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Abstract

It was recently conjectured that, in SU(3) gauge theories with fundamental quarks, valence spontaneous 
chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chi-
ral polarization scale Λch. Here we consider more general association involving the low-energy layer of 
chirally polarized modes which, in addition to its width (Λch), is also characterized by volume density of 
participating modes (Ω) and the volume density of total chirality (Ωch). Few possible forms of the corre-
spondence are discussed, paying particular attention to singular cases where Ω emerges as the most versatile 
characteristic. The notion of finite-volume “order parameter”, capturing the nature of these connections, 
is proposed. We study the effects of temperature (in Nf = 0 QCD) and light quarks (in Nf = 12), both in 
the regime of possible symmetry restoration, and find agreement with these ideas. In Nf = 0 QCD, results 
from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature Tc is strictly 
smaller than the overlap–valence chiral transition temperature Tch in real Polyakov line vacuum. Somewhat 
similar intermediate phase (in quark mass) is also seen in Nf = 12. It is suggested that deconfinement in 
Nf = 0 is related to indefinite convexity of absolute X-distributions.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
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1. Introduction and summary

Eigensystems of Dirac operator in equilibrium gauge backgrounds carry the information 
on fermionic aspects of quark–gluon dynamics. As an important example, inspection of Dirac 
spectral representation for scalar fermionic density immediately reveals that spontaneous chi-
ral symmetry breaking (SChSB) is equivalent to mode condensation of massless Dirac operator. 
Ever since this association has been pointed out [1], it became popular to think about SChSB in 
terms of quark near-zeromodes.

Contrary to SChSB, the mode condensation property is a well-defined notion in generic 
quark–gluon system, i.e. even when all quarks are massive. While there is no chiral symmetry 
of physical degrees of freedom to break in this case, condensing dynamics can still be described 
via chiral symmetry considerations. Indeed, one can introduce e.g. a pair of fictitious fermionic 
fields (“valence quarks”) of degenerate mass mv , and cancel their contribution to the action by 
also adding the associated bosonic partners [2]. This keeps the dynamics of physical quarks and 
gluons unchanged, but makes it meaningful to consider chiral rotations of valence fields in such 
extended system, and to inquire about “valence SChSB” in the mv → 0 limit. In this language,

vSChSB ⇐⇒ QMC (1)

i.e. quark mode condensation (QMC) in arbitrary quark–gluon system is equivalent to valence 
spontaneous chiral symmetry breaking (vSChSB): dynamics supports condensing modes if and 
only if it supports valence chiral condensate and valence Goldstone pions.

It is useful to think about SChSB in the above more general sense, especially when inquiring 
about the mechanism underlying the phenomenon [3]. Indeed, the response of massless valence 
quarks to gauge backgrounds of various quark–gluon systems provides a relevant point of dynam-
ical distinction for associated theories: they either support “broken” or “symmetric” dynamics of 
the external massless probe. Moreover, valence SChSB is readily observed in lattice simula-
tions with physically relevant flavor arrangements, and the associated dynamical characteristics 
change smoothly in the light quark regime [3]. Valuable lessons on SChSB can thus be learned 
by studying its valence version with massive dynamical quarks: vSChSB becomes SChSB as 
dynamical chiral limit is approached.

Unfortunately, the equivalence of quark mode condensation and valence SChSB does not 
provide window into specifics of broken quark dynamics. Indeed, the mode condensation prop-
erty is merely a restatement of symmetry breakdown condition in Dirac spectral representation. 
However, it was recently proposed that another relation may hold, possibly with similar scope 
of validity, but with non-trivial dynamical connection to inner workings of the breaking phe-
nomenon [3]. In particular, it was suggested that

vSChSB ⇐⇒ DChC (2)

i.e. that valence SChSB is equivalent to dynamical chirality condensation (DChC). This offers 
an intuitively appealing notion that the vacuum effect of chiral symmetry breaking is in fact the 
phenomenon of chirality condensation. In light of Eq. (1), the above relation carries the same 
information as QMC–DChC equivalence, which may be preferable for explicit checks.

While entities involved in the above relations will all be defined in Section 2, it should 
be pointed out now that DChC relates to dynamical notion of local chirality in modes [4]: it 
expresses the tendency for asymmetry in magnitudes of left–right components (local chiral po-
larization), measured with respect to the baseline of statistical independence. The associated 
quantifier, the correlation coefficient of polarization CA ∈ [−1, 1], is invariant with respect 
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Fig. 1. Layer of chirally polarized modes around λ = 0 is visible e.g. in the low-energy behavior of ρch(λ). Standard 
situation (left) and two singular ones (middle, right) are shown in infinite volume. The dashed segment indicates that 
infinite volume limit was approached from chirally polarized side. See Section 2.2 for definition of Λ∞

ch .

to the choice of parametrization for the asymmetry. It thus provides the information on the 
quark–gluon system that is inherently dynamical. DChC occurs when near-zeromodes are chi-
rally polarized (CA > 0) and sufficiently abundant, namely when chiral polarization density
ρch(λ) ≡ ρ(λ)CA(λ) is positive at λ = 0 in infinite volume.

Important aspect of DChC is that it manifests itself in chiral spectral properties away from 
strictly infrared limit. Indeed, it was shown [3,4] that mode-condensing theories of physical in-
terest exhibit chiral polarization scale Λch, marking the spectral point where functions CA(λ), 
ρch(λ) change sign and modes become anti-polarized (Fig. 1(left)). The existence of Λch in chi-
rally broken asymptotically free theories can be intuitively understood from the fact that free 
modes are strictly anti-chiral and CA(λ) is thus expected to assume negative values at suffi-
ciently high λ. The simultaneous occurrence of DChC and Λch is thus not viewed as accidental 
but rather generic. This is, in fact, an integral part of the vSChSB–DChC conjecture as formulated 
in Ref. [3], so that

vSChSB ⇐⇒ Λch > 0 (3)

with suitably general definition of Λch. Chiral polarization scale can thus be viewed as a non-
standard “order parameter” of the breaking phenomenon, and is expected to be naturally tied to 
the mechanism of SChSB [3].

Relations (2), (3) acquire their full meaning only when the corresponding range of theories is 
specified. This is relevant since the larger the scope of theories conforming to vSChSB–DChC 
correspondence, the deeper the connection of local chirality to the symmetry breaking phe-
nomenon. Indeed, if the association is generic, then it must be ascribed to the very nature of 
quark–gluon interaction. The original vSChSB–DChC conjecture was formulated in the context 
of SU(3) gauge theories with arbitrary number of fundamental quark flavors of arbitrary masses, 
and at arbitrary temperature. Thus both broken and symmetric theories are included in this land-
scape with corresponding transitions providing for most interesting tests of the conjecture. While 
the maximal range of validity may be significantly larger,1 this is a physically relevant setup cur-
rently associated with the above statements.

The focus of this work involves two main aspects.

(I) In Section 2 we provide more complete description of chiral polarization phenomenon, 
and formulate the proposed connections to vSChSB within such wider context. Refined descrip-
tion reflects the premise that the vacuum feature we are associating with vSChSB is the layer of 

1 For example, extension to general SU(N) gauge groups may hold as well.
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chirally polarized modes around λ = 0 (“surface of the Dirac sea”). Apart from its width (Λch), 
global characterization of this structure also includes volume density of modes involved (Ω), 
and the volume density of total chirality generated by them (Ωch). Incorporating these charac-
teristics allows us to distinguish and discuss various special/singular cases that might arise. For 
example, the layer could approach zero width in the infinite volume limit, but acquire sufficiently 
singular abundance of modes so as to generate positive Ωch and Ω (see Fig. 1(middle)). Another 
possibility is that polarization density asymptotically vanishes on the layer, due to modes being 
concentrated on a subset of space–time with measure zero, but Ω remains positive in the infinite 
volume limit. This is schematically shown in Fig. 1(right). Even if behaviors of the above type 
won’t appear in target continuum theories, they are likely to show up at low lattice cutoffs. Work-
ing within a framework capturing such cases is beneficial to make the proposed connections as 
universal as possible.

Related to the above is a suggestion, described in Section 2.4, whose conceptual content goes 
beyond that in Ref. [3]. To convey this, note that our discussion implicitly proceeded in infinite 
volume where the notions of condensate and symmetry breaking are defined. For example, the 
generic form of relation (3) in the extended framework (see Conjecture 2′′) is

vSChSB ⇐⇒ Ω > 0 (3′)
implying that appearance of chirally polarized layer around the surface of Dirac sea is consid-
ered to be physically significant if Ω ≡ limV →∞ Ω(V ) > 0. Theories without polarized low 
modes in large finite volumes (Ω(V ) identically zero) are then predicted to be unbroken, but 
theories with polarized low modes (Ω(V ) > 0) could also be unbroken if limV →∞ Ω(V ) = 0. 
Consistently with available data, we propose in Conjecture 3 that the latter possibility does not 
occur: if large-volume dynamics generates chiral polarization in low end of the spectrum, then 
valence chiral condensate appears in the infinite volume limit and vice versa. This provides for 
the closest possible relationship between vSChSB and chiral polarization (ChP), and it is in this 
sense that we refer to Λch, Ωch and Ω as finite-volume “order parameters”.2 In this context, the 
correspondence analogous to (2) is expressed as

vSChSB ⇐⇒ ChP in large finite volumes (2′)
and the right-hand side of relation (3′) modifies to: Ω(V ) > 0 for V0 < V < ∞.

(II) We present new lattice data supporting the above ideas. It is known that, at zero tem-
perature, Nf = 0 theory [3,4] as well as Nf = 2 + 1 theory at physical point [3] exhibit chiral 
polarization, in accordance with the presence of vSChSB, and thus with the proposed equiva-
lence. There is also an initial evidence that subjecting Nf = 0 QCD to thermal agitation, chiral 
polarization and vSChSB cease to exist at common temperature Tch [3]. When contemplating the 
validity of the vSChSB–ChP relationship over the vast theory landscape considered, it is useful 
to think of Nf = 0, T = 0 theory as a reference point [3]. Indeed, this dynamics produces maxi-
mal breaking of valence chiral symmetry, with thermal effects and the effects of light dynamical 
quarks providing two possible routes to symmetry restoration. Thus, in pilot investigations, it 
is natural to examine these two deformations of quenched theory independently of one another, 
both to ascertain conjecture’s validity in such instances, as well as to learn about specific features 
associated with the two qualitatively different effects. This work is the first step in that direction 

2 As discussed in Section 2.4, Λch , Ωch and Ω are zero/non-zero simultaneously in finite volume: they effectively 
represent a single finite-volume order parameter.
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with finite-temperature aspect examined in Section 3, and many-flavor dynamics in Section 4. 
All of our results are consistent with the vSChSB–ChP equivalence.

Few noteworthy byproducts of our main inquiry are also discussed here. (i) Performing 
a volume analysis at the lattice cutoff studied, we show the existence of the (lattice) phase 
Tc < T < Tch in Nf = 0, simultaneously exhibiting vSChSB and deconfinement [14,12,13]. 
This chiral polarization dynamics appears to be of the singular type (Λch = 0, Ωch > 0, Ω > 0). 
(ii) One of the characteristic features of the above “mixed phase” is the appearance of very in-
homogeneous near-zeromodes, well distinguished from the bulk of the spectrum. We find an 
intermediate phase (in quark mass) with such properties also in Nf = 12. The relevance of these 
phases for continuum physics remains an open issue in both cases. (iii) Elementary analysis of 
the detailed chiral polarization characteristic, namely absolute X-distribution, is also performed. 
Among other things, our data in Nf = 0 indicate that deconfinement is characterized by the 
appearance of distributions with indefinite convexity.

2. The background and the conjectures

We start by reviewing the relevant background, and formulating the connections we aim to 
test. Our discussion will be fairly detailed and self-contained, in part to sufficiently extend per-
tinent parts of article [3] which were necessarily rather brief. In addition, we build an extended 
formalism for description of chiral polarization, which allows us to include special/singular be-
haviors and has some benefits for continuum-limit considerations.

2.1. Valence chiral symmetry and mode condensation

Implicitly assumed in what follows is the setup involving SU(3) gluons interacting with Nf

fundamental quarks of masses M = (m1, m2, . . . , mNf
). To formally include valence chiral sym-

metry considerations, the system is augmented by a pair of degenerate valence quarks of mass 
mv , and a pair of complex commuting fields (pseudofermions) compensating for the dynamical 
effect of these fictitious particles [2]. This schematically corresponds to the action,

S = Sg +
Nf∑
f =1

ψ̄f (D(1) + mf )ψf +
2∑

i=1

η̄i (D(2) + mv)ηi +
2∑

i=1

φ
†
i (D(2) + mv)φi (4)

where Sg is the pure glue contribution. When viewing the above as expression in the continuum, 
then D(1) = D(2) = D, namely the continuum Dirac operator. However, on the lattice it is pos-
sible, and sometimes desirable, to consider different discretizations for dynamical and valence 
quarks. In particular, the role of D(2) in our case is to describe the response of physical vacuum 
to external chiral probe. It is thus desirable that it provides for exact lattice chiral symmetry, even 
though some numerically cheaper D(1) could have been used to simulate physical quarks and to 
define the theory.

