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Abstract 

Similitude methods are a set of tools which allow the design of scaled-up or scaled-down models 
of a full-scale structure called a prototype. In this way, the financial and temporal costs of 
experimental tests, and the problems associated with the set-up of too large (or small) test 
articles, may be overcome. This article provides a brief review of similitude methods applied to 
plates in a vibroacoustic field. Particularly, it is dedicated to a thorough analysis of similitude 
conditions and scaling laws for uncovering commonalities and differences, and physical 
interpretations, obtained from applying different scaling methods. 

Keywords: Similitude; Scaling laws; Plates; Structural dynamics; Vibro-acoustics 

Nomenclature 

𝐴𝐴 plate area 
𝐴𝐴𝑚𝑚𝑚𝑚 coefficient of the solution of the characteristic 

equation 
𝐴𝐴𝑟𝑟𝑟𝑟 EDA energy coefficients 
𝐴𝐴𝑄𝑄𝑗𝑗𝑄𝑄𝑘𝑘 joint acceptance between the j-th and the k-th 

modes 
𝑎𝑎 plate length 
𝑏𝑏 plate width 
𝐶𝐶 distortion constant 
𝑐𝑐𝐿𝐿 longitudinal wave speed 
𝐷𝐷𝑖𝑖𝑖𝑖 laminate flexural stiffnesses 
𝐸𝐸 Young’s modulus of isotropic materials 
𝐸𝐸𝑖𝑖𝑖𝑖  laminate Young’s moduli 
ℎ plate thickness 
𝐹𝐹 force amplitude 
𝑀𝑀 total mass 
𝑚𝑚 number of half waves along the horizontal 

direction 
𝑁𝑁𝑖𝑖𝑖𝑖  in-plane force per unit length/area 
𝑁𝑁𝑀𝑀 number of modes 
𝑁𝑁𝑝𝑝 number of plies of laminated structures 
𝑛𝑛 number of half waves along the vertical direction 
𝑃𝑃𝐼𝐼𝐼𝐼 input power 
𝑝𝑝 integer index in Galerkin procedure 
𝑞𝑞 integer index in Galerkin procedure 
𝑞𝑞𝑖𝑖𝑖𝑖 sum of external forces per unit length/area 
𝑅𝑅 radiation resistance matrix 

𝑆𝑆 statistical modal overlap factor 
𝑆𝑆𝑓𝑓𝑓𝑓 power spectral density of the force 
𝑆𝑆𝑝𝑝 power spectral density of wall pressure 

distribution due to a turbulent boundary layer 
𝑆𝑆𝑤𝑤 power spectral density of displacement 
𝑆𝑆𝑤𝑤𝑚𝑚 mean value of displacement power spectral 

density over the spatial domain 
𝑇𝑇𝑟𝑟  kinetic energy 
𝑈𝑈𝑐𝑐 convective velocity 
𝑢𝑢 displacement along x direction 
𝑢𝑢𝜏𝜏 friction velocity 
𝑉𝑉𝑚𝑚 mean velocity 
𝑣𝑣 displacement along y direction 
𝑤𝑤 displacement along z direction 
𝑋𝑋𝑤𝑤 cross-spectral density of plate displacement 
𝑥𝑥 coordinate along x direction 
𝑥𝑥𝐹𝐹 dimensionless excitation point coordinate 
𝑥𝑥𝑆𝑆 dimensionless acquisition point coordinate 
𝑦𝑦 coordinate along y direction 
𝑧𝑧 coordinate along z direction 

Greek symbols 

𝛽𝛽 parameter linked to the number of plies 
𝛤𝛤𝑖𝑖𝑖𝑖 auto-modal power mobility of j-th mode 
𝛤𝛤𝑖𝑖𝑗𝑗 cross-modal power mobility between j-th and k-

th mode 
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𝛿𝛿 turbulent boundary layer thickness 
𝜀𝜀 ASMA scale factor for dynamic scaling 
𝜀𝜀𝑥𝑥 Strain along x direction 
𝜀𝜀 ASMA scale factor for dynamic scaling 
𝜁𝜁 damping ratio 
𝜂𝜂𝑖𝑖 modal damping loss factor of j-th mode 
𝜃𝜃 modal density 
𝛬𝛬 ratio between the natural frequencies of 

structure and fluid 
𝜆𝜆𝑔𝑔 scale factor of parameter g 
𝜇𝜇 modal overlap factor 
𝜉𝜉𝑥𝑥 streamwise spatial separation in Corcos model 
𝜉𝜉𝑦𝑦 spanwise spatial separation in Corcos model 
𝜌𝜌 mass density 
𝜎𝜎 ASMA scale factor 

𝜎𝜎𝑥𝑥 stress along x direction 
𝜑𝜑𝑖𝑖  j-th mode shape 
𝜓𝜓𝑖𝑖𝑗𝑗 cross-mode participation factor between j-th 

and k-th mode 
𝛺𝛺 nondimensional frequency 
𝜔𝜔 radial frequency 
𝜔𝜔∗ dimensionless radial frequency 
𝜔𝜔𝑖𝑖 j-th radial natural frequency 

Other symbols 

𝐴𝐴𝑅𝑅 aspect ratio 
𝜖𝜖 small quantity describing the effect of added 

mass 

 
Introduction 

In their seminal work on structural similitudes [1], 
Simitses and Rezaeepazhand reported the details of 
final static tests of a Lockheed C-141A airlifter which 
gives an example of how much experimental effort is 
needed when validating products. In their example, the 
final phase required eight wing tests, 17 fuselage tests, 
and seven empennage tests. 

It is easy to imagine how costly full-scale tests can be 
in both temporal and financial terms, especially when 
the experiments require the structure to be damaged, 
e.g. crashworthiness tests, or when repetition is 
required due to errors or uncertainties and other 
unforeseen events. Last, but not least, the testing itself 
may not always be straightforward to preform when 
specimens or objects have very large or small 
dimensions. 

To bypass many of the problems listed in the 
foregoing, it is useful to test scaled-up or scaled-down 
variations (called models) of full-scale structures 
(called prototype). Actual savings of money and time 
were proven by Holmes and Sliter [2] in which the 
estimated savings were between one-third and one 
fourth of the cost of the full-scale object and its testing.  

Increasingly, the complexity of current engineering 
systems usually demands experimental testing of the 
fundamental steps of the design of a product to check if 
all the reliability, safety and performance requirements 
have been satisfied. As a consequence, similitude 
methods have received great attention in recent years 
because they enable design models to be used that 
reconstruct the behavior of prototypes. 

The aim of this article is to provide a brief review on 
the application of similitude theory in vibroacoustics, 
thereby offering readers with an overview of important 
parameters to scale when studying vibrational and 
sound transmission phenomena. As a matter of fact, 
noise and vibration propagation are subjects of intense 
research, affecting passengers’ comfort in vehicles and 
people nearby, as well as addressing industrial topics 

such as structural failure and machinery fatigue. 
The study of vibroacoustics is suitable for other 

interesting applications of similitude methods via 
numerical simulations. For example, it is well known 
that the Finite Element Method (FEM) is 
computationally prohibitive when analyses of high 
frequency ranges are required; even so, FEM is one of 
the most used numerical tools for structural analyses. 
In FEM, the spatial meshes are frequency dependent 
and can be greatly decreased as frequencies are 
increased. Furthermore, the Nyquist Theorem de-
mands that the analyses must be pushed to at least 
twice the highest frequency range of interest, also 
leading to greater computational times. In such a 
scenario, similitude theory provides interesting tools 
allowing geometrical dimension changes, and 
concomitant decreases in mesh and eigensolutions. 

This review focuses on one particular structural 
element, a plate, that is widely applied in many 
engineering fields such as plates in propeller blades, 
vibration adaptors, upper and lower skins or surfaces 
in aircraft wings, panels and soundproofing partitions. 

Each section herein is dedicated to a similitude 
method and its application to plates in vibroacoustics. 
After the review, another section will assess the 
methods, their commonalities and the main physical 
aspects highlighted. In the end of each section, 
conclusions are drawn. Due to the wide range of 
applications and the resulting high number of 
parameters involved, readers may need to refer to the 
nomenclature at the beginning of the article. 

