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Abstract. Ecologists, particularly those engaged in biogeomorphic studies, often seek to connect data

from three or more domains. Using three-block partial least squares regression, we present a procedure to

quantify and define bi-variance and tri-variance of data blocks related to plant communities, their soil

parameters, and topography. Bi-variance indicates the total amount of covariation between these three

domains taken in pairs, whereas tri-variance refers to the common variance shared by all domains. We

characterized relationships among three domains (plant communities, soil properties, topography) for a

salt marsh, four coastal dunes, and two temperate forests spanning several regions in the world. We

defined the specific bi- and tri-variances for the ecological systems we included in this study and addressed

larger questions about how these variances scale with each other looking at generalities across systems. We

show that a system tends to exhibit high bi-variance and tri-variance (tight coupling among domains)

when subjected to the effects of frequent and widespread (i.e., broadly acting) hydrogeomorphic

disturbance. When major disturbance events are uncommon, bi-variance and tri-variance decrease, because

the formation of vegetation, soil, and topographic patterns is primarily localized, and the couplings of these

properties diverge over space, contingent upon site-specific disturbance history and/or fine-grained

environmental heterogeneity. We also demonstrate that the bi-variance and tri-variance of a whole system

are not consistently either greater or smaller than those of the associated sub-zones. This point implies that

the overall correlation structure among vegetation, soil, and topography is conserved across spatial scales.

This paper addresses a critical aspect of ecology: the conceptual and analytical integration of data across

multiple domains. By example, we show that bi-variances and tri-variances provide useful insight into how

the strength of couplings among vegetation, soil, and topography data blocks varies across scales and

disturbance regimes. Though we describe the simplest case of multi-variance beyond the usual two-block

linear statistical model, this approach can be extended to any number of data domains, making integration

tractable and more supportive of holistic inferences.

Key words: biogeomorphology; disturbance; ecosystem engineer; feedback; historical contingency; multicollinearity;

scale invariance; three-block partial least squares; variance.
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INTRODUCTION

The spatial distribution and temporal dynam-
ics of vegetation are often correlated with a set of
known environmental conditions, including
those associated with soil and topography (e.g.,
Cowles 1899, Boerner 2006, Kim and Yu 2009). In
floodplains, for example, the role of topography
is often manifested through its effects on flood
regime, resulting in communities that are dis-
tributed along gradients of flooding, geomor-
phology, and soils (e.g., Sharitz and Mitsch 1993).
Conditions related to soils and topography are
then used as independent factors to predict the
behavior of individual plant species, populations,
and communities measured as changing abun-
dance, biomass, or composition. Over decades,
this approach facilitated considerable progress in
understanding the mode of vegetation–soil and
vegetation–topography couplings in upland are-
as and vegetation–flooding couplings in flood-
plain settings. The present study aims to stretch
the discipline’s perspective beyond such bivariate
relationships by estimating the variance simulta-
neously shared by vegetation, soil, and topogra-
phy in various ecological systems.

Quantifying relationships between variables
has a long history in scientific research (Galton
1888, Pearson 1920, Wright 1921, Kendall 1938,
Fisher 1954). Conventional multivariate regres-
sion approaches, while appearing complex, are
essentially based on quantifying the covariation
between a response (i.e., dependent) variable of
interest and each of several predictor (i.e.,
independent) variables. The amount of this
covariation is hereafter termed bi-variance. The
concept of bi-variance is widespread and deep-
rooted in modern science; to wit, researchers
often contort their analyses into bi-variance
problems even when the intuitive structure or
fundamental nature of the data involves three or
more fundamental domains.

This research focuses on the simplest case
beyond bi-variance in which the relationships
among three data blocks are considered; thus, the
amount of the common variance shared by all of
them will be called tri-variance (i.e., d in Fig. 1).
Uni-variance will indicate the variance in a data
block that is unrelated to any other data block
under consideration (i.e., the ‘‘error’’ in standard
parametric statistics; a, e, and g in Fig. 1).

Conceivably, covariance relationships among
blocks may be structured in many ways. At one
extreme, any two of the three factors are related
to each other to some degree, but there is no
variance shared by all of them simultaneously
(Fig. 2A). Put another way, the interaction
between Factors A and B occurs exclusively,
regardless of the other interactions between A
and C or between B and C. Therefore, knowing
how A and B covary does not provide any
insight into the A–C or B–C correlation (and vice
versa). In the second case, covariance between
any two factors and among all factors exists (Fig.
2B). Here, from a certain type of interaction, e.g.,
between Factors A and B, one can infer to some
extent the pattern of the other interactions
between A and C or between B and C. The
reliance of such inference should improve as tri-
variance relative to bi-variance increases, and the
reliance should become maximized when the
magnitude of bi-variance and tri-variance is the
same, another extreme case (Fig. 2C). Overall,
these three situations can be commonly summa-
rized as

Factor A ¼ f ðFactor B; Factor C; other factorsÞ
Factor B ¼ f ðFactor A; Factor C; other factorsÞ
Factor C ¼ f ðFactor A; Factor B; other factorsÞ

ð1Þ

where ‘‘other factors’’ refer to chance and latent
(unmeasured causal) influences. As these equa-

Fig. 1. A generic form of Venn diagram indicating

what is meant by bi-variance (b þ c þ d þ f) and tri-

variance (d). The other symbols (a, e, and g) represent
uni-variances, or unexplained variances.
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tions imply, any one of Factors A, B, and C is

apparently related to the other two; however, the

equations deliver no more than such bivariate

information, as if the causal/correlative scenario

were structured only as in Fig. 2A. Whether and

how much the covariation among the three exists

cannot be determined until one actually esti-

mates the tri-variance.

As bi-variance indicates how closely two data

blocks are related to each other, tri-variance is a

proxy for the level of covariance among all three

blocks. For example, many coastal dunes are

located where the effects of overwash distur-

bance are not manifested (i.e., tide-dominated

coasts; Stallins and Parker 2003). Under the
absence of widespread control over the dune-
field, the formation of vegetation, soil, and
topographic patterns is primarily localized;
therefore, their relationships may diverge over
space. As a consequence, locations having similar
topographic conditions may exhibit greatly dif-
ferent plant species composition or successional
pathways, contingent upon site-specific varia-
tions in disturbance history or soil microsites. In
such a case, the amount of the variance shared by
any two factors and, especially, by all three is
likely low over larger areas. In contrast, other
dunes are highly subjected to periodic or episodic
overwash events that influence the mortality and
establishment of plant species, soil development,
and surface morphodynamics (i.e., wave-domi-
nated coasts; Miller et al. 2010, Young et al. 2011).
Under such widespread hydrogeomorphic con-
trol across the dunefield, vegetation, soil, and
topography likely behave in unity over space and
time, namely, their relationships may be more
consistent and less noisy than the case above.
Accordingly, the associated tri-variance as well as
the bi-variance is expected to be high over larger
spatial areas.

The multi-block data methods we describe
below allow inquiry into the specific nature and
scaling pattern of bi-variance and tri-variance
across systems with different biogeomorphic
conditions. In this paper, we develop three-block
partial least squares regression (3-B PLS) for field
data on vegetation, soil, and topography ac-
quired from widely divergent ecological systems
(coastal dunes, salt marshes, regenerating flood-
plain forests, and upland temperate forests) in
various regions of the world. Each of these
systems encompasses a gradient of topo-edaphic
conditions, and is considered to be spatially
heterogeneous in terms of ecological and phys-
ical processes. Therefore, we will adopt a two-
step approach in which we first characterize the
vegetation–soil–topography relationships
throughout a whole system, and then decompose
it into sub-units. In the case of coastal marshes,
for example, we will examine patterns for the
entire marsh first, and then subdivide the system
into creek bars, bank levees, and interior marsh
platforms to perform separate investigations on
the same relationships within each of these sub-
zones. Specifically, we intend to evaluate the

Fig. 2. Conceptual models of possible relationships

among three distinct factors (left), and a representation

of the relationships using Venn diagrams (right).
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following three hypotheses:
Hypothesis 1 (H1): Systems under widespread

(i.e., broadly acting) environmental controls have
higher bi-variance and tri-variance than those char-
acterized by localized interactive biotic–abiotic pro-
cesses. This hypothesis is directly related to the
example of two contrasting coastal dune types
mentioned above. We will evaluate this idea in
the context of vegetation–soil–topography cou-
plings.

Hypothesis 2 (H2): Separate analyses of sub-zones
produce consistently smaller or greater bi-variance
and tri-variance than analysis of a whole system.
Scale-dependence is a fundamental notion in
ecology (Levin 1992, Stohlgren et al. 1998, Turner
2010). It is widely known that distinctive
ecological patterns and processes are dominant
at different spatial scales. Thus, modifying scale,
be it the size of a unit plot or the size of a whole
study area, would involve a change in the
correlation structure among biotic and abiotic
components (Kim et al. 2012). In sum, the results
of ecological analyses and the associated inter-

pretations are strongly dependent on the spatial
scales in which a study is focused. For instance,
small-scale studies often demonstrate a negative
relationship between native and exotic plant
species diversity (Tilman 1997, Stachowicz et al.
1999, Brown and Peet 2003), whereas at large
scales the opposite relationship has been discov-
ered (Lonsdale 1999, Stohlgren et al. 2003, Davies
et al. 2005). In the same context, the strength of
vegetation–soil–topography relationships should
vary depending on the scales of data collection.
However, there is no consensus as to whether
such strength will increase or decrease after
dividing a heterogeneous whole system into a
number of homogeneous sub-zones. Alternative-
ly, there might be no consistently increasing or
decreasing strength after the division; that is, the
relationships may become weaker in some sub-
zones and stronger in the others. In this case, the
bi-variance and tri-variance of the whole system
represent more or less the average strength of the
biotic–abiotic couplings observed in the sub-
zones (see Fig. 3).

Fig. 3. Comparison of analyses for a whole system and for its sub-zones. The factors of interest are vegetation,

soil, and topography. The whole system encompasses a range of environmental gradients (e.g., landforms,

disturbance regimes, etc.), so it is considered spatially heterogeneous with regard to ecological and physical

processes. The sub-zones are relatively homogeneous, however. Each dot represents the location where

vegetation–soil–topography relationships are examined.
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Hypothesis 3 (H3): Bi-variance is a good indicator
of tri-variance. This hypothesis is somewhat
related to why there has been no explicit
estimation and use of tri-variance in related
literature. Is this because bi-variance would be
a sufficient measure to provide enough detailed
insight into vegetation–soil–topography relation-
ships in any systems (i.e., do we ecologists not
even have to bother with the concept of tri-
variance)? We expect that, in general, there will
be a positive correlation between the values of bi-
variance and tri-variance: the greater the amount
of the total variance shared by any two of
vegetation, soil, and topography in pairs, the
greater the amount of the variance shared by all
of them simultaneously. However, the signifi-
cance (or variability) of the correlation is a
different issue; one should not ignore a wide
range of possible patterns in vegetation–soil–
topography relationships as briefly described in
Fig. 2. It is plausible that two distinct ecological
systems, possessing the same magnitude of bi-
variance, may have different tri-variances. Also,
one can imagine even a case of negative relation:
the bi-variance of system A is smaller than that of
system B, but A has a higher tri-variance than B.

