

formation. 

The Upper Mississippian-Lower Pennsylvanian Raccoon Mountain Formation 

was named by Wilson et al. (1956) for exposures on Raccoon Mountain near Whiteside, 

Tennessee, just north of the Georgia state line.  The formation is the basal member of the 

Gizzard Group (cf. discussion in section 3.8).  The Raccoon Mountain Formation above 

the northwestern carbonate facies is characterized by dark-gray shale, siltstone, fine-

grained sandstone, and some coal; the sandstone beds are laterally discontinuous, and 

siderite nodules are common in the shaly intervals (Thomas, 1979).  Several coal beds are 

documented in the formation on Sand Mountain near the northwestern corner of Georgia 

(Thomas, 1979).  The formation also contains local maroon mudstone beds like the 

underlying Pennington Formation (Thomas, 1979).  The contact between the Pennington 

and Raccoon Mountain Formations is “within a gradational [succession] that includes a 

variety of vertical arrangements of rock types” (Thomas, 1979).  To the northeast in 

Tennessee, however, Milici (1974) documented that the basal sandstone of the Raccoon 



 93

Mountain Formation rests on a scoured surface.  According to the Tennessee Division of 

Geology, the base of the Raccoon Mountain Formation is defined by the top of the 

highest limestone or maroon or green mudstone (Milici, 1974).  The Raccoon Mountain 

Formation is overlain by a distinctive sandstone-conglomerate unit of the Lower 

Pennsylvanian succession, the Warren Point Sandstone of Culbertson (1963), etc., and 

the “bluff-forming” unit of Cramer (1979).   

In the northwestern part of the study area around Lookout and Pigeon Mountains, 

the Pennington–Raccoon Mountain succession is mapped together because of a lack of a 

consistently mappable contact (cf. Thomas, 1979).  Farther to the southeast, the two 

formations are separated by a sandstone unit.  Thomas (1979) noted that the thickness of 

the Pennington–Raccoon Mountain succession in the northwestern carbonate facies of the 

Upper Mississippian ranges from 65 to 130 m.   

Along a GA 48 roadcut on the southeastern flank of Lookout Mountain in Walker 

County, a few outcrops of the Pennington–Raccoon Mountain succession are exposed.  

The lowermost is about 4–5 m exposed of yellowish-tan, slightly shaly claystone and 

siltstone in beds about 0.5–5.0 cm thick, which is weathered to white and rusty red.  The 

next outcrop upsection consists of approximately 10 m exposed of medium-gray shale 

and thin siltstone beds (about 2 cm thick), weathered to dark gray, yellowish brown, and 

dark brown.  Farther upsection, the formation consists of approximately 6–7 m exposed 

of deeply-weathered, yellowish-tan shale.  Farther still upsection, the formation consists 

of approximately 6–7 m exposed of tan/brown, fine- to medium-grained sandstone in 

beds about 5–25 cm thick.  Near the top of the succession (underlying about 2–3 m of 

covered interval below the base of the overlying Pennsylvanian sandstone), the formation 

is comprised by approximately 3 m of brown fine- to medium-grained sandstone in beds 

that generally are about 1–5 cm thick, but a few are as thick as 10 cm.  The upper 2 m of 

this interval is interbedded with some shale. 

Northeastward along the southeastern flank of Lookout Mountain in Walker 

County, a few outcrops of the Pennington–Raccoon Mountain succession are exposed in 

a GA136 roadcut.  The lowermost is about 6 m exposed of massive, meter-thick ledges of 

yellowish-tan, finely-laminated, calcareous mudstone interbedded with some shale.  The 

top of the succession (just below the contact with the overlying Pennsylvanian sandstone) 
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consists of approximately 5 m exposed of gray shale weathered to tan, white, and rusty 

red. 

3.7.3 Upper Mississippian southeastern clastic facies 

The southeastern clastic facies of the Mississippian succession in Georgia is 

dominated by shale, but also includes sandstone (Figures 3-1 and 3-7).  The lower part of 

the clastic facies also includes bedded chert that is similar to that near the base of the 

carbonate facies to the northwest (nodular chert in the lower limestone of the Floyd 

Shale).  The clastic facies contains interbeds of limestone that are similar to that in the 

middle of the carbonate facies.   

The base of the southeastern clastic facies is comprised of the Fort Payne Chert 

and/or the Lavender Shale Member.  The Floyd Shale overlies this interval and is 

characterized by a thick limestone unit at the base and a thick sandstone unit at the top.  

The Bangor Limestone tongue overlies the Floyd Shale, and is distinguished by a thick 

terrigenous unit in the middle.  The overlying shale and sandstone succession of the 

Pennington and Raccoon Formations is similar to that in the northwestern carbonate 

facies, except that the two formations are separated by a distinctive sandstone unit (cf. 

interpretation of McLemore, 1971; Thomas, 1979).  The upward gradation into the Lower 

Pennsylvanian succession is also similar to that in the northwestern carbonate facies.  

Incidentally, the Georgia Geological Survey (1976) mapped the entire Upper 

Mississippian succession east of Taylor Ridge between the Fort Payne Chert and the 

lowermost sandstone intervals on Rock and Little Sand Mountains as Floyd Shale 

(presumably following Butts, 1948).   

Comparatively complete sections of the southeastern clastic facies have been 

documented at Little Sand Mountain (e.g., McLemore, 1971; Thomas, 1979) and at Rock 

Mountain (e.g., Thomas, 1979; Grainger, 1983; Rich, 1986b).  Details of the section 

exposed at Rock Mountain have been greatly augmented by cores drilled by the Georgia 

Power Company Pumped Storage Project; data from the cores was integrated into the 

measured sections of Grainger (1983).  Rich (1983) summarized details of the Floyd 

Shale in the area of Rome. 
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3.7.3.1 Floyd Shale  

The Upper Mississippian Floyd Shale was named by Hayes (1891) for exposures 

in Floyd County, Georgia.  The Floyd Shale is comprised predominately of dark-gray to 

black, locally silty shale that is partly calcareous and partly carbonaceous; the formation 

includes siltstone, sandstone, limestone, and local siderite nodules (Thomas, 1979).  

Cressler (1970) noted that the formation also includes a thick limestone near the base and 

sandstone layers near the top.  Hayes (1902) referred to the uppermost sandstone as the 

Oxmoor Sandstone, and Cressler (1970) referred to the unit as the Hartselle Sandstone 

Member.  Both of these names were extended from Alabama; the Oxmoor nomenclature, 

however, is no longer used there.  Thomas (1979) discussed the problems with using the 

Hartselle Sandstone name for the sandstone at the top of the Floyd Shale in detail and 

referred to it as an “unnamed sandstone”; the problems with the Hartselle name mainly 

include the northeastward pinching out of the Hartselle Sandstone in Alabama about 45 

km west of the Georgia state line and lateral discontinuities between sandstone layers.  

Rich (1983) approximated the thickness of the Floyd Shale in its type area around Rome 

to be 450 m; Grainger (1983) estimated the thickness as approximately 414 m at Rock 

Mountain.  Thickness measurements of the various parts of the Floyd Shale in Thomas 

(1979) and Rich (1983) demonstrated that carbonate rocks make up a significant part of 

the formation as a whole, and likely more than shale; as a result, Rich (1983) suggested 

replacing the Floyd Shale name with Floyd Formation. 

For the most part, the Floyd Shale consists of relatively little sandstone, but the 

predominantly shale succession grades upward into a unit of fine- to very fine-grained 

sandstone, that is characteristically interlaminated with clay (Thomas, 1979).  Thomas 

(1979) stated that the sandstone generally is no thicker than 20 m throughout, but 

Cressler (1970) reported a thickness of approximately 90 m on Judy Mountain.  Thomas 

(1979) further noted that the Judy Mountain outcrop is “isolated by erosion from other 

exposures” of the sandstone and, as a result, “correlation of the much thicker sandstone 

on Judy Mountain with the thinner sandstone elsewhere is uncertain.” 

The lowermost part of the Floyd Shale as mapped in the depression of the Floyd 

synclinorium is comprised of a limestone unit (Figure 3-7) referred to as “unnamed lower 

limestone of clastic facies” by Thomas (1979).  Thomas estimated that the thickness of 
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the basal limestone unit might exceed 180 m thick; Rich (1983) estimated a thickness of 

approximately 160 m.  It is comprised of bioclastic grainstone and packstone, which 

contains some very coarse bioclasts and local black nodular chert.  This interval also 

contains gray-to-black, very argillaceous, calcareous mudstones, which are similar to the 

Lavender Shale Member.  These mudstones within the bioclastic limestone succession 

further suggest the intertonguing of the carbonate and clastic facies (Thomas, 1979).   

The most complete succession of the lower limestone unit of the Floyd Shale was 

compiled from exposures and core samples in a quarry on the northern outskirts of Rome.  

This quarry is documented as the Florida Rock Industries Incorporated Rome quarry in 

Thomas (1979) and Rich (1983; 1986d) and as the Ledbetter quarry (as it was formerly 

called by former owners) by Cressler (1970).  In the quarry, Rich (1983) subdivided the 

lower limestone unit into three subunits:  a basal siliceous limestone unit, a middle shaly 

limestone unit, and an upper grainstone unit.  The lower unit of cherty packstone and 

grainstone may be correlative to the chert-rich Tuscumbia Limestone to the northwest.  

Rich (1983) estimated a combined thickness of approximately 61 m exposed in the 

quarry. 

The basal limestone of the Floyd Shale is exposed southeast of Strawberry 

Mountain in Chattooga County.  A large outcrop of the unit is exposed at the southeastern 

base of the mountain in a creekbed near the main road north of Subligna.  There, the unit 

is composed of medium- to dark gray, bioclastic wackestone; bedding surfaces contain 

some echinoderm columnals and are locally slickensided.  Farther to the southeast, the 

unit is exposed in scattered outcrops.  Along a forestry road, the unit is exposed as 

approximately 4 m of massive-bedded, medium-gray bioclastic packstone that is 

weathered to light gray and grades upward into dark-gray, faintly laminated (locally) 

micrite near the top of the outcrop that is weathered to a brownish gray.  Bedding at this 

outcrop ranges from approximately 0.3 to 1.0 m thick.  The float on top of the outcrop is 

composed of very finely laminated calcareous siltstone.  The packstone contains 

abundant bioclasts of brachiopods and echinoderm columnals as much as 2 cm in 

diameter with some ooids throughout; fresh surfaces of the packstone have an asphaltic 

odor.  In an outcrop just north of Subligna, the unit is exposed as approximately 5 m of 

medium- to dark gray, coarsely crystalline bioclastic packstone/wackestone in beds that 
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range in thickness from 10–50 cm and are shaly near the base.  The outcrop contains 

abundant brachiopod fragments and echinoderm columnals with a few blastoid 

specimens.  To the north in Walker County, the basal limestone unit is exposed east of 

Taylor Ridge in a roadcut near GA136 at Maddox Gap. There, the unit is exposed as 

approximately 3 m of light-gray, slightly shaly, calcareous mudstone and bioclastic 

packstone in beds 1–30 cm thick.  The mudstone is rusty red and contains faint green 

reduction spots in places; the packstone contains abundant bryozoa fragments.  In Floyd 

County, the basal limestone unit is exposed in the valley west of Little Sand Mountain.  

There, the unit is exposed as medium-gray, bioclastic wackestone and calcareous shale in 

beds that range from 0.3 to over 1.0 m in thickness.  The unit is also exposed in a roadcut 

in the valley between Johns Mountain and the Rome fault, where it is exposed as 

approximately 5 m of light- to medium-gray, bioclastic wackestone that is interbedded 

with calcareous shale and weathers to tan.  The unit is also exposed east of Turkey 

Mountain in Floyd County, just west of the Rome fault.  There, the unit is exposed as 

approximately 5 m of medium-gray, coarsely crystalline, bioclastic packstone in thick 

ledges about 0.5–1.0 m thick; the packstone contains abundant fragments of echinoderm 

columnals, brachiopods, bryozoa, blastoids, and gastropods.  The exposure includes a 

layer with abundant black chert nodules and stringers that resemble those in the 

Tuscumbia Limestone to the northwest. 

The most complete succession of the Floyd Shale above the basal limestone unit 

was compiled from exposures and core samples from the Georgia Power Company 

project at Rock Mountain.  Thomas (1979) estimated that this part of the Floyd Shale is 

as thick as 290 m.  Rich (1983) estimated a thickness of 300 m, and Grainger (1983) 

estimated a thickness of 277 m.  In the area around Rock Mountain, the basal limestone is 

overlain by calcareous shale; to the north, in the area around Little Sand Mountain, the 

basal limestone is overlain by a sandstone unit that is about 11 m thick (Thomas, 1979).  

The sandstone in the Floyd Shale characteristically is fine-grained, but the lower part 

generally consists of very fine-grained, ripple-laminated sandstone with argillaceous 

partings (Thomas, 1979).  Thomas (1979) noted “small unidentified plant fragments” on 

bedding surfaces. 
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The Floyd Shale underlies large expanses of the valleys throughout the Floyd 

synclinorium, and exposure is poor and generally scattered in the outcrop area.  Outcrops 

of the shale facies are rare, but Cressler (1970) documented a few locations.  The shale in 

the formation exposed in the valley between Lavender Mountain and Judy Mountain is 

pervasively weathered dark-gray shale that is weathered to medium-gray, tan, and black 

in places.  Outcrops of facies more resistant to weathering, such as the thick lower 

limestone or some of the thick limestone or sandstone units within the formation, create 

some topographic relief in the otherwise relatively flat areas underlain by the Floyd 

Shale.   Furthermore, much of the exposed shale from the formation is interbedded with 

rocks that are more resistant to weathering, such as sandstone or limestone, and is sandy, 

silty, or calcareous in many places.  One example is in outcrops along roads around Rock 

Mountain.  There, the formation is exposed as medium- to dark-gray shale weathered to 

brownish tan and gray that is interbedded with thin, brown and gray siltstone and very 

fine- to medium-grained sandstone.  The sandstone is locally iron-rich and stained to 

rusty red in places. 

Outcrops of the sandstone unit previously correlated with the Hartselle Sandstone 

are best found in Floyd County on Judy Mountain and around Rock Mountain.  This unit 

is also found in a low roadcut through Rock Mountain syncline, where it is exposed as 

approximately 3 m of massive-bedded, tan, fine- to medium-grained sandstone that is 

weathered and locally stained with iron oxide. 