Dimensional analysis 

Dimensional Analysis (DA) relies on the derivation of 
dimensionless terms governing the phenomenon 
under investigation, and is definable by means of 
Buckingham’s Π Theorem [3]. It is useful for complex 
systems which lack governing equations but requires 
an experienced analyzer to derive a set of 
dimensionless groups to be chosen carefully. Moreover, 
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the dimensionless groups may be not unique, leading to 
a trial-and-error procedure for the determination of the 
right set, and not all of them are physically meaningful. 

Although DA is the oldest and most used similitude 
method (especially in impact engineering [4]), an 
interesting application to plates in vibroacoustics is the 
work by Ciappi et al. [5]. They defined dimensionless 
parameters based on scaling laws for excitation 
frequencies and the Power Spectral Density (PSD). In 
fact, such a dimensionless representation could 
provide a universal expression for the structural 
response of systems excited by Turbulent Boundary 
Layers (TBL) in which induced vibrations in elastic 
structures are the source of the major noises in 
transport engineering involving naval, aerospace, and 
automotive applications. 

The test article under analysis was a thin, flat elastic 
plate without prestresses wetted over one face by a 
stationary TBL. The flow was incompressible and 
without pressure gradient. By applying DA, the authors 
identified 11 governing dimensionless parameters, 
including: 

𝑆𝑆𝑤𝑤𝑈𝑈𝑐𝑐
ℎ3 ,𝜌𝜌�𝑈𝑈𝑐𝑐

3ℎ
𝑆𝑆𝑝𝑝

,𝐸𝐸� ℎ
𝑆𝑆𝑝𝑝𝑈𝑈𝑐𝑐

,𝜔𝜔ℎ𝑈𝑈𝑐𝑐
,

𝑢𝑢𝜏𝜏
𝑈𝑈𝑐𝑐

,𝑎𝑎ℎ , 𝑏𝑏ℎ , 𝛿𝛿ℎ , 𝜉𝜉𝑥𝑥ℎ ,
𝜉𝜉𝑦𝑦
ℎ , 𝜂𝜂 .

 (1) 

By means of a thorough analyses of this set, these 
authors demonstrated that not all the groups were 
useful. In fact, the ratios 𝑎𝑎/ℎ and 𝑏𝑏/ℎ related to the 
structural modes could be assumed large because only 
the thin plate model (a Kirchhoff’s one) was used. The 
ratio 𝛿𝛿/ℎ,  representative of the fluid-structure 
coupling, was greater than one. Furthermore, because 
the order of magnitude of both displacement and 
thickness were the same, structural vibrations did not 
affect the fluid domain. Also, both the ratios 𝜉𝜉𝑥𝑥/ℎ and 
𝜉𝜉𝑦𝑦/ℎ were negligible because the diagonal terms of the 
Cross Spectral Density (CSD) matrix were assumed to 
provide the major contributions to plate responses; the 
velocity ratio, 𝑢𝑢𝜏𝜏/𝑈𝑈𝑐𝑐, was not very important because 
of its small variations. Finally, een the damping 𝜂𝜂 was 
not considered because it can be assumed constant for 
all the plate models under analyses. 

Therefore, the only dimensionless ratios important 
for deriving a nondimensional form of the 
displacement PSD were those involving the pressure 
distribution PSD. In particular, using the following form 
of nondimensional frequency, 

𝜔𝜔∗ =  
𝜔𝜔ℎ
𝑈𝑈𝑐𝑐

 , (2) 

the dimensionless descriptions of the displacement 
PSD could be written as a function of Eq. (2): 

𝑆𝑆𝑤𝑤
𝑆𝑆𝑝𝑝
�
𝐸𝐸
ℎ
�
2

=  
𝑆𝑆𝑤𝑤
𝑆𝑆𝑝𝑝
�
𝜌𝜌
ℎ�

2
=  𝑔𝑔𝐼𝐼(𝜔𝜔∗) , (3) 

𝑆𝑆𝑤𝑤
𝑆𝑆𝑝𝑝
�
𝑈𝑈𝑐𝑐
ℎ
�
2

𝜌𝜌𝐸𝐸 =  
𝑆𝑆𝑤𝑤
𝑆𝑆𝑝𝑝
�
𝑈𝑈𝑐𝑐
ℎ
�
2

𝜌𝜌2𝑐𝑐𝐿𝐿2 =  𝑔𝑔𝐼𝐼𝐼𝐼(𝜔𝜔∗) , (4) 

𝑆𝑆𝑤𝑤
𝑆𝑆𝑝𝑝
�
𝜌𝜌
ℎ�

2
𝑈𝑈𝑐𝑐4 =  

𝑆𝑆𝑤𝑤
𝑆𝑆𝑝𝑝
�
𝐸𝐸
ℎ
�
2

�
𝑈𝑈𝑐𝑐
𝑐𝑐𝐿𝐿
�
4

=  𝑔𝑔𝐼𝐼𝐼𝐼𝐼𝐼(𝜔𝜔∗) . (5) 

Moreover, another form of dimensionless 
displacement PSD was derived from energy 
considerations, given by: 

𝑆𝑆𝑤𝑤𝑚𝑚
𝑆𝑆𝑝𝑝

�
𝜂𝜂𝜌𝜌2𝑐𝑐𝐿𝐿𝑈𝑈𝑐𝑐3

ℎ2
�  =  𝑔𝑔𝐼𝐼𝐼𝐼(𝜔𝜔∗) . (6) 

After deriving these expressions, the authors 
compared the results of four experimental tests that 
had been performed at different conditions in both a 
wind tunnel and a towing tank, and plotted them on 
reference axes reporting the values of the 
dimensionless frequency on the horizontal axis and one 
of Eqs. (3)–(6) on the vertical axis. 

These comparisons showed that the experimental 
data sets collapsed very close to each other, proving 
that the proposed representations allowed an estimate 
of displacement PSD in the whole frequency range, 
revealing it to be very useful for preliminary predictive 
steps. Particularly, Eq. (6) linked the nondimensional 
frequency and acceleration with just one, simple 
equation, thereby providing a quick estimate of 
structural responses in the entire frequency range. 
Furthermore, Eq. (3) provided a good response 
estimate when damping was difficult to identify; for 
example, when the plate was part of a greater structure 
such as a ship or an airplane. 

DA was used by He et al. [6] in an interesting article 
on the problem of middle-frequency regions. In fact, the 
SEA method, which is meant to give consistent results 
in high modal density regions, would not work; 
moreover, the phase information was lost. Instead, the 
FE approach was able to provide phase information but 
its application outside low modal density ranges 
became computationally inefficient. Therefore, the 
authors decided to apply the coupling within a FE-SEA 
hybrid method that combined the advantages of both 
DA and FE methods and was suitable for the middle-
frequency range. 

With the aim of studying the coupling between solar 
arrays and a satellite, the authors first tested an 
assembly of two plates. The subsystems with low modal 
density were modeled with the FE approach while 
those at high modal density were scaled with the SEA 
approach. In this system, the excited plate was the 
deterministic subsystem while the receiver plate was 
the statistical one; both were made of aluminum. 

Three fundamental scaling laws were defined by 
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assuming a consistent material and a broadband 
concentrated force. Then, the spectral density of the 
force scaled as: 

𝜆𝜆𝑆𝑆𝑓𝑓𝑓𝑓 =  
𝜆𝜆𝐹𝐹4

𝜆𝜆𝐿𝐿2
 , (7) 

where it was assumed that the geometrical dimensions 
of the plates scaled in the same way as 𝜆𝜆𝐿𝐿. 

In contrast, the velocity response scaled differently 
according to the type of subsystem. For a FE subsystem, 
the velocity scaled as: 

𝜆𝜆𝜆𝜆𝐹𝐹𝐹𝐹 =  
𝜆𝜆𝐹𝐹2

𝜆𝜆𝐿𝐿3𝜆𝜆𝐸𝐸
 , (8) 

while for SEA subsystems it scaled as: 

𝜆𝜆𝜆𝜆𝑆𝑆𝐹𝐹𝑆𝑆 =  
𝜆𝜆𝐹𝐹

𝜆𝜆𝐿𝐿2𝜆𝜆𝜂𝜂𝑗𝑗
1/2 . (9) 

Numerical analyses were performed with the 
assumption that 𝜆𝜆𝜂𝜂𝑗𝑗 ≈ 1,  a reasonable approach 
because if the internal loss factor was smaller than 0.1 
the difference between the systems would be small. As 
a consequence, the predictions of the RMS responses 
were consistent but, since SEA introduced uncertain-
ties, the reconstructions of the response became less 
precise at increasing frequencies. Furthermore, the 
excited plate, i.e. the FE subsystem, provided better 
predictions than the receiving plate, i.e. the SEA 
subsystem, because of power loss in the hybrid line 
connection. 

