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Research articleMicroarray analysis of a salamander hopeful 
monster reveals transcriptional signatures of 
paedomorphic brain development
Robert B Page†1, Meredith A Boley†1, Jeramiah J Smith1,2, Srikrishna Putta1 and Stephen R Voss*1

Abstract
Background: The Mexican axolotl (Ambystoma mexicanum) is considered a hopeful monster because it exhibits an 
adaptive and derived mode of development - paedomorphosis - that has evolved rapidly and independently among 
tiger salamanders. Unlike related tiger salamanders that undergo metamorphosis, axolotls retain larval morphological 
traits into adulthood and thus present an adult body plan that differs dramatically from the ancestral (metamorphic) 
form. The basis of paedomorphic development was investigated by comparing temporal patterns of gene 
transcription between axolotl and tiger salamander larvae (Ambystoma tigrinum tigrinum) that typically undergo a 
metamorphosis.

Results: Transcript abundances from whole brain and pituitary were estimated via microarray analysis on four different 
days post hatching (42, 56, 70, 84 dph) and regression modeling was used to independently identify genes that were 
differentially expressed as a function of time in both species. Collectively, more differentially expressed genes (DEGs) 
were identified as unique to the axolotl (n = 76) and tiger salamander (n = 292) than were identified as shared (n = 108). 
All but two of the shared DEGs exhibited the same temporal pattern of expression and the unique genes tended to 
show greater changes later in the larval period when tiger salamander larvae were undergoing anatomical 
metamorphosis. A second, complementary analysis that directly compared the expression of 1320 genes between the 
species identified 409 genes that differed as a function of species or the interaction between time and species. Of 
these 409 DEGs, 84% exhibited higher abundances in tiger salamander larvae at all sampling times.

Conclusions: Many of the unique tiger salamander transcriptional responses are probably associated with 
metamorphic biological processes. However, the axolotl also showed unique patterns of transcription early in 
development. In particular, the axolotl showed a genome-wide reduction in mRNA abundance across loci, including 
genes that regulate hypothalamic-pituitary activities. This suggests that an axolotls failure to undergo anatomical 
metamorphosis late in the larval period is indirectly associated with a mechanism(s) that acts earlier in development to 
broadly program transcription. The axolotl hopeful monster provides a model to identify mechanisms of early brain 
development that proximally and ultimately affect the expression of adult phenotypes.

Background
Darwin [1] proposed that evolution by natural selection is
a gradual process that results in continuous phenotypic
variation among species. However, there are many exam-
ples where discontinuous phenotypes are observed
among related species and thus appear to evolve rapidly.

That evolution could suddenly "leap forward" led to
extensions of Darwin's theory to account for the rapid
origin of novel phenotypes. One very old idea is that
novel and dramatically different phenotypes originate via
saltational evolution from mutations of genes that regu-
late key developmental or physiological processes during
ontogeny. In particular, Goldschmidt [2] proposed that
mutations occasionally yield individuals within popula-
tions that deviate radically from the norm and referred to
such individuals as "hopeful monsters". If the novel phe-
notypes of hopeful monsters arise under the right envi-
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ronmental circumstances, they may become fixed, and
the population will found a new species. While this idea
was discounted during the Modern Synthesis [3], aspects
of the hopeful monster hypothesis have been substanti-
ated in recent years. For example, it is clear that dramatic
changes in phenotype can occur from few mutations of
key developmental genes and phenotypic differences
among species often map to relatively few genetic factors
[4-8]. These findings are motivating renewed interest in
the study of hopeful monsters and the perspectives they
can provide about the evolution of development [9,10]. In
contrast to mutants that are created in the lab, hopeful
monsters have been shaped by natural selection and are
therefore more likely to reveal mechanisms of adaptive
evolution.

