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RESEARCH Open Access

Lipopolysaccharide impairs amyloid beta efflux
from brain: altered vascular sequestration,
cerebrospinal fluid reabsorption, peripheral
clearance and transporter function at the
blood–brain barrier
Michelle A Erickson1,2, Pehr E Hartvigson2, Yoichi Morofuji2,3, Joshua B Owen2,3, D Allan Butterfield4

and William A Banks2,3*

Abstract

Background: Defects in the low density lipoprotein receptor-related protein-1 (LRP-1) and p-glycoprotein (Pgp)
clearance of amyloid beta (Aβ) from brain are thought to contribute to Alzheimer’s disease (AD). We have recently
shown that induction of systemic inflammation by lipopolysaccharide (LPS) results in impaired efflux of Aβ from the
brain. The same treatment also impairs Pgp function. Here, our aim is to determine which physiological routes of
Aβ clearance are affected following systemic inflammation, including those relying on LRP-1 and Pgp function at
the blood–brain barrier.

Methods: CD-1 mice aged between 6 and 8 weeks were treated with 3 intraperitoneal injections of 3 mg/kg LPS
at 0, 6, and 24 hours and studied at 28 hours. 125I-Aβ1-42 or 125I-alpha-2-macroglobulin injected into the lateral
ventricle of the brain (intracerebroventricular (ICV)) or into the jugular vein (intravenous (IV)) was used to quantify
LRP-1-dependent partitioning between the brain vasculature and parenchyma and peripheral clearance,
respectively. Disappearance of ICV-injected 14 C-inulin from brain was measured to quantify bulk flow of
cerebrospinal fluid (CSF). Brain microvascular protein expression of LRP-1 and Pgp was measured by
immunoblotting. Endothelial cell localization of LRP-1 was measured by immunofluorescence microscopy. Oxidative
modifications to LRP-1 at the brain microvasculature were measured by immunoprecipitation of LRP-1 followed by
immunoblotting for 4-hydroxynonenal and 3-nitrotyrosine.

Results: We found that LPS: caused an LRP-1-dependent redistribution of ICV-injected Aβ from brain parenchyma
to brain vasculature and decreased entry into blood; impaired peripheral clearance of IV-injected Aβ; inhibited
reabsorption of CSF; did not significantly alter brain microvascular protein levels of LRP-1 or Pgp, or oxidative
modifications to LRP-1; and downregulated LRP-1 protein levels and caused LRP-1 mislocalization in cultured brain
endothelial cells.
(Continued on next page)
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Conclusions: These results suggest that LRP-1 undergoes complex functional regulation following systemic
inflammation which may depend on cell type, subcellular location, and post-translational modifications. Our
findings that systemic inflammation causes deficits in both Aβ transport and bulk flow like those observed in AD
indicate that inflammation could induce and promote the disease.

Keywords: Alzheimer’s disease, amyloid beta, blood–brain barrier, inflammation, lipopolysaccharide, LRP1, Pgp,
ABCB1, MDR1, cerebrospinal fluid

Background
Alzheimer’s disease (AD) is the most common form of
senile dementia [1] and according to the amyloid cas-
cade hypothesis results from the accumulation of amyl-
oid beta (Aβ) in the brain [2]. The neurovascular
hypothesis of Zlokovic states that a critical pathological
event driving Aβ accumulation in brain is the reduced
clearance of Aβ from brain across the blood–brain bar-
rier (BBB) [3]. A large body of work from multiple
groups has shown that the low-density lipoprotein
receptor-related protein-1 (LRP-1) transports Aβ across
the BBB in the brain-to-blood direction, and becomes
deficient in AD [4-8]. Evidence for LRP-1 deficiency
includes the correlation of LRP-1 levels with impairment
of Aβ efflux in rodent models of AD [4], LRP-1 downre-
gulation in brain microvasculature of patients with AD
[8], and oxidative modification of LRP-1 in AD hippo-
campus [9]. Growing evidence also supports a role of a
second efflux transporter, p-glycoprotein (Pgp), in Aβ ef-
flux across the BBB [10]. Similar to LRP-1, results sug-
gest that Pgp dysfunction also occurs in AD [11,12].
Despite data supporting a deficiency in Aβ transport in
AD, little is known about the mechanisms that could ini-
tiate or sustain these transport deficiencies in disease
progression.
Two other processes which are thought to contribute

to the level of Aβ in brain are clearance through bulk
flow of cerebrospinal fluid (CSF), and clearance of Aβ
from the periphery. Bulk flow denotes the reabsorption
of CSF into peripheral compartments, including the sys-
temic circulation [13]. Inhibition of CSF turnover
occurs in AD, and is thought to contribute to buildup
of potential toxins, including Aβ, in the AD brain [14].
Furthermore, reduction of Aβ in brain restores bulk
flow in an AD mouse model [15]. Therefore, deficiency
of CSF turnover reflects an important pathophysio-
logical consideration in AD. Multiple groups have
shown that peripheral clearance of Aβ is important in
regulating Aβ levels in brain and may decrease in AD.
This clearance occurs primarily through the liver and
kidney [16], and LRP-1 has been identified as a primary
transporter for uptake of Aβ by liver [17]. Two poten-
tial mechanisms could explain how decreased clearance

of Aβ from blood contributes to accumulation in brain.
First, the receptor for advanced glycation endproducts
(RAGE) has been identified as an influx transporter for
Aβ [18]. Therefore, decreases in peripheral clearance of
Aβ would promote entry into the brain. Second,
decreased Aβ clearance from the periphery is associated
with impaired efflux [19]. The mechanism governing
this phenomenon is presently unclear, but could be
attributed to concentration gradients or endothelial dys-
function due to RAGE activation [20]. Understanding
the mechanisms that contribute to impairment of BBB
efflux, CSF bulk flow, and reduced peripheral clearance
of Aβ in AD may provide clues for the important early
stages of AD pathogenesis.
Inflammation and oxidative stress in the brain are

