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A DIET ENRICHED IN STEARIC ACID PROTECTS AGAINST THE 

PROGRESSION OF TYPE 2 DIABETES IN LEPTIN RECEPTOR DEFICIENT MICE 

(DB/DB) 

Dietary saturated fat intake contributes to diabetes and cardiovascular disease, as shown 

in numerous animal and human studies. However, the hypothesis that stearic acid, a 

saturated fat, has beneficial effects on these conditions has not been adequately tested.  

Leptin receptor deficient mice (db/db) and wild-type mice were fed either chow or a high 

fat diet enriched in either stearic acid or oleic acid for ten weeks. The progression of 

diabetes was evaluated with blood glucose, insulin, and metabolic parameter 

measurements. At the conclusion of the study, pancreatic islet organization was 

examined, and blood, liver and feces were assayed for fatty acid content.  

The stearic acid enriched diet prevented increases in blood glucose levels independently 

of weight loss in db/db mice compared to an oleic acid or chow diet. Diabetic mice fed 

stearic acid maintained insulin responsiveness and pancreatic islet organization compared 

to the db/db mice fed chow and oleic diets. The islet organization of the stearic acid fed 

mice did not change over the course of the study and was similar to that of wild-type 

mice fed the same diet. Conversely, diabetic mice fed oleic acid and chow diets had 

decreased insulin responsiveness and disorganized islets. Stearic acid fed db/db mice had 

high fecal fat content and caloric intake calculations indicated low absorption of this fat.  

Switching to stearic acid after prolonged hyperglycemia had a rescue effect on blood 

glucose levels. After feeding diabetic and wild-type mice standard chow diets for 6, 8, 

and 10 weeks to establish hyperglycemia, mice switched to a high fat diet enriched in 

stearic acid, but not one enriched in oleic acid diet, had significant reductions in blood 

glucose levels. 

The ability of a stearic acid enriched high fat diet to slow the progression of diabetes and 

reverse hyperglycemia in db/db mice argues that risks and benefits of fats in the diet 

depend on the chemical structure, rather than the chemical class, of fats ingested. The 

beneficial effect of stearic acid appears to be associated with a decreased absorption of 

dietary fat. 
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 Treatment, Dietary Modification  
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Chapter 1: Background 

1.1 Diabetes and obesity 

 Diabetes is a widespread disease affecting an estimated 23 million Americans, 

and according to the American Diabetes Association, only two thirds of these cases have 

been diagnosed (66). The majority of cases of diabetes are type 2 diabetes. Additionally, 

type 2 diabetes is now a worldwide disease. The World Health Organization estimated 

135 million people worldwide have diabetes in 2000, and the number of people with 

diabetes has been projected to reach over 300 million worldwide in the next ten years 

(105). The majority of new cases of type 2 diabetes will be in developing countries, and 

these new cases will double the current incidence of the disease (4). 

 The increased incidence of type 2 diabetes in developing countries begs the 

question, what is contributing to the onset of type 2 diabetes? One of the leading risk 

factors for developing type 2 diabetes is obesity. Similar to the increased incidence of 

diabetes, the incidence of obesity is also dramatically increasing. From 1976 to 1994, 

obesity in the United States has increased 8% and statistical projections predict future 

increases (19, 62). These increases align with the increased incidence of type 2 diabetes. 

Startlingly, the rate of obesity development is not greatest in adults; rather, children and 

adolescence have experienced the greatest rate of obesity development. Nearly 17% of 

U.S. children are obese and that figure has tripled since 1980 (84, 141). Globally, nearly 

1.5 billion adults and over 40 million children are overweight or obese, as reported by the 

World Health Organization in 2008 (19). In the United States, over one-third of the adult 

population is obese (62). Additionally, approximately 190,000 Americans under the age 

of 20 have been diagnosed with type 2 diabetes and that number continues to increase. 
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Therefore, there is an urgent need for research in dietary contributions and modifications 

to halt the progression of, and lower the incidence of, type 2 diabetes worldwide.  

1.2 Diet impact on diabetes 

 In an effort to reduce the risk of developing type 2 diabetes, many dietary 

recommendations have been made. Dietary components, such as carbohydrates, proteins 

and fats, have all been adjusted in an effort to lower blood glucose levels. The 

components of the diet, especially the amounts and types of fat, are major contributors to 

obesity and diabetes. However, a major problem still remains: overconsumption of 

nutrients leads to the development of obesity and type 2 diabetes. Americans are 

practiced in over-nutrition, too many calories and too much of each nutrient, 

carbohydrate, protein and fat. An average American man requires approximately 2000 

calories a day to maintain normal weight and function (46). However, consuming over 

2000 calories is more common than not, leading to weight gain and obesity. Additionally, 

these dietary calculations have not been adjusted for changes in energy expenditure (18). 

Most Americans are not expending 2000 calories per day and therefore should be 

consuming less than 2000 calories (152).  

Dietary interventions have been employed throughout type 2 diabetes treatment 

history. In early diabetes research, the removal of carbohydrates from the diet was 

thought to help control blood glucose levels (87, 93, 133, 159). While this does tend to be 

effective for a brief time, the frank removal of a nutrient group is not sustainable. With 

glycemic index monitoring, different types of carbohydrates have been shown to affect 

blood glucose levels differently. On the basis of these observations, adjusting the diet to 
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incorporate more of the carbohydrates that do not adversely affect blood glucose levels 

has been promoted (159).  

In the low glycemic index diets, such as the Zone and South Beach diets, 

carbohydrates are ranked according to their capability to increase blood glucose levels on 

a scale of 1-100 with 100 being the glucose reference point (133, 159). Low glycemic 

carbohydrates are more slowly absorbed so as to minimize blood glucose spikes. A few 

examples of low glycemic foods are whole grains, fruits and legumes; however, some 

low glycemic foods such as candy bars with nuts are not healthy (133). Though these 

foods contain low glycemic loads, they may also contain more fat. Additionally, the 

major outcome of these diets is not necessarily lower blood glucose, but a weight 

reduction by removing excess calories from the diet (59).  

 The Atkins diet has exploited the differential energy utilizations of protein and fat 

for weight loss. The Atkins diet is a low carbohydrate, high protein, moderate fat diet that 

has been beneficial in promoting weight loss (1, 2, 107, 113, 145, 153). Dietary 

components have different energy content. While carbohydrates, in the form of glucose, 

are the preferred energy source of our bodies, more energy can be extracted from proteins 

and fats than from carbohydrates. However, this increase energy extraction comes at a 

price. More energy is required for the metabolism of proteins and fats than for 

carbohydrate metabolism. The Atkins diet prescribes an elimination of carbohydrates 

from the diet while increasing protein intake regardless of fat content (168). The 

elimination of carbohydrates removes the preferred and efficient fuel source from the 

body. Metabolism of proteins and fats essentially burns more energy and is much slower 

than carbohydrate metabolism thus resulting in rapid weight loss. However, this diet has 
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some drawbacks. Low carbohydrate/high protein diets like the Atkins diet require the 

adoption of special precautions because of increased risk of raising plasma cholesterol 

levels (8). Additionally, the body as a system cannot be maintained on this limited diet. 

Most often, protein and fat are over consumed and converted to fat, thereby increasing 

body mass and defeating the ability of the diet to control blood glucose levels.  

Diets such as the Atkins diet and the Mediterranean diet are utilized to lower 

blood glucose levels and body mass. The Mediterranean diet is a low fat, high fiber diet 

that has a low glycemic load and is rich in unsaturated fat. It promotes decreased insulin 

resistance and weight, both of which contribute to lower risk of developing type 2 

diabetes and cardiovascular disease (144). The Mediterranean diet gained popularity after 

several observational studies concluded that the incidences of diabetes and coronary heart 

disease are lowest in Mediterranean countries (103).  The Mediterranean diet is high in 

unsaturated fat, indicating that, in addition to the amount of fat consumed in the diet, the 

kind of fat consumed may be important.  

 A reoccurring theme throughout the literature is that the normal, healthy diet 

should principally contain unsaturated fats with low amounts of saturated fats and no 

trans fats (16, 17, 24, 34, 60, 67, 73, 76, 81, 82, 87, 104, 111, 124, 127, 135, 146, 151, 

156, 165, 177). The recommended decrease in fat intake is beneficial in treating both 

obesity and type 2 diabetes by promoting weight loss. On average, a 7% or greater 

reduction in weight while on a fat or calorie restricted diet has been shown to decrease 

overall body mass and reduce diabetic symptoms, such as insulin resistance (6). The 

dietary modifications suggested by both the American Diabetes Association and the 

World Health Organization are increased dietary fiber and decreased overall fat intake, 
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especially minimizing saturated and trans fat intake (122). The overconsumption of 

dietary fats is a major risk factor in developing obesity and obesity-related diseases such 

as type 2 diabetes.  

 The current dietary treatments for type 2 diabetes, including the Atkins, 

Mediterranean, and South Beach diets, have depended upon elimination of a nutrient 

group and focused on decreasing body mass to reduce blood glucose and halt the 

progression of type 2 diabetes. However, these high failure rates and short lifespan of 

these diets makes them poor permanent solutions for the treatment of type 2 diabetes. A 

more focused approach by closely examining the differential effects of fats in the diet 

might be more effective in minimizing type 2 diabetes and its physiological 

consequences.  

1.3 Dietary Fat 

Dietary fats can be classified as either saturated, unsaturated, or trans depending 

on the types, placement, and origination of carbon-carbon bonds in the fatty acids 

(Figure 1.3.1). In saturated fats, each carbon is fully saturated with hydrogen and 

therefore the carbons have only single bonds between them (92). Unsaturated fats have at 

least one double bond and are named by the placement of the double bond (63). Trans 

fats, which rarely occur in nature, are unsaturated fats where the carbon chains extend off 

of the opposite sides of the double bond. Trans fats, were developed as a butter 

alternative in response to population growth, widespread use of refrigeration, and 

decreased butter supply (112). All classes of fats can vary in chain length, and this 

variation in chain length also alters the metabolism of fats. Long fatty acids require 
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additional cleavage steps, decarboxylation, to convert each long fatty acid into acetyl 

groups that enter the Krebs cycle during metabolism (176). 

Many studies investigating the effects of dietary fat are not diet studies at all but 

instead are biochemical studies in cultured cell models (54, 111, 125, 142, 148, 151). 

Culturing cells in specific concentrations of dietary fat cannot hope to provide an 

accurate picture of how the body handles (metabolism and absorption) fat. These studies 

only tell us how the cells tolerate the concentration of fat in the culture media. The 

amount of fat added to the culture media may not be an accurate representation of the 

amount of fatty acid that is actually bathing the cells after absorption and metabolism of 

the fat.  

  This dissertation examines two dietary fats typically found in the American diet: 

stearic acid, a saturated fat, and oleic acid, a mono-unsaturated fat and their effects on 

blood glucose levels in a diabetic mouse model. The major flaw in the thought that the 

saturation of fat can predict the incidence of cardiovascular disease is that not all fats 

have been thoroughly investigated for their metabolic properties. Lumping a group of fats 

together based on the results given by one or two fats is not a valid venture. This 

dissertation examines the nutritional and metabolic differences between stearic acid, a 

saturated fat, and oleic acid, an unsaturated fat in diabetic and wild-type mice.  

Studies of saturated fats have concluded that saturated fats increase the risk for 

cardiovascular disease, increase plasma cholesterol levels, and promote insulin resistance 

(74, 86, 162). Studies of unsaturated fats have found that unsaturated fat decreases risk 

for cardiovascular disease and; decreases cholesterol levels only if included in a low fat 

diet regimen (9, 23, 71). However, insulin resistance and blood glucose levels are 
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unchanged if they are included in a high fat diet, typical of the American diet (98, 174). 

The lack of concrete mechanistic and long-term nutritional studies on the effects of 

individual fatty acids in the diets of healthy subjects fuels the good versus bad fat debate. 

This study investigated the differential effects of one saturated fat, stearic acid, and one 

unsaturated fat, oleic acid, on the progression of type 2 diabetes. 

1.3.1 Saturated fat  

Estimates of the total content of saturated fat in the typical American diet varies 

from as high as 25% to as low as 12% of the total calories coming from saturated fat (10, 

16, 21). In the third National Health and Nutrition examination Survey, the average 

saturated fat content in the diet was assessed at only 12% (5).  The current National 

Research Council recommendation for saturated fat consumption is 10% or less of the 

total daily caloric intake (76, 114, 177). The progressive elimination of dietary saturated 

fat has driven the commercial use of hydrogenation of unsaturated fats to provide an 

easier and more stable cooking alternative to butter.  

The lack of scientific and mechanistic understanding of the detrimental effects of 

saturated fat on plasma lipoprotein levels makes it possible that broad generalizations 

about this fat class are premature and unwarranted. Saturated fats have been labeled as 

‘bad fats’ because of their association with increasing overall plasma lipoprotein levels 

(21, 37, 47, 48, 110, 132, 134). Therefore, only saturated fats that deleteriously effect 

plasma cholesterol levels have been extensively studied. The most studied dietary 

saturated fat is palmitic acid. However, other saturated fats have beneficial effects on 

plasma cholesterol levels. One of the beneficial saturated fats is stearic acid (15, 140).  
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1.3.2 Stearic acid 

The U.S. Beef and Cattle Industry reports that beef is one of the dietary protein 

staples in the U.S., with over 25 billion pounds of beef consumed every year (47, 96, 

134). Stearic acid constitutes roughly 25% of the total saturated fat consumed by 

Americans and is found in highest abundance in red meat, coconut oil, and cocoa butter 

(40, 47). Although stearic acid is one of the major fats in the American diet, few studies 

have examined the effects of stearic acid on the progression of obesity and obesity related 

diseases such as type 2 diabetes or the effects of dietary stearic acid on blood glucose 

levels, insulin sensitivity or glucose tolerance. Since stearic acid has been categorically 

classified as one of the detrimental fats along with all other saturated fats, it is not 

included in most dietary studies even though it is a major fat in the American diet (119, 

171). This lack of research and the categorization of fats have left saturated fat relatively 

unexplored in terms of metabolic effects and therefore open to misinterpretation, 

especially in dietary recommendations for treatment of disease. 