3-B PLS

Vegetation, soil, and topography are multivar-
iate in nature: most vegetation data sets are
composed of multiple l plant species, the
abundances or biomass of which are measured
in a certain number of plots. In these same plots,
one can collect and analyze a set of soil data
consisting of m physical and chemical properties,
as well as topographic data of n landform
attributes. For each data domain, there are
relationships among variables both within and
across data blocks. In this paper, use of commu-
nity, soil, and topographic data results in three
data blocks. Taken together, these blocks produce l
3 m 3 n possible bivariate cases of vegetation–
soil–topography relationships. An attempt to
understand each of these relationships will be
considered inefficient if several variables within
each block are significantly correlated with one
another—the problem of multicollinearity (Farrar
and Glauber 1967, Graham 2003).

In such a situation, the most widely employed
solution has been the use of ordination, a family

of multivariate data reduction techniques that
extract one or a few axes from the original
variables. The data points (e.g., plots, species) are
then ordered to aid interpretations of ecological
and environmental patterns (Pielou 1984, ter
Braak and Prentice 1988, Palmer 1993, Austin
2013). For example, canonical correspondence
analysis (CCA) can directly and immediately
relate plant species composition to measured
environmental variables, along a few major axes
(ter Braak 1986). Although CCA has been widely
used in ecology (Lepš and Šmilauer 2003), it
cannot actually help to achieve the goal of the
present research: understanding the tri-variance
among vegetation, soil, and topography. This is
because, in CCA (and in similar methods), all soil
and topography variables are lumped together as
environmental variables (i.e., predictors) and the
community data are treated as dependent vari-
ables; but of course, many taxa also change the
environment around them, making covariance a
very fluid concept that can propagate in multiple
directions among data domains.

As a possible approach (Fig. 4), one may
perform a principal component analysis (PCA)
based on the correlation matrix produced from a
single block. Among the resulting eigenvectors
composed of axis scores for each plot, those axes
with eigenvalues greater than 1 (assuming
standardized data) are considered significant
and selected as the principal components of that
block. The same procedure is repeated for the
remaining other blocks. Then, the components
extracted from and representing each block are
correlated to understand the patterns of vegeta-
tion–soil–topography relationships (e.g., Kim et
al. 2012).

This PCA-based approach has one clear
limitation, however: the extraction of compo-
nents in a block is conducted without taking into
account the covariation structure of the other
blocks (see Carrascal et al. 2009 for more details).
In other words, the extracted components max-
imize the correlation among variables within a
block, but these components do not reflect the
maximization of the correlation across blocks. As
a consequence, in many cases, the principal
components from an environmental block and
those from a vegetation block exhibit low and
non-significant correlations, hindering ecologi-
cally meaningful interpretation (Carrascal et al.
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2009).

Various multivariate techniques have been
developed to address this issue, dealing with
multi-block data sets in a symmetrical perspec-
tive (for a more thorough discussion, see Borcard
et al. 2011, Legendre and Legendre 2012): co-
inertia analysis (Dray et al. 2003), multiple factor
analysis (Escofier and Pagès 1994, Bécue-Bertaut
and Pagès 2008, Abdi et al. 2013), and Procrustes
analysis (Gower 1975, Gower and Dijksterhuis
2004). While these methods have been employed
by a number of ecologists in recent decades, the
present work intends to introduce PLS as an
alternative powerful approach that has nonethe-
less been underrepresented in ecological litera-

ture (Wold et al. 1984, Rosipal and Krämer 2006,
Abdi 2007, Esposito Vinzi et al. 2010). It is an
extension of multiple regression analysis that,
when extracting major components from a
certain block, seeks simultaneously to maximize
the explained variance of the other blocks. Thus,
components from different blocks would have
the greatest mutual linear predictive power (Næs
and Martens 1985, Geladi and Kowalski 1986, de
Jong 1993). PLS can be a useful approach,
especially in ecological studies, because it is
designed to overcome typical situations, where
(1) the number of predictor variables is similar to
or greater than the number of observations and/
or (2) environmental variables, measured with an

Fig. 4. A possible ordination procedure followed by correlating primary axes of different data blocks. In this

particular case, we present an example of principal component analysis, but this analytic flow is also applicable

to the other modes of ordination such as correspondence analysis and principal coordinate analysis. In this

conceptual example, two principal components (PC) are extracted in each block, but the number can change

depending on the magnitude of eigenvalues. The thick, solid, lines imply that the extraction of PCs is conducted

exclusively to each block, that is, without taking into account the covariation structure of the other blocks (V:

variable; P: plot; EV: eigenvalue).
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aim to predict the spatial and temporal dynamics
of organisms, are significantly correlated with
one another. Despite such advantages of using
PLS, there is a surprising paucity of research that
employs the method in ecological literature
(Carrascal et al. 2009, but see ter Braak and
Juggins 1993, Birks 1996). Furthermore, to the
best of our knowledge, PLS has not been
conducted for three-block biotic and abiotic data,
which is the subject of this paper. It should be
noted that an exhaustive comparison of 3-B PLS
and the several multi-block methods mentioned
above is beyond the scope of this paper. There
should be relative pros and cons of all these
approaches depending on the type of ecological
data—e.g., number of samples, degree of skew-
ness, coefficient of variation, and direction of
causality among data blocks. We illustrate the
potential of 3B-PLS for addressing questions
about reciprocal interactions between the envi-
ronment and biota that go beyond bivariate
relationships but do not become obscured by
the dynamic instantaneousness of the feedbacks
among them.

MATERIALS AND METHODS

Overall, this paper analyzes vegetation, soil,
and topographic data collected by five groups of
ecologists from seven different systems at widely
varied locations in the world. Brief explanations
of each study area and field survey are presented
below (for more detailed information, see Ap-
pendix).

Costa’s study area and data collection
Costa et al. (1996) collected vegetation, soil,

and topography data sets at coastal dunes along
the southernmost 217 km long stretch of Brazil.
The study region encompassed northern and
southern sites: the northern dunes exhibited
relatively high foredune ridges (;7 m) and the
southern sites showed relatively large seashore
deflation plains. At each site, Costa et al. (1996)
established five 100 m long and 1 m wide strip
transects perpendicular to the coastline, starting
at the leading edge of the vegetation. Each
transect was divided into 10 zones each with an
equal length of 10 m. Along each zone, the
presence of plant species was recorded at 2 m
intervals using 1 m2 square quadrats. Then, all

floristic data from these zones were pooled to
represent the overall frequency of each species. In
each zone, the researchers also examined the pH
of superficial sand (10–20 cm depth) and the
proportion (%) of coarse (.0.50 mm), medium
(0.25–0.50 mm), fine (0.062–0.25 mm), and clay/
silt (,0.062 mm) sediments. Two topographic
attributes of each zone were included in the
present work: surface elevation (m) and distance
from the coastline (m), which corresponded to
the gradients in sedimentation rates and salinity.

Kim’s study area and data collection
Kim’s research sites included the Sindu coastal

dunefield in South Korea and the Skallingen salt
marsh in Denmark. The dunefield ranged for
about 4 km along the coastline and extended 0.5–
1.5 km inland. This system exhibited well-
developed topographic features, such as fore-
dune, second dune, and interdune depression (or
swale), as well as distinct vegetation zonation in
each of these habitats (Kim et al. 2008, Kim and
Yu 2009). In the summer of 2003, Kim established
a rectangular plot (180 3 280 m) that fully
encompassed these three geomorphic zones.
The plot was divided into 126 grids of 20 3 20
m. In each grid, he surveyed the abundance of 21
main plant species, the mean cover of which
exceeded 0.5% across the plot. Also, a total of 11
physical and chemical properties were analyzed
for the 126 soil samples collected from the grid
centers. Finally, for these centers, eight terrain
parameters were extracted from a digital eleva-
tion model of the dunefield.

The Skallingen marsh was characterized by a
complex tidal creek system that actively migrat-
ed through bar deposition and cutbank erosion
across the marsh’s platform (Kim 2012, Kim et al.
2012). In the summer 2006, Kim established 11
line transects along four tidal creeks. These
transects were, on average, about 25 m long
and perpendicular to the streamline. Each tran-
sect fully encompassed three distinct topographic
zones, such as newly deposited point bar, bank
levee (or transition), and inner marsh field (or
marsh interior). Along these transects, a total of
9–10 locations were selected for soil and topo-
graphic surveys. Kim identified 10 soil physical
and chemical properties and two topographic
variables (surface elevation and distance to the
channel). At each location, two replicate square
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quadrats (1 3 1 m) were identified for vegetation
survey.

Kupfer’s study area and data collection
The Kupfer data set comes from a study of

post-logging succession on the floodplain of the
Bates Fork tract within Congaree National Park
(NP), near Gadsden, South Carolina, USA
(Kupfer et al. 2010). Sample transects (N ¼ 63;
30 m in length) were established in forest
clearcuts that were located in three different
geomorphic settings (a backswamp, a remnant
natural levee associated with a former meander
of the Congaree River, and the active natural
levee adjacent to the current river channel) and
had been undergoing succession for 4–5 years.
Vegetation composition was measured in three
circular subplots (2.82 m radius) spaced evenly
along the length of the transects; these transects
were oriented parallel to the forest edge and
located 5–50 m into the clearcut. Soil cores were
taken from the top 15 cm of soil on each subplot,
composited by transect, dried, and then analyzed
for pH, extractable phosphorus, potassium,
calcium, magnesium, zinc, copper and sodium,
organic matter, cation exchange capacity (CEC),
exchangeable acidity (the amount of total CEC
occupied by Hþ and Al3þ), and total percent base
saturation (the percent of exchange sites occu-
pied by base cations). Two variables related to
topography, and by extension, flood regime,
were determined for each subplot and averaged
by transect: (1) elevation, which was extracted
from a high resolution, LiDAR-derived digital
terrain model of the study area, and (2) the depth
of inundation during a 98,000 cfs flood, which
was estimated using a flood inundation model
(HEC-RAS; Kupfer et al. 2010).