Flavored chiral rotations of valence quark fields in the above extended system become the 
symmetry of the action in the mv → 0 limit, and one can meaningfully ask whether this symmetry 
is broken by the vacuum. If so, we speak of valence chiral symmetry breaking (vSChSB). It has 
the usual consequence of being associated with the triplet of massless valence pions. While these 
are not physical states, they express the ability of the physical vacuum to support a specific type 
of long range order: the same kind of order that is required for physical chiral symmetry to 
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be broken in the dynamical massless limit. vSChSB is thus a relevant vacuum characteristic of 
QCD-like theories.

Following the steps involved in derivation of the standard Banks–Casher relation [1], one can 
inspect that the valence chiral condensate in theory (4) is given by

Σ(M) ≡ lim
mv→0

lim
V →∞〈η̄η〉M,mv,V = π lim

ε→0+
1

ε
lim

V →∞σ(2)(ε,M,V ) (5)

where η is one (arbitrary) of the valence flavors, σ(2) = σ(2)(λ, M, V ) the cumulative eigenmode 
density of D(2) and V the 4-volume. In the continuum, σ(2) → σ is the cumulative eigenmode 
density of continuum Dirac operator. On the lattice, we implicitly assume that D(2) is the overlap 
Dirac operator [5] which is our discretization of choice in this study, and for which the relation 
such as (5) can be straightforwardly derived [6].

The notion of cumulative eigenmode density, used above, is defined as

σ(λ,M,V ) ≡ 1

V

〈 ∑
0≤λk<λ

1

〉
M,V

(6)

where λ (real number) represents the imaginary part of Dirac eigenvalue. In case of overlap 
Dirac operator one can also take it to be the magnitude of the eigenvalue multiplied by the sign 
of the imaginary part. λk are the values associated with given gauge background and ordered 
appropriately. Note that σ(λ, M, V ) ≡ 0 for λ ≤ 0. The differential version of σ , referred to as 
eigenmode density, is generally available and frequently useful, namely

ρ(λ,M,V ) ≡ lim
ε→0+

σ(λ + ε,M,V ) − σ(λ,M,V )

ε
= ∂

∂+λ
σ(λ,M,V ) (7)

Note that we chose to distinguish the above eigenmode density from the usual

ρ̄(λ,M,V ) ≡ 1

V

∑
k

〈
δ(λ − λk)

〉
M,V

(8)

which, in some singular cases, has to be represented by a generalized function with at most 
countably many “atoms” (δ-functions), while ρ is always an ordinary function which simply 
takes the value “∞” at the position of the atoms.

The infinite volume limit of ρ(λ, M, V ) will be defined as

ρ(λ,M) ≡ ∂

∂+λ
lim

V →∞σ(λ,M,V ) (9)

rather than as pointwise limit of ρ(λ, M, V ), but the two can only differ in certain singular points 
of the spectrum. The theory is said to exhibit quark mode condensation (QMC) if

lim
ε→0+

1

ε
lim

V →∞σ(ε,M,V ) = ρ(0,M) > 0 (10)

i.e. when the abundance of “infinitely infrared” modes scales as the total number of modes, 
namely with space–time volume. Relation (5) then implies

Σ(M) > 0 ⇐⇒ ρ(0,M) > 0 (1′)

which is an explicit representation of equivalence (1) between vSChSB and QMC.
Few remarks regarding the above should now be made.
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(i) The discussion has been carried out at a rather general level mainly to accommodate the 
possibility of most singular behavior at the origin in the infinite volume limit. If λ = 0 is the 
only “atom” in that situation, then ρ̄(λ, M) = C(M)δ(λ) + ρ̂(λ, M), with ρ̂ being an ordinary 
function, and C(M) = limε→0

∫ ε

0 ρ̄(λ, M) dλ. We then have

ρ(0,M) = lim
ε→0+

C(M)

ε
+ lim

λ→0+ ρ(λ,M) (11)

since limλ→0+ ρ̂(λ, M) = limλ→0+ ρ(λ, M). Therefore, in addition to the usual second term, 
mode condensate acquires an infinite value if there is an atom of spectral mode density at the 
origin.3 This is in accordance with diverging chiral condensate in such instance, namely

Σ(M) = lim
mv→0

2C(M)

mv

+ π lim
λ→0+ ρ(λ,M) (12)

We emphasize that the singular accumulation of modes discussed above is not due to exact zero-
modes of finite volumes: their contribution is well known to vanish in the infinite volume limit. 
Rather, C(M) > 0 would have to be generated by modes that are “squeezed” into near-zeromodes 
at arbitrary finite volume but become “infinitely infrared” as volume is taken to infinity. It is not 
known whether there are continuum theories generating such dynamics, but we will discuss the 
behavior that might be of this type at finite cutoff.

(ii) It should be noted that, at finite cutoff, it is in principle possible to obtain contradictory 
answers on vSChSB (QMC) with different choices of D(2). However, such discrepancies, if any, 
are expected to disappear sufficiently close to the continuum limit.

(iii) In the above considerations we assumed T = 0 for simplicity. Incorporating theories 
on 3-volume V3 at finite temperature T is straightforward and simply involves replacing V →
(T , V3) in labels, and V → V3/T in volume factors.

2.2. Spectral measures of dynamical chirality

The term “dynamical local chirality” refers to characterization of local asymmetry in left–
right values of Dirac eigenmodes using absolute polarization method of Ref. [4]. Dynamical 
nature of this approach mainly stems from the fact that it quantifies polarization relative to the 
population of statistically independent left–right components. The basic characteristic is the cor-
relation coefficient of polarization CA ∈ [−1, 1], assigned to a given eigenmode ψλ. It is linearly 
related to the probability that the local value of ψλ is more polarized than value chosen from 
associated distribution of statistically independent left–right components. In case of correlation 
(CA > 0), dynamics enhances polarization and the mode is referred to as chirally polarized, 
while anti-correlation (CA < 0) indicates that dynamics suppresses polarization and the mode 
is chirally anti-polarized. Such comparison of polarization can also be performed in a detailed 
differential manner, resulting in absolute X-distribution PA(X), with X ∈ [−1, 1]. A concise 
introduction to these concepts together with precise definitions can be found in Appendix A.

Spectral characteristics of a given theory based on dynamical chirality measures CA and 
PA(X) can be defined as follows [3]. The cumulative dynamical chirality per unit volume (cu-
mulative chiral polarization density), is given by

3 Note that ρ(0, M) can in principle be infinite even when C(M) = 0 since ρ̂(λ) could still have an ordinary integrable 
divergence at λ = 0.
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σch(λ,M,V ) ≡ 1

V

〈 ∑
0≤λk<λ

CA,k

〉
M,V

(13)

where CA,k is chiral polarization (correlation) in the k-th mode. The associated differential con-
tribution due to modes at scale λ, namely

ρch(λ,M,V ) ≡ lim
ε→0+

σch(λ + ε,M,V ) − σch(λ,M,V )

ε
= ∂

∂+λ
σch(λ,M,V ) (14)

is referred to as chiral polarization density as is its formal companion

ρ̄ch(λ,M,V ) ≡ 1

V

∑
k

〈
δ(λ − λk)CA,k

〉
M,V

(15)

which has to be represented by a generalized function in certain singular cases.
The average chiral polarization at scale λ is given by

CA(λ,M,V ) ≡ lim
ε→0+

σch(λ + ε,M,V ) − σch(λ,M,V )

σ (λ + ε,M,V ) − σ(λ,M,V )
= ρch(λ,M,V )

ρ(λ,M,V )
(16)

where the second equation only applies when 0 < ρ(λ, M, V ) < ∞. We similarly define the 
average absolute X-distribution at scale λ which, written without shorthands, reads

PA(X,λ,M,V ) ≡ lim
ε→0+

〈∑λ≤λk<λ+ε PA,k(X)〉M,V

〈∑λ≤λk<λ+ε 1〉M,V

(17)

where PA,k(X) is the absolute X-distribution of the eigenmode associated with λk.
The infinite volume limit of ρch(λ, M, V ) is defined to be

ρch(λ,M) ≡ ∂

∂+λ
lim

V →∞σch(λ,M,V ) (18)

We say that the theory exhibits dynamical chirality condensation [3] if

lim
ε→0+

1

ε
lim

V →∞σch(ε,M,V ) = ρch(0,M) > 0 (19)

i.e. if its “infinitely infrared” Dirac modes are chirally polarized and their contribution to dynam-
ical chirality scales with space–time volume. Similarly, dynamical anti-chirality condensation 
occurs when ρch(0, M) < 0. Note that (anti-)chirality condensation implies mode condensation 
but not vice-versa.

Since ρch(λ) is a real-valued function of indefinite sign, we can assign chiral polarization 
scale Λch ≥ 0 to it as the largest Λ such that ρch(λ) > 0 on [0, Λ) except for isolated zeros. 
The provision for “isolated zeros” has two rationales. First, even with such zeros present, Λch

retains its intended meaning as a spectral range of dynamical chirality around the surface of 
Dirac sea. Second, it ensures that defining chiral polarization scale via CA(λ) leads to the same 
scale in finite volume. Indeed, if Λ′

ch ≥ 0 is the largest Λ such that CA(λ) > 0 on [0, Λ) except 
for isolated zeros, then Λch = Λ′

ch in finite volume.4 Note that when positive Λch doesn’t exist, 
the above definition is vacuously true for Λch = 0, which is then the assigned chiral polarization 
scale. Also, Λch = ∞ is associated with ρch(λ) that is positive on [0, ∞) except for possible 

4 What is relevant here is that a zero of CA is also a zero of ρch but not necessarily vice-versa.
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isolated zeros. Given Λch = Λch(M, V ), the total dynamical chirality of Dirac spectrum at low 
energy Ωch = Ωch(M, V ) is

Ωch ≡ max
{
σch(Λch), lim

ε→0+ σch(Λch + ε)
}

(20)

where the possibility of discontinuity at Λch has been taken into account. The associated total 
number of chirally polarized modes Ω = Ω(M, V ) is

Ω ≡
{

σ(Λch) if Ωch = σch(Λch)

limε→0+ σ(Λch + ε) if Ωch = limε→0+ σch(Λch + ε)
(21)

Note that the characteristics Ω ≥ 0, Ωch ≥ 0 are volume densities while the condensates ρ(0), 
ρch(0) are both volume and spectral densities.

Infinite volume limits of the above objects require some attention since the order of operations 
might be relevant in certain cases. In discussion of the condensation phenomena, we emphasized 
the primary role of cumulative densities, with their infinite volume limits

σ(λ,M) ≡ lim
V →∞σ(λ,M,V ) σch(λ,M) ≡ lim

V →∞σch(λ,M,V ) (22)

being the basis for computation of the condensates. However, one virtue of chiral polarization 
framework is that such insistence on the order of operations ceases to be crucial. In fact, our 
default view of infinite volume limits for Λch, Ω and Ωch is just the direct limit of their finite-
volume versions, rather than corresponding functionals of σch(λ, M) and σ(λ, M). Thus, while 
we explicitly distinguish the two options, for example

Ωch(M) ≡ lim
V →∞Ωch(M,V ) Ω∞

ch (M) ≡ Ωch
[
σch(λ,M)

]
(23)

it is the first definition that is implicitly understood if not stated otherwise. We use analogous 
notational convention also in case of Λch and Ω .

Few remarks regarding these concepts should be made.

(i) The above definitions of Λch and Ωch assume certain analytic properties of σch(λ), such 
as existence of ρch(λ) or the limit in Eq. (20). In case of cumulative mode density σ(λ), such 
properties are, for most part, inherent in its definition, i.e. it is continuous except possibly at 
countably many finite jumps, and differentiable almost everywhere. While these properties are 
expected to hold also for σch(λ) in any theory, it is comforting that Λch and Ωch can be assigned 
to σch(λ) that is completely generic. The corresponding definition and related considerations are 
discussed in Appendix B.

(ii) In terms of σch(λ), chiral polarization scale corresponds to the largest Λ such that σch(λ) is 
strictly increasing on [0, Λ], and Ωch its associated maximal value. Fig. 2 shows various behav-
iors of σch(λ), illustrating how Λch and Ωch are assigned via above definitions. For the current 
purpose, one should only view σch(λ), ρch(λ) shown as admissible pairs of functions: many of 
these situations are not expected to occur in theories of interest.

(iii) In the above considerations we assumed T = 0 for notational simplicity. Extension of all 
definitions to finite temperatures is straightforward (see remark (iii) of Section 2.1).