Other outcrops of sandstone in the Floyd Shale are located throughout Floyd 

County.  In a roadcut along GA140 across the southern end of Turkey Mountain, the 

formation is exposed as approximately 50 cm of brownish gray, fine-grained sandstone in 

beds about 5 mm thick.  On the west side of Turkey Mountain, the formation is exposed 

in a low roadcut as approximately 10 cm of tan, fine- to medium-grained sandstone 

weathered to buff and rusty red, interbedded with tan sandy shale.  Near the intersection 

of Johns Mountain and Mill Mountain anticlines, the formation is exposed as 

approximately 1 m of purplish gray, slightly silty shale that is abundantly fractured and 

contains some yellowish, iron-stained bands.  In the valley west of Little Sand Mountain, 

the formation is exposed as tan and brown, fine- to medium-grained sandstone weathered 

to rusty red or dull brown interbedded with some shale; the beds range in thickness from 
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a few centimeters to about 1 m in outcrops that range from about 20 cm to a few meters 

thick.  To the southwest of Little Sand Mountain near the intersection of Taylor Ridge 

monocline and Simms Mountain anticline, the formation is exposed as rusty brown and 

yellow, iron-rich, fine- to medium-grained sandstone.  The sandstone is interbedded with 

siltstone, mudstone, and shale; the shale and siltstone beds are pervasively folded and 

purplish brown in color in places.  The sandstone beds in these outcrops range in 

thickness from about 1–20 cm, and the exposures range from about 50 cm to a few 

meters thick.  Near the northeastern end of Lavender Mountain, the formation is exposed 

as a few m-thick intervals of dark gray shale interbedded with some thin lenses of fine-

grained sandstone that are about 1 cm thick.  Although the stratigraphic level of these 

sandstone layers is ultimately uncertain, no research has documented any success in 

lateral correlation of the layers throughout the spares outcrops in the study area.  This 

suggests that these sandstones are not laterally continuous across the study area. 

3.7.3.2 Bangor Limestone tongue 

The Bangor Limestone in Floyd County is a tongue of the carbonate facies that 

extends southeastward into the clastic facies (Figures 3-7 and 3-8; cf. Thomas, 1979; 

Rich, 1986b).  Butts (1948) noted a limestone unit in the Floyd Shale as he defined it that 

was similar in lithology and fossil assemblage to the Bangor Limestone, to which he 

referred to as “Bangor” (quotations his) because the limestone unit was significantly 

thinner than the general thickness of the formation.  It is approximately 55 m thick in the 

northwest around Lookout and Pigeon Mountain and thickens to about 200 m in the 

Floyd synclinorium (Rich, 1986b).  Thomas (1979) noted that the 200 m includes an 

interval of shale and sandstone.  Grainger (1983) estimated a thickness of approximately 

210 m at Rock Mountain.  Conversely, Cressler (1970) estimated a thickness of about 90 

m for the Bangor Limestone at Rock Mountain, where he described the formation as 

thick- to massive-bedded, gray and bluish gray, pure limestone. Cressler (1970) did not 

include the argillaceous limestone and calcareous shale below the limestone interval as 

part of the Bangor Limestone; he also did not include any of the overlying shale, which 

he attributed to a “thinned extension” of the Pennington Formation.  The Bangor 

Limestone tongue is mapped separately only in the Little Sand Mountain and Rock 

Mountain areas.  The formation can be divided into three members:  lower, middle, and 
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upper (Rich, 1986b); Grainger (1983) described the Bangor Limestone at Rock Mountain 

in detail.  The upper and lower members of the Bangor tongue are composed of bioclastic 

limestone (part of which contains localized nodules of dark chert) and argillaceous 

calcareous mudstone (Thomas, 1979).  Thomas (1979) noted that the argillaceous 

mudstone weathers to massive clay that is characterized by abundant impressions of 

fenestrate bryozoa.  The middle member is characterized by dark-gray clay shale 

interspersed with thin wavy beds of fine-grained sandstone with shaly partings (Thomas, 

1979; Grainger, 1983).  The clastic interbeds in this predominantly carbonate interval 

further indicate the intertonguing of facies (Thomas, 1979).  

3.7.3.3 Pennington Formation 

The Pennington Formation of the southeastern clastic facies primarily consists of 

dark shale that rests on the Bangor tongue, in the same stratigraphic position as observed 

to the northwest (Figures 3-7 and 3-8).  The lower part of the formation is composed of 

thin-bedded claystone that weathers to brown and contains abundant brachiopod molds 

and siderite nodules; Thomas (1979) noted that this claystone may be weathered from 

argillaceous calcareous mudstone.   

The upper part is characterized by laterally discontinuous, thin-bedded sandstone 

that increases in abundance toward the top.  The sandstone is interbedded with shale and 

siltstone, and generally is clay rich (Crawford, 1986).  Some of these sandstone beds are 

capped by micaceous, carbonaceous laminae and parts of the shale sequence contains 

abundant siderite nodules (Thomas, 1979).  The upper part of the Pennington commonly 

includes marine invertebrate fossils, commonly as casts or molds in the sandstone slabs; 

plant fossils are mixed with the marine invertebrate fossils near the top of the formation, 

but generally are poorly preserved (Crawford, 1986).  Thin limestone and calcareous 

sandstones, both of which are fossiliferous, are also common near the top of the 

Pennington Formation (Crawford, 1986). 

At Rock Mountain, the Pennington Formation is approximately 175 m thick, but 

some of this is Raccoon Mountain Formation (Rich, 1986b).  From the section measured 

by Grainger (1983), the Pennington Formation at Rock Mountain is approximately 117 m 

(using the sandstone to mark the base of the Raccoon Mountain as interpreted by 

Thomas, 1979). 
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3.7.3.4 Raccoon Mountain Formation 

The Raccoon Mountain Formation of the southeastern clastic facies is 

characterized by a basal layer of very fine- to fine-grained, slightly argillaceous 

sandstone.  This sandstone layer forms prominent ledges on Rock Mountain and Little 

Sand Mountain (Thomas, 1979); Crawford (1986, 1989) refers to this as the “lower” 

sandstone unit.  Although lateral correlation of the sandstone unit overlying the shale is 

uncertain, the base of the lowest thick sandstone marks the top of the Pennington as 

interpreted by Thomas (1979).  Thomas (1979) noted that a few thin coaly beds are 

present in the lower part of the unit; Crawford (1986) added that a thin carbonaceous 

zone commonly is present just above the basal sandstone unit and is characterized by 

“poorly preserved plant fossils (mostly stems and fruiting bodies).”  The sandstone unit is 

overlain by dark shale that is similar to the shale below the sandstone unit in the 

underlying Pennington Formation (Thomas, 1979); the upper shale succession is 

interbedded with siltstone, thin sandstone beds, and a few thin limestone layers 

(Crawford, 1986).  Thomas (1979) noted that the upper part of the formation commonly 

is characterized by siderite nodules.   

Crawford (1986) described the lower sandstone as uniformly fine- to medium-

grained quartz sandstone with commonly pervasive planar cross-beds in the lower part of 

the unit; he also noted common channels cut into the underlying succession of shale, 

siltstone, and lenticular sandstone.  A peculiar feature of the lower sandstone is spherical-

weathering voids on cm to m scale that are particularly common in the lower part 

(Crawford, 1986).  The thickness range of the unit is consistent throughout exposures at 

both Little Sand and Rock Mountains; it is uncommonly less than 15 m and generally no 

greater than 30 m (Crawford, 1986). 

The sandstone beds in the Raccoon Mountain Formation generally are thin, 

commonly characterized by shale partings, and some are ripple-laminated; the sandstone 

beds are capped by carbonaceous, micaceous laminae (Thomas, 1979).  The sandstone is 

more quartzose toward the top of the unit.  Thomas (1979) noted one sandstone bed that 

contains preserved echinoderm columnals, bryozoa fragments, and possible brachiopod 

fragments.   
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At Little Sand Mountain, the basal Raccoon Mountain Formation sandstone 

underlies the entire mountain and is the major cliff-forming unit.  The vertical faces there 

are as thin as 1–2 m but generally exceed 15 m (Crawford, 1986).  According to 

Crawford (1986), the estimated thickness of the part of the succession overlying the basal 

sandstone is approximately 91 m, and roughly the lower half of this succession is Upper 

Mississippian; Cramer (1979) measured this succession to be 26 m thick.  In a few 

roadcuts on Little Sand Mountain, the basal sandstone is brownish tan, massive, medium- 

to coarse-grained sandstone in meter-thick beds.  Farther upsection, the sandstone is pale 

tan or white in color and dominantly composed of quartz grains with some micaceous and 

feldspathic layers.  The lower part of the sandstone is interbedded with sandy shale that is 

more abundant towards the base. 

At Rock Mountain, the basal sandstone forms the lower of two ledges.  It is well 

exposed at the top of the Georgia Power powerhouse excavation where Crawford (1986) 

noted thin carbonaceous layers in “channel rubble zones.”  The measured section of 

Grainger (1983) lists the basal sandstone as approximately 15 m in thickness and the total 

thickness of the formation as approximately 132 m.  Thus, the thickness of the overlying 

succession is approximately 117 m, and Crawford (1986) estimated that roughly the 

lower half of this succession is Upper Mississippian at Rock Mountain  

3.7.4 Transition between northwestern carbonate facies and southeastern clastic facies 

The lateral transition between the carbonate facies and the clastic facies is 

presumed to be one of intertonguing across the Kingston–Chattooga anticlinorium 

(Figures 3-7 and 3-8), as illustrated by the limestone “tongues” in the southeastern clastic 

facies (Thomas, 1979; Rich, 1986c).  The extensive range of intermediate characteristics 

between the facies has not been documented, however, because of poor exposure and 

difficulty in correlation of stratigraphic units, particularly the sandstone or sandstones 

(Thomas, 1979).  Furthermore, the Mississippian succession in the region of the 

Kingston–Chattooga anticlinorium has been removed by erosion.  Thomas (1979) 

elaborated on the problematic facies transition and documented the details of sections to 

the north of the study area and their many interpretations.  The intertonguing of the two 

lithofacies implies alternating episodes of delta progradation and delta destruction 

(Thomas and Cramer, 1979).   
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3.8 PENNSYLVANIAN SYSTEM 

  The Lower Pennsylvanian succession includes massive coarse sandstones and 

conglomerates, shale, and a few coal beds.  The Pennsylvanian succession of Georgia 

was first subdivided by Hayes (1892) into two distinct units:  the Lookout Sandstone 

below and the Walden Sandstone above (Figure 3-9).  Comprehensive studies of the coal 

were published by McCallie (1904) and Johnson (1946), and other details can be found in 

reports of the United States Geological Survey and U.S. Bureau of Mines (Cramer, 

1979).  Butts (1948) mapped the Pennsylvanian succession as Pottsville Formation (with 

mention of the subdivisions of Hayes) as comprised of a basal massive bluff-forming 

sandstone unit that overlies the shales of the Pennington Formation.  Later subdivisions 

by Johnson (1946) introduced the name Gizzard Member for the basal member of the 

Lookout Formation, which had been revised from the original Lookout Sandstone of 

Hayes (1892).  More complete summaries and discussions of the evolution of 

Pennsylvanian nomenclature in Georgia are published by Culbertson (1963) and Cramer 

(1979).  The Gizzard name was introduced as a locality by Safford (1869) for exposures 

on Little Fiery Gizzard Creek in Marion County, Tennessee.  Nelson (1925) formally 

established the Gizzard nomenclature, which he expanded to the Gizzard Formation and 

divided it into three subformations.  Wilson et al. (1956) named these subdivisions as 

follows:  the basal Raccoon Mountain Formation, the Warren Point Sandstone, and the 

uppermost Signal Point Shale.  Cressler (1964a, b, 1970) used subdivisions as correlated 

by Johnson (1946).  The basic two-fold subdivision of Hayes is maintained on the 1976 

geologic map of Georgia, except that the Lookout Sandstone is subdivided into the 

Gizzard Formation below and the Sewanee Conglomerate above; and the beds above the 

Sewanee are left undifferentiated.  The Georgia Geological Survey (1976) mapped most 

of the Pennsylvanian System in northwestern Georgia as a single undifferentiated unit, 

except on the northwestern flank of Lookout Mountain and on Sand Mountain.  In those 

locations the Lower Pennsylvania succession is called the Lookout Sandstone and is 

divided into Gizzard Formation below and Sewanee Sandstone above, and all the 

overlying Pennsylvanian rocks are mapped as an undifferentiated unit.  Wilson et al. 

(1956) demonstrated that the distinctive massive sandstone near the base of the 

Pennsylvanian succession is formed by different stratigraphic units in different places.  
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Cramer (1979) outlined several problems in lateral correlation throughout the 

Pennsylvanian rocks in Georgia and consequently proposed considering the system as a 

“bluff-forming sandstone” and the vertical successions of rocks above and below the 

bluff-forming sandstone (Figure 3-9); as a result, it is difficult to resolve thickness 

estimates for individual formations from the measurements he documented.  Grainger 

(1983) included a very detailed description of the stratigraphic succession at Rock 

Mountain on the basis of drill cores and surface and subsurface excavation associated 

with the construction of a pump storage facility there by the Georgia Power Company.  

Most recently, Crawford et al. (1989) published a concisely descriptive report on the 

Pennsylvanian stratigraphy in Georgia, and a study by Crawford (1989) is perhaps the 

most recent detailed report on the subject. 

The base of the Lower Pennsylvanian is within a succession of shale that is 

conformable and continuous with that described for the shaly Upper Mississippian part of 

the Raccoon Mountain Formation in sections 3.7.2.3 and 3.7.3.4.  Culbertson (1963) 

referred to the contact as an unconformity.  Englund et al. (1985) noted that, although the 

underlying Upper Mississippian succession is essentially complete, an absence of beds 

containing lower Early Pennsylvanian fauna possibly indicates a hiatus.  Crawford et al. 

(1989) contended, however, that there is “no clear physical evidence” for a 

Mississippian–Pennsylvanian unconformity.   

Cramer (1979) noted that the Pennsylvania succession in Georgia suggests 

“continuous sedimentation during deposition of a prograding clastic wedge”; and that the 

succession above the Mississippian carbonate rocks grades upward from “marine and 

near-shore mudstone to massive barrier and (or) delta-front sandstones.”  The westward-

prograding clastic wedge interpretation of the succession carries implications of 

“identification of time-stratigraphic planes across temporally equivalent facies” (Cramer, 

1979).  Chowns (1989) noted that the sandstones of the Pennsylvanian succession suggest 

high-energy depositional environments such as “distributary channels and mouth bars, 

tidal inlets, and barrier beaches,” and that the shale and coal represent “bay and lagoon 

fills with marsh peats” (cf. also Hobday, 1974). 
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3.8.1 Lower Pennsylvanian succession northwest of the Kingston fault 

The Lower Pennsylvanian rocks in Georgia crop out in wide expanses in the cores 

of the synclines that underlie Sand, Lookout, and Pigeon Mountains; and the Lower 

Pennsylvanian sandstones form the flat tops and prominent bluffs of these regionally 

extensive mountains (Figure 3-10).  A stratigraphic section by Crawford et al. (1989) 

illustrates the Lower Pennsylvanian succession on Sand and Lookout Mountains.   

The Raccoon Mountain Formation is a continuation of the same lithology as 

described at the top of the succession over the northwestern carbonate facies of the 

Mississippian (cf. section 3.7.2.3).  According to the stratigraphic section of Crawford et 

al. (1989), the Raccoon Mountain Formation is approximately 125 m thick, and 

approximately 90 m of this succession is assigned to the Lower Pennsylvanian.   

In the present research, the Lower Pennsylvanian succession in northwestern part 

of the study area was only investigated as high as the bluff-forming sandstone-

conglomerate unit on Pigeon and Lookout Mountains.  This upper sandstone-

conglomerate unit (or Warren Point Sandstone) is approximately 151 m thick.   