McEwan’s study area and data collection
The McEwan data set was generated in a study

of a 52-ha old-growth forest in southeastern
Kentucky, USA (McEwan and Muller 2011).
Sampling took place within four 1-m2 circular
plots (N ¼ 320) nested within 80 larger plots
established by Muller (1982). Muller (1982) used
ordination techniques to classify these 80 plots
into three ecological communities: sugar maple
(Acer saccharum; 17 plots), beech (Fagus grandi-
folia; 31 plots), and chestnut oak (Quercus
montana; 32 plots; McEwan and Muller 2006).

An inventory of herbaceous plants, with an
associated visual estimate of cover for individual
species, was conducted on all herb-layer subplots
beginning the first week of April, June, and
August of 2000. Topographic variables were
collected by Muller (1982) who measured eleva-
tion and slope aspect on each of the plots. Soil
samples (N ¼ 4/subplot) were collected within
each herb subplot in June of 2001. Samples were
homogenized and analyzed for plant-available
nitrogen (NH4

þ, NO3
�), Mehlich III-extractable P,

K, Ca, Mg and Mn, cation exchange capacity, and
base saturation. Hemispherical digital canopy
images were collected by McEwan at each
permanent plot center and analyzed using Gap
Light Analyzer image processing software (Fraz-
er et al. 1999, McEwan and Muller 2011).

Stallins’s study area and data collection
The two U.S. barrier islands in the studies

conducted by Stallins were Sapelo Island, Geor-
gia and South Core Banks, North Carolina, USA.
Dune vegetation and soils were sampled in the
summer of 1999. At each of the five sites along a
5-km stretch of Holocene dunes on Sapelo, three
transects were aligned perpendicular to the
shoreline. Vegetation was sampled at 1-m inter-
vals with a point frame. One hundred and forty
soil samples were systematically drawn from
representative habitat types (dune ridges, flats,
and swales) among these transects, with the
additional requirement that the distance between
successive soil samples was no greater than 10 m.
A similar sampling design (five sites of three
transects each) was employed on South Core
Banks. However, island length here was greater
(35 km), as was the distance between successive
soil samples (20 m) given longer transect lengths.
A total of 136 soils samples were collected. Full
details are provided in Stallins (2001) and Stallins
and Parker (2003).

Statistical procedure for 3-B PLS
Before the 3-B PLS was conducted, all variables

were transformed using appropriate mathemat-
ical functions so that the data met the normality
assumption in statistics. Because these variables
were measured in distinct units, they were
standardized and unitless (i.e., their mean and
standard deviation were 0 and 1, respectively).
Not surprisingly, vegetation, soil, and topogra-
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phy blocks were of different size in each data set;
that is, the number of variables in each block was
different. For example, Kim’s data from the Sindu
coastal dunefield consisted of 24 plant species, 11
physical and chemical soil attributes, and eight
landform parameters. To scale these varying
block sizes (BS) into 1, we applied the following
modification for each data value (DV) within
each block:

DV 3
ffiffiffiffiffiffiffiffiffiffiffi
1=BS

p
: ð2Þ

This scaling equation (adapted from Ginter et
al. 2012) can also be used if desired to scale data
blocks to any size, such as the number of
independent dimensions, or ‘‘true rank’’ of data,
by replacing the numeral 1 with the desired block
size.

Following Streissguth et al. (1993) and Book-
stein et al. (2003), the first stage of 3-B PLS
defined three unit vectors, one each for vegeta-
tion, soil, and topography blocks (Uv, Us, and Ut)
and then iteratively optimized them. Bookstein et
al. (2003) suggested using arbitrary starting
values for the starting vectors. However, we
performed PCA for each block to select the first
principal components as the starting unit vectors.

In our preliminary analysis, we found that these
two different approaches produced almost iden-
tical results in the end. Interpreting these unit
vectors as linear combinations, we calculated

sv ¼ Xv 3 Uv

ss ¼ Xs 3 Us

st ¼ Xt 3 Ut

ð3Þ

where Xv, Xs, and Xt represented the whole
vegetation, soil, and topography blocks, respec-
tively. X was a data matrix with N rows
(samples) and k columns (variables; i.e., X ¼ N
3 k). Each s was normalized to sample variance 1,
and we then computed the correlations among sv,
ss, and st in pairs

rvs ¼ correlationðsv; ssÞ
rst ¼ correlationðss; stÞ
rtv ¼ correlationðst; svÞ:

ð4Þ

This was the end of the first iteration in our
approach of 3-B PLS. The second iteration began
with developing updated unit vectors, Uv, Us,
and Ut, based on the inter-block correlation
structure as follows:

Uv  Xvðrvsss þ rtvstÞ
Us  Xsðrstst þ rvssvÞ
Ut  Xtðrtvsv þ rstssÞ:

ð5Þ

In other words, these new unit vectors were
generated by summing ‘‘predictions of the
individual variables using combinations of the
scores s with the correlations r as weights’’
(Bookstein et al. 2003:185). We then returned to
Eq. 3 to repeat the same iteration until arriving at
a convergence of stable correlation coefficients,
rvs, rst, and rtv, that did not vary between
iterations (e.g., see Fig. 5).

At convergence, the final vectors, Uv, Us, and
Ut, were labeled as the first singular axes
representing the blocks of vegetation, soil, and
topography, respectively. A clear distinction
exists between these singular axes and principal
components: principal components are extracted
from the internal correlation structure within
each block of data, with no regard to covariation
across data domains (vegetation, soil, topogra-
phy). Thus, each principal component maximally
represents the overall pattern of only a given data
block. In contrast, a singular axis from 3-B PLS is
predicted by the weighted combination of the
other two blocks as Eq. 5 indicates. Therefore,

Fig. 5. An example of converging correlation

coefficients among the unit vectors of vegetation, soil,

and topography data blocks in pairs, acquired by Kim

at the Sindu coastal dunefield, South Korea. Correla-

tion coefficients rvs, rtv, and rst indicate vegetation–soil,

topography–vegetation, and soil–topography cou-

plings, respectively. In this particular case, the three

coefficients started to become stable (i.e., convergence)

at about the 8th iteration.
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each singular axis represents the correlations of
the elements of a given data block with other
blocks.

While the first singular axes express the
patterns that have the greatest correlation among
vegetation, soil, and topography blocks, one may
also be interested in extracting the second (and
higher) axes. By construction, the second singular
axes—analogous to the second principal compo-
nent in PCA—are uncorrelated with the first
vectors (Bookstein et al. 2003). Hence, the second
(and third or more) axes can be easily extracted
by applying the same algorithms, presented
above, to the residuals after the first vectors have
been regressed out of the original data blocks. In
this paper, however, our analysis and results are
concerned primarily with the first singular axes.

Estimating bi-variance and tri-variance
The first three singular vectors (each from

vegetation, soil, and topography data blocks)
were standardized (i.e., scaled to unit length) to
make them directly comparable to one another.
Therefore, in the Venn diagram shown in Fig. 1
(Factor A¼vegetation; Factor B¼ soil; Factor C¼
topography), the circles of these three factors
were identical in size. In the context of regression
modeling, the size of each circle was equivalent
to the total sum of squares (TSS ¼ N � 1).

We then employed the concept of extra sums of
squares (ESS), tentatively treating vegetation as
the response variable, with soil and topography
as the predictor variables (indeed, it did not
matter which factor was treated as the response
variable). ESS measured the marginal reduction
in the residual sum of squares that occurred due
to the addition of a (group of ) predictor
variable(s) to the existing regression model (i.e.,

SSR (X2jX1) in Table 1). In this research, the
original regression model was

Vegetation ¼ f ðtopography; soilÞ ð6Þ

where it was assumed that topography was the
preexisting predictor variable and soil was the
newly added predictor variable. The a value in
the Venn diagram (Fig. 1) equaled vegetation’s
variance unexplained by soil and topography,
i.e., residual sum of squares (SSE in Table 1). b
indicated soil’s sum of squares (i.e., SSR (X2jX1)),
namely, the pure influence of soil on vegetation,
excluding topography’s effect.

To estimate c, we changed the role of soil and
topography, such that topography became the
newly added predictor variable, whereas soil
became the preexisting predictor variable

Vegetation ¼ f ðsoil; topographyÞ: ð7Þ

In the subsequent regression, the c value was
the same as topography’s sum of squares, or the
pure influence of topography on vegetation,
excluding soil’s effect. Finally, tri-variance (d)
was calculated by subtracting a, b, and c values
from TSS.

Now, we switched Eq. 6 into

Soil ¼ f ðvegetation; topographyÞ ð8Þ

where soil was the response variable, and
topography and vegetation were the predictor
variables. In particular, vegetation was the
preexisting predictor and topography was the
newly added predictor. In this regression, the e
value equaled soil’s variance unexplained by
vegetation and topography, i.e., the residual
sum of squares. f could be estimated in two
ways, either as TSS� b� d� e or as topography’s
sum of squares (i.e., topography’s pure effect on
soil excluding that of vegetation). g was equiv-
alent to TSS � c � d � f. As a result, bi-variance
was the sum of b, c, d, and f. Finally, we
expressed these raw bi-variance and tri-variance
values in proportion (%) to TSS

Final bi-variance ¼ 100 3 ðRaw bi-variance=TSSÞ
ð9Þ

Final tri-variance ¼ 100 3ðRaw tri-variance=TSSÞ:
ð10Þ

All of these procedures were conducted using

Table 1. A generic form of analysis of variance table

developed to estimate extra sums of squares.

Source df Sum of squares Mean squares

X1 1 SSR (X1) MSR (X1)
X2 1 SSR (X2jX1)� MSR (X2jX1)
Residuals N � 3 SSE (X1, X2) MSE (X1, X2)
Total N � 1 TSS�

� The additional variation explained by X2 when added to
a regression model already containing X1 (i.e., the pure effect
of X2 on the response variable, excluding that of X1).

� In this present paper, because all of the first singular axes
from vegetation, soil, and topography data blocks have been
standardized before regression modeling, TSS ¼ N� 1.
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R 2.14.2 (R Development Core Team 2012). An
example R-code for this procedure is given in the
supplementary material (see Supplement).

Comparison of PCA-based and PLS-based
approaches

Before evaluating the empirical hypotheses set
out in the Introduction, we first examined the
structure of inferences from a traditional ordina-
tion approach and 3-B PLS. For the traditional
part, we followed the steps presented in Fig. 4 so
that the first principal components—each de-
rived from vegetation, soil, and topography data
blocks using PCA—were directly correlated in
pairs. In the same way, the first singular axes—
each extracted from vegetation, soil, and topog-
raphy data blocks using 3-B PLS—were directly
correlated.