Similitude theory applied to governing equations 

The second, most used similitude method is STAGE 
(Similitude Theory Applied to Governing Equations), 
introduced for the first time by Kline [7]. STAGE is 
based on the introduction of scale factors (either 
dimensional or nondimensional) directly into the 
governing equations as well as their solutions [4] to 
determine similitude conditions and scaling laws 
between two systems. Thereby, the set of conditions 
derived becomes more specific because, being equation 
driven, they have greater possibility for having 
fundamental physical meanings. For STAGE, the scale 
factor is the ratio between a model parameter 𝑔𝑔� and a 
prototype parameter g, as shown in the following: 

𝜆𝜆𝑔𝑔 =  
𝑔𝑔�
𝑔𝑔

 . (10) 

This method has been widely applied to analyzing 
free vibrations of laminated plates by Rezaeepazhand 
et al. [8–9] and Simitses [10]. In particular, they focused 
on deriving the similitude conditions and scaling laws 
for angle- and cross-ply laminated plates. The main 
purpose of the investigation was to reveal problems 
associated with the design of models, especially to what 
extent it was possible to cause distortions before 

prototype behavior was totally unrecoverable. 
For angle-ply configurations, the authors assumed 

that the prototype and model had similar mode shapes, 
implying that they could be well approximated by the 
same number of terms in the series obtained by 
applying Galerkin procedures for determining 
solutions of the characteristic equations. Hence, the 
scale factors associated with the integers 
characterizing this series were the same, i.e.: 

𝜆𝜆𝑚𝑚 =  𝜆𝜆𝑚𝑚 =  𝜆𝜆𝑝𝑝 =  𝜆𝜆𝑞𝑞 =  𝜆𝜆𝐴𝐴𝑚𝑚𝑚𝑚 = 1 (11) 

Then, five scaling laws for the nondimensional 
frequency were derived: 

𝜆𝜆𝛺𝛺2 =  
𝜆𝜆𝐷𝐷11

𝜆𝜆𝐸𝐸22𝜆𝜆ℎ
3𝜆𝜆𝐴𝐴𝐴𝐴4

 , (12) 

𝜆𝜆𝛺𝛺2 =  
𝜆𝜆𝐷𝐷12

𝜆𝜆𝐸𝐸21𝜆𝜆ℎ
3𝜆𝜆𝐴𝐴𝐴𝐴2

 , (13) 

𝜆𝜆𝛺𝛺2 =  
𝜆𝜆𝐷𝐷22
𝜆𝜆𝐸𝐸22𝜆𝜆ℎ

3  , (14) 

𝜆𝜆𝛺𝛺2 =  
𝜆𝜆𝐷𝐷16

𝜆𝜆𝐸𝐸22𝜆𝜆ℎ
3𝜆𝜆𝐴𝐴𝐴𝐴3

 , (15) 

𝜆𝜆𝛺𝛺2 =  
𝜆𝜆𝐷𝐷26

𝜆𝜆𝐸𝐸22𝜆𝜆ℎ
3𝜆𝜆𝐴𝐴𝐴𝐴

 . (16) 

These laws depended only on material properties 
and the total number of plies, not on the thicknesses of 
single plies. These authors also introduced an 
important parameter linked to the total number of plies, 
𝑁𝑁𝑝𝑝, defined as: 

𝛽𝛽 =  
3𝑁𝑁𝑝𝑝2 − 1
𝑁𝑁𝑝𝑝3

 . (17) 

To achieve complete similitude, Eqs. (12)–(16) must 
be satisfied simultaneously. For similitude to be 
satisfied when the plies had identical thicknesses, the 
condition of the same material properties and fiber 
orientation would require: 

𝜆𝜆𝐴𝐴𝐴𝐴−2 = 1 =  𝜆𝜆𝐴𝐴𝐴𝐴2 =  
𝜆𝜆𝛽𝛽
𝜆𝜆𝐴𝐴𝐴𝐴

=  𝜆𝜆𝛽𝛽𝜆𝜆𝐴𝐴𝐴𝐴  . (18) 

Eq. (18) leads to 𝜆𝜆𝛽𝛽 =  𝜆𝜆𝐴𝐴𝐴𝐴 = 1. Thus, a true model was 
obtainable if the lengths and widths of the panel as well 
as the total number of plies scaled in the same way. The 
authors defined this scaling procedure as ply-level 
scaling. It is interesting to note that thickness was not 
directly involved in the scaling procedure and, thus, it 
was a free parameter. 

Analogously, for cross-ply configurations, the 
dimensionless frequency scaling laws became: 

𝜆𝜆𝛺𝛺2 =  
𝜆𝜆𝐷𝐷11𝜆𝜆𝑚𝑚

4

𝜆𝜆𝐸𝐸22𝜆𝜆ℎ
3𝜆𝜆𝐴𝐴𝐴𝐴4

 , (19) 



PSMIJ, Vol. 1 (2020) Article 3, pp. 1–13  A. Casaburo et al. 

– 5 – 

𝜆𝜆𝛺𝛺2 =  
𝜆𝜆𝐷𝐷12𝜆𝜆𝑚𝑚

2 𝜆𝜆𝑚𝑚2

𝜆𝜆𝐸𝐸21𝜆𝜆ℎ
3𝜆𝜆𝐴𝐴𝐴𝐴2

 , (20) 

𝜆𝜆𝛺𝛺2 =  
𝜆𝜆𝐷𝐷22𝜆𝜆𝑚𝑚

4

𝜆𝜆𝐸𝐸22𝜆𝜆ℎ
3  . (21) 

Complete similitude requires: 

𝜆𝜆𝑚𝑚4 =  𝜆𝜆𝑚𝑚2 𝜆𝜆𝑚𝑚2𝜆𝜆𝐴𝐴𝐴𝐴2 =  𝜆𝜆𝑚𝑚4𝜆𝜆𝐴𝐴𝐴𝐴4  , (22) 

which is satisfied if and only if 𝜆𝜆𝑚𝑚 =  𝜆𝜆𝑚𝑚 and 𝜆𝜆𝐴𝐴𝐴𝐴 = 1 . 
Hence, the aspect ratio must be retained and the 
number of half waves m and n must scale in identical 
ways. 

Tests on the prediction capability using partial 
similitudes highlight that angle-ply laminated plates 
are very sensitive to scaling procedures in contrast to 
ply-level scaling, and leads to adapting the value of 
scale factor 𝜆𝜆𝐴𝐴 to correct distortion which then often 
requires unsuitable design conditions. Instead, cross-
ply construction tends to exhibit less sensitivity to 
changes in the number of plies and to less constrictions 
during the design phase. 

The articles of Singhatanadgid and Ungbhakorn [11] 
and Singhatanadgid and Na Songhkla [12] also 
investigated using STAGE methods applied to 
laminated plates. In [11], the authors investigated free 
vibrations of antisymmetric cross- and angle-ply plates, 
and confirmed the results proposed in [8–10], 
especially the relevance of the stacking sequence. In 
particular, the fundamental role of flexural stiffness was 
elucidated. For example, when the flexural stiffness 
parameter was changed, greater distortions occurred 
than did in the cases where extensional or flexural-
extensional stiffnesses were changed. 

The work in [12] was totally devoted to 
experimentation that highlighted the difficulties arising 
in laboratory testing due to boundary conditions. In 
fact, among the many tests performed, it was the free 
plate configurations which exhibited the smallest 
discrepancies. 

An interesting perspective of STAGE application was 
also provided by Luo et al. [13] so that the structure size 
interval of distorted models was determined in which 
the first order characteristics of natural frequencies 
and mode shapes of a prototype could be predicted 
with acceptable precision. For plates in partial 
similitude, they introduced a constant C inserted into 
the scaling laws, obtaining: 

𝜆𝜆𝜔𝜔 =  
𝜆𝜆ℎ
𝐶𝐶2𝜆𝜆𝑏𝑏2

 , (23) 

𝜆𝜆𝜔𝜔 =  
𝜆𝜆ℎ
𝐶𝐶𝜆𝜆𝑏𝑏2

 , (24) 

𝜆𝜆𝜔𝜔 =  
𝜆𝜆ℎ
𝜆𝜆𝑏𝑏2

 . (25) 

The determination of C then helped to identify the 
range of geometrical values satisfying a fixed value of 
precision between the prototype response and 
predictions from distorted models. 