The Warren Point Sandstone is exposed in roadcuts along GA48 through the 

southeastern flank of Lookout Mountain in Chattooga County.  The base of the unit is 

marked by approximately 1 m of conglomerate overlain by a ledge approximately 2 m 

thick of conglomerate and very coarse-grained white quartzose sandstone, which is 

overlain by about 1 m of medium- to coarse-grained sandstone beds that are 

approximately 25–50 cm thick.  Farther upsection, the unit is white (locally iron oxide-

stained), medium- to coarse-grained, cross-bedded, quartzose sandstone in meter-thick 

ledges and in intervals with beds ranging 1–25 cm in thickness. 

Farther to the north, the Warren Point Sandstone is exposed in roadcuts along 

GA136 through the southeastern flank of Lookout Mountain in Walker County.  The base 

of the unit is marked by a ledge of conglomerate that is approximately 2 m thick overlain 

by about 1.5 m of coarse-grained sandstone.  Farther upsection, the unit is composed of 

white and tan, fine- to medium-grained sandstone that is weathered to buff and pale gray, 

in beds that range from 0.5 to 2.0 m in thickness. 
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3.8.2 Lower Pennsylvanian “outliers” 

Outside of the regionally extensive mountains in northwestern Georgia, the 

Pennsylvanian system in the area of study is confined to the Pennsylvanian “outliers”, 

which include Rock Mountain in Floyd County and Little Sand Mountain in Chattooga 

County (Figure 3-10).  Cramer (1979) and Crawford (1986) provided detailed 

stratigraphic descriptions, as did Grainger (1983) for the Rock Mountain area.  Crawford 

(1986) divided the Pennsylvanian rocks in these locations with reference to a “lower” 

sandstone unit, and “upper” sandstone-conglomerate unit, and the rocks below, above, 

and between these markers.  As described in section 3.7.3.4, the basal Lower 

Pennsylvanian succession includes roughly the upper half of the shaly succession (that 

overlies the basal sandstone unit) of the Raccoon Mountain Formation.  For the 

Pennsylvanian outliers, the “upper sandstone-conglomerate” unit of Crawford (1986) 

equates to the “bluff-forming sandstone” unit of Cramer (1979); the unit distinctly marks 

the top of the Raccoon Mountain Formation.   

Crawford (1986) described the upper sandstone-conglomerate succession of the 

Pennsylvanian outliers as massively bedded, fine- to coarse-grained, quartzose sandstone 

in which planar cross-beds are common.  The basal unit is comprised of approximately 

5–8 m of quartz-pebble conglomerate and conglomeratic sandstone (Crawford, 1986); 

this unit roughly correlates to the Warren Point Member as described by Culbertson 

(1963).  Crawford (1986) also noted that the conglomeratic lithofacies is particularly well 

developed in channels that are cut into the underlying shales and siltstones   

3.8.2.1 Little Sand Mountain  

The upper sandstone-conglomerate section is present only on the southeastern end 

of Little Sand Mountain and is composed of approximately 15 m of quartz sandstone that 

is massively bedded at the base and more thinly bedded up-section (Cramer, 1979).  The 

succession also includes conglomerate in distinct beds that contain quartz pebbles as 

large as 1 cm in diameter.  The sandstone-conglomerate forms the rim of the highest part 

of the mountain and is overlain by an unknown thickness of gray shale; Cramer (1979) 

noted that this shale is at least 10 m thick. 
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3.8.2.2 Rock Mountain 

The upper sandstone-conglomerate section (Warren Point Member) forms the 

prominent scarp on Rock Mountain and is comprised of approximately 30–45 m of light- 

to medium-gray, massively-bedded, fine- to medium-grained, cross-bedded sandstone 

(Grainger, 1983).  Cramer (1979) noted that this succession is thinner bedded toward the 

top. 

The section of rocks above the upper sandstone-conglomerate on Rock Mountain 

is composed of approximately 85 m of dark gray massive thin-bedded shale with 

sandstone laminae and thin sandstone beds (Grainger, 1983).  In this succession, 

Crawford (1986) also noted siltstones and lenticular “partly calcareous” sandstones that 

contain zones of marine fossils toward the top.  This succession roughly correlates to the 

Signal Point Member of Culbertson (1963).  

3.8.3 Mississippian–Pennsylvanian boundary problem 

Accurate location of the position of the Mississippian–Pennsylvanian systemic 

boundary has been a fairly long-standing problem.  The problems include locating the 

boundary and assigning a mappable base of Raccoon Mountain Formation.  Cramer 

(1979) noted that the boundary commonly had been placed at an arbitrary lithologic 

marker such as “the top of the highest maroon mudstone, below the lowest coal bed, at 

the base of the massive bluff-forming sandstone, or at the base of the lowest quartz-

bearing sandstone.”  Furthermore, Cramer (1979) eloquently stated that the primary 

problem is that such methods involve the application of rock-stratigraphic criteria to a 

horizon that is, by definition, time-stratigraphic.  At the time of his study, Cramer (1979) 

stated that the identification of the Mississippian–Pennsylvanian boundary awaited 

“resolution of a maze of biostratigraphic and lithostratigraphic details.” 

3.8.3.1 Lithology of the Mississippian–Pennsylvanian boundary 

The Mississippian–Pennsylvanian boundary, as previously noted, has been 

documented within a gradational succession of shale and thin sandstone that has been 

assigned to either the Pennington Formation or the Raccoon Mountain Formation (e.g., 

Thomas and Cramer, 1979; Crawford, 1986; Rich, 1986b; Crawford et al., 1989).  

Crawford et al. (1989) maintained that there is no evidence for an unconformity at the 

base of the Lower Pennsylvanian succession in Georgia.  Rich (1986b) stated that part of 
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the problem is that the boundary is within a succession that contains the upward gradation 

from carbonate into clastic deposits and from “marine units into predominantly non-

marine” units.  Furthermore, the succession that hosts the boundary is gradational in 

nature and thus there is no easily mappable lithologic contact.  Cramer (1979) illustrated 

the uncertainty in the age of rock around this contact; for example, in his description of 

the succession at Little Sand Mountain, he noted that the “lowermost clastic rocks are 

considered Mississippian on the basis of regional facies considerations and 

paleontology… [and] the bluff-forming sandstone is considered Pennsylvanian” only on 

the basis of stratigraphic position.   Cramer (1979) listed six distinct points (apart from 

the generally poor exposures) to explain why correlation in the Pennsylvanian succession 

is difficult.   

Furthermore, Crawford et al. (1989) reiterated that the lowermost thick, massive, 

coarse-grained clastic rocks that form the cliffs on Sand, Lookout, Pigeon, Little Sand, 

and Rock Mountains are not all Pennsylvanian in age, and thus not necessarily the same 

lithologic unit.  These clastic units exceed 30 m in thickness and several kilometers in 

length; some of these units, however, are lenticular in shape.  For example, the basal 

sandstone in the Upper Mississippian part of the Raccoon Mountain Formation is not 

laterally continuous.  As a result, Crawford et al. (1989) concluded that the basal 

sandstones of the Raccoon Mountain are not distinguishable from Pennsylvanian-age 

coarse sandstones and conglomerates via casual observation.   

3.8.3.2 Data from fossils 

For the Mississippian–Pennsylvanian boundary, biostratigraphic markers have 

been studied in detail (Figure 3-11).  Cramer (1979) noted that lack of “detailed 

biostratigraphic data from this part of the section precludes precise identification” of the 

boundary.  More recently, Crawford (1986) and Crawford et al. (1989) stated that ages 

have been better established on the basis of both marine and plant fossils.   

Cramer (1979) noted that fossils “in the limestone sequence establish a 

Mississippian age, and plant fossils demonstrate a Pennsylvanian age in the coal above 

the massive sandstone.”  A study by Wilson (1965) documented Upper Mississippian 

spores from a coal bed in the Raccoon Mountain Formation in Alabama, and Milici 
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(1974) noted Mississippian invertebrate fossils in the Raccoon Mountain Formation in 

Tennessee.  

A study of Pennsylvanian plant fossils in Georgia by Gillespie et al. (1989) noted 

that the oldest Pennsylvanian fossils were collected from very similar lithologies to those 

from which the youngest Mississippian fossils were collected; they added that, in many 

locations, the fossiliferous horizons are separated only by a meter or a few meters.  

Crawford et al. (1989) asserted that coal beds are present only in the Pennsylvanian 

succession in Georgia and that Pennsylvanian fossils are invariably found in the 

lowermost coal bed; Gillespie et al. (1989) noted that the early Pennsylvanian ages for 

the coals were based on “plant compression, [florae], palynomorphs, and invertebrate 

marine assemblages.”  Conversely, Crawford et al. (1989) noted that the uppermost 

limestone with a marine fossil “hash” contains an “abundant and diverse” Mississippian 

fauna.  In consideration of these data, Crawford et al. (1989) concluded that the 

Mississippian–Pennsylvanian boundary is mappable, available, and reliably consistent, 

but that it is time-consuming to recognize.   

3.8.3.3 Associated problem with the Pennington-Raccoon Mountain boundary 

McLemore (1971) interpreted the lower sandstone as basal unit of the Raccoon 

Mountain Formation (see also Thomas, 1979).  This interpretation requires that the 

Raccoon Mountain Formation must also include the uppermost Mississippian rocks, but 

provides a mappable contact.  Stratigraphic columns in other reports (e.g., Culbertson, 

1963; Crawford, 1986; Crawford et al., 1989; Grainger, 1983; Rich, 1986b), however, 

include the lower sandstone in the Pennington Formation and the Mississippian–

Pennsylvanian boundary, which is higher in the stratigraphy, also serves as the boundary 

between the Pennington and Raccoon Mountain.  The Mississippian–Pennsylvanian 

boundary is not easily identifiable and, thus, the formation boundary in this interpretation 

is not clearly mappable.  Chowns (1989) noted that all of the carbonate rocks in the 

succession are Mississippian in age.  The upper sandstone-conglomerate is the bluff-

forming sandstone of Cramer (1979), and the succession includes coal, which places it 

definitively within the Lower Pennsylvanian (Chowns, 1989).  
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3.8.3.4 Summary and commentary  

As Cramer (1979) mentioned, the attempts to assign a rock-stratigraphic marker 

to a time-stratigraphic horizon should be abandoned.  Drahovzal and Neathery (1971) 

expressively illuminated this problem by emphasizing time-equivalence of facies as 

opposed to the idea of “time-separated units superimposed on one another” in a “layer-

cake” stratigraphy.  Cramer (1979) also noted that lateral facies variations must be 

considered in favor of the more simplistic “layer-cake” approach to stratigraphy as used 

in the past.  Drahovzal and Neathery (1971) further emphasized that the spatial 

relationships are further complicated by crustal shortening from late Paleozoic thrust 

faulting, and that “new faunal data and new concepts in mapping help place each unit in 

its proper perspective.”   

Lateral correlation difficulties aside, however, one certainly should consider the 

data of Crawford (1986) to be locally accurate (i.e., in the vicinity of Little Sand 

Mountain or Rock Mountain).  After considering all the available data, the author agrees 

with the method introduced by McLemore (1971; also used by Thomas, 1979) of using 

the “lower” sandstone as a mappable marker for the base of the Raccoon Mountain 

Formation, which, in this interpretation, straddles the Mississippian–Pennsylvanian 

boundary.  The systemic boundary is not an easily recognizable horizon in the field, but 

can be assumed to be near the middle of the shaly interval in the Raccoon Mountain 

Formation between the lower and upper sandstone units as demonstrated by Crawford 

(1986).  The fact that the Mississippian–Pennsylvanian systemic boundary is a time-

stratigraphic horizon that is apparently located somewhere within a lithologically 

indistinguishable succession of thin argillaceous sandstones and sandy shale layers is 

consistent with continuous, uninterrupted deposition but exacerbates the problem of time 

correlation. 

 

3.9 SUMMARY OF REGIONAL STRATIGRAPHY  

The Paleozoic strata are divided into four lithotectonic units (Thomas 2001, 2007; 

Thomas and Bayona, 2005) on the basis of general stratigraphic characteristics and 

mechanical behaviour during deformation (Figure 1-4): Unit 1, the regional dominant 

weak layer, containing the regional décollement, encompasses Lower to lower Upper 
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Cambrian fine-grained clastic rocks and minor thin-bedded limestones (Rome and 

Conasauga Formations); Unit 2, the regional dominant competent layer, which controls 

ramp geometry, is an Upper Cambrian-Lower Ordovician massive carbonate unit (Knox 

Group); Unit 3, a relatively thin, laterally variable, heterogeneous Middle Ordovician to 

Lower Mississippian succession of limestone, shale, sandstone, and chert; and Unit 4, an 

Upper Mississippian-Pennsylvanian synorogenic clastic wedge dominated by shale in the 

lower part and generally coarsening upward into sandstone and shale.  The detachment of 

the Kingston–Chattooga composite thrust sheet is persistently in shale-dominated facies 

of the Middle to lower Upper Cambrian Conasauga Formation (Unit 1).  In northwestern 

Georgia, Units 3 and 4 primarily are deformed passively over the underlying regional 

competent layer (Unit 2).  Topography in northwestern Georgia is largely controlled by 

stratigraphy:  most ridges are on Unit 3, and topographic flats are predominantly on 

shale-dominated strata in Units 1 and 4.  Interestingly, the idea of dividing the regional 

stratigraphy into layers on the basis of relative rigidity and the inferences of how they 

affect structures in the southern Appalachians were first discussed by Hayes in 1891. 
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Figure 3-1.  Generalized stratigraphic column for the Paleozoic succession in 

northwestern Georgia. 
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Figure 3-2.  Comparative stratigraphic column for the Paleozoic succession in 

northwestern Georgia, adapted from Spencer (1893). 
 

 
 
Figure 3-3.  County location map for northwestern Georgia. 
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Figure 3-4.  Comparative stratigraphic column for the Knox Group in Alabama 

and Tennessee showing the relationship of the Mascot Dolomite and Kingsport 
Formation to the Longview Limestone and Newala Limestone, from Raymond (1993). 
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Figure 3-5.  Cross sections of the Middle and Upper Ordovician showing the two 

dominant facies, modified from Carter and Chowns (1993) with field observations 
(thickness and correlation) for Maddox Gap.  Generally, shallow-water carbonates of the 
Middle Ordovician Chickamauga Limestone predominate in the northwest and grade 
southeastward into peritidal clastic red bed facies of the Middle and Upper Ordovician 
Greensport and Sequatchie Formations. 
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Figure 3-6.  Subdivisions of the Chickamauga Supergroup, from Milici and 

Smith (1969). 
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Figure 3-7.  Diagrammatic stratigraphic cross sections and correlations for the 

Mississippian succession in northwestern Georgia, from Thomas (1979). 
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Figure 3-8.  Alternate interpretations of the Mississippian succession in 

northwestern Georgia, from Rich (1986b). 
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Figure 3-9.  Correlation chart noting evolution of nomenclature of the 

Pennsylvanian succession in northwestern Georgia, from Cramer (1979).   
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Figure 3-10.  General columnar sections of the Upper Mississippian and Lower 

Pennsylvanian succession in northwestern Georgia, from Cramer (1979). 
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Figure 3-11.  Details of biostratigraphic markers in the Lower Pennsylvanian and 

Upper Mississippian, adapted from Crawford (1989). 
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Chapter IV: 

STRUCTURAL GEOLOGY OF NORTHWESTERN GEORGIA 

 

4.1 INTRODUCTION TO REGIONAL STRUCTURAL GEOLOGY 

Hayes first published studies of the southern Appalachian faults in northwestern 

Georgia (1891), and of the general structural geology of the region (1894) and in the area 

of Rome (1902).  Spencer (1893) summarized the folds and major faults in each county in 

northwestern Georgia and noted bedding orientation measurements.  Butts (1948) 

summarized the structural geology of northwestern Georgia particularly in the context of 

the major folds and thrust faults.  Kesler (1975) documented the structural geology of 

northwestern Georgia with particular focus on the Rome and Coosa faults.  Chowns 

(1989) summarized the structural geology of northwestern Georgia particularly in the 

context of the major thrust sheets and thrust faults, which he divided into the foreland 

thrust domain, the imbricate thrust domain, and the Rome–Coosa thrust domain.  Rich 

(1992) documented a possible relation of major folds and faults in northwestern Georgia 

to a set of basement faults.  Rich (1992) suggested that basement faults controlled 

location of folds and localized changes in stratigraphic thicknesses that directly affected 

changes in structural style.  Most recently, Thomas and Bayona (2005) summarized the 

regional structural geology and documented details related to thrust sequences and 

palinspastic restorations of the major thrust sheets, and along-strike structural changes at 

transverse zones. 