Evaluation of the hypotheses
Within each system, an examination of the

specific structure of bi-variances and tri-variances
would be a useful implementation of the 3-B PLS,
but since detailed examination of the systems has
appeared in our published accounts, albeit not
using 3-B PLS, we elect here to illustrate use of
the method in order to address higher-level
questions that transcend detailed results from
specific systems. In particular, system function
will be explored only in relation to evaluating the
hypotheses.

H1: Systems under widespread (i.e., broadly acting)
environmental controls have higher bi-variance and
tri-variance than those characterized by localized
interactive biotic–abiotic processes. This hypothesis
was evaluated using Stallins’s barrier islands data
because his two systems, Sapelo and South Core
Banks, were well known in terms of their
contrasting hydrogeomorphic disturbance re-
gimes and the consequent ecological processes
of vegetation recovery and soil formation (see
Stallins and Parker 2003).

With increasing latitude along the southeastern
U.S. Atlantic coast, there is a climatological
gradient of increasing exposure to extra-tropical
cyclones (Mather et al. 1964, Davis et al. 1993)
and the consequent gradient of increasing shore
disturbance exposure (Williams and Leatherman
1993). In the wave-dominated microtidal barrier
islands of South Core Banks in North Carolina,
relatively frequent and intensive overwash

events mediate biotic–abiotic interactions: distur-
bance-dependent plant species, which are burial
tolerant, recolonize overwash sediments using
their horizontally extensive rhizome networks.
Due to the stabilized sediment surface, the
formation of protective foredune ridges is often
inhibited and the landforms are generally flat
(Godfrey and Godfrey 1976). This low-relief
topography, in turn, reinforces exposure to future
overwash events, which will further facilitate the
establishment of the disturbance-dependent veg-
etation (Godfrey et al. 1979, Stallins and Parker
2003). This clearly explains a positive feedback
between vegetation and geomorphology.

By contrast, the mixed-energy mesotidal bar-
rier islands of Sapelo in Georgia, USA, exhibit a
conspicuous ridge-and-swale topography. Such
terrain ruggedness is maintained by dune-build-
ing taxa that enhance sedimentation rates and by
burial-intolerant woody shrubs and grass species
that stabilize intervening low swales. These
ridge-and-swale plant species reinforce their
presence by contributing to the high-relief
topography that acts as a barrier to the spread
of wave energy into backshore dune habitats. In
both island types, these landform-modifying
plants are considered ecosystem engineers, in
that they regulate the distribution of soil resourc-
es and species coexistence (Jones et al. 1997,
Corenblit et al. 2007, Zarnetske et al. 2012).

H2: Separate analyses of sub-zones produce consis-
tently smaller or greater bi-variance and tri-variance
than analysis of a whole system. First, we estimated
the bi-variance and tri-variance values for all of
the seven whole systems introduced above.
These whole systems encompassed a range of
landforms and disturbance regimes, and each of
them was apparently heterogeneous in terms of
physical conditions and ecological processes.
Therefore, we divided each whole system into
sub-zones as follows: Costa’s whole dune into
northern and southern sites; Kim’s whole dune
into foredune, swale, and second dune; Kim’s
whole marsh into point bar, transition, and
interior (or platform); Kupfer’s whole forest into
remnant levee, backswamp, and current levee;
McEwan’s whole forest into beech, maple, and
oak communities; Stallins’s whole dune in Sapelo
into flat, ridge, and swale; and Stallins’s whole
dune in South Core Banks into flat, ridge, and
swale. Then, the bi-variance and tri-variance
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values for all of these 20 sub-zones were also
estimated. Finally, we calculated the average
difference (Dave) between the bi-variances of the
i whole systems and the bi-variances of their j
sub-zones

Dave ¼
1

n

X
ðxwholeðiÞ � xsub�zoneðiÞÞ ð11Þ

where n was 20 (the number of sub-zones) and
xwhole and xsub-zone indicated the bi-variance
values of each whole system and their sub-zones,
respectively. Then, we verified if Dave was
significantly different from zero

Dave � ðlwhole � lsubÞ
SD=

ffiffiffi
n
p ¼ Dave

SD=
ffiffiffi
n
p ð12Þ

where lwhole and lsub indicated the population
mean of the whole systems and the sub-zones,
respectively. Statistically, these mean values are
assumed to be same because the null hypothesis
of this test is that there is no difference in the
mean variances between the whole systems and
the sub-zones. SD was the standard deviation of
the differences. After conducting Eq. 12, we
estimated the corresponding P-value assuming
a t distribution (Fisher 1954). We repeated the
same procedure to compare the tri-variances of
the whole systems and their sub-zones.

H3: Bi-variance is a good indicator of tri-variance.
This hypothesis was tested by conducting a
simple linear regression, in which bi-variance
and tri-variance were treated as predictor and
response variables, respectively.

RESULTS

Comparison of PCA-based and PLS-based
approaches

In most cases, 3-B PLS revealed much stronger
correlations of vegetation–soil, soil–topography,
and topography–vegetation couplings than PCA
(Table 2). The coefficients produced by PCA
indicated the correlations of the major principal
components for each pair of domains. There were
only three exceptions in which the magnitude of
the correlations estimated by PLS was slightly
lower than that by PCA, all of which came from
Stallins’s Sapelo data (see the values in boldface
in Table 2). These results were directly related to
the difference between the two approaches with
regard to the bi-variance and tri-variance values

they produced (Table 3). With only one exception
(the tri-variance of Stallins’s ‘Ridge’ data from
Sapelo), 3-B PLS produced much greater bi-
variance and tri-variance than PCA. In 10 cases,
the PCA-based approach indicated an absence of
variance simultaneously shared by vegetation,
soil, and topography (i.e., tri-variance ¼ 0).

Evaluation of the hypotheses
H1: Systems under widespread (i.e., broadly acting)

environmental controls have higher bi-variance and
tri-variance than those characterized by localized
interactive biotic–abiotic processes. This hypothesis
was clearly supported: we found that both the bi-
variance and tri-variance of South Core Banks
were greater than those of Sapelo Island (Fig. 6
and Table 3). Notably, the difference in the tri-
variance (44.8 vs. 30.0) between the two regions
was greater than the difference in the bi-variance
(72.9 vs. 65.0).

Table 4 demonstrates the detailed contribution
of each variable or plant species to the first
singular axes of topography, soil, and vegetation.
In both regions, as the distance to the sea
increased, surface elevation declined, while the
content of silt, clay, and organic matter increased.
However, each of pH and fine sand content
exhibited contrasting spatial gradients between
Sapelo Island and South Core Banks. Concomi-
tantly, away from the coastline, there were
decreases in the cover of dune grasses (e.g.,
Panicum amarum) and increases in the cover of
swale-dwelling species like Andropogon spp. and
Phyla nodiflora in Sapelo Island. In the inland part
of South Core Banks, frequent overwash effects
seemed to favor the increased abundance of
Spartina patens and a dune-stabilizing moss
species Ditrichum.

H2: Separate analyses of sub-zones produce consis-
tently smaller or greater bi-variance and tri-variance
than analysis of a whole system. In Fig. 7, the bi-
variance and tri-variance plots of the seven whole
systems were generally located around the
middle of those plots estimated from the 20
sub-zones. The average values of the bi-variance
and tri-variance from these sub-zones were
slightly smaller than those from the whole
systems, but a quantitative comparison revealed
that such differences were not statistically signif-
icant at the 0.05 significance level (see the P
values (0.45 and 0.60) at the bottom of Table 3). In
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a similar context, we compared the whole
systems and the sub-zones in terms of the
average magnitude of their correlations for
vegetation–soil, soil–topography, and topogra-
phy–vegetation pairs. In all of these relation-
ships, the differences were not statistically
significant at the 0.05 significance level (see the
P values at the bottom of Table 2).

Looking at the seven whole systems individ-
ually, we found that the bi-variance and tri-
variance values of each whole system were
generally somewhere around the middle of those
values from the associated sub-zones, with only
three exceptions (see the values in boldface in

Table 3): in Costa’s data, both bi-variance and tri-
variance of the whole dune were smaller than
those of both the northern and southern sites. In
Stallins’s data from Sapelo Island, the tri-variance
of the whole system was consistently greater
than that of the three sub-zones. Overall, these
results failed to support the second hypothesis.

H3: Bi-variance is a good indicator of tri-variance.
There was a general trend in which tri-variance
increased with increasing bi-variance, and this
positive relationship was statistically significant
(R2 ¼ 0.61, P , 0.01; Fig. 7).

Table 2. Pearson’s correlation coefficients among the first principal components of vegetation (V), soil (S), and

topography (T) in pairs, and among the first singular axes of vegetation, soil, and topography in pairs.

Name of ecologist
and systems studied

Based on principal component analysis Based on 3-B PLSR

V–S S–T T–V V–S S–T T–V

Costa
Whole dune 0.57** 0.09 0.33** 0.74** �0.65** �0.78**
Northern sites 0.25 0.14 �0.62** �0.85** 0.87** �0.84**
Southern sites 0.06 0.00 0.72** �0.73** 0.62** 0.89**

Kim
Whole dune �0.19* 0.14 0.21* 0.55** 0.51** 0.86**
Foredune 0.65** 0.31 �0.30 0.86** �0.79** �0.86**
Swale �0.14 �0.11 �0.19 �0.72** �0.74** 0.68**
Second dune �0.16 0.18 0.04 �0.77** 0.42** �0.43**
Whole marsh �0.42** 0.13 0.38** �0.56** 0.65** �0.77**
Bar 0.24 �0.13 �0.53** �0.34 �0.29 0.76**
Transition 0.30 0.64** 0.30 �0.78** �0.79** 0.88**
Interior 0.22 0.61** 0.29 0.50** 0.61** 0.44**

Kupfer
Whole forest �0.26* 0.13 �0.13 �0.67** �0.59** 0.72**
Remnant levee 0.54* 0.35 �0.84** 0.77** �0.60** �0.87**
Backswamp 0.09 �0.41 �0.19 0.67** 0.47 0.59*
Current levee �0.15 �0.24 0.41* �0.58** �0.37* 0.68**

McEwan
Whole forest 0.67** 0.30** 0.33** 0.78** 0.46** 0.71**
Beech community 0.50** 0.32 �0.14 0.68** �0.73** �0.86**
Maple community 0.66** �0.11 0.18 �0.87** �0.47 0.60*
Oak community �0.07 �0.11 �0.47** �0.73** �0.57** 0.64**

Stallins
Whole dune (Sapelo) �0.21* 0.56** 0.23** 0.78** 0.55**� 0.58**
Flat �0.61** �0.06 �0.21 �0.82** 0.36** �0.42**
Ridge �0.16 �0.24 0.27 0.58** 0.43** 0.14
Swale 0.02 0.52** 0.28 �0.62** 0.51** �0.63**
Whole dune (South Core) 0.31** 0.77** 0.37** �0.71** �0.78** 0.73**
Flat 0.37** �0.72** �0.39** �0.72** �0.73** 0.75**
Ridge �0.32 0.28 �0.66** 0.50* 0.64** 0.78**
Swale �0.19 �0.65** 0.29 �0.41 0.65** �0.54*

