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Safety and improvement of movement
function after stroke with atomoxetine:
A pilot randomized trial

Andrea Warda, Cheryl Carricoa, Elizabeth Powella, Philip M. Westgateb, Laurie Nicholsa,c,
Anne Fleischerd and Lumy Sawakia,c,e,∗
aDepartment of Physical Medicine and Rehabilitation, University of Kentucky, Lexington, KY, USA
bDepartment of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA
cHealthSouth Cardinal Hill Rehabilitation Hospital, Lexington, KY, USA
dEastern Kentucky University, Richmond, KY, USA
eWake Forest University, Department of Neurology, Winston-Salem, NC, USA

Abstract.
Background: Intensive, task-oriented motor training has been associated with neuroplastic reorganization and improved
upper extremity movement function after stroke. However, to optimize such training for people with moderate-to-severe
movement impairment, pharmacological modulation of neuroplasticity may be needed as an adjuvant intervention.
Objective: Evaluate safety, as well as improvement in movement function, associated with motor training paired with a drug
to upregulate neuroplasticity after stroke.
Methods: In this double-blind, randomized, placebo-controlled study, 12 subjects with chronic stroke received either atom-
oxetine or placebo paired with motor training. Safety was assessed using vital signs. Upper extremity movement function
was assessed using Fugl-Meyer Assessment, Wolf Motor Function Test, and Action Research Arm Test at baseline, post-
intervention, and 1-month follow-up.
Results: No significant between-groups differences were found in mean heart rate (95% CI, –12.4–22.6; p = 0.23), mean
systolic blood pressure (95% CI, –1.7–29.6; p = 0.21), or mean diastolic blood pressure (95% CI, –10.4–13.3; p = 0.08).
A statistically significant between-groups difference on Fugl-Meyer at post-intervention favored the atomoxetine group
(95% CI, 1.6–12.7; p = 0.016).
Conclusion: Atomoxetine combined with motor training appears safe and may optimize motor training outcomes after stroke.

Keywords: Upper extremity, neurorehabilitation, safety, vital signs, occupational therapy, motor training

1. Introduction

Stroke is a major public health concern, as
there are over 795,000 new strokes annually in the

∗Corresponding author: Lumy Sawaki, MD, PhD, University of
Kentucky, Department of Physical Medicine and Rehabilitation at
HealthSouth Cardinal Hill Hospital, 2050 Versailles Road, Lex-
ington, KY 40504, USA, Tel.: +1 859 323 6226; Fax: +1 859 323
1123; E-mail: lumy.sawaki@uky.edu.

United States at a cost of $34 billion (Mozaf-
farian et al., 2015). Interventions to minimize
tissue damage in acute stroke have had some suc-
cess (Eissa, Krass, & Bajorek, 2012). However,
there is still a crucial need for interventions to
maximize recovery of movement function after
neurologic damage has occurred (Nudo, Plautz,
& Frost, 2001). These interventions can capital-
ize on neuroplastic change (the capacity of the

0922-6028/17/$35.00 © 2017 – IOS Press and the authors. All rights reserved
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brain to reorganize). Neuroplastic change correlates
with recovery of movement function after brain
lesions (Nudo et al., 2001; Sawaki et al., 2014).
Intensive, task-oriented motor training is an example
of a therapeutic intervention that adheres to princi-
ples of neuroplastic change (Kleim & Jones, 2008).
This intervention has been shown to improve mildly
impaired movement function after stroke (Wolf et al.,
2006). However, it has not been established as
effective to mitigate chronic, severe impairment
of upper extremity (UE) movement function after
stroke (Bonifer & Anderson, 2003). In general, fur-
ther research is needed to advance the effectiveness
of interventions targeting chronic, severe impair-
ment of UE movement function after stroke. In
particular, optimizing intensive, task-oriented train-
ing for people with severe impairment may require
adjuvant interventions to upregulate neuroplasticity
(Hayward, Barker, & Brauer, 2010).

