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Abstract 

Burt (1992) proposed two principal measures of structural holes, effective size and constraint. 

However, the formulas describing the measures are somewhat opaque and have led to a certain 

amount of confusion. Borgatti (1997) showed that, for binary data, the effective size formula could be 

written very simply as degree (ego network size) minus average degree of alters within the ego 

network. The present paper presents an analogous reformulation of the constraint measure. We also 

derive minima and maxima for constraint, showing that, for small ego networks, constraint can be 

larger than one, and for larger ego networks, constraint cannot get as large as one. We also show that 

for networks with more than seven alters, the maximum constraint does not occur in a maximally 

dense or closed network, but rather in a relatively sparse “shadow ego network”, which is a network 

that contains an alter (the shadow ego) that is connected to every other alter, and where no other alter-

alter ties exist. 

 

Key words: Egonetworks; structural holes; constraint. 

 

Highlights 

• An alternative formulation for constraint is derived when the data is undirected and binary 

• A means of approximating constraint for undirected binary data when the alter-alter ties are 

unknown is presented 

• We give minimum values for constraint and conjecture maximum values for both binary and 

valued data 

• We show that, for larger ego networks, maximum constraint occurs not when an ego network is 

maximally dense, but when it is shaped as a shadow ego network  
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1. Introduction 

Burt’s (1992) theory and accompanying measures of structural holes have become a mainstay of the 

ego network literature, attracting tens of thousands of citations. Of Burt’s measures, the most 

successful, both in terms of adoption by the field and proven ability to predict ego outcomes, is 

constraint. As a measure of structural holes, the constraint measure is intended to capture the extent to 

which an individual has access to many non-redundant others. The lack of a tie among a node’s 

contacts represents opportunities for brokerage – for combining the knowledge and efforts of different 

individuals in such a way as to provide value to them, to the broker, and to others at large.  

Burt’s other well-known measure of structural holes is effective size. The formulas for both measures 

look daunting, but, as Borgatti (1997) has shown, for non-valued network data, the expression for 

effective size can be simplified considerably. Effective size is simply a person’s ego network size 

(i.e., the number of contacts they have) minus the average number of ties each contact has within the 

ego network (not including ego). The latter term is known as average degree and is equal to the 

density of the ego network (excluding ties to ego) multiplied by N-1. Thus, network size contributes 

positively toward their structural holes score, while density/average degree contributes negatively 

toward structural holes. To maximize social capital, then, an actor would want to have many contacts 

who are unconnected to each other, other than indirectly through the broker.  

The situation with constraint is different. The expression for constraint is more difficult to understand, 

and the measure is often misinterpreted or misused. For example, the measure is technically undefined 

for an isolate – a node with no alters. But as an anonymous reviewer of this paper pointed out, 

researchers not infrequently assign a zero for the node’s constraint score. Constraint is a reverse 

measure of structural holes: the bigger the numerical value, the fewer the structural holes and the 

lower the social capital. A constraint score of zero would indicate an individual bursting with 

structural holes, who, according to the theory, would be expected to be a high performer. But, in 

reality the individual is an isolate with no access to social resources. Similarly, there is confusion 

about the range of the constraint scores. Most people assume that it is bounded from above by one, 

and think there must be a bug in the software when a value greater than one is obtained. Yet, as this 

paper will show, constraint is not bounded by one. Nor is the minimum zero. Another curiosity of the 

empirical literature using structural holes is the practice of controlling for network size when 

regressing an outcome on constraint. The problem is that size is a fundamental part of constraint and 

is an explicit part of its formulation. An ego network with fewer contacts has fewer structural holes 

and lower social capital, all else being equal. Controlling for size eviscerates constraint, leaving the 

variable labeled constraint in the regression a measure of something other than structural holes as Burt 

conceived them. 

This paper is an attempt to clarify what the constraint measure is and does. The approach we take is 

similar to Borgatti (1997), in that we deliberately take the special case of non-valued undirected 

networks to simplify the measure and examine its underpinnings. 

 

2. Constraint 

Burt (1992) defines both overall constraint (ego-level) and dyadic constraint. Dyadic constraint, cij, is 

the extent to which actor j constrains actor i (whom we shall refer to as ego). 

Overall constraint, ci, is the sum over all j in i’s neighbourhood.  

𝑐𝑖 = ∑ 𝑐𝑖𝑗

𝑗∈𝑁(𝑖)

 

Burt defines dyadic constraint cij as  



 

𝑐𝑖𝑗 = (𝑝𝑖𝑗 + ∑ 𝑝𝑖𝑞𝑝𝑞𝑗

𝑞∈𝑁(𝑖)−𝑗

)

2

                                                     (1) 

 

where pij is the amount of energy actor i invests in actor j. If we have a valued adjacency matrix A in 

which higher values represent a greater investment in energy then we construct P from A as follows. 