At least three lines of evidence led Goldschmidt [2] to
cite the Mexican axolotl (Ambystoma mexicanum) as one
of the original hopeful monsters. First, the axolotl follows
a different ontogeny from other closely related tiger sala-
manders. Whereas some tiger salamanders undergo an
obligatory metamorphosis during ontogeny that allows
for a transition from an aquatic habitat to a more terres-
trial habitat, the axolotl has a non-metamorphic life cycle
that is often referred to as paedomorphic [11]. This
extreme example of discontinuous phenotypic variation
supports a model of evolution by heterochrony: larval
morphological traits of ancestral metamorphic forms are
observed in the adult stages of derived paedomorphic
forms. In the minds of early evolutionary biologists, these
patterns were so clearly supportive of heterochrony that
the Mexican axolotl became the exemplar of evolution by
neoteny [12,13]. The second reason Goldschmidt cited
the axolotl was physiological - Huxley [14] had shown
that a single molecule - thyroid hormone (TH) - was
capable of rescuing metamorphosis in the axolotl. Thus,
the axolotl seemed to be an example of evolution waiting
around for the right macromutation to happen - simply
block a single physiological step in TH regulation and a
novel form is originated. The third reason Goldschmidt
cited the axolotl was ecological. Previous researchers had
noted that the axolotl was endemic to the high quality,
permanent aquatic habitats of Xochimilco, which is near
present day Mexico City [15]. The evolution of paedo-
morphosis seemingly allowed the axolotl to exploit an
empty niche in an environment that was devoid of preda-
tors.

Since Goldschmidt, the axolotl has remained a quintes-
sential hopeful monster [16]. Speculation that the paedo-
morphic condition of the axolotl could have a simple
mechanistic basis was supported when a quantitative
trait locus (QTL) was identified for the segregation of
metamorphic and paedomorphic phenotypes in interspe-
cific crosses [8,17-20]. Previous physiological studies had
also established that axolotls do not produce a sufficient

titer of thyroid hormone during larval development to
initiate anatomical metamorphosis [[21,22] reviewed in
[23-25]]. The evolution of axolotl hypothyroidism is
thought to be associated with a mechanism that affects
the development and/or function of neuroendocrine axes
that regulate the release of thyroid hormone from the
thyroid glands [11,26,27]. Conceivably, this mechanism
could function during early stages of development or it
could function later in the larval period when metamor-
phosis is initiated. Regardless, whether paedomorphic
and metamorphic larvae show similar or different pat-
terns of neurological development and function has not
been previously investigated.

In this study, microarray analysis was used to investi-
gate transcription within whole brains (including the
pituitary) of the paedomorphic axolotl and a closely
related metamorphic species (A. tigrinum tigrinum). The
primary objective was to identify patterns of gene expres-
sion during early ontogeny that could provide new mech-
anistic insights about paedomorphic and metamorphic
modes of development. Transcripts were sampled from
both species at four chronologically matched times post
hatching to obtain temporal profiles of gene expression
during the early larval period and during early stages of
morphological metamorphosis in A. t. tigrinum. Hun-
dreds of genes showed different or unique patterns of
expression between the species, many of which were ini-
tiated very early in the larval period and prior to the onset
of morphological metamorphosis. The results suggest
considerable potential for transcriptional divergence
between closely related vertebrate species and highlight
the tiger salamander/axolotl model system for examining
mechanisms in the developing brain that determine adult
phenotypic outcomes.

Results
Larval growth and metamorphosis
Under normal growth conditions, larvae of metamorphic
and paedomorphic species of Ambystoma increase in size
but only larvae of metamorphic species show changes in
morphology (bulging eyes, changes in head shape, reduc-
tion of tailfins and gills) that are indicative of anatomical
metamorphosis. In this experiment, tiger larvae were
larger than axolotls at 28 dph and exhibited higher
growth rates early in the larval period (Figure 1). As
development proceeded, tiger salamander growth rates
decelerated while axolotl growth rates remained con-
stant. None of the tiger larvae showed changes in mor-
phology suggestive of initiation of metamorphosis at the
three earliest time points (28, 42, 56 dph). However at 70
dph, 23% (n = 30) of tiger larvae showed bulging eyes and
subtle changes in head morphology. By 84 dph, all tiger
larvae were undergoing anatomical metamorphosis and
20% (n = 30) of these had rudiments of gills that were less
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than 1 mm in length. These larvae, and all larvae that
were examined at 98 dph (n = 30), were considered meta-
morphs. Thus, some tiger salamanders initiated anatomi-
cal metamorphosis between 56 and 70 dph and most
larvae completed metamorphosis between 84 and 98 dph.

