University of Kentucky UKnowledge

Plant and Soil Sciences Presentations

Plant and Soil Sciences

10-24-2012

Effects of Long-Term Cattle Grazing and Woody Plant Encroachment on Soil Microbial Communities at the Santa Rita Experimental Range, Arizona

Cody Burton Louisiana State University

Steven Archer University of Arizona

Rebecca L. McCulley University of Kentucky, rebecca.mcculley@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/pss_present

Part of the Plant Sciences Commons Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Burton, Cody; Archer, Steven; and McCulley, Rebecca L., "Effects of Long-Term Cattle Grazing and Woody Plant Encroachment on Soil Microbial Communities at the Santa Rita Experimental Range, Arizona" (2012). *Plant and Soil Sciences Presentations*. 4. https://uknowledge.uky.edu/pss_present/4

This Presentation is brought to you for free and open access by the Plant and Soil Sciences at UKnowledge. It has been accepted for inclusion in Plant and Soil Sciences Presentations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Effects of long-term cattle grazing and woody plant encroachment on soil microbial communities at the Santa Rita Experimental Range, Arizona

Cody Burton, Rebecca McCulley, & Steve Archer

Grazing impacts ecological processes via:

- DCESSES VIa: Preferential utilization of grasses Seed dispersal Dung deposition Trampling Alterations to nutrient cycling

Grazing also impacts the spatial distribution of vegetation and nutrients, especially in dryland systems.

Objective:

Quantify how long-term removal of livestock grazing affects soil microbial biomass and community structure, in a vegetation type specific manner.

H_{1.2}: grazed ≠ un-grazed, community composition

Effect		16:1n5		18:1n9c		18:2n6		Group Total	
		F	р	F	Р	F	P	F	
Grazing	n, d 1, 90	1.29	0.2597	0.60	0.4415	4.27	0.0416	2.91	0.0912
Location		52.29	<0.0001	49.95	<0.0001	38.40	-0.0001	58.01	< 0.0001
Tree		1.07	0.3485	9.81	0.0001	12.57	< 0.0001	12.23	<0.0001
Grazing*Location		0.04	0.9644	0.01	0.9879	2.06	0.1337	0.82	0.4443
Grazing*Tree		4.02	0.0213	2.96	0.0570	0.74	0.4777	2.10	0.1290
Location*Tree		2.56	0.0442	6.26	0.0002	11.18	< 0.0001	9.56	<0.0001
Grazing*Location*Tree	4, 90	4.31	0.0031	0.58	0.6750	1.12	0.3528	1.32	0.2693

Conclusions:

- Long term grazing reduces the abundance of soil fungal biomarker 18:2n6.
- However, otherwise, direct grazing effects were much less dramatic than vegetation presence and type on both microbial biomass and community composition.
- Grazing effects on soil microbes are primarily indirect via changes in the vegetation cover.

Acknowledgements