 

𝑝𝑖𝑗 =
𝑎𝑖𝑗 + 𝑎𝑗𝑖

∑ (𝑎𝑖𝑗 + 𝑎𝑗𝑖)𝑗
 

 

Since the total constraint is the sum of the constraint for each alter in ego’s network. It follows that 

the constraint on ego i is 

∑ 𝑐𝑖𝑗 = ∑ (𝑝𝑖𝑗 + ∑ 𝑝𝑖𝑞𝑝𝑞𝑗

𝑞

)

2

𝑗𝑗

 

                                                  = ∑ 𝑝𝑖𝑗
2 + ∑ 2𝑝𝑖𝑗𝑗𝑗 ∑ 𝑝𝑖𝑞𝑝𝑞𝑗𝑞 +∑ (∑ 𝑝𝑖𝑞𝑝𝑞𝑗𝑞 )

2
𝑗                                         (2) 

This last formulation was discussed by Burt (1998, pg. 42, footnote 14). He describes the three 

components as follows: “The first variable in the expression, C-size in the text, is a Herfindal index 

measuring the extent to which manager i's relations are concentrated in a single contact. The second 

variable, C-density in the text, is an interaction between strong ties and density in the sense that it 

increases with the extent to which manager i's strongest relations are with contacts strongly tied to the 

other contacts. The third variable, C-hierarchy in the text, measures the extent to which manager i's 

contacts concentrate their relations in one central contact.” 

It is clear the first term only looks at ego-alter ties and therefore is largely influenced by network size. 

This term is large to the extent node i has a strong tie with j, and that i has few other strong ties). Both 

the second and third terms contain alter-alter ties and the number of such ties will clearly impact the 

exact relationship between the second term and density and the third term and hierarchy. The exact 

nature of these relations are not easy to deduce. In trying to unpack the constraint measure there are 

two major difficulties. The first is the fact that the edges are all valued and it is difficult to simplify or 

manipulate the constraint formula with valued data. Secondly, the formula contains a squared 

summation and this non-linearity gives an extra level of complexity.  

 

3 Undirected Binary Data 

In order to make progress in unravelling constraint, we simplify the problem by considering constraint 

on simple binary undirected graphs. In this case we know that ego will be connected to every alter by 

an undirected edge with value 1. To simplify the expressions, we remove the subscript i, since it is 

understood that it always refers to ego. We then use N to refer to the number of alters. To simplify 

some expressions at a later stage, we shall also assume that ego has been deleted from the ego 

network and we will just consider the network of alter-alter ties. In our ego-deleted network we shall 

denote the degree of alter j by ρ(j). It now follows that the matrix P (the proportion of relational 



energy each actor invests in each contact) can be written in terms of each node’s degree as pij=1/N and 

pqj=1/(ρ(q)+1). We now substitute these values into Equation 2 to obtain 

 

∑ (
1

𝑁2 +
2

𝑁2 ∑ 𝑝𝑞𝑗 +
1

𝑁2 
(∑ 𝑝𝑞𝑗

𝑞

)

2

𝑞

)

𝑗

 

The first sum over j is over all the alters of i and therefore runs from 1 to N. Therefore, this expression 

can be written as 

1

𝑁
+

2

𝑁2 ∑ ∑ 𝑝𝑞𝑗 +

𝑞𝑗

1

𝑁2 ∑ (∑ 𝑝𝑞𝑗

𝑞

)

2

𝑗

 

The second term in this new expression is the sum over j of the sum over q of pqj, the sum over q is for 

actors in the neighbourhood of j. Consider all neighbours of j (again, not including ego). Then j's 

contribution to the neighbours’ constraint is the reciprocal of the degree of j, which is one more than 

the degree in the ego-deleted neighbourhood, as it must include ego, and hence is 1/(ρ(j)+1).  But 

there are ρ(j) of these alters so we can write the expression as 

1

𝑁
 + 

2

𝑁2
∑

𝜌(𝑗)

𝜌(𝑗)+1
+

1

𝑁2𝑗 ∑ (∑ 𝑝𝑞𝑗𝑞 )
2

𝑗  

=
1

𝑁
 + 

2

𝑁2
∑  

𝜌(𝑗)

𝜌(𝑗)+1
𝑁
𝑗=1 +

1

𝑁2
∑ (∑

1

𝜌(𝑞)+1𝑞𝜖𝑁(𝑗) )
2

𝑁
𝑗=1                                    (3) 

Another way to understand what we have done with the second term is to consider how we calculate 

the constraint of each of the alters. In Burt’s formulation we take each alter in turn and calculate how 

it is constrained by the actors it is connected to. In our formulation we take each alter in turn and 

calculate how much it constrains the actors it is connected to. Since these values are all summed in the 

outer sum, the result will be the same. In the first case we are summing a collection of different values 

for each of the alters and hence we have a double sum, in our re-arrangement the same single value 

can now be used as we are seeing how the chosen alter constrains those it is connected to. Since we 

now have a single value we can eliminate the inner sum as it is 1/(ρ(j)+1) counted ρ(j) times. It should 

be noted that this is only possible because in the binary case each edge has the same value. 