For more than a decade, the research commu-
nity has viewed pharmacological intervention as
a potentially valuable tool for optimizing therapy
after stroke. Specifically, a variety of drugs have
been examined as potential interventions to promote
recovery of movement and speech functions (Floel
et al., 2005; Foster, Good, Fowlkes, & Sawaki, 2006;
Walker-Batson et al., 2001). Research in animals
and humans indicates that some medications, such as
amphetamine, may enhance outcomes of motor train-
ing (Feeney & Sutton, 1987). One of the proposed
mechanisms by which amphetamine may enhance
outcomes of motor training is by increasing central
levels of norepinephrine (Feeney & Sutton, 1987),
a neurotransmitter that appears to serve a major role
in the plasticity process (Feeney & Sutton, 1987).
Drugs that stimulate central levels of norepinephrine
have been shown to promote recovery of movement
and cognitive function, while drugs that inhibit nora-
drenergic pathways yield a deleterious effect in this
regard (Feeney & Sutton, 1987; Wang et al., 2011).
At the same time, the number of patients in the several
clinical trials who have received motor training paired
with amphetamine after stroke is very small, due to
amphetamine’s potential interaction with many other
medications as well as its potential for addiction. Fur-
thermore, the existing research about amphetamine
has shown it to have inconsistent results as well as
significant unwanted effects (Wang et al., 2011).

Atomoxetine, a potent and selective inhibitor of
the presynaptic norepinephrine transporter (Simpson
& Perry, 2003), has been approved by the Food and
Drug Administration for treatment of attention deficit

hyperactivity disorder (Simpson & Perry, 2003).
Unlike amphetamine, atomoxetine lacks affinity for
dopaminergic and serotonergic receptors and there-
fore has no potential for abuse (Simpson & Perry,
2003). A small study using atomoxetine has been
shown to enhance motor memory formation in 10
healthy participants (Foster et al., 2006) using an
established laboratory paradigm (Classen, Liepert,
Wise, Hallett, & Cohen, 1998). However, atom-
oxetine has not been systematically evaluated for
improvement of movement function after stroke. The
present, double-blind, sham-controlled study was
the first to address this evidence gap by evaluating
the effects of atomoxetine on cardiovascular safety
and movement function in subjects with chronic,
moderate-to-severe impairment in movement func-
tion after stroke. The central hypothesis was that
subjects who received atomoxetine paired with inten-
sive, task-oriented UE motor training would have
similar changes in blood pressure and heart rate, as
well as similar rate of adverse events, as a placebo
group (ie, subjects who received a placebo paired
with intensive, task-oriented UE motor training).
Additionally, it was hypothesized that the atomox-
etine group would show initial indications of more
improved movement function than the placebo group.

2. Methods

In accordance with the Declaration of the World
Medical Association (www.wma.net), this study
was approved by the authorized institutional human
research review boards at the institutions governing
the research (ie, Wake Forest University, Winston-
Salem, NC; the University of Kentucky, Lexington,
KY; Cardinal Hill Hospital, Lexington, KY). All
study procedures were in accordance with these
institutions’ guidelines. The research setting was
a neurorehabilitation research lab. Subjects were
recruited from Cardinal Hill Rehabilitation Hospital,
University of Kentucky, Wake Forest University, and
local communities.

2.1. Eligibility criteria

To remove the potential confound of spontaneous
motor recovery, only individuals at least 6 months
from the onset of stroke were recruited. To ensure
safety and minimize potential confounding variables,
the following exclusion criteria were selected: a)
history of traumatic head injury; b) history of severe
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alcohol or drug abuse; c) history of psychiatric
illness; d) unstable cardiac dysrhythmia; e) untreated
hypertension (systolic pressure >160 mm Hg and/or
diastolic pressure >100 mm Hg); f) history of
myocardial infarction or unstable angina; g) positive
pregnancy test or being of childbearing age and
not using contraception; h) glaucoma; i) history
of hypersensitivity or idiosyncrasy to sympath-
omimetic drugs; j) within 3 months of recruitment,
addition or change in the dosage of drugs known to
exert detrimental effects on recovery of movement
function (Boroojerdi, Ziemann, Chen, Butefisch, &
Cohen, 2001; Butefisch et al., 2002; Goldstein &
Davis, 1990; Sawaki et al., 2002; Sawaki, Werhahn,
Barco, Kopylev, & Cohen, 2003); or k) aphasia or
cognitive deficit severe enough to preclude informed
consent.