Worth mentioning is a variation of STAGE proposed 
by Coutinho et al. [14]. Here, STAGE was applied to 
derive the similitude conditions and scaling laws from 
sets of basic equations from elasticity theory, force and 
moment resultants, stress-strain and strain-
displacement relations, and displacement fields. This 
approach enabled scaling laws to be assembled 
according to the phenomena under investigation in 
addition to deriving the laws. Applying this STAGE 
method to numerical analyses of a stiffened pinned 
isotropic plate considered as a free body, the derived 
similitude conditions and scaling laws were: 

𝜆𝜆𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜆𝜆𝑦𝑦

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , (26) 

𝜆𝜆𝑢𝑢
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜆𝜆𝑣𝑣

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �𝜆𝜆𝑤𝑤
𝜆𝜆𝑧𝑧
𝜆𝜆𝑥𝑥
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 , (27) 

𝜆𝜆𝜎𝜎𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜆𝜆𝜀𝜀𝑥𝑥

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �
𝜆𝜆𝑢𝑢
𝜆𝜆𝑥𝑥
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 , (28) 

𝜆𝜆𝐼𝐼
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �𝜆𝜆𝜎𝜎𝑥𝑥𝜆𝜆𝑧𝑧�

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �
𝜆𝜆𝑢𝑢
𝜆𝜆𝑥𝑥
𝜆𝜆𝑧𝑧�

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 , (29) 

𝜆𝜆𝑞𝑞
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  

𝜆𝜆𝐼𝐼
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝜆𝜆𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �

𝜆𝜆𝑢𝑢
𝜆𝜆𝑥𝑥2
𝜆𝜆𝑧𝑧�

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

  . (30) 

Eq. (26), although expressed in terms of coordinates 
x and y, clearly relates to the condition already 
expressed in Eqs. (8)–(10), i.e. 𝜆𝜆𝐴𝐴 = 1.  Hence, it is 
important to consider that when plates are examined it 
is necessary to keep aspect ratios independent from 
material properties. 

A similar set of equations can be derived for a beam: 

𝜆𝜆𝑥𝑥𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚 =  𝜆𝜆𝑧𝑧𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚 , (31) 

𝜆𝜆𝑢𝑢𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚 =  𝜆𝜆𝑤𝑤𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚 , (32) 

𝜆𝜆𝜎𝜎𝑥𝑥
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  𝜆𝜆𝜀𝜀

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  �
𝜆𝜆𝑢𝑢
𝜆𝜆𝑥𝑥
�
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

 , (33) 

𝜆𝜆𝐼𝐼𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚 =  �𝜆𝜆𝜎𝜎𝑥𝑥𝜆𝜆𝑦𝑦𝜆𝜆𝑧𝑧�
𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚 =  �

𝜆𝜆𝑢𝑢
𝜆𝜆𝑥𝑥
𝜆𝜆𝑦𝑦𝜆𝜆𝑧𝑧�

𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚

=  �𝜆𝜆𝑢𝑢𝜆𝜆𝑦𝑦�
𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚 , 

(34) 

𝜆𝜆𝑞𝑞𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚 =  
𝜆𝜆𝐼𝐼𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚

𝜆𝜆𝑥𝑥𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚
=  �

𝜆𝜆𝑢𝑢
𝜆𝜆𝑥𝑥
𝜆𝜆𝑦𝑦�

𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚

  . (35) 

However, because the test article under investigation is 
a stiffened plate, the equations given in (26)–(30) and 
(31)–(35), respectively, must be related by imposing 
continuity of displacements and internal forces at 



PSMIJ, Vol. 1 (2020) Article 3, pp. 1–13  A. Casaburo et al. 

– 6 – 

interfaces. 
Finally, keeping in mind that for equivalent points the 

same material properties must hold, the following 
conditions were derived: 

𝜆𝜆𝑥𝑥 =  𝜆𝜆𝑦𝑦 =  𝜆𝜆𝑧𝑧 , (36) 

𝜆𝜆𝑢𝑢 =  𝜆𝜆𝑣𝑣 =  𝜆𝜆𝑤𝑤 , (37) 

𝜆𝜆𝜎𝜎𝑥𝑥 =  
𝜆𝜆𝑤𝑤
𝜆𝜆𝑥𝑥

 , (38) 

𝜆𝜆𝐼𝐼
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  

𝜆𝜆𝐼𝐼𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚

𝜆𝜆𝑦𝑦
 =  𝜆𝜆𝑤𝑤 , (39) 

𝜆𝜆𝑞𝑞
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  

𝜆𝜆𝑞𝑞𝑏𝑏𝑝𝑝𝑝𝑝𝑚𝑚

𝜆𝜆𝑦𝑦
=  
𝜆𝜆𝑤𝑤
𝜆𝜆𝑥𝑥

   (40) 

In Eq. (39) through (40), the factors without 
superscripts indicate that the scale factors were 
applied to the whole stiffened plate and that 
geometrical dimensions scaled in the same way for 
both plate and stiffeners. 

Eqs. (36)–(37) originate from the condition of 
continuity in displacements, while Eqs. (38)–(40) 
originate from the continuity of internal forces. These 
sets of equations are quite restrictive because they link 
geometrical dimensions to displacements, stresses, and 
internal and external forces. Also, Eq. (36) shows that 
thickness was not a free parameter when examining 
simple stiffened plates. 

The simulations on plates under complete similitude 
and subjected to uniform pressures were capable of 
providing perfect predictions in terms of transverse 
displacements. In other words, these assessments 
pushed further the applications of STAGE to other more 
complex structural fields such as thermal deformations 
or acoustics, thereby enabling the analyses of more 
complex problems. 

Asymptotic scaled modal analysis 

The Asymptotic Scaled Modal Analysis (ASMA) 
method was conceived to deal with issues related to 
spatial meshing typical within dynamic analyses 
executed using FEM. A formal definition of ASMA was 
provided by De Rosa et al. [15] that relied on formal 
justification by means of Energy Distribution Analysis 
(EDA) [16]. Basically, in ASMA all parameters not 
related to energy transmission (like geometrical 
parameters) are scaled down with a factor 𝜎𝜎 < 1; this 
scaling moves the eigensolutions to higher frequencies. 
As a result, damping effects also need to be scaled to 
retain similitude in energy levels of scaled models and 
prototypes. 

From the point of view of computational time, ASMA 
offers three benefits: 

• Identical number of degrees of freedom and 

eigensolutions:  the response of the model can be 
representative even at higher frequencies without 
computational advantages. 

• Identical number of degrees of freedom and 
eigensolutions:  if the dynamic response is 
evaluated at least in the same frequency range of 
the prototype, then computational times are 
lessened. 

• Reduced number of degrees of freedom and 
eigensolutions:  if the frequency response is 
within identical frequency ranges then an 
appreciable computational advantage occurs. 

ASMA provides very good global estimates but local 
estimates may be impaired by artificially increased 
damping; moreover, it can be implemented in any finite 
element solver. 