Differentially expressed genes identified independently 
from axolotls and tiger salamanders
A custom Affymetrix GeneChip [see [28-30]] was used to
estimate mRNA abundances at four chronologically
matched times (42, 56, 70, and 84 dph) to obtain temporal
profiles of gene expression for tiger salamander and axo-
lotl larvae. Statistical and fold-change criteria were then
used to identify genes that were differentially expressed
within each of the species. Thus, these analyses took the
conservative approach of independently identifying genes
from each species that were differentially expressed as a
function of time and comparing the list of differentially
expressed genes (DEGs) from tiger salamander with the
list of DEGs identified from axolotl. This approach is con-
servative because it reduces the risk of identifying false
positive expression differences between species that are
caused by heterologous hybridization [31]. More than
twice as many DEGs were identified from tiger salaman-
der than axolotl larvae (n = 400 vs 184) (Figure 2). There
was considerable overlap between the two species as
more than half (n = 108) of the genes identified from axo-
lotls were also identified from tiger salamander larvae.

The remaining DEGs changed uniquely in only one spe-
cies. Thus, many shared and unique DEGs were identi-
fied, with more unique DEGs identified from tiger
salamander larvae.

Of the 108 DEGs identified from both species, 60%
exhibited the same regression profile and 99% exhibited
the same generalized direction of differential expression
(i.e., up versus down-regulation; Additional File 1). Of the
76 DEGs uniquely identified from axolotls (Additional
File 2), 55% showed increasing mRNA abundances (LU,
QLVU, or QLCU) during the larval period while 45%
showed decreasing abundances (LD, QLVD, or QLCD)
(see Figure 3 for acronym definitions). The opposite pat-
tern was observed for the 332 unique tiger salamander
DEGs with 55% showing decreasing mRNA abundances,
43% showing increasing abundances, and 1% showing a
pattern of transient increase (QC). Only a small percent-
age (~10%) of shared and unique DEGs exhibited ≥ 1.5
fold difference in mRNA abundance between the earliest
time points (42 and 56 dph). However, between the latest
time points (70 and 84 dph), ~32% of the shared DEGs,
64% of unique axolotl DEGs, and 61% of unique tiger sal-
amander DEGs showed a ≥ 1.5 fold difference. Thus,
abundances of uniquely expressed transcripts tended to
increase throughout larval development, showing the
largest fold differences at later larval stages.

The DEGs identified independently from both species
that showed significant sequence identity to a human
RefSeq protein were assumed to be salamander-human
orthologs and were annotated with biological process
information from the Gene Ontology (GO) database.
Many of the same GO terms were represented among the
three DEG lists - the DEGs that were expressed in com-
mon between the species (i.e. shared list) and the separate

Figure 2 Venn diagram showing differentially expressed genes 
(DEGs). The figure shows DEGs identified uniquely from axolotls and 
tiger salamanders, and DEGs in common between the species.Figure 1 Growth of larval axolotls and tiger salamanders. Data 

points are snout vent length (SVL) measured for individuals at the time 
of brain tissue collection. Lines were estimated by fitting a general lin-
ear model (R2 = 0.957) to SVL data from both species. All terms of the 
model were significant (p < 0.05; see methods). Axolotl larvae = black 
circles, tiger salamander larvae = gray triangles. The blue bar shows the 
time period where anatomical changes consistent with metamorpho-
sis were observed in tiger salamander larvae (A.t.t.).
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lists of DEGs that were identified uniquely from each spe-
cies (i.e. axolotl or tiger salamander). The commonly
expressed DEGs were statistically associated with 27
terms, and many of these genes are predicted to function
in cell cycle processes (Figure 4). Nearly all of the DEGs
that annotated to cell cycle terms exhibited decreasing
mRNA abundances during larval development in both
species, as did six of seven annotated transcription fac-
tors. For example, two biomarkers of neural development
and differentiation (sox3, msx1) were both categorized as
LD in axolotl and tiger salamander. Conversely, the
majority of DEGs associated with system development
were up regulated in both species. These results suggest
that some aspects of neural development and function
are similarly regulated between axolotl and tiger sala-
mander larvae. This also seems to be true for some but
not all hemoglobin loci, and genes that function in stress
and immunological pathways.

Relatively few uniquely expressed axolotl genes were
identified overall (N = 76) and thus only 3 broad GO
terms were identified as statistically enriched (Figure 4):
regulation of cellular process (n = 21, p = 0.004), regula-
tion of biological process (n = 21, p = 0.011), and biologi-
cal regulation (n = 22, p = 0.015). The unique axolotl
genes are predicted to function in some but not all of the
biological processes observed for the shared DEG list
(Additional File 2). For example, six genes that function in
apoptosis (srpbp1, anax1, anax5, mtch1, gstp1, pim1)

were uniquely identified for axolotls. DEGs known to be
associated with vertebrate brain development were iden-
tified, including genes that code for extracellular matrix
constituents and cell adhesion (e.g., mmp1, dcn, col1a1,
dpt, lgals4). Also, several biomarkers of mammalian brain
pathologies were uniquely up regulated in axolotls (ctss,
ogn, cd69). These and other uniquely expressed genes
may be associated with the axolotl's paedomorphic mode
of development.