Average magnitude
Of whole systems 0.38 0.30 0.28 0.68 0.60 0.74
Of separate sub-zones 0.29 0.31 0.37 0.68 0.58 0.66

P values� 0.18 0.91 0.10 0.86 0.74 0.10

** Significant at the 0.01 level; * Significant at the 0.05 level.
� Boldface values indicate that the magnitude of the correlation coefficient resulting from 3-B PLSR approach is slightly

smaller than that from principal component analysis.
� The values were produced by following Eq. 12 of the main text to test whether, in each column, there was a significant

difference between the seven whole systems and the 20 separate sub-zones in terms of their mean magnitude of correlations.
None of the six cases proved significant.
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DISCUSSION

Comparison of PCA-based and PLS-based
approaches

We found that PCA-based approaches ex-
plained much less of the relationships between
vegetation, soil, and topography in pairs than did
PLS methods (Table 2). Furthermore, in many
cases, the PCA-based approach statistically im-
plied that the variance simultaneously shared by
vegetation, soil, and topography does not exist
(i.e., tri-variance¼ 0; Table 3). This is an illogical
conclusion which, according to the 3-B PLS, is
demonstrably false. Those who work in ecolog-

ical systems would almost certainly assume there
are causal links among these three natural
components so that tri-variance 6¼ 0. In our
analysis, PCA was an example of ordination
methodologies and we hypothesize that other
ordination techniques (e.g., principal coordinate
analysis, correspondence analysis, multidimen-
sional scaling, etc.) would also have yielded
much weaker correlations than those found using
the PLS method. By nature, these non-PLS
methods extract major axes that maximally
represent the patterns of a certain data block.
However, these axes may not significantly
correlate with the axes (or variables) belonging

Table 3. Percent variance values (bi-variance and tri-variance), identified by principal component analysis (PCA)

and 3-B PLS.

Name of ecologist
and systems studied

Based on PCA Based on 3-B PLS

Bi-variance Tri-variance Bi-variance Tri-variance

Costa
Whole dune 41.2 3.2 71.6� 45.3
Northern sites 41.4 3.6 84.7 66.1
Southern sites 52.8 0.0 84.2 47.8

Kim
Whole dune 13.8 0.0 76.8 28.2
Foredune 44.3 8.0 83.7 65.2
Swale 9.0 0.0 68.2 41.4
Second dune 6.7 0.0 61.0 17.0
Whole marsh 52.0 0.0 72.0 30.9
Bar 30.5 2.7 59.6 9.9
Transition 43.9 6.8 83.8 58.3
Interior 41.3 4.5 46.5 16.3

Kupfer
Whole forest 8.6 0.7 63.4 35.9
Remnant levee 80.6 22.3 91.0 50.9
Backswamp 19.9 0.8 57.5 26.4
Current levee 20.6 1.9 58.2 21.5

McEwan
Whole forest 47.0 8.9 77.2 34.5
Beech community 59.1 0.0 81.5 46.0
Maple community 57.1 0.0 81.8 31.4
Oak community 26.6 0.0 62.5 33.3

Stallins
Whole dune (Sapelo) 33.8 3.3 65.0 30.0
Flat 48.7 0.0 69.2 15.5
Ridge 12.5 1.6 47.8 0.4
Swale 43.9 0.0 53.9 26.2
Whole dune (South Core) 64.0 8.9 72.9 44.8
Flat 56.3 11.9 70.6 45.2
Ridge 45.9 8.4 77.9 24.4
Swale 47.2 3.6 56.0 15.9

Average of whole systems 37.2 3.6 71.3 35.7
Average of separate sub-zones 39.4 3.8 69.0 33.0
P values� 0.63 0.89 0.45 0.60

� Boldface values indicate that separate analyses of sub-zones produced consistently lower bi- and tri-variance (Costa’s data)
or higher tri-variance (Stallins’s Sapelo data), than the analysis of the associated whole system. In other words, in these three
cases, the bi-variance and tri-variance of the whole system did not represent the average strength of the biotic–abiotic couplings
in each sub-zone. These are the only cases that support the second hypothesis (H2). All of the other cases do not support H2.

� The values were produced by following Eq. 12 of the main text to test whether, in each column, there was a significant
difference between the seven whole systems and the 20 separate sub-zones with regard to their bi- or tri-variances. None of
these four cases proved significant.
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to the other blocks, thereby underestimating the
amount of inter-block covariation. Our results
demonstrate that this lack of correlation between
ordination axes from different blocks may be a
limitation when attempting to explain patterns
observed in natural systems (see also Carrascal et
al. 2009 for a simulation experiment).

Our point is not to suggest a blanket rejection
of PCA and other conventional ordination
approaches. Such approaches are useful, but, as
our results indicate, there is additional or
residual information that can be partitioned by
PLS. Traditional methods can provide insights
into the variance structure among vegetation,
soils, and landforms. However, PLS is a powerful
quantitative tool because it is constructed to
directly estimate the covariance of the native
variables of all data blocks simultaneously. We
recommend the use of PLS for more integrative,
holistic investigations that are explicitly focused
on abiotic–biotic feedbacks and their geographic
variability.

Evaluation of the hypotheses
H1: Systems under widespread (i.e., broadly acting)

environmental controls have higher bi-variance and
tri-variance than those characterized by localized
interactive biotic–abiotic processes. In ecological

literature, it is widely agreed that disturbance is
an environmental process that regulates plant
species abundance and composition and that the
effects of disturbance are interrelated with
topographic conditions and soil resources (Swan-
son et al. 1988, Bendix 1998, Shafroth et al. 2002,
Hupp and Rinaldi 2007). We interpret the high
tri-variance among vegetation, soil, and topogra-
phy on South Core Banks as a reflection of the
profound influence of frequent exposure to
extensive overwash across the relatively flat
dunes in this wave-dominated coastal region. In
this context, Stallins (2001) earlier found that pH
and organic matter, even in the unstable, poorly
sorted substrate of South Core Banks, were
significantly correlated with the cover of burial-
tolerant stabilizers such as Spartina patens and
Ditrichum spp., which recolonized after an over-
wash to maintain the flat surface. These plants,
soil conditions, and uniform topography repro-
duce one another by facilitating the spread of
future overwash effects across space and the
subsequent intrinsic recovery processes.

On Sapelo, the low tri-variance is attributable
to the rarity of major hydrogeomorphic distur-
bance in this tide-dominated region, which in
turn induces fine-scale habitat heterogeneity
(Phillips 1999, 2000, 2004). Here, efficient dune-

Fig. 6. Proportion (%) of variances estimated from the relationships among the first singular axes of vegetation,

soil, and topography, identified by 3-B PLS for Stallins’s barrier islands data from Sapelo Island (A) and South

Core Banks (B). These proportional Venn diagrams were generated using a statistical loss function and a

minimization procedure (Wilkinson 2012). The three circles of each region are of the same size because the

corresponding three singular axes had been standardized before estimating the proportions.
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builders (e.g., Uniola spp.) trap suspended
sediments and develop high-relief dune ridges
that dampen the direct impact of future over-
wash. Both rarity and dampening of disturbance
effects eventually enhance the localization of
vegetation and pedological processes that do

not necessarily correspond to the overall dune
morphologies. Accordingly, the bi-variance of
vegetation–topography and soil–topography
pairs is very low on Sapelo. Conversely, such
localized processes gradually strengthen over
time the coupling between vegetation and soil
on Sapelo, and the associated bi-variance is
indeed greater than that on South Core Banks
(i.e., 60.3% vs. 49.8%; see Fig. 6).

These discussions can further be related to the
interval between disturbance events and the time
it takes for an original biogeomorphic feedback
among dune vegetation, soil, and landform to be
restored after a disturbance event (Brunsden and
Thornes 1979, Phillips 1995, Corenblit et al. 2011,
Eichel et al. 2013). On Sapelo, due to the rarity of
overriding disturbance, time is allowed for
vegetation and soil to become closely inter-
twined, and this vegetation–soil coupling likely
diverges over space, contingent upon site-specific
disturbance history and/or soil microbial compo-
sition (Phillips 2013). In such a case of high
stochasticity, the importance of dune morpholo-
gies to floristic and pedological processes should
decline gradually. As a consequence, it is quite
possible to observe variable plant species com-
position or edaphic characteristics at different
locations possessing very similar topographic
conditions (Gleason 1926).

Table 4. Contribution (correlation coefficient) of each

variable or species to the first singular axes of

topography, soil, and vegetation, identified by 3-B

PLS for Stallins’s data from Sapelo Island in Georgia

and South Core Banks in North Carolina.

Variables
Sapelo
Island

South
Core Banks

Topographic variables
Distance from the sea �0.79** �0.93**
Surface elevation 0.83** 0.91**

Soil variables
pH 0.84** �0.78**
Fine sand content �0.60** 0.01
Silt and clay content �0.82** �0.86**
Carbonate 0.08 �0.16
Organic matter �0.91** �0.92**

Plant species�
Ammophila brevigulata Fernald 0.18*
Andropogon species �0.22**
Arenaria serpyllifolia L. �0.43**
Cenchrus species 0.03
Chloris petrea Swartz. �0.49**
Commelina erecta L. �0.47**
Conyza canadensis L. Cronq. �0.05 �0.15
Croton punctatus Jacquin 0.33**
Cynanchum angustifolium Pers �0.42**
Diodia teres Walter �0.07
Ditrichum pallidum �0.63**
Eragrostis species �0.13 0.04
Eupatorium species �0.39**
Fimbristylis species �0.26**
Gaillardia pulchella Foug. �0.04
Gnaphalium purpureum L. 0.00
Heterotheca subaxillaris (Lam.)

Britton & Rusby
0.11 �0.17*

Hydrocotyle bonariensis Lam. 0.06 �0.15
Juncus roemerianus Scheele �0.26**
Muhlenbergia filipes M.A. Curtis �0.54** �0.39**
Myrica cerifera L. �0.44** �0.21*
Oenothera humifosa Nuttall �0.02 �0.15
Panicum amarum Ell. 0.40** 0.16
Phyla nodiflora (L.) Greene �0.23**
Physalis viscosa L. ssp maritima

(Curtis)
�0.21*

Rubus species �0.47**
Rumex hastatulus Baldwin ex Ell. �0.20*
Smilax species �0.49**
Solidago species �0.12
Spartina patens (Aiton) Muhl. �0.19*
Strophostyles helvola (L.) Ell 0.26**
Sporobolus virginicus (L.) Kunth 0.14
Triplasis purpurea (Walter) Chapman 0.05
Uniola paniculata L. 0.57** 0.67**
Vulpina octoflora (Walt) Rydb. �0.05 �0.23**

** Significant at the 0.01 level; * Significant at the 0.05 level.
� No data indicate that the associated species were not

present in the corresponding study region.