De Rosa et al. [15, 17] provided an interesting 
application of ASMA to the assembly of two plates in 
which one was the driver, i.e. excited one, and the other 
plate was the receiver. The lengths and widths of both 
plates were scaled as follows: 

𝑎𝑎� =  𝜎𝜎𝑎𝑎 , (41) 

𝑏𝑏� =  𝜎𝜎𝑏𝑏 . (42) 

The scaled-down equations (41) and (42) implied that 
the j-th natural frequency scaled as: 

𝜔𝜔�𝑖𝑖 =  
𝜔𝜔𝑖𝑖
𝜎𝜎2

 . (43) 

It is necessary to implement dynamic scaling when 
using ASMA to ensure that similar modal 
characteristics are retained. For this purpose, another 
scale factor 𝜀𝜀 < 1  was introduced and damping was 
scaled as: 

�̂�𝜂𝑖𝑖 =  
𝜂𝜂𝑖𝑖
𝜀𝜀

 . (44) 

Scaling EDA parameters must also be taken into 
account such that spatial correlations between two 
modes must not change; in other words, the cross-
mode participation factors remain the same: 

𝜓𝜓�𝑖𝑖𝑗𝑗 =  𝜓𝜓𝑖𝑖𝑗𝑗 . (45) 

For frequency characterizations, the auto-modal 
power mobilities scale as 

𝛤𝛤�𝑖𝑖𝑖𝑖 =  𝜀𝜀𝜎𝜎2𝛤𝛤𝑖𝑖𝑖𝑖  . (46) 

The cross-modal power mobilities can assume large 
values when modes overlap, or small values when 
modes do not overlap. Thereby, different functions of 
the scale factors σ and η are involved, which requires 
different scaling procedures. Particularly: 

𝛤𝛤�𝑖𝑖𝑗𝑗,𝑝𝑝𝑝𝑝𝑟𝑟𝑔𝑔𝑝𝑝 =  𝜀𝜀𝜎𝜎2𝛤𝛤𝑖𝑖𝑗𝑗,𝑝𝑝𝑝𝑝𝑟𝑟𝑔𝑔𝑝𝑝 , (47) 
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𝛤𝛤�𝑖𝑖𝑗𝑗,𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝜎𝜎2

𝜀𝜀
𝛤𝛤𝑖𝑖𝑗𝑗,𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 . (48) 

The large terms scale in the same way of the auto-
modal power mobilities; the small terms are the only 
ones which would not scale according to the rule 𝜎𝜎2𝜀𝜀. 

When scaling the response of a system, or a directly 
excited subsystem belonging to a generic assembly, any 
value 0 <  𝜎𝜎 <  1  can be chosen. Furthermore, it can 
be demonstrated that assuming 𝜎𝜎 =  𝜀𝜀  usually 
provides acceptable results. Under these hypotheses, 
the energy terms of interest such as input power, 
kinetic energy, EDA energy coefficients and mean 
squared velocity scale as: 

𝑃𝑃�𝐼𝐼𝐼𝐼
(𝑟𝑟) =  𝑃𝑃𝐼𝐼𝐼𝐼

(𝑟𝑟) , (49) 

𝑇𝑇� (𝑟𝑟) =  𝜀𝜀𝜎𝜎2𝑇𝑇(𝑟𝑟) =  𝜎𝜎3𝑇𝑇(𝑟𝑟) , (50) 

�̂�𝐴𝑟𝑟𝑟𝑟 =  𝜀𝜀𝜎𝜎2𝐴𝐴𝑟𝑟𝑟𝑟 =  𝜎𝜎3𝐴𝐴𝑟𝑟𝑟𝑟 , (51) 

𝑉𝑉�𝑚𝑚2 =  𝜀𝜀𝑉𝑉𝑚𝑚2 =  𝜎𝜎𝑉𝑉𝑚𝑚2 , (52) 

where the superscripts indicate a source plate (s) and a 
receiver plate (r). 

According to Eq. (49), the input power is not scaled. 
This result, analytically, is due to scale factors erasing 
each other; nonetheless, it is coherent with energy 
redistribution among the modes that are imposed on 
the energy terms (EDA coefficients, damping, etc.) 
through the scale factors. 

Computational savings can be obtained by scaling 
the number of modes as 𝑁𝑁𝑀𝑀𝜎𝜎2, which is the number of 
modes required in the scaled response. This choice is 
motivated by the decreasing modal density when the 
plate area is reduced. However, 𝑁𝑁𝑀𝑀𝜎𝜎2 is the minimum 
number of required modes. In fact, one can choose not 
to scale such a number and push the dynamic analyses 
of the model to additional frequencies. In this regard, 
the scale factors act as frequency modulators that 
control the width of the frequency window in which the 
model yields acceptable predictions. 

The application of ASMA to the assembly has shown 
reasonable predictive capabilities when the modal 
overlap factor μ is high enough to expect a global 
response, i.e. in the same range of validity as that of SEA. 
On the one hand, the response of a source plate would 
be well reconstructed because it is dominated by the 
power input, which is related to the auto-modal power 
mobility; ASMA is very applicable to this condition. On 
the other hand, the predictions on the receiving system 
have exhibited some approximations but a noticeable 
computational saving has been obtained; for example, 
with 400 points in a source plate and 320 in a receiver 
plate, the prototype assembly could be modelled with 
to 60 and 48 points, respectively. 

These results were strengthened by the results in [18] 
in which ASMA was applied to an aluminum flexural 

plate; it highlights how the ASMA method can 
reproduce responses only after averaging on all the 
acquisition and excitation points. 

ASMA has also been applied to the case of a plate 
under TBL [19] and again underlined that the method 
is very useful for predicting global responses but not 
local responses. Nevertheless, comparisons of ASMA 
with FEM results showed how FEM diverged above the 
coincidence frequency due to spatial aliasing while the 
ASMA method remained accurate. This result was a 
consequence of the fact that the minimum scaled 
flexural wavelength was smaller than the TBL 
correlation length. Therefore, ASMA revealed to be 
again a cost-efficient approach to predict the mean 
square velocity response and radiated sound power 
over broad frequency ranges. 

Finally, ASMA was applied also to assemblies of three 
plates in [17, 20] and Li elaborated on this research 
using ASMA in [21–22]. In the first paper [20], the main 
idea was to extend ASMA to predicting ensemble 
statistics by scaling the structural parameters of an 
original system and then testing whether ensemble 
statistics of high frequency vibrations could be 
recovered from a scaled model. 

Assuming that the natural frequencies of the system 
formed a Gaussian Orthogonal Ensemble (GOE) and 
that the mode shapes were random, the expected value 
of the mean square velocity was invariant when: 

𝜆𝜆𝐹𝐹2𝜆𝜆𝜃𝜃
𝜆𝜆𝜂𝜂𝜆𝜆𝑀𝑀2

= 1 , (53) 

while its variance was invariant when: 

𝜆𝜆𝜂𝜂𝜆𝜆𝜃𝜃 = 1 . (54) 

In other words, Eqs. (53) and (54) were the scaling laws 
of mean value and variance of mean square velocities. 

The system considered was a thin flat plate with 
randomly placed masses attached, for which Eqs. (53) 
and (54) assumed the following specific form: 

𝜆𝜆𝐹𝐹2

�𝜆𝜆𝐸𝐸𝜆𝜆𝜌𝜌3𝜆𝜆𝜂𝜂𝜆𝜆𝐴𝐴𝜆𝜆ℎ3
= 1 , (55) 

𝜆𝜆𝜂𝜂 =  �
𝜆𝜆𝐸𝐸
𝜆𝜆𝜌𝜌
𝜆𝜆ℎ
𝜆𝜆𝐴𝐴

 . (56) 

Modal density was used as the control factor for the 
scaling procedure, and it was determined to be scaled-
down to reduce computational costs. From Eq. (54) and 
Eq. (56), the following condition must hold: 

𝜆𝜆𝜃𝜃 =  �
𝜆𝜆𝜌𝜌
𝜆𝜆𝐸𝐸
𝜆𝜆𝐴𝐴
𝜆𝜆ℎ

< 1 . (57) 

However, auxiliary requirements had to be added to 
condition (57) to assure the reduction in modal density 
and a boosting in the frequency analyses. These 
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requirements involved a statistical modal overlap factor, 
S (𝜆𝜆𝑆𝑆 = 1) , and a small quantity, 𝜖𝜖 , representative of 
the added mass (𝜆𝜆𝜖𝜖 = 1). Applying the method to the 
plate under harmonic excitation, the mean square 
velocity ensemble statistics were well predicted and, as 
a consequence, the model produced ensemble 
characteristics the same as the original system. The 
conditions and scaling laws derived in [22] were also 
identical but auxiliary requirements did not need to be 
considered because the test article was a simple plate 
without added masses. 

The idea that motivated Li’s research was to scale 
material or geometrical properties of a plate while 
preserving the dynamics at high frequency in the same 
manner as SEA methods. This meant that the prototype 
and model must lead to the same results when SEA and 
ASMA were applied. In this case, the modal density 
acted as a control factor and it must decrease by some 
small amount to enable the SEA results to still be 
representative of the model dynamic behavior in the 
frequency range of interest. The SEA assumptions on 
the modal density were satisfied in the model if they 
were also satisfied in the prototype. The approach 
worked well for both local and global responses, and 
accurately estimated when the control factor 𝜆𝜆𝜃𝜃 ≅ 1 , 
i.e. when the modal density of the prototype was close 
to the modal density of the model. 