As required by the authorized institutional human
research review boards at the institutions where the
research was conducted, all subjects provided writ-
ten informed consent after receiving a verbal and
written explanation of the purposes, procedures, and
potential hazards of this study, which used a parallel-
group block design within the conceptual framework
of a superiority trial. After screening and informed
consent, a convenience sample of 12 subjects who
were 21 years of age or older was enrolled. All
subjects had moderate-to-severe UE deficit in move-
ment function (the inability to extend the affected
metacarpophalangeal joints at least 10◦; and the wrist,
20◦ (Wolf et al., 2006)). After enrollment, subjects
participated in a baseline evaluation of movement
function, 10 consecutive weekdays of intervention, 1
evaluation immediately after the intervention period,
and a 1-month follow-up evaluation. After base-
line evaluation, the principal investigator (PI) used
a computerized experimental design generator and
randomizer program to govern group assignment.
This program generated a simple random allocation
sequence (1 : 1) for assigning subjects into 2 equal-
sized groups (ie, either the atomoxetine group or the
placebo control group). The PI generated the random
allocation sequence, enrolled subjects, and assigned
subjects to interventions. Subjects were ordered by
the randomizer in strict accordance with the order of
enrollment.

2.2. Intervention component 1: Atomoxetine
(real or placebo)

The initial recommended and safe dose of ato-
moxetine (Strattera, by Eli Lilly) in subjects over

70 kg is 40 mg/day; therefore this dose was admin-
istered in this study (Simpson & Perry, 2003), for
the intervention group. Placebo capsules were identi-
cal to atomoxetine capsules. Drug condition (ie, real
versus placebo) was the only independent variable.
In each intervention session (10 total sessions), dos-
ing occurred just prior to intensive, task-oriented UE
motor training.

2.3. Intervention component 2: Intensive,
task-oriented UE motor training

In each intervention session, 2 hours of inten-
sive, task-oriented UE motor training commenced 60
minutes after atomoxetine or placebo intake to max-
imize peak plasma drug concentration during motor
training (Simpson & Perry, 2003). All subjects partic-
ipated in motor training, which was delivered in a 1 : 1
ratio between an occupational therapist and a sub-
ject. Training focused on skill acquisition through
the use of unilateral (ie, impaired hand) and bilat-
eral activities to improve movement function of the
impaired hand. Tasks targeted functional goals (eg,
activities of daily living) or goal subcomponents (eg,
pinching, grasp/release, or functional reach patterns).
Tasks were repeated at rate of approximately 10 to
50 repetitions each session according to the demands
of the task. Tasks had progressive difficulty, mean-
ing that task demands elicited progressively more
skilled performance over time (shaping) (Wolf et al.,
2006).

2.4. Evaluation and outcome measures

To evaluate drug effects and monitor for adverse
events, heart rate and blood pressure were measured
and recorded by the PI prior to administration of ato-
moxetine or placebo. Drug administration proceeded
if no abnormalities were present. Blood pressure and
heart rate were then continuously monitored every
30 minutes until 30 minutes after the session had
ended. A daily log of each subject’s reported sense
of well-being or complaints associated with each
session was recorded by the PI before and after
each session.

To evaluate movement function, the Fugl Meyer
Assessment (FMA), the Action Research Arm Test
(ARAT), and the WMFT were administered at base-
line, after the intervention period, and at 1-month
follow-up. The FMA is a quantitative measure of
motor recovery, balance, sensation, coordination and
speed. It is based on the principle that recovery of
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movement function occurs in a predictable progres-
sion (Duncan, Propst, & Nelson, 1983). The FMA
is feasible for use after stroke and has been exten-
sively applied in this condition (Duncan et al., 1983).
The inter-rater reliability (0.886 0.984 according to
the subset for lower or UE) and test-retest reliabil-
ity ( = 0.99) of FMA are high (Duncan et al., 1983).
The total possible score for UE movement function
is 66. The highest possible FMA motor score for
a tested UE is 66. The minimal clinically important
difference (MCID) for FMA is 9 to 10 points; and
the minimal detectable change (MDC) is 5.2 (Pan-
dian & Arya, 2014). Based on its responsiveness
and validity, FMA was used as the primary outcome
measure.