The larger list of unique DEGs from tiger larvae yielded
more biological process annotations and were statistically
associated with 23 GO terms (Figure 4)(Additional File
3). As was observed for the shared gene list, the cell cycle
GO term was significantly enriched and these genes
showed decreasing mRNA abundances during larval
development. However, several GO terms were identified
that were not represented in the shared or unique axolotl
list, including biological processes associated with chro-
matin organization and biogenesis. For example, lmx1b
showed a pattern of decreasing transcript abundance, as
did several other genes that function in chromatin orga-
nization, modification, and gene silencing (e.g. dnmt1,
baz1b, baz1a, smarca5, hist1h1b, hist1hbj, hist2h2ac). It
is possible that some of these unique DEGs are associated
with the maturation of brain regions that orchestrate
metamorphic events. For example, several genes that
function to regulate the secretion of hypothalamic, pitu-
itary, and interrenal hormones were uniquely expressed
in tiger salamander larvae, including nr3c2, prl, and sstr5.
In addition to these genes, pomc and crhr1 exhibited
higher expression levels in tiger salamander larvae (see
real-time PCR results below). Thus, the microarray anal-
ysis identified expression differences between axolotl and
tiger larvae that may correlate with HPI axis regulation
and function.

Direct comparison of transcription between axolotl and 
tiger salamander
To complement the statistical analyses described above, a
subset of Affymetrix probesets were identified that could
be used to reliably compare transcript abundance esti-
mates directly between the species. Othologous genes
from axolotl and tiger salamander were aligned to iden-
tify 1320 Affymetrix probe-sets with zero mismatches
between the species. Ten of these probesets were identi-
cal to other probesets. Of the remaining non-redundant
probesets, 31% (n = 409) registered statistically distinct
expression profiles between the species. This analysis
identified some of the unique, temporally regulated DEGs
described above, and additionally, genes that exhibited
flat regression profiles that differed significantly in eleva-
tion between the species. Indeed, 84% (n = 343) of the
genes identified from this analysis showed higher expres-
sion levels throughout the larval period in tiger salaman-

Figure 3 Regression patterns of differentially expressed genes 
identified from axolotls and tiger salamanders. LD = linear down, 
QLCD = quadratic linear concave down, QLVD = quadratic linear con-
vex down, QV = quadratic convex, LU = linear up, QLVU = quadratic lin-
ear convex up, QLCU = quadratic linear concave up, and QC = 
quadratic concave.
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during development in both metamorphic and paedo-
morphic salamanders. Genes associated with vertebrate
brain development such as sox3 [32], msx1 [33], and npy
[34] significantly increased in abundance in both species.
Also clu, a gene expressed at low levels in the central ner-
vous systems of embryonic mice before increasing during
postnatal life [35], was similarly up regulated during the
axolotl and tiger salamander larval periods. Many aspects
of brain development and function are highly conserved
among vertebrates. If these functions depend upon con-
served patterns of gene transcription, then similarities are
expected whether a salamander follows a metamorphic
or paedomorphic mode of development.

Although many DEGs were expressed similarly
between the species, approximately four times as many
were uniquely differentially expressed in tiger salamander
larvae. It is possible that many of these gene expression
differences represent transcriptional responses in tiger
larvae that are necessary for metamorphosis. Three lines
of evidence support this idea. (1) More genes were
uniquely expressed in tiger larvae and the majority of
these showed larger fold changes later in the larval
period, when larvae were undergoing anatomical meta-
morphosis. (2) Hundreds of genes were differentially
expressed between axolotls and tiger salamanders
throughout larval development, including the earliest
time point sampled (42 dph). (3) Genes and gene func-