Since the consumption of dietary saturated fat is linked with cardiovascular 

incidences, many studies have evaluated the effect of stearic acid on plasma lipoproteins. 

The majority of these studies have found that stearic acid is beneficial in lowering total 

LDL cholesterol levels, but HDL and total cholesterol levels are elevated (53, 75). A few 

studies have found that stearic acid does not alter the plasma cholesterol profile (37, 110). 

A few other studies show that stearic acid lowers total cholesterol as well as LDL levels 

(42, 158). These results are contradictory to the current thought that all saturated fats 

should be avoided due to the increased total plasma cholesterol effect some saturated fats 

have shown. Consequently, stearic acid is considered to be a neutral or inert fat unlike 
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most other saturated fats (21, 72, 75, 158). The neutral or beneficial effects of stearic acid 

on plasma cholesterol levels are an indicator that stearic acid is not like most saturated 

fats and may have additional beneficial effects that can be used to treat type 2 diabetes. 

Stearic acid could be used as a dietary treatment for type 2 diabetes without the concern 

of harmful cardiovascular effects since stearic acid has neutral effects on plasma 

lipoproteins. 

1.3.3 Unsaturated fat 

Another category of dietary fats is unsaturated fat. These fats have a least one 

double carbon-carbon bond in the chain. Unsaturated fats have been promoted as ‘good 

fats’ because they lower LDL and increase HDL levels when compared to the effects of 

saturated fats (27). They have usurped many saturated fats in the diet as a preventative 

measure against diabetes and cardiovascular disease because of these plasma lipoprotein 

effects.  

Though unsaturated fats are all promoted as healthy fats, there are inconsistencies 

and contradictions in this branch of fats as well. In diabetes research, mono-unsaturated 

omega-9 and the poly-unsaturated omega-6 fats have been reported to be both beneficial 

and detrimental for insulin resistance (3, 14, 113, 116).  

Some unsaturated fats are also linked to plaque formation, a similar observation 

as in saturated fats. Poly-unsaturated fats have also been shown to accumulate in arteries 

and form atherosclerotic plaques (60). Conversely, unsaturated fats called omega-3 fatty 

acids, found in cold-water fish such as salmon and herring, are positively associated with 

reductions in atherosclerotic plaque formations and reductions in plasma cholesterol. In 
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diabetes, these fats are linked to reversing insulin resistance. However, like many other 

fatty acids, the mechanism of action is unknown.  

It is interesting that in both classes of fats there are contradictions amongst the 

members of each class. Some saturated fats, like stearic acid have no negative effects on 

insulin or plasma lipoproteins, and some unsaturated fats, like the polyunsaturated fats, 

have no positive effects on insulin resistance or plasma lipoprotein levels.  

1.3.4 Oleic acid 

 One dietary recommendation prescribed to type 2 diabetics is the Mediterranean 

diet, a moderate fat diet (~20% kcal from fat) enriched in fruits, legumes and olive oil, 

which provides the major fat in the diet. The major fatty acid component of olive oil is 

oleic acid, the unsaturated fat that health professionals have recommended to be in the 

diet.  Oleic acid is a mono-unsaturated dietary fat that is, like stearic acid, 18-carbons in 

length with one double bond at the ninth carbon.  Oleic acid has been reported to 

decrease insulin resistance (16).  

Additionally, oleic acid has been shown to decrease total plasma cholesterol and 

low density lipoprotein (LDL) levels while increasing high density lipoprotein (HDL) 

levels (111). There has been no association between oleic acid and poor fatty acid 

absorption from the gut. The absorption of oleic acid is comparable to the absorption of 

palmitic acid, perhaps the most studied dietary fat (64). This positive effect on plasma 

lipoproteins has caused nutritionist and patient care specialists to recommend the use of 

oleic acid as a dietary mechanism to control or lower blood glucose levels.  
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1.4 Animal models of type 2 diabetes 

 The experimental limitations of human studies make appropriate animal models a 

valuable tool in identifying mechanisms of type 2 diabetes progression. Moreover, animal 

models are useful for developing and testing new treatments of human disease. An ideal 

model of type 2 diabetes is one in which the physiological aspects of human type 2 

diabetes can be easily and efficiently reproduced.   

 The db/db mouse model is an attractive model for type 2 diabetes because the 

human disease can be easily and efficiently reproduced in this mouse. Hummel et al (88) 

first described the db/db mouse in 1966 as a model for type 2 diabetes. In this mouse 

model, a leptin receptor defect results in a truncated form of the leptin receptor protein 

(88). This truncated leptin receptor results in a hyperphagic and obese mouse, similar to 

human type 2 diabetes, that decreases active receptor formation, decreases ligand 

binding, and decreases receptor activation (115). This truncated leptin receptor is also 

found in humans,  and though it is not the cause of the majority of diabetic cases, serves 

as an efficient, malleable model of human type 2 diabetes (61). 

Leptin is an adipocyte secreted protein that regulates satiety in the hypothalamus 

of the brain. After a meal, leptin is secreted from the adipocytes and feeds back onto the 

satiety pathway stopping the urge to eat. Without leptin, the negative feedback system is 

lost, and the animal eats insatiably and gains weight. 

Type 2 diabetes progresses quickly in the db/db mouse model. As early as ten 

days of age, db/db mice have increased insulin secretion and moderate hyperglycemia.  

Plasma insulin levels continue to increase for three months as beta cell mass increases in 

an attempt to compensate for the increased severity of hyperglycemia (61). A drop in 
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insulin to near normal levels may occur after three months of age as the beta cells begin 

to atrophy and die (61). Plasma glucose levels increase to over 400 mg/dl, a level that is 

maintained throughout the lifespan of the mouse leading to an abbreviated lifespan 

compared to the wild-type mouse (38).  

1.5 Statement of Research 

 Overconsumption of the diet is widespread and leads to obesity and type 2 

diabetes. High dietary fat is one of major contributors to obesity and type 2 diabetes. 

Some nutritional interventions have aimed at decreasing carbohydrate and fat content in 

the diet in an effort to lower body mass and blood glucose levels. However, the success 

rate and longevity of these diets are low. Previous nutritional studies have shown that 

saturated fat increases the risk for cardiovascular disease as well as type 2 diabetes and 

additionally have shown that low fat diets enriched in unsaturated fats, such as oleic acid, 

could improve insulin resistance, lower body mass and blood glucose levels. The current 

American Diabetes Association recommendations of a low fat diet containing mostly 

unsaturated fats and exclude most saturated and all trans fats. These past studies have 

done little to examine the effects of individual fatty acids on weight and blood glucose 

levels. 

The human diet is composed of a mixture of fats making it challenging to draw 

conclusions about the impact of any particular fatty acid on the progression of disease 

states such as diabetes.  Therefore, more studies are necessary to evaluate the effects of 

specific fatty acids, such as stearic and oleic acids, on diabetes and heart disease. Most of 

what is known about the functions of fatty acids is fragmented and biased by the 

assumptions made within the experimental investigations in which the fatty acids were 
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studied. This bias is particularly true for studies of the saturated fatty acids, most of 

which have been examined solely for their tendency to alter lipoprotein metabolism and 

to influence the concentrations of lipoproteins that carry cholesterol in blood. 

 Stearic acid is one of the three most common saturated fats in the diet, 

constituting roughly 25% of the total saturated fat consumed by Americans. It is found in 

highest abundance in red meat, coconut oil and cocoa butter (40, 47). Since stearic acid 

has been categorically classified as one of the detrimental fats, few studies have 

examined the specific effects of stearic acid on blood glucose levels or insulin sensitivity 

(55, 123). In cardiovascular research, stearic acid has no effect on plasma cholesterol 

levels (75). Consequently, stearic acid is considered to be a neutral or inert fat, unlike 

most other saturated fats (21, 72, 75, 158).  

 For this study, high fat diets were designed to mimic Western diets that typically 

contain at least 35% of their caloric value from fat; the experimental diets contained 40% 

of the total kilocalories from fat. For each experimental diet, the majority of the fat 

content was either in the form of stearic acid (85% of total fat) or oleic acid (67% of total 

fat). These diets were fed to db/db mice and wild-type mice for ten weeks.  

Aim 1: Determine if a high fat diet enriched in stearic acid slows the progression of 

type 2 diabetes in diabetic (db/db) mice. High fat diets enriched in saturated fat have 

been labeled as detrimental to overall health and allegedly linked to elevated incidence of 

cardiovascular events. However, the saturated fat stearic acid has no effect on plasma 

cholesterol levels unlike the saturated fat palmitic acid, which increases LDL cholesterol. 

If stearic acid has beneficial effects on type 2 diabetes, it could be included in the diet 

without detrimental cardiovascular effects.  
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Aim 2: Determine the appropriate dietary dose to get a beneficial effect of decreased 

blood glucose from stearic acid in db/db mice. A high-fat diet has clinical 

complications other than type 2 diabetes, such as cardiovascular disease and obesity. 

While the high fat diet enriched in stearic acid may have beneficial effects, it is unlikely 

that nutritionists and patient care specialists will recommend a high fat diet to patients. 

Additionally, the U.S. Department of Agriculture recommends a diet containing less than 

30% fat. Therefore, lowering the fat content in the diet to 17% of the total kilocalories 

from fat may be a more viable and attractive dietary intervention for the treatment of type 

2 diabetes.  I created and tested a moderate fat diet enriched in stearic acid in order to 

evaluate the if stearic acid in a moderate fat diet had the same beneficial effects on blood 

glucose levels as the high fat diet enriched in stearic acid.   

Aim 3: Determine if a high fat diet enriched in stearic acid will lower blood glucose 

levels in diabetic mice with prolonged and untreated hyperglycemia. In humans, 

diabetes is not treated until after clinical symptoms, such as hyperglycemia, have been 

present, sometimes for years; therefore, the ability to rescue the normal blood glucose 

phenotype by diet modification would be advantageous.   
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Figure 1.3.1: Typical Dietary Fat Models.  

A. Stearic acid is an eighteen carbon saturated fat that is most abundant in red meat and 

chocolate. B. Oleic acid is an eighteen carbon unsaturated fat found in olive oil. C. Trans 

fats can be long or short chained unsaturated fats where hydrogens bound to the carbons 

at the double bond extend from the same side of the double bond. Red spheres are 

oxygen. 
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Chapter 2: A High Fat Diet Enriched in Stearic Acid Slows the Progression of Type 

2 Diabetes in db/db Mice 

 

2.1 Introduction 

A diet high in fat contributes to the progression of type 2 diabetes (24, 137, 151). 

Most diabetic nutritional studies have focused on general classes of dietary fat, saturated 

versus unsaturated, but have left any differential effects of individual fatty acids 

relatively unexplored (135, 142, 151). Previous studies reported that low fat diets 

enriched in unsaturated fats have beneficial effects on insulin sensitivity and glucose 

tolerance, but diets enriched in saturated fats have detrimental effects on insulin 

sensitivity and glucose tolerance (50, 54, 171). In contrast, all high-fat diets, other than n-

3 fatty acids, reportedly led to insulin resistance (165). These data suggest that the effects 

of dietary fats on the progression of type 2 diabetes can be predicted simply from the 

degree of saturation of ingested fat.  

 In cardiovascular research, individual fats have been studied for their effects on 

cholesterol profile and progression of cardiovascular disease. Saturated fats have, in fact, 

been labeled as ‘bad fats’ because of their association with increasing overall cholesterol 

and LDL levels (21, 37, 47, 48, 110, 132, 134). Conversely, unsaturated fats have been 

promoted as ‘good fats’ because they lower LDL and increase HDL levels when 

compared to the effects of saturated fats. They have usurped many saturated fats in the 

diet as a preventative measure against diabetes and cardiovascular disease. In particular, 

oleic acid, an 18-carbon mono-unsaturated fatty acid, lowers LDL and raises HDL levels 

when compared to the saturated fats palmitic acid and myristic acid (16). In the Western 

diet, at least 35% of the calories are from fat. The American Heart Association 
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recommends no more than 30% of calories be from fat in the diet (108). Given that 

positive orosensory feedback of dietary fat consumption works against efforts to reduce 

fat consumption, identifying specific fats that are inert or even beneficial in terms of type 

2 diabetes and cardiovascular disease would offer promising alternatives for nutritional 

intervention (39).   

  Stearic acid is one of the three most common saturated fats in the diet, 

constituting roughly 25% of the total saturated fat consumed by Americans.  It is found in 

highest abundance in red meat, coconut oil and cocoa butter (40, 47). Since stearic acid 

has been categorically classified as one of the detrimental fats, few studies have 

examined the effects of stearic acid on blood glucose levels or insulin sensitivity (55, 

123). In cardiovascular research, stearic acid has no effect on plasma cholesterol levels 

(75). Consequently, stearic acid is considered to be a neutral or inert fat, unlike most 

other saturated fats (21, 72, 75, 158). In this study I hypothesize that the 18-carbon 

saturated fat, stearic acid, has beneficial effects on the progression of diabetes. 

For this study, high fat diets were designed to mimic Western diets; the diets 

contained 40% of the total kilocalories from fat. The majority of the fat content was 

either in the form of stearic acid (85% of total fat) or oleic acid (67% of total fat). These 

diets were fed to db/db mice and wild-type mice for ten weeks. Db/db mice fed a high fat 

diet enriched in stearic acid had lower blood glucose levels than db/db mice fed either the 

high fat diet enriched in oleic acid or the standard chow diet. These effects on glucose 

were independent of weight loss. Instead, the stearic acid diet was associated with 

reduced fat absorption and as a consequence metabolic switches from fat to protein and 

carbohydrates for calories and energy derivation. 
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2.2 Materials and Methods 

2.2.1 Animals 

 Initial cohorts of wild-type, age-matched, male C57BLKS/J (WT, n=105) and 

BKS.Cg-Dock7
m
 +/+ Lepr

db
/J (db/db, n=105) mice were purchased from The Jackson 

Laboratory (Bar Harbor, Maine) at four weeks of age.  Upon receipt they were acclimated 

for one week to baseline conditions of a 12-hr light/dark cycle at 25°C on an ad libitum 

diet of commercially available rodent chow diet (2018 Teklad Global 18% Protein 

Rodent Diet; Harlan Laboratories, Madison, Wisconsin). At five weeks of age, I weighed 

the mice, gave each an ear tag, drew blood for a baseline blood glucose measurement, 

and randomly assigned each mouse to a diet group (n=5 mice per group per genotype). 