Similitude and asymptotic models for structural-
acoustic research applications 

The Similitude and Asymptotic Models for 
Structural-Acoustic Research Applications (SAMSARA) 
method was formally introduced by De Rosa et al. [23]; 
its aim was to define similitude conditions for acoustic-
structural systems, and employed an approach that 
increased the number of parameters to consider when 
deriving similitude conditions and scaling laws. 

When a plate is geometrically scaled in all the 
dimensions, it is called a replica. However, it will be 
shown (even though already demonstrated in Eqs. (8)–
(11)) that a true plate model does not require a 
complete geometrical scaling; it is, however, important 
to keep their aspect ratios constant. As such, these 
plates are called proportional sides whereas distorted 
models are instead called avatars. 

The first application of SAMSARA was described in 
[23], in which a flexural plate was coupled with an 
acoustic room. It was first assumed that the global 
mode shapes remained unaffected, i.e. 𝜑𝜑�𝑖𝑖 =  𝜑𝜑𝑖𝑖  . This 
condition implied that the mode shapes did not need to 
be posed in similitude and, furthermore, ensured that 
the excitation and measurement points, which had the 
same dimensionless coordinates in both prototype and 
model, had similar behavior. Consequently, as seen in 
ASMA with Eq. (45), the cross-mode participation 
factors also did not scale, i.e. 𝜓𝜓�𝑖𝑖𝑗𝑗 =  𝜓𝜓𝑖𝑖𝑗𝑗 .  The auto-
power mobilities scaled as: 

𝛤𝛤�𝑖𝑖𝑖𝑖 =  
1

𝜆𝜆𝜂𝜂𝜆𝜆𝜔𝜔2
𝛤𝛤𝑖𝑖𝑖𝑖  . (58) 

The cross terms involved different dependencies 
from the scaling parameters and thereby could not be 
posed in direct similitude. It was then necessary to 
separate large terms from small ones by using the 
following: 

𝛤𝛤�𝑖𝑖𝑗𝑗,𝑝𝑝𝑝𝑝𝑟𝑟𝑔𝑔𝑝𝑝 =  
1

𝜆𝜆𝜂𝜂𝜆𝜆𝜔𝜔2
𝛤𝛤𝑖𝑖𝑗𝑗,𝑝𝑝𝑝𝑝𝑟𝑟𝑔𝑔𝑝𝑝 , (59) 

𝛤𝛤�𝑖𝑖𝑗𝑗,𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝜆𝜆𝜂𝜂
𝜆𝜆𝜔𝜔2

𝛤𝛤𝑖𝑖𝑗𝑗,𝑟𝑟𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝 . (60) 

The introduction of scale factors of the parameters 
directly involved in the equations made it relatively 
simple to provide a physical explanation. On the one 
hand, large values of damping would help to increase 
overlap between modes and small cross-power 
mobilities were proportional to the damping. On the 
other hand, when the modes already overlapped, to 
increase such overlap required a negligible amount of 
damping. However, damping is fundamental when the 
resonant response of each mode and the cross-modal 
power mobility must be reduced. Large cross-modal 
power mobilities must be inversely proportional to 
damping. More generally, the role of the cross-modal 
terms was not well reproduced when 𝜆𝜆𝜂𝜂  ≠ 1. Thereby, 
a complete similitude approach necessarily required 
this scale factor to be equal to unity. 

The spectral density force function or excitation, and 
other EDA parameters, already agreed with ASMA in 
Eqs. (49)–(52) and scaled as: 

�̂�𝑆𝑓𝑓 =  
𝜆𝜆𝐹𝐹
𝜆𝜆𝑀𝑀

𝑆𝑆𝑓𝑓 , (61) 

𝑃𝑃�𝐼𝐼𝐼𝐼 =  
𝜆𝜆𝐹𝐹2

𝜆𝜆𝜔𝜔𝜆𝜆𝑀𝑀
𝑃𝑃𝐼𝐼𝐼𝐼 , (62) 

𝑇𝑇� (𝑟𝑟) =  
𝜆𝜆𝐹𝐹2

𝜆𝜆𝑀𝑀𝜆𝜆𝜂𝜂𝜆𝜆𝜔𝜔2
𝑇𝑇(𝑟𝑟) . (63) 

The test article was a panel coupled with a 
parallelepiped filled with air; thus, the natural 
frequencies had to be determined for both the 
structural and fluid operators and then somehow 
linked. 

The condition for the plate in complete similitude 
was to maintain constant aspect ratio scale factors. 
Then, the natural frequencies of the plate and the fluid 
volume uncoupled and retained correct material 
properties; they scaled as: 

𝜆𝜆𝜔𝜔
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  

𝜆𝜆ℎ
𝜆𝜆𝑝𝑝2

 , (64) 
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𝜆𝜆𝜔𝜔
𝑓𝑓𝑝𝑝𝑢𝑢𝑖𝑖𝑓𝑓 =  

1
𝜆𝜆𝑝𝑝

 , (65) 

in which all the sides of the parallelepiped cavity scaled 
as the sides of a plate. 

The coupling can be expressed by a ratio, 𝛬𝛬, between 
the natural frequencies of the same mode order and of 
the structure and fluid. Not altering the relative 
distribution of modes implied retaining the scale factor 
of this ratio to 𝜆𝜆𝛬𝛬 = 1 . As a result, the application of 
these similitude conditions and scaling laws allowed 
models to be in complete similitude and to provide a 
near perfect reconstruction of the prototype behavior. 

In [24], the interest moved to analyses of avatars. The 
plates in the avatars were simply supported such that 
their natural frequencies were in complete similitude 
scale as defined by Eq. (65). Simultaneously, the scaling 
law of the velocity frequency response was given by: 

𝑉𝑉�(𝑥𝑥𝐹𝐹 , 𝑥𝑥𝑆𝑆;  𝜆𝜆𝜔𝜔𝜔𝜔) =  
𝜆𝜆𝐹𝐹

𝜆𝜆𝑀𝑀𝜆𝜆𝜔𝜔
𝑉𝑉(𝑥𝑥𝐹𝐹 , 𝑥𝑥𝑆𝑆;  𝜔𝜔) , (66) 

where the acquisition and excitation points were 
expressed in nondimensional coordinates that must 
not change. 

The original response can be recovered through a 
procedure in two steps, including a first step that aligns 
the resonance peaks by means of the frequency 
remodulation, 𝜆𝜆𝜔𝜔𝜔𝜔 , and then a second step that 
adjusts the amplitude level of the term 𝜆𝜆𝐹𝐹/𝜆𝜆𝑀𝑀𝜆𝜆𝜔𝜔. While 
satisfying the similitude conditions has led to very good 
predictions, working with avatars enables the 
reconstruction of prototype responses with limited 
discrepancies if the distortions are small. 

In [24], it was also proposed to the define metric 
representatives of the similitude degree. In this first-
ever attempt, the scale factor of modal density was used: 

𝜆𝜆𝜃𝜃 =  
𝑟𝑟𝑝𝑝𝑟𝑟𝑏𝑏
𝑟𝑟ℎ

 , (67) 

and is actually Eq. (57) rewritten under the assumption 
of unchanged material properties and an explicit area 
scale factor. The results were coherent when avatars 
were considered and the scale factor increased as the 
distortion increased. However, they were totally 
incoherent with complete similitudes. For example, a 
replica and a proportional sides model that are quite 
close in terms of similitude degree exhibited values of 
𝜆𝜆𝜃𝜃  equal to 0.33 and 8, respectively. In other words, 
modal density was not a good estimator of degree of 
similitude. 

Interesting insights into plates in similitude were 
also given also in [25] in which the test article was a 
cantilever plate; similitude conditions and scaling laws 
were the same as that of a simply supported plate (Eq. 
(64)). Numerical analyses that were accomplished with 
a constant damping ratio of 𝜁𝜁 = 0.005  and 
experimental analyses revealed that the both analyses 
gave complete similitude. 