Figure 6 Expression profiles generated by qPCR. The figure shows profiles for hypothalamic-pituitary-interrenal axis genes: (A) nr3c2, (B) nr3c1, (C) 
pomc, and (D) crhr1. Axolotl larvae = black circles, tiger salamander larvae = gray triangles. Separate trend lines indicate statistically significant profiles 
for all genes except nr3c1 at the p = 0.05 level.
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tions that are likely associated with later metamorphic
regulation were identified as DEGs. For example, several
genes that encode chromatin structure and modifying
proteins were uniquely identified from tiger larvae or
were differentially expressed between the species (e.g.
dnmt1, baz1a, smarca5). Also, several genes that may
function in post-transcriptional modification of chroma-
tin proteins were identified as differentially expressed
between the species (e.g. sumo1, uba2, ube2e3, ube2I,
ube2l3, ube2r2). It is well established that metamorphosis
in amphibians and insects requires programming events
that activate new transcriptional programs [36]. Indeed,
knocking out smt3 (homolog of sumo1) in Drosophila, a
gene associated with chromatin remodeling by sumoyla-

tion, is known to extend the pupal stage and inhibit meta-
morphosis [37]. In addition to chromatin-associated
genes, the expression of several genes involved in cellular
metabolic processes (e.g. cat, got2, adss, acp1, idh3g, ctps,
eno3) and hormone pathways (e.g. sstr5, nr3c2, prl)
increased or were expressed at higher levels (tef) during
tiger salamander development. While it is not unex-
pected to discover gene expression differences between
closely related species, the results are intriguing because
transcriptional output was generally higher in tiger sala-
manders, for the majority of loci that showed differential
expression. Moreover, some of the genes that were differ-
entially expressed were identified early in the larval
period, well before the onset of morphological metamor-

Figure 7 Expression profiles generated by qPCR for hemoglobin genes. (A) hba, (B) hbd, (C) hbe1, and (D), hbg1. Axolotl larvae = black circles, 
tiger salamander larvae = gray triangles. Separate trend lines indicate statistically significant profiles for all genes at the p = 0.05 level.
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phosis. This suggests that metamorphic and paedomor-
phic modes of development are distinct in a
transcriptional sense at very early stages of ontogeny, per-
haps tracing back to embryogenesis [16].

Paedomorphosis is a heterochonic term that is classi-
cally defined as a change in the timing of development
that leads to the retention of ancestral, juvenile character-
istics in adults of evolutionarily derived lineages [13]. The
simplest model to explain such a pattern is a change that
delays the overall rate of development. Patterns of gene
expression were discovered that support the idea of
developmental delay: axolotls maintained relatively con-
stant hbe and hba transcript abundances, suggesting the
maintenance of an embryonic hemoglobin expression
profile throughout larval development. In comparison,
transcripts for these genes declined precipitously midway
during the larval period in tiger salamanders, perhaps
coinciding with the initiation of early, metamorphic
changes. However, developmental delay cannot explain
all of the axolotl-tiger salamander expression differences.
As was noted above, axolotls shared some expression pat-
terns with tiger salamander larvae, which presumably
present aspects of the ancestral metamorphic pattern. In
addition, axolotls showed unique expression patterns not
observed in tiger salamander larvae. Axolotls uniquely up
regulated genes that are associated with vertebrate brain
development and mammalian brain pathologies, includ-
ing ctss and aging [38], ogn and pituitary cancer [39], and
cd69 and Alzheimers [40]. Also, an expression difference
was identified that supports the idea of a depressed HPT
axis in axolotls [21,25]. Tef, a bZIP transcription factor
implicated in the activation of mammalian TSHb [41],
showed significantly lower abundances across all time
points in axolotl larvae. Finally, consider the transcription
of nr3c1 and nr3c2 during development. The glucocorti-
coid receptor (nr3c1) showed a dynamic temporal expres-
sion profile that was statistically indistinguishable in both
species. Conversely, the mineralocorticoid receptor
(nr3c2) was expressed at significantly lower levels in axo-
lotl larvae. Thus, gene expression patterns in larval axo-
lotls appear to be mosaic: some patterns are shared with
tiger salamanders and some patterns are novel. Some of
the novel patterns may be neutral in effect and fixed by
genetic drift. However, in the case of transcription factors
that may influence hypothalamic-pituitary development
and activity (tef, nr3c2) or hemoglobins that allow for
physiological adaptation to changing oxygen needs, the
axolotl provides a model to study expression changes that
have likely been selected to better suit large and repro-
ductively competent "larval forms" for a totally aquatic
life history.