This chapter will integrate the past published work with new data collected as part 

of the current research.  Parts of this chapter have been previously assembled for a 

manuscript by Cook and Thomas (in press). 

4.1.1 Review of regional thrust sheets and thrust faults 

 In northeastern Alabama and northwestern Georgia, the frontal structures include 

the northeastward-striking Sequatchie anticline and Lookout Mountain and Pigeon 

Mountain synclines (Figures 1-3 and 1-4).  Southeastward at the trailing edge of the 

Coosa thrust sheet, the approximately 070-striking Cartersville fault intersects the 

approximately 000-striking Great Smoky fault (Figure 1-3).  These two structural strikes 

throughout the trailing structures define a subrecess of the Appalachian thrust belt in 
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northwestern Georgia.  Just southeast of Lookout Mountain–Pigeon Mountain syncline, 

the composite Kingston–Chattooga–Clinchport thrust sheet bears interfering structures 

with the two regional trends (Figure 1-4).  Farther southeast, at the trailing edge of the 

composite thrust sheet in the Georgia subrecess, the two regional trends are observed in 

the traces of the Rome fault and the Coosa fault (Figure 1-4).   

 

4.2 REGIONAL SETTING OF SOUTHERN APPALACHIAN STRUCTURES IN 

GEORGIA 

Regionally, the Appalachian thrust belt includes the gradually curved Tennessee 

salient, convex toward the craton in the direction of thrust translation, and the more 

angular bend of the Alabama recess, concave toward the craton.  At the Georgia 

subrecess in northwestern Georgia, north-northeastward-striking thrust faults and related 

folds in the southern arm of the Tennessee salient intersect east-northeastward-striking 

thrust faults and related folds that diverge from the predominant strike of the eastern arm 

of the Alabama recess (Figure 1-3).   

  The Sequatchie anticline (Figure 1-3), along the northwestern structural front of 

the southern Appalachian thrust belt (Thomas and Bayona, 2005), has a remarkably 

straight axial trace trending approximately 040 and extending from the front of the 

Alabama recess on the southwest to a tangent near the apex of Tennessee salient on the 

northeast.  The straight trace crosses the foreland with no deflection in strike at the 

Georgia subrecess.  Parallel to and southeast of the Sequatchie anticline, the frontal 

Appalachian structures are characterized by narrow anticlines and broad flat-bottomed 

synclines, the southeasternmost of which is the Lookout Mountain syncline, and a 

southeastern branch, the Pigeon Mountain syncline (Figure 1-3).   

In contrast, along the trailing edge of the Appalachian sedimentary thrust belt, the 

Cartersville and Great Smoky faults mark the leading edges of metamorphic thrust sheets 

and intersect at approximately 70° (Figure 1-3).  In Alabama, the Cartersville and related 

Talladega faults generally parallel the regional 040 trend of the thrust belt; but in 

Georgia, the Cartersville fault bends to 070 and intersects the Great Smoky fault, which 

trends approximately 000 (Figure 1-3).  The intersection of the Cartersville and Great 
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Smoky faults is the most pronounced surface expression of the two regional structural 

trends in the Georgia subrecess (Thomas and Bayona, 2005).   

In the trailing part of the Appalachian sedimentary thrust belt (in the immediate 

footwall of the bend in the Cartersville/Great Smoky fault system), the trend of the 

Eastern Coosa fault bends abruptly from 020 on the north to 070 on the southwest, 

framing the Georgia subrecess (Figure 1-3).  Where the fault bends abruptly in strike, 

several trailing splays extend southward, continuing along the direction of strike of the 

north-northeast-striking leading fault (Figure 1-4).  The intersection between the Eastern 

Coosa fault and the trailing splays in the hanging wall defines a clear interference pattern 

between the two dominant strike directions of the leading fault.  Farther southwestward in 

easternmost Alabama, the 070-striking segment of the Coosa fault merges into the 

predominant 040-trending Appalachian structures (Figure 1-3). 

In intermediate structures between the sharply bent Eastern Coosa fault and the 

nearly straight frontal structures (e.g., Lookout Mountain syncline), the bend in strike is 

absorbed by various intersecting and interfering folds and thrust faults in the Kingston–

Chattooga–Clinchport composite thrust sheet (Figures 1-3 and 1-4).  The distinct 

structural intersection in these intermediate structures, at an angle of approximately 50° 

between two distinct elements of regional strike, characterizes the Georgia subrecess.  

Structures striking 020 in the southern arm of the Tennessee salient and striking 070 in 

the eastern arm of the Alabama recess plunge from opposite directions into the 

depression of the Floyd synclinorium in the trailing part of the Kingston–Chattooga–

Clinchport composite thrust sheet (Figures 1-3 and 1-4).   

The Rome thrust sheet, consisting of Cambrian shale-dominated facies of the 

Conasauga Formation, bounds the southern and eastern sides of the subrecess (Figures 1-

3 and 1-4).  Trailing the eastern side of the subrecess, the Rome fault has a highly sinuous 

trace, indicating a folded, subhorizontal fault surface (Figures 1-3 and 1-4).  Along the 

southern side, the Rome fault trace has an average trend of approximately 090 but is 

highly sinuous in detail (Cressler, 1970), indicating a subhorizontal envelope of folds of 

the fault surface that cuts obliquely across several thrust ramps and folds in the footwall.  

In addition to the irregular map trace, the shallow dip of the Rome thrust sheet is evident 

from the lack of seismic imaging of the near-surface fault (Thomas and Bayona, 2005).  
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Hayes (1891, 1902) and Butts (1948) cited the preservation of the Rome fault in synclinal 

structures as evidence for folding after the emplacement of the Rome fault hanging wall.  

The Rome fault truncates footwall folds that are coaxial with the folds of the fault 

surface; however, the fault-truncated footwall beds are folded more tightly than is the 

fault surface.  The map relationships show that older footwall folds were truncated by an 

out-of-sequence Rome fault, and that the footwall folds were subsequently tightened, 

folding the Rome thrust sheet along with the footwall beds (Thomas and Bayona, 2005).  

Farther to the west in Alabama, the trace of the Rome fault curves to parallel the large-

scale Appalachian structures (Figure 1-3). 

 

4.3 STRUCTURE OF THE GEORGIA SUBRECESS IN NORTHWESTERN 

GEORGIA 

Unique structural expressions distinguish three structural domains in the Georgia 

subrecess:  1) the Kingston–Chattooga anticlinorium, which includes the frontal 

structures of the thrust sheet; 2) the Little Sand Mountain–Horn Mountain fold train, 

which trends approximately 020 in the northern part of the Floyd synclinorium; and 3) 

the Simms Mountain–Horseleg Mountain fold train, which trends approximately 070 in 

the southern part of the Floyd synclinorium (Figure 1-4).  The two distinctive structural 

trends are evident in Figure 4-1.  Folds of both structural trends plunge into the 

depression of the Floyd synclinorium in the trailing part of the Kingston–Chattooga 

composite thrust sheet (Figures 1-3 and 1-4).  An interference pattern in the structural 

intersection in the Georgia subrecess between east-northeastward- and north-

northeastward-striking folds and faults enables the tracing of both strike directions 

through parts of the intersection.  Graphical presentations (such as stereoplots and Rose 

diagrams) of the structural orientation data collected during the present research were 

prepared using GEOrient version 9.44 software package designed by Dr. Rod Holcomb.   

 

4.3.1 Kingston–Chattooga anticlinorium 

The northwestward-verging Kingston fault and a leading imbricate bound the 

southeastern limb of the Lookout Mountain syncline (Figure 1-4).  Only a very gentle 

concave-cratonward curvature of the Kingston fault corresponds roughly to the more 
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angular recess between the fold trains within the Floyd synclinorium farther to the 

southeast.  The Chattooga fault and a leading imbricate parallel the trailing limb of the 

Kingston thrust sheet and end northeastward along strike, indicating that the Chattooga 

fault is a splay in a composite thrust sheet from the detachment of the Kingston fault 

(Figure 1-4).   

The leading part of the Kingston–Chattooga composite thrust sheet forms the 

structurally high Kingston–Chattooga anticlinorium exposed in Units 1-3 (Figure 1-4).  

The anticlinorium is deformed by internal folds and the two splays of the Chattooga fault.  

The trailing limb of the anticlinorium (the Taylor Ridge monocline) dips southeastward 

beneath the relatively deep Floyd synclinorium, which plunges into a regional depression 

within the recess between the oppositely plunging fold trains (Figure 1-4).  The Taylor 

Ridge monocline is expressed at the surface primarily in Unit 3, striking approximately 

025 on the map in Figure 1-4.  The calculated average bedding plane is oriented 033 20 

SE (Figure 4-2).  Five bedding attitude readings from a small-scale fold exposed in the 

US27/GA1 roadcut through Taylor Ridge monocline, however, affect the calculations 

from the stereoplot; the small-scale fold orientations are removed from the data set in 

Figure 4-3.  Figure 4-3 shows that the calculated average bedding plane is oriented 030 

20 SE.  The calculated girdle, which is a best-fit great circle that approximates the fold 

plane, is nearly vertical (Figure 4-3).  The calculated β-axis, which is the pole to the 

calculated girdle and approximates the orientation of the fold axis, plunges 4° to a trend 

of 199 (Figure 4-3).  Bedding orientations from only the small-scale fold in Taylor Ridge 

monocline are shown in Figure 4-4; the average bedding plane is oriented 303 56 SW, 

which shows that the fold is nearly orthogonal to the general trend of the monocline. 

4.3.2 Little Sand Mountain–Horn Mountain fold train 

To the north and east of the subrecess, south-southwestward-plunging flat-

bottomed synclines and narrow, steep-sided anticlines approximately parallel the north-

northeastward-striking Chattooga fault and Taylor Ridge monocline, and plunge south-

southwestward into the depression of the Floyd synclinorium (Figure 1-4).  Little Sand 

Mountain syncline, Horn Mountain anticline, and the intervening folds define a north-

northeastward-trending fold train.  Johns, Mill, and South Horn Mountain anticlines have 

the geometry of cylindrical folds, except at the southward-plunging ends which are more 
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conical folds.  The folds in this fold train demonstrate a collective calculated girdle 

oriented 280 86 SW, and a calculated fold axis (β) that plunges 4° to a trend of 010, as 

shown in Figure 4-5.   This north-northeastward plunge of the calculated fold axis is a 

reflection of irregularities in the shallow plunge of the fold axes of the cylindrical parts of 

these anticlines (particularly Horn Mountain anticline).  Furthermore, although the 

conical plunging ends of the folds clearly plunge southward in map view (Figure 1-4), 

exposure of the down-plunge parts of the folds is poor, and thus little or no data were 

collected and included in the stereoplot.  All of the anticlines rise steeply above the flat-

bottomed synclines and have amplitudes of approximately 650 to 1500 m.  Spacing 

between the anticlines is approximately 4 to 7 km. 

The flat-bottomed Little Sand Mountain syncline, which is expressed at the 

surface in a sandstone in Unit 4, parallels the southeastern (downdip) side of the Taylor 

Ridge monocline, trending approximately 020 (Figure 1-4).  The northwestward-verging 

Clinchport fault ramps through the trailing (southeast) limb of the Little Sand Mountain 

syncline, and northeastward along strike, obliquely truncates the 000-trending Dick Ridge 

anticline (Figure 1-4).  The calculated fold plane for Little Sand Mountain syncline is 

vertical, as shown in Figure 4-6, and the calculated fold axis (β) trends 040. 

Dick Ridge anticline is the most sinuous separate fold in the map area.  In the 

northern part of the study area near the northeastern corner of Walker County, Dick 

Ridge anticline trends approximately 015 on the map in Figure 1-4.  In this area, the 

northwestern limb of the anticline is exposed in a roadcut. The average bedding plane at 

this location is oriented 018 73 NW, and the calculated fold axis for the anticline there 

plunges 1° to a trend of 199 (Figure 4-7).  Southward toward the southeastern end, the 

anticline curves into an intersection with the northeastern end of Strawberry Mountain 

(cf. section 4.3.3) and trends approximately 355 (Figure 1-4). 

Johns Mountain anticline is a cylindrical ramp anticline in the hanging wall of the 

Clinchport fault exposed in Units 2 and 3, trending approximately 020 on the map in 

Figure 1-4.  The Johns Mountain anticline ends in a southwestward-plunging, apparently 

conical fold associated with the southwestern end of the Clinchport fault (Figure 1-4).   
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Northeastward along strike, the Johns Mountain anticline merges with the up-

plunge part of the 000-trending Horn Mountain anticline. The calculated fold axis for 

Horn Mountain anticline plunges 23° to a trend of 012 (Figure 4-8).   

In the area where Horn Mountain anticline plunges southward, it intersects two 

smaller, 000-trending, doubly plunging anticlines:  Mill Mountain and South Horn 

Mountain anticlines (Figure 1-4).  In plan view, these two smaller anticlines are similar in 

shape to the smaller Turkey Mountain and Baugh Mountain anticlines and an unnamed 

fold just to the northeast in a window in the hanging wall of the Rome fault.  Mill 

Mountain and South Horn Mountain anticlines, however, are higher in amplitude than 

these smaller anticlines.  The amplitudes of Mill Mountain and South Horn Mountain 

anticlines are similar to that of Horn Mountain anticline, which makes the individual 

structures nearly indistinguishable near the area of intersection. 

Turkey Mountain anticline, in the hinterland of the southwestern end of Johns 

Mountain anticline, is a doubly plunging anticline exposed in Unit 3, trending 015 

(Figure 1-4).  The calculated fold plane is nearly vertical, as shown in Figure 4-9, and the 

calculated fold axis trends 206. 