The ARAT was developed specifically to measure
UE grasp, grip, pinch, and gross movement using 4
specific tests (van der Lee, Beckerman, Lankhorst,
& Bouter, 2001). Each item is graded on a 4-point
ordinal scale with a total possible score of 57. The
inter-rater reliability (=0.99) and test-retest reliability
(=0.98) of ARAT are extremely high. The highest
possible ARAT score for a tested UE is 57. The MCID
for ARAT is 5.7 points; and the MDC is 3.5 (Pandian
& Arya, 2014).

The WMFT is a time- and function-based evalu-
ation and encompasses a battery of 17 tasks (Wolf
et al., 2006). It is performed using a 16′′ × 43′′ lam-
inated template on a standardized table. All tasks
simulate functional tasks and are applied sequen-
tially according to the task complexity. The WMFT
has established reliability and validity and has been
extensively applied in several studies to evalu-
ate UE motor capacity after stroke (Wolf et al.,
2006). The inter-rater reliability (0.93∼0.99) and
test-retest reliability (=0.97) of WMFT are con-
sidered excellent (Whitall, Savin, Harris-Love, &
Waller, 2006). The MCID for WMFT is 1.5 to 4 sec-
onds; and the MDC is 12 seconds (Pandian & Arya,
2014). Time-based measures were collected for the
paretic (ie, more affected) and non-paretic (is, less
affected) UEs.

2.5. Blinding

Subjects, care providers, and assessors of move-
ment function were blinded to group assignment in
that they were not made aware of which condition
any subject was assigned to. Additionally, person-
nel administering atomoxetine (real or placebo) did
not administer intensive, task-oriented UE motor
training. Furthermore, atomoxetine and placebo

capsules were visually identical, as prepared by
a pharmacy.

2.6. Statistics

Analyses of vital signs utilized linear mixed effects
models with random intercept and slope to account
for the 8 repeated measurements over time from each
subject. Similarly, for FMA, ARAT, and WMFT,
a longitudinal repeated measures model was used that
accounts for time, trial arm, and their interaction.
These models incorporate an unstructured work-
ing covariance matrix, and the Kenward and Roger
degrees of freedom method was used for inference
(Kenward & Roger, 1997). These analyses corre-
spond to the use of repeated measures MANOVA, but
with the allowance of missing data. Primary interest
was in the comparison of mean changes in outcomes
from baseline to immediately post-intervention and
to 1-month follow-up for the 2 trial arms. For more
detail, the separate impacts of each trial arm on the
mean change of each outcome are presented. Lon-
gitudinal repeated measures ANCOVA models were
also fit for each outcome due to slight imbalances at
baseline. However, results were very similar and thus
are not presented. All available data were utilized
for analyses. All tests were 2-sided, with statistical
significance pre-specified as P < 0.05. Furthermore,
all tests were pre-specified. Multiple testing correc-
tions were not directly utilized due to their known
limitations (Altman, 2000; Perneger, 1998). Infor-
mation provided in Table 4 can be utilized to obtain
formal multiple testing corrections. Analyses were
conducted in SAS version 9.4 (SAS Institute, Cary,
NC).

3. Results

Figure 1 shows participant flow. Table 1 shows
clinical characteristics and demographic data for
the sample. A total of 12 subjects (6 women) with
chronic stroke, mean age of 55 years (range, 35–66
years), and mean interval of 25 months after stroke
(range 6–52 months) were enrolled. Recruitment and
all evaluations took place between April 2006 and
June 2010. The study ended when projected enroll-
ment was reached. Twelve subjects completed all
intervention sessions, baseline evaluation, and evalu-
ation at immediately post-intervention. Nine subjects
completed the 1-month follow-up evaluation (n = 3
in the atomoxetine group and n = 6 in the placebo
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Fig. 1. Participant flow. Each stage of the study is represented, from eligibility assessment through analysis of final evaluation data. The number
of randomly assigned subjects who received intended treatment in each group is shown, along with losses to follow-up.

group). Losses to 1-month follow-up occurred due to
either transportation constraints or subjects’ enroll-
ment in other research studies immediately after
post-intervention evaluation.