However, new numerical tests were accomplished 
because the assumption of constant damping was not 
compliant with the experimental results. In particular, 
simulations with damping ratios equal to 0.001 and 
0.0075 were completed, and the results showed that,  
while the experimental results of the prototype were 
closer to the numerical simulations with 𝜁𝜁 = 0.001 , 
those provided by the replica were closer to the 
numerical results when 𝜁𝜁 = 0.0075. This result may be 
linked to added damping due to the boundary 
conditions which sum to the classical internal 
dissipation mechanisms of the plate. 

Furthermore, experimental tests results were closer 
to the numerical ones in regions with low modal 
density. Apparently, the size of the plates affected the 
response with high modal densities. This difference led 
to other tests with two different proportional sides 
models, one of which had dimensions twice those of the 
prototype (proportionally large) and the other with 
dimensions one-half of the prototype (proportionally 
small). The comparisons between the responses 
showed that similitudes work well when the frequency 
range contained enough poles among which the energy 
could be distributed; this fact was highlighted by the 
predictions for the proportionally large model were 
quite close to the reference one, while those provided 
by the proportionally small model were not. Tested 
with the same frequency range of the prototype, the 
smaller model exhibited fewer poles and larger 
discrepancies. Finally, the Hausdorff distance was 
tested as a similitude metric with encouraging results. 

The scaling of radiated acoustic power of a simply 
supported panel was studied attempted by Robin et al. 
[26]. Here, a main difficulty experienced was due to the 
scaling of the radiation resistance matrix, R, which the 
authors assumed to remain unchanged between the 
prototype and model. This constancy is ensured when: 

𝜆𝜆𝜔𝜔𝜆𝜆𝑓𝑓 = 1 , (68) 

where d is the distance between two elementary 
radiators. A new frequency scale factor was also 
proposed that was not derived from equations. The 
new law was: 

𝜆𝜆𝜔𝜔 =  
2

𝜆𝜆𝑝𝑝 + 𝜆𝜆𝑏𝑏
 , (69) 

where the 2 at the numerator leads to the scaling laws 
of a replica when 𝜆𝜆𝑝𝑝 =  𝜆𝜆𝑏𝑏. 

Experiments with a proportional sides model using 
Eqs. (68)–(69) showed resonance peaks of the radiated 
power that were well reconstructed over a range of 
100–1000 Hz but either underestimated or 
overestimated depending on which plate was used as 
reference at frequencies above 1000 Hz. 

SAMSARA was applied by Franco et al. [27] in 
analyzing the response of a plate under TBL excitation 
described by Corcos model. The whole engineering 
problem was transformed into a new domain by scaling 
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the excitations, structural and transmitted vibrations, 
and the structural noise. 

Firstly, it was assumed that the damping did not 
change, which is an acceptable assumption if the 
material and the boundary conditions do not change 
between prototype and model. Then, the spatial 
dependence of the analytical mode shapes was not 
modified (i.e. 𝜆𝜆𝜑𝜑 = 1), and the reduced frequency was 
the same in both x and y directions: 

𝜆𝜆𝑥𝑥𝜆𝜆𝜔𝜔
𝜆𝜆𝑈𝑈

=  
𝜆𝜆𝑦𝑦𝜆𝜆𝜔𝜔
𝜆𝜆𝑈𝑈

= 1 . (70) 

This condition ensured that the ratios 𝜔𝜔𝜉𝜉𝑥𝑥/𝑈𝑈𝑐𝑐 and 
𝜔𝜔𝜉𝜉𝑦𝑦/𝑈𝑈𝑐𝑐 remained constant between the reference and 
scaled solutions. Moreover, according to Eq. (70), the 
correlation area scaled as 𝜆𝜆𝑥𝑥𝜆𝜆𝑦𝑦  which was the same 
scale factor of the structure. The basic constraint for 
complete similitude for models with proportional sides 
models was expressed in terms of joint agreement 
between the two modes: 

�̂�𝐴𝑄𝑄𝑗𝑗𝑄𝑄𝑘𝑘 =  
𝐴𝐴𝑄𝑄𝑗𝑗𝑄𝑄𝑘𝑘
𝜆𝜆𝑥𝑥𝜆𝜆𝑦𝑦

 , (71) 

which were derived under the assumption of similar 
auto-spectral densities between prototype and model. 
Eq. (71) actually linked the geometry with the flow 
speed and, for a simply supported plate, the cross 
spectral densities of displacements scaled according to: 

𝑋𝑋�𝑤𝑤
�̂�𝑆𝑝𝑝

=  
𝜆𝜆𝑥𝑥𝜆𝜆𝑦𝑦
𝜆𝜆ℎ4

𝑋𝑋𝑤𝑤
𝑆𝑆𝑝𝑝

 , (72) 

which is valid under the assumption of constant Corcos 
coefficients. Furthermore, Eq. (71) is valid for all the 
TBL models using the same coherence functions. In fact, 
Eq. (72) descends directly from Eq. (71), in which the 
joint acceptances are ruled by the choice of coherence 
function of the TBL model. However, when the material 
was changed, Eq. (72) would become: 

𝑋𝑋�𝑤𝑤
�̂�𝑆𝑝𝑝

=  
1

𝜆𝜆𝑥𝑥𝜆𝜆𝑦𝑦𝜆𝜆ℎ2𝜆𝜆𝜔𝜔2 𝜆𝜆𝜌𝜌2
𝑋𝑋𝑤𝑤
𝑆𝑆𝑝𝑝

 . (73) 

The predictions were compared in terms of the ratio 
of auto-spectral densities of acceleration with respect 
to the auto-spectral density of wall pressure 
distributions due to TBL versus frequency. Using Eq. 
(72) for aluminum plates and Eq. (73) for steel alloy 
and acrylic cast plates leads to perfect overlaps of the 
curves, demonstrating that the approach is suitable for 
materials involving different properties. 

It was further demonstrated that, because the TBL 
load acts as an uncorrelated pressure field for 
increasing frequency, the solution was less affected by 
acceptance integrals. Hence, the condition expressed by 
Eq. (70) is no more a mandatory constraint at high 
frequencies. The auto-spectral densities measured 
experimentally confirmed the analytical results. 

Although the cross-spectral measurements were more 
noisey, it was is independent of the similitude method 
but rather due to experimental uncertainties and 
measurement processing. 

Numerical analyses were also performed for more 
complex configurations, such as composite plates. In 
this regard, Eq. (70) should be rewritten as: 
𝜆𝜆𝑥𝑥𝜆𝜆𝜔𝜔𝑚𝑚𝑚𝑚

𝜆𝜆𝑈𝑈
=  
𝜆𝜆𝑦𝑦𝜆𝜆𝜔𝜔𝑚𝑚𝑚𝑚

𝜆𝜆𝑈𝑈
= 1 . (74) 

Working with laminated plates underlines that the 
eigensolution sequences were not affected if thickness 
and, most importantly, the stacking sequence were 
unchanged. In fact, proportional sides models provided 
perfect matches even when the thickness was changed. 
Conversely, modifying the lay-out generates distortions. 

Sensitivity analysis 

Recent research has included Sensitivity Analysis (SA) 
in similitude applications and opens the way to 
analyses of the effects of multiple parameters on the 
similitude process, i.e., the amount of distortion 
associated with varying particular parameters. For 
example, Luo et al. [28] derived a set of four principles 
which supported the application of STAGE in deriving 
the exponent of scale factors and their relationship 
with frequency scale factors. Their four laws were 
aimed at deriving approximate, distorted scaling laws 
that returned errors lower than 5%. 

Adams et al. [29] applied Local Sensitivity Analysis 
(LSA) in which the response of the model was given by 
the product between the prototype response and a set 
of scale factors, with each factor weighted by an 
exponent calculated by applying Buckingham’s Π 
Theorem. In this manner, SA enabled the determination 
of sensitivity-based conditions that were derivable 
without having any prior knowledge of the scaling 
behavior of the system and with small effort instead of 
deriving similitude-based conditions; this method can 
also be implemented easily in an algorithm. However, 
the method is not lacking of drawbacks. First, it was 
sensitivity-based and did not rely on physical insights. 
Moreover, complex systems may incur prohibitive 
computational cost. 

It is interesting to notice that, in [29], the exponents 
obtained by means of SA led to a frequency scaling law 
for a simply supported plate with the form: 

𝜆𝜆𝜔𝜔 =  𝜆𝜆𝑝𝑝−2𝜆𝜆ℎ1  . (75) 

Eq. (75) is the same frequency scaling law obtained 
with STAGE and SAMSARA. 