4.3.3 Simms Mountain–Horseleg Mountain fold train 

On the southern side of the subrecess, east-northeastward-plunging flat-bottomed 

synclines and narrow, steep-sided anticlines diverge from the north-northeastward-

striking Chattooga fault and Taylor Ridge monocline, and plunge northeastward into the 

depression of the Floyd synclinorium (Figure 1-4).  Simms Mountain anticline, Horseleg 

Mountain anticline, and the intervening folds define a north-northeastward-trending fold 

train.  The folds in this fold train demonstrate a collective average fold axis that plunges 

3° to a trend of 065, as shown in Figure 4-10.  The anticlines rise steeply above the flat-

bottomed synclines and have amplitudes of approximately 650 to 1000 m; spacing 

between the anticlines is approximately 4 to 7 km. 

Simms Mountain anticline trends approximately 072 and plunges into the deepest 

part of the Floyd synclinorium (Figure 1-4).  Southwestward up-plunge, Simms Mountain 

anticline shows distinct fold interference with the Taylor Ridge monocline (Figure 1-4).  

Near the northeastern plunging end, the fold plane is nearly vertical and the calculated 

fold axis plunges 5° to a trend of 062 (Figure 4-11).  Near the southwestern end of Simms 



 129

Mountain anticline, the northwestern limb intersects Taylor Ridge monocline.  In this 

area, along a road through the northwestern limb, numerous outcrop-scale folds can be 

observed.  The outcrops at this location show a calculated fold axis plunges 33° to a trend 

of 072 (Figure 4-12).  The steeper plunge near the structural intersection demonstrates 

lateral discontinuity of structures at this scale and suggests structural interference and/or 

overprint of the dip of Taylor Ridge monocline on the fold axis of Simms Mountain 

anticline.  

The flat-bottomed Rock Mountain syncline is expressed at the surface in 

sandstones of Unit 4 and trends approximately 067 on the map in Figure 1-4.  The 

average bedding plane observed for Rock Mountain is oriented 067 28 NW (Figure 4-13).  

The fold plane is nearly vertical, as shown in Figure 4-13, and the calculated fold axis 

trends 063. 

Lavender Mountain anticline is a cylindrical fold, forming a ridge of Unit 3, 

trending approximately 064 in map view, and ending in a northeastward-plunging conical 

fold (Figure 1-4).  Near the northeastern end of Lavender Mountain anticline, the fold 

plane is nearly vertical and the calculated fold axis plunges 5° to a trend of 080 (Figure 4-

14).  The northeasterly plunge is also represented in the average bedding orientation of 

355 05 NE (Figure 4-14).  The southwestern up-plunge end of the Lavender Mountain 

anticline shows fold interference with Turnip Mountain anticline, which is a ramp 

anticline exposed in Units 2 and 3, trending approximately 020 in map view, 

approximately parallel with the Taylor Ridge monocline in the footwall (Figure 1-4).   

Judy Mountain syncline is expressed in a sandstone within Unit 4 immediately 

southwest of Lavender Mountain anticline.  Judy Mountain syncline trends 

approximately 067 (Figure 1-4).   

Horseleg Mountain anticline is exposed in Unit 3 and trends approximately 059 

(Figure 1-4).  The average bedding plane observed for Horseleg Mountain is oriented 062 

58 NW (Figure 4-15).  The calculated fold axis plunges 11° to a trend of 055 (Figure 4-

15).   

Strawberry Mountain anticline, which is approximately 17 km northwest of 

Simms Mountain anticline and on the opposite end of the Little Sand Mountain syncline, 

trends approximately 059 on the map in Figure 1-4, parallel with other anticlines in the 
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Simms Mountain–Horseleg Mountain fold train.  Strawberry Mountain anticline ends in 

both directions along strike by interference with the Taylor Ridge monocline on the 

southwest and with Dick Ridge anticline and the Clinchport fault (part of the Simms 

Mountain–Horseleg Mountain fold train) on the northeast (Figure 1-4).  Although the 

Strawberry Mountain anticline has the orientation of the Simms Mountain–Horseleg 

Mountain fold train, it is isolated within the Little Sand Mountain–Horn Mountain fold 

train, clearly showing interference between the two fold sets. 

Bedding orientations near the crest of Strawberry Mountain anticline are 

accessible on a forestry road along the northwestern half of the mountain; the poles to 

these bedding planes are plotted in Figure 4-16.  In the stereoplot, the calculated mean 

plane strikes 068 and dips 16° SE, and the calculated fold axis plunges 1° to a trend of 

244.  These measurements are in accord with the observed map-scale structures.   

Bedding attitudes across part of Strawberry Mountain anticline near the 

southwestern end that intersects Taylor Ridge monocline are exposed in an 

approximately 2-km-long roadcut north of Subligna; poles to bedding through this 

roadcut are plotted in Figure 4-17.  In this stereoplot, average bedding orientation is 075 

05 NW, and the calculated fold axis (β) plunges 5° to a trend of 005.  This trend is closer 

to that of Taylor Ridge monocline than that of Strawberry Mountain anticline; and, thus, 

it suggests some local structural overprint or interference between these two folds in the 

area near the intersection.  Upon closer inspection, a marked change in strike can be 

observed along this roadcut; the data on either side of the abrupt change were 

subsequently separated into northwestern and southeastern populations.  The 

northwestern population is plotted in Figure 4-18.  In this stereoplot, the calculated mean 

plane strikes 034 and dips 7° NW, and the calculated fold axis plunges 3° to a trend of 

014.  The southeastern population is plotted in Figure 4-19.  In this stereoplot, the 

calculated mean plane strikes 285 and dips 6° NE, and the calculated fold axis plunges 6° 

to a trend of 023.  The differences between Figures 4-18 and 4-19 demonstrate the 

existence of two distinct populations of structural orientations, which correspond to two 

domains on either side of the abrupt change in strike along the roadcut.  The more north-

northwesterly calculated fold axis of the northwestern population suggests a stronger 
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overprint from the structural trend of Taylor Ridge monocline than is seen in the 

southeastern population. 

Similarly, the structural orientations of bedding on Taylor Ridge monocline 

change near the intersection with Strawberry Mountain anticline.  To the west of the 

intersection, bedding on Taylor Ridge monocline strikes 050 on average (Figure 4-20).  

In the adjacent areas to the north and south of the intersection, bedding on Taylor Ridge 

monocline strikes 027 and 038, respectively, on average (Figures 4-21 and 4-22).  An 

outcrop farther to the north along Taylor Ridge monocline from the intersection with 

Strawberry Mountain anticline, which is shown in Figure 4-23, contains one bedding 

orientation that strikes 065 and dips 26° SE.  The mean bedding plane for all these data 

strikes 025 and dips 17° SE.  If the single more east-northeasterly bedding attitude 

measurement is omitted, the remaining data show a mean bedding orientation that strikes 

020 and dips 17° SE (Figure 4-24), and the calculated fold axis plunges 1° to a trend of 

022.  These stereoplots demonstrate that the bedding at the outcrop is oriented along the 

primary structural trend of Taylor Ridge monocline.  The more east-northeasterly 

bedding attitude, however, is only about 3 km from the center of the structural 

intersection with Strawberry Mountain anticline, and indicates a small-scale fold parallel 

with the general structural trend of the intersecting anticline.  

The intersection between Strawberry Mountain anticline and Dick Ridge anticline 

also demonstrates structural interference.  Bedding attitudes from outcrops in the area of 

the intersection are shown in Figure 4-25.  In this stereoplot, the mean bedding 

orientation strikes 060 and dips 17° SE, and the calculated fold axis plunges 15° to a 

trend of 175.  The mean bedding orientation is approximately the same as the structural 

trend of Strawberry Mountain anticline and the calculated fold axis is similar to the 

structural trend of Dick Ridge anticline.  These data suggest that the bedding in this limb 

of Strawberry Mountain anticline may be locally overprinted with a fold that 

approximately parallels Dick Ridge anticline. 

 

4.4 BASEMENT FAULTS IN NORTHWESTERN GEORGIA 

Structural cross sections across northwestern Georgia by Woodward in 

Woodward and Gray (1985) depict the basement as relatively flat and, thus, do not 
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include any interaction between basement faults and the overlying stratigraphy or 

structures.  Similarly, in a study of a seismic reflection profile across part of the Valley 

and Ridge in Tennessee, Harris (1976) attributed apparent broad folds in the lower part of 

the stratigraphic succession to “pull-ups” caused by acoustic velocity contrasts.  In 

contrast, Thomas (1982) and Kaygi et al. (1983) suggested that basement faults with 

considerable offset along them influenced regional sedimentary deposition and structural 

styles in Alabama.  These basement faults are related to Precambrian rifting along the 

continental margin as suggested by Thomas (1977).  Rich (1992) noted that the 

displacement along the basement faults diminishes northeastward from Alabama and that 

the effects of large-displacement basement faults on the stratigraphy and structure in the 

Valley and Ridge of Tennessee is not yet evident; he also suggested that the seismic 

“pull-ups” cited by Harris (1976), however, likely indicate some basement relief below 

the décollement.  Rich (1992) further noted that, as a result of the northeastward decrease 

in basement fault offset, Appalachian structures in Georgia may represent the transition 

from the structural styles in Alabama into those more characteristic in Tennessee.  

Moreover, Rich (1992) noted that thrust deformation in northwestern Georgia was 

directed primarily “uphill” over the reactivated basement faults and that duplex formation 

could have been “induced partly” by buttressing effects of the steep basement faults.  

Wiltschko and Eastman (1983, 1988) documented how basement warps and faults 

concentrate stress in the immediately overlying cover rocks.  Along strike to the 

southwest in Alabama, Thomas (2001) demonstrated that basement faults localized a 

thicker deposit of Cambrian shales that later were deformed into ductile duplexes; Cook 

and Thomas (in press) later demonstrated a similar structure in northwestern Georgia.  

Research by Rich (1992) documented the configuration of basement faults in 

northwestern Georgia (Figure 4-26) on the basis of the location and orientation of surface 

structures and Mississippian facies changes (Rich noted a lack of seismic reflection data 

in the report).  Rich (1992) interpreted these steep basement faults to have been 

reactivated intermittently during the Paleozoic; and, thus, they significantly influenced 

the geometry and locations of Appalachian folds and faults, and the depositional 

framework, especially during the Mississippian (cf. section 3.7).  The interpreted 

basement faults of Rich (1992) can be divided into two primary orientations, north-
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northeast and east-northeast, which correlate directly with surface structures and with 

regional-scale facies changes.   

According to the map of Butts (1948), the Clinchport fault ends southwestward 

along strike near the northeastern end of Simms Mountain.  Rich (1992) interpreted a 

shift from horizontal displacement along the fault into a “disturbed zone” within the 

Floyd synclinorium, which functions as a displacement “transfer zone” (i.e., of 

Dahlstrom, 1969) and continues southwestward under the Rome fault.  Similarly, 

Chowns (1989) shows a speculative correlation of the Clinchport fault to a fault at the 

southwestern end of Lavender Mountain that is truncated on the southwestern end by the 

Rome fault.  Chowns (1989) and Rich (1986c) suggested that the Clinchport fault is 

linked on the southwest with the Helena fault in Alabama.  Rich (1992) concluded that if 

the two faults are linked, then the down-to-southeast basement faults were a “major 

causal factor in producing thrust slices that extended longitudinally over great distances 

along the Appalachian trend as relatively continuous tectonostratigraphic packages”; and 

that the different trends in the basement faults directly influenced shifts in direction of 

thrust deformation. 

Rodgers (1970) noted that the Rome fault in the type area indicates a deep 

depression. Rich (1992) related the northern boundary of this depression to an east-

northeast-directed basement fault, which parallels those that he interpreted to underlie 

Lavender and Simms Mountains. 

More recently, studies by Bayona and Thomas (2003, 2006) and Thomas and 

Bayona (2005) documented the configuration of basement faults in northwestern 

Georgia, and their research included data from numerous seismic reflection profiles.  The 

basement fault data from these studies were used to construct the cross sections included 

with the present research.  Essentially, Bayona and Thomas (2006) show a transition in 

Georgia between two orientations of basement faults:  one northeast-striking that 

corresponds to the Alabama promontory and one north-northeast-striking that 

corresponds to the southwestern flank of the Tennessee embayment. 
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Figure 4-2 
Equal-area stereoplot 
of poles to bedding on 

Taylor Ridge 
monocline. 

 
Number of data points      
= 172 
 
Mean principal orientation 
= 033 20 SE 

Figure 4-1 
Rose Diagram of 

bedding on 
Taylor Ridge 
monocline. 

 
Number of data points      
= 639 
 
Sector angle = 6° 
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Figure 4-3 
Equal-area stereoplot 
of poles to bedding on 

Taylor Ridge 
monocline without 

small-scale fold 
 
Number of data points      
= 167 
 
Mean principal orientation 
= 030 20 SE 
 
Calculated girdle:          
289 86 NE 
 
Calculated beta axis:         
4, 199 

Figure 4-4 
Equal-area stereoplot 
of poles to bedding on 

Taylor Ridge 
monocline small-scale 

fold 
 
Number of data points      
= 5 
 
Mean principal orientation 
= 303 56 SW 
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Figure 4-6 
Equal-area stereoplot 
of poles to bedding on 
Little Sand Mountain 

syncline  
 
Number of data points      
= 15 
 
Calculated girdle:          
310 90 NE 
 
Calculated beta axis:         
0 220

Figure 4-5 
Equal-area stereoplot 
of poles to bedding on 
Little Sand Mountain– 

Horn Mountain fold 
train  

 
Number of data points      
= 65 
 
Calculated girdle:          
280 86 SW 
 
Calculated beta axis:        
4, 010 
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Figure 4-8 
Equal-area stereoplot 
of poles to bedding on 

Horn Mountain 
anticline 

 
Number of data points      
= 26 
 
Calculated girdle:          
282 67 SW 
 
Calculated beta axis:      
23, 012 

Figure 4-7 
Equal-area stereoplot 
of poles to bedding on 
Dick Ridge anticline 

 
Number of data points      
= 14 
 
Mean principal orientation 
= 018 73 NW 
 
Calculated girdle:          
289 89 NE 
 
Calculated beta axis:        
1, 199 
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Figure 4-9 
Equal-area stereoplot 
of poles to bedding on 

Turkey Mountain 
anticline 

 
Number of data points      
= 10 
 
Calculated girdle:          
296 88 NE 
 
Calculated beta axis:        
2, 206 

Figure 4-10 
Equal-area stereoplot 
of poles to bedding on  

Simms Mountain–
Horseleg Mountain 

fold train 
 
Number of data points      
= 252 
 
Calculated girdle:          
335 87 SW 
 
Calculated beta axis:        
3, 065 



 139

 

 
 

 
 
 
 

Figure 4-11 
Equal-area stereoplot 
of poles to bedding on  

Simms Mountain 
anticline  

(northeastern end) 
 
Number of data points      
= 42 
 
Calculated girdle:          
332 85 SW 
 
Calculated beta axis:        
5, 062 

Figure 4-12 
Equal-area stereoplot 
of poles to bedding on  

Simms Mountain 
anticline  

(southwestern end) 
 
Number of data points      
= 15 
 
Calculated girdle:           
342 57 SW 
 
Calculated beta axis:      
33, 072 
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Figure 4-13 
Equal-area stereoplot 
of poles to bedding on  