concurrent with AD and roles for each in the pathogen-
esis of AD have been proposed. Aβ causes inflammation
in the brain through Toll-like receptor and complement
activation [21-23]. Elevated levels of proinflammatory
cytokines and acute phase proteins are localized around
Aβ plaques in AD [21], suggesting that the AD brain
is in a chronic proinflammatory state. Oligomeric Aβ1-42
can also cause oxidative stress by integrating into mem-
branes and catalytically generating the lipid peroxidation
product, 4-hydroxynonenal (HNE) [24], and through ac-
tivation of the ROS-generating enzyme NADPH oxidase
in microglia [25]. In addition to causal roles of Aβ initiat-
ing neuroinflammation and oxidative stress, inflamma-
tion and/or oxidative stress can themselves cause Aβ
accumulation in the brain. The amyloid precursor pro-
tein, from which Aβ is cleaved, is transcriptionally regu-
lated similarly to heat shock proteins and is responsive to
the proinflammatory cytokine IL-1 [26]. Others have
shown that lipopolysaccharide (LPS)-induced inflamma-
tion increases Aβ accumulation and deposition in brain
[27,28]. Oxidative stress upregulates proteins involved in
Aβ production, such as presenilin 1 [29]. Because Aβ is
present in brain under physiological conditions and upre-
gulated by stressors, some have postulated that Aβ plays
important roles in the stress response. Modest, transi-
ent upregulation of Aβ in the brain may serve as an
antioxidant defense [30] and promote clearance of
damaged cells in the brain by microglia [31]. Under

Erickson et al. Journal of Neuroinflammation 2012, 9:150 Page 2 of 15
http://www.jneuroinflammation.com/content/9/1/150



severe or chronic conditions of cellular stress, it is there-
fore feasible that Aβ accumulation could transition to
pathological levels, resulting in formation of toxic oligo-
mers that drive the AD process. This warrants further in-
vestigation into mechanisms by which inflammation and
oxidative stress contribute to BBB efflux of Aβ.
Evidence supports that induction of systemic inflam-

mation by the proinflammatory molecule LPS alters both
LRP-1 and Pgp at the BBB. Our group has previously
reported that peripheral administration of LPS inhibits
Aβ efflux transport out of the brain [32]. LPS also is
known to increase LRP-1 proteolytic processing in
macrophages and neurons [33,34]. Because increased
oxidative stress occurs in brains with systemic inflamma-
tion [35] and increased oxidative modifications on LRP-
1 are found in AD [9], it is also possible that oxidative
modifications on LRP-1 contribute to its dysfunction fol-
lowing LPS. Many groups have observed decreased func-
tional Pgp in inflammatory models [36-38], including
the regimen shown to impair Aβ efflux [7]. Because
LRP-1 and Pgp are located at the abluminal and luminal
membranes of the brain endothelial cell respectively, it
has been proposed that LRP-1 facilitates the initial up-
take of Aβ from the brain interstitial fluid, followed by
Pgp pumping Aβ out of the endothelial cell into the
blood [11]. Pgp may also regulate Aβ levels in brain by
restricting the entry of circulating Aβ [39].
In this study our goal was to investigate mechanisms

by which LPS alters Aβ transport out of the brain. To do
this, we first measured LPS-induced changes in parti-
tioning between the neurovasculature and parenchyma
of 125I-labeled murine Aβ1-42 or the LRP-1 ligand alpha-
2-macroglobulin (a2M) injected in the lateral ventricle
of the brain. We then measured effects of LPS on per-
ipheral clearance of Aβ, effects on CSF bulk flow, and
changes in microvascular LRP-1 and Pgp. Our findings
highlight that multiple routes of Aβ clearance are
impaired by LPS, and therefore may have a synergistic
effect on Aβ accumulation in brain.

Methods
Animal use and treatment regimens
All animal protocols were performed in an Association
for Assessment and Accreditation of Laboratory Animal
Care accredited facility and approved by the animal
committee of the VA and St Louis University Medical
Centers. Male CD-1 mice were purchased from Charles
River and kept on a 12/12 hour light/dark cycle with
food and water freely available. Mice at 6–8 weeks of
age were treated with 3 intraperitoneal (IP) injections of
3 mg/kg LPS from Salmonella typhimurium (Sigma, St.
Louis, MO, USA) dissolved in sterile normal saline over
a 24-hour period as previously described [32]. Briefly,
the first injection was given in the morning, and the

second and third injections were given at 6 and 24 hours
following the first injection, respectively. All mice were
studied at 28 hours following the first injection. Mice
given this injection regimen displayed overt sickness be-
havior and weight loss. No mice died as a result of this
treatment regimen. A total of 225 mice were used in this
study: 90 were used for detection of oxidative modifica-
tions to LRP-1 and Pgp measurement, 30 for LRP-1
measurement, 44 for measurement of Aβ and a2M vas-
cular sequestration, 20 for CSF bulk flow measurement,
21 for measurement of peripheral Aβ clearance, and 20
for primary endothelial cell culture.

Iodination of Aβ, a2M, and albumin
Murine Aβ1-42 was purchased from Bachem (Torrance,
CA, USA) and bovine serum albumin (BSA) and human
a2M from Sigma (St. Louis, MO, USA). Lyophilized Aβ
was resuspended at a concentration of 1 mg/ml in 0.1 M
ammonium hydroxide to prevent aggregation, aliquoted,
and stored frozen at −80 °C for up to 3 months. Lyophi-
lized a2M was resuspended in water at a 1 mg/ml con-
centration and stored at −20 °C. Activation of a2M was
done by incubating in a final concentration of 0.2 M
methylamine overnight at room temperature as
described previously [40]. Using the chloramine-T
method [41], 5 μg of Aβ, albumin, or a2M was labeled
with 0.5 mCi 125I or 131I (Perkin Elmer, Waltham, MA,
USA), and separated from free 125I on a Sephadex G-10
column (Sigma, St. Louis, MO, USA) to yield radio-
actively labeled Aβ (I-Aβ), albumin (I-albumin), or a2M
(I-a2M). To assess stability of I-Aβ and I-albumin, an
aliquot of the labeled peptide fraction was precipitated
in 15% trichloroacetic acid. All iodinated proteins con-
sistently showed greater than 95% activity in the precipi-
tate, and I-Aβ and I-a2M was always used within 24
hours of radioactive labeling. We have found that this
method of Aβ labeling shows specificity for LRP-1-
dependent BBB efflux from brain [7].