The diets were the baseline chow diet and two experimental diets (40% kcal stearic acid 

diet Harlan Teklad TD.04096, 40% kcal oleic acid diet TD.09055). Mice were fed ad 

libitum for 10 weeks. Metabolic measurements were performed every two weeks through 

the duration of the study (Figure 2.2.1). About one year later a second cohort of mice 

(n=10 animals per diet per genotype) was treated identically and used to make additional 

metabolic and food consumption measurements. Weight, blood glucose and insulin 

tolerance measurements were made only at the start of the diet and at the endpoint in this 

cohort of animals. A rescue study was designed with aged WT (n=16) and db/db mice 

(n=16) in a third, and final cohort. These mice were purchased from The Jackson 

Laboratory at 5 weeks of age and fed chow diet until 10 weeks of age. The mice were 

then switched to 40% stearic diet (n=8 per genotype) or 40% oleic diet (n=8 per diet 

group) and fed ad libitum for 6 weeks. Blood glucose, insulin tolerance and weight were 

measured at the start of diet and after 6 weeks on diet. Animal care and housing were 
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conducted according to the NIH Guide for the Care and Use of Laboratory Animals. All 

experiments were approved by the Institutional Animal Care and Use Committee at the 

University of Kentucky. 

2.2.2 Diets 

Tables 2.1, and 2.2 display the nutritional value and composition of each diet 

used in this study. The stearic and oleic acid diets used in this study contained similar 

percentages of protein and carbohydrate whereas chow diet contained slightly more of 

total kcal from protein and 60% total kcal from carbohydrates. The fat content of each 

diet was unique.  The experimental diets were custom made by Harlan Teklad using a 

modified TD.03459 diet. A Harlan Teklad nutritionist calculated all dietary nutritional 

values. 

2.2.3 Food Consumption 

Study diet (200g) was placed into the food manger of each cage. The remaining 

food was measured and replaced every 48 hours. Food consumption was calculated from 

the starting food and remaining food weights. Caloric and fat intakes were calculated 

from food intake data and caloric and fat values of specific diet. In a second study, 

metabolic monitoring cages were used to measure food consumption from a hanging food 

cage over a two-day period. 

2.2.4 Glucose Measurements and Insulin Tolerance Test 

 Insulin tolerance tests (ITT) were performed in the first cohort of mice every two 

weeks on five mice per diet group per genotype. Mice were weighed and then fasted for 

four hours in a clean cage prior to testing. Fasting blood glucose was measured by tail 
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prick just prior to insulin injection and at the times indicated in “Results” using a 

commercially available glucometer and test strips (One Touch Ultra Glucose Monitoring 

Kit, Lifescan, Milpitas, California). Mice were injected (i.p.) with human insulin (0.2U/g) 

(Lilly, Indianapolis, Indiana).  

2.2.5 Insulin ELISA 

 Blood collected from fasted animals (4 hour fast) was allowed to clot for 20 

minutes in a vacutainer, and then centrifuged at 1500 X g for 10 minutes to isolate serum. 

Serum was then snap-frozen and stored at -80C until analyzed. Plasma insulin levels 

were measured using a commercially available mouse/rat insulin ELISA kit (Millipore, 

Billerica, MA) and reported in ng/mL.  

2.2.6 Body Composition 

 Body composition, including fat mass and lean mass, was determined using 

EchoMRI Quantitative Magnetic Resonance Body Composition Analyzer (Echo Medical 

Systems, Houston, Texas) on conscious mice (n=5 per diet per genotype).  Conscious 

mice were placed into the measuring tube and the tube placed into the EchoMRI 

machine. The EchoMRI uses the distinctions in NMR amplitude signals of various tissues 

to determine mass of muscle, fat and body fluids. 

2.2.7 Oxygen Consumption 

 Five mice per diet group per genotype were acclimated to the oxygen 

consumption chambers for 30 minutes prior to indirect calorimetry measurements. 

Metabolic rate was indirectly determined using weight, temperature and oxygen 

consumption. Conscious mice were weighed and placed in oxygen consumption 
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chambers. Room air was pumped into and out of the chambers and analyzed for oxygen 

and carbon dioxide content (mL/hr) using a CWE metabolic monitoring system and 

software (CWE, Allentown, Pennsylvania). Oxygen consumption was then computed 

from these measurements using the equation  ̇O2/weight (mL/g/hr) .   

 In a separate experiment, five db/db mice per diet group from the second cohort 

were acclimated in individual indirect calorimetry monitoring cages (TSE Labmaster 

Metabolism Research Platform, Midland, Michigan) with free access to experimental diet 

and water for three days during week ten of the diet study. After the acclimation period, 

complete metabolic data including activity level, food consumption, and water 

consumption were collected for 48 hours. From these measurements, activity levels 

during the mouse active period (18:00-06:00) were isolated to make resting metabolic 

rate calculations using the formula (160): 

     
(      

       (     )

                        
) (      

       (    )
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2.2.8 Immunohistochemistry 

 After all measurements were made, all animals in each group of mice (five mice 

per group per genotype; Figure 2.2.1) were anesthetized (3% isoflurane), euthanized by 

thoracotomy, and blood was collected by heart puncture.  Note, therefore, that an 

individual group was tested every two weeks of the study. Animal tissues were perfused 

with 10ml PBS (pH7.4) followed by perfusion fixation with 10mL of formalin (4% 

paraformaldehyde). Tissues were harvested, placed in formalin overnight at 4⁰C, and 

embedded in paraffin wax. Sections (5µm thickness) of each tissue were cut using a 

microtome and placed on PermaFrost glass slides. Sections were then de-paraffinized and 

used for immunohistochemistry. The following primary antibodies were used for insulin 
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and glucagon staining: guinea pig polyclonal anti-human insulin (1:50) and rabbit anti-

glucagon (1:250). The secondary antibodies were Cy3 donkey anti-guinea pig (1µg/ml) 

and Cy5 goat anti-rabbit (1µg/ml). All antibodies were purchased from Jackson Immuno 

Research (West Grove, Pennsylvania). Slides were processed for microscopy and images 

were taken at 20X magnification (Nikon Eclipse-Ti microscope, Melville, New York). 

The exposure time for anti-insulin was 300ms and for anti-glucagon was 3secs. Nikon 

NES Elements software was used to process images. Islet area was calculated by tracing 

the outline of each islet using the NES Elements software. For cell density calculations, 

cells with positive DAPI staining were counted as viable cells. Insulin-positive cells 

where counted as beta cells and glucagon-positive cells were counted as alpha cells. Cell 

density (total cell density, beta cell density, and alpha cell density) was calculated as total 

number of positive staining cells/area of the islet (m
2
). Alpha to beta cell ratio was 

calculated by total positive alpha cells/total positive beta cells per islet. Alpha cell 

migration was calculated by measuring the distance from the alpha cell to the outer edge 

of the islet and normalized to the length of the radius (using the geometric center of the 

islet section) passing through each cell.  

2.2.9 Gas Chromatography/Mass Spectrometry 

 Tissue, serum, and feces were collected post-mortem every two weeks during the 

study. Total fatty acids were extracted from 100mg of samples using Folch method. 

Extractions were then analyzed using GC/MS. Briefly, a 1 µl sample was injected into 

the gas chromatography system (model 6890GC G2579A system; Agilent, Palo Alto, 

California) equipped with a column (J&W DB5HT capillary columns, Agilent 

Technologies) and a flame ionization detector. An Agilent 5973 network mass selective 
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detector was used to identify target peaks of individual fatty acids. First, the corrected 

peak area of the FA of interest in the sample was calculated by multiplying by the ratio of 

peak area of the internal standard in standard set and the peak area of the internal 

standard in the sample and then multiplying by the ratio of the internal standard 

concentration in standard set and sample. Second, the concentration of the FA of interest 

was calculated by multiplying the corrected area of the interest peak by the ratio of the 

interest FA in the standard and in the sample. The two-step formula used is below.  

        (
             
           

)  (
              

            
) 

   denotes the peak area of the fatty acid of interest in the sample. The area of the peak is 

corrected for sample variation and      denotes the corrected peak area of the fatty acid of 

interest in the sample.               and             represent the area of the internal 

standard in the standard solution and in the sample. Next, the sample concentration was 

calculated. 

            (
              
           

) 

2.2.10 Data Analysis 

 Values are depicted as mean + standard error and considered significant if p < 

0.05. Data were statistically analyzed using two-way ANOVA with Bonferroni correction 

or one-way ANOVA with Dunnett’s post hoc test to identify which means differed using 

GraphPad Prism 5.01 for Windows (GraphPad Software, San Diego, California). NIS-

Elements 3.0 (Nikon Instruments, Elgin, Illinois) was used for finding islet area and cell 

counts. 
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2.3 Results 

2.3.1. A high fat diet enriched in stearic acid limits the progression of hyperglycemia 

in db/db mice. 

Fasting blood glucose levels were determined at the initiation of high fat diet 

feeding (week 0 baseline) and every two weeks during the ten week study for both WT 

and db/db mice. Data shown in Figure 2.3.1A are for baseline and measurements taken 

after 10 weeks on diet. For WT mice on chow or oleic acid diet the blood glucose levels 

did not change throughout the study. In contrast, WT mice fed stearic acid diet had 

significantly decreased fasting blood glucose beginning at two weeks on diet (not shown, 

Figure 2.3.1A). The baseline glucose levels for db/db mice were about two-fold higher 

than WT mice, as expected (38). Groups of db/db mice fed chow or oleic acid 

approximately doubled their blood glucose levels in ten weeks. In marked contrast, db/db 

mice fed stearic acid did not have an increase in blood glucose levels. 

 This experiment was repeated with a second cohort of animals. After ten weeks 

on diet, wild-type and db/db mice fed a high fat diet enriched in stearic acid had 

significantly lower blood glucose levels than the corresponding chow fed or oleic acid 

fed mice (Figure 2.3.1B). The db/db animal fed stearic acid also had blood glucose levels 

significantly lower than their baseline measurements. The db/db mice fed chow and a 

high fat diet enriched in oleic acid had significant increases in blood glucose from 

baseline measurements after 10weeks on diet.  
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2.3.2. Mice fed a high fat diet enriched in stearic acid have lower blood glucose after 

only two weeks on diet.  

After only 2 weeks on the high fat diet enriched in stearic acid, the db/db mice fed 

this diet had lower blood glucose levels than the db/db mice fed either oleic or chow diets 

(Figure 2.3.2). Decreases in blood glucose after diet intervention usually correspond to a 

decrease in body weight as well (45, 58, 101, 117, 129). This quick response to the diet 

has been reported in other diet interventions and may be explained by the gut flora 

adjusting to the new diet (32, 43, 78). The db/db mice on the stearic acid diet had an 

initial and abrupt decrease in blood glucose after 2 weeks on diet. However, the db/db 

mice fed stearic acid diet had slow and steady increases in blood glucose starting after 4 

weeks on diet.  

2.3.3. Body compositions of mice after 10 weeks on diets. 

 In diabetic models, low blood glucose levels are usually linked to decreases in 

weight (41, 59, 83). However, the first cohort of diabetic mice placed on high fat diets, 

gained weight over the ten week study (Figure 2.3.3A). The db/db mice fed oleic acid 

gained significantly more fat mass than the other db/db mice (Figure 2.3.3C) with no 

significant changes in lean mass (Figure 2.3.3B). WT mice fed chow diet gained lean 

mass from baseline (Figure 2.3.3B) while those fed oleic diet gained fat mass from 

baseline (Figure 2.3.3C). Importantly, db/db mice fed stearic acid also gained weight 

over the 10 week study; therefore, their decreased blood glucose levels were not caused 

by weight loss. Recall that db/db mice fed the stearic acid diet had lower glucose levels 

than mice fed the oleic acid diet. These mice also maintained a stable weight over the 
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course of the experiment (Figure 2.3.3D), confirming that the effects of stearic acid on 

blood glucose levels are not dependent on weight loss or gain. 

2.3.4. A high fat diet enriched in stearic acid does not promote weight loss in db/db 

mice. 

Normal diet interventions in diabetic models typically use weight loss as a guide 

of diet performance. Large weight loss usually corresponds to a decrease in blood glucose 

levels and an overall improvement in health. Interestingly, in this diet study, the db/db 

mice that were fed a high fat diet enriched in oleic acid, an unsaturated fat, gained a 

significant amount of weight over the course of the diet study as did the db/db mice fed 

chow diet (Figure 2.3.4). The db/db mice fed the oleic acid diet gained a significant 

amount of weight from baseline (start of the diet). Even more interestingly, the db/db 

mice fed a high fat diet enriched in stearic acid, a saturated fat, did not gain a significant 

amount of weight over the course of the ten week diet study. These mice did weigh more 

than their wild-type counterparts indicating that they were still obese mice; however, 

unlike the db/db mice fed high fat diet enriched in oleic acid, the stearic acid fed mice 

were able to maintain a consistent weight for the duration of the study, with one 

exception: the db/db mice fed stearic acid did experience an initial weight loss after 4 

weeks on diet, but all mice regained the lost weight and more, becoming 

indistinguishable in weight from mice fed chow and oleic acid diets.   

2.3.5. Diabetic mice fed a high fat diet enriched in stearic acid had lower metabolic 

rates than chow fed diabetic mice. 