Fig. 7. The relationships between bi-variance and tri-

variance estimated from the relationships among the

first singular axes of vegetation, soil, and topography,

identified by 3-B PLS. The seven open circles represent

the seven whole systems examined, while the other

data points are for the 20 separate sub-zones of those

whole systems.
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On South Core Banks, development time is too
short to induce such spatial diversification of
vegetation and soil factors over varying dune
surface topography. Rather, frequent and spatial-
ly extensive overwash events lead to dynamic
landform changes, which immediately influence
spatial patterns of both vegetation and soil.
Therefore, relatively tight vegetation–soil–topog-
raphy couplings are likely maintained before
spatial divergence (i.e., decoupling) of these
relationships occurs across the dunefield.

H2: Separate analyses of sub-zones produce consis-
tently smaller or greater bi-variance and tri-variance
than analysis of a whole system. In this hypothesis,
we inquired what would happen to vegetation–
soil–topography couplings if a whole system was
divided into a number of sub-zones (Fig. 3). On
Sapelo, the tri-variate couplings become weaker
after division (Table 3), presumably due to the
high spatial stochasticity driven by the gradual
decoupling of local vegetation and soil processes
from topography within each sub-zone, as
discussed above. By contrast, the stronger cou-
plings we observed after dividing Costa’s whole
system are related to highly different environ-
mental settings between the northern and south-
ern sites: these two regions are geographically
separated by ;120 km, exhibiting distinct coast-
line orientations. Hence, they undergo differing
approach angles and impacts of onshore winds,
which, in turn, induce varying gradients in
overwash frequency and sand transport (see
Appendix). As a result, dissipative and fine-
grained beaches are developed in the north,
whereas reflective and coarse-grained beaches
are found in the south (Calliari and Klein 1993,
Calliari et al. 1996, Costa et al. 1996). To reveal
significant relationships among vegetation, soil,
and topography, it would be reasonable to
perform separate analyses for the northern and
southern regions, rather than combining these
greatly different sub-zones into a single whole
system.

Other than these exceptional cases observed
just for the dune systems (Stallins’s Sapelo and
Costa’s data), there is no prevalent pattern of
either stronger or weaker vegetation–soil–topog-
raphy couplings; rather, both occur simulta-
neously upon division. Thus, the bi-variance
and tri-variance values of the whole systems are
more or less the average of those values of their

sub-zones; that is, the relationships become
weaker in some sub-zones and stronger in the
others. This suggests that, in many cases, the
overall correlation structure among vegetation,
soil, and topography is conserved across spatial
scales. In other words, during the aggregation of
sub-zones or the division of a whole landscape,
there is no net loss or gain of the strength of
vegetation–soil–topography couplings. Such po-
tential scale-invariance confers some degree of
freedom to ecologists who, due to their concern
about spatial non-stationarity induced by land-
scape heterogeneity (Milne 1998), have been
reluctant to predict large-scale biotic–abiotic
correlative patterns by investigating and averag-
ing the information of smaller units. Concerning
this issue of scale-invariance, two caveats should
be noted: (1) the sub-zones are not characterized
by too high spatial stochasticity of vegetation and
soil processes, as in the case of Stallin’s Sapelo
data; and (2) the whole system is not too spatially
heterogeneous, that is, it does not aggregate
physiographic types that are too different, as in
the case of Costa’s northern and southern sites.
There is a danger that the local heterogeneity in
variance structure cancels out when aggregated
to the large scale.

H3: Bi-variance is a good indicator of tri-variance.
Despite the positive relationship we found
between bi-variance and tri-variance values, it is
still an open question whether bi-variance can be
a good indicator of tri-variance, and further,
whether there would be no need to struggle to
estimate the tri-variance. In a statistical sense, bi-
variance significantly explains tri-variance at the
confidence level of 99% (i.e., P , 0.01); however,
it should also be noted that 39% of the tri-
variance still remains unexplained. The associat-
ed scatterplot (Fig. 7) even illustrates several
cases of locally negative relations in which the bi-
variance of system (or sub-zone) A is smaller
than that of system (sub-zone) B, but A has a
higher tri-variance than B. Given such uncertain-
ties, we posit that, while the overall coefficient of
determination looks generally encouraging (R2¼
0.61), the need for estimating tri-variance as well
as bi-variance still exists. In particular, the large
tri-variance residuals could represent important
three-way interactions among variables in the
three data domains. Such insights are less
accessible using traditional approaches.
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Reciprocal nature
of vegetation–soil–topography relationships

Our 3-B Venn diagram approach (e.g., Fig. 6)
closely accords with one of the current main-
stream topics of ecology and, more generally,
Earth sciences: feedbacks among biological and
physical factors. Until recently, one-way relation-
ships between vegetation, soil, and topography
have been dominantly considered when studying
the spatial pattern or evolution of landscapes.
Such a unidirectional viewpoint inspired inves-
tigations that focused on the influence of one
factor upon another. Accordingly, this cause-and-
effect logic necessitated a division of abiotic and
biotic components into groups of response and
predictor variables, followed by the application
of such traditional approaches as multiple
regression and ordination. This causal approach
has generally held true even in cases where
researchers have sought to identify the unique
and shared contributions of two sets of predictor
variables (e.g, environmental and spatial vari-
ables) on a response variable (e.g., vegetation
composition) through variance partitioning (e.g.,
Borcard et al. 1992, Kupfer et al. 1997). Today,
Earth scientists are increasingly redirecting their
attention from discrete one-way couplings to
integrated two- or three-way interactions that
address the importance of the reciprocal nature
of vegetation–soil–topography linkages (Stallins
2006, Corenblit et al. 2007, Osterkamp and Hupp
2010). Key to this new paradigm is an under-
standing of the feedback mechanisms among
natural phenomena that drive a perpetual,
gradual modification or an abrupt collapse of
the existing landscape complexity (Malanson
1999, Savage et al. 2000, Naylor et al. 2002, Bever
et al. 2010, van der Putten et al. 2013).

Our results suggest that statistical approaches
commonly used in contemporary ecology are not
keeping pace with the conceptual advances in
our understanding of multi-block and multi-
directional ecological relationships. Within the
constraint of conventional multivariate statistics,
we face a challenge concerning how to divide our
data into groups of response and predictor
variables. Our results refute the idea of treating
vegetation strictly as a response variable, given
that there are clearly mutual influences between
vegetation and environmental factors. This paper
presents a method that avoids such a monodirec-

tional assumption structure, and estimates bi-
variance and tri-variance by treating all involved
components at the same level (i.e., a symmetrical
approach). The resulting Venn diagrams fully
reflect the idea of mutual interactions among
vegetation, soil, and topography in a wide range
of ecological systems from various regions of the
world. Although the focus of this research is on
3-B data, the general procedure illustrated in Eqs.
3–5 can be extended to deal with 4-B data and
beyond (Bookstein et al. 2003). In general,
statistical models are static in nature; therefore,
we do not claim that our 3B-PLS approach would
immediately represent the dynamic nature of
feedback mechanisms between environmental
conditions and organisms. Rather, our point is
that the symmetrical approach of, e.g., 3B-PLS,
multiple factor analysis (Escofier and Pagès
1994), and co-inertia analysis (Dray et al. 2003)
would be consistent with the ever-increasing
perspective of reciprocal interactions between the
environment and biota.

Suggestions for future research
In this article, we have introduced a new

conceptual and methodological framework for
understanding vegetation–soil–topography rela-
tionships. We do not posit that our approaches
and perspectives are unquestionable or decisive;
rather, more research should be conducted to
further evaluate and improve their applicability
to a variety of ecological and environmental
contexts (e.g., Cope et al. 2014). We conclude this
paper by presenting key research topics yet to be
explored.

First, ecologists need to investigate vegetation–
soil–topography couplings in more spatially
explicit ways. Vegetation, soil, and geomorphic
patterns and processes are essentially spatial
phenomena. Hence, the associated variables and
data blocks are likely to possess inherent spatial
autocorrelation (SAC), or spatial structure, which
is now a standard paradigm in ecology (Legen-
dre 1993, Dray et al. 2006, Miller et al. 2007,
Franklin 2009). To take into account the presence
and effects of SAC, we should develop a
methodology to partial out from each data block
the pure variance explained by spatial filters only
(Borcard and Legendre 2002, Griffith 2003, de
Marco et al. 2008, Kim 2013). The resulting new
vegetation, soil, and topography data blocks
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could then be subjected to the same 3B-PLS
procedure that we introduced in this paper.

Second, it is desirable to examine biotic–abiotic
relationships over time, preferably over long
timescales that encompass both periods of
discrete disturbance events and biogeomorphic
recovery. In the seven systems we investigated
and similar to most of the previous studies, our
analyses were performed based on one snapshot
of patterns of vegetation, soil, and topography. In
an attempt to model species distributions (Frank-
lin 1998, Lehmann et al. 2003, Austin and van
Niel 2011), we ecologists have often postulated
the presence of tight couplings among commu-
nity structure, edaphic conditions, and terrain
settings. In contrast, there have been few
attempts to examine the changing correlation
structure among these factors, responding to
several recurring disturbance events at the same
landscape. Recently, Kim and Arthur (2014)
demonstrated a gradual weakening of biotic–
abiotic couplings over the course of their field
surveys between 2002 and 2010, each occurring
before and after six prescribed fire events in an
oak-dominated temperate forest in eastern Ken-
tucky, USA. These findings suggest that, in
general, sharp breaks may exist, at which bi-
variance and tri-variance transition as a result of
gradual or abrupt changes in climate conditions
or modifications of substrate.

Third, related to the temporal viewpoint
above, there still is much uncertainty as to how
bi-variance and tri-variance would change if a
design for data collection worked across domains
of scale. As mentioned, distinctive ecological
patterns and processes are known to be domi-
nant at different spatial scales (Ludwig et al.
2000). This scalar discrepancy has been concep-
tualized as transition between domains of scale
(Wiens 1989) or discrete breaks (O’Neill and King
1998). Here, domain indicates ‘‘a portion of the
scale spectrum within which process-pattern
relationships are consistent regardless of scale’’
(Wiens 1989:392). An attempt to extrapolate the
information of vegetation–soil–topography rela-
tionships acquired at a particular scale, to other
scales within the same domain, may be success-
ful; however, an extrapolation across the disjunc-
tion between domains will likely fail. As such, a
key question in future research will be how to
develop scaling theories that effectively link bi-

variances and tri-variances estimated at different
spatial scales (Wiens 1989, Ludwig et al. 2000).