Measurement of inulin efflux
Inulin is not transported across the BBB and lacks bind-
ing sites in brain tissue [4]. Therefore, any efflux of inulin
from brain would represent a bulk flow route. To meas-
ure inulin efflux, 14 C-inulin (Perkin Elmer, Waltham,
MA, USA) was diluted to a concentration of 1 × 106

CPM/μl in BSA/lactated Ringer’s solution; saline or LPS-
treated mice were anesthetized with 40% urethane, and
1 μl 14 C-inulin was injected into the lateral ventricle of
the brain (intracerebroventricular (ICV)) by reflecting
the scalp and drilling a hole 1 mm lateral and 0.5 mm
posterior to the bregma, followed by injection at a depth
of 2.5 mm using a 26 g Hamilton syringe. Venous blood
and brains were collected 10 minutes post-injection
(t10). To account for central nervous system (CNS).
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distribution of 14 C-inulin, an identical treatment group
was overdosed with urethane, and 14 C-inulin was
injected ICV 10 minutes post-mortem (t0). Only brains
were collected for this group. For quenching
normalization of brains, 1 μl of injectate (injection check)
was added in triplicate to a matrix of solubilized brain in
liquid scintillation cocktail. Injection checks for serum
were in liquid scintillation counter (LSC) cocktail. Radio-
activity in solubilized brain and 50 μl of serum was mea-
sured using a Packard Tri-carb LSC. Brain efflux was
calculated by first determining the percent of injected
material remaining in brain in t10 and t0 groups:

%Inj=brain ¼ 100 CPM in brainð
=CPM injection checkÞ

Delta values were calculated by subtracting individual
values of %Inj/brain for each t10 mouse from the aver-
age %Inj/brain of each t0 group:

Delta%Inj=brain ¼ Average%Inj=brain t0ð Þ
� %Inj=brain t10ð Þ

Appearance of ICV-injected material in serum was cal-
culated by determining the percent of injected material
per microliter:

%Inj=μl ¼ 100 CPM in serumð
=CPM injection checkÞ=50μl

Measurement of vascular sequestration of Aβ and a2M
Vascular sequestration of ICV-injected I-Aβ or I-a2M
was measured using a modified version of the capillary
depletion method [42]. I-Aβ or I-a2M was diluted in
BSA/lactated Ringer’s solution to a concentration of
2 × 105 CPM/μl. As described under ‘Measurement of
inulin efflux’, 1 μl I-Aβ or I-a2M was injected in the lat-
eral ventricle of the brain. Blood from the jugular vein
and brains were collected at 10 minutes post-injection,
and brains were immediately put in ice-cold vascular de-
pletion buffer (10 mM HEPES, 141 mM NaCl, 4 mM
KCl, 2.8 mM CaCl, 1 mM MgSO4, 1 mM NaH2PO4,
10 mM D-glucose), and stored on ice until processing.
Blood was allowed to clot at room temperature, and
then centrifuged at 5,000 g to separate the serum from
blood cells. Brains were homogenized with 6–8 passes of
a Teflon pestle, and homogenates diluted in an equal
volume of 40% ice-cold dextran (Sigma, St. Louis, MO,
USA). Homogenates were centrifuged for 20 minutes at
3,500 g at 4 °C, and the parenchymal layer and dextran
interface were removed and transferred to a separate
tube. The remaining vascular pellet, as well as the dex-
tran/parenchymal layers, were then counted separately
in a gamma counter. Data for activity present in the

vascular or parenchymal fractions were expressed as %
total CPM:

%Total CPM

¼ CPM in parenchymal or vascular fraction

= CPM in vascular fractionð
þCPM in parenchymal fractionÞ � 100

Measurement of Aβ uptake by liver and kidney, and
clearance in serum
In BSA/lactated Ringer’s solution 3 × 105 CPM of 131I-
Aβ and 125I-albumin were prepared and injected to-
gether into the jugular vein of mice treated with LPS or
saline. The liver, the left kidney, and blood from the ca-
rotid artery were collected at 1, 2, 5, 10, and 20 minutes.
Blood was allowed to clot, spun at 5,000 g to separate
serum from blood cells, and 50 μl serum was counted
along with harvested tissues from liver and kidney in a
gamma counter. The rate of I-Aβ tissue uptake was
determined using multiple-time regression analysis [43].
For this analysis, experimental clock time was re-
expressed as exposure time to correct for clearance of I-
Aβ from the blood. Exposure time was calculated from
the formula:

Exposure time ¼
Z t

0
Cpt tð Þdt

� �
=Cpt

where t equals experimental clock time, Cp represents
the level of radioactivity in the serum over time and
Cpt is the level of radioactivity in the serum at time t.
Tissue/serum ratios were then calculated from the fol-
lowing formula:

Tissue=serum ratio ¼ serum volumeð Þ tissue CPMð Þ
= tissue weightð Þ serum CPMð Þ

To correct for alterations in vascular space and/or vas-
cular permeability which occur with LPS administration,
tissue/serum ratios for I-albumin were subtracted from
those for I-Aβ. The corrected tissue/serum ratios were
plotted against exposure time calculated for Aβ, and the
unidirectional influx constant determined from the slope
of the linear portion of the curve.
Serum clearance was calculated by plotting the log serum

CPM/50 μl versus experimental clock time. The slope of
this line is proportional to half-life by the equation:

Half � life in serum ¼ log 2ð Þ=� slope

Microvessel isolation
Isolation of brain microvessels from mice treated with
saline or LPS was performed according to a modified
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protocol [44]. Briefly, three or ten brains (for western
blotting and immunoprecipitation, respectively) were
pooled per treatment group and homogenized in ice-
cold DMEM+0.5% PMSF with 6–8 passes of a Teflon
pestle, followed by filtration once through a 300 μm
nylon mesh, and twice through two 100 μm nylon mesh
filters. Filtrates were then mixed with an equal volume
of cold 40% dextran dissolved in DMEM, and centri-
fuged at 3,500 g for 30 minutes at 4 °C. The upper
parenchymal layer was removed and washed once with
ice-cold PBS+ protease inhibitor cocktail (Sigma, St.
Louis, MO, USA), and stored at −80 °C prior to protein
extraction. The dextran gradient was discarded, and the
microvessel pellet resuspended in DMEM. Suspended
vessels were then poured onto a 25 μm mesh and washed
extensively with DMEM to remove cellular debris.
Washed vessels were then removed from the mesh,
checked for purity by light microscopy, and washed once
with PBS + protease inhibitor cocktail. The washed
microvascular pellet was then stored at −80 °C prior to
protein extraction. The typical microvascular protein yield
for this procedure is approximately 10 μg per mouse.