SA was applied to simply supported Kirchhoff plates 
and to a Mindlin-Reissner plates. The latter case may be 
the most interesting, and highlighted the pitfalls of SA 
originating from its mathematical foundations. In 
particular, the sensitivity analysis tended to 
overestimate both natural frequencies and Mean 
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Squared Transfer Admittance (MSTA) because the 
method did not consider the influence of thickness. 
This example is an important reminder of problems 
that may arise when an approach lacks any link to 
actual physical behaviors of a plate. 

Some remarks 

This brief review shows that even though DA and 
STAGE have been the most used approaches [4], their 
application has not been broadly used in vibracoustic 
fields. The main reason lies in the complexity of the 
physical phenomena governing the field that involve 
many parameters for which the derivation of similitude 
conditions and scaling laws is not a straightforward and 
requires an experienced analyzer. For example, the 
work by Ciappi et al. [5] clearly demonstrated that the 
investigation of a typical noise problem in transport 
engineering can lead to defining 11 dimensionless 
terms; although this number can be reduced, it is only 
accomplished by means of a thorough analysis of 
physical meanings and effects. 

The applications in which STAGE has been applied 
[8–14] have shown that the derivation of similitude 
conditions and scaling laws can become more 
problematic by simply adding a new degree of difficulty, 
such as changing the type of material, eg. for isotropic 
or composite plates. This difficulty is a natural 
consequence of the increase of the number of 
parameters describing the material, and only by 
assuming simplifying hypotheses it is possible to 
reduce the number of similitude conditions. A fresh 
approach may be a consequence of the modular 
approach proposed by Coutinho et al. [14]. 

Thus, it is not surprising if new methods have been 
introduced in the last years that attempt to overcome 
the excessive freedom of DA or the stiff procedure of 
STAGE; they strive to look at scaling problems from new 
perspectives, such as in energetic problems. One such 
new method is ASMA, based on an energy approach and 
by introducing two scale factors modulating the 
geometrical scaling and the distribution of energy in 
frequency, has been shown to be able to reproduce the 
global response of structural systems. At the same time, 
ASMA is an interesting solution to the infamous 
problem of the computational costs when applying 
FEM to high frequency dynamics problems. 

SAMSARA is justified, as is ASMA, with EDA but 
significative differences exist between these methods. 
First of all, ASMA requires only two scale factors that 
can assume any value between 0 and 1; however, in 
general, their mutual relationship must be determined. 
On the other hand, SAMSARA uses as many scale factors 
as the number of parameters involved. Their evaluation 
is straightforward because it is provided by the direct 
ratio between the model and prototype parameter 
values. This relative simplicity allows similitude 
conditions and scaling laws to be derived in a classical 

fashion, as STAGE does. The work by Franco et al. [27] 
has confirmed the flexibility of the method that is able 
to deal with complex problems such as the response of 
a plate under TBL. Last, but not least, SAMSARA 
recovers both the global and local response with a very 
good accuracy. 

SA, instead, opens the way to scaling laws derived out 
of any physical framework but with a mathematical 
approach. Even though this may be a drawback, it is 
undeniable that the possibility of automatizing the 
procedure with an algorithm is quite an interesting 
perspective. 

Despite the quantity of methods and working 
principles, many of them comply with the similitude 
conditions for a true model. A most important 
condition is the aspect ratio which must scale equal to 
one. This restriction is governed by the equations [8–
12], the modular approach [14] and SAMSARA [23–25] 
applied to the equation of the natural frequencies. It is 
through the SAMSARA method, indeed, that such 
results become easier to understand and why the 
aspect ratio has such a relevant effect—basically, length 
and width rule the modes succession. When aspect 
ratios are distorted, it is true that the frequency scale 
factor is no longer constant in the entire frequency 
range since each natural frequency would scale 
according to different factors. However, the scaling law, 
as shown by Eq. (64), provides a fixed value of 
frequency scale factor, and this directly affects Eq. (66) 
in which the velocity response is clearly linked to this 
scale factor. 

The similitude conditions become more restrictive in 
[23], where not only the length and width of the plate 
must scale similarly but also the sides of the acoustic 
cavity. Moreover, the geometrical properties of both 
plate and cavity must scale in the same way because of 
fluid-structure coupling. Physically, the succession of 
modes is altered if the amount of distortion is 
significant. When a plate is excessively distorted, the 
remodulation procedure is incapable of replicating the 
mode swap, and causes inconsistency in both 
frequency and amplitude. 

However, parameters such as thickness and isotropic 
material properties which like length and width affect 
the wave speed as well as the wavenumber, do not 
appear in the similitude conditions. Possibly, this 
happens because the thickness, Young’s modulus and 
mass density are separable from the number of half 
waves (or nodal lines), while this separability is not 
possible for both length and width. Furthermore, the 
situation changes completely when new structural 
configurations are introduced like in stiffened plates 
where thickness is no more a free parameter (as Eq. (36) 
shows). In this regard, STAGE and SAMSARA also agree 
on the conclusion that ply-level scaling returns 
complete similitude [10, 27]. 

A common point shared by ASMA and SAMSARA 
concerns spatial scaling. Basically, it is necessary to 
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ensure that homologous points—at the same 
nondimensional coordinates—are placed in similitude 
if the same excitations and responses are to be 
compared. Notably, this idea is at the base of the scaling 
of the correlation area in the Corcos model, and leads to 
the condition 𝜑𝜑�𝑖𝑖 =  𝜑𝜑𝑖𝑖   in SAMSARA that, applied to 
EDA, returns 𝜓𝜓�𝑖𝑖𝑗𝑗 =  𝜓𝜓𝑖𝑖𝑗𝑗 . The same conclusion is 
drawn with ASMA. Moreover, in both methods, the 
auto-modal and large cross-modal power mobilities 
scale with the same law, which is different from that of 
the small cross-modal power mobilities. 

However, significant differences also exist. For 
example, SAMSARA scales the input power according to 
Eq. (62) while it is not scaled at all in ASMA (Eq. (49)). 
While damping scaling is necessary in ASMA to balance 
the effect of geometrical scaling, in SAMSARA it must 
not change if complete similitudes are desired [23]. 
Nonetheless, such a condition is not easy to setup in 
experimental tests especially due to boundary 
conditions, as seen in [25]. 

Finally, similitudes provide important insights in 
experimental procedures. First, as noted in [27], 
remodulated results, which should coalesce into a 
single curve along with the prototype results, may 
provide information at hand about the quality of the 
measured data as well as discrepancies in some 
frequency ranges. Furthermore, accurate predictions of 
prototype behaviors may heavily affect actual 
experimental setups. As already explained in the work 
from Meruane et al. [25], scaling down a structure 
moves the natural frequencies to higher values. In this 
case, a good prediction is only possible if the model is 
tested in a frequency range wider than that of the 
prototype to enable consideration of a correct number 
of poles. In [27] this fact was underlined in scaled-down 
models, i.e. 𝜆𝜆𝜔𝜔 > 1, broadly affect the experimentation 
in terms of choice of sensors, sampling frequency, 
frequency windowing and signal dynamics. 

Further research and conclusions 

This brief review highlights the importance of 
similitude theory in vibroacoustics. Not only is it useful 
in reducing the complexity and costs of necessary 
laboratory experimentation, it also presents a 
synthesized form of equations governing the 
phenomena under investigation and highlighting 
fundamental parameters and their interactions. 

Some similitude methods have been proven to be 
suitable for complex applications but all cannot deal 
with distorted models. Partial similitudes are not 
purely analytical because manufacturing limits and 
errors may prevent the production of models compliant 
with the similitude conditions. Therefore, it remains 
necessary to develop more fundamental insight into 
how to deal with these models and how to reconstruct 
prototype behaviors. 

In this regard, two approaches seem to very 

interesting and informative. First, try to reconstruct a 
prototype response mode-by-mode. In this way it may 
been possible to understand and overcome assessment 
problems associated with distortions in natural 
frequencies, dynamic responses and radiated power. 
Furthermore, the explosion of machine learning 
techniques may prove helpful in finding implicit 
relationships between prototypes and distorted 
models. 

Finally, it may be of great relevance to further the 
development of metrics for similitude degrees, like that 
attempted in [24–25]. In fact, defining these metrics 
may open the way to other, new approaches to 
similitudes. 
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