Last, more disturbance types, other than just
hydrogeomorphic disturbance in riparian and
coastal systems, should receive attention. The
exact trajectories of bi-variance and tri-variance
through time and across space may differ among
different biogeomorphic contexts, due to sedi-
ment mobility, landform stability, the type of
plants, and the disturbance regime. From a
rugged mountain forested landscape to a highly
mobile marine sea floor sandy substrate, there
could be some linkages between systems in terms
of bi-variance and tri-variance. How variances
change through time and in response to the type
of disturbance forcings (historically prevalent
versus novel) would not be expected to be the
same, but each would exhibit patterns of
convergence and divergence in variances as
feedbacks between the biota and the geomorphic
context developed (Phillips 1999, 2004). In this
way, bi-variances and tri-variances potentially
become ways of tracking the multicollinear
relationships among vegetation, soil, and topog-
raphy in various ecological systems. Eventually,
bi-variances and tri-variances can be used to
predict overall ecosystem responses to changing
climate conditions and disturbance regimes.

CONCLUSIONS

This paper has addressed a critical, underde-
veloped aspect of ecology: conceptual and
analytical integration across multiple data do-
mains. Often ecologists, especially as the era of
big data progresses, deal with data from funda-
mentally, sometimes radically different domains.
A given project may have a data block on
community composition, soil (or water) chemis-
try, geography, genetic data (sequence or expres-
sion arrays) or anthropogenic impacts. Typically,
we attempt integration of data domains by
combining principal components analysis (a
within-block approach) and two-block multivar-
iate ordinations. But we miss a staggering
amount of information by doing so, as illustrated
in our paper using several case studies. Partial
least squares regression, though an established
tool in chemometrics and bioinformatics (e.g.,
Cope et al. 2014), is important to develop and
popularize in ecology.
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We developed three-block partial least squares,
an intuitive graphical method for summarizing
data relations and illustrated high-order ques-
tions that can be addressed using vegetation, soil,
and topography examples from several ecologi-
cal systems and their respective sub-zones. We
demonstrated that bi-variances and tri-variances
provide useful insight into how the strength of
couplings among vegetation, soil, and topogra-
phy data blocks varies across scales and distur-
bance regimes.

A perspective shift like we are describing is
important as ecology grows even more integra-
tive. Until actually measured, trivariate relation-
ships cannot be fully understood with even the
most detailed bivariate approaches. Though we
describe the simplest case of multi-variance
beyond the usual two-block linear statistical
model, this approach can be extended seamlessly
to any number of data domains, making true
integration possible, so that the long-held ideal of
ecology being a holistic science can be more fully
realized.
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SUPPLEMENTAL MATERIAL

APPENDIX

Costa’s study area and data collection
Costa collected vegetation, soil, and topogra-

phy data sets at coastal dunes along the
southernmost 217 km-long stretch of Brazil
(328550 S, 528520 W; Fig. A1). Although Costa et
al. (1996) originally selected a total of 10 sites for
their research, in this paper, we restricted our
analysis to the six representative locations as in
the map: four northern sites and two southern
sites. The northern dunes exhibit relatively high
foredune ridges (;7 m) and the southern sites
show relatively large seashore deflation plains.
These differences between dunefields are associ-
ated with shoreline orientation and local hydro-
dynamics, which determinate dissipative beaches
with fine quartz sands at the north and charac-
teristic reflective beaches with high proportion of
shell fragments at the south (Calliari and Klein

1993, Calliari et al. 1996). These regions belong to
a warm temperate transition zone (Cordazzo and
Seeliger 1988) and to a micro-tidal zone with
mean range being less than 50 cm (Bernardi et al.
1987).

At each site, Costa et al. (1996) established five
100 m long and 1 m wide strip transects
perpendicular to the coastline, starting at the
leading edge of the vegetation. Each transect was
divided into 10 zones with the equal length of 10
m. Along each zone, the presence of plant species
was recorded at 2-m intervals using 1-m2 square
quadrats. Then, all floristic data from these zones
were pooled to represent the overall frequency of
each species. In each zone, they also examined
pH of superficial sand (10–20 cm depth), and the
proportion (%) of coarse (.0.50 mm), medium
(0.25–0.50 mm), fine (0.062–0.25 mm), and clay/
silt (,0.062 mm) sediments. Two topographic
attributes of each zone were included in the
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present work: surface elevation (m) and distance
from the coastline (m), which corresponded to
the gradients in sedimentation rates and salinity.

Kim’s study area and data collection
The Sindu coastal dunefield is located in west

Korean Peninsula (36850033.8100 N, 126811037.8500

E; Fig. A2A). The foredune ridge is adjacent to
the beach and is dominated by Elymus mollis, a
typical grassy dune species in northeastern Asia,
and a shrub species Vitex rotundifolia. The second
dune is situated in the landward part of Sindu
and is characterized by the presence of woody
individuals of Robinia pseudoaccacia and an
invasive plant Phytolacca americana. The inter-
dune depression is prone to the concentration of
groundwater flows from the surrounding dune
ridges; hence, this swale experiences frequent
submergence in freshwater during wet summer
seasons.

In each of the 126 grids (20 3 20 m; Fig. A2B),

Kim systematically placed five square quadrats
(Fig. A2C) and recorded the percent cover of
each plant species present in each quadrat. The
size of quadrats was 13 1 m when there were no
woody individuals and 2 3 2 m when any of
them was present. Cover data from the five
quadrats were then averaged to represent the
grid as a whole. Species nomenclature followed
Lee (1996).

Kim also collected subsurface soil samples (;1
kg at 15–20 cm depth) in the middle of each grid.
Soil properties analyzed included soil moisture
(%), find sand (%), organic matter (%), soil pH,
electrical conductivity (mS/cm), nitrate (NO3

–)
(mg/kg), total phosphorus (mg/kg), and ex-
changeable Naþ, Mg2þ, Ca2þ, Kþ (mg/kg). See
Kim et al. (2008) for more detailed information of
analytic procedures.

Using a total station (Sokkia SET5FS), Kim
acquired horizontal (x, y) and vertical (z) coordi-
nates of 1383 surface points across the study plot.

Fig. A1. Location of Costa’s study area in southern Brazil. The four white circles at the top indicate northern

sites, whereas the two black circles at the bottom represent southern sites (see Tables 2 and 3 of the main article).
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He then used Surfer 7.0 (Golden Software) to
perform semivariogram analysis and to create a
digital elevation model (DEM). DiGeM 2.0
(Conrad 2002) was utilized to acquire values for
terrain descriptors for each grid of the DEM in
tandem with the Getgridvalue extension of Arc-
View GIS 3.3 (Environmental Systems Research
Institute 2000). Finally, eight topographic vari-
ables were calculated: elevation (m), slope
gradient (radians), aspect (radians), plan curva-
ture (radians/m), profile curvature (radians/m),
upslope area (m2), wetness index (dimension-
less), and distance from the coastline (m).

The Skallingen salt marsh lies at the northern
end of the Wadden Sea (55830 029.85 00 N,
8815 003.0800 E; Fig. A3A). The marsh has a
micro-tidal condition with the mean range being

approximately 150 cm. The range becomes about
170 cm at spring and 130 cm at neap tides. The
marsh has formed since the beginning of the 20th
century when the accretion of silt and clay
started on top of the peninsula’s centuries old
extensive sand flat (Aagaard et al. 1995).

Along each transect, Kim put 1 3 1 m square
quadrats, each of which was subdivided into 25
cells of 0.2 3 0.2 m (Fig. A3B). The number of
quadrats and the distance between them in-
creased as he moved from marsh edges toward
the interiors: (1) two or three quadrats were
separated by 0.5 m in the zone of point bar, (2)
two or three quadrats were separated by 1 m in
transitional zones, and (3) four or five quadrats
were separated by 2–4 m in marsh interiors. Two
replicate quadrats were established at every site

Fig. A2. The location of the Sindu coastal dune in South Korea (A) with spatial zonation of habitat types (B).

The zonation was based on the result of correspondence analysis on floristic data. Each symbol represents soil

sampling point as well as the habitat types. Panel C shows the location of five quadrats within each grid of 203

20 m. The size of quadrats was exaggerated to make them more visible.
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Fig. A3. Location of the study area in southwestern Denmark (A). The establishment of permanent plots across

tidal creeks and the associated sampling designs (B).

v www.esajournals.org 27 August 2015 v Volume 6(8) v Article 135

KIM ET AL.



surveyed. Kim recorded the presence of vascular
plant species in each cell (0.23 0.2 m); and hence,
the frequency of each species in one quadrat
varied between 0 and 25. Then, the frequencies
from two replicate quadrats were averaged.

At the middle between the two replicate
quadrats, soil and topographic surveys were
conducted (Fig. A3B). For the soil sampling,
Kim used a cylindrical core with diameter and
depth being 4.5 cm and 10 cm, respectively. A
total of 10 soil physical and chemical analyses
were then performed on each soil sample
including bulk density, soil pH, electrical con-
ductivity (umhos/cm), phosphorus (mg/kg), sul-
fur (mg/kg), nitrate (NO3

–; mg/kg), Naþ (mg/kg),
Kþ (mg/kg), Ca2þ (mg/kg), and Mg2þ (mg/kg). For
the topographic survey, a differential Global
Positioning System (Trimble R4 GPS Receiver
and Trimble Recon Controller) was used. The
horizontal and vertical precision was 1 cm and 2
cm, respectively. Distance (m) was measured
from each point to the streamline. See Kim et al.
(2012) for more detailed information of analytic
procedures.

Kupfer’s study area and data collection
The Kupfer data were collected on the flood-

plain of the 969-ha Bates Fork tract within

Congaree National Park (NP). Originally set
aside as a National Monument in 1976 and
redesignated as a National Park in 2003, Con-
garee NP protects the largest intact expanse of
old-growth bottomland hardwood floodplain
forest in the southeastern USA and has been
designated as an International Biosphere Reserve
and a Ramsar wetland site. The Bates Fork tract
is located at the easternmost extent of the park at
the confluence of the Congaree and Wateree
Rivers (338460 N, 808370 W; Fig. A4), which have
upstream drainage areas of ;21500 km2 and
14500 km2, respectively. Discharges of these
rivers are generally highest from January to
April, when evapotranspiration is low, but they
are also regulated to some degree by dams on the
Saluda River, one of the two major tributaries to
the Congaree River, and the main stem of the
Wateree River (Conrads et al. 2008). Floodplain
geomorphology at the study area reflects hydro-
logic influences from both rivers and is charac-
terized by levee complexes, ridge and swale
systems, abandoned channel meanders, and low
gradient backswamps.