We can now see more clearly how the three terms contribute to the measure, at least for the binary 

case. The first term is just the reciprocal of network size. The larger the network, the smaller this 

term. The second term is dependent entirely on the degree sequence in the ego network. To calculate 

it, we do not need to know which alter has which degree -- a simple list of the degrees (the degree 
sequence) is sufficient. Two networks with the same degree sequence will have the same Term 2 

score. Of course, having the same degree sequence implies having the same density. In this sense, we 

might say this term captures density. However, there is more to it. There are different degree 

sequences that can yield the same density, and these will have different scores on term 2. Figure 1 

shows two ego networks with identical densities but different degree sequences. Specifically, the one 

on the left with the wider range of alter degrees has a higher score on term 2.  



  

Density = 0.2 | Degrees = {2,1,1,0,0} | Constraint = 0.382 

Term 1 = 0.2 | Term 2 = 0.16 | Term 3 = 0.04 

Density = 0.2 | Degrees = {1,1,1,1,0} | Constraint = 0.4 

Term 1 = 0.2 | Term 2 = 0.13 | Term 3 = 0.05 

 

Figure 1. Two ego networks with identical densities but different constraint scores. 

 

The third term is also a function of the degree sequence – indeed if we enumerate all ego networks 

with five alters, no graphs that have different degree sequences have the same score on the third term. 

However, in addition, the third term takes into account detailed information about the actual structure 

of the network, meaning that to calculate it we need to know the neighbourhoods of each of the alters. 

Figure 2 shows two ego networks with identical degree sequences, but different configurations, and 

therefore different term 3 scores. Consistent with standard brokerage imagery, the ego on the left is 

slightly less constrained than the one on the right. It is worth noting that ego network betweenness 

(Everett and Borgatti, 2005), also distinguishes between these two networks, assigning the left ego 12 

points and the right ego just 9.  

  

Density = 0.2 | Degrees = {2,2,2,1,1} | Constraint = 0.51 

Term 1 = 0.2 | Term 2 = 0.24 | Term 3 = 0.07 

Density = 0.2 | Degrees {2,2,2,1,1} | Constraint = 0.52 

Term 1 = 0.2 | Term 2 = 0.24 | Term 3 = 0.08 

 

Figure 2. Two ego networks with identical degree sequences but different Term 3 scores. 

 

One benefit of the expression in equation (3) is that it allows us to see the relative magnitude of the 

terms. The first term has order 1/N, the ratio in the second term (provided it exists) is between 0.5 and 

1 and so the order of this term is also 1/N. The order of the third term is more difficult to determine. If 

we look at the case in which one alter is connected to every other alter and no other alter-alter ties 

exist, then for the highly connected alter the last term would be (N-1)2/4N2 and this term would have a 

constant order. However, in many cases the terms inside the bracket would not be of order N so that 

this term would have order 1/N2. For example, if we enumerate all possible undirected ego networks 



with 6 alters, we find that when Term 2 is 0.185185, Term 3 can take on one of four possible values, 

depending on the structure of the ego network: 0.058642, 0.061728, 0.067901, and 0.177469. The last 

one is almost as large as Term 2.  

The third term reaches its maximum value when the ego network contains a “shadow ego”, which 

occurs when one alter is connected to all others, and there are no other alter-alter ties as shown in 

Figure 3 (see also Burt, 2010, who refers to such networks as “partner networks”). In such a network, 

ego and the shadow ego are structurally equivalent, and all the other alters are structurally equivalent 

to each other. 

 

Figure 3 A shadow ego network 

 

In this case, the maximum score for Term 3 is  

 (𝑁 − 1)2

4𝑁2 +
𝑁 − 1

𝑁4  
 

 

The maximum value for term 2 is easy to derive since increasing the degree of any alter increases the 

value of term 2  and so the maximum occurs when the deleted ego network is complete and is given 

by 2(N-1)/N2. As N increases then clearly it is possible for term 3 to dominate as term 2 must 

decrease.  

The expression also allows us to easily see the minimum value for the constraint measure in 

undirected binary data. The minimum occurs when there are no alter-alter ties. Terms 2 and 3 vanish, 

and the constraint score is 1/N.  