2.3. Conjecture formulations

We will consider and extend Conjecture 2 of Ref. [3], which ties the phenomenon of valence 
spontaneous chiral symmetry breaking to that of dynamical local chirality in low-lying modes. 
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Fig. 2. Examples of assigning Λch and Ωch to σch(λ). The associated ρch(λ) is shown in the lower figure for each case. 
For theory in infinite volume, Conjecture 2′ identifies the first/second pair of rows as options that can only occur in 
broken/symmetric vacuum, while the behavior in the third pair of rows is predicted to be impossible for theories in T. 
The possibilities in each category are not meant to be exhaustive or guaranteed to occur.
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Such vSChSB–DChC correspondence was proposed to hold over the set T containing SU(3) 
gauge theories in 3 + 1 space–time dimensions with any number (Nf ) of fundamental quarks of 
arbitrary masses M ≡ (m1, m2, . . . , mNf

), and at arbitrary temperature T . Different continuum 
theories are thus labeled by (M, T ). Statements of this section are formulated in infinite volume 
(infinite extent of all spatial dimensions) so that spontaneous symmetry breaking and the con-
densation concepts have definite meaning. To begin with, we formulate Conjecture 2 using more 
precise language and concepts developed here. By “chiral polarization characteristics” we mean 
the parameters Λch, Λ∞

ch , Ωch, Ω∞
ch , Ω , Ω∞.

Conjecture 2. The following holds in every lattice-regularized (M, T ) ∈ T at sufficiently large 
ultraviolet cutoffs Λlat and infinite volume.

(I) Chiral polarization characteristics exist and are zero or non-zero simultaneously. Moreover, 
Λch = Λ∞

ch and 0 ≤ Λch � Λlat. If Λch > 0 then ρch(λ) is positive on [0, Λch).
(II) The property of valence spontaneous chiral symmetry breaking is characterized by

Σ > 0 ⇐⇒ ρ(λ = 0) > 0 ⇐⇒ Λch > 0 (24)

(III) ρch(λ) is non-positive for λ > Λch, except possibly in the vicinity of Λlat.

The statement is thus split into three parts which we now discuss.

(I) Λch = Λ∞
ch implies that Ωch = Ω∞

ch and Ω = Ω∞. Neither this pairwise equality nor 
the simultaneous positivity of all six parameters follows from definitions alone. Rather, they 
represent anticipated constraints on actual dynamical behavior in theories under consideration 
close to the continuum. Note that the statement rules out the possibility of chiral polarization 
over the whole Dirac spectrum. Also, while Λch > 0 implies positivity of ρch(λ) on [0, Λch) only 
up to isolated points, such points are not expected to be present in infinite volume, as explicitly 
stated.

(II) Relation (24) asserts that chiral polarization scale Λch is an unconventional order param-
eter of vSChSB on T: chiral symmetry is broken if and only if this dynamical scale is generated. 
Note that from (I) and (II) it follows that ρ(0) > 0 ⇔ ρch(0) > 0, which is the mathematical rep-
resentation of relation (2): quark mode condensation (hence vSChSB) is equivalent to dynamical 
chirality condensation. Anti-chirality doesn’t condense [3].

(III) This part reflects the expectation that dynamical chirality can only occur in the low end 
of the Dirac spectrum, characterized by Λch. In lattice theory, chiral polarization could exist in 
the vicinity of the cutoff (due to lattice artifacts) but will scale out in the continuum limit. While 
generic anti-chirality in the ultraviolet is supported by asymptotic freedom, the assertion that 
chiral polarization cannot dominate at intermediate scales, i.e. in a spectral band separated from 
origin, is not easy to verify directly. Indeed, reaching such intermediate parts of Dirac spectra via 
numerical lattice QCD sufficiently close to the continuum limit can be computationally demand-
ing. Nevertheless, at least at zero temperature, there is little doubt that the above scenario holds 
since running of the gauge coupling, well understood, is monotonic across scales. The situation 
at finite temperature is more involved though. The effects of asymmetry between magnetic and 
electric couplings [8] and the influence of infrared fixed point in dimensionally reduced (3-d) 
theory [9] could improve prospects for more complicated behavior at sufficiently high tempera-
tures. However, the available data is not hinting the existence of intermediate-scale chirality, as 
reflected in the statement.
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The meaning of Conjecture 2 is directly tied to the lattice definition of the theory: following 
some line of constant physics in the parameter space of a regularized setup, it is claimed that the 
statement becomes valid in associated lattice theories with sufficiently large cutoff.5 It is thus 
useful to attempt a formulation of the vSChSB ↔ DChC correspondence valid for the widest 
range of cutoffs possible. Similarly to vSChSB ↔ QMC connection, which holds at arbitrary 
cutoff, the range of validity may include even symmetry breaking instances due to lattice arti-
facts. To formulate the alternative version of the conjecture, we were mostly guided by results 
of the numerical study at finite temperature, described in Section 3. These results suggest the 
viability of the scenario in which chirally broken dynamics generates chiral polarization only 
via discrete contribution from strictly infrared modes. To incorporate these cases, it is neces-
sary to abandon the notion that chiral polarization characteristics are non-zero simultaneously. 
Conjecture 2′ stated below provides for the minimal extension of this type.

Conjecture 2′. The following holds in every lattice-regularized (M, T ) ∈ T at sufficiently large 
ultraviolet cutoffs Λlat and infinite volume.

(I) Chiral polarization characteristics exist, Λch = Λ∞
ch and 0 ≤ Λch � Λlat. If Λch > 0 then 

ρch(λ) is positive on [0, Λch).
(II) The property of valence spontaneous chiral symmetry breaking is characterized by

Σ > 0 ⇐⇒ ρ(λ = 0) > 0 ⇐⇒ Ωch > 0 (24′)

(III) ρch(λ) is non-positive for λ > Λch, except possibly in the vicinity of Λlat.

Discussion following Conjecture 2 mostly applies here as well but it is Ωch that serves as the 
order parameter of vSChSB on T: chiral symmetry is broken if and only if total low-energy chi-
rality per unit volume is non-zero. Singular cases motivating this extension arise when positive 
core in ρch(λ, V ) becomes proportional to δ(λ) in the infinite volume limit, leading to Λch = 0, 
Ωch > 0 as shown in Fig. 1(middle).6 Note that vSChSB ↔ DChC correspondence still follows 
from (I) and (II). Part (III) implies that Ωch is not just the total low-energy chirality but the total 
chirality of the entire Dirac spectrum. The essential content of Conjecture 2′ can then be sum-
marized by saying that quark–gluon dynamics breaks chiral symmetry if and only if it generates 
volume density of dynamical chirality.

It is interesting to look back at Fig. 2 in light of the above statement. Indeed, assuming that 
various σch(λ), ρch(λ) shown represent infinite volume limits, the first pair of rows corresponds 
to options for chirally broken vacuum, the second pair is associated with symmetric vacuum, and 
the cases in the third pair do not occur on T if Conjecture 2′ is valid.

With the same rationale that motivated Conjecture 2′, we now put forward yet more generic 
association of chiral polarization and vSChSB. In particular, it is possible to drop the notion that 
DChC is a necessary companion of vSChSB, while still maintaining the connection to chiral 
polarization. This can arise when, in addition to simultaneous positivity, the pairwise equality of 
chiral polarization parameters is abandoned as well. The prototypical situation we have in mind is 
when Λch(V ) > 0 converges to Λch > 0 in the infinite volume limit, but ρch(λ, V ) scales to zero 

5 In the continuum language, masses M ≡ (m1, m2, . . . , mNf
) label different continuum theories (different lines of 

constant physics) and should thus be viewed as renormalized quark masses in some fixed scheme.
6 The possibility of transition from Λch to Ωch has been discussed in Ref. [3] already. However, Ωch was denoted as 

Ω in that work.



A. Alexandru, I. Horváth / Nuclear Physics B 891 (2015) 1–41 13

on interval [0, Λch). This results in Λ∞
ch = 0 and Ωch = 0 (see Fig. 1(right)). Note that ρch = ρCA

can approach zero due to (i) CA → 0 or (ii) ρ → 0 or (iii) both. Option (i) is quite interesting 
since it can occur when low-lying Dirac modes are dimensionally reduced.7 Indeed, the “active” 
part of the eigenmode can be chirally polarized and induce vSChSB, but its contribution to total 
polarization gets overwhelmed by the uncorrelated bulk in the infinite volume limit. While Ωch =
0 in this situation, Ω > 0 still signals the association of chiral symmetry breaking and chiral 
polarization. Thus, in the form below, the conjecture states that vSChSB proceeds if and only if 
there is a volume density of chirally polarized modes around the surface of the Dirac sea.

Conjecture 2′′. The following holds in every lattice-regularized (M, T ) ∈ T at sufficiently large 
ultraviolet cutoffs Λlat and infinite volume.

(I) Chiral polarization characteristics exist and 0 ≤ Λch + Λ∞
ch � Λlat.

(II) The property of valence spontaneous chiral symmetry breaking is characterized by

Σ > 0 ⇐⇒ ρ(λ = 0) > 0 ⇐⇒ Ω > 0 (24′′)
(III) ρch(λ) is non-positive for λ > Λ∞

ch , except possibly in the vicinity of Λlat.

It should be emphasized that all three versions of the conjecture may be valid simultaneously. 
Indeed, they do not necessarily exclude one another, but rather express varied degrees of detail 
in which chiral polarization could manifest itself in vSChSB. In fact, it is entirely feasible that 
the differences are only relevant at sufficiently low lattice cutoffs.

2.4. Finite volume

Discussion in the previous section has been carried out in the infinite volume which is a 
native setting for vSChSB and various condensates. However, it is both relevant practically and 
interesting conceptually, to examine how chiral polarization concepts enter the finite volume 
considerations.

To begin with, it is useful to fix a convention regarding exact zeromodes. Indeed, the default 
lattice setup in this discussion involves standard (anti-)periodic boundary conditions and the 
overlap Dirac operator as a chiral probe. Consequently, exact zeromodes can appear in finite 
volume whether infinite-volume theory breaks chiral symmetry or not. In either case though, their 
abundance doesn’t scale with volume. This renders them inessential for valence condensate and 
there is a choice whether to include them in specific considerations. For our purposes it is more 
convenient to leave zeromodes out which is what will be assumed from now on in this article. In 
fact, one useful advantage of using overlap operator is that it cleanly separates out topological 
modes, ensuring that their a priori local chirality doesn’t contaminate that of near-zeromodes 
which are of actual interest.

The definition of chiral symmetry breaking in Dirac eigenmode representation involves a 
strictly infrared condition: the existence of mode condensate (QMC). This is of course not sur-
prising: the strictly infrared nature of relevant mass (mv = 0) gets translated into strictly infrared 
corner of the Dirac spectrum (λ = 0). However, applying QMC condition to detect vSChSB in 
finite volume is futile since it is never satisfied. Indeed, ρ(λ → 0, V ) is zero identically. This is 

7 Loosely speaking, eigenmodes are dimensionally reduced when their effective support comprises a vanishing fraction 
of the associated domain in the infinite-volume limit.
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symptomatic of the fact that vSChSB ↔ QMC correspondence is kinematic in nature: since the 
definition of vSChSB demands infinite volume, QMC condition, being its equivalent, reacts to 
avoid conflict with the presence of infrared cutoff.

However, if the mechanism of vSChSB was known, it would be reasonable to expect that other 
properties of quark modes, those suggested by the mechanism, could be used to signal vSChSB 
even in given finite volume. After all, broken and symmetric dynamics should be distinguishable 
in any volume. In fact, if infrared cutoff is smaller than relevant finite scales in the theory, the 
distinction from single volume should be essentially unambiguous.

While the mechanism of vSChSB has not been satisfactorily clarified yet, one of the driving 
motivations for developing chiral polarization framework was to provide a possible indicator of 
the above type. It is important in that regard that, unlike ρ(0), chiral polarization parameters Λch, 
Ωch and Ω can be readily non-zero in finite volume. If forming chirally polarized layer around 
the surface of Dirac sea provides sufficient and necessary condition for producing vSChSB, as 
conjectures of the previous section propose, then chiral polarization characteristics represent 
viable candidates for such finite-volume “order parameters” indeed.

It is interesting that the situation in finite volume is in fact simpler than what we dealt with 
in the previous section. There are just three characteristics which, taking into account the con-
vention on exact zeromodes, can only be non-zero simultaneously, effectively yielding a single 
finite-volume order parameter. Theory (M, T , V ) is said to be in chirally polarized phase if chi-
ral polarization characteristics are positive, say Ω(M, T , V ) > 0. We emphasize again that this 
provides a well-defined dynamical distinction between theories in finite volume based on their 
chiral behavior. However, in addition to this and the fact that Ω(M, T ) is expected to be a valid 
order parameter in traditional sense, our notion of finite-volume order parameter for vSChSB 
involves another feature contained in the following statement consistent with available data.

Conjecture 3. The following holds in every lattice-regularized (M, T ) ∈ T at sufficiently large 
ultraviolet cutoffs Λlat.

(I) Chiral polarization characteristics exist and 0 ≤ Λch(V ) � Λlat for sufficiently large V .
(II) The property of valence spontaneous chiral symmetry breaking is characterized by

Σ > 0 ⇐⇒ Ω(V ) > 0 for V0 < V < ∞ (25)

i.e. it occurs if and only if the theory is in chirally polarized phase in large finite volumes.
(III) ρch(λ, V ) is non-positive for λ > Λch(V ), except possibly in the vicinity of Λlat.