In considering how discontinuous phenotypes evolve
via Darwinian means, Gould [16] proposed an answer in
the case of the axolotl:

"the problem of reconciling evident discontinuity in
macroevolution with Darwinism is largely solved by the
observation that small changes early in embryology accu-
mulate through growth to yield profound differences
among adults.... Delay the onset of metamorphosis and the
axolotl of Lake Xochimilco reproduces as a tadpole with
gills and never transforms into a salamander." 

Although once a controversial idea, it is accepted now
that evolution can act on early stages of development to
yield novel phenotypes [42]. There is a lengthy temporal
disconnect between embryogenesis and the time a tiger
salamander larva first shows morphological changes
indicative of metamorphosis (after 56 DPH). During this
time, there is ample time for genetic and environmental
factors to affect brain development in ways that alter
hypothalamic-pituitary activity late in the larval period.
The results show that many genes in the brains of axolotl
larvae are transcribed at lower levels than they are in tiger
salamander larvae. These include genes that function in
the regulation of hypothalamic-pituitary activities that
orchestrate anatomical metamorphosis. This suggests the
following hypothesis: an axolotl's failure to undergo
metamorphosis late in the larval period traces to mecha-
nisms that act early in development to broadly program
transcription. This hypothesis can be tested by over-
expressing tiger salamander genes in axolotl embryos that
function to program gene expression in the brain during
early development. Other hypotheses can be tested in
axolotls to investigate mechanisms that direct brain
development in a predictable manner, towards a hopeful
monster outcome.

Conclusion
This study shows that axolotl and tiger salamander larvae
present different brain transcriptional programs and
these programs diverge early in development. These early
transcriptional differences include genes whose functions
associate with a number of biological processes, includ-
ing cell cycle, apoptosis, chromatin structure and remod-
eling, cellular metabolism, transcription, post-
translational modification, neural development, and reg-
ulation of the HPI and HPT axes. Studies of other meta-
morphic and paedomorphic species of salamander are
needed to disentangle species-specific gene expression
responses from those that distinguish metamorphic and
paedomorphic modes of development.

Methods
Study animals
A single fertilized clutch of A. t. tigrinum was obtained
from Charles D. Sullivan Co. Inc and the A. mexicanum
were sibs deriving from a Voss lab axolotl strain. Larvae
from both species were reared individually following
hatching in 40% Holtfretter's solution at 20-22°C and fed
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brine shrimp napulii (Artemia sp., Brine Shrimp Direct,
Ogden, UT) twice daily for three weeks. After three
weeks, larvae were fed California blackworms ad libitum
(Lumbriculus sp., J.F. Enterprises, Oakdale, CA). At 28,
42, 56, 70, 84, and 98 dph, salamanders were anesthetized
in 0.01% benzocaine and whole brains and attached pitu-
itaries were flash-frozen in liquid nitrogen immediately
following collection. Observations and measurements
were collected on larval to monitor the progression of
tiger larvae towards metamorphosis. Snout-vent-length
(SVL) was recorded for the salamanders from which tis-
sues were collected. A general linear model of the follow-
ing form was fit to the SVL data: SVLtij = β0 + St + Ti +
(ST)ti + T2

i + (ST2)ti + εtij where β0 corresponds to the
intercept term for axolotls, St corresponds to the inter-
cept term for tiger salamanders, Ti corresponds to the lin-
ear regression coefficient for axolotls, (ST)ti corresponds
to the linear regression coefficient for tiger salamanders,
T2

i corresponds to the quadratic regression coefficient for
axolotls, (ST2)ti corresponds to the quadratic regression
coefficient for tiger salamanders, and εtij corresponds to
the error term of the jth individual from species t sam-
pled at time i. Animal care and use was approved by the
University of Kentucky Animal Care and Use Committee
(IACUC protocols # 01087L2006 and #00907L2005).

RNA isolation
Three tissue pools were developed for each time point.
Whole brains and attached pituitaries were used because
of the small brain size of early larvae, which yielded low
amounts of RNA. Each tissue pool contained the brains
of three different individuals. Total RNA was isolated
using TRIzol (Invitrogen, Carlsbad, CA) and RNA sam-
ples were further purified using Qiagen RNeasy mini-col-
umns. RNA samples were quantified via UV
spectrophotometry (NanoDrop, ND-1000) and qualified
via an Agilent BioAnalyzer (Agilent Technologies).