It is more difficult to derive the maximum value. When N is small, term 2 is able to dominate and so it 

would seem that a complete ego network would achieve the maximum. When N is large then term 3 

can dominate and so a shadow ego network would achieve the maximum. Note the shadow ego 

network in the ego-deleted network would be a star. In Table 1 we give the constraint scores for 2 to 

10 alters for both these networks. 

 

 

 

 

E

g

o 

Shado
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Number 

of alters 

Complete Shadow  

2 
1.125 1.125 

3 
0.926 0.840 

4 
0.766 0.684 

5 
0.648 0.590 

6 
0.560 0.529 

7 
0.493 0.486 

8 
0.439 0.455 

9 
0.396 0.431 

10 
0.361 0.411 

 

Table 1. Total constraint for complete and shadow ego  networks 

We can see that when N=8 the shadow ego network has higher constraint. We therefore conjecture 

that maximum constraint for N < 8 occurs in a complete network in which case equation (3) becomes 

1

𝑁
+

2

𝑁2
∑

𝑁−1

𝑁
𝑁
𝑗=1 +

1

𝑁2
∑ (∑

1

𝑁
)2𝑁−1

𝑗=1
𝑁
𝑗=1  

=
(2𝑁 − 1)2

𝑁3  

If N is 8 or more than the maximum occurs in a shadow ego network in which case equation 3 

becomes  

1

𝑁
+

2

𝑁2 (∑
1

2
+

𝑁−1

𝑁
𝑁−1
𝑗=1 ) +

1

𝑁2 (∑
1

𝑁2 + (∑
1

2
)2𝑁−1

𝑗=1
𝑁−1
𝑗=1 ) 

=
(𝑁+1)2(𝑁2+4𝑁−4)

4𝑁4  

So to summarise we conjecture that maximum constraint is given by 

(2𝑁−1)2

𝑁3       1 < N < 8 

(𝑁+1)2(𝑁2+4𝑁−4)

4𝑁4                   N ≥ 8                                             (4) 

As can be seen the maximum can be above 1, but only when N=2 in which case the maximum is 9/8. 

Burt (1992) indicates this in several places, including his Figure 2.3, which clearly shows constraint 

higher than 1 for the case of two alters and maximum density.  

If we examine equation 4 we see that as N increases, the maximum value decreases; in fact as N→∞, 

maximum constraint tends to 0.25.  

As noted constraint is at a maximum in small networks when the network is complete. This fact can 

be used to choose how to deal with isolates. Burt’s original definition does not apply to the case when 



ego is an isolate. However, applying Equation 3 to an isolate yields infinite constraint, which in 

practice could be set to just higher than the maximal possible (e.g., 1.2).  This makes some sense as an 

isolate has no ties and therefore no social capital, which structural holes are meant to measure. 

Moreover, an isolate’s neighbourhood is vacuously complete and so should have maximum 

constraint. However, if take the concept of constraint at face value – the condition of being 

constrained by the norms of those around you – then it makes sense to set constraint to zero as the 

isolate has complete autonomy of action. Thus, ultimately it depends on how constraint is being used 

theoretically.   

We can also use the maximum and minimum values to normalize the measure given network size. If c 

denotes the raw constraint measure then a normalized measure c* is given by 

c* = 1                            N=0,1 

𝑐∗ =
𝑁2(𝑁𝑐−1)   

3𝑁2−4𝑁+1
             8>N>1 

𝐶∗ =
4𝑁3(𝑁𝑐−1)

(𝑁−1)(𝑁3+3𝑁2+8𝑁+4)
      𝑁 ≥ 8                                                     (5) 

 

The c* measure is guaranteed to run between 0 and 1. This is appealing, but it should be remembered 

that this effectively removes network size from the measure of structural holes, which is inconsistent 

with its role as a measure of social capital. 

. 

4. Directed Binary and Valued Data 

The extension to directed binary data is in general straight forward but a number of different cases 

need to be considered. The construction of P (see the formula just after Equation 1) is such that if A is 

a directed network then transposing A results in the same C. In fact reversing the direction of any arc 

in A will result in the same C provided the same alters are all still included in the ego network. It 

follows that in a directed network with no reciprocated ties we can simply ignore the direction and 

apply formula (3) on the underlying graph. For a network with all reciprocated ties we could again 

ignore the directions and use the underlying graph and we would get the same result.  

Data with a mixture of reciprocated and unreciprocated ties needs to take full account of the 

reciprocity of each tie. Given an ego i and an unreciprocated alter j then pij=1/ ρ(i) where ρ(i) is the 

total degree of i ie in-degree plus out-degree. For a reciprocated tie pij=2/ ρ(i). It follows that if we 

were to follow a similar argument as in the undirected case we would need to separate out the two 

cases for ego-alter ties into reciprocated and non-reciprocated. We would have to do the same with the 

alter-alter ties resulting in four different cases. If we have this information, then we can deconstruct 
constraint in a way similar to the undirected case. However, to achieve this we would require more 

information than in the undirected case. Instead of just degree for the first term, we would need both 

degree and the number of reciprocated ties.  Similarly, for the second term we would need not only 

the degree sequences but also the number of reciprocated ties. The resulting formula -- although more 

complicated -- would still have the basic structure as the undirected case and the orders of the terms 

would still be the same. That is the third term would have a constant order and so would dominate as 

N increased for certain networks. 