Effects of atomoxetine on vital signs were not
significantly different when compared with placebo
(Fig. 2). The interaction was not significant (p = 0.23)
for the mean heart rate over time between the 2 trial
arms. After taking out the interaction, there was not
a significant trial arm difference (p = 0.53). Specif-
ically, adjusting for time, the estimated mean heart
rate was 5.1 [95% CI: (–12.4, 22.6)] beats per minute
higher for atomoxetine relative to placebo. The inter-
action was not significant (p = 0.21) for changes in
mean of systolic blood pressure over time between
the 2 trial arms. After taking out the interaction,

there was no statistical difference between the 2 trial
arms (p = 0.08). Specifically, adjusting for time, the
estimated mean systolic blood pressure was 14.0
[95% CI: (–1.7, 29.6)] mm Hg lower for atomox-
etine relative to placebo. The interaction was not
significant (p = 0.995) for changes in mean dias-
tolic blood pressure over time between the 2 trial
arms. After taking out the interaction, there was
not a significant trial arm difference (p = 0.79).
Specifically, adjusting for time, the estimated mean
diastolic blood pressure was 1.4 [95% CI: (–10.4,
13.3)] mm Hg higher for atomoxetine relative to
placebo.

Table 2 shows the each subject’s reported
sense of well-being or complaints. While there were
reports of mental fatigue, increased sleepiness, and
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Table 1

Clinical characteristics and demographic data

Subject Age (years) Group Sex Affected Hemisphere Stroke Type Months Post-Stroke

1 39 ATM M Right Ischemic 52
2 35 ATM F Left Ischemic 28
3 50 ATM F Left Ischemic 25
4 65 ATM F Left Ischemic 19
5 49 ATM M Left Ischemic 19
6 65 ATM M Left Ischemic 24
ATM 50.5 ± 12.6 3F/3M 5Left/1Right 6 ischemic 27.7 ± 12.4
7 58 Placebo M Left Ischemic 16
8 53 Placebo M Right Ischemic 37
9 66 Placebo F Left Ischemic 6
10 66 Placebo F Right Ischemic 48
11 58 Placebo M Left Hemorrhagic 8
12 58 Placebo F Right Hemorrhagic 13
Placebo 59.8 ± 5.2 3F/3M 3Left/3Right 4 ischemic/2 Hemorrhagic 21.3 ± 17.1

Abbreviations: ATM, Atomoxetine; F, Female; M, Male.

exhaustion associated with both conditions, there was
no clear indication of unwanted effects related to ato-
moxetine.

Table 3 summarizes baseline scores on outcome
measures for the 2 trial arms. Table 4 shows changes
in UE movement function associated with interven-
tion. From baseline to immediately post-intervention,
within-group changes for the atomoxetine group indi-
cated significant improvement on FMA (95% CI,
5.4–13.2; p = 0.0003) and ARAT (95% CI, 4.6–10.7;
p = 0.0002). Within-group changes for the placebo
group indicated significant improvement on ARAT
(95% CI, 2.3–8.4; p = 0.003) and WMFT paretic UE
(95% CI, –0.35 – –0.03; p = 0.02). From baseline to
1-month follow-up, within-group changes in the ato-
moxetine group indicated significant improvement
on FMA (95% CI, 5.9–17.9; p = 0.002) and ARAT
(95% CI, 5.1–15.1; p = 0.001). Within-group changes
for the placebo group indicated significant improve-
ment on FMA (95% CI, 1.5–10.2; p = 0.015), ARAT
(95% CI, 2.6–10.4; p = 0.005) and WMFT paretic UE
(95% CI, –0.37 – –0.04; p = 0.02). Between-groups
comparison of changes from baseline to immedi-
ately post-intervention revealed significantly more
improvement on FMA (95% CI, 1.6–12.7; p = 0.016)
for the atomoxetine group compared with the placebo
group. No between-groups differences were found at
1-month follow-up.

4. Discussion

The present study was the first-ever investigation
of the safety and efficacy of atomoxetine paired with
motor training for people with moderate-to-severe

deficit in movement function after stroke. Findings
constituted novel evidence that atomoxetine has a safe
cardiovascular profile and preliminary efficacy to
support clinically meaningful outcomes of intensive
task-oriented UE motor training after stroke, even in
cases of chronic, moderate-to-severe impairment.