Gene expression profiling
Genome-level expression profiling was conducted using a
custom Affymetrix GeneChip [28-30]. Three replicate
RNA pools for each of four time points (42, 56, 70, 84
dph) were labeled, hybridized, and scanned by the Uni-
versity of Kentucky Microarray Core Facility according to
standard Affymetrix protocols. Additional gene expres-
sion profiling for selected genes was conducted for a
broader range of time points (28, 42, 56, 70, 84, and 98
dph) using qPCR. Primers (Additional File 5) were
designed using Primer3 [43]. When possible, axolotl and
tiger salamander orthologs for each gene in Additional
File 5 were aligned via BLAST to identify gene regions
that corresponded to the same nucleotides covered by

Affymetrix probe-sets. When the orthologs were not
100% identical in the target regions, separate primers
were designed for each species (see Additional File 5). A
BioRad iScript Select cDNA synthesis kit (Hercules, CA,
USA) was used to synthesize cDNA from 1 μg of total
RNA and primer efficiencies were estimated separately
for axolotl and tiger salamander via linear regression on
dilution series. A reference gene (tif1; probe-set L_s_at;
Additional File 5) was demonstrated to be invariant
across all species by time combinations and relative
expression ratios were calculated according to Pfaffl [44].
All expression ratios are relative to the mean expression
of axolotl at 28 dph and normalized to tif1. All PCRs were
10 μl reactions consisting of 4 ng cDNA, 16.4 ng of for-
ward and reverse primers, and Roche FastStart Universal
SYBR Master (Rox) Mix (Roche Diagnostics, Indianapo-
lis, IN). PCRs were conducted on an Applied Biosystems
StepOnePlus real-time PCR system. Reaction conditions
were as follows: 10 minutes at 95°C, 40 cycles of 15 sec-
onds at 95°C followed by 1 minute at 55°C, 15 seconds at
95°C, and 1 minute at 55°C. Melting curves were gener-
ated to ensure amplification of a single product for each
reaction. All reactions were run on 48 well plates and
blocked by sampling time and species (i.e., for a given
time point, both species were present on the plate). At
least two template free controls were present on each
plate [45].

Quality control and low-level analyses of the Ambystoma 
GeneChip
All arrays were subjected to quality control (QC) at the
individual probe level by inspecting box-plots, histo-
grams, pair-wise M versus A plots of replicate
GeneChips, pseudo-images of probe level models, and an
RNA degradation plot that allows for visualization of the
3' labeling bias across all GeneChips simultaneously
[46,47]. Background correction, normalization, and
expression summaries were obtained via the robust
multi-array average (RMA) algorithm [48]. Two RMA
expression matrices were generated separately for each
species (see below) and a third RMA expression matrix
was computed from all arrays from both species (see
below). Upon implementing the RMA algorithm, the
probe-set level data from each of these three matrices
were subjected to further QC by inspecting pair-wise M
vs. A plots of replicate GeneChips and examining correla-
tion matrices among replicate GeneChips (minimum
mean r for a given species by time point combination
across all three of the RMA expression matrices = 0.989).
Probe-sets from the two species-specific RMA matrices
that were classified as "absent" on > 75% of the
GeneChips were filtered [49].
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Identification of identical probe-sets
A total of 1604 (~33%) of the 4844 probe-sets on the
Ambystoma GeneChip were designed from contigs that
have predicted orthologs in axolotl and tiger salamander.
The sequences of the probe-sets were used as queries in
BLAST searches of axolotl and tiger salamander EST
contigs [50]. BLAST alignments were used to extrapolate
the number of mismatches (MM) between microarray
probes designed to axolotl and orthologous EST contigs
from tiger salamander, and vice versa. These data were
then used to calculate the number of probes in each
probe-set that had > 0 MM and the sum of MM across
each probe-set. Probe-sets that had > 0 MM between
species were filtered before conducting statistical analy-
ses that directly compared expression values between
axolotl and tiger salamander larvae (see below).

Identification of differentially expressed genes
Two statistical approaches were used to identify DEGs.
First, RMA matrices were generated for each species and
quadratic regression [51] was used to identify genes that
changed as a function of time. This approach also classi-
fied genes into nine different temporal profiles based on
the values of the estimated regression coefficients (Figure
3; see also [52]). The "flat" profile describes genes that do
not show transcript abundance changes (null results).
The LU, LD, QLVU, and QLCD profiles described genes
that show linear (LU, LD) or nonlinear (QLVU, QLCU,
QLCD, QLVD) changes in transcript abundance across
sample times. The QV and QC expression profiles
described genes that show transient changes. Statistical
correction for multiple testing was done separately for
each species by evaluating α0 at a false discovery rate
(FDR- [53]) of 0.05. α1 was set to 0.05. In addition to sta-
tistical criteria, genes were only retained if they exhibited
≥ 1.5 fold changes relative to 42 dph (baseline) at one or
more of the other time points (56, 72, or 84 dph).