The minimum possible value of constraint would remain the same as the undirected case ie 1/N, the 

maximum however would change. In order to explore the maximum we examine both the complete 

and shadow ego networks which have a mixture of reciprocated and unreciprocated ties.  If all ties 

were either reciprocated or all unreciprocated we would have exactly the same case as an undirected 

network. We therefore look for structures which have a higher constraint than the undirected case. In 

a complete network, as all the alters are equivalent then it is highly likely that all the ego-alter ties 



must either all be reciprocated or all be unreciprocated in order to make pij as large as possible ie 1/N.  

To maximize the alter –alter score all alters need to be connected to each other by a reciprocated edge. 

It follows that the maximum complete will most likely occur when the ego-alter ties are all not 

reciprocated.  

In this case we can use this information to derive the maximum, which is given by equation (6). We 

note this gives higher values than in the undirected case. 

1

𝑁
(

4𝑁−3

2𝑁−1
)

2
                                                                   (6) 

As in the undirected case, the maximum occurs when N=2 giving a value of 1.388. In addition, there 

is an additional case that yields a value greater than 1, which is when N=3 the formula gives a 

maximum constraint of 1.08. 

We now consider the shadow ego networks. We now have three types of nodes, ego, shadow ego and 

alters. This gives three types of edges. Ego-alter, ego-shadow ego, shadow ego-alter. Each of these 

edges can either be unreciprocated or reciprocated, giving rise to 6 different structures that have a 

mixture of ties. We experimentally tried the 6 different structures to see which had the highest 

constraint. This occurred when the ego-alter ties were unreciprocated and the ego-shadow ego tie and 

the shadow ego-alter ties were all reciprocated. An example of such a network is shown in Figure 4. It 

should be noted although the diagram shows the direction of the tie from ego to the alters any number 

of these could be reversed and the result would be the same. 

 

Figure 4. Maximum directed shadow ego network, note lines with no arrows are reciprocated 

 

 

In this case, constraint is given by 

(
𝑁 + 2

3𝑁(𝑁 + 1)
)

2

(4𝑁 − 3)(𝑁 + 3) 

As in the undirected case, we can see how both of these behave for networks of various sizes and this 

is given in Table 2 

Ego 

Shadow Ego 



 

Number 

of alters 

Complete Shadow  

2 1.388889 1.234568 

3 1.08 1.041667 

4 0.862245 0.91 

5 0.71358 0.822716 

6 0.607438 0.761905 

7 0.528318 0.717474 

8 0.467222 0.683728 

9 0.418685 0.657284 

10 0.379224 0.636033 

 

Table 2 maximum constraint for complete and shadow ego networks  

From Table 2 we see that the complete graph provides the maximum just for N=2 and N=3, whereas 

for N=4 or more, the shadow network has the maximum value. In fact, as N increases, constraint for 

the shadow ego network approaches 4/9 from above.  

As in the undirected case we can use these values to normalize the measure as we did in equation 5..  

We note that the complication in the directed case is due to the fact that, given the way the P matrix is 

constructed, the edges are in essence valued. We could for example construct a symmetric valued 

network by symmetrising the directed network using the sum. That is we would form A+AT so that 

reciprocated ties have a value of 2 and unreciprocated ties have a value of 1. Calculating all structural 

hole measures on this symmetric data would yield exactly the same results as the directed data. 

When considering valued data (provided there is more than one value) then we need to understand 

that structural hole measures behave in a similar way to the directed case. This allows us to suggest a 

structure in which constraint is maximized. As seen from our directed data, constraint is at a 

maximum in a complete network when all ego alter ties are unreciprocated and all other ties are 
reciprocated. Rewording this in terms of valued data, we require that ego be connected to all alters 

with an unreciprocated tie of minimum value and that all the alters are connected by reciprocal ties of 

maximum value. This would make sense as we expect ego to be most constrained when they have 

weak connections to their alters all of whom have a strong connection to each other.  

Now, for any directed ego network, suppose the smallest value is m and the largest value is M and 

there are N alters. Then the maximum value for complete network constraint is given by: 

 

1

𝑁
(

𝑚+4𝑀(𝑁−1)

𝑚+2𝑀(𝑁−1)
)

2
                                                                   (8) 

We can see that, as M dominates, this term tends to 4/N, and as we require at least two alters the 

upper bound for complete constraint occurs when N=2 and is 2. 