The conceptual novelty in the above statement is that the right-hand side of Eq. (25) does 
not involve explicit infinite volume limit. This is different e.g. from Conjecture 2′′ wherein the 
infinite volume limit of Ω(M, T , V ), while significantly easier to deal with than QMC, still has 
to be investigated: the theory could stay in chirally polarized phase for arbitrary large volumes, 
but with Ω(M, T , V ) scaling to zero. However, Conjecture 3 proposes that it is impossible to 
approach chirally symmetric physics in infinite volume via finite-volume physics in chirally po-
larized phase.8 In other words, it suggests that, at least sufficiently close to the continuum limit, 
vSChSB and dynamical chirality are inextricable.

8 Note that, for discussion in paragraph preceding and motivating Conjecture 2′′, this implies that options (ii) and (iii)
don’t occur.
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Fig. 3. Possible behaviors of σch(σ ) in the vicinity of σ = 0. In finite volume, case (α) predicts vSChSB of infinite 
volume theory, while (β) and (γ ) entail valence chiral symmetry.

We emphasize that the above is not to say that it is impossible to have a “finite volume cor-
rection” to prediction on vSChSB based on chiral polarization in single volume. However, in the 
realm of Conjecture 3, the false positive corresponds to missing out on the whole dynamically-
defined phase. In other words, it is expected that only in very small volumes, when other aspects 
of physics are severely mutilated as well, is such occurrence likely.

Finally, we remark that while ρ(λ = 0, V ) and ρch(λ = 0, V ) always vanish and cannot be 
utilized as indicators of vSChSB, this is not necessarily true for all strictly infrared constructs in 
finite volume. For example, in chirally broken case, λ = 0 is typically an isolated zero of ρ(λ, V ), 
but CA(λ = 0, V ) ≡ limλ→0 ρch(λ, V )/ρ(λ, V ) is expected to be well-defined and positive. In 
fact, the strictly infrared version of Conjecture 3 with Ω(M, T , V ) on the right-hand side of 
Eq. (25) replaced by CA(λ = 0, M, T , V ) is an equally viable representation of the correspon-
dence, albeit less appealing from practical standpoint.

2.5. σ -parametrization and the universal scale of vSChSB

For certain purposes, some of which are discussed below, it is useful to parametrize chiral 
polarization properties by cumulative eigenmode density σ , rather than Dirac spectral parameter 
λ. Recall that the description discussed so far is based on two cumulative densities, namely 
σ(λ) and σch(λ): the behavior of σch(λ) defines polarization parameters Λch and Ωch, while Ω
emerges “a posteriori” from σ(λ) and Λch.

We wish to eliminate λ from the pair σ(λ), σch(λ) and consider σch = σch(σ ). The latter 
is certainly a well-defined function when σ(λ) is one-to-one, but this is also true in general 
case. Indeed, since σ(λ) is non-decreasing and can have finite jumps, there are only two special 
circumstances to examine. (a) If σ(λ) is constant on interval [λ1, λ2] then multiple values of σch

could in principle be associated with σ1 = σ(λ1). However, it follows from its definition that 
σch(λ) is then also constant on [λ1, λ2], and σch(σ1) is thus unique. (b) If σ(λ) has a jump at 
λ̄ with σ l , σ r being the left and right values respectively, then σch(σ ) is a priori undefined on 
the interval (σ l, σ r). However, since the population of modes associated with interval (σ l, σ r) is 
assigned a common value of chiral correlation, namely CA(λ̄), there is a natural unique definition 
of σch(σ ) on (σ l, σ r): the linear dependence whose graph connects the points (σ l, σ l

ch) and 
(σ r , σ r

ch). Here σ l
ch, σ r

ch are the left and right values of σch(λ) at λ̄. Note that the slope of σch(σ )

is CA(σ) for every σ .
There are few points we wish to emphasize regarding the utility of the above.
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(i) Since σch(λ) can only have jumps at arguments where σ(λ) does (see Appendix B), 
the function σch(σ ) is not only well-defined but always continuous on its domain.9 Given that 
σch(σ = 0) = 0, there are then three possible behaviors of σch(σ ) in the vicinity of zero: it can 
(α) turn positive, (β) remain identically zero or (γ ) turn negative. While it simply classifies 
theories as chirally polarized, unpolarized or anti-polarized at lower spectral end, this dynamical 
distinction acquires deeper meaning in light of our conjectures. Indeed, in finite volume, the first 
case indicates that the theory is in chirally polarized phase, and is thus predicted to be chirally 
broken, as opposed to the remaining two options (see Fig. 3). In this way, the “low σ ” behavior 
of σch(σ ) provides for rather succinct and elegant representation of the ideas discussed here.

One noteworthy point in this regard is that when presented with σch(σ ) in infinite volume only, 
the behavior (β) in itself is indefinite with regard to vSChSB. Indeed, it could correspond to the 
situation Ωch = 0, Ω > 0 with Ω undetermined by σch(σ ) alone. In such case the information 
on large-volume behavior is needed to resolve the ambiguity.

(ii) In our discussion we paid little attention to the issues related to precise behavior of vari-
ous new constructs in the continuum limit. In fact, this is not essential for our purposes. Indeed, 
our goal is to understand the dynamics of vSChSB, which means gaining insight in the regime 
of lattice theory where it becomes insensitive to the ultraviolet cutoff. Various “order parame-
ters” we discussed are well-defined at arbitrary finite cutoff, and serve as indicators of vSChSB 
which itself is well-defined at arbitrary finite cutoff if chirally symmetric Dirac operator (overlap 
operator) is used.

Nevertheless, it is appealing to characterize chiral polarization via parameters with well-
defined continuum values. As mentioned in [3] already, Λch is expected to require a normal-
ization factor to define its unique continuum limit e.g. in Nf = 2 + 1 zero temperature QCD at 
physical point.10 However, the renormalization properties of mode density described in [10,11]
imply that σren(λren) = σ(λ) for renormalized/bare cumulative density. Hence, Ω is expected to 
be free of renormalization factors and have a universal continuum limit. The same would hold 
also for Ωch if the renormalization of ρ(λ) and ρch(λ) proceeded via the same factor. This, how-
ever, would have to be established. Note that, in such case, the whole function σch(σ ) would be 
universal.

(iii) Removing the reference to spectral parameter λ underscores the dynamical nature of the 
vSChSB ↔ ChP equivalence. Indeed, in this form any explicit connection to “strictly infrared” 
scales, which has its roots in kinematic considerations, is eliminated. Rather, the correspondence 
relies exclusively on local dynamical behavior of lowest modes, irrespective of precise Dirac 
eigenvalues they are labeled with. Given that σch(σ ) can be conveniently computed directly, 
without invoking the spectral representation, it is worthwhile to formulate the proposed connec-
tion directly in this language. In fact, the formulation becomes somewhat more concise: Ω is 
defined as the maximal σ̄ such that σch(σ ) is strictly increasing on [0, σ̄ ], while Ωch is always 
simply σch(σ = Ω) due to continuity. The analog of Conjecture 3 is then as follows, with Ω(V )

in Eq. (26) replaceable by Ωch(V ) if so desired.

9 In lattice units, this domain is in fact the interval [0, 12] since Nc = 3 for theories in T. This is irrespective of volume, 
cutoff or lattice Dirac operator used.
10 Note that in this discussion we implicitly assume that D(1) = D(2) = Doverlap in Eq. (4), but we expect our points to 
apply whenever D(2) = Doverlap .
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Conjecture 3′. The following holds in every lattice-regularized (M, T ) ∈ T at sufficiently large 
ultraviolet cutoffs Λlat.

(I) Function σch(σ, V ) is continuous on its domain σ ∈ [0, 12Λ4
lat], and Ω(V ) � 12Λ4

lat for 
sufficiently large V .

(II) The property of valence spontaneous chiral symmetry breaking is characterized by

Σ > 0 ⇐⇒ Ω(V ) > 0 for V0 < V < ∞ (26)

(III) σch(σ, V ) is non-increasing for σ > Ω(V ), except possibly in the vicinity of σ = 12Λ4
lat.

(iv) Relative to discussion in Ref. [3], our description of chiral polarization around the surface 
of Dirac sea became more detailed. In addition to the width of the polarized layer (Λch), the phe-
nomenon is also characterized by the volume density of total number of modes involved (Ω) and 
the associated total chirality (Ωch). In the spirit of Refs. [3,4] and the conjectures discussed here, 
we consider the corresponding scales, namely Λch, Ω1/4 and Ω1/4

ch , to be the dynamical scales as-
sociated with the phenomenon of vSChSB. In the massless light-quark limit of “real-world QCD” 
(i.e. Nf = 2 + 1), they become the scales of SChSB. In Ref. [3] we estimated the (unrenormal-
ized) value of chiral polarization scale in Nf = 2 +1 QCD at physical point to be Λch ≈ 80 MeV. 
The estimated values of the other two parameters in this case are Ω1/4 ≈ 150 MeV (expected to 
be universal) and Ω1/4

ch ≈ 60 MeV.

3. Temperature effects

In this section, we present results of the finite-temperature study in Nf = 0 QCD. This theory 
has a well-established deconfinement transition temperature Tc defined via expectation value of 
the Polyakov loop. According to the standard scenario, vSChSB disappears in close vicinity of 
Tc, but in general at some other temperature Tch. We find that mode condensation and chiral po-
larization of valence overlap quarks exactly follow each other, in accordance with vSChSB–ChP 
correspondence. The data also shows that, at the fixed lattice cutoff used (Λlat � 2.3 GeV), chiral 
transition temperature Tch is strictly larger than Tc.

3.1. Lattice setup and Polyakov loop sectors

We simulate pure–glue SU(3) theory with Wilson action at β = 6.054. The non-perturbative 
parametrization of Ref. [15] is used to set the lattice scale, resulting in a/r0 = 0.170 at the 
aforementioned gauge coupling. Using the standard value r0 = 0.5 fm for reference scale, this 
translates into a = 0.085 fm. To perform a basic temperature scan, we vary the “time” extent 
of the lattice between Nt = 4 and Nt = 20 which corresponds to temperatures T = 1/(Nta) in 
the range 116–579 MeV. The spatial extent of the lattice is kept fixed at N = 20, corresponding 
to volume V3 = (Na)3 = (1.7 fm)3. The information about these ensembles is summarized in 
Table 1 with some relevant explanations provided below.

Distinctive aspect of studying chiral issues in Nf = 0 theory relates to the fact that, while the 
deconfinement transition is associated with spontaneous breakdown of Z3 symmetry signaled 
by the expectation value of Polyakov loop [16,17], Dirac spectral properties in the deconfined 
phase depend on which vacuum broken theory happens to visit. In particular, it was pointed out 
that valence chiral symmetry in the “real sector” might be restored at lower temperature than 
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Table 1
203 ×Nt ensembles of Nf = 0 theory with Wilson gauge action (β = 6.054), used in the overlap eigenmode calculations. 
|λ|av

min is the average magnitude of smallest non-zero eigenvalue in a configuration, while |λ|av
max that of the largest one. 

The magnitudes of all computed non-zero eigenvalues in an ensemble satisfy |λ|min ≤ |λ| ≤ |λ|max.

Ensemble Nt T /Tc T [MeV] Ncfg |λ|av
min |λ|min |λ|av

max |λ|max

E1 20 0.42 116 100 0.0204 0.0027 0.6128 0.6160
E2 12 0.70 193 200 0.0320 0.0065 0.7241 0.7270
E3 10 0.84 232 200 0.0379 0.0018 0.7658 0.7701
E4 9 0.93 258 200 0.0402 0.0039 0.7912 0.7944
E5 8 1.05 290 400 0.0859 0.0011 0.8208 0.8246
E6 7 1.20 331 400 0.2473 0.0006 0.8631 0.8675
E7 6 1.39 386 100 0.4038 0.0498 0.9233 0.9283
E8 4 2.09 579 100 0.7868 0.7129 1.1608 1.1673

Table 2
N3×7 ensembles of Nf = 0 theory with Wilson gauge plaquette action (β = 6.054), used to study finite volume effects 
in the Nt = 7 system (E6).

Ensemble N L [fm] Ncfg |λ|av
min |λ|min |λ|av

max |λ|max

G1 16 1.36 400 0.301513 0.005507 1.029540 1.034761
G2 24 2.04 400 0.200300 0.000089 0.746919 0.753360
G3 32 2.72 200 0.067461 0.000046 0.598446 0.607929

in the “complex sectors” [18], with the former transition being the one occurring close to Tc. 
While this conclusion remained somewhat controversial [19], it became common to study the 
real sector in connection with chiral symmetry restoration in Nf = 0 QCD. This is also tied 
to the fact that dynamical fermions tend to bias gauge fields correspondingly (see e.g. [20]), 
bringing up the expectation that the dynamics of the real-sector vacuum better resembles the 
behavior in real-world QCD.

Here we adopt the above point of view and present results for the real Polyakov loop sector. 
While in infinite volume the Z3 distinction is only relevant above Tc, it is reasonable to keep the 
separation on both sides of the transition for finite system due to tunneling. To that effect, we 
rotated each generated configuration into complementary Z3 sectors, but Ncfg of Table 1 refers 
to independent unrotated configurations. Except for ensembles E1 and E2, Dirac eigensystems 
were calculated in all Z3 sectors for each configuration, and the statistics for real-phase results 
is thus Ncfg. For E1 and E2, only configurations originally generated in real sector, 31 and 61 
of them respectively, were included. Overlap Dirac operator with Wilson kernel (r = 1) and 
ρ = 26/19 was used in these valence quark calculations, and the quoted spectral bounds refer to 
the real Polyakov-loop sector. For all ensembles used in this work, 200 lowest eigenmodes with 
non-negative imaginary part were computed.