Increases in resting metabolic rate or in activity could result in lower blood 

glucose levels without concomitant weight loss. To assess these alternate explanations, I 
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used indirect calorimetry cages and calculated resting metabolic rate from the oxygen 

consumption and activity measurements of db/db mice after 10 weeks. Db/db mice fed 

oleic acid diet had resting metabolic rates no different than chow fed db/db mice and 

significantly higher than stearic acid fed db/db mice (Figure 2.3.5). In fact, the db/db 

mice fed stearic acid had lower resting metabolic rate than both the oleic and chow fed 

db/db groups. That is, stearic acid did not increase resting metabolic rate in db/db mice, 

but instead lowered the resting metabolic rate of these mice. Therefore, stearic acid did 

not affect the blood glucose levels of these mice by increasing the metabolic rate. 

2.3.6. Stearic acid fed db/db mice had no differences in activity level compared to 

chow fed animals.  

 Since db/db mice fed stearic acid had lower metabolic rates than the db/db mice 

fed chow and oleic acid diets, I examined the activity level, one of the variables in 

metabolic rate, from the stearic acid fed mice while in the calorimetric cages. I found that 

the activity levels of db/db mice fed the stearic acid diet did not differ from those of the 

db/db mice fed the chow and oleic acid diets (Figure 2.3.6). Therefore, decreased activity 

was not the explanation for the lower metabolic rate seen in the db/db mice fed a high fat 

diet enriched in stearic acid.   

2.3.7. Mice fed a high fat diet enriched in stearic acid consumed less food than chow 

or oleic acid diet groups. 

Another factor that could affect blood glucose is reduction in food consumption 

compared to baseline or across dietary groups. Interestingly, db/db mice fed the high fat 

diet enriched in stearic acid consumed less food than db/db mice fed either chow or oleic 

acid-enriched diet (Figure 2.3.7). Although the db/db mice fed the stearic acid diet 
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consumed less food, the amount consumed was sufficient to maintain their weight 

equivalent to wild-type mice. These data suggest that even though calories consumed 

were sufficient to maintain a normal weight, db/db mice must have consumed less fat. 

2.3.8. db/db mice absorb dietary stearic acid poorly. 

Another means by which stearic acid might contribute to reduced fat load is if 

stearic acid were poorly absorbed from the gut as compared to other fats. I therefore 

examined the fatty acids excreted in the feces. Db/db mice fed the stearic acid-enriched 

diet excreted substantial amounts of stearic acid in the feces while mice fed oleic acid did 

not show increased excretion of oleic or stearic acid in the feces (Figure 2.3.8). Unlike 

oleic acid, the stearic acid was poorly absorbed by the mice. These findings argue that 

mice fed the stearic acid diet not only ingested fewer calories but also obtained a lower 

percentage of calories from fat than mice fed the other diets.  

2.3.9. A high fat diet enriched in stearic acid does not cause an increase in fat 

accumulation in the liver. 

Given that less fat was absorbed from the stearic acid diet, then these mice should 

show less accumulation of fatty acid in the liver, a major site of fatty acid accumulation 

in diabetic mice. The db/db mice, regardless of diet, had greater accumulation of fatty 

acid in the liver than wild-type mice (p<0.05, n=5 per diet group per genotype), as has 

been previously documented for db/db mice (147). However significant additional fatty 

acid accumulation in the liver over the 10 week study only occurred in db/db mice fed 

oleic acid, and only oleic acid, not stearic acid, increased in the livers of these mice 

(Figure 3.3.9). A diet enriched in stearic acid did not contribute to an excess 

accumulation of fat in the liver which is consistent with the observation that these mice 
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had lower absorption of dietary stearic acid from the gut than db/db mice fed either the 

chow or oleic diets.   

2.3.10. A high fat diet enriched in stearic acid did not diminish insulin 

responsiveness. 

A reduction of fat absorption and lower blood glucose may also indicate improved 

insulin tolerance. Diets rich in unsaturated fat, especially oleic acid, and low fat diets 

decrease insulin resistance in db/db mice (16, 136, 154, 163, 170). After 10 weeks on 

diet, WT mice had no change from baseline in insulin response (Figure 2.3.10A and C). 

Though db/db mice fed stearic acid diet seemed to have insulin tolerance similar to 

baseline (Figure 2.3.10B), when plotted as a percent of fasting blood glucose 

measurement, the effect was not maintained (Figure 2.3.10D). Similarly, no change in 

insulin tolerance was observed in mice fed the chow and the oleic acid diets.  

2.3.11. A high fat diet enriched in stearic acid did not alter plasma insulin content. 

Since db/db mice fed a high fat diet enriched in stearic acid did not have 

decreased insulin sensitivity, I hypothesized that the pancreatic islet organization in these 

animals would be normal. Moreover, these animals should be spared from any pancreatic 

apoptosis that has been associated with the progression of type 2 diabetes (34, 35, 57, 

127). As predicted, I observed no differences in plasma insulin levels in any of the diet 

groups after ten weeks on diet (Figure 2.3.11). These findings argue that pancreatic islets 

in the mice fed stearic acid diet would be spared the apoptotic loss of beta cells and the 

subsequent disorganization that normally accompanies the progression of type 2 diabetes 

in this model (34, 57, 127).  
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2.3.12. A high fat diet enriched in stearic acid protected the pancreatic islets of 

db/db mice from disorganization. 

Pancreatic islets of WT mice appeared normal after 10 weeks on high fat diets 

(Figure 2.3.12 A, C, E, G). In contrast, db/db mice fed the chow and oleic acid diets for 

ten weeks had evidence of islet disorganization (Figure 2.3.12 B, D, F, H). Specifically, 

the alpha cells, which normally lie in the outer ring of the islet, invaded the inner mass of 

the islets. Additionally, the islets’ cores had more areas devoid of insulin and/or glucagon 

staining, consistent with the beginnings of β cell loss that is characteristic of advanced 

type 2 diabetes (99, 118). In contrast, db/db mice fed stearic acid diet for ten weeks had 

normal islet organization. Beta cell to alpha cell ratio was maintained in the db/db mice 

fed stearic acid but was disrupted in the db/db mice fed chow and oleic acid diets (Figure 

2.3.12 C).  

2.4. Discussion 

Our results indicate that mice fed a high fat diet enriched in stearic acid had lower 

blood glucose levels and normal appearing pancreatic islets compared to mice fed other 

diets. These effects were not dependent on weight loss or altered resting metabolic rate. 

Instead, the beneficial effects of stearic acid were associated with poor absorption of 

stearic acid from the gut. That these mice were able to increase or maintain body weight 

argues that the mice must have increased utilization of the other energy sources in the 

diet, carbohydrates and proteins. More broadly, the benefits of a diet in which the fat 

content is primarily stearic acid, a saturated fat, argue that expecting all saturated fats in 

the diet to have the same effects is not justified. Similarly, the detrimental effects of the 

oleic acid-enriched diet which I have documented argue that overconsumption of this 
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unsaturated fat, whose consumption has been promoted due to benefits for cardiac health, 

elevates risk of diabetes.  

 Several animal studies have shown that stearic acid has lower absorption from the 

gut than other fats (25, 91, 134), yet another study found no differences (20). The 

resolution of these conflicting data is the mode of fat delivery; only when liquid fat diets 

were delivered orally or by infusion was absorption of stearic acid comparable to other 

fats. I used stearic acid in its natural solid fat form in our diet. To maximize the 

translatability of this study, I chose a normal oral delivery route involving stearic acid-

enriched food pellets.  

 Human dietary studies with stearic acid have resulted in a wide range of 

absorption values. These discrepancies may be due to the amount and type of stearic acid 

in the diet, the length of the study, and the method used to detect absorption. In a recent 

study, Baer and colleagues (10) reported lower absorption of stearic acid as compared to 

palmitic acid and myristic acid by examination of fecal fatty acid content after feeding 

diet for two weeks. This study, similar to our study, included mixed fat diets with higher 

percentages of experimental fats and followed male participants over time to allow for 

adjustments to the diet. Conversely, Bonanome and Grundy (22) evaluated fatty acid 

incorporation into chylomicrons after one fatty  meal and found no difference in stearic 

acid incorporation into chylomicrons as compared to palmitic acid. This snapshot, while 

useful for determining effects of stearic acid in plasma lipid profile, does not offer insight 

into long-term weight maintenance and glucose homeostasis. My study offers a new 

perspective on dietary fat intake and the progression of diabetes by using a long-term diet 

scheme and additional measures of metabolic parameters. 
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 In this study, I found that mice fed a diet enriched in stearic acid had decreased 

food consumption. This decrease in food consumed may be due to the poor palatability of 

stearic acid in mice. Most fat in food is in the form of triglycerides. However in this diet 

study, we enriched the stearic acid diet with pure stearic acid, a free fatty acid. Fat 

palatability is linked to the ability of the fatty acid to activate fatty acid receptors, CD36 

and GPR120, on tongue (65, 68, 102) . Saturated fats have a low affinity for these fatty 

acid receptors therefore the food enriched in saturated fat would be unpalatable to the 

mice (85, 130). Previous studies have shown that the palatability of fatty acids differs, 

and mice prefer unsaturated long-chain fatty acids over saturated long-chain fatty acids 

(155, 175). Additionally, high concentrations of fatty acids do not occur naturally in any 

food; therefore mice never experience them. This is not to say the same system is not 

present it humans. However, humans are exposed to higher concentrations of fatty acids 

in foods than mice and may utilize more than tongue fatty acid receptors to determine 

palatability. Therefore, a high fat diet enriched in stearic acid, though causes a decrease 

in food consumption in mice, may not have the same orosensory effects in humans. 

 The ability of the stearic acid-enriched diet to slow, and even reverse, diabetic 

symptoms is similar to some more extreme diets. Fat and caloric restriction diets have 

been reported to lower blood glucose levels and improve insulin response in humans with 

type 2 diabetes. These interventions have worked by lowering the overall caloric content 

and glycemic load of the diet (49, 73, 76, 81-83, 94, 116, 126, 131, 149, 156, 161, 172). 

This similarity in outcomes lends additional support to the conclusion, driven by my 

evidence of poor absorption of stearic acid, that the stearic acid-enriched diet was 

effective for the same reason: shifting caloric utilization away from fats to carbohydrates 
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and proteins. However, the stearic acid diet achieved the same blood glucose lowering 

effect without having to restrict calories available to the mice. Neither did it force the 

mice to lose weight, a property unlike dietary modifications currently used for treating 

type 2 diabetes consists (3, 12). My data argue that weight loss is not the exclusive key to 

blood glucose management, but that a nutrient shift from fat to carbohydrates and 

proteins in the diet slows the progression of type 2 diabetes in the absence of weight loss. 

 As the data have demonstrated, the existing generalizations about saturated and 

unsaturated fats in the diet are not appropriate. I found that the effects of stearic acid 

greatly differ from those palmitic acid and myristic acid, more widely studied saturated 

fats. Consumption of a diet rich in stearic acid slowed the progression of type 2 diabetes. 

Conversely, consumption of palmitic acid and myristic acid has been shown to impair 

insulin sensitivity (139, 150). Similar differences among saturated fats are found in 

studies of cardiovascular disease. Palmitic acid, the most abundant saturated fatty acid  in 

the diet, detrimentally increases total plasma cholesterol levels (166), but myristic acid, a 

less common dietary saturated fat, beneficially raises HDL cholesterol (55, 121). Stearic 

acid is dissimilar from both of these saturated fats; it does not alter plasma cholesterol 

levels (21, 37, 91, 110).  

 Generalizations about unsaturated fats may also be inappropriate. Unsaturated fats 

have been promoted in the diet to replace saturated fats. However, if direct substitution is 

not accompanied by a reduction in overall fat intake, the overconsumption of these 

‘good’ fats may contribute to obesity and type 2 diabetes. I found that a high fat diet that 

consists mainly of oleic acid was not beneficial for lowering elevated blood glucose 

levels or decreasing weight in the obese mice. In fact, this mono-unsaturated fat enriched 
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diet accelerated the progression of diabetic symptoms in db/db mice. Our data argue that 

although unsaturated fats have benefits for cardiovascular health, their overconsumption 

may increase risk for type 2 diabetes. 

In a diabetic mouse model, a high fat diet enriched in stearic acid prevented an 

increase in blood glucose and maintained pancreatic islet organization independent of 

weight loss. These effects were associated with poor stearic acid absorption. Overall our 

data suggest that the benefits conferred from the stearic acid may have resulted in 

enhanced metabolic utilization of dietary carbohydrates and proteins instead of fat. 

Additionally, our data suggest that current dietary stands and generalizations about fat 

may be inappropriate and even detrimental in treating type 2 diabetes.   
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Table 2.1: Dietary Compositions 

 
Catalog Number Protein Carbohydrate Fat 

Chow TD. 2918 18.80 53.80 17.0 

40% kcal Stearic Acid TD. 04096 17.80 42.20 40.0 

40% kcal Oleic Acid TD. 09088 17.50 41.50 41.0 
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Table 2.2: 40% Diet Fat Composition 

 

 

  

 

Diet Chow Stearic Acid Oleic Acid 

% kcal from Fat 17.00 40.00 41.00 

 

% Stearic acid in fat 2.60 86.00 2.00 

% Oleic acid in fat 22.50 <1.00 64.00 

% Other Essential Fatty Acids 74.90 13.00 34.00 
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Figure 2.2.1: Experimental design for 40% high fat diet study. A total of 190 mice, 

95 wild-type mice and 95 diabetic (db/db) mice were used in these experiments. Mice 

were acclimated one week prior to the start of experimental diets and measurements. 

After the acclimation, five mice per genotype were measured for baseline (before diet 

initiation) control measurements and then euthanized for tissue processing. The 

remaining mice were assigned a diet group. Thirty mice of each genotype were assigned 

to the chow group, 30 were placed in the high fat diet enriched in stearic acid group, and 

the remaining 30 mice were placed in the high fat diet enriched in oleic acid diet group. 