Rock Mountain 
syncline 

 
Number of data points      
= 17 
 
Mean principal orientation 
= 067 28 NE 
 
Calculated girdle:          
333 88 SW 
 
Calculated beta axis:        
2, 063 

Figure 4-14 
Equal-area stereoplot 
of poles to bedding on  
Lavender Mountain 

anticline near 
northeastern end 

 
Number of data points      
= 11 
 
Mean principal orientation 
= 355 05 NE 
 
Calculated girdle:           
350 85 SW 
 
Calculated beta axis:        
5, 080 
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Figure 4-15 
Equal-area stereoplot 
of poles to bedding on  

Horseleg Mountain 
anticline 

 
Number of data points      
= 73 
 
Mean principal orientation 
= 062 58 NW 
 
Calculated girdle:          
325 79 SW 
 
Calculated beta axis:      
11, 055 

Figure 4-16 
Equal-area stereoplot 
of poles to bedding on  
Strawberry Mountain 

anticline along 
topographic crest 

 
Number of data points      
= 49 
 
Mean principal orientation 
= 068 16 SE 
 
Calculated girdle:          
334 89 NE 
 
Calculated beta axis:        
1, 244 
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Figure 4-17 
Equal-area stereoplot 
of poles to bedding on  
Strawberry Mountain 
anticline along roadcut 
 
Number of data points      
= 114 
 
Mean principal orientation 
= 079 05 NW 
 
Calculated girdle:          
275 85 SW 
Calculated beta axis: 5, 
005

Figure 4-18 
Equal-area stereoplot 
of poles to bedding on  
Strawberry Mountain 

anticline along 
northwestern part of 

roadcut 
 
Number of data points      
= 41 
 
Mean principal orientation 
= 034 07 NW 
 
Calculated girdle:          
284 87 SW 
 
Calculated beta axis:        
3, 014 
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Figure 4-19 
Equal-area stereoplot 
of poles to bedding on  
Strawberry Mountain 

anticline along 
southeastern part of 

roadcut 
 
Number of data points      
= 73 
 
Mean principal orientation 
= 285 06 NE 
 
Calculated girdle:          
293 84 SW 
 
Calculated beta axis:        
6, 023 

Figure 4-20 
Equal-area stereoplot 
of poles to bedding on  

Taylor Ridge 
monocline west of 
intersection with 

Strawberry Mountain 
anticline 

 
Number of data points      
= 4 
 
Mean principal orientation 
= 050 36 SE 
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Figure 4-21 
Equal-area stereoplot 
of poles to bedding on  

Taylor Ridge 
monocline north of 
intersection with  

Strawberry Mountain 
anticline 

 
Number of data points      
= 12 
 
Mean principal orientation 
= 027 15 SE 

Figure 4-22 
Equal-area stereoplot 
of poles to bedding on  

Taylor Ridge 
monocline south of 
intersection with  

Strawberry Mountain 
anticline 

 
Number of data                 
= 9 
 
Mean principal orientation 
= 038 14 SE 
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Figure 4-23 
Equal-area stereoplot 
of poles to bedding on  

Taylor Ridge 
monocline farther 

north of intersection 
with Strawberry 

Mountain anticline 
 
Number of data points      
= 11 
 
Mean principal orientation 
= 025 17 SE 

Figure 4-24 
Equal-area stereoplot 
of poles to bedding on  

Taylor Ridge 
monocline farther 

north of intersection 
with Strawberry 

Mountain anticline 
(omitting point from 

small fold) 
 
Number of data points      
= 10 
 
Mean principal orientation 
= 020 17 SE 
 
Calculated girdle:           
292 89 SW 
 
Calculated beta axis:         
1, 022 
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Figure 4-25 
Equal-area stereoplot 
of poles to bedding on  
Strawberry Mountain 

anticline at 
intersection with Dick 

Ridge anticline 
 
Number of data points      
= 11 
 
Mean principal orientation 
= 060 17 SE 
 
Calculated girdle:          
085 75 NW 
 
Calculated beta axis:       
15, 175 
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Figure 4-26.  Basement fault map of northwestern Georgia, from Rich (1992).  In 

this interpretation, basement faults directly correlate to position and orientation of surface 
structures. 



 148

Chapter V: 

CROSS SECTIONS, SUBSURFACE STRUCTURE, VOLUME BALANCE 

 

5.1 CROSS SECTIONS AND SUBSURFACE STRUCTURE 

For this study, field measurements of structural orientation data and stratigraphic 

thickness have been obtained and compiled with structural data from other studies in the 

region (Butts, 1948; Cressler, 1963, 1964a, b, 1970, 1974; Georgia Geological Survey, 

1976; Thomas and Cramer, 1979; Osborne et al., 1988; Thomas and Bayona, 2005) to 

constrain construction of palinspastically restorable cross sections (Plate 2). The 

subsurface geology is interpreted from seismic reflection profiles and projection of 

surface data.  The depths to basement and thickness of a basal weak layer are measured 

from seismic reflection profiles, and structures of the overlying units are constructed by 

extending surface measurements (i.e., stratigraphic thickness and strike/dip, etc.) into the 

subsurface.  The seismic profiles show two distinct packages of clear layered reflectors in 

most places.  The lower package of layered reflectors corresponds to Unit 1, and the base 

of the package is near the base of the sedimentary cover above Precambrian crystalline 

basement (Figure 5-1).  The top of the lower package of layered reflectors marks the top 

of Unit 1.  Unit 2 is shown by seismic transparency with only weak, discontinuous 

internal reflectors.  The upper package of layered reflectors evidently corresponds to Unit 

3, and also defines the top of Unit 2.   

On the northwest, the Kingston–Chattooga anticlinorium is a broad structural high 

bounded on the southeast by the Taylor Ridge monocline, which dips into the deeper 

Floyd synclinorium.  Unit 2 is structurally lower within the Floyd synclinorium, which is 

partitioned on the southwest by east-northeastward-plunging anticlines of the Simms 

Mountain–Horseleg Mountain fold train and on the northeast by south-southwestward-

plunging anticlines of the Little Sand Mountain–Horn Mountain fold train, including the 

Clinchport thrust ramp (Johns Mountain anticline).  Seismic reflection profiles show that 

the top of Precambrian crystalline basement dips very gently southeastward and is broken 

by small steep normal faults (e.g., Thomas and Bayona, 2005).  In cross section, the 

difference in elevation between the base of Unit 2 in the Kingston–Chattooga thrust sheet 
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and the top of basement constitutes a large area to be filled (Plate 2 and Figure 5-1), 

requiring an interpretation of subsurface structure. 

Previous interpretations have consistently included imbricate thrust sheets of 

Units 1 and 2 in the core of the Kingston–Chattooga anticlinorium, as well as blind 

thrusts in the cores of the anticlines of the Little Sand Mountain–Horn Mountain and 

Simms Mountain–Horseleg Mountain fold trains (e.g., Thomas and Bayona, 2005).  The 

dual fault traces of the Kingston fault and leading imbricate and the Chattooga fault and 

leading imbricate have been interpreted to be the surface expression of long imbricate 

thrust sheets in the core of the anticlinorium.  Although this structural configuration 

satisfies the geometric form of the structures, other observations suggest that this 

interpretation may not be appropriate.  The Chattooga fault and leading imbricate both 

end along strike, suggesting a relatively small magnitude of displacement.  Furthermore, 

the Kingston fault and leading imbricate apparently terminate southwestward along strike 

and extend into an unfaulted detachment anticline (Thomas and Bayona, 2005).  Seismic 

reflection profiles clearly image the southeastern limb of the Lookout Mountain syncline 

in the footwall of the Kingston fault; however, the profiles are ambiguous southeast of 

the Kingston fault, where no coherent reflectors are shown above the basal package of 

layered reflectors above the basement except for very shallow reflectors of Units 2 and 3 

in the surface structures (Figure 5-1).  The seismic reflection profiles lack resolution of 

any possible imbricate thrust sheets of Unit 2 beneath the surface-exposed thrust sheet 

(Figure 5-1). 

Information applicable to the resolution of structural style in Georgia may be 

obtained by analogy from structures along strike to the southwest in the Appalachian 

thrust belt in Alabama.  In Alabama, deep drilling in the Gadsden mushwad (Figure 1-3) 

has documented a minimum thickness of 2835 m of intensely deformed and tectonically 

thickened dark-colored shale and thin-bedded limestone of the Middle to lower Upper 

Cambrian Conasauga Formation (Unit 1) (Thomas, 2001).  Seismic reflection profiles 

image dipping reflectors of the regional competent layer (Unit 2) both northwest and 

southeast of the Gadsden mushwad; however, the profiles show a distinct lack of 

coherent reflectors within the mushwad (cf. Figure 7 in Thomas, 2001).  The internal 

structure of the mushwad is inferred to include thrust faults that partition the ductilely 
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deformed mass into internally deformed horses.  Observations of outcrops and shallow 

core holes document disharmonic, tight, small-scale folds (amplitudes and wavelengths 

on the scale of a few meters) broken by faults of uncertain displacements.  The mushwad 

structure is interpreted to be a ductile duplex beneath a roof thrust sheet of the regional 

competent layer (Unit 2) and a structurally attached uppermost part of Unit 1.  The roof 

of the Gadsden mushwad has been eroded leaving the core of the duplex exposed; 

however, the structure of the roof can be inferred from bounding structures across strike 

(Thomas, 2001).  Farther to the southwest in Alabama, the crest of the Birmingham 

anticlinorium (Figure 1-3) includes multiple thrust faults and folds, as well as 

backthrusts, exposed in Unit 2 (Thomas, 2001; Thomas and Bayona, 2005).  These 

structures form the roof of a separate subsurface mushwad, which is also shown in 

seismic profiles as a zone lacking coherent reflectors.  Interestingly, prior to drilling of 

the first well into the Gadsden mushwad in 1985, the common interpretation was that the 

structurally high rocks at the top of the exposed Unit 1 reflect a subsurface stack of 

imbricate thrust sheets of Unit 2 and younger rocks (Thomas, 1985; Figure 9 in Thomas, 

2001). 

By analogy with ductile duplexes that have been documented along strike in the 

Appalachians in Alabama (Thomas, 2001), the subsurface structure beneath the 

Kingston–Chattooga anticlinorium, as well as beneath the trailing part of the composite 

thrust sheet, is interpreted here as a ductile duplex.  In this new interpretation, the mapped 

Kingston fault and leading imbricate, as well as the Chattooga fault and leading 

imbricate, are interpreted to be relatively low-magnitude thrust faults limited to the roof 

of the ductile duplex (Plate 2).  An interval of layered reflectors beneath Unit 2 shows 

that some strata in the uppermost part of Unit 1 are attached to the competent layer in the 

thrust sheet, and that the detachment of the Kingston–Chattooga composite thrust sheet is 

within Unit 1.  The roof thrust of the ductile duplex places Unit 1 strata in the Kingston–

Chattooga composite thrust sheet over ductilely deformed, tectonically thickened Unit 1 

in the ductile duplex.  The ductile duplex fills the space between the base of the thrust 

sheet and the top of the autochthonous lower part of Unit 1 overlying Precambrian 

basement beneath the décollement (Plate 2 and Figure 5-1). 
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Seismic reflection profiles show that the leading edge of the ductile duplex forms 

a tectonic wedge under Unit 2 in the northwest-dipping limb of the Kingston–Chattooga 

anticlinorium (common limb with the Lookout Mountain syncline) (Plate 2 and Figure 5-

1); a similar wedge is documented for the leading edge of the Gadsden mushwad in 

Alabama (Figures 5 and 7 in Thomas, 2001).  The folds of the Little Sand Mountain–

Horn Mountain and Simms Mountain–Horseleg Mountain fold trains are interpreted to be 

exaggerated detachment folds in the roof of the duplex, with the exception of the 

Clinchport fault-related fold (Johns Mountain anticline) and Horseleg Mountain anticline, 

which are interpreted to be translated detachment folds in the roof of the duplex (Plate 2). 

 

5.2 VOLUME BALANCE IN THE DUCTILE DUPLEX 

One of the primary objectives of this project is to compare the volume of rock in 

the ductile duplex in the present deformed state with the volume in a palinspastically 

restored state.  Although the cross sections compiled for this research have been revised 

since Cook and Thomas (in press) was submitted, part of the following text was 

assembled for that manuscript. 

In the cross sections (Plate 2), a large volume of ductilely deformed Unit 1 

(Cambrian Conasauga shale) is shown to fill the space beneath the roof thrust at the base 

of the Kingston–Chattooga–Clinchport thrust sheet.  A simplistic iteration of a 

palinspastically restored cross section, which employs only a line-length balancing of the 

competent layer (Unit 2), outlines the implications for an area-balanced reconstruction of 

the weak layer (Unit 1) (Panel 1 of Figure 5-2).  Such a reconstruction is applicable to the 

evolution of a detachment fold, in which the regional weak layer is tectonically thickened 

to fill the cores of detachment anticlines as the overlying competent layer is translated.  In 

this palinspastic reconstruction (Panel 1 of Figure 5-2), however, the restored area of Unit 

1 is only about 50% of the deformed area of Unit 1 in the ductile duplex (Panel 2 of 

Figure 5-2), clearly requiring a different explanation for the large excess in the area of 

Unit 1.   

The deformed-state cross sections assembled for this research were used to 

compile an isopach map of the ductile duplex (Figure 5-3).  For this isopach map, the 

thickness of the ductile duplex was measured at 200 m intervals and at inflection points 
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in the mushwad; these data were contoured by hand in Canvas X.  The contour map was 

exported as a shapefile into ESRI ArcMap, in which a triangulated irregular network 

(TIN) was created from the original values to yield a three-dimensional surface model 

representing the variations in thickness of the deformed-state ductile duplex (Figure 5-4).  

This TIN was then used to make grid calculations with a grid size of 50 m.  The surface 

area of the deformed-state ductile duplex from these calculations is approximately 

2.5×109 m2, and the calculated volume of the ductile duplex is 2.4×1012 m3 (Table 5-1). 

A line-length balance of the base of the (Knox Group) in the array of deformed-

state cross sections was used to create an array of restored-state cross sections.  This 

restoration process required a palinspastic restoration of the configuration of the base of 

the Knox Group for the time prior to Appalachian thrusting.  For this process, the top of 

the Mississippian succession was interpreted to be a horizontal depositional surface, 

which reflected the shallow-marine environment of deposition.  The thickness of the 

Mississippian succession and of the underlying Unit 2 and 3 successions were 

palinspastically restored.  These measurements yielded an average dip of approximately 

0.41° southeastward for the base of the Knox Group.  This angle also approximates the 

general dip of the basement from northwest to southeast. 