We use Tc/
√

σ = 0.631, quoted in Ref. [21], as a reference value for infinite-volume 
continuum-limit transition temperature to label our ensembles. With string tension value σ =
(440 MeV)2 this translates into Tc = 277 MeV. Since the volume and lattice cutoff are finite, 
and there is also a small uncertainty in the determination of the lattice scale, it is prudent to 
check whether Z3 transition in our system occurs in the expected range of temperatures. To do 
so, we show the scatter plot of the Polyakov loop in Fig. 4(left). As can be seen quite clearly, the 
expected symmetric distribution below Tc is contrasted with Z3-concentrated population above 
Tc . This is also confirmed by the behavior of Polyakov-loop susceptibility shown in Fig. 4(right). 
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Fig. 4. Left: scatter plots of Polyakov loop for ensembles E1–E8. Each point corresponds to a configuration with Z3
symmetrization included. Sliding scale has been adjusted in each case so as to contain all points. Right: Polyakov-loop 
susceptibilities.

There is thus little doubt that ensembles E1–E4 and E5–E8 represent the system in confined and 
deconfined phases respectively.

In the course of our analysis it will turn out that, while clearly in the deconfined phase, the 
Nt = 7 system still exhibits chiral polarization and vital signs of vSChSB. To ascertain this, 
we study the finite-volume behavior on additional lattices with details given in Table 2. The 
ensemble G3 with V3 = (2.72 fm)3 corresponds to the largest system studied. All the above 
notes concerning E-ensembles also apply to G-ensembles.

3.2. Raw data

One useful way to obtain a quick overview of the situation at hand is to examine the scatter 
plots of CA versus λ since they provide a simultaneous qualitative picture of spectral abundance 
and chiral polarization. Thus, each eigenmode associated with given ensemble contributes a point 
to the plot, specified by the magnitude of the eigenvalue (λ) and its correlation coefficient of 
polarization (CA). In Fig. 5 we show these plots for E-ensembles. Note that the temperature 
increases in lexicographic order.

Regarding the vSChSB ↔ ChP correspondence, the main aspect to examine is whether pres-
ence of near-zeromodes is always associated with tendency for chiral polarization at low energy, 
and that chiral polarization is always absent in accessible spectrum if near-zeromodes are not 
produced. Such qualitative correlation is clearly observed in Fig. 5.

Quick look at scatter plots also suggests three kinds of qualitative behavior as the temperature 
is increased. First, the “low-temperature dynamics”, exemplified by E1 (T/Tc = 0.42) and dis-
cussed extensively in [3], appears to apply throughout the confined phase. Second, the “transition 
dynamics”, exemplified by E6 (T/Tc = 1.20) extends approximately from Tc to chiral transition 
point Tch. It is characterized by the spectral separation of near-zeromodes from the bulk and 
the creation of mode-depleted region between them. Finally, the “high-temperature dynamics” 
turns on above Tch as near-zeromodes can no longer be supported in sufficient numbers, and the 
anti-polarization of the bulk takes over.

In the above temperature scan, the system associated with ensemble E6 (T/Tc = 1.20) is of 
prime interest: not only does it suggest itself as a lattice example of vSChSB with deconfined 
gauge fields [14] but, more importantly, it is the most borderline case where the vSChSB ↔
ChP association should be ascertained. To do this at the level of raw data, we show in Fig. 6 the 
λ–CA scatter plots for this system in increasing 3-volumes. The abundance of near-zeromodes
clearly rises with volume, with the layer of high concentration increasingly focused toward the 
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Fig. 5. Scatter plots of chiral polarization correlation (CA) versus eigenvalue magnitude (λ) for E-ensembles of Table 1. 
Note the change of scale for E7, E8 relative to E1–E6.

Fig. 6. Scatter plots (CA vs. λ) for Nt = 7 system (T/Tc = 1.20) in varying spatial volume. The associated raw data for 
Polyakov loop is also shown.

origin. Thus, mode condensation appears all but inevitable. At the same time, chiral polarization 
persists as predicted. Decreasing width of the polarized layer suggests possible singular behavior 
in the vein of our discussion in Section 2.3. Note that we also show the associated scatter plots 
of Polyakov loop, clearing any suspicion that the system could be in confined phase.
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Fig. 7. Cumulative chiral polarization density for all E-ensembles. Ranges are fixed.

3.3. Chiral polarization transition

We now start putting the observations of the previous section into more formal terms. The first 
task in this process is to determine the transition point (in temperature) for chiral polarization. It 
should be emphasized that whether the system is in the polarized phase or not is a well-defined 
question in any finite volume. The temperature scan will be performed for E-ensembles sharing 
the same 3-volume. Resulting transition point is thus associated with the corresponding ultravi-
olet cutoff and volume.
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Fig. 8. Low-energy closeup of σch(λ) (left column) and σch(σ ) (right column) for ensembles E4–E7. Theory is clearly 
chirally polarized at T/Tc = 1.20. Note the sharp transition in the latter representation when changing to T/Tc = 1.39.

To do this in a straightforward way, we monitor the behavior of cumulative chiral polarization 
density σch(λ). The result is shown in Fig. 7 with temperature increasing in lexicographic order. 
The characteristic positive bump (see discussion for Fig. 2) appears at low temperatures signaling 
the creation of chirally polarized layer around the surface of the Dirac sea. Data is shown on 
identical scales for all ensembles to see the changing position of the maximum (Λch) as well 
as its value (Ωch). The polarization feature is clearly absent at T/Tc = 1.39, while it appears 
to be present at the borderline case (T/Tc = 1.20) which, however would benefit from better 
resolution.
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Fig. 9. Global characteristics of chiral polarization in E-ensembles as functions of temperature. They indicate the tran-
sition temperature 1.2Tc < Tch < 1.39Tc for the cutoff and volume in question. δλ refers to coarse-graining parameter 
used in determination of Λch .

Fig. 10. Large view (top) and closeup (bottom) of ρ(λ), CA(λ), ρch(λ) for ensemble G3.

In Fig. 8 we show closeups of the low part of the spectrum for ensembles E4–E7. Note that 
the scales are no longer fixed in order to properly resolve the polarization feature. Temperature 
grows from top to bottom with left column displaying σch(λ) and the right column the associated 
σch(σ ). As advertised, and suggested by the raw data, at T/Tc = 1.20 the system is still in chirally 
polarized phase. Both σch(λ) and σch(σ ) tell the same story, but note how the latter effectively 
removes the depleted regions of the Dirac spectrum (ensembles E6 and E7) from consideration, 
focusing on polarization properties of existing modes.

Finally, in Fig. 9 we show the temperature dependence for the three global characteristics of 
the chirally polarized layer, namely Λch, Ωch and Ω . As discussed in Section 2.4, they are all 
equivalent indicators of chiral polarization in finite volume, and potentially finite-volume order 
parameters of vSChSB, as proposed by Conjecture 3.

3.4. Infinite volume

To test the proposed conjectures, it is necessary to deal with infinite volume considerations 
since the definition of vSChSB explicitly relies on it. In more concrete terms, it is important to 
check which forms of Conjecture 2 (if any) apply to the finite-cutoff situation at hand. Also, 
assessing possible merits in the notion of finite-volume order parameter, associated with Conjec-
ture 3, depends on the behavior of polarization observables in large volumes.
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As is clear from our discussion in preceding sections, the relevant situation to study in this re-
gard is T/Tc = 1.2, represented by E6 and the G-ensembles. Indeed, this is the borderline case, 
providing the most sensitive test for vSChSB–ChP correspondence. To overview the situation 
directly in the largest volume available (N = 32), we show in Fig. 10(top) the triplet of char-
acteristics ρ(λ), CA(λ), ρch(λ) over a large spectral range, fully covering the depleted region 
observed in the raw data. While the increased density near the origin is clearly visible, chiral 
polarization feature is not recognizable at this resolution. However, closeup to the vicinity of 
the origin in Fig. 10(bottom) reveals a clear polarized layer as anticipated. Note that the feature 
became quite thin in this largest volume.

To examine the situation in detail, we first focus on the ChP side of the correspondence. In 
practical terms, this means determining the form of the chiral polarization layer for large and 
infinite volume. To that effect, we show in Fig. 11 the behavior of σch(σ ) for the four volumes 
available. As pointed out in the previous section, this is the most robust way of visualizing the 
layer in case of depleted spectra such as those we are dealing with in the transition region. 
Indeed, even though Fig. 6 indicates severe depletion (even close to the spectral origin) for the 
N = 16 system, the polarization layer is still quite clearly visible in σch(σ ). In larger volumes, 
the characteristic positive bump tends to grow both in σ and σch-directions, strongly suggesting 
that the ChP layer remains the dynamical feature of the system in the infinite volume limit.

There is, however, a difference in how infinite-volume ChP is realized at T/Tc = 1.2 and at 
zero or small temperatures. This is revealed in Fig. 12 where we show the dependence of chiral 
polarization parameters on the infrared cutoff. As foretold by Fig. 11, Ωch and Ω grow as the 
cutoff is removed, but Λch decreases, likely toward zero. Continuation of these trends in larger 
volumes is only possible when ρ(λ, V ) and ρch(λ, V ) develop a δ(λ)-core in V → ∞ limit, to 
keep the observed volume density of polarized modes and volume density of dynamical chirality 
finite. We may thus be dealing with a singular case of the type (Λch = 0, Ωch > 0, Ω > 0) 
discussed repeatedly in Section 2. Including such ChP behaviors was the main motivation behind 
extending our formalism to current form.

Let’s now examine the vSChSB side of the correspondence. This might seem unnecessary 
from strictly logical standpoint since the result of our ChP analysis is such that it already car-
ries with it the implication of vSChSB (with divergent condensate) at T/Tc = 1.2. However, it 
certainly helps the case if the same conclusion can also be reached on its own, independently of 
chiral polarization. We thus wish to check directly whether dynamics at T/Tc = 1.2 is consistent 
with the definition of mode-condensing theory. To begin with, note that the behavior of ρ(λ) for 
largest volume available, shown in the lower-left plot of Fig. 10, is in itself strongly suggestive 
of mode condensation. Indeed, contrary to monotonically increasing function typical of zero and 
low temperatures, this ρ(λ) is monotonically decreasing in the very infrared range shown. One 
thus naively expects non-zeromode density to survive at the spectral origin.

However, the definition (10) of mode condensation demands that volume trends be examined 
at fixed infrared spectral windows to make meaningful conclusions. In line with this definition, 
we consider the coarse-grained version of ρ(0), namely

ρ(λ = 0,�,V ) ≡ 1

�
σ(λ = �,V ) (27)

to see the associated volume tendencies for various values of �. The result of such calculation 
for a range of infrared windows down to 4 MeV is shown in Fig. 13. Note that for any fixed 
V , function ρ(0, �, V ) will approach zero for � → 0. This is explicitly seen in N = 16 and 
20 cases but not for the two larger 3-volumes where the downward bend occurs at yet smaller 
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Fig. 11. Polarization characteristic σch(σ ) at T/Tc = 1.2 for increasing 3-volumes.

Fig. 12. Global characteristics of chiral polarization at T/Tc = 1.2 against infrared cutoff. Simple power-law fit was 
included in case of Λch(1/L) to guide the eye.

values of �. Important feature of these results is that ρ(0, �, V ) grows with volume for all �
shown. In fact, the rate of growth increases at small �, and even before the occurrence of the 
bend, leaving little room for the possibility that lim�→0 limV →∞ ρ(0, �, V ) vanishes. Rather, 
the data is consistent with diverging mode condensate as expected from ChP analysis.

To summarize, we presented evidence that the layer of chirally polarized modes around the 
surface of the Dirac sea remains the feature of Nf = 0 QCD at T/Tc = 1.2 even in the infinite-
volume limit. At the same time, the system was found to be mode-condensing, in accordance 
with the general vSChSB–ChP correspondence. The specific form of ChP layer conforms to the 
types described by Conjectures 2′, 2′′, but most likely doesn’t fall into the realm of Conjecture 2. 
We emphasize that this doesn’t mean that Conjecture 2 is invalid: this would only transpire if 
the concluded type of ChP behavior persisted at arbitrarily large ultraviolet cutoff. Note also 
that our analysis is in agreement with Conjectures 3, 3′, thus lending support to the concept of 
finite-volume order parameter.
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Fig. 13. Coarse-grained mode condensate ρ(0,�) at T/Tc = 1.2 for increasing 3-volumes.

Fig. 14. The absolute X-distribution PA(X,σ → 0), i.e. for lowest modes in E-ensembles.