After starting the diet, five mice per diet group per genotype were used for measurements 

and then euthanized for tissue collection every two weeks for the duration of the study 

with the final group euthanized at 24 weeks on diet. 
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Figure 2.3.1: The high fat diet enriched in stearic acid diet prevents an increase in 

fasting blood glucose in db/db mice. Five-week-old WT and db/db male mice were fed 

chow, stearic acid diet or oleic acid diet for 10 weeks.  Fasting blood glucose 

measurements were taken, using commercially available glucometer and tail prick 

methods. A: Fasting blood glucose levels of mice at baseline (0 weeks on diet) and after 

10 weeks on diet. * p<0.05, *** p<0.001. n = 5 mice per group per genotype. B: Fasting 

blood glucose levels of mice at baseline and after 10 weeks on diet, second cohort of 

mice. * p<0.05, ** p<0.01, *** p<0.001. n=5 mice per group per genotype. 
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Figure 2.3.2: db/db mice fed a high fat diet enriched in stearic acid had blood 

glucose levels similar to WT mice after 2 weeks on diet. db/db mice fed a high fat diet 

enriched in stearic acid had lower blood glucose after 2 weeks of diet administration (red 

tracing) than the db/db mice fed a high fat diet enriched in oleic acid and normal chow 

diet. Stearic acid fed db/db mice had blood glucose levels only slightly higher than any of 

the WT mice. N=5 mice per diet group per time point.  
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Figure 2.3.3: db/db mice fed a high fat diet enriched in stearic acid do not lose 

weight.  Weight, lean mass, and fat mass were measured using EchoMRI for all mice in 

the study after ten weeks on diet. A: WT and db/db body mass. db/db 10 week Oleic Acid 

significantly greater than all other diet groups. B: WT and db/db lean mass. C: WT and 

db/db fat mass. D: WT and db/db weight after 10 weeks on diet, second cohort of 

animals. ** p< 0.01, *** p<0.001 n= 5 mice per group per genotype.  
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Figure 2.3.4: A diet enriched in stearic acid promoted an early weight loss that was 

recovered by end of study. Db/db mice fed a high fat diet enriched in stearic acid had an 

initial decline in weight after 2 weeks on diet. After 4 weeks on diet, the mice gained 

weight and were no different in weight than their oleic acid or chow fed counterparts by 

the end of the ten week study. n=5 mice per diet group per time point.  
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Figure 2.3.5: db/db mice on the high fat diet enriched in stearic acid have lower 

metabolic rates. Resting metabolic rate was calculated from activity level and oxygen 

consumption measurements in metabolic monitoring cages. Db/db mice on stearic acid 

diet had significantly lower resting metabolic rate than db/db mice on chow and oleic 

acid diets after 10 weeks on diet. * p<0.05, ** p<0.01, *** p<0.001. n=2 mice in chow 

and oleic acid groups, n=5 mice in stearic acid group.  
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Figure 2.3.6: Stearic acid fed db/db mice showed no difference in activity level as 

compared to other diet groups. Activity data from calorimetry cages show no 

differences between diet groups. 
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Figure 2.3.7: db/db mice fed a high fat diet enriched in stearic acid consumed less 

food.  Wild-type mice had no significant difference in food consumption over the course 

of the diet study. Db/db mice fed a high fat diet enriched in stearic acid consumed 

significantly less food over the course of the ten week diet study as compared to chow or 

oleic acid fed animals. *** p<0.001, n=5 mice per group per genotype.  
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Figure 2.3.8: Dietary stearic acid causes an increase in fecal stearic acid excretion.  

Both WT and db/db mice fed a high fat diet enriched in stearic acid had increases in fecal 

excretion of stearic acid. Feces were collected from the mouse cages. Only the major 

dietary fatty acids are shown. Fecal fatty acid excretion at 10 weeks on diet from both 

WT and db/db mice in all three diet groups. ** p<0.01 stearic acid compared to all other 

diet groups within genotype. 
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Figure 2.3.9: A high fat diet enriched in stearic acid does not cause accumulation of 

stearic acid in the liver.  Fatty acid amounts in liver determined by GC/MS of livers 

from WT (A) and db/db mice (B). Note difference in ordinate scale in panel A and B. * 

p< 0.05 for comparison to baseline, n = 5 mice.  
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Figure 2.3.10: A stearic acid diet does not alter insulin sensitivity from baseline in 

db/db mice. Insulin tolerance test was performed on WT (A) and db/db (B) mice. Open 

triangle represents baseline; filled circle represents chow diet; open square represents 

stearic acid diet; filled triangle represents oleic acid diet. * p < 0.05 db/db mice time 0 

stearic vs. time 0 baseline, chow, and oleic diet; n=5 mice. C: WT mice percent fasting 

blood glucose. D: db/db mice percent fasting blood glucose levels.  
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Figure 2.3.11: Dietary stearic acid did not alter plasma insulin concentrations. 

Plasma insulin concentrations were unchanged from baseline in both WT and db/db mice 

fed the experimental diets. Though the db/db mice fed the 40% high fat diet enriched in 

stearic acid tended to have elevated plasma insulin compared to mice fed chow or oleic 

acid diets, the trend was not significant.   
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Figure 2.3.12: Stearic acid enriched diet preserves pancreatic islet organization. 

Representative images of WT and db/db pancreatic islets before and after diet 

intervention. Baseline (A and B), 10 week chow diet (C and D), 10 week stearic acid diet 

(E and F), and 10 week oleic acid diet (G and H).  Scale bar is 100µm.  
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Figure 2.3.13: A diet enriched in stearic acid preserves pancreatic islet area, total 

cell density, beta cell density, alpha cell density, and maintains beta cell mass. WT 

and db/db quantifications of pancreatic islet histology. Total islet area (A). Total cell 

density in islets (B). Beta cell density (C). Alpha cell density (D). Alpha cell to beta cell 

ratio in islets (E). Location of alpha cells in islet as measured by percent of the islet 

radius (F). *p<0.5, ** p<0.01, *** p<0.001. 
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Chapter 3: Stearic acid effects on the progression of type 2 diabetes in a moderate 

fat diet in the diabetic mouse model. 

3.1 Introduction 

High fat diets are linked to diseases such as cardiovascular disease and type 2 

diabetes; and, lowering the fat content of the diet offers beneficial results in slowing 

disease progression. Most Western diets contain at least 36% fat; however, the USDA 

currently recommends dietary fat content to be much lower, about 20% of the daily 

intake. Therefore, a moderate fat diet (17% kcal) may be a viable and attractive dietary 

option for the treatment of type 2 diabetes and more closely align with the current USDA 

and AHA recommendations than the 40% high fat diets. Therefore, decreasing the overall 

fat content in the diet will be more fitting to these current dietary guidelines.  

Encouraged by the positive results from the 40% kcal stearic acid enriched high 

fat diet study, I hypothesized that a moderate fat diet (17% kcal from fat) enriched in 

stearic acid may offer the same protection against the progression of type 2 diabetes 

while more closely aligning with the current dietary recommendations. Wild-type and 

diabetic mice were fed moderate fat diets for ten weeks and were assessed for progression 

of type 2 diabetes during the study.  

 Diabetic mice fed a moderate fat diet (17% fat) enriched in stearic acid were not 

protected from the progression of type 2 diabetes; however, the db/db mice fed the stearic 

acid enriched diet had blood glucose levels that were lower than the db/db mice fed the 

chow diet. Interestingly, all mice, both wild-type and db/db, had increased accumulation 

of oleic acid in the liver regardless of experimental diet.  
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3.2. Methods and Materials 

3.2.1 Animals 

 Age-matched, male C57BLKS/J (WT, n=105) and BKS.Cg-Dock7
m
 +/+ Lepr

db
/J 

(db/db, n=105) mice were purchased from The Jackson Laboratory (Bar Harbor, Maine) 

at four- five weeks of age. All mice were allowed to acclimate for one week and fed ad 

libitum a commercially available rodent chow diet (Teklad Global 18% Protein Rodent 

Diet TD.2018) obtained from Harlan Laboratories (Madison, Wisconsin). Mice were kept 

on a 12-hr light/dark cycle at 25°C throughout the study. At five weeks of age, all mice 

were weighed, ear tagged, and randomly assigned to a study group. The three study 

groups were fed different diets: chow diet or one of two experimental diets (17% kcal 

stearic acid diet, Harlan Teklad TD.03459, 17% kcal oleic acid diet TD.09315). All mice 

were maintained one of these diets ad libitum for 10 weeks. Every two weeks for the 

duration of the study, metabolic measurements were performed using five mice per diet 

group per genotype. Weight, blood glucose and insulin tolerance measurements were 

taken at the start of the diet and at the endpoint in this cohort of animals. Figure 3.2.1 

shows the experimental design for this study. Animal care and housing conducted 

according to the NIH Guide for the Care and Use of Laboratory Animals. All 

experiments were approved by Institutional Animal Care and Use Committee at the 

University of Kentucky Animal Housing Facility and overseen by University of 

Kentucky veterinarians. 

3.2.2 Diets 

 Table 3.2.1 and Table 3.2.2 list the nutritional value and composition of each diet 

used in this study. The stearic and oleic acid diets used in this study contained similar 
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percentages of protein and carbohydrate whereas chow diet contained slightly more of 

total kcal from protein and 60% total kcal from carbohydrates. The fat content of each 

diet was unique. The experimental diets were custom made by Harlan Teklad using a 

modified TD.03459 diet. A Harlan Teklad nutritionist calculated all dietary nutritional 

values. 

3.2.3 Glucose Measurements and Insulin Tolerance Test 

 Insulin tolerance tests were performed every two weeks during the study on five 

mice per diet group per genotype. Mice were weighed and then fasted for four hours in a 

clean cage prior to testing. Fasting blood glucose was measured by tail prick with a 

commercially available glucometer and test strips (One Touch Ultra Glucose Monitoring 

Kit, Lifescan, Milpitas, California). Mice were injected (i.p.) with insulin (2mU/g) and 

blood glucose was measured (mg/dl) 0, 5, 10, 30, 60, 90 and 120 minutes after insulin 

injection. If blood glucose fell below 20mg/dL, mice were rescued with 200uL of 20% 

glucose solution (i.p.) and excluded from the ITT experiment. Blood glucose 

measurements were normalized to baseline measurements, and both sets of data plotted 

over time.  

3.2.4 Insulin ELISA 

 Every two weeks, collected blood from fasted animals (4 hour fast) was allowed 

to clot for 20 minutes in a vacutainer and centrifuged at 1500 X g for 10 minutes to 

isolate serum. Serum was then snap-frozen and stored at -80⁰C until analyzed. Plasma 

insulin levels were measured using a commercially available mouse/rat insulin ELISA 

(Millipore, Billerica, Massachusetts) and reported in ng/mL.  
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3.2.5 Body Composition 

 Every two weeks during the study, mouse body composition, including fat mass 

and lean mass, was determined using EchoMRI Quantitative Magnetic Resonance Body 

Composition Analyzer (Echo Medical Systems, Houston, Texas) on conscious mice (n=5 

per diet per genotype).  Conscious mice were placed into the measuring tube and the tube 

placed into the EchoMRI machine. The EchoMRI uses the distinctions in NMR 

amplitude signals of various tissues to determine mass of muscle, fat and body fluids. 

3.2.6 Oxygen Consumption 

 Every two weeks during the study, five mice per diet group per genotype were 

placed in oxygen consumption chambers for indirect calorimetry measurement. 

Metabolic rate was indirectly determined using weight, temperature and oxygen 

consumption. Conscious mice were weighed and placed in oxygen consumption 

chambers. Room air was pumped into and out of the chambers and analyzed for oxygen 

and carbon dioxide content (mL/hr) using a CWE metabolic monitoring system and 

software (CWE, Allentown, Pennsylvania). Oxygen consumption was then computed 

from these measurements using the equation VO2/weight (mL/g/hr).  

3.2.7 Gas Chromatography/Mass Spectrometry 

 Tissue, serum, and feces were collected post-mortem every two weeks during 

study. Total fatty acids were extracted from 100mg of samples using Folch method. 

Extractions were then analyzed using GC/MS. Briefly, a 1 µl sample was injected into 

the gas chromatography system (model 6890GC G2579A system; Agilent, Palo Alto, 

California) equipped with a column (J&W DB5HT capillary columns, Agilent 

Technologies) and a flame ionization detector. An Agilent 5973 network mass selective 
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detector was used to identify target peaks of individual fatty acids. First, the corrected 

peak area of the FA of interest in the sample was calculated by multiplying by the ratio of 

peak area of the internal standard in standard set and the peak area of the internal 

standard in the sample and then multiplying by the ratio of the internal standard 

concentration in standard set and sample. Second, the concentration of the FA of interest 

was calculated by multiplying the corrected area of the interest peak by the ratio of the 

interest FA in the standard and in the sample. The two-step formula used is below.  

        (
             
           

)  (
              

            
) 

   denotes the peak area of the fatty acid of interest in the sample. The area of the peak is 

corrected for sample variation and      denotes the corrected peak area of the fatty acid of 

interest in the sample.               and             represent the area of the internal 

standard in the standard solution and in the sample. Next, the sample concentration was 

calculated. 

            (
              
           

) 

3.2.8 Data Analysis  

 Values are depicted as mean + standard error and considered significant if p < 

0.05. Data were statistically analyzed using two-way ANOVA with Bonferroni correction 

or one-way ANOVA with Dunnett comparison posttest when appropriate using GraphPad 

Prism 5.01 for Windows (GraphPad Software, San Diego, California). NIS-Elements 3.0 

(Nikon Instruments, Elgin, Illinois) was used for islet area and staining analysis. 



 

58 

3.3 Results 

3.3.1 After 10 weeks on moderate fat diet, db/db mice fed stearic acid had blood 

glucose levels lower than chow fed mice. 