A previous case series study of 3 subjects with
chronic, mild movement deficit after stroke showed
that atomoxetine paired with not only motor train-
ing but also non-invasive neuromodulation (repetitive
transcranial magnetic stimulation (rTMS)) may
improve FMA and WMFT, as evident at post-
intervention and at 1-month follow-up (Kinoshita
et al., 2016). However, atomoxetine was delivered
concomitantly with other interventions; and there was
no control group. Additionally, there was no sys-
tematic evaluation of cardiovascular or safety data.
In contrast, the present study demonstrated that the
effects of atomoxetine on blood pressure and heart
rate were not significantly different from placebo; and
no serious adverse events occurred in either group.
Additionally, although both groups showed signif-
icantly improved movement function immediately
after intervention, the atomoxetine group showed
significantly more improvement on the primary out-
come measure (ie, FMA) than the placebo group.
Notably, the estimated mean FMA and ARAT change
exceeded MCID only for the atomoxetine group, both
at post-intervention and at 1-month follow-up.

The present study’s limitations included small
sample size. A larger sample size is recommended
for future studies. Additionally, examining the effects
of atomoxetine beyond 1 month could substantiate
the drug’s long-term efficacy. Also, as the present
study administered a daily dose of 40 mg during the
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Fig. 2. Vital signs by group as a function of time post dose. No significant between-groups differences were evident for (A) heart rate,
(B) systolic blood pressure, or (C) diastolic blood pressure.

10-day intervention, future studies should conduct
a dose-escalation study of atomoxetine in order to
achieve the optimal dose according to each partic-
ipant’s weight. The optimal dose for treatment of
ADHD is 1.2 mg/kg/ day, which in a 70 kg individual
corresponds to 80 mg (Simpson & Perry, 2003).

Future studies are recommended to expand the
scope of the present study. For example, variables
affecting functional recovery may be particularly
amenable to change during the sub-acute stage of

stroke recovery. Given the positive influence of early
therapy on UE movement function after stroke (Wolf
et al., 2006), as well as the efficacy of atomoxe-
tine to improve UE movement function in healthy
subjects (Foster et al., 2006), it would be worth-
while to explore the impact of atomoxetine paired
with motor training during sub-acute stroke recovery.
Other recommended research should examine effects
of drugs other than atomoxetine that increase central
levels of norephinephrine. For example, reboxetine



8 A. Ward et al. / Safety and improvement of movement function

is a norepinephrine reuptake inhibitor that has exhib-
ited positive short-term effects on movement function
in cases of chronic stroke (Wang et al., 2011; Zit-
tel, Weiller, & Liepert, 2007), but further research
is needed to establish that these benefits are long-
lasting. The alpha 2 antagonist atipamezole has been

Table 2

Daily log of subjects’ complaints

Subject Group Reported Complaints

1 Atomoxetine Mental fatigue on days 6 and 8
(ATM)

2 ATM None
3 ATM Sleepiness and fatigue during first 4 days
4 ATM Slightly fatigued on days 2 and 5
5 ATM None
6 ATM Slightly fatigued at the end of all sessions
7 Placebo Headache on day 9
8 Placebo Fatigued day 4
9 Placebo Dizziness on day 1
10 Placebo None
11 Placebo None
12 Placebo None

Table 3

Group scores at baseline (sample mean ± standard deviation).
Sample size was 6 in each group

Outcome measures for upper Baseline scores Baseline scores
extremity (UE) movement atomoxetine for placebo
function group group

Fugl-Meyer Assessment 29.3 ± 11.3 39.8 ± 21.3
(points)

Action Research Arm Test 19.2 ± 12.8 29.3 ± 23.0
(points)

Wolf Motor Function Test
(log[sec]):

more affected UE 1.53 ± 0.48 1.20 ± 0.75
less affected UE 0.53 ± 0.39 0.56 ± 0.35

associated with improvement of movement function
in acute post-stroke stages, but research on its effects
in chronic stroke is lacking (Beltran, Papadopou-
los, Tsai, Kartje, & Wolf, 2010). Future research
that systematically compares the effects of these
drugs (which have a similar selective mechanism of
action as atomoxetine) with the effects of atomox-
etine would help to establish which of these drugs
may have the most beneficial and safe impact on out-
comes of intensive task-oriented UE motor training
for people with chronic, moderate-to-severe impair-
ment after stroke.