3.5. Absolute X-distributions at finite temperature

In the previous analysis of QCD phase transition, we focused on spectral properties based 
on the correlation coefficient of chiral polarization CA. Indeed, this is sufficient for formulat-
ing and verifying the vSChSB–ChP correspondence which is our main focus here. However, 
for other purposes involving vacuum structure, more detailed information contained in absolute 
X-distributions PA(X) might be valuable. In Ref. [4] (Proposition 1) it was concluded that, in 
Nf = 0 QCD at zero temperature, PA(X) has a simple behavior for low-energy Dirac eigen-
modes: it is either purely convex or purely concave, with the former being associated with 
polarization while the latter with anti-polarization. It is thus a natural question to ask whether 
something different happens in this regard due to thermal agitation.

To start such inquiry, we wish to establish how X-distribution of lowest modes changes with 
temperature and, in particular, whether a qualitative shift occurs when crossing the chiral tran-
sition point Tch. To formalize this question, it is preferable to think in terms of PA(X, σ) rather 
than the canonical PA(X, λ) of Eq. (17). Indeed, this puts the low-temperature systems with 
abundance of small eigenvalues, and the high-temperature systems with low-energy depletion, 
on the same footing. We are then interested in PA(X, σ → 0) which in practice needs to be 
coarse-grained with respect to σ . The latter is accomplished by considering PA(X, σ = 0, �), 
which represents PA(X, σ) averaged over σ ∈ [0, �].
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Fig. 15. The absolute X-distribution PA(X, σ, δ = 0.2) for ensemble E7 (T/Tc = 1.39) with increasing values of σ . 
Value δ = 0.2 entails averaging over 46 eigenmodes.

The result of such calculation for E-ensembles is shown in Fig. 14. We chose to fix the (total) 
number of included modes to 25 for each system, which corresponds to small coarse-graining 
parameter � in the range 0.02–0.15 fm−4. This statistics is also sufficient to verify that further 
lowering this cut doesn’t change the behavior of absolute X-distribution. As one can see, chi-
ral transition is dramatically reflected in PA(X, σ = 0): we observe a new type of functional 
behavior above Tch (ensembles E7 and E8), namely that of indefinite convexity. To specify the 
convexity properties more precisely, we will implicitly view PA(X) as defined on a positive chiral 
branch, namely X ∈ [0, 1], in what follows. The new behaviors we found are then characterized 
by presence of a single inflection point X0 ∈ (0, 1) of the type concave-to-convex, i.e. PA(X) is 
concave on [0, X0] and convex on [X0, 1].

Conjecture 4. Consider lattice-regularized Nf = 0 theory at arbitrary temperature T . Let Tch =
Tch(Λlat, V3) be the temperature of chiral polarization transition at sufficiently large ultraviolet 
cutoff Λlat, and sufficiently large 3-volume V3. Then absolute X-distribution PA(X, σ = 0) is 
convex for T < Tch, and has a single inflection point of type concave-to-convex for T > Tch.

Note that in the fixed-scale approach, utilized in our numerical work, the set of accessible 
temperatures is discrete. Thus, rather than a unique Tch at fixed finite Λlat, there is a range asso-
ciated with the two successive values of Nt across which the transition occurs. This is implicitly 
understood in the above. A fine-grained question in this regard is whether there could be a brief 
phase above Tch where PA(X, σ = 0) is concave, and which cannot be resolved at the lattice 
cutoff we are using.

The above finding naturally raises questions about the prevalence of modes with indefinite 
convexity in the bulk of the finite-temperature spectrum. First of all, we have not found any 
modes of indefinite convexity for T < Tc. The absence of such modes at zero temperature was 
the main part of Propositions 1, 3 in Ref. [4], and it carries over to this wider regime. The 
proposed statement in the language used here is as follows.

Conjecture 5a. Consider lattice-regularized Nf = 0 theory at temperature T < Tc = Tc(Λlat). 
If Ω = Ω(Λlat, V3) is the density of chirally polarized modes, then the following holds at suffi-
ciently large Λlat and V3. Absolute X-distribution PA(X, σ) is (i) convex in X for σ ∈ (0, Ω), 
(ii) uniform for σ = Ω , and (iii) concave at least for some band σ > Ω .
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It turns out that the situation is in fact analogous for T > Tch except that the role of chirally 
polarized (convex) modes is assumed by modes with indefinite convexity of PA(X). To support 
this, we show in Fig. 15 the sequence of absolute X-distributions with increasing σ for ensemble 
E7. Note that for non-zero values of σ we use symmetric coarse-graining, averaging over the 
interval (σ −δ/2, σ +δ/2). The data suggests the existence of a point σ = Ω1 where the behavior 
changes from convex-indefinite to concave. At this particular temperature the transition occurs 
in the vicinity of Ω1 ≈ 3.0 fm−4 and a precise determination can be performed if desired. We are 
thus led to formulate the following statement.

Conjecture 5b. Consider lattice-regularized Nf = 0 theory at temperature T > Tch = Tch(Λlat, V3). 
At sufficiently large Λlat and V3 there exists Ω1 = Ω1(Λlat, V3, T ) such that the following holds. 
Absolute X-distribution PA(X, σ) (i) has a single inflection point of type concave-to-convex for 
0 < σ < Ω1 and (ii) is concave at least for some band σ > Ω1.

We finally turn to the “mixed phase” (Tc < T < Tch). This dynamics exhibits chiral polar-
ization (Ω > 0), which in case of confined vacuum happens to be synonymous with convexity 
of PA(X) for σ < Ω . However, Conjecture 5b suggests that deconfinement is tied to indefinite 
convexity of absolute X-distributions. How then is the coexistence of vSChSB and deconfine-
ment, and thus of chiral polarization and indefinite convexity, realized in the mixed phase? The 
specific arrangement we found is exemplified via ensemble G3 in Fig. 16. The spectrum starts 
with a layer of convex modes (top left), like at low temperatures, but the distribution loses its 
definite convexity for Ω ′ < σ < Ω1, after which it becomes concave (bottom right). There is 
a band Ω0 < σ < Ω1 within the convex-indefinite regime, where modes are of the type found 
at T > Tch, i.e. their PA(X) has one concave-to-convex inflection point (bottom left). We thus 
propose the following.

Conjecture 5c. Consider lattice-regularized Nf = 0 theory at finite temperature and overlap 
valence quarks. There exist lattice cutoffs Λlat such that Tc(Λlat) < Tch(Λlat, V3) for sufficiently 
large V3. At temperatures Tc < T < Tch there are Ω ′ < Ω0 < Ω1 such that PA(X, σ) is (i) 
convex for 0 < σ < Ω ′, (ii) convex-indefinite but not of type (iii) for Ω ′ < σ < Ω0, (iii) has one 
inflection point of concave-to-convex type for Ω0 < σ < Ω1, and (iv) is concave at least for some 
band σ > Ω1. Moreover, Ω ′ < Ω < Ω0.

It should be pointed out that the convex-indefinite spectral band of (ii) may just be the 
“reversed” version of (iii), namely that the associated PA(X) has a single inflection point of 
convex-to-concave type. However, our statistics is not large enough to support this aspect with 
sufficient certainty. Note also that the above formulation doesn’t explicitly exclude the possibility 
that Ω ′ = 0, neither in finite volume nor in the infinite volume limit.11 However, Ω0 is predicted 
to be positive in both cases since Ω is.

3.6. Dirac mode landscape at finite temperature

According to vSChSB–ChP correspondence, chiral symmetry restoration at finite temperature 
is the process of chiral depolarization (positive CA becoming negative) in the Dirac spectrum. 

11 This doesn’t necessarily contradict Conjecture 4 which is only concerned with the limit PA(X, σ → 0).
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Fig. 16. Absolute X-distributions in ensemble G3 for increasing σ representing four kinds of behavior found. The upper 
two results were obtained with coarse-graining parameter δ = 0.01 (23 modes), while δ = 0.2 (460 modes) was used for 
the lower two.

Fig. 17. Schematic view of Dirac eigenmodes at finite temperature according to their absolute X-distributions with blue 
representing convexity, red concavity, and shades of green indefinite convexity. The left side corresponds to continuum-
limit scenario with Tc < Tch when the mixed phase (middle bar) exists, while the right side to scenario with Tc = Tch .

However, results of the previous section suggest that more detailed polarization characteristic – 
absolute X-distribution – encodes both major effects of thermal agitation: valence chiral symme-
try restoration and deconfinement. This information is stored in convexity properties of PA(X)

which can in this case even be invoked on their own, without explicit reference to CA. The result-
ing eigenmode “convexity landscape” is schematically shown in Fig. 17 with blue and red color 
marking purely convex and purely concave behavior of PA(X) respectively. The two shades of 
green represent convex-indefinite PA(X), with darker version signifying the presence of a single 
concave-to-convex inflection point.

Notice that Fig. 17 offers two scenarios for possible behavior in the vicinity of QCD phase 
transition. Indeed, whether continuum Nf = 0 QCD exhibits the mixed phase or not remains an 
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open issue, and the formulation of Conjecture 5c reflects this status. Thus, the option with mixed 
phase is shown on the left, and the one without it on the right. Regardless of which possibility 
is realized in the continuum however, the results provide for definite and somewhat unexpected 
new characterization of confinement via chirality properties.

In Nf = 0 QCD at finite temperature, confined vacuum supports PA(X) of definite convexity in 
overlap Dirac modes, while deconfined vacuum produces a band of modes with convex-indefinite 
PA(X) at low σ .

With regard to the situation at high temperature (T > Tch), one should mention a possible con-
nection of these findings to recent works, proposing that QCD phase transition can be viewed as a 
version of Anderson localization, with increasing temperature controlling the degree of random-
ness [22–24]. In this scenario, there is an analogue of Anderson’s mobility edge, below which 
Dirac modes are localized. Given that absolute X-distribution is a fully dynamical characteristic 
of the modes, it is reasonable to put forward the hypothesis that the suggested mobility edge is 
associated with “concavity edge” Ω1 from the above analysis. Denoting by λ = Λch1 the spectral 
scale corresponding to Ω1, it is natural to expect that the mobility edge in fact coincides with 
Λch1. The merits of this hypothesis need to be examined in a detailed dedicated study.

4. Effects of many light flavors

The second and qualitatively different route toward chiral symmetry restoration within T pro-
ceeds via including increasing number of dynamical quark flavors. While the general tendency 
is significantly more general, the usual setup deals with Nf massless flavors at zero temperature. 
Owing to numerous lattice studies, as well as other considerations, there is very little doubt that 
the canonical Nf = 2 case exhibits SChSB. However, massless fermions weaken the running of 
the gauge coupling, and it is expected that there is a critical number of flavors Nf,cr, beyond 
which chiral symmetry remains unbroken. The existence of Nf,cr is connected to a larger issue, 
namely the existence of a “conformal window” in flavor, containing theories with infrared fixed 
point [25]. Indeed, this is expected to occur at Nf,cr < Nf < 16.5 for SU(3), and the reliable 
determination of Nf,cr is of an ongoing interest. The specific issue whether Nf = 12 theory 
belongs to the conformal window gained a particular attention recently, as discussed e.g. in re-
views [26–28].

Rather than entering the discussion of unresolved problems such as the above, our aim is to 
check the plausibility of vSChSB–ChP correspondence in this important corner of quark–gluon 
dynamics. It should be kept in mind that the validity of the proposed relation is to be examined 
for any given lattice regularization of any given theory from T: it either holds or not for the 
regularized system at hand. We will thus not be much concerned with extrapolating quark mass 
to zero, or detailed issues of continuum limit. Instead, our goal is to check the correspondence in 
the situation where the effect of many light fermions is apparent, and the possibility for valence 
chiral restoration exists.

4.1. Lattice setup

For purposes of this pilot inquiry, we obtained some of the previously generated Nf = 12 stag-
gered fermion ensembles described in Ref. [29]. More specifically, the regularization in question 
uses a negative adjoint plaquette term (coupling βA) in addition to fundamental plaquette (cou-
pling βF ), and nHYP-smeared staggered fermions. This arrangement helps with ameliorating the 
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Table 3
Ensembles of Nf = 12 lattice QCD with nHYP smeared staggered fermions and fundamental-adjoint (βF –βA) gauge 
plaquette action [29].

Ensemble Size βF βA/βF am Nconf |λ|av
min |λ|min |λ|av

max |λ|max

S1 163 × 32 2.8 −0.25 0.0200 100 0.0098 0.0007 0.5190 0.5259
S2 323 × 64 2.8 −0.25 0.0025 30 0.0007 0.0001 0.2016 0.2035
S3 243 × 48 2.8 −0.25 0.0025 50 0.0193 0.0001 0.3046 0.3075

problems of spurious UV fixed points and the unphysical lattice phases encountered in theories 
with many light flavors. Such issues have been carefully studied in this particular setting [30], 
and are not expected to arise for ensembles listed in Table 3.