Fasting blood glucose levels were determined at the beginning of the moderate fat 

study (Baseline) and every two weeks during the ten week study for both WT and db/db 

mice (two week data was not collected due to fire alarm and mandatory evacuation of the 

building). These data shown in Figure 3.3.1 are for baseline and measurements taken 

after 10 weeks on diet. For WT mice on chow, stearic acid, or oleic acid diet the blood 

glucose levels did not change throughout the study. The baseline glucose levels for db/db 

mice were about 1.5-fold higher than WT mice, as expected (38). Db/db mice fed chow 

and oleic acid diets approximately doubled their blood glucose levels in ten weeks. In 

contrast, db/db mice fed stearic acid had increased blood glucose levels over baseline, but 

the level at ten weeks was significantly lower than the chow fed db/db mice.  

3.3.2 Weight and body composition remained unchanged after moderate fat feeding. 

In diabetic models, lowered blood glucose levels are usually linked to decreases 

in weight (41, 59, 83). The db/db mice placed on moderate fat diets had no changes in 

weight after ten weeks on diet (Figure 3.3.2A). The db/db mice had no changes in fat 

mass vs. baseline after ten weeks on diet (Figure 3.3.2B). Interestingly, the db/db mice 

fed stearic acid had decreased lean mass from baseline and also compared to chow and 

oleic acid fed db/db mice (Figure 3.3.2C). WT mice gained weight over the course of the 

diet study with oleic and stearic acid fed mice gaining more weight than chow fed mice 

(Figure 3.3.2A).WT mice fed oleic diet gained fat mass from baseline and more than 

mice fed chow (Figure 3.3.2B). WT mice fed chow diet gained lean mass during the 
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study (Figure 3.3.2C). These results contradict the current dietary recommendations that 

all people consume a low to moderate fat diet. Even though the WT mice had no change 

in blood glucose levels, the increase in weight may predict increased frequency of health 

problems in older individuals.  

3.3.3 Oxygen consumption was unchanged by moderate fat diet enriched in stearic 

acid. 

Increases in resting metabolic rate or activity could result in lower blood glucose 

levels without concomitant weight loss. To assess these alternate explanations, I 

measured oxygen consumption as an indirect measure of metabolic rate of the mice after 

10 weeks on diet (Figure 3.3.3). All db/db mice had similar oxygen consumption 

measurements. The moderate fat diet enriched in stearic acid had no effect on oxygen 

consumption and, by extension, no effect on metabolic rate. Therefore, the lowered blood 

glucose measurements observed in the db/db mice fed the stearic versus oleic lower fat 

diet cannot be explained by alterations in metabolic rate.  

3.3.4 Fatty acids, especially oleic acid, accumulate in the livers of WT and db/db 

mice fed 17% kcal enriched in stearic acid and oleic acid.   

The liver is a major site of fatty acid accumulation in diabetic mice. Figure 3.3.4 

illustrates that the db/db mice fed the moderate fat diets containing either stearic acid or 

oleic acid had greater accumulation of fatty acid in the liver than wild-type mice 

(*p<0.05, n=5 per diet group per genotype), as previously documented for db/db mice 

(147). Surprisingly, both the oleic and stearic acid enriched diets, but not the chow diet, 

caused fatty acid accumulation in the liver of db/db mice. The increased fatty acid 
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accumulation in the liver, especially in the oleic acid fed db/db mice, is contradictory to 

the current opinion that an unsaturated fat diet is beneficial to the diabetic condition. 

3.3.5 After feeding a moderate fat diet, insulin tolerance is unchanged in WT and 

db/db mice. 

A reduction of fat absorption and lower blood glucose may also indicate improved 

insulin tolerance. High fat feeding has shown to exacerbate insulin resistance in the 

diabetic mouse model (7, 13, 14, 16, 28, 30). Diets rich in unsaturated fat, especially oleic 

acid, and low fat diets decrease insulin resistance (16, 136, 154, 163, 170). Surprisingly, 

WT and diabetic mice had no change from baseline in insulin response after ten weeks on 

diet (Figure 3.3.5 A and B). When plotted as a percent of fasting blood glucose 

measurement, WT mice had no difference in blood glucose measurements. However, the 

db/db mice fed oleic acid diet had higher blood glucose measurements after 10 minutes 

post insulin injection (Figure 3.3.5 C and D).  

3.3.6. Plasma insulin content was similar in all diet groups.  

Following the same course as insulin sensitivity, plasma insulin levels were also 

measured after 10 weeks on diet. If insulin sensitivity was unchanged, I expected that 

plasma insulin content would also be unchanged. Indeed, I found there were no 

differences among diet groups (Figure 3.3.6). This is a surprising result because 

moderate fat diets are the benchmark for improving insulin sensitivity thereby also 

lowering plasma insulin levels.  
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3.4 Discussion 

In this study, I investigated if a moderate fat diet enriched in stearic acid would 

provide protective benefits against the progression of type 2 diabetes. I found that mice 

on a moderate fat diet (17% kcal from fat) enriched in stearic acid, a saturated fat, had 

lower blood glucose levels than the standard chow fed db/db mice after ten weeks of 

feeding. Over the course of the diet study, db/db mice fed stearic acid enriched diet had 

increased blood glucose levels as compared to the baseline measurements, but when 

compared to chow and oleic fed mice, the db/db mice fed stearic acid had lower blood 

glucose levels. Normally, a decrease in weight and/or an increase in metabolic rate are 

linked to lower blood glucose levels. I found that after 10 weeks of moderate fat diet, 

weight and oxygen consumption did not change. Therefore, there was no concomitant 

change in weight or metabolic rate to account for the lower blood glucose levels in the 

db/db mice fed a moderate fat diet enriched in stearic acid. Interestingly, all mice, both 

wild-type and db/db, fed the experimental diets had increased accumulation of fatty acids 

in the liver. Since the mice fed the moderate fat diets all had similar body composition 

and oxygen consumption, the lower blood glucose level observed in the db/db mice fed 

the stearic acid diet may have been caused by a defect in absorption as I have previously 

reported with a 40% high fat diet enriched in stearic acid.  

The absorption of stearic acid in previous studies has depended on the form of the 

fat, either liquid or solid (10, 22, 75, 90). Diets enriched in a liquid form of stearic acid 

did not result in lowered fat absorption. However, the diets that were enriched in solid 

stearic acid resulted in decreased fat absorption (10). In this study, I used stearic acid in 

its natural, solid form, which would be the easiest form of stearic acid to incorporate into 



 

62 

a diet. This solid form also ensures that the fat is a pure form of stearic acid and is not 

contaminated with other fatty acids that may alter or influence our results. 

Most of the studies that involve stearic acid have been cardiovascular studies, but 

a few have evaluated the effects of saturated fats on type 2 diabetes. Berry, et. al. showed 

that mono-unsaturated fats have positive effects on insulin sensitivity in type 2 diabetes 

as long as saturated fats are kept at a minimum (16). In this study, I have shown that even 

a moderate fat diet enriched in oleic acid, a mono-unsaturated fat, promotes obesity and 

has no effect on insulin sensitivity. The oleic acid diet presented here closely aligns with 

the current USDA and AHA dietary recommendations of increasing mono-unsaturated 

fats, low saturated fats and decreased overall fat content in the diet (31).  

Oleic acid has been heralded in cardiovascular research for its ability to lower 

plasma cholesterol levels (25, 27). The mice fed oleic acid in this study had increased 

oleic acid accumulation in the liver. While liver fatty acid accumulation is not a direct 

measure of plasma lipoprotein content, it is a good indicator of plasma content since the 

liver is the storage depot for fatty acids and secretes lipoproteins (51). Accumulations of 

fatty acids in the liver have been linked to insulin resistance. In this study, I found that 

db/db mice fed a diet enriched in oleic acid did not lower blood glucose levels nor did it 

reverse insulin tolerance. Previous studies have reported diets rich in the unsaturated fat, 

oleic acid, have been shown to be beneficial in lowering blood glucose levels and 

reversing insulin intolerance in diabetic patients (16, 29, 50, 89, 90, 104, 124, 125, 154). 

This study indicates that, at least in db/db mice, oleic acid does not have the beneficial 

effects previous reported when administered in a single fat enriched diet. Additionally, 
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these results indicate that oleic acid may have detrimental effects by accumulating in the 

liver.  

In this study, the saturated fat, stearic acid, had beneficial effects on blood glucose 

levels and did not accumulate in the liver. These results support the argument that all 

dietary fats are not the same and stearic acid, a saturated fat, has beneficial effects. 

Cardiovascular studies have shown that stearic acid does not promote increases in plasma 

cholesterol levels. Whether or not this is due to defects in absorption of stearic acid is still 

unknown. However, the overall effect of stearic acid has been promising in this study as a 

potential dietary modification for treating type 2 diabetes.  

Limiting dietary fat content to less than 20% of the total kilocalories did not 

prevent an increase in blood glucose levels, a marker for the progression of type 2 

diabetes. The stearic acid fed db/db mice did not have a lower body mass than the 

baseline or chow fed diet group, but did have a decrease in lean mass. This decrease in 

lean mass may indicate that the mice were not eating enough food and/or were using 

breaking down muscle to maintain body weight. This is contradictory to the wild-type 

mice fed the stearic acid diet which increased lean mass from baseline. The oleic acid 

mice were not significantly greater in body mass at the end of the diet study than the 

chow group or the baseline measurement. Additionally, WT mice fed the experimental 

diets gained weight over the course of the diet revealing that a moderate fat diet enriched 

in one type of fat is not useful tool to halt the progression of type 2 diabetes in the db/db 

mouse model. 
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Figure 3.2.1: Experimental design for 17% moderate fat diet study. A total of 190 

mice, 95 wild-type mice and 95 diabetic (db/db) mice were used in these experiments. 

Mice were acclimated one week prior to the start of experimental diets and 

measurements. After the acclimation, five mice per genotype were measured for baseline 

(before diet initiation) control measurements and then euthanized for tissue processing. 

The remaining mice were assigned a diet group. Thirty mice of each genotype were 

assigned to the chow group, 30 were placed in the high fat diet enriched in stearic acid 

group, and the remaining 30 mice were placed in the high fat diet enriched in oleic acid 

diet group. After starting the diet, five mice per diet group per genotype were used for 

measurements and then euthanized for tissue collection every two weeks for the duration 

of the study with the final group euthanized at 24 weeks on diet. 
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Table 3.2.1: Dietary Components 

 

 Catalog Number Protein Carbohydrate Fat 

Chow TD. 2918 18.80 53.80 17.0 

17% kcal Stearic Acid TD. 03459 19.00 64.40 16.60 

17% kcal Oleic Acid TD. 09315 18.80 63.90 17.20 
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Table 3.2.2: 17% Diet Fat Composition 

Diet Chow Stearic Acid Oleic Acid 

% kcal from Fat 17.00 16.60 17.20 

 

% Stearic acid in fat 2.60 85.00 2.00 

% Oleic acid in fat 22.50 1.00 65.00 

% Other Essential Fatty Acids 74.90 14.00 34.00 
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Figure 3.3.1: A moderate fat diet enriched in stearic acid did not prevent an increase 

in blood glucose levels in diabetic mice. WT and db/db mice were fed a either a  

moderate fat diet enriched in stearic acid or oleic acid or were fed standard chow diet for 

10 weeks. After ten weeks on diet, all diabetic mice experienced an increase in blood 

glucose levels. Note no two week data is present due to fire alarm. ** p<0.01, *** 

p<0.0001; n=5. 
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Figure 3.3.2: A moderate fat diet enriched in stearic acid did not promote weight 

gain in db/db mice. After 10 weeks on diet, WT mice fed stearic acid and oleic acid 

diets had increases in weight gain (A. **p<0.01, n=5). In oleic acid fed WT mice had 

increases in fat mass from baseline. WT mice fed oleic acid also had increased fat mass 

compared to chow fed animals. (B. *p<0.05, n=5). All WT mice had increases in lean 

mass in all diet groups compared to baseline. Chow and stearic acid fed WT mice had 

higher increase in lean mass compared to oleic acid fed WT mice. Db/db mice fed stearic 

acid had lost lean mass after 10weeks of diet compared to baseline and chow and oleic 

acid diet groups (C. *p<0.05, **p<0.01, ***p<0.001, n=5). 
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Figure 3.3.3: A moderate fat diet does not alter oxygen consumption. Oxygen 

consumption was not changed by any diet. WT and db/db mice showed a slight and 

insignificant variation in oxygen consumption, as expected.  
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Figure 3.3.4: Liver Fatty Acid Accumulation.  Fatty acids accumulated in the livers of 

both the WT and db/db mice fed the experimental diets. Interestingly, in the livers of both 

WT and db/db mice, oleic acid was the major fat that accumulated, regardless of diet. 

Note the difference in ordinate scale in panel A and B. * p<0.05, n=5 mice. 
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Figure 3.3.5: Insulin Tolerance Test. Insulin tolerance remained unchanged in both WT 

(A) and db/db mice after ten weeks on diet (B).  When blood glucose was plotted as 

percent of fasting blood glucose, no differences were observed. Interestingly, in WT mice 

(C), all diet groups had lower percent of baseline blood glucose levels as compared to 

baseline. Db/db mice also showed a similar trend. Db/db baseline measurements were 

higher in early time points (0-10 minutes after injection) than the diet groups (D).  
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Figure 3.3.6: Plasma insulin content did not change with a moderate fat diet. 

Insulin content was measured by ELISA and no significant difference was found between 

diet groups or genotypes. * p<0.05. 
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Chapter 4: A high fat diet enriched in stearic acid partially reversed hyperglycemia 

in db/db mice with prolonged hyperglycemia. 

4.1 Introduction 

In humans, Type 2 Diabetes Mellitus is more likely to be caused by obesity and 

lifestyle choices than genetic mutation such as the case in db/db mice. In humans, 

mutations in either the leptin protein (ob/ob) or the leptin receptor (db/db) are rare and 

are not sufficiently frequent to explain the increased rate of type 2 diabetes incidence in 

the last 50 years. Dietary influences and obesity are the largest risk factors in the 

development of type 2 diabetes. Most cases of type 2 diabetes can be directly linked to 

obesity and evaluating the amount and types of fat in the diet can offer an early treatment 

for both obesity and type 2 diabetes.  