We apply the same reasoning for the shadow ego network. That is, ego is connected to all the alters 

(with the exception of shadow ego) with an unreciprocated tie with a value of m and all other ties are 

reciprocated with a value of M. In this case shadow constraint is given by 

 

(𝑁 − 1) (
𝑁𝑚 + 2𝑀

𝑁(𝑁𝑚 − 𝑚 + 2𝑀)
)

2

+ (
2𝑀(2𝑀 + 𝑁𝑚)

(𝑚 + 2𝑀)(𝑁𝑚 − 𝑚 + 2𝑀)
)

2

 

In this case, as M dominates, this term tends to 1+(N-1)/N2. We see that when N=2 or 3 the complete 

network can give higher maximum values (2 and 1.333) but for N=4 or more the shadow ego network 

has a higher maximum.  

The minimum for valued data is still given by 1/(N). These values can again be used to normalize the 

measure. 

For the undirected valued case the expression for the max is very similar but is now for the complete 

case 

1

𝑁
(

𝑚+2𝑀(𝑁−1)

𝑚+𝑀(𝑁−1)
)

2
                                                     (9) 

 

And for the shadow case  

(𝑁 − 1) (
𝑁𝑚 + 𝑀

𝑁(𝑁𝑚 − 𝑚 + 𝑀)
)

2

+ (
𝑀(𝑀 + 𝑁𝑚)

(𝑚 + 𝑀)(𝑁𝑚 − 𝑚 + 𝑀)
)

2

 

 

and both have the same bounds as M increases as the directed case. The minimum is also the same as 

the directed case. 

In the undirected case if m and M are close to each other then the complete network can give the 

maximum value provided N is less than 8. At which point the shadow ego network gives higher 

values than the complete network depends on how close m is to M. The same is true for the directed 

version, except now we require N to be less than 4.  

 

5 Approximating Constraint for Undirected Binary data. 

Suppose we are in the situation in which we know the degrees of the alters but we do not know the 

exact links. In fact it was precisely this situation that led the authors to look at this issue in detail.  We 

were asked to advise someone who used a network self-assessment questionnaire to collect data as 

part of a self-reflexion exercise. In this exercise, respondents listed their contacts, then filled out a 

matrix of ties among the alters. What was turned in to the researcher/coach was just the number of 

contacts and the density. The advantage of such an instrument is that the respondent, doesn’t need to 

reveal who they think is connected to whom. (It should be noted that asking respondents to simply 

estimate the density (ersatz network density) of their network has been shown to be unreliable Burt 

(1987)).  After the fact, the researcher/coach wondered whether it would be possible to reconstruct 

constraint. The answer, of course, is no, as it is clear in our formulation that the actual alter alter ties 

are required. But let us first suppose that we had asked the respondents to turn in the degrees of the 

alters rather than the density. Confidentiality would still be preserved but we are now able to calculate 
the second term exactly. We already know that two ego networks with the same degree sequence can 

have different scores on the third term, so we know we cannot recover constraint precisely from this 



data alone. However, what if we can estimate Term 3 to reasonable degree? We will consider just the 

undirected case but clearly the same approach can be used for directed data. For the third term we do 

not know N(j) so cannot determine the q’s.  We can approximate ρ(q) by the average degree 〈k〉 which 

is equal to N-e, where e is Burt’s effective size measure. In this case we have an approximation to the 

third term given by 

1

𝑁2 ∑ (
𝜌(𝑗)

〈k〉  + 1
)

𝑁

𝑗=1

2

 

=
1

(𝑁(〈k〉 +1))2
∑ 𝜌(𝑗)2𝑁

𝑗=1                                                       (10) 

We shall call the approximated constraint measure given by replacing the third term in equation (3) by 

equation (10) approximation 1. 

Suppose further, as in our given problem, that we only have the density and number of alters of the 

ego network. In this case clearly we know N and 〈k〉. We now replace ρ(j) by the average degree 〈k〉. 
In this case equation 3 reduces to  

1

𝑁
(

2〈k〉 +1

〈k〉 +1
)

2
                                                             (11) 

We shall refer to equation 11 as approximation 2.  Given the fact that the third term is in many cases 

smaller than the first two terms we expect approximation 1 to be good in many cases.  

To see how the approximations perform, Table 3 has the real constraint and the two approximations 

for the UCINET Think graph (Borgatti et al 2002) shown in Figure 5. Table 4 repeats the analysis for 

the UCINET Taro dataset Schwimmer E. (1973).  