Culture of primary human, mouse, and immortalized
rat brain microvascular endothelial cells and treatment
with LPS
Primary human brain microvascular endothelial cells
(HBECs) were purchased from Cell Systems (Kirkland,
WA, USA) and cultured according to the company’s
instructions. Cells at passage 6 were used in this study.
Immortalized rat brain endothelial cells (RBE4), a gift
from Dr Pierre Couraud, were seeded on rat tail collagen
in a type 1 coated tissue culture plate (TPP, Trasadingen,
Switzerland and maintained in Ham's F10/α medium 1:1
(Gibco, Invitrogen, St. Louis, MO, USA), 10% fetal bo-
vine serum, 1 ng/ml basic fibroblast growth factor
(Sigma, St. Louis, MO, USA), 300 μg/ml geneticin
(Gibco, St. Louis, MO, USA), and 50 μg/ml gentamicin
(Sigma, St. Louis, MO, USA). All cells were maintained
at 37 °C in a humidified atmosphere of 5% CO2 and 95%
air. Culture medium was changed twice a week, and
endothelial cells at passages 7 were used in this study.
Primary cultures of mouse brain capillary endothelial
cells (MBECs) were isolated from 8-week-old CD1 mice
according to published protocols [45] with modifica-
tions. MBECs were seeded on dishes (flasks, plates)
coated with collagen type IV and fibronectin (both
0.1 mg/ml). MBEC cultures were maintained in DMEM/
F12 supplemented with 10% plasma-derived serum
(PDS, Animal Technologies, Inc., Tyler, TX, USA), 1%
GlutaMAX supplement (Gibco, St. Louis, MO, USA),
basic fibroblast growth factor (bFGF, Roche Applied
Sciences, Indianapolis, IN, USA, 1 ng/ml), heparin
(100 μg/ml), insulin (5 μg/ml), transferrin (5 μg/ml),

sodium selenite (5 ng/ml) (insulin-transferrin-sodium
selenite media supplement), and gentamicin (50 μg/ml)
at 37 °C with a humidified atmosphere of 5% CO2/95%
air; pericytes were eliminated from the culture by in-
cluding puromycin (4 μg/ml) [46] in this medium
(MBEC medium I). Red blood cells, cell debris, and non-
adherent cells were removed 24 hours after plating by
washing with medium. On the third day, the cells
received a new medium which contained all components
of MBEC medium I except puromycin (MBEC medium
II). When the cultures reached 80% confluency (fifth day
in vitro), the purified endothelial cells were passaged by
brief treatment with 0.25% Trypsin-EDTA (Gibco, St.
Louis, MO, USA) solution, and used to construct
in vitro BBB models on transwell inserts (Corning Inc.,
Corning, NY, USA). All cells were treated with 0.1 mg/
ml LPS dissolved in culture medium for 4 hours (HBEC)
or 24 hours (MBEC and RBE4). Fresh culture medium
was used as a control. Cells were then extracted for pro-
tein or fixed for immunostaining.

Protein extraction and immunoprecipitation of LRP-1
Protein from washed cells, isolated brain microvessels,
and vascular-depleted brain parenchyma were extracted
in ice-cold lysis buffer (PBS plus 1% NP-40, 1 mM
PMSF, and protease inhibitor cocktail) by scraping (cells)
or homogenization (tissues) followed by shaking vigor-
ously for 30 minutes at 4 °C. Extracts were then centri-
fuged at 20,000 g for 10 minutes at 4 °C, and
supernatants were used for protein analysis. Protein was
quantified in all extracts by bicinchoninic acid assay
(Thermo Scientific, Rockford, IL, USA). Immunoprecipi-
tation of LRP-1 from brain microvessel extracts was per-
formed using a modified protocol which has been
described previously [9]. Briefly, 75 μg of microvessel ex-
tract was diluted in 500 μl IP buffer (0.05% NP-40 plus
protease inhibitor cocktail in PBS), and precleared by in-
cubating with 50 μl washed protein A/G sepharose beads
(Calbiochem, Billerica, MA, USA) for 90 minutes at
4 °C. The precleared supernatant was then incubated
overnight at 4 °C with 10 μg anti-LRP-1 rabbit mono-
clonal primary antibody (Epitomics, Burlingame, CA,
USA), and the antigen-antibody complexes immunopre-
cipitated by incubating with 50 μl washed protein A/G
beads for 1 hour at 4 °C. The beads were then washed
5 times in IP buffer, and the antigen-antibody complex
eluted by adding 25 μl buffer for SDS-PAGE (1 × LDS,
1 × dTT, Invitrogen, Grand Island, NY, USA) and heat-
ing at 70 °C for 10 minutes.