Finally, neuroimaging evidence may be crucial
to advance understanding of how the noradrenergic
effects of atomoxetine may influence neuroplastic
change after stroke. However, there is a scant evi-
dence base in this regard. Yamada and colleagues
evaluated the effects of atomoxetine combined with
intensive speech therapy in 4 participants with
post-stroke aphasia. All participants demonstrated
improved language function measured by the Western
Aphasia Battery and the Token Test. Improve-
ments were associated with increased perilesional
blood flow using single photon emission com-
puted tomography (Yamada, Kakuda, Yamamoto,
Momosaki, & Abo, 2016). Separate studies have
evaluated off-label use of atomoxetine in sub-
jects with Parkinson’s disease. For instance, Rae
and colleagues conducted a double-blind, placebo-
controlled, randomized crossover study in 10
participants with moderate idiopathic Parkinson’s
disease. While there was inter-individual variability,
increased functional brain network activity indicated

Table 4

Estimated means, 95% confidence intervals, and p-values corresponding to mean change from fitting a single repeated measures model
for each variable

Outcome measures of Post-intervention – Baseline 1-month follow-up – Baseline

upper extremity (UE) Atomoxetine Placebo ATM– ATM Placebo ATM–
movement function (ATM) Placebo Placebo

Fugl-Meyer Assessment 9.3 2.2 7.2 11.9 5.8 6.1
(points) (5.4, 13.2) (–1.7, 6.1) (1.6, 12.7) (5.9, 17.9) (1.5, 10.2) (–1.3, 13.5)

p = 0.0003 p = 0.24 p = 0.016 p = 0.002 p = 0.015 p = 0.10

Action Research Arm 7.7 5.3 2.3 10.1 6.5 3.6
Test (points) (4.6, 10.7) (2.3, 8.4) (–1.9, 6.6) (5.1, 15.1) (2.6, 10.4) (–2.8, 10.0)

p = 0.0002 p = 0.003 p = 0.25 p = 0.001 p = 0.005 p = 0.24

Wolf Motor Function Test –0.10 –0.19 0.09 –0.11 –0.20 0.10
(WMFT) more affected (–0.26, 0.06) (–0.35, –0.03) (–0.13, 0.31) (–0.28, 0.06) (–0.37, –0.04) (–0.14, 0.34)
UE (log[sec]) p = 0.18 p = 0.02 p = 0.39 p = 0.19 p = 0.02 p = 0.40

WMFT less affected 0.01 –0.13 0.13 0.01 –0.07 0.09
(log[sec]) (–0.13, 0.15) (–0.26, 0.01) (–0.06, 0.33) (–0.22, 0.25) (–0.28, 0.14) (–0.23, 0.40)

p = 0.91 p = 0.07 p = 0.16 p = 0.90 p = 0.46 p = 0.56

For Fugl-Meyer Assessment and Action Research Arm test, an increase represents improvement. For WMFT, a decrease represents
improvement.
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improved modulation of frontal-subcortical areas
for response inhibition. Additionally, investiga-
tors found increased sensitivity of the inferior
frontal gyrus to afferent inputs originating from the
pre-supplementary motor cortex. The investigators
suggested that the selective effects of atomoxetine
may have partially restored noradrenergic denerva-
tion that may play a role in impaired inhibitory
responses in Parkinson’s disease (Rae et al., 2016).
Borchert and colleagues performed an fMRI study to
evaluate the effects of atomoxetine in 33 participants
with idiopathic Parkinson’s disease. They found that
atomoxetine increased connectivity from the right
inferior frontal gyrus to the dorsal anterior cingu-
late. Change was associated with change in a simple
measure of executive function (Borchert et al.,
2016).

In conclusion, findings of the present study indi-
cated that atomoxetine appears safe to pair with
motor training in the context of stroke rehabili-
tation. Furthermore, atomoxetine appears to have
potential to optimize clinical outcomes of inten-
sive task-oriented training for people with chronic,
moderate-to-severely impaired movement function
after stroke. Overall, given the promising results of
the present feasibility study, a full-scale investigation
with expanded outcome measures, including mea-
sures of neuroplastic change, is warranted.
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