Simulations of many-light-flavor systems have to deal with the fact that the equilibrium gauge 
fields are quite rough at currently accessible lattice cutoffs. Incorporating smearing into definition 
of lattice Dirac operator helps to make such calculations feasible. To define our overlap chiral 
probe, we use the same smearing procedure that was used in Monte Carlo generation of the 
ensembles. Nevertheless, it is prudent to exercise some care when using overlap operator even on 
fields that are moderately rough. Indeed, the physical branch of the Wilson–Dirac spectrum can 
shift significantly away from the origin on such backgrounds, and the mass parameter ρ ∈ (0, 2)

in overlap construction needs to be chosen sufficiently large to contain it. To avoid potential 
issues of this kind, we set ρ = 1.55, which is somewhat larger than ρ = 26/19 ≈ 1.37 used in 
our “real world QCD” simulations. Performing small statistics calculations with ensemble S1, 
we verified that overlap low-mode abundances are reasonably stable in the vicinity of this value.

At fixed Nf , the mass m of degenerate quarks provides for the only parameter distinguishing 
various physical behaviors in this set of theories. At Nf = 2, there is valence spontaneous chiral 
symmetry breaking at arbitrary m, while at Nf = 12, there could be a transition to chirally 
symmetric vacuum when m is sufficiently small. The logic behind the choice of ensembles in 
Table 3 is that system S1, characterized by larger mass, was found in Ref. [29] to be mode 
condensing (vSChSB) with respect to staggered Dirac operator, while the system represented by 
S2 and S3 appeared non-condensing (valence chiral symmetry) at this cutoff. Note that S2 and S3
only differ by volume to give a sense of finite-volume effects.

4.2. Selected results

We now proceed to discuss the results from the perspective of vSChSB–ChP correspondence. 
Our extensive treatment of formalism in Section 2 and analysis of finite-temperature data in 
Section 3 served in part to identify effective ways to perform a study of this type. Here we show 
the raw data for CA vs. λ, together with the plots of σch(σ ), ρ(λ), and PA(X, σ → 0). The former 
three are designed to reveal whether vSChSB and ChP are tied together, while the latter serves 
as a first step to explore the newly proposed convexity connections in this particular corner of 
quark–gluon dynamics.

Fig. 18 shows the above set of characteristics for the system at larger of the two quark masses, 
represented by ensemble S1. A mere glance at the raw data (top left) reveals the presence of chiral 
polarization at low energy without noticeable depletion of eigenvalues near the origin. The sys-
tem thus shows simultaneous signs of chiral polarization and mode condensation in accordance 
with vSChSB–ChP correspondence. This is confirmed by the behavior of σch(σ ) (top right) and 
ρ(λ) (bottom left). Indeed, the former shows the positive bump at low σ , characteristic of chiral 
polarization, while the behavior in the latter is typical of mode-condensing theory.
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Fig. 18. Chiral polarization characteristics for ensemble S1. See the discussion in the text.

Focusing now on the situation at smaller mass, the same set of characteristics are shown in 
Fig. 19, with the smaller volume (S3) in the left column and the larger volume (S2) in the right 
column. From the raw data alone (top row) one can immediately see that a qualitative change 
in the Dirac spectrum indeed occurred. However, it is not a simple depletion of eigenvalues in 
the vicinity of the origin as one would naively expect. Rather, there is a break in the spectrum, 
characterized by significant depletion, together with the accumulation of modes very close to 
zero. Given that, vSChSB–ChP correspondence predicts chiral polarization at the low end of the 
spectrum. This is indeed featured in the raw data qualitatively, and is properly quantified via the 
behavior of σch(σ ) (second row).

While the options are limited for finite-volume scaling with only two volumes available, there 
is little doubt that the theory in question is overlap mode condensing. Indeed, as one can see 
in the third row of Fig. 19, the peak in the density near the origin is actually growing as the 
volume is increased. On the chiral polarization side, the positive maximum in σch(σ ), namely 
Ωch, visibly shrinks at larger volume. Thus, a detailed finite volume study is required to decide 
whether the infinite-volume correspondence in the form of Conjecture 2 or Conjecture 2′ holds 
true. However, the position of the maximum in σch(σ ), namely Ω , in fact mildly increases. We 
thus expect that the correspondence in the form of Conjecture 2′′ certainly holds in this case. 
Needless to say, our results are also in agreement with chiral polarization characteristics being 
the finite-volume order parameters of vSChSB, and thus concur with Conjectures 3, 3′.

Lastly, we comment on the behavior of absolute X-distributions for lowest modes, i.e. 
PA(X, σ → 0). These results are shown in the lower right plot of Fig. 18 and the last row of 
Fig. 19. Only the lowest 15 modes from each ensemble were used in the computation, leading to 
coarse-graining parameter � � Ω in each case. All three systems exhibit convex behavior, thus 
following the same pattern observed in case of Nf = 0 at finite temperature for chirally polarized 
theories (T < Tch). It should be mentioned here that the same holds for the Nf = 2 + 1 systems 
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Fig. 19. Chiral polarization characteristics for ensemble S2 (right column) and S3 (left column). See the discussion in 
the text.

close to “real world QCD” studied in Ref. [3]. It is thus reasonable to expect that vSChSB is 
equivalent to convexity of PA(X, σ → 0) over the whole base set T.

4.3. Intermediate phases

The above discussion of finite-temperature and many-flavor results evokes certain analogy 
between the mixed phase in Nf = 0 QCD and the situation found in Nf = 12 at lighter mass 
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(ensembles S2 and S3). It appears that decreasing quark mass for Nf = 12 has a dynamical effect 
similar to increasing temperature for Nf = 0 in that a phase with narrow band of near-zeromodes 
separated from the bulk is generated, at least for certain range of cutoffs. In thermal case, the 
onset of this behavior appears to coincide with deconfinement, and thus Tc. In many-flavor case, 
where confinement is non-trivial to define, there is presumably a mass min below which this 
starts occurring.12 Regardless of whether the existence of min is a lattice artifact, we can define 
an analog of Tch, namely mch, below which valence chiral symmetry gets restored in Nf = 12. 
The aforementioned analogy would then apply to the regime Tc < T < Tch of Nf = 0 and mch <

m < min of Nf = 12, which we refer to as “intermediate phases” in what follows. It should be 
emphasized that whether mch is zero or non-zero is currently an open issue.

In what follows we summarize few observations on the two intermediate phases and compare 
them. Given that the available data on the many-flavor side is rather limited, this should be con-
sidered an initial assessment which can serve as a starting point for more detailed investigation.

(i) Separation from the bulk. Both intermediate phases are characterized by anomalous behavior 
of spectral density ρ(λ), wherein the narrow peak forms near the origin, and is clearly distin-
guished from the rest of the spectrum. This is “anomalous” in the sense that, by virtue of the 
above, ρ(λ) becomes non-monotonic. Note that in the thermal case, data indicates that the peak 
of near-zeromodes becomes of δ–function type in the infinite volume limit while it is currently 
not clear what happens in Nf = 12.

(ii) Inhomogeneity. The anomalous near-zeromodes are highly inhomogeneous in both interme-
diate phases. By this we mean that the bulk of their norm is carried by very small fraction of 
space–time points. Here we will not focus on quantifying this feature, but it will certainly be-
come a characteristic of interest if either one of the intermediate phases turns out to be the reality 
of the continuum limit.

(iii) Indefinite convexity. As discussed in Sections 3.5, 3.6, thermal transition to intermediate 
(mixed) phase in Nf = 0 is characterized by the appearance of modes with indefinite convexity 
of absolute X-distributions. In case of Nf = 12 we do not find a clear evidence of this happening. 
In fact, the spectral transition from chirally polarized to chirally anti-polarized regime looks 
more like a direct transition from strictly convex to strictly concave distribution. In Fig. 20 (left 
column) we show PA(X, σ) for σ ≈ Ω . As one can see both for heavier mass (top) and the lighter 
mass in intermediate phase (bottom), the absolute X-distribution is flat which is characteristic of 
the direct transition. The right column in the figure illustrates the concave behavior at larger 
values of σ . Thus, to the extent that indefinite convexity of PA reflects deconfinement even in 
the situation with light dynamical quarks, the intermediate phase in Nf = 12 exhibits not only 
valence chiral symmetry breaking but also signs of confinement. Detailed inquiry at yet lower 
mass should clarify this further.

5. Discussion

The main purpose of this work is to test the idea that, for quark–gluon interactions of QCD 
type, generating chiral condensate is the same thing as generating the layer of chirally polar-
ized Dirac eigenmodes at low end of the spectrum [3]. When viewed as a feature characterizing 

12 If this behavior survives the continuum limit, then some universal parametrization of the transition point e.g. in terms 
of ratios of certain hadron masses, will be more appropriate. The same applies to mch .
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Fig. 20. Absolute X-distributions PA(X, σ) for ensemble S1 (top) and S2 (bottom). In the left column σ ≈ Ω while in 
the right column σ > Ω . Coarse-graining parameter δ = 10−5 was used for S1 and δ = 2 × 10−7 for S2.

the state of vacuum correlations, this connection is not limited to theories containing massless 
quarks, but applies generically, even when all quarks are massive. In such generalized context, 
vacuum correlations are probed by a pair of external (valence) massless quarks and the role 
of chiral symmetry breaking is assumed by its valence counterpart. Examining the temperature 
effects in Nf = 0 QCD, and effects of many light flavors at T = 0 (for Nf = 12), we find a 
complete agreement with this vSChSB–ChP correspondence.

One relevant aspect of this connection, both practically and conceptually, is that it is per-
fectly well-defined even at lattice-regularized level. Indeed, if lattice fermions with exact chiral 
symmetry provide the massless probe, then vSChSB has a full-fledged lattice representation.13

The associated conjectures can then be formulated directly for lattice theories, as done here, but 
with compliance only expected sufficiently close to the continuum limit. Nevertheless, we found 
the agreement for every lattice system studied, even in corners where relevance for continuum 
physics hasn’t yet been established, e.g. in the “mixed phase” of Nf = 0 QCD. It is thus con-
ceivable that the connection is even more robust than originally expected.

Important motivation to identify the correspondence of vSChSB–ChP type is to narrow down 
options in searches for specific mechanism of the breaking phenomenon. Indeed, the two aspects 
involved are not required to be locked together by general principles and are in fact quite different 
in nature. Like that of any broken symmetry, the definition of vSChSB is intimately tied to 
thermodynamic limit (infinite volume). On the other hand, ChP is defined in any fixed finite 
volume which is quite natural given its role to characterize and detect chiral symmetry breaking 
nature of the interaction at hand. Indeed, such indicator is not expected to turn itself on in infinite 
volume only, but rather when volume is sufficiently large to contain relevant finite scales of the 
theory.

13 ChP is in fact well-defined even if probing fermion is not exactly chiral away from continuum limit.
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Above considerations lead to the notion of finite-volume “order parameter” introduced in 
Section 2.4. This is intended to be a dynamical quantifier assuming non-zero value in sufficiently 
large finite volumes if and only if the symmetry in question is broken (in infinite volume). The 
width of chiral polarization layer (Λch), the volume density of total chirality (Ωch), and the 
volume density of polarized modes (Ω), are viewed as prototypes of such objects associated 
with vSChSB (see Conjectures 3, 3′), and all available data is consistent with this proposition. 
In fact, we have not yet encountered a reversal of dynamical tendency for chiral polarization 
due to the volume being too small. In this vein, it is instructive to think of chiral polarization 
framework as an attempt to construct a “predictor” of valence chiral symmetry breaking for 
QCD-like theories. Such predictor, say Ω , will be most efficient if it is also a finite-volume order 
parameter. Indeed, a well-founded wager on vSChSB can then be made based on the value of Ω
in a single otherwise acceptable volume.

Conceptual simplicity in the notion of finite-volume order parameter is further underlined by 
the fact that all three ChP–based characteristics are (non)zero simultaneously in finite volume. 
Thus, although the state of chiral polarization is characterized by the triplet

ChPV <∞ ←→ (
Λch(V ),Ωch(V ),Ω(V )

)
(28)

the associated vSChSB inquiry in fact involves a single object, namely

χp(V ) ≡ sgn
(
Λch(V )

) = sgn
(
Ωch(V )

) = sgn
(
Ω(V )

) ∈ {0,1} (29)

Note that, as finite-volume order parameters, elements of ChPV <∞ are not required to have 
non-zero infinite-volume limits when symmetry is broken, but χp ≡ limV →∞ χp(V ) = 1.

If, contrary to initial evidence, the notion of finite-volume order parameter on T doesn’t mate-
rialize, vSChSB–ChP correspondence can still be based on order parameters of more traditional 
variety: those indicating the symmetry breakdown by positive infinite-volume value. The sit-
uation becomes more structured though, since the classification of possible ChP behaviors in 
infinite volume is given by the heptaplet of non-negative parameters

ChPV =∞ ←→ (
Λch,Λ

∞
ch ,Ωch,Ω

∞
ch ,Ω,Ω∞, χp

)
(30)

with variety of mixed-positivity scenarios allowed in principle. In this language, the hypothetical 
lack of finite-volume order parameter implies that χp is not a good infinite-volume indicator 
of vSChSB. Nevertheless, in the vSChSB–ChP correspondence being constructed, χp = 0 still 
indicates symmetric vacuum since it implies vanishing of all elements in ChPV =∞ and thus 
absence of any polarized behavior. However, to formulate the equivalence, one needs to specify 
which forms of ChPV =∞ with χp = 1 are associated with vSChSB. This heavily depends on the 
scope of polarized behaviors generated by theories in T.