An isopach map of the pre-deformation cross-section area of the ductile duplex 

was subsequently prepared (Figure 5-5).  For this isopach map, the thickness of the 

ductile duplex was also measured at 200 m intervals and at inflection points in the 

mushwad; these data were also contoured by hand in Canvas X.  In this restoration, some 

hinterland segments of some of the cross sections were restored at an angle from the 

orientation of the deformed-state cross section to approximate deformation perpendicular 

to structural trends.  A TIN for this isopach map was constructed using the same method 

followed for the deformed-state isopach map, and was then used to make grid 

calculations also with a grid size of 50 m.  The three-dimensional surface model 

representing the variations in thickness of the restored-state ductile duplex is shown in 

Figure 5-6.  The surface area of the restored-state ductile duplex from these calculations 

is approximately 3.2×109 m2, and the calculated volume of the restored-state ductile 

duplex is 1.5×1012 m3 (Table 5-1). 
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From the surface-area calculations, the amount of bulk shortening in map view is 

estimated to be approximately 23%, which coincides well with the average shortening 

measured from line length of the base of the Knox Group in the cross sections (Table 5-

2).  From the volume calculations, the volume in the restored-state ductile duplex 

accounts for only about 64% of the volume in the deformed-state ductile duplex, which 

clearly creates a problem in the volume balance in the Unit 1 shale. 

Two end-member solutions may be suggested for the excess volume of Unit 1 in 

the deformed-state cross sections.  First, deformation/flow of the weak-layer shales from 

out of the cross-section planes could supply local excess volume.  Secondly, a complex 

history of basement fault movement may have resulted in the sedimentary accumulation 

of locally thick weak-layer rocks as a source for the fill of a ductile duplex. 

Tectonic thickening of Unit 1 as a result of out-of-plane flow requires 

convergence of material into the tectonically thickened ductile duplex.  The intersection 

of the two structural trends (defined by the Little Sand Mountain-Horn Mountain and 

Simms Mountain-Horseleg Mountain fold trains) suggests possible convergence from the 

depression of the Floyd synclinorium into the Kingston-Chattooga anticlinorium.  The 

calculated tectonic thickening of approximately 100% in the ductile duplex as seen in 

Figure 5-2 would require withdrawal of ductile rocks from an area as much as twice the 

size of the mapped area of the ductile duplex.  Such a withdrawal would likely generate 

structural depressions (e.g., structures in the competent layer plunging away from the 

center of the recess).  The consistent plunges toward the center of the recess observed in 

the present outcrop geology, however, are contrary to a structural depression model.  The 

documented plunge into the depression of the Floyd synclinorium suggests divergent 

(rather than convergent) flow.  Given these observations, out-of-plane flow does not seem 

likely to account for more than a small fraction of the excess volume of Unit 1 in the 

ductile duplex.   

Generally, the magnitude of tectonic thickening decreases southward from the 

northern end of the study area as shown in Table 5-3.  This can be attributed to the 

overall southward-directed decreases in magnitude of shortening along the cross sections 

and in deformed-state mushwad surface areas.  
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5.2.1 Analogy with structures in Alabama 

A complex history of basement fault movement has been demonstrated to be 

integral to the formation of the ductile duplexes in Alabama, where the boundary faults of 

the Birmingham basement graben are clearly imaged in seismic reflection profiles 

(Thomas, 2007).  Large-scale frontal ramps rise northwestward over down-to-southeast 

basement faults, and thick disharmonic ductile duplexes (mushwads) underlie anticlinoria 

in which the competent-layer roof rocks are non-systematically faulted (Thomas, 2001).  

Palinspastic restorations of thrust-belt structures provide a framework to interpret 

stratigraphic variations in the context of episodic reactivation and inversion of the 

basement faults. 

In palinspastic location, the Middle to lower Upper Cambrian Conasauga 

Formation includes a shale-dominated facies greater than 2000 m thick in the basement 

graben, and a much thinner carbonate facies that is less than 800 m thick outside the 

graben (Thomas, 2007).  The differences in facies and thickness indicate synsedimentary 

fault movement, and the sedimentary variations document the time and magnitude of 

fault movement. 

Upper Cambrian massive carbonate deposits (Unit 2) overstep the graben 

boundary faults, indicating cessation of fault movement during deposition of Unit 2 

carbonate rocks (Thomas, 2007).  The upper part of the Cambrian-Ordovician Knox 

Group (Unit 2), however, is unconformably absent over the palinspastically restored 

Birmingham graben.  The unconformity is marked by a karstic paleotopography with tens 

of meters relief, as well as sporadically distributed chert-clast conglomerate at the base of 

the Middle Ordovician cover stratigraphy (Thomas, 2007).  Middle Ordovician limestone 

units onlap the erosionally truncated Unit 2 and thin over the graben.  These relationships 

indicate tectonic inversion of the Birmingham graben in the Middle Ordovician during 

Taconic tectonic loading (Bayona and Thomas, 2003; Thomas and Bayona, 2005).  The 

amount of truncation of upper Unit 2 strata, paleotopography, and thinning by onlap 

combine to indicate as much as 700 m of reverse slip on the basement faults during 

inversion of the graben (Thomas, 2007).  Stratigraphic and sedimentologic data indicate 

some minor episodic movement of the Birmingham graben faults during Silurian–

Mississippian time, followed by > 900 m of normal slip during deposition of Upper 
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Mississippian–Lower Pennsylvanian synorogenic clastic strata.  The ultimate composite 

vertical separation on the basement fault is approximately 2255 m (Thomas, 2007). 

Propagation of Paleozoic, thin-skinned Appalachian thrust faults at a regional 

décollement in Unit 1 encountered the thick, mud-dominated facies (Conasauga shale) in 

the basement graben, as well as a basement-fault buttress at the northwestern boundary of 

the graben.  Ductile deformation generated thick mushwads beneath large-scale frontal 

thrust ramps of the regional competent layer (Unit 2) (Thomas, 2001).  The maximum 

structural relief on the roof of the mushwads is as much as 4500 m, indicating 

approximately 3:1 tectonic thickening of the depositionally thickened Conasauga 

Formation in the mushwad (Thomas, 2007). 

5.2.2 Interpretation for structures in Georgia 

No large-magnitude basement faults are seismically imaged in the region of the 

Kingston-Chattooga composite thrust sheet in Georgia; however, minor disruptions in the 

basal reflector package show the locations of faults that presently have small 

displacement of the top of the basement.  By analogy with the history of mushwads 

(ductile duplexes) in Alabama, the present fault offset of the top of basement may reflect 

a composite of successive displacements, some of which are inverted.  Assuming a 

history similar to that of the Alabama mushwads, an area balance of the ductile duplex 

beneath the Kingston-Chattooga composite thrust sheet (Kingston-Chattooga 

anticlinorium and fold trains) requires an original depositional thickness of the 

Conasauga Formation approximately 500 m greater than that in the foreland to the 

northwest (Figure 5-7).  A basement graben approximately 500 m deeper than present 

basement elevation under the northern part of the ductile duplex will accommodate the 

greater thickness of Unit 1.  Later inversion of the graben would have reversed part of the 

original slip.  The lower basement elevation under the southern part of the ductile duplex 

(Figure 5-6) suggests an area in which inversion on the basement faults did not occur or 

was significantly smaller in magnitude.  By analogy with stratigraphy in Alabama, 

inversion during Taconic (Middle Ordovician) loading may be recorded in erosion of the 

upper part of the Knox Group, Unit 2 (Figure 5-7) (Bayona and Thomas, 2003).  

Previously unexplained observations in Georgia include a local lack of the upper 

components that regionally comprise the Knox Group, specifically the absence of the 
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upper units of the Knox Group in parts of northwestern Georgia (cf. section 3.3.6).  One 

of the same stratigraphic units (the Chepultepec Dolomite) is unconformably absent in 

the area of the Gadsden mushwad and along the Birmingham anticlinorium in Alabama, 

where the top of the Knox Group is marked by chert-clast conglomerates.  Similar chert 

conglomerates are found sporadically at the top of Unit 2 in northwestern Georgia.  These 

observations suggest that inversion occurred along basement faults in Georgia.  Although 

the Birmingham graben shows subsequent reactivation in Alabama during late Paleozoic 

(Mississippian–Pennsylvanian) thrusting and tectonic loading (Thomas, 2007), this later 

episode of basement fault reactivation is not documented by stratigraphy in Georgia.  The 

maximum structural relief on the roof of the mushwad in Georgia is approximately 2500 

m, indicating approximately 2:1 tectonic thickening of the depositionally thickened 

Conasauga Formation. 

Sequential diagrams (Figure 5-7) illustrate the interpreted origins of stratigraphic 

variations necessary to area balance the ductile duplex beneath the Kingston-Chattooga 

thrust sheet.  The deformed state cross section (Panel 3 of Figure 5-7) shows the present 

location and geometry of the interpreted ductile duplex.  The cross section in Panel 1 of 

Figure 5-7 illustrates the depositional framework of a thick Unit 1 succession in a 

synsedimentary graben; after the end of fault movement, Unit 2 was deposited across the 

graben with uniform thickness.  The top of Unit 2 is drawn nearly horizontal to reflect the 

interpreted shallow-marine shelf deposition of the carbonate rocks.  Area-balance 

restoration of the deformed state of the ductile duplex requires Unit 1 to be approximately 

1700 m thick in the graben (for the cross section in Figure 5-7), in contrast to a regional 

average of 1200 m.  The depositional thickening requires approximately 500 m of vertical 

separation along the normal fault boundary of the graben (Panel 1 of Figure 5-7).  Panel 2 

of Figure 5-7 shows inversion of the graben to elevate the thick graben fill (Unit 1) and 

cover (Unit 2), leading to erosion of the upper part of Unit 2.  In this interpretation, the 

thickness of Unit 2 in the deformed-state cross section (approximately 660 m) constrains 

the thickness of the eroded upper part of Unit 2, which is on the order of 220 m.  The 

amount of truncation, plus paleotopography and onlap, indicate approximately 500 m of 

reverse slip during inversion, and that magnitude of inversion places the top of basement 

at the present structural level (Figure 5-7). 
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The thickest part of the restored-state isopach and, thus, the highest volume in the 

ductile duplex, is in the southern part of the isopach map (Figure 5-6).  This part of the 

restored-state ductile duplex represents a significant part of the restored-state volume.  

Some of this rock was likely transported northwestward into the thick deformed-state 

ductile duplex underlying the Kingston–Chattooga anticlinorium.  On the contrary, one 

must recognize the limitations in how the thick part of the restored-state ductile duplex 

affects the overall volume budget with respect to the deformed-state ductile duplex (i.e., 

material in the thick restored-state ductile duplex in the southern part of the map likely 

does not contribute any to the volume of the deformed-state ductile duplex in the far 

northern part of the map).  Any transport of the thick ductile duplex material out of the 

plane of the cross section toward the southwest would also affect the volume budget and 

require more Unit 1 shale to have been deposited in the (later inverted) basement graben 

to the north. 

A third isopach map was constructed to test the hypothesis of the inverted graben 

in the northern part of the study area (Figure 5-8).  As illustrated in Figure 5-7, the cross 

sections used for this map are constructed such that the surface areas of the ductile duplex 

are equal to those in the deformed-state ductile duplex.  The through-going cross sections 

used in this contour map were selected for their location—i.e., in the northern part of the 

study area where the shale volume deficit is the greatest.  As expected, the magnitude of 

offset along the graben in the model decreases southward For this isopach map, the 

thickness of the ductile duplex was also measured at 200 m intervals and at inflection 

points in the mushwad; these data were also contoured by hand in Canvas X.  In this 

restoration, some hinterland segments of some of the cross sections were restored at an 

angle from the orientation of the deformed-state cross section to approximate 

deformation perpendicular to structural trends.  A TIN for this isopach map was 

constructed using the same method followed for the deformed-state and restored-state 

isopach maps, and was then used to make grid calculations also with a grid size of 50 m.  

The three-dimensional surface model representing the variations in thickness of the 

graben-state ductile duplex is shown in Figure 5-9.  The surface area of the restored-state 

ductile duplex from these calculations is approximately 3.2×109 m2, and the calculated 

volume of the restored-state ductile duplex is 2.6×1012 m3 (Table 5-1).  From these 
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volume calculations, the volume in the graben-state ductile duplex accounts for 

approximately 109% of the volume in the deformed-state ductile duplex.  This surplus 

volume of Unit 1 may reflect, in part, the surplus of ductile duplex volume in the 

southern part of the field area over the part of the graben that has not been inverted.  

Also, the magnitudes of offset along the basement fault at the edge of the graben used for 

this model can be considered as estimates.  This latter idea is especially important in light 

of the implied transfer of ductile shale out of the planes of cross section. 
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 deformed state restored state 
% 

deformed 
state 

graben state 
% 

deformed 
state 

2-D 
surface 

area 
(m2) 

2,449,945,000.00 3,170,400,000.00 ~129% 3,211,447,500.00 ~131% 

3-D 
surface 

area 
(m2) 

2,551,278,858.47 3,181,028,026.58 ~125% 3,230,457,057.34 ~127% 

3-D 
volume 

(m3) 
2,355,834,235,288.83 1,506,170,500,651.18 ~64% 2,562,031,984,940.50 ~109% 

 
 
Table 5-1.  Calculations from the ductile duplex models.  The deformed-state 

model is shown in Figure 5-4.  The restored-state model is shown in Figure 5-6.  The 
graben-state model is shown in Figure 5-9. 

 
 

 
cross section deformed length (m) restored length (m) shortening (%) 

A–A′ 44322.35 52888.32 16.20 
B–B′ 41746.55 50020.74 16.54 
C–C′ 42520.84 49384.13 13.90 
D–D′ 43414.09 50825.07 14.58 
E–E′ 42226.87 48959.31 13.75 
H–H′ 56361.85 74519.72 24.37 

average   16.56 
 

 
Table 5-2.  Calculations of shortening magnitudes from cross sections.  Line 

lengths in the second and third columns are measured for the base of the Knox Group 
(Unit 2). 
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cross section deformed-state  
area (m2) 

restored-state area 
(m2) imbalance (%) 

A–A′ 55210497.16 27593494.38 49.98 
C–C′ 51239454.89 26452891.56 51.63 
D–D′ 44201656.47 23031234.15 52.10 
E–E′ 39641668.36 20130528.55 50.78 
H–H′ 25197896.41 46998532.52 186.52 

 
 
Table 5-3.  Calculations of ductile duplex surface area from cross sections.  

Percentage values in the rightmost column reflect difference between the area in the 
restored state and the area in the deformed state. 