Clinically, no treatment of diabetes begins until clinical manifestations of the 

disease are present, well after hyperglycemia is established. In many cases, uncontrolled 

hyperglycemia may be present for months to years before diagnosis and treatment begin. 

Therefore, I examined if our experimental diets would be beneficial in slowing and 

reversing the symptoms of type 2 diabetes if started after diabetic symptoms were well 

pronounced. 

I already observed the slowed progression of diabetic symptoms by the 40% kcal 

high fat stearic acid enriched diet in db/db mice. Thus, I tested if dietary stearic acid 

could rescue mice with established severe hyperglycemia. Since I already determined that 

db/db mice fed chow diet for ten weeks have a two fold increase in blood glucose levels 

from baseline, I maintained mice on chow diet before switching them to one of our 

experimental diets. In this study, I tested all four of our experimental diets in order to 
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determine: 1) if stearic acid affects blood glucose levels of mice with established 

hyperglycemia; 2) if there is a dose effect in the administration of stearic acid. Wild-type 

and db/db mice were fed the chow diet for six, eight, or ten weeks to establish 

hyperglycemia. The mice were then switched to 40% stearic acid, 17% stearic acid, 40% 

oleic acid, or 17% oleic acid diet for an additional six weeks of feeding. At the initiation 

of the diet and at the conclusion of the study, I measured fasting blood glucose, weight, 

and plasma insulin levels.  

4.2 Materials and Methods 

4.2.1 Animals 

 Wild-type, age-matched, male C57BLKS/J (WT, n=72) and BKS.Cg-Dock7
m
 +/+ 

Lepr
db

/J (db/db, n=72) were purchased from The Jackson Laboratory (Bar Harbor, 

Maine) at four weeks of age.  Upon receipt they were acclimated for one week to baseline 

conditions of a 12-hr light/dark cycle at 25°C on an ad libitum diet of commercially 

available standard rodent chow diet (2018 Teklad Global 18% Protein Rodent Diet; 

Harlan Laboratories, Madison, Wisconsin). At five weeks of age, I weighed the mice, 

gave each an ear tag, drew blood for a baseline blood glucose measurement, and 

randomly assigned each mouse to a diet group (n=8 mice per group per genotype). The 

diets were the standard chow diet and four experimental diets (40% kcal stearic acid diet 

Harlan Teklad TD.04096, 40% kcal oleic acid diet TD.09055, 17% kcal stearic acid diet, 

Harlan Teklad TD.03459, 17% kcal oleic acid diet TD.09315). Mice were fed ad libitum. 

All mice were fed standard chow diet until 6, 8, and 10 weeks of age to establish 

hyperglycemia. The mice were then switched to one of the four experimental diets for six 

additional weeks. Figure 4.2.1 outlines the experimental design for this study. Animal 
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care and housing were conducted according to the NIH Guide for the Care and Use of 

Laboratory Animals and all experiments were approved by the Institutional Animal Care 

and Use Committee at the University of Kentucky. 

4.2.2 Diets 

Table 4.2.1, 4.2.2, and 4.2.3 list the nutritional value and composition of each diet 

used in this study. The stearic and oleic acid diets used in this study contained similar 

percentages of protein and carbohydrate whereas chow diet contained slightly more of 

total kcal from protein and 60% total kcal from carbohydrates. The fat content of each 

diet was unique.  The experimental diets were custom made by Harlan Teklad using a 

modified TD.03459 diet. A Harlan Teklad nutritionist calculated all dietary nutritional 

values. 

4.2.3 Glucose Measurements 

Blood glucose was measured at the initiation of the diet (Baseline) and again at 

the end of the diet study. Mice were weighed and then fasted for four hours in a clean 

cage prior to testing. Fasting blood glucose was measured by tail prick with a 

commercially available glucometer and test strips (One Touch Ultra Glucose Monitoring 

Kit, Lifescan, Milpitas, California). 

4.2.4 Body Weight 

Weight was measured in conscious mice at the initiation of diet and at the 

completion of the diet study (6, 8, 10week groups) using a standard portable laboratory 

scale (Ohas, Model HH320, Fisher Scientific, Pittsburgh, Pennsylvania).  



 

78 

4.2.5 Insulin ELISA 

 Collected blood from fasted animals (4 hour fast) was allowed to clot for 20 

minutes in a vacutainer and centrifuged at 1500 X g for 10 minutes to isolate serum. 

Serum was then snap-frozen and stored at -80⁰C until analyzed. Plasma insulin levels 

were measured using a commercially available mouse/rat insulin ELISA (Millipore, 

Billerica, Massachusetts) and reported in ng/mL.  

4.2.6 Data Analysis  

 Values are depicted as mean + standard error and considered significant if p < 

0.05. Data were statistically analyzed using two-way ANOVA with Bonferroni correction 

or one-way ANOVA with Dunnett’s post hoc test when appropriate using GraphPad 

Prism 5.01 for Windows (GraphPad Software, San Diego, California). NIS-Elements 3.0 

(Nikon Instruments, Elgin, Illinois) was used for islet area and staining analysis. 

4.3 Results 

4.3.1. Blood glucose levels in diabetic mice switched to a high fat diet enriched in 

stearic acid are lower than before the mice started the experimental diet. 

Since I have already determined that db/db mice fed chow diet for ten weeks have 

a two fold increase in blood glucose levels from baseline, I designed a rescue study to 

examine the effects of stearic acid and oleic acid on blood glucose levels after 

hyperglycemia is established, similar to the onset of treatment in human type 2 diabetes. 

WT and db/db mice were fed the chow diet for 6, 8, or 10 weeks to establish 

hyperglycemia. The mice were then switched to 40% stearic acid, 17% stearic acid, 40% 

oleic acid, or 17% oleic acid diet for an additional six weeks. Blood glucose levels were 

tested at the initiation of the diet (Chow) and the cessation of the diet study. Wild-type 
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mice switched from the chow diet to any of the experimental diets maintained normal 

blood glucose levels regardless of how long they were fed chow diet (Figure 4.3.1A, B, 

C).   

Db/db mice fed chow for 6 weeks and then switched to 17% oleic acid diet had 

decreased blood glucose levels compared with the baseline chow measurement (Figure 

4.3.1A). Db/db mice switched to 17% stearic acid, 40% oleic acid, and 17% oleic acid 

diets continued to have elevated blood glucose levels after switching from chow 

following 8, and 10 weeks of feeding (Figure 4.3.1A, B, C). Db/db mice switched to 

17% stearic acid diet after 6 weeks of chow feeding had decreased blood glucose 

compared to the chow baseline, 17% oleic acid, and 40% oleic acid fed mice. 

Additionally, the 40% stearic acid diet slowed and even reversed the progression of type 

2 diabetes in diabetic mice with hyperglycemia regardless of time on chow.  

4.3.2. Body weight was not changed by rescue diet intervention. 

Wild-type mice fed chow diet for 6 weeks and then were switched to 40% stearic 

acid diet had significantly decreased body weight compared to all other diet groups and 

the baseline measurements (Figure 4.3.2A). After 8 weeks of chow feeding and 

switching to 40% stearic acid diet, wild-type mice had lower blood glucose than 17% 

stearic acid, 17% oleic acid, and 40% oleic acid fed mice but not lower than baseline 

glucose measurements (Figure 4.3.2B). No change in body weight was detected in mice 

that were fed chow diet for 10 weeks before being switched to 40% stearic acid diet 

(Figure 4.3.2C).  

Diabetic mice fed chow diet for 6 weeks and then switched to 17% oleic acid and 

40% oleic acid diets had increases in body weight as compared to baseline weight 
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measurement (Figure 4.3.2A). After 8 weeks of chow diet and then switching to 40% 

stearic acid diet, db/db mice had a significant decrease in body mass compared to 17% 

stearic acid, 17% oleic acid, and 40% oleic acid diets, but no different from baseline 

measurement (Figure 4.3.2.B). Importantly, db/db mice switched from chow diet to 40% 

stearic acid diet after 10 weeks of chow feeding had a large and significant decrease in 

blood glucose levels even though their body mass did not decrease significantly 

compared to mice fed chow diet (Figure 4.3.2C). Db/db mice fed 17% stearic acid, 17% 

oleic acid, and 40% stearic acid diets had no significant changes in body weight (Figure 

4.3.2C).  

4.3.3. Plasma insulin was not changed by rescue diet. 

 Plasma insulin content was measured only in the 10 week study. There were no 

significant differences in plasma insulin content in any of the diet groups or genotypes.   

4.4 Discussion 

Dietary interventions for treating hyperglycemia have been relatively ineffective 

at maintaining lowered blood glucose for a significant duration of time. Most of these 

dietary interventions focus on weight loss as a means to also decrease blood glucose. In 

most clinical manifestations of type 2 diabetes, patients are often hyperglycemic for long 

periods of time (months to years) before seeking treatment. Diet induced obesity is linked 

to high intake of dietary fat. Combining a high fat diet with hyperglycemia may 

exacerbate hyperglycemic conditions. In this study, I examined whether a high fat dietary 

intervention in which I modified the type of fat consumed could lower blood glucose 

levels in mice with established and severe hyperglycemia. I found that a high fat diet 

(40% kcal from fat) enriched in stearic acid reduced blood glucose levels without a 
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change in weight. However, a low fat diet (17% kcal from fat) enriched in stearic acid 

had no effect on blood glucose levels in db/db mice with established hyperglycemia. 

Similarly, mice fed a low fat diet with mixed fats (normal chow diet) and mice fed a high 

fat diet enriched in oleic acid, a mono-unsaturated fat, did not reverse or slow the 

progression of hyperglycemia. The mice fed these diets continued to have high blood 

glucose levels. These data indicate that a high-fat diet enriched in stearic acid may be a 

suitable dietary intervention for treating hyperglycemia, especially in patients who have 

trouble adhering to a low fat diet.  
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Table 4.2.1: Dietary Components 

 Catalog Number Protein Carbohydrate Fat 

Chow TD. 2918 18.80 53.80 17.0 

40% kcal Stearic Acid TD. 04096 17.80 42.20 40.0 

40% kcal Oleic Acid TD. 09088 17.50 41.50 41.0 

17% kcal Stearic Acid TD. 03459 19.00 64.40 16.60 

17% kcal Oleic Acid TD. 09315 18.80 63.90 17.20 
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Table 4.2.2: 40% diet composition 

Diet Chow Stearic Acid Oleic Acid 

% kcal from Fat 17.00 40.00 41.00 

 

% Stearic acid in fat 2.60 86.00 2.00 

% Oleic acid in fat 22.50 <1.00 64.00 

% Other Essential Fatty Acids 74.90 13.00 34.00 
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Table 4.2.3: 17% diet composition 

Diet Chow Stearic Acid Oleic Acid 

% kcal from Fat 17.00 16.60 17.20 

 

% Stearic acid in fat 2.60 85.00 2.00 

% Oleic acid in fat 22.50 1.00 65.00 

% Other Essential Fatty Acids 74.90 14.00 34.00 
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Figure 4.2.1: Experimental design for rescue diet study. In a separate but parallel 

study to examine the effects of dietary stearic acid on adult mice with severe and 

prolonged hyperglycemia, db/db and WT mice were aged to 6 weeks, 8 weeks, and 10 

weeks of age on standard chow diet. These mice were then switched to one of the four 

experimental diets: 17% kcal stearic acid, 17% kcal oleic acid, 40% kcal diet stearic acid, 

or 40% kcal oleic acid and maintained on these experimental diets for 6 weeks. Similar 

parameters from the previous studies were measured: blood glucose, weight, and body 

composition.  
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Figure 4.3.1: A high fat diet enriched in stearic acid decreases blood glucose levels in 

db/db mice with pre-existing hyperglycemia. A. 6 weeks chow  6weeks 

experimental diet.  B. 8 weeks chow  6 weeks experimental diet. C. 10 weeks chow  

6 weeks experimental diet. * p<0.05, * p<0.01, *** p<0.001, n=8 per group. 
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Figure: 4.3.2: Body mass during rescue diet study. A. 6 weeks chow6 weeks 

experimental diets. db/db mice switched from a chow diet to a 17% and 40% fat diet 

enriched in oleic acid have increased weight compared to baseline (chow). Both WT and 

db/db mice fed 40% stearic acid diet had decreased body weight after B. 8 weeks 

chow6 weeks experimental diets. WT and db/db mice 40% stearic acid diet had lower 

body mass than other diet groups but not lower than baseline weight. C. 10 weeks 

chow6 weeks experimental diets. Db/db mice fed 40% oleic acid diet had significantly 
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higher body mass than db/db mice fed any other diet and higher than baseline. *p<0.05, 

**p<0.01, ***p<0.001 and n=4-8 per diet group per genotype.  
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Figure 4.3.3: 40% high fat diet enriched in stearic acid or oleic acid has no effect on 

plasma insulin levels. Plasma insulin levels of mice placed on 40% high fat diets at ten 

weeks of age were measured after 6 weeks on diet. There were no differences in plasma 

insulin levels in any group of mice.   
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Chapter 5: Discussion 

 The purpose of this research was to test the hypothesis that a high fat diet 

enriched in stearic acid slows the progression of type 2 diabetes in a db/db mouse model. 

The work presented in this dissertation supports my global hypothesis that stearic acid 

has protective effects in slowing the progression of type 2 diabetes. These findings are 

novel in the field of type 2 diabetes dietary fatty acid research and may improve upon 

current dietary recommendations for diabetes patients. 

Chapter 2 examined the effects of a high fat diet enriched in stearic acid on the 

progression of type 2 diabetes in a diabetic mouse model. Using this murine model and 

experimental diet, evidence was provided that the progression of type 2 diabetes was 

slowed when mice were fed a high fat diet enriched in stearic acid during the diet study. 