To this effect, we formulated three versions of such infinite-volume correspondence that are 
not mutually exclusive, but include an increasingly large variety of chiral polarization. The most 
restrictive form, Conjecture 2, assumes that no singular cases occur sufficiently close to the con-
tinuum limit [3]. Here “singular” refers to any combination of the first six elements in ChPV =∞
with mixed positivity, or with paired characteristics not matching (e.g. Λch �= Λ∞

ch ). In this case, 
each element of ChPV =∞ (except χp) is individually a valid infinite-volume order parameter of 
vSChSB. Such scenario was only found to be violated in the narrow mixed phase of Nf = 0
QCD, but complete agreement may hold closer to continuum limit, which is sufficient. In Con-
jecture 2′ we minimally expanded the range of anticipated ChP behaviors in order to include the 
singular option encountered above, namely Λch = Λ∞

ch = 0 and 0 < Ωch < Ω . Here Ωch, Ω and 
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their partners are each an infinite-volume order parameter of vSChSB. Most generally, Conjec-
ture 2′′ admits all singular ChP behaviors, in which case Ω becomes the sole reliable indicator of 
vSChSB: the layer of chirally polarized modes is expected to be physically relevant only when 
total volume density of participating modes remains positive in the infinite-volume limit.

We emphasize that having differently focused versions of vSChSB–ChP correspondence sim-
ply reflects differently aimed benefits of the underlying relationship. Indeed, the more restrictive 
the form of correspondence turns out to be valid, the more information on the continuum behavior 
of vSChSB it conveys. On the other hand, the more generic the formulation becomes, the wider 
its applicability becomes in terms of cutoff theories. In an extreme case, the relationship might 
turn out to be as generic as the vSChSB–QMC correspondence, i.e. valid at arbitrary non-zero 
cutoff.

The analysis in this paper (and the discussion above) focuses attention to Ω as a central 
characteristic of ChP in relation to vSChSB. Indeed, not only does Ω provide for the simple and 
most generic way to express vSChSB–ChP correspondence, it is also expected to be a universal 
quantity characterizing QCD vacuum (see Section 2.5). Moreover, our numerical experiments 
show that the most practical scheme for detecting chiral polarization proceeds via computing the 
dependence of σch on σ , from which Ω (and Ωch) is directly determined.

During the course of our main inquiry we encountered few results that are noteworthy in their 
own right. The first one relates to the issue of thermal mixed phase (Tc < T < Tch) in Nf = 0
QCD, i.e. the existence of deconfined system in real Polyakov line vacuum but with broken 
valence chiral symmetry [14]. This is a well-posed and interesting question even at given cutoff, 
but its resolution requires a careful volume study. Our data involves several volumes and the 
results indicate that the mixed phase with overlap valence quarks does indeed exist, at least for 
some range of cutoffs. The associated vSChSB proceeds via band of spatially inhomogeneous 
and chirally polarized near-zeromodes, well separated from the rest of the spectrum. The width 
of the band appears to vanish in the infinite-volume limit, possibly involving δ(λ) singularity in 
spectral density. We found that a similar phase also exists in Nf = 12 theory at light quark mass, 
which deserves a dedicated study.

The last side result we wish to discuss suggests novel characterization of (de)confinement. 
While at T < Tc only convex or concave absolute X-distributions of Dirac modes are found 
in Nf = 0 QCD, the band of convex-indefinite modes appears at T > Tc. Thus, at least in this 
setting, the existence of such band seems to play the same role for deconfinement as the existence 
of chirally polarized band plays for vSChSB. Both layers are present in the mixed phase as they 
should. The situation at high temperatures brings up an interesting question, namely how does 
the “concavity edge”, marking the transition from convex-indefinite to concave behavior in Dirac 
spectra at T > Tc, relate to “mobility edge” feature discussed in Refs. [22–24]? With natural 
expectation being the coincidence of the associated scales, computations needed to explore this 
issue are straightforward to set up.
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Appendix A. Absolute polarization and dynamical chirality

In this appendix we briefly describe the absolute (dynamical) polarization method of Ref. [4]. 
In the present context the elementary object of study is a chirally decomposed eigenmode 
ψ = ψL + ψR . Given that we are only interested in local (on-site) relationship between left 
and right, the sufficient information is stored in the probability distribution Pf (ψL, ψR) of its 
values (ψL(x), ψR(x)). This setup coincides with the starting point of a general approach that 
considers arbitrary stochastic quantity Q with values in a vector space decomposed into a pair 
of equivalent orthogonal subspaces (Q = Q1 + Q2, Q1 · Q2 = 0), and whose “dynamics” is 
described by symmetric probability distribution Pf (Q1, Q2) = Pf (Q2, Q1).

Given the goal of characterizing the (normalized) asymmetry between the two subspaces in 
favored values of Q (polarization), the method proceeds by first marginalizing the full distri-
bution Pf (Q1, Q2) to the distribution of magnitudes Pb(q1, q2). Indeed, the weight of a given 
subspace in sample Q can be assessed via magnitude qi ≡ |Qi | of its component. One possibility 
for a normalized variable expressing the desired relationship is [7]

x = 4

π
tan−1

(
q2

q1

)
− 1 ≡Xr (q1, q2) (31)

namely the reference polarization coordinate. Note that x ∈ [−1, 1] with extremal values taken 
by samples strictly polarized into one of the subspaces, and zero value assigned to strictly unpo-
larized samples (q1 = q2). Probability distribution of x in Pb(q1, q2), namely

Pr(x) =
∞∫

0

dq1

∞∫
0

dq2Pb(q1, q2)δ
(
x −Xr (q1, q2)

)
(32)

is called the reference X-distribution, and represents detailed polarization characteristic of dy-
namics Pf (Q1, Q2) with respect to polarization measure Xr .

The large freedom in choosing the polarization measure makes the above characteristic highly 
non-unique and thus kinematic. Various “reference frames” of polarization can be represented by 
suitably constructed polarization functions X(x). In this language, the reference X-distribution is 
associated with polarization function Xr (x) = x. The main idea driving the absolute polarization 
method is to adjust the polarization function characterizing Pb(q1, q2) so that it measures polar-
ization relative to its “own statistical independence”, namely relative to the stochastic dynamics 
described by

Pu
b (q1, q2) ≡ p(q1)p(q2) p(q) ≡

∞∫
0

dq2Pb(q, q2) =
∞∫

0

dq1Pb(q1, q) (33)

One can show [4] that this is accomplished by utilizing the polarization function

XA(x) ≡ 2

x∫
−1

dyP u
r (y) − 1 (34)

where reference X-distribution P u
r (x) is associated with uncorrelated dynamics Pu

b (q1, q2). The 
corresponding distribution of polarization values, namely
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PA(X) ≡
1∫

−1

dxPr(x)δ
(
X −XA(x)

) = 1

2

Pr(X
−1
A (X))

P u
r (X−1

A (X))
(35)

is called the absolute X-distribution. By construction, and as seen from the above explicit form, 
PA(X) is a differential measure quantifying polarization tendencies relative to statistical indepen-
dence. Moreover, it is unique: arbitrary choice of the reference polarization coordinate (function) 
leads to the same absolute X-distribution [4].14 Consequently, absolute X-distribution is viewed 
as a genuinely dynamical concept.

Differential information contained in PA(X) can be integrated into the correlation coefficient 
of polarization CA ∈ [−1, 1], namely

CA ≡ 2

1∫
−1

dX|X|PA(X) − 1 (36)

Statistical meaning of CA is clarified by noting that the integral in the above expression is the 
probability for sample drawn from Pb(q1, q2) to be more polarized than sample drawn from 
Pu

b (q1, q2). Consequently, positive correlation means that stochastic dynamics enhances polar-
ization relative to statistical independence, while negative correlation (anti-correlation) implies 
its suppression. Pf (Q1, Q2) is said to support dynamical polarization in the former case and 
dynamical anti-polarization in the latter. In the context of Dirac eigenmodes and their chiral de-
composition, expressions like “mode is chirally polarized” vs. “anti-polarized”, “mode is chirally 
correlated” vs. “anti-correlated”, or “mode supports dynamical chirality” vs. “anti-chirality”, are 
all verbal descriptions of CA > 0 vs. CA < 0.

Appendix B. Generalities on spectral definitions

The primary entities involved in spectral definitions are the cumulative densities σ(λ) and 
σch(λ). At the regularized level, σ is proportional to certain cumulative probability function of λ
(non-decreasing, bounded) and can thus have at most countably many finite discontinuities. All 
of its possible behaviors are then contained in the form

σ(λ,M,V ) =
∑
j

AjH(λ − αj ) + σ̂ (λ,M,V ) (37)

where αj = αj (M, V ) ≥ 0 are the points of discontinuity, Aj = Aj(M, V ) ≥ 0, and H(x) is 
the left-continuous version of the Heaviside step function (H(x) = 0 for x ≤ 0 and H(x) = 1
for x > 0). σ̂ is a continuous non-decreasing function of λ and, as such, it can only be non-
differentiable on the set of Lebesgue measure zero. However, the exotic “Cantor function”-like 
cases, where the subset of non-differentiability is uncountable, are very unlikely to appear in 
this physical context. Differentiable functions producing derivatives that are discontinuous on 
uncountable subsets can be quite safely omitted for the same reason. Thus, the “standard model” 
of cumulative mode density, expected to cover all theories considered, is (37) with σ̂ (λ) be-
ing a continuous non-decreasing function that is continuously differentiable except for countably 
many (thus isolated) points. The differential representation (generalized function) then exists and 
is given by

14 This uniqueness of the “correlational” approach is in fact why the method is referred to as absolute.
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ρ̄(λ,M,V ) =
∑
j

Aj δ(λ − αj ) + ρ̂(λ,M,V ) (38)

where the ordinary function ρ̂(λ) = dσ̂ (λ)/d+λ exists and is continuous except for points ak =
ak(M, V ) ≥ 0 where it can have an integrable divergence or simple discontinuity. Note that there 
is no a priori relation between sets {αj } and {ak}.

The definition of cumulative chirality density is a priori less constraining on its behavior. 
Indeed, while σch(λ) is bounded in absolute value by σ(λ), it is not necessarily monotonic, and 
the most general form analogous to (37) is thus not strictly guaranteed. On the other hand, more 
singular behavior of σch(λ) would require CA(λ) – a dynamical property – to be discontinuous 
on uncountable subsets which is highly unlikely in this physical setting. Thus, the most general 
form of σch(λ) expected to occur is

σch(λ,M,V ) =
∑
j

BjH(λ − βj ) + σ̂ch(λ,M,V ) (39)

where Bj = Bj (M, V ) has indefinite sign, βj = βj (M, V ) ≥ 0, and σ̂ch is a continuous func-
tion of λ. In slightly more restrictive “standard model”, guaranteeing differential representation, 
σ̂ch(λ) is also continuously differentiable except for countably many points, i.e.

ρ̄ch(λ,M,V ) =
∑
j

Bj δ(λ − βj ) + ρ̂ch(λ,M,V ) (40)

The function ρ̂ch(λ) = dσ̂ch(λ)/d+λ exists and is continuous everywhere except for points bk =
bk(M, V ) ≥ 0 where it can have an integrable divergence or a simple discontinuity. Note that the 
sets {βj } ⊆ {αj } need not be identical, and neither do the sets {ak}, {bk}.

There is very little doubt that the behavior of σ(λ) and σch(λ) in all theories considered falls 
under the “standard model” description specified above. In fact, it appears very likely that only 
more restricted forms will actually appear. Nevertheless, it is interesting to note that the key 
concepts utilized in our discussion, namely that of chiral polarization scale Λch and low-energy 
chirality Ωch, are well-defined without any assumptions placed on σch(λ) beyond its existence. 
More precisely, below we put forward definitions that assign definite characteristics to any real-
valued function σch(λ) such that σch(λ) ≡ 0 for λ ≤ 0, and bounded on any (−∞, Λ].

We first define Λch as the “largest” Λ, such that σch(λ) is strictly increasing on [0, Λ], i.e.

Λch[σch] ≡ sup
{
Λ

∣∣ σch(λ1) < σch(λ2) for all 0 ≤ λ1 < λ2 ≤ Λ
}

(41)

when σch is not strictly increasing on [0, ∞), and Λch = ∞ otherwise. Note that when positive 
Λch doesn’t exist, the defining condition (41) is vacuously satisfied by Λch = 0 which is then its 
assigned value. Thus, Λch[σch] always exists and is non-negative.

Next, associate with σch(λ) its “running maximum function”

σm
ch(λ) ≡ sup

{
σch

(
λ′) ∣∣ λ′ ≤ λ

}
(42)

which is a non-negative non-decreasing function bounded on any (−∞, Λ]. Thus, it can only 
be discontinuous via countably many finite jumps, and one-sided limits exist everywhere. The 
low-energy chiral polarization is then defined as

Ωch[σch] ≡ lim
λ→Λch

+ σm
ch(λ) (43)

We emphasize that the above definitions of Λch and Ωch coincide with those given in the main 
text when σch(λ) is of “standard form”.
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