 
 
 
 

cross section deformed-state 
fold train area (m2) 

restored-state 
fold train area (m2) 

difference in 
fold train area 

(m2) 

imbalance 
(%) 

D–D′ 535172758.54 852243411.99 267366761.66 49.96 
L–L′ 833347419.40 986963446.18 60671124.55 7.28 

average    28.62 
 
 
Table 5-4.  Calculations of thrust sheet surface area from cross sections as shown 

in Figure 5-10.  The area of the fold train in the deformed state (second column) 
corresponds to the area in blue in Figure 5-10.   The area values in the fourth column 
reflect the difference between the fold train area in the restored state and the fold train 
area in the deformed state, which is shown by the area in red in Figure 5-10.  Percentage 
values in the rightmost column reflect proportion of the area difference (imbalance) to the 
deformed-state fold train area. 
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Figure 5-1. (previous page) Seismic reflection profile of the ductile duplex, 
interpretation shown in lower panel.  Location of the profile is near the northwestern end 
of cross section A-A′ in Plate 2, and the profile is oriented approximately parallel to the 
section. 
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Figure 5-2.  (previous page) Simplified palinspastic restoration (Panel 1) of cross 
section A–A' from Plate 2 based on line-length balance of the competent layer (Unit 2).  
Note that restored area of Unit 1 in the ductile duplex is approximately 50% of the area of 
the ductile duplex in the deformed-state cross section (Panel 2), showing that this 
interpretation of palinspastic restoration cannot be area balanced. 
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Figure 5-3.  Isopach map of the deformed-state ductile duplex.  Location of area 

is shown on inset map.  Cross sections used for data are shown as black lines.  Contour 
interval is 200 m and the contour lines for 0, 1000, and 2000 meters are in red.   
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Figure 5-4.  Three-dimensional surface model of the deformed-state ductile 

duplex constructed using the isopach map shown in Figure 5-3.  Note that the leading 
(northwestern) edge is the “wedge” at the front of the ductile duplex and that the trailing 
edge represents the footwall cutoff of the base of the Knox Group (Unit 2) along the 
Coosa fault. 
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Figure 5-5.  Isopach map of the restored-state ductile duplex using a simple line-

length balance method for the base of the Knox Group (Unit 2).  Location of area is 
shown on inset map.  Cross sections used for data are shown as black lines.  Contour 
values are in meters.   
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Figure 5-6.  Three-dimensional surface model of the restored-state ductile duplex 

constructed using the isopach map shown in Figure 5-5.  Note that the leading 
(northwestern) edge is the “wedge” at the front of the ductile duplex and that the trailing 
edge represents the footwall cutoff of the base of the Knox Group (Unit 2) along the 
Coosa fault. 
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Figure 5-7.  (previous page) Sequential cross sections illustrating a basement 
graben that is interpreted to be the source of the surplus volume of Unit 1 shales in the 
subrecess in Georgia.  Panel 1 illustrates the thick Unit 1 succession in a synsedimentary 
graben, overlain by a uniform thickness of Unit 2 shallow-marine carbonates.  Panel 2 
illustrates graben inversion, leading to elevation of thickened Unit 1 and erosional 
truncation of the top of Unit 2 over the former graben.  Panel 3 illustrates the deformed 
state cross section (cross section A-A′ from Plate 2) in which the thickened Unit 1 is at 
the center of a ductile duplex.  The dashed red lines in panels 1 and 2 represent future 
trajectories of thrust faults, including the floor and roof thrusts bounding the ductile 
duplex.  The area of the ductile duplex is equal in all three diagrams. 
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Figure 5-8.  Isopach map of the graben-state ductile duplex.  This map was 

constructed using a magnitude of offset along the basement fault that accommodates 
ductile-duplex surface area equal to that in the deformed state cross sections.  Location of 
area is shown on inset map.  Cross sections used for data are shown as black lines.  
Contour values are in meters.  The magnitudes of offset (in meters) on the basement fault 
necessary to accommodate sufficient deposition of Unit 1 in the graben are shown in red 
numbers. 
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Figure 5-9.  Three-dimensional surface model of the graben-state ductile duplex 

constructed using the isopach map shown in Figure 5-8.  Note that the leading 
(northwestern) edge is the “wedge” at the front of the ductile duplex and that the trailing 
edge represents the footwall cutoff of the base of the Knox Group (Unit 2) along the 
Coosa fault. 

 



 173

 
 
 
Figure 5-10.  Calculations made from actual measurements on cross sections D–

D′ and L–L′ in an attempt to compare results with the simplistic model in Figure 2-2.  
The area shown in black is a projection of the distance along each cross section between 
the intersection of the cross sections to the hinge of Taylor Ridge monocline.  The area 
shown in blue is a projection of the deformed-state line length between the hinge of 
Taylor Ridge monocline to the trailing edge of the fold train through which the cross 
section is drawn.  The area shown in red is the projection of the difference between the 
restored-state line length between the hinge of Taylor Ridge monocline to the trailing 
edge of the fold train through which the cross section is drawn and that same line-length 
in the deformed state. 
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Chapter VI: 

INTERPRETATION AND DISCUSSION 

 

6.1 STRUCTURAL INTERFERENCE IN THE GEORGIA SUBRECESS 

The field research conducted as part of this project has demonstrated further 

details of the interference of the two prevalent structural trends in northwestern Georgia; 

but, no cross-cutting relationships between the structural fabrics were found to suggest 

distinct episodes of deformation that correspond to two non-coeval directions of thrust 

transport.  Although Ramsay (1962) showed that interference folds can be produced by 

the overprint of one set of folds over another pre-existing set of folds, it stands to reason 

that such an overprint would create cross-cutting relationships in brittle structures such as 

the abundant fractures in the area of study.  Two internally diachronous or overlapping 

episodes of deformation with distinct thrust translation directions, however, could have 

resulted in the structural interference pattern observed in northwestern Georgia.   

Stewart (1993) demonstrated that a single deformation episode can result in 

interfering structural trends in the presence of other factors, such as footwall faults at 

oblique angles to thrust transport.  Tull and Holm (2005) proposed that a north-northeast-

striking oblique ramp in the footwall contributed to the formation of the abrupt bend in 

the Cartersville–Great Smoky fault in Georgia directly to the southeast of the study area 

(Figures 2-7 and 2-8).  Tull and Holm (2005) referred to this oblique ramp as the 

Cartersville transfer fault, and it acts as part of the boundary between the Alabama 

promontory to the southwest and the Tennessee embayment to the northeast (Thomas, 

1977).  This fault is also a component of the Rising Fawn transverse zone, as described 

by Thomas (1990).  The Cartersville–Great Smoky fault is the southeasternmost structure 

at the trailing edge of the sedimentary thrust belt in the Georgia subrecess, and also has 

one of the most abrupt bends in strike.  The two structural trends of the subrecess are 

present to the foreland in the fault traces of the Coosa and Rome thrust sheets and the 

strikes of fold axes in the fold trains within the Kingston–Chattooga–Clinchport 

composite thrust sheet.  The structural interference is thus accommodated toward the 

foreland from the Cartersville–Great Smoky fault intersection to the Kingston fault but 

does not affect structures to the northwest of the Kingston fault. 



 175

Furthermore, the mechanisms of basin control on salients can be applied to the 

Tennessee salient, which formed over the deep basin (referred to as the Ocoee basin in 

Figure 2-8) in the Tennessee embayment (cf. Thomas, 1977; Macedo and Marshak, 

1999).  The deeper detachment and the volume of sediment in the basin allowed for the 

(Tennessee salient) structures to propagate farther toward the foreland than those forming 

over the Alabama promontory.  In this sense, the Georgia subrecess may be considered as 

the along-strike end of the Tennessee salient that lagged behind in terms of thrust 

transport magnitude. 

Footwall obstacles in the foreland are another important factor in the formation of 

thrust belt curvature (cf. section 2.1.1.2).  There are no significant basement highs 

documented in northwestern Georgia at present.  The present research has demonstrated 

new evidence for a large volume of shale of the Conasauga Formation over an inverted 

graben in the foreland, the top of which would have had a small degree of topographic 

relief.  This excess volume of mechanically incompetent shale, however, would not act as 

an obstacle, but rather readily deform ductilely and become mobile during thrust 

transport.  The large mobile volume of shale contributed to the formation of the large 

ductile duplex demonstrated in this research.  The ductile duplex is concentrated in the 

subsurface below the Kingston–Chattooga anticlinorium and the Floyd synclinorium and 

extends as far northwest to the subsurface beneath the area between the Kingston fault 

and Lookout Mountain syncline, where the ductile duplex ends as a subsurface tectonic 

wedge.  Because none of the structures northwest of the Kingston fault bend across the 

Georgia subrecess, it can be suggested that the structural interference that begins 

southeastward at the Cartersville–Great Smoky fault intersection is accommodated and 

attenuated by deformation of the ductile duplex. 

 

6.2 IMPLICATIONS OF VOLUME BALANCE OF THE DUCTILE DUPLEX 

The volume balance of the ductile duplex is critical for palinspastic reconstruction 

of the recess, and the understanding of the kinematic and mechanical history of the local 

structures.  The intersection and fold interference exemplify a long-standing problem in 

volume balancing of palinspastic reconstructions of sinuous thrust belts.  Cross sections 

generally are constructed perpendicular to structural strike, parallel to the assumed slip 
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direction. An array of cross sections around a structural bend may be restored and 

balanced individually; however, restorations perpendicular to strike across intersecting 

thrust faults yield an imbalance in the along-strike lengths of frontal ramps.  Similarly, 

the restoration leads to an imbalance in the surface area of a stratigraphic horizon.  The 

line-length restorations along the lines of cross section measures one-dimensional 

shortening, which, in turn, leads to the surface-area imbalance demonstrated herein.  The 

volumetric calculation in the models for the deformed-state and the restored-state ductile 

duplex demonstrates a volumetric imbalance of the Unit 1 shale.  The inverted basement 

graben proposed herein accommodates the deposition a thicker Unit 1 across the region.  

In turn, the graben model provides a solution to the volume balance problems 

encountered in palinspastic restoration of the cross sections around the subrecess in 

Georgia.     

As a final note, the application of the simplistic model shown in Figure 2-2 can be 

made to the Georgia subrecess.  Actual measurements were taken from cross sections D–

D′ and L–L′ and applied to the recess model depicted in Figure 2-2.  These cross sections 

were selected because of mutual proximity and orientations that correspond to the two 

opposite arms of the subrecess.  Calculation for a model similar to that in Figure 2-2 was 

not possible, however, because of imbalances of surface area of the thrust sheet and of 

magnitude of shortening between the two cross sections.  Consequently, measurements 

from cross sections D–D′ and L–L′ were subsequently applied to the model in Figure 2-2 

separately—as depicted in Figure 5-10—to illustrate the considerable differences 

between the two cross sections.  In the left diagram of Figure 5-10, the palinspastic 

restoration lengths were measured from cross section D–D′ and applied to both sides of 

the model from Figure 2-2; the right side of Figure 5-10 shows the same for cross section 

L–L′.  The areas shaded blue Figure 5-10 illustrate that the width of the same segment of 

the thrust belt (between the hinge of Taylor Ridge monocline and the trailing edge of the 

fold train in this example) is significantly greater for cross section L–L′.  Conversely, the 

amount of bulk shortening of the thrust belt segment between the hinge of Taylor Ridge 

monocline and the trailing edge of the fold train is substantially greater in cross section 

D–D′.  As a result, the area of the surface area imbalance (shown in red in Figure 5-10) is 

considerably different. As shown by the calculations in Table 5-4, the proportion of the 
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surface area imbalance to the deformed-state surface area (percentage of area in red 

compared to the area in blue in Figure 5-10) is approximately 50% for cross section D–

D′, but only about 7% for cross section L–L′.  In conclusion, the overall thrust belt 

architecture greatly differs on either arm of the Georgia recess, which may be revealed in 

future research as an essential feature of abrupt changes in structural trends in thrust 

belts. 
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Chapter VII: 

SUMMARY AND CONCLUSIONS 

 

Around the subrecess in northwestern Georgia, tectonically thickened weak 

sedimentary rocks of the Cambrian Conasauga Formation accommodated ductile 

deformation associated with the folding and brittle faulting of the overlying Cambrian-

Ordovician regional competent layer.  Ductile deformation of the underlying structurally 

thickened weak layer allows the shales to fill the cores of anticlines in the competent 

layer.   

The ductile duplex (mushwad) in the core of the Kingston-Chattooga 

anticlinorium represents an excess volume of Unit 1 shales that elevates the structural 

level of the Kingston–Chattooga–Clinchport composite thrust sheet.  The trailing limb of 

the anticlinorium is marked by the Taylor Ridge monocline, which dips into the 

structurally lower Floyd synclinorium.  In the Floyd synclinorium, two fold trains of 

broad synclines and narrow anticlines plunge into the depression of the synclinorium with 

two distinct structural trends.  Low-amplitude folds, which are the plunging ends of the 

fold trains, characterize the center of the abrupt bend in Appalachian structural trends in 

the subrecess in Georgia 

The area of the mushwad in deformed-state cross sections is approximately twice 

the area of the corresponding Unit 1 in the restored cross sections, and cannot be 

explained solely by tectonic thickening parallel to the direction of apparent shortening of 

a conventional palinspastically restored cross section.  Furthermore, the volume of the 

deformed-state ductile duplex is approximately 56% greater than the volume of the 

restored-state ductile duplex.  This imbalance may result from some combination of two 

mechanisms:  transport of Unit 1 shales into the plane of cross section, and 

activation/inversion of a basement graben.  The out-of-plane transport of material implies 

an as yet unrecognized deficit in Unit 1 thickness elsewhere in the thrust belt to balance 

the surplus in the ductile duplex.  A new interpretation proposes that a basement graben 

accommodated deposition of a locally thicker Unit 1 succession (approximately 1700 m 

for the cross section in Figure 5-7, in contrast to approximately 1200 m to the northwest 

of the graben) prior to thrust deformation, analogous to the Birmingham graben along 
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strike to the southwest in the Appalachian thrust belt in Alabama.  Subsequent Middle 

Ordovician reactivation/inversion of part of the graben, related to Taconic loading, 

resulted in uplift and the erosion of the upper part of the overlying Unit 2 (Bayona and 

Thomas, 2003).  Finally, thrusting and accretion of the weak layer into the ductile duplex 

occurred during tectonic shortening in the late Paleozoic.  The exposed competent-layer 

structures in Georgia are analogous to those over shale-dominated ductile duplexes 

(mushwads; Thomas, 2001), which are being developed for natural gas in the 

Appalachian thrust belt in Alabama; however, the total thickness of the Unit 1 shale-

dominated ductile duplex in Georgia is somewhat less than in those in Alabama.  The 

high volume of the ductile duplex in the southern part of the restored-state isopach map 

(Figure 5-6) indicates a part of the graben in which little or no inversion occurred.  

Finally, the interpretation of a basement graben yields a solution to volume balance 

encountered during palinspastic restoration of the array of cross sections around the 

subrecess in Georgia.  The basement graben herein allows for a thicker Unit 1 to have 

been deposited in the region that accounts for the volume of shale in the ductile duplex. 

 The reason for the abrupt bend in structural strike at the Georgia subrecess is 

likely multifold (as noted for the Meuse Valley recess by Lacquement et al., 2005.  No 

indication of two or more distinct translation episodes have been demonstrated for the 

region (i.e., no consistent pattern of cross-cutting relationships between the two structural 

trends).  Also, the vertical-axis rotation measured in the study area by Bayona et al. 

(2003) is insufficient to cause the bend in strike in northwestern Georgia.  Thus, if the 

subrecess is the product of only one basic transport direction, other kinematic factors 

must have operated.  Tull and Holm (2005) demonstrated that the two structural trends 

observed in northwestern Georgia could have been generated as a result of thrust 

translation over a transverse fault (Figure 2-8).  Subsequently, the thick Unit 1 succession 

over the inverted graben in the foreland was transported and deformed into the ductile 

duplex (mushwad) as demonstrated herein.  This ductile duplex likely served to blend the 

two structural trends towards the foreland and thus no structures northwest of the 

Kingston fault are affected by the bend in structural trend.  As a final note, the 

considerable differences between the general architecture of the thrust belt on either side 
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of the subrecess may prove to be a common denominator in the structure of thrust belt 

recesses. 
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