 

Figure 5 UCINET Think graph. 
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ConstraintApprox 1 Approx 2

a 0.840 0.826 0.823

b 0.611 0.612 0.653

c 0.840 0.826 0.823

d 0.611 0.612 0.653

e 0.333 0.333 0.333

f 0.333 0.333 0.333

g 0.611 0.612 0.653

h 0.840 0.826 0.823

i 0.611 0.612 0.653

j 0.840 0.826 0.823  
 

Table 3 Constraint with the two approximations for the Think graph

 

 

  

 

 

  

 

 

  

 

 

  

ConstraintApprox 1 Approx 2

1 0.61 0.64 0.65

2 0.84 0.83 0.82

3 0.61 0.64 0.65

4 0.53 0.55 0.56

5 0.40 0.41 0.42

6 0.84 0.83 0.82

7 0.30 0.32 0.33

8 0.61 0.64 0.65

9 0.61 0.64 0.65

10 0.61 0.64 0.65

11 0.30 0.32 0.33

12 0.38 0.41 0.42

13 0.61 0.64 0.65

14 0.84 0.83 0.82

15 0.61 0.64 0.65

16 0.33 0.33 0.33

17 0.36 0.37 0.38

18 0.61 0.64 0.65

19 0.33 0.33 0.33

20 0.84 0.83 0.82

21 0.84 0.83 0.82

22 0.61 0.64 0.65  
 



Table 4 Constraint and approximate constraint for the Taro data

 

 

  

 

 

  

We can see that in both cases both approximations are very good and in fact the correlations are all 

over 0.99. It is surprising that approximation 2 does so well given that it does not rely on structure at 

all. 

 

However, we can construct networks in which the approximation is not good. In shadow ego graphs 

the third term dominates and this is not well captured by the approximation. As an extreme example 

consider a shadow ego network with 100 alters. In this case, one of the alters is connected to all other 

actors but no other alters are connected to each other. In this example the actual constraint is 0.265 but 

approximation 1 yields a value of 0.13 and approximation 2 gives 0.028. (See Table 5 for other values 
of N). 

 

N Real Approx 1 Approx 2

5 0.59 0.54 0.52

10 0.41 0.32 0.27

20 0.33 0.22 0.14

30 0.30 0.18 0.09

40 0.29 0.16 0.07

50 0.28 0.15 0.06

60 0.28 0.15 0.05

70 0.27 0.14 0.04

80 0.27 0.14 0.03

90 0.27 0.13 0.03

100 0.27 0.13 0.03  
Table 5 Constraint and approximate constraint for a shadow ego network 

 

 

We do however have enough information to alert us that the approximation could be poor. The data 

we have for approximation 2 includes the size and density of the network. As we have seen, the 

shadow ego-deleted graph is a star and so is large and sparse. If we have the data as in approximation 

1 then we have all the degree information. We could then calculate the degree centralization of the 

edge deleted graph and use this to weight a correction term. Approximation 1 is exact for a complete 

ego deleted graph and so we can add a correction term that would make it exact for an ego shadow 

graph. If we let CD be the degree centralization of the ego deleted graph then the correction term is 

given by equation 12. 

 

(𝑁 − 1) (
(𝑁3−𝑁2+4)

4𝑁4 −
𝑁

(3𝑁−2)2) 𝐶𝐷                                             (12) 

    

 

If we have a complete graph then CD is zero and so the correction term does not contribute to the 

approximation. For a shadow ego graph CD will be 1 and so the approximation will be exact. However 

we recall that for N<7 the shadow graph must have a lower constraint than a complete graph, hence 

we only apply the correction for larger values say for N >10 As an example of the correction we look 

at the Kapferer Tailor shop data (Kapferer 1972) socializing ties at time period one. Then Abraham 

has 13 alters and the exact 3rd term is 0.08 the approximation is 0.07 and becomes 0.08 when we add 

the correction term. 



 

If we had directed data, then deriving approximations similar to those in equation (11) would require 

information on the number of reciprocated ties. If such information were available it would seem 

likely that we would have access to the full data and so such approximations would be of very limited 

value. We therefore do not explore that further here. 

 

6 Re-weighting 

 

As highlighted in section 2, the third term in equation (3) is of a different order to the other terms. 

Although it often is of O(1/N2) and so is insignificant, when we have shadow ego networks it is of 

constant order. It could be argued that we should not combine the three aspects of the measure as they 

are capturing different properties. In some case we may have prior knowledge that tells us that we 

wish to weight one aspect more than another. In general this would be an unlikely scenario and it 

would be difficult to decide how much weight to give each of the terms.

 

 
  

 

Another possibility, instead of trying to choose the relative weighting of each term in advance, why 

not let a regression choose them for us? In other words, regress an outcome variable such as 

performance on all three terms. The regression would then combine them optimally to predict 

performance. This will result in a better r-square (or, at least, never worse), and give us diagnostic 

information about which term is important in a given research setting. Using data from Parker, Halgin 

and Borgatti (2016), we regressed employee performance ratings both on constraint (results in Table 

6), and on the elements of constraint separately. The improvement in r-squared is 33% (although the 

numbers are so small this could be just noise). It can be seen that, in this dataset, the effect of Term 3 

is negligible, and that Terms 1 and 2 both contribute. In other datasets we have seen, only Term 1 was 

related to the outcome variable  

Table 6. Regressing performance on constraint and the elements of constraint. N = 554 

Model 1 Coef. 