The second statistical approach used the global RMA
matrix to directly compare axolotl and tiger salamander
expression levels/profiles for genes known to exhibit zero
sequence divergence in the regions encompassed by
Affymetrix probe-sets (see above). This analysis was con-
ducted using the maSigPro software package [54] that is
available from bioconductor http://www.bioconduc-
tor.org for the R statistical computing environment http:/
/www.r-project.org. In short, maSigPro was used to fit
second order (i.e., quadratic) regression models, in which
the species term is identified by a dummy variable, in a
gene-by-gene manner. Correction for multiple testing
was achieved by evaluating the over-all model P-values
according to the algorithm of Benjamini and Hochberg
[53] at an FDR of 0.05. A backward selection procedure
was then used to eliminate non-significant (α = 0.05)
terms from significant models. In order for genes from

this analysis to be considered "identified" they had to
meet the following criteria: (1) over-all model P-values
lower than the FDR adjusted threshold, (2) significant
species, time × species, or time2 × species terms, (3) an R2

≥ 0.50, and (4) a ≥ 1.5 fold difference between axolotl and
tiger salamander at one or more of the sampling times
(42, 56, 70, or 84 dph).

Identification of statistically enriched biological processes
To identify biological processes that were statistically
enriched in our lists of DEGs, we conducted EASE analy-
ses using the database for annotation visualization and
integrated discovery (DAVID)[55]. For all analyses, the
3728 genes on the Ambystoma GeneChip with estab-
lished orthologies to humans were used to generate
expected values (i.e., as the background). The count
threshold was always set to two and the EASE threshold
was always set to 0.05. The list of significant GO terms
was manually inspected to remove redundant terms.

Statistical analysis of the qPCR data
General linear models were fit to qPCR estimates of
mRNA abundance to determine if gene expression dif-
fered in magnitude and/or temporal profile between the
species. These models took the form: Log2(R)tij = β0 + St +
Ti + (ST)ti + T2

i + (ST2)ti + T3
i + (ST3)ti + εtij where β0 = the

intercept term for axolotl, St = the intercept term for tiger
salamander, Ti = the linear regression coefficient for axo-
lotl, (ST)ti = an additional linear regression coefficient for
tiger salamander, T2

i = the quadratic regression coeffi-
cient for axolotl, (ST2)ti = an additional quadratic regres-
sion coefficient for tiger salamander, T3

i = the trinomial
regression coefficient for axolotl, (ST3)ti = an additional
trinomial regression coefficient for tiger salamander, and
εtij= the error term associated with jth RNA pool from
species t and time i. When necessary, these models were
simplified via a backward selection scheme that removed
non-significant terms (P > 0.05).

Additional material

Additional file 1 Differentially expressed genes identified from axo-
lotl and tiger salamander larvae. Table contains 134 total probesets that 
correspond to 108 different genes identified from larval axolotls and tiger 
salamanders. BLASTx searches were performed to identify presumptive 
human orthologs. The regression profile for each gene is presented.
Additional file 2 Genes uniquely identified from axolotl larvae. Table 
contains 85 total probesets that correspond to 76 different genes identified 
from larval axolotls. BLASTx searches were performed to identify presump-
tive human orthologs. The regression profile for each gene is presented.
Additional file 3 Genes uniquely identified from tiger salamander lar-
vae. Table contains 332 probesets that correspond to 292 different genes 
identified from a direct comparison of gene expression between the brains 
of larval axolotls and tiger salamanders. BLASTx searches were performed to 
identify presumptive human orthologs. The regression profile for each 
gene is presented.

http://www.bioconductor.org
http://www.bioconductor.org
http://www.r-project.org
http://www.r-project.org
http://www.biomedcentral.com/content/supplementary/1471-2148-10-199-S1.XLS
http://www.biomedcentral.com/content/supplementary/1471-2148-10-199-S2.XLS
http://www.biomedcentral.com/content/supplementary/1471-2148-10-199-S3.XLS
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