Immunoblot analysis
For analysis of 3-nitrotyrosine (3-NT) and HNE modi-
fied LRP-1, 5 μl of immunoprecipitated microvascular or
parenchymal LRP-1 from saline or LPS-treated mice was
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resolved in duplicate on a 4–12% Bis-Tris gel (Invitro-
gen, Grand Island, NY, USA). Protein was then trans-
ferred to nitrocellulose membranes using an iBlot
transfer device (Invitrogen, Grand Island, NY, USA),
washed 5 minutes in PBS-T, and blocked for 1 hour in
5% milk dissolved in PBS-T. All antibody incubations
were done for 1 hour at room temperature, except for
Pgp which was done at 4 °C overnight. One membrane
was probed with anti-HNE mouse monoclonal antibody
(R and D systems, Minneapolis, MN, USA; 2 μg/ml) and
the other membrane probed with anti-3-NT mouse
monoclonal antibody (Millipore, St. Charles, MO, USA;
2 μg/ml). Both membranes were then washed, and
probed with anti-mouse secondary antibody conjugated
to horseradish peroxidase (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA; 1:5,000). Following band
visualization, both blots were stripped and confirmed for
absence of signal. Blots were then re-probed with an
anti-LRP-1 antibody which recognizes the small subunit
(Epitomics Burlingame, CA, USA; 0.2 μg/ml), washed,
and probed with anti-rabbit secondary (Santa Cruz Bio-
technology, Inc., Santa Cruz, CA, USA; 1:10,000). Band
intensities for HNE and 3-NT were then normalized for
LRP-1 signal. For analysis of LRP-1 in isolated microves-
sels, 15 μg were loaded on a 3–8% Tris-acetate gel (Invi-
trogen, Grand Island, NY, USA), and transferred onto a
nitrocellulose membrane. Prior to probing for LRP-1,
the blot was stained with SYPRO ruby (Invitrogen,
Grand Island, NY, USA), and protein bands were quanti-
fied under UV exposure for normalization, as described
previously. The blot was then blocked, and probed with
anti-LRP-1 antibody which recognizes the large subunit
(2 μg/ml 1 hour at room temperature), followed by
probing with secondary anti-rabbit (1:5,000). The same
blot was then re-probed for the small subunit of LRP-1
using the antibody from Epitomics (0.1 μg/ml), followed
by anti-rabbit secondary. Immunoblotting of HBEC
lysates was done using the same method for isolated
brain microvessels, with the following modifications:
8 μg was used for loading, blots were only probed for
the small subunit of LRP-1, and bands were normalized
to gamma-tubulin (Santa Cruz Biotechnology, Inc., Santa
Cruz, CA, USA; 1 μg/ml). Immunodetection of Pgp was
done in microvascular extracts by loading 3 μg of pro-
tein on a 4–12% Bis-Tris gel under nonreducing condi-
tions. The lower half of the blot was stained with
SYPRO ruby, and the upper half probed for Pgp (pri-
mary: C219, Covance, Princeton, NJ, USA; 1 μg/ml in
2% milk, secondary: Santa Cruz; 1:5,000). As a signifi-
cant hook effect has been reported for Pgp [47], it was
confirmed that our protein loading conditions fell within
linear range of antibody signal for Pgp. All immunoreac-
tive bands were visualized using West Pico chemilumin-
escent substrate (Thermo Scientific, Rockford, IL, USA)

and all images were captured using an ImageQuant
LAS4000 CCD imaging system (GE Life Sciences, Piscat-
away, NJ, USA) except for HBEC blots, which were cap-
tured on film. Densitometric analysis was done using
IQTL software (GE Life Sciences, Piscataway, NJ, USA).

Dot blot analysis
RBE4 lysates were diluted to a final concentration of
4 μg/ml in PBS, and 1 μg of protein was loaded onto a
nitrocellulose membrane in duplicate using a Bio-dot ap-
paratus (BioRad, Hercules, CA, USA). Membranes were
then probed for the small subunit of LRP-1 and analyzed
by densitometry as described above. The antibody used
for detection is specific for LRP-1, and shows no signal
in the PEA-13 knockout cell line [47].

Immunocytochemistry
MBECs grown on Transwell inserts were washed in PBS
and fixed with 4% PFA for 10 minutes at 4 °C. Cells were
permeabilized with 0.1% TRITON-X100, blocked with
5% BSA and then incubated with anti-LRP1 rabbit
monoclonal antibody (Epitomics, Burlingame, CA, USA)
and anti-ZO-1 rat monoclonal antibody (Millipore, St.
Charles, MO, USA) followed by incubation with corre-
sponding Alexa Flour-488 or Alexa Flour-568 conjugated
secondary antibody (Invitrogen, Grand Island, NY, USA ).
Inserts were mounted in antifade media containing DAPI
(nuclear) counterstain and photographed with a Nikon
ECLIPSE E800 fluorescence microscope.

Statistical analysis
All statistical analysis was done using Prism 5 software
(GraphPad Inc, San Diego, CA, USA). Data from liver
and kidney uptake as well as serum clearance were ana-
lyzed by linear regression, and the remaining data were
analyzed by two-tailed Student’s t-tests. Data are shown
as mean +/− SEM. In all figures, * P<0.05, ** P<0.01,
and ***P< 0.001 compared to saline.

Results
Effects of LPS on vascular sequestration of Aβ and a2M
To characterize the defect in Aβ transport by brain vas-
culature, the method of capillary depletion was applied
which is routinely used to determine whether circulating
compounds are sequestered by brain endothelial cells
[42]. In this case, however, it was used to determine
whether ICV-injected I-Aβ showed significant changes
in partitioning between the brain capillary and parenchy-
mal compartments. We reasoned that decreased vascular
partitioning of Aβ would indicate decreased binding/
internalization at the abluminal surface, whereas
increased vascular partitioning would indicate a post-
internalization defect, that is, in the intracellular trans-
port and luminal efflux phases. To establish whether our
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results reflected an LRP-1-dependent process, the same
study was repeated with the LRP-1 ligand a2M. Figure 1
shows that LPS treatment significantly shifted brain dis-
tribution of I-Aβ and I-a2M from the parenchymal

compartment to the vascular compartment (Figure 1a,b;
Figure 1d,e), consistent with an LRP-1-dependent post-
binding inhibition of Aβ efflux. To confirm that this was
associated with impaired Aβ efflux, venous blood was

Figure 1 Distribution of ICV-injected murine 125I-Aβ1-42 (a–c) or activated
125I-a2M (d,–f) in the vasculature (a,d), parenchyma (b,e), and

serum (c,f) after treatment with LPS. Data analyzed by two-tailed t-test, n= 10–11 per group, *P< 0.05; ***P< 0.001.

a b

c d

Figure 2 Peripheral clearance of murine 125I-Aβ1-42 from blood (a), and uptake by liver (b) or kidney (c) following LPS. Clearance rate
(%Inj/ml-min) of Aβ from serum and unidirectional influx rates for liver and kidney (μl/g-min) are shown in (d). Data analyzed by linear regression
analysis, n= 7–10 per group, *P< 0.05, **P< 0.01.