Std. 

Err. t P>t 

Constraint -10.6580 1.9234 -5.54 0.000 

Intercept 0.4304 0.0880 4.89 0.000 

R-squared =  0.0527    

     

Model 2 Coef. 

Std. 

Err. t P>t 

term1 3234.77 1074.52 3.01 0.003 

term2 -1656.59 542.75 -3.05 0.002 

term3 -44.03 158.61 -0.28 0.781 

Intercept 0.78 0.17 4.63 0.000 

R-squared =  0.0701    
 

Unfortunately, the three terms are far from orthogonal, creating serious multi-collinearity problems. 

This is especially true of terms 2 and 3, which both depend heavily on the degree distribution.  

 

7 Discussion  

In this work, we have sought to reformulate Burt’s constraint measure in order to provide a better 

appreciation of what exactly it measures. One result of this effort was the discovery that, for larger 



ego networks, the popular image of constraint as a measure of ego net closure is incorrect. It has been 

widely assumed in the literature that the maximum constraint score occurs in the case of a maximally 

dense/closed ego network (in which every alter is connected to every other). However, in reality, even 

a relatively sparse ego network can have a higher constraint score if it is the right shape. For ego 

networks with more than 7 alters, the highest possible constraint score occurs when there is one alter 

that is connected to every other alter, and when there are no other alter-alter ties. We refer to the alter 

that is connected to the other alters as a “shadow ego”. A shadow ego is effectively a second broker 

that brokers the exact same alters that ego does – indeed, they are structurally equivalent within the 

ego network. 

The constraint measure asserts (for N > 7) that an ego network with a shadow-ego shape has less 

social capital than a similar-sized network in which all alters are connected. Whether this makes sense 

empirically is an interesting thing. Burt has pointed out that, although highly constraining, shadow 

ego networks (which he refers to as “partner networks” or “borrowed entrepreneurial networks”) can 

be advantageous for women. Burt argues that women suffer a legitimacy deficit in the workplace, 

with the result that having a sponsor who vouches for them and lends them their own social capital is 

helpful, in spite creating a maximum constraint score.  

We also note that shadow ego networks exhibit another property that is perhaps counter intuitive. By 

definition, networks with large effective size are seen as having a lot of structural holes and hence low 

constraint. But, an undirected shadow ego network has an effective size of N-2(N-1)/N which is very 

close to N, where N is the maximum possible. Yet this network also has maximal constraint, which is 

an inverse measure of structural holes. This fact demonstrates why it is important to consider both of 

Burt’s measures. The key, of course, is that effective size does not take account of hierarchy, whereas 

constraint does. Which one to use will depend on the theoretical mechanisms proposed in a given 

study. 

Finally, an interesting aspect of constraint that is revealed by shadow ego networks is its extreme 

sensitivity to the presence or absence of a single tie. Suppose we have a shadow ego network with N, 

the number of alters, sufficiently large that constraint achieves its maximum score. Deleting the edge 

that connects ego to the shadow ego would result in a network with minimum constraint. Unlike 

effective size, constraint is highly sensitive to the deletion of (or failure to measure) a single edge. It is 

counter-intuitive that ego breaking a tie with a shadow ego would remove all the constraint that the 

shadow ego has imparted because whether or not ego is connected to the shadow ego, the shadow ego 

is still there, still brokering the same alters, and therefore still reducing advantage for ego. This is 

unlike the behaviour of 2-step betweenness (Borgatti and Everett, 2006; Brandes, 2008), which is 

ordinary betweenness restricted to geodesics of length 2. Loosely speaking, the measure looks at 

every pair of nodes that is separated by just one intermediary, and calculates to what extent ego is an 

exclusive intermediary, as opposed to just one of many. For example, consider the ego shadow 

network in Figure 6.  

 



Figure 6. A shadow ego network 

In the network, there are two equally short paths from 6 to 7. One of these passes through ego, so ego 

gets a half a point for this. Summing across all 21 pairs, this yields a 2-step betweenness score of 21. 

Constraint is 0.455, the highest possible. Now suppose we delete the tie from ego to 9, so that 9 is no 

longer a part of ego’s network. Constraint now plummets to .143, the minimum possible. However, 2-

step betweenness is unchanged at 21. Unlike constraint, the 2-step betweenness measure captures the 

reality that the other broker reduces ego’s advantage regardless of whether ego is connected to that 

person. 
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