The Bates Fork tract was not within the
original boundary of Congaree NP, but was
acquired and incorporated into the park in
2005. The data for this study come from three

Fig. A4. Study area: the Bates Fork tract of the Congaree National Park.
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forested stands that were clear-cut shortly before
the tract’s acquisition. All of these stands are
located on the active floodplain surface, but they
encompass a gradient of conditions associated
with differences in elevation, hydroperiod, geo-
morphic setting, and soil conditions. The Con-
garee River site (clearcut area¼51.7 ha; elevation,
mean¼ 77.86 m asl; range¼ 76.67–79.57 m asl) is
most affected by flood disturbance as it sits on an
old meander scroll complex immediately below
the active levee of the current river. The Bates Old
River site (clearcut area ¼ 24.0 ha; elevation,
mean¼ 80.26 m asl; range¼ 78.82–82.27 m asl) is
located on the natural levee of a permanently
flooded, channel meander of the Congaree River
that was abandoned in the 1850s. The levee is still
building from overbank sediment deposition
during high floods, but these sites flood less
often and for shorter durations than those at the
Congaree River site. The Sampson Island site
(total clearcut area ¼ 24.0 ha; elevation, mean ¼
79.50 m asl; range¼ 78.62–80.41 m asl) is located
in the interior of the Bates Fork floodplain and is
influenced by a sandsplay deposit resulting from
the denudation of a Late-Pleistocene age aeolian
sand dune.

As part of a long-term study on post-logging
succession at the Bates Fork tract, vegetation data
were collected from May 2006 through August
2007 using a replicated sample design with
sample plots located along each of 32 transects
spanning the boundary between logged and
unlogged forest (Kupfer et al. 2010). Along each
transect, two plot corners were randomly locat-
ed: (1) 5–10 m into the clearcut (field edge) and
(2) 30–50 m into the clearcut (field interior).
Beginning at each corner, a 30310 m sample plot
was laid out, with the long axis aligned perpen-
dicular to the transect direction. Three circular
subplots (2.82 m radius) were then established at
even intervals along a 30-m line running length-
wise down the middle of the sample plot.
Measurements included diameter at breast
height (dbh; 1.37 m) of all individuals .1 cm in
dbh (saplings) and counts by species of all
individuals .0.25 m in height but ,1 cm in
dbh (seedlings). Individuals .10 cm dbh, of
which there were few, were measured and
recorded within a larger radius of the subplot
center (3.99 m). Sapling and seedling values were
integrated into a single measure of abundance for

the entire plot by: (1) transforming sapling
diameters to basal areas and summing the values
by species for each plot, and (2) assigning each
seedling a nominal basal area of 0.1 cm2 and
adding these values to the sapling basal area.
This resulted in data on woody plant regenera-
tion for 64 plots (two plots each at 32 transects).

Soils are predominantly classified as moder-
ately well-drained, silty clay loams on the Bates
Old River and Congaree River sites and as poorly
drained loams on the Sampson Island site (USDA
NRCS 2008). However, variations in microtopog-
raphy and flood regime create considerable
within-stand differences in soil characteristics.
Samples from the top 10–15 cm of soil were taken
from each of the three subplots and composited
to provide data on plot-level soil conditions
(Kupfer et al. 2010). All soil samples were
collected over two weeks during a period of
uniform weather with no substantial precipita-
tion. They were then analyzed for pH, extractable
phosphorus, potassium, calcium, magnesium,
zinc, copper and sodium, organic matter, cation
exchange capacity(CEC), exchangeable acidity
(the amount of total CEC occupied by Hþ and
Al3þ), and total percent base saturation (the
percent of exchange sites occupied by base
cations) at the Clemson Agricultural Laboratory.

Two measures of topography and flood regime
were calculated. Elevation (m asl) was extracted
for each of the sample subplots from a digital
terrain model constructed using high-resolution
Lidar data with 3-m horizontal accuracy and 10-
cm vertical accuracy. However, because elevation
is an imperfect indicator of site hydrology, flood
regime was examined using an interactive GIS
model of floodplain inundation by coupling the
U.S. Army Corps of Engineers Hydrologic
Engineering Center-River Analysis System
(HEC-RAS v.3.1.1: USACE 2002) with a Geo-
graphic Information System (ArcGIS 9.2), using a
specialized set of ArcGIS extension tools (HEC-
GeoRAS v.4.1.9.2: USACE 2005). Details of this
modeling process can be found in Kupfer et al.
(2010), but the end result is a seamless map of
projected flood inundation depths that are
specific to a user-defined river discharge. Data
used in this study were the extracted inundation
depths for each subplot during a 98000 cfs flood,
a discharge that represents a flood which
inundates all of the Bates Fork floodplain. These
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values were then averaged to get plot-level
inundation values that were consistent with the
vegetation and soils data.

McEwan’s study area and data collection
The McEwan data set was generated in a study

of a Big Everidge Hollow (BEH), a 52-ha
watershed within the Lilley Cornett Woods
Appalachian Research Station (3780500 N, 8380000

W, Roxana Quadrangle; Fig. A4) on the Cumber-
land Plateau, in southeastern Kentucky (McEwan
and Muller 2011). Muller (1982) used a random
sampling scheme stratified by elevation to
establish 80 permanent circular plots, 0.04 ha in
size on the horizontal plane throughout the BEH
watershed, which is U-shaped and opens to the
east. Woody species inventories of stems �2.5cm
diameter at breast height were conducted in
1979, 1989, 1999, and 2010 (Muller 1982, McEwan

and Muller 2006). McEwan et al. (2000) estab-
lished four 1-m2 subplots within each of these
permanent plots (N¼ 320) to assess ground-layer
vegetation. Subplot centers were established at
908 intervals, around the overstory center stake at
a distance that was equal to the radius of a circle
bisecting the area of the overstory plot. The first
subplot was located 458 to the right of uphill, and
the rest were equally spaced around the plot
center. The combined area of the four herb-layer
subplots measured 1/100th of the overstory plot
area (0.0004 ha/plot or 1 m2 per subplot). For the
purposes of this study, only herbaceous species
(i.e., cryptophytes; Raunkiær 1934) were consid-
ered. Botanical nomenclature follows Jones
(2005) and voucher specimens were deposited
into the University of Kentucky Herbarium.

Muller (1982) measured elevation and slope
aspect on each of the plots. Elevation has since

Fig. A5. Location of the McEwan study area in southeastern Kentucky, USA.
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been verified using GPS technology. For the
purposes of analysis, slope aspect data were
converted using the Beers transformation (Beers
et al. 1966), which rescaled the original 3608

observations to a scale representing dryness
where a value of 2 is for northeast facing slopes
that are assumed to receive the least sunlight (are
more mesic) and a value of 0 to southwest facing
slopes (assumed to be the most xeric plots). All
other aspects were linearly interpolated between
these two (Beers et al. 1966). We also assessed
soil chemistry through composite soil samples
consisting of 16 pooled samples per overstory
plot (80 total samples; collected in June of 2001).
Samples were collected in the mineral soil with a
2.5-cm tube sampler to a depth of 2.5 cm, starting
just below the Ao layer. Samples were homoge-
nized and then a subsample was analyzed for
plant available nitrogen (NH4

þ, NO3
–) on a Bran-

Luebbe autoanalyzer following KCl extraction.
Mehlich III-extractable P, K, Ca, Mg, and Mn
were analyzed on an inductively coupled plasma

spectrometer. Cation exchange capacity and base
saturation were determined via ammonium
saturation followed by analysis with an ammo-
nium ion-selective electrode. To evaluate the
understory light environment, hemispherical
digital canopy images were collected at each
permanent plot center. Digital images were
collected with a Nikon Cool-Pix 950 digital
camera equipped with a Nikon FC-E8 1838

fisheye converter, with the lens positioned 1
meter above the ground. We used percent
canopy openness in the Gap Light Analyzer
image processing software (Frazer et al. 1999), as
the measure of understory light conditions
because it incorporates influences on light avail-
ability from both canopy vegetation and topog-
raphy.

Stallins’s study area and data collection
The Georgia Bight, South Core Banks, North

Carolina (34841 N, 76828 W), and Sapelo Island,
Georgia (31823 N, 81815 W) differ strongly in

Fig. A6. Location of the Stallins study areas along the Atlantic coast, USA.
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their wave and tidal regime (Fig. A5). They also
exhibit different island and dunefield morpholo-
gies, which necessitated an adapted sampling
design. A 2-m point-frame sampler, aligned
perpendicular to the centerline of a transect,
was used to measure species presence. Point-
frame observations were spaced at 1-m intervals
along transects on Sapelo. On South Core, point
frame observations were made every 2 m due to
greater width of the dune zone and an overall
longer length for transects. Each point-frame
sample along transects consisted of 20 observa-
tions of species presence, with 10-cm intervals
between observations. Presence was summed for
individual species and expressed as percent
absolute cover for each point-frame sample. A
total of 1082 point-frame samples were made on
Sapelo, and 1139 on South Core.

For each point-frame sample along a transect, a
TOPCON total station was used to determine the
elevation and distance from the seaward base of
each foredune. Transects began on the seaward
base of the foredune, a position approximating

the mean high water mark, and extended inland
until the first occurrence of extensive woody
shrub cover. Soils were characterized for pH,
particle-size distributions, and percent content by
weight for organic matter and carbonate. Soil pH
was measured with a handheld, electronic pH-
meter. Wet and dry sieving was used to
determine the percent contribution of particle
sizes in four classes: silt and clay (,0.0625 mm),
very fine to fine sand (,0.25 mm and .0.0625
mm), very coarse to medium sand (,2 mm and
.0.25 mm), and granules plus coarser-grained
inorganic material (.2 mm). Soil organic matter,
as a proxy for soil nutrient status, was measured
using loss on ignition. A HCI digest was
employed to determine percent content by
weight of calcium carbonate.

SUPPLEMENT

R scripts for estimating the extra sums of
squares in the main text (Ecological Archives,
http://dx.doi.org/10.1890/ES15-00074.1.sm).

v www.esajournals.org 32 August 2015 v Volume 6(8) v Article 135

KIM ET AL.

http://dx.doi.org/10.1890/ES15-00074.1.sm

	Beyond Bivariate Correlations: Three-Block Partial Least Squares Illustrated with Vegetation, Soil, and Topography
	Repository Citation

	Beyond Bivariate Correlations: Three-Block Partial Least Squares Illustrated with Vegetation, Soil, and Topography
	Digital Object Identifier (DOI)
	Notes/Citation Information
	Authors

	Beyond bivariate correlations: threeblock partial least squares illustrated with vegetation, soil, and topography