Erickson et al. Journal of Neuroinflammation 2012, 9:150 Page 7 of 15
http://www.jneuroinflammation.com/content/9/1/150



also collected from these mice just prior to decapitation.
I-Aβ in serum was significantly decreased with LPS and
I-a2M showed a decreased trend (p = 0.0538; Figure 1c
and f), supporting our previous findings that Aβ efflux
from brain is inhibited by systemic inflammation [32].

LPS effects on clearance of Aβ in the periphery
Previous studies have shown that Aβ in the circulation is
cleared primarily by the liver and less so by the kidneys
[16]. Because alterations in peripheral clearance would
affect the serum levels of I-Aβ shown in Figure 1, we
determined the effect of LPS on Aβ clearance from
serum by liver and kidney. Figure 2a shows that clear-
ance of I-Aβ from serum is reduced with LPS treatment
(half-life increased from 4 minutes for saline to 8.4 min-
utes for LPS), and this is coupled with a significantly
decreased unidirectional influx rate of Aβ into liver
(Figure 2b, Ki = 34.67 ± 3.444 and 8.356 ± 6.433 μl/g-min
saline and LPS, respectively) and kidney (Figure 2c, Ki =
41.26 ± 10.46 and 0.5608 ± 3.859 μl/g-min saline and
LPS, respectively). Therefore, serum Aβ levels shown in
Figure 1c underestimate the magnitude of efflux impair-
ment by LPS.

Effects of LPS on CSF bulk flow
In addition to saturable efflux across the BBB, Aβ clear-
ance from brain through bulk flow of CSF partially con-
tributes to our measures of total Aβ efflux. To test the
effects of LPS on CSF bulk flow, we measured brain ef-
flux of the bulk flow marker inulin [4]. Figure 3a shows
disappearance of 14 C-inulin from brain after 10 minutes,
corrected for its CNS distribution at time zero. There-
fore, the 42% decrease in the delta value indicates that
LPS treatment significantly decreases CSF bulk flow.
Figure 3b shows that serum levels of 14 C-inulin also sig-
nificantly decrease with LPS, further demonstrating that
CSF bulk flow is impaired in this model.

Brain microvascular expression of LRP-1 and pgp, and
oxidative modification of LRP-1
To determine effects of LPS on efflux transporter ex-
pression, we first measured levels of LRP-1 and Pgp in
brain microvessels isolated from mice treated with LPS
or saline. Figure 4 shows that neither LRP-1 (Figure 4a–
c) nor Pgp (Figure 4d,e) levels are altered significantly
with LPS in isolated brain microvessels. Because it was
found that oxidative modification of LRP-1 significantly
increases in the AD hippocampus, and inflammation is
associated with increased oxidative stress in the brain,
we determined whether similar patterns in oxidative
modification were present in isolated brain microvessels
in our model. Figure 5 shows that no significant altera-
tions in oxidative modification of LRP-1 occur with LPS.
Interestingly, oxidative modifications to LRP-1 were not
detectable in capillary-depleted brain homogenate from
either group tested (data not shown).

LPS effects on LRP-1 expression in vitro
Although no changes were found for LRP-1 expression
in isolated brain microvessels following LPS treatment
in vivo, we have recently found that cultured brain
microvascular pericytes upregulate LRP-1 when treated
with LPS in vitro [48]. Mechanical preparations of iso-
lated brain microvessels include pericytes, due to their
juxtaposition to endothelial cells [49]. This raises the
possibility that pericyte upregulation of LRP-1 masks
downregulation of LRP-1 at the endothelial cell. To test
this, we treated primary cultures of HBECs, the rat
brain endothelial cell line RBE4, and primary cultures
of mouse brain endothelial cells (MBECs) with LPS
and measured LRP-1 protein expression or localization
following treatment. Figure 6 shows that LRP-1 is sig-
nificantly downregulated following LPS treatment in
both HBECs (Figure 6a,b) and the RBE4 cell line
(Figure 6c). We were unable to detect Pgp in primary
pericytes using the same antibody (data not shown). In

Figure 3 Brain efflux of ICV-injected 14 C inulin (a) and corresponding appearance in serum (b) after treatment with LPS. Lower values
indicate slower efflux. Data analyzed by two-tailed t-test, n= 10 per group, *P< 0.05, **P< 0.01.
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addition to downregulation, Figure 7 shows that LRP-1
mislocalization occurs following LPS treatment in
MBECs. This change is associated with mislocalization
of the tight junction protein ZO-1.

Discussion and conclusions
In this study we have shown that peripheral administra-
tion of LPS inhibits CSF bulk flow, central and periph-
eral clearance of Aβ, and increases vascular
sequestration of Aβ. All four of these positive results

demonstrate that systemic inflammation alters the distri-
bution of Aβ in ways that would favor its accumulation
in brain. Other groups have shown LRP-1-dependent ef-
flux of human forms of Aβ across the BBB [4,50], how-
ever, we have observed that murine Aβ1-42 also
undergoes LRP-1-dependent BBB transport and is
cleared at a faster rate across the murine BBB than
human Aβ1-42 [7,51]. Although we did not observe direct
changes to LRP-1 or Pgp in vivo, our findings of
increased vascular partitioning of Aβ and decreased

a b

d e

c

Figure 4 Protein expression of LRP-1 and Pgp in pooled brain microvessels isolated from mice treated with saline or LPS.
Representative immunoblot images shown for LRP-1 (a) and Pgp (d). Results from densitometric analysis of the small (b) and large (c) subunits of
LRP-1, and Pgp (e) are shown as bar graphs. Data analyzed by two-tailed t-test, n= 4–5 microvessel pools (3 brains/pool) per group.