Additionally, the db/db mice were protected from severely elevated blood glucose levels, 

a major factor in pancreatic beta cell failure; this protection was unrelated to weight loss 

(100). This supports the hypothesis that the effects of stearic acid are due to alterations in 

fatty acid absorption in the gut. The mechanism by which stearic acid has decreased 

absorption is unknown. However, the decreased absorption does support the idea that 

stearic acid is beneficial in slowing the progression of type 2 diabetes. In this study, I 

found that a high-fat diet enriched in stearic acid, but not a high-fat diet enriched in oleic 

acid, a monounsaturated fat, was able to lower blood glucose levels in db/db mice 

without a concomitant change in body weight, a novel finding in diabetic diet studies. 

In Chapter 3, I asked whether stearic acid has beneficial effects in a low fat diet, a 

regimen more closely aligning with current dietary recommendations (~20% kcal from 

fat). Lowering the fat content in the experimental diets from 40% kcal from fat to 17% 
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kcal from fat significantly impaired the effectiveness of the diet as compared to the 40% 

kcal experiments. Blood glucose levels in wild-type mice did not differ from those of 

db/db mice on the moderate fat diets. Db/db mice fed chow, stearic acid and oleic acid 

enriched diets all and increased blood glucose levels. This result indicates that stearic 

acid has a dose-dependent effect on blood glucose levels and additional studies are 

warranted to investigate the amount of fat absorbed in this moderate fat diet. Since stearic 

acid has no detrimental effect on cholesterol levels, it may be incorporated into the diet as 

a treatment for lowering blood glucose levels without concern for cardiovascular 

complications. I found that only a high-fat diet enriched in stearic acid was able to control 

hyperglycemia in db/db mice. Mice fed moderate-fat diets (17% kcal from fat) enriched 

in stearic or oleic acid were not as fat as the high-fat fed mice, but had blood glucose 

measurements that were higher than their baseline measurements. 

Chapter 4 extended the hypothesis that stearic acid has beneficial blood glucose 

lowering effects and focused on treating mice that had established severe hyperglycemia.  

I designed a ‘rescue’ diet study in which wild-type and db/db mice were fed chow diet for 

6, 8, or 10 weeks before being switched to one of the experimental diets. I confirmed the 

results from the first and second experiments: a high-fat diet (40%kcal from fat) lowered 

blood glucose levels without a decrease in weight; a moderate fat diet (20%kcal fat) did 

not lower blood glucose levels in db/db mice. Further I found that only a diet enriched in 

stearic acid, not the unsaturated fat oleic acid, was able to lower blood glucose levels. 

The ability of a stearic acid enriched high fat diet to slow the progression of diabetes and 

reverse hyperglycemia in db/db mice argues that risks and benefits of fats in the diet 
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depend on the species, rather than the chemical class, of fats ingested. The beneficial 

effect of stearic acid appears to be associated with a decreased absorption of dietary fat. 

5.1 Future Directions 

My first and second aims were designed to determine if stearic acid could lower 

blood glucose levels in diabetic mice and if there was a dose-dependent effect of stearic 

acid on blood glucose levels. I used direct dietary supplementation of stearic acid and 

evaluated the effects on the disease state to determine if a high-fat diet enriched in stearic 

acid, a saturated fat, slows the progression of type 2 diabetes in db/db mice. Diets 

enriched in saturated fats have been labeled as detrimental to overall health and allegedly 

linked to cardiovascular events. Previous studies have reported that dietary stearic acid 

has minimal effects on plasma cholesterol levels, unlike the saturated fat palmitic acid, 

another common dietary saturated fat, which increases LDL cholesterol. Stearic acid may 

be used as a dietary treatment option for type 2 diabetes without concern for detrimental 

cardiovascular effects. 

In the work for the first and second aims, I found there was, in fact, a dose 

dependent effect of stearic acid. Db/db mice fed stearic acid had lower blood glucose 

levels when fed a high fat diet (40% kcal from fat) enriched in stearic acid but not when 

fed a 17% kcal moderate fat diet enriched in stearic acid. Stearic acid may have worked 

more efficiently at lowering blood glucose levels in the high fat diet than in the moderate 

fat diet because the amount of fat in the diet was able to overwhelm the fat transport 

system.  

Stearic acid poses a unique problem for the fat emulsification, hydrolysis, and 

absorption pathways. Stearic acid, like many saturated fats is solid at room temperature 
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(10). Unlike saturated fats that have been tested in previous dietary studies, solid stearic 

acid is not emulsified or hydrolyzed efficiently by endogenous agents (109). To be 

absorbed from the diet, fats must be emulsified by bile salts made by the liver and stored 

in the gallbladder (143). The pancreas makes and secretes pancreatic lipase which 

enzymatically cleaves the fatty acids tails from the glycerol (143). Lipase, however, is 

water soluble and can only cleave fatty acids that are near the edge of the emulsion 

micelle (173). Although there is a large amount of pancreatic lipase in the small intestine 

ready to hydrolyze fats, it is also easy to visualize how a high-fat diet easily overwhelms 

the emulsification and hydrolytic processes. Ingesting large amounts of fat, especially 

saturated fat, requires large amounts of bile to complete emulsify the fats. A disruption in 

the fat and bile ratio leaves fat globules intact rather than emulsified in micelles (80, 

178). The intact fat globules are not absorbed across the intestinal wall and instead move 

through the digestive tract for excretion. I have shown that stearic acid is not well 

absorbed and is excreted in the feces of the mice fed a diet enriched in stearic acid. 

Importantly, the mice fed a high-fat diet enriched in stearic acid excreted more fat in the 

feces than those mice fed a high-fat diet enriched in oleic acid, an unsaturated fat that is 

emulsified and hydrolyzed efficiently (77).  

This demonstration of manipulation of the fat absorption pathway is not novel. 

The drug orlistat works by blocking pancreatic lipase thereby decreasing digestion and 

absorption of fat and increasing excretion (79). This mechanism of using a fat to block its 

own absorption and act in a manner similar to well defined pharmaceutical, orlistat, is 

novel and may have future promise in dietary treatments of type 2 diabetes instead of 

reliance on pharmaceuticals. 
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Similarly, stearic acid did not provide all the caloric value of the diet. 60% of the 

kilocalories in the diet came from protein and carbohydrate. The poor absorption of 

stearic acid from the gut eliminates the fat from providing a sufficient primary fuel 

source. Thus, the mice must utilize the remainder of the diet, the protein and 

carbohydrates, for fuel, effectively lowering the caloric content without restricting food 

consumption. The decrease in blood glucose levels did not occur until two weeks after 

the diet intervention was started indicates that the diet intervention had a compensatory 

time, during which the body, most notably the gut, was adjusting to the change in nutrient 

supply. This, together with the increase in fecal fat excretion and low liver accumulation 

of stearic acid, supports studies that have shown stearic acid may change the gut 

microflora (42, 158).  The gut microflora, the resident bacteria of the gut, is also involved 

in metabolizing diet contents. The microflora constituents can change to adjust to the 

dietary demands placed upon it. Increasing the fat content will demand for more fat-

metabolizing gut bacteria and less carbohydrate-metabolizing bacteria (32, 33). 

Examining the constituents of the gut microflora may indicate how mice were utilizing 

the diets administered to them.  

Recall that carbohydrates are the preferred fuel source and can be easily 

metabolized; however, proteins, like fat, are not as efficiently metabolized. To test if the 

mice were utilizing the other diet components in place of the fat, one may measure the 

waste product from the metabolism of protein: urea (97). Elevated levels of urea in the 

liver and urine of db/db mice on stearic acid diet compared to WT and db/db mice on 

non-stearic acid diets would indicate that the stearic acid fed mice were using proteins as 

a primary fuel source and were able to maintain their body weight by using the 
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components in the diet more efficiently than the db/db mice fed oleic acid and chow diets 

that contained fat that was easily absorbed.     

Though I found that stearic acid was not well absorbed by the mice, there is little 

doubt that the mice are absorbing some of the stearic acid from the diet. Stearic acid may 

have effects on the insulin release signaling cascade. Stearic acid, similar to other long-

chain fatty acids, acts as a cellular signaling molecule in the insulin release pathway (69, 

70). The G-protein coupled receptor, GPR40, which is expressed in the pancreatic beta 

cells, plays a role in potentiating the insulin release pathway and has a fatty acid binding 

domain (26, 95, 167). Stearic acid has the potential to bind to the fatty acid binding 

domain of GPR40 thereby activating the receptor and downstream signaling cascade 

culminating in insulin granule fusion and insulin release from the pancreatic beta cells.  

Given the mechanism outlined above, the input of stearic acid on the GPR40 

pathway should be evaluated. Steneberg et al. (164) previously showed that GPR40 

knockout mice were resistant to fatty-acid modulation of insulin secretion and 

normoinsulinemic. Additionally, GPR40 overexpressing transgenic mice were 

hypoinsulinemic and diabetic (56). My data point toward fatty-acid potentiation of insulin 

secretion and intense contribution of fatty-acid to insulin resistance though the GPR40 

pathway. 

Steneberg et al. did not control the specific fats in the diet; mice were fed either a 

high-fat, mixed fat diet or a control diet (164). To evaluate the effects of stearic acid on 

GPR40 activation, the Steneberg study could be replicated to include the stearic acid 

presented in this work. Measurements of plasma insulin, glucose tolerance and insulin 

tolerance would evaluate the effect of stearic acid on the GPR40 pathway. If stearic acid 
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influenced the GPR40 pathway, one would observe an increase in plasma insulin levels, 

no glucose or insulin intolerance. If stearic acid did not contribute to the GPR40 pathway, 

insulin levels would increase, and both glucose and insulin tolerance would decrease. 

Additionally, GPR40 content in the pancreas should also be examined. If there were no 

change in the amount of GPR40 present in the islets from WT mice, overactivation of 

GPR40 would not be likely. 

Similarly, caveolin-1, a membrane bound protein found abundantly in the 

pancreatic beta cells that has a role in insulin secretion, acts as a gate in the insulin 

granule fusion and release pathway (138). Insulin granule fusion with the plasma 

membrane is controlled by the  small Rho family GTPase, cdc42,  in complex with 

VAMP2, and by caveolin-1 (138). When associated with caveolin-1, the granules do not 

fuse with the membrane (138). However, upon glucose stimulation, caveolin-1 releases 

the inhibition on the cdc42-VAMP2, and the insulin granules fuse with the membrane to 

release insulin (138). Moreover, a fatty acid, like stearic acid, could bind to caveolin-1, 

and, via the cdc42 pathway, increase insulin secretion by releasing the inhibition of 

caveolin-1 on the insulin granules (169).  

In the pancreatic islets, fatty acids, such as stearic acid, may bind to caveolin-1 

and move the fatty acid into the cell while simultaneously releasing the inhibition from 

insulin granules. This would increase pancreatic islet fatty acid content and increase 

insulin exocytosis. To test modulation of the insulin granule pathway by stearic acid, a 

few experiments would be effective. Isolated pancreatic islets from diet treated WT and 

db/db mice would be measured for fatty acid content by GC/MS. Next, another set of 

islets would be incubated with stearic acid in the culture media. The culture media would 
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be collected and analyzed for secreted insulin content and fatty acid by ELISA and 

GC/MS, respectively. Additionally, the islets would need to be homogenized and 

analyzed for stearic acid content. If insulin content of the culture media in the islet from 

the diabetic animals increases and stearic acid content decreases, stearic acid may 

positively modulate the insulin secretion pathway by removing the inhibition of caveolin-

1 on the insulin granules. Simultaneously, stearic acid may bind to caveolin-1 for 

transport into the islets resulting in a higher stearic acid concentration inside the 

pancreatic islets. Removal of fatty acids from the culture media would ameliorate this 

effect.  

In only one cohort I observed a decrease in weight in the db/db mice fed stearic 

acid. The maintenance of weight coupled with lower blood glucose is contradictory to 

most diabetic dietary intervention studies (45, 104). The experimental diets, both stearic 

acid and oleic acid diets, had similar compositions of protein and carbohydrate 

components and only differed in the type of fat, not the amount of fat, that was added. 

The maintenance of weight in the stearic acid diet group may indicate better glucose 

uptake by the skeletal muscle. 

Another mechanism by which stearic acid may have lowered blood glucose levels 

in the diabetic mice is through improvements in skeletal muscle uptake of glucose. 

Increasing glucose uptake into the skeletal muscle would decrease blood glucose levels 

(11, 52, 128). Glucose uptake into the skeletal muscle is driven by the activation of the 

insulin receptor. Insulin binding its receptor activates a signaling cascade that moves 

more GLUT-4 glucose transporters onto the cell membrane (44). Glucose moves through 

the glucose transporter and into the muscle cell (106). Caveolin-1 also plays a role in 
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insulin receptor activation. Previous studies have reported that insulin can activate 

caveolin-1 by phosphorylation at tyrosine 14 (157). Activation of caveolin-1 has been 

reported in increase GLUT-4 translocation (36, 120). My results indicated that db/db 

mice fed a high fat diet enriched in stearic acid did not have decreased plasma insulin 

levels; therefore, the circulating insulin could bind to its receptor activating caveolin-1 to 

promote enhanced GLUT-4 translocation. Additionally, the increased level of circulating 

fatty acids may promote additional caveolin-1 to the plasma membrane. Additional 

caveolin-1 on the membrane may have the potential to further increase the translocation 

of GLUT-4 to the skeletal muscle membrane. An increased amount of caveolin-1 would 

also result in an increase in lipid deposit in the muscle cell. Immunohistological staining 

for GLUT-4 on the muscle cell surface as well as skeletal muscle lipid content identified 

by Oil Red O staining would indicate if stearic acid is promoting lower blood glucose 

levels by increasing glucose transport into the skeletal muscles.  

The work presented in this dissertation supports my global hypothesis that stearic 

acid has protective effects in slowing the progression of type 2 diabetes. These findings 

are novel in the field of type 2 diabetes dietary fatty acid research and may improve upon 

current dietary recommendations for diabetes patients. 
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