a b c

Figure 5 Oxidative modifications to brain microvascular LRP-1 following LPS treatment. Representative immunoblots for 3-nitrotyrosine
(3-NT) and 4-hydroxynonenal (HNE)-modified LRP-1 and immunoprecipitated LRP-1 are shown in (a). Results from densitometric analysis of 3-NT
(b) and HNE (c)-modified LRP-1 normalized to total LRP-1 levels are shown as bar graphs. Data analyzed by two-tailed t-test, n= 4–5 microvessel
pools (10 brains/pool) per group.
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LRP-1 expression in cultured brain endothelial cells pro-
vides important clues of how BBB transport dysfunction
could occur, as modeled in Figure 8.
The finding that inulin efflux from brain is decreased

following LPS administration demonstrates that CSF/
interstitial fluid (ISF) bulk flow decreases in our model.
CSF/ISF turnover is important for clearing catabolites

from the brain, and maintaining an optimal environment
for neuronal function [14,52]. It has been shown that
substantial catabolite buildup occurs after a 50% de-
crease in CNS fluid turnover rate, and this can lead to
neuronal toxicity [14]. This rate of decrease is observed
in AD, and therefore may contribute to toxic catabolite
buildup in the AD brain [52]. In healthy animals and
humans, the magnitude of Aβ efflux by the saturable
BBB systems is much greater than clearance by bulk flow
[4], but transporter deficiency could result in a shift
where bulk flow becomes the predominant clearance
route. In our LPS model we observed a 42% decrease in
inulin efflux compared with control. This shows that
similar to AD, bulk flow is also impaired during systemic
inflammation. Future studies are necessary to determine
to what extent this deficit contributes to cognitive
dysfunction.
In addition to its contribution to bulk flow, the blood–

CSF barrier is likely to play important roles in Aβ re-
moval from CSF. Epithelial cells of the choroid plexus
have saturable transport systems for Aβ [53], and LRP-1
at the choroid plexus participates in the clearance of Aβ
from the CSF [54]. This may have important implica-
tions for AD because LRP-1 expression increases in the
rat choroid plexus with age [55]. ICV-injected Aβ would
be subject to transport by LRP-1 at the BBB and blood–
CSF barrier, and the relative contribution of each route
to total clearance is presently unclear. Whether LPS

a

c

b

Figure 6 Decreased protein expression of LRP-1 in cultured HBECs and RBE4 cells following LPS treatment. Immunoblots of LRP-1 and
γ-tubulin from HBECs are shown in (a), and densitometric analysis of LRP-1 small subunit expression shown in (b). Data from dot blot analysis of
LRP-1 in RBE4 cells is shown in (c). Data analyzed by two-tailed t-test, n= 3 per group (HBEC) or 6 per group (RBE4), *P< 0.05.

LRP-1 ZO-1

LPS -

LPS +

Figure 7 Mislocalization of LRP-1 and ZO-1 in cultured MBECs
following LPS treatment. MBECs grown on Transwell inserts were
treated with LPS and stained for LRP-1 (red), ZO-1 (green), and DAPI
(blue). Images captured at 400× magnification.
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alters LRP-1 function at the choroid plexus is also un-
known, but this could reflect an additional mechanism
involved in the observed Aβ clearance deficit.
Peripheral clearance of Aβ from the circulation is pri-

marily dependent on uptake by the liver and kidneys
[16]. In this study we measured clearance of Aβ from
blood along with liver and kidney uptake to confirm that
brain-derived Aβ contributes substantially to measure-
ments of Aβ in blood. The finding that Aβ levels were
decreased in blood following LPS even though a de-
crease in peripheral clearance was observed shows that
serum levels of exogenous Aβ underestimate the magni-
tude of LPS inhibition on Aβ efflux from brain. Despite
this, we found that LPS causes a significant reduction of
ICV-injected Aβ in serum, which supports previous
results that LPS impairs Aβ efflux from brain. The ob-
servation of decreased Aβ clearance from blood by both
liver and kidney is also of interest. Because LRP-1 med-
iates peripheral clearance of Aβ in liver [17] our findings
suggest LRP-1 impairment may be occurring with LPS
at peripheral sites. Whether Aβ clearance by kidney is
also mediated by LRP-1 is unknown, but reflects a likely
route as LRP-1 is expressed in kidney. LRP-1 is known
to be cleaved in response to inflammatory stimuli [33],
which may reflect a mechanism for peripheral LRP-1
dysfunction in our LPS model. Reduced peripheral clear-
ance of Aβ may be contributing to Aβ accumulation
in brain through increased BBB influx via RAGE [18,32],
as well as by decreasing Aβ efflux [19]. The latter

mechanism may be explained either by decreases in the
Aβ concentration gradient between brain and blood, or
endothelial dysfunction through RAGE activation. Be-
cause studies indicate that processes regulating circulat-
ing Aβ play important roles in AD pathogenesis [56,57],
these results highlight a novel mechanism by which sys-
temic inflammation could contribute to AD.
Our findings of decreased brain efflux and increased

neurovascular Aβ sequestration with LPS could be
explained by the interaction of several pathways as illu-
strated by the working model in Figure 8. The first con-
sideration of Figure 8 is the subcellular location of the
efflux transporters LRP-1 and Pgp. The model presented
here, in line with a recently reported model [11], starts
with extracellular Aβ first coming into contact with
LRP-1 on the abluminal side of the brain endothelial cell
(Figure 8a). This is followed by transport of Aβ into the
vascular lumen by Pgp (Figure 8b), or by a Pgp-
independent pathway (Figure 8c). Entry of circulating
Aβ into the brain is mediated by RAGE, but can also be
restricted by Pgp [39] (Figure 8d). Our result showing
that vascular Aβ and a2M partitioning increases with
LPS is consistent with a functional deficit in LRP-1. This
would not, however, be due to mechanisms that decrease
binding interactions between Aβ and LRP-1 such as lig-
and competition [58,59] because this would be expected
to decrease vascular partitioning. Along these lines, our
observations of decreased expression of LRP-1 at the
endothelial cell are inconsistent with increased vascular

Figure 8 Schematic of mechanisms at the neurovascular unit which contribute to LPS-induced decreases in Aβ efflux by the BBB.
Decreased efflux at the brain endothelial cell (EC) is due to functional impairment of LRP-1 (a) that may involve (b) or not involve (c) Pgp (b).
Impairment of Pgp could also result in increased vascular uptake of Aβ from the periphery (d). Increased internalization of Aβ in the pericyte (PC)
through upregulation of LRP-1 may also contribute to Aβ partitioning in the brain vasculature (e). Dashed line across endothelial cell indicates
unknown subcellular routes in the translocation of Aβ.
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partitioning unless other cells of the neurovascular unit
are considered. LRP-1 expressed in other cells tightly
associated with the neurovasculature such as pericytes
and vascular smooth muscle cells could contribute to
vascular partitioning [60,61] because these cells remain
associated with the vascular pellet. Therefore, increased
vascular partitioning may also reflect an increase in up-
take of Aβ by pericytes or vascular smooth muscle cells
(Figure 8e). Interpretation of the results for vascular se-
questration is discussed below in context of our findings
for transporter expression and what is known from the
literature about LRP-1 and Pgp regulation.
Our in vivo findings for BBB transporter expression

showed no significant changes in LRP-1 or Pgp expres-
sion following LPS treatment, nor did we find increases
in oxidative modifications to LRP-1. Interestingly, we did
find that oxidative modifications to LRP-1 which were
detectable in brain endothelial cells of saline-treated ani-
mals were not detected in capillary-depleted parenchy-
mal fractions from the same isolation, despite strong
immunostaining for immunoprecipitated LRP-1 (data
not shown). Although LRP-1 is generally considered to
be a receptor that recycles from membrane to lysosomal
compartments, it has been shown that phosphorylation
can regulate this process [62]. Oxidative modification to
LRP-1 could alter such processes, impairing unique
physiological functions, such as transcytosis at the BBB.
Recently, it has been shown that LRP-1 transcytosis
occurs in an in vitro BBB model [63]. Future studies are
necessary to determine whether post-translational modi-
fications are needed to confer unique functions to LRP-1
at the BBB.
Despite our inability to show LPS-induced changes in

BBB LRP-1 in vivo, we did find that LRP-1 expression
was significantly decreased by treating cultured HMECs
or RBE4 cells with LPS in vitro. This is opposite to the
effect we recently reported for primary cultured peri-
cytes, which upregulate LRP-1 in response to LPS [48].
Therefore, the possibility is raised that upregulation of
LRP-1 at the pericyte masks downregulation of LRP-1
at the endothelial cell, which would explain our find-
ings of decreased BBB efflux in the absence of changes
in protein expression in vivo. Furthermore, increased
expression of LRP-1 at the pericyte could also explain
our finding that the distribution of ICV-injected Aβ
shifts from the parenchyma to the vascular compart-
ment. Mislocalization of LRP-1 was also found to occur
with LPS in primary brain endothelial cells, further
supporting that LPS induces LRP-1 dysfunction at the
brain endothelial cell. Because LRP-1 participates in Aβ
internalization and transport in vitro [50,60,63], future
studies are necessary to determine how these in vitro
changes in LRP-1 alter the cellular uptake and trans-
port of Aβ.

It is possible that in addition to LRP-1, Pgp dysfunc-
tion may also contribute to increased vascular partition-
ing and decreased BBB efflux of Aβ. Although we found
no changes in Pgp expression in vivo following LPS, this
does not contradict other reports in the literature where
Pgp is functionally inhibited despite unchanged or upre-
gulated protein expression [36,37,64,65]. Furthermore,
we and others have found that the LPS regimen used in
this study impairs Pgp function at the BBB [38,64].
Therefore, Pgp dysfunction could also be mediating
defects in Aβ transport. Our inability to show a signifi-
cant decrease in Pgp expression also signifies an import-
ant difference between our model and AD because
Pgp is downregulated in the brain microvasculature in
AD [12].
Together, these results show that BBB Aβ transport is

functionally impaired following an inflammatory re-
sponse. Although our in vitro data suggest that LPS
downregulates LRP-1 at the brain endothelial cell
in vivo, the lack of any significant decrease in Pgp ex-
pression highlights an important distinction from AD,
where both LRP-1 and Pgp are downregulated in the
brain microvasculature. An explanation for this distinc-
tion may be related to our use of young adult mice in
this study. Because Aβ is produced under normal
physiological conditions, and our data utilizes an acute
model of systemic inflammation [66], it may be that the
mechanistic differences observed for Aβ efflux deficiency
in inflammation and AD represent components of a
physiological process. Aβ has been implicated as a
stress-response molecule [67], and at physiological levels
has neuroprotective properties [30,68]. Hence, it is
tempting to speculate that downregulation of BBB efflux
transporters in AD may represent a pathological conse-
quence of prolonged vascular sequestration of Aβ as a
result of sustained systemic inflammation. This possibil-
ity is supported by another group who showed in a
transgenic model of AD that Pgp dysfunction at the BBB
precedes symptoms of cognitive impairment, and that
microvascular upregulation of LRP-1 also occurs at this
time point [11]. Furthermore, cerebrovascular accumula-
tion of Aβ is cytotoxic [61]. Because low-grade systemic
inflammation is associated with many other diseases
which have been considered comorbidities in AD [69],
similar comparative studies would be useful in determin-
ing unifying pathological events at the neurovascular
unit or related to brain fluid dynamics which would con-
tribute to impaired Aβ clearance from the brain. Aging
would likely sensitize an organism to inflammation so
that the threshold required for Aβ efflux impairment is
lowered [70]. In conclusion, we have shown that inflam-
matory events at the neurovascular unit affect key
players that regulate the brain and blood levels of Aβ,
providing mechanistic pathways by which inflammation
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could promote or even induce important characteristics
of AD.
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