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Abstract— This paper provides background and historical events of Geomagnetic Disturbances 
(GMD), and reviews GMD impacts on power systems equipment, and associated protection and control 
systems, mitigating measures, and Geomagnetic Induced Current (GIC) monitoring methods. This 
paper is a summary of the IEEE PES-TR72 report, titled, GMD Impacts on Protection Systems, 
prepared by the K17 Working Group of the IEEE Power System Relaying and Control committee.  

Keywords— Geomagnetic Disturbances (GMD), Generator Protection, Capacitor Protection, 
Transformer Protection, Transmission Line Protection, Communication Aided Protection. 

I. INTRODUCTION  

This paper discusses impacts of Geomagnetic Disturbance (GMD) phenomena on protection systems. 
GMD phenomenon and impact on our society have been monitored and studied for decades and 
warning systems are in place to provide level of intensity and approximate time of impact. One example 
is NOAA (National Oceanic Atmospheric Administration) GMD Planetary K-index in the United States 
[1]. In power system, GMD events create low frequency primary currents (quasi-DC) that circulate 
between transmission lines, high-side Y-grounded transformers and ground. GMD events may cause 
unanticipated damage to high voltage equipment such as transformer, generator, shunt capacitor and 
SVC, and may have impacts on radio or satellite communications used as timing source or for protection 
and control functions. Depending on the severity of GMD, they may also affect the performance of 
protection and control schemes. The low frequency current created by GMD events is referred to as 
Geomagnetically Induced Current (GIC). GIC may cause elevated levels of harmonics. GIC flow in Y-
grounded transformers, for example, may cause high magnetic flux that could cause severe transformer 
damage through overheating. Protection system reliability (security and/or dependability) may also be 
affected depending on GMD severity. Many technical papers have been published regarding GMD and 
their impact on protection systems. This paper intends to summarize main findings of previous events 
and current practical experiences on protection systems. 

This paper provides GMD background, followed by potential impacts to primary equipment. Finally, 
impact to power system protective relaying is discussed. This paper serves to raise the reader’s 
awareness on issues with equipment specification, operation and maintenance practices, application, 
and setting of protection systems that may be impacted by GMD events. 

II. IMPACTS ON POWER SYSTEMS 

Space weather disturbances have been observed before the Common Era (BCE). A 2012 study [2] 
reports an assessment on the probability of occurrence of extreme solar particle events based on 
historical proxy data since 1485 BCE.  

The “Solar Storm of 1859”, known as the Carrington Event is the most severe GMD event recorded in 
history [3]. The range of magnetic strength have been observed from -800 to -1750 nT (nanotesla). 
Telegraph systems all over Europe and North America failed due to the severity of these GMDs. A 2013 
study reported an estimated cost to the United States during this event to be about $0.6 - $2.6 trillion 
USD [3].   

The IEEE PES-TR72 report [4] lists several notable GMD events since 1859. Solar storms causing 
GMDs on the Earth’s magnetosphere may have substantial impacts on the Bulk Power System (BPS), 
telecommunications, navigation, and satellite systems.  For example, during March 13, 1989 GMD 
event, tripping of harmonic filter banks and seven static var compensators led to a massive power 
(~21.5 GW) outage in Hydro Québec transmission grid. High harmonic levels caused misoperation of 
protection system, and collapsed entire Hydro Québec grid in less than a minute and left about six 
million people out of power for about nine hours. A report produced by NERC [5] addresses the system 
operation concerns on the BPS and concludes that loss of reactive power compensation could be the 
most likely outcome of a severe GMD event.  
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A. GMD background 

A GMD event is caused by interaction between the cloud of charged particles produced by a Coronal 
Mass Ejection (CME) from a solar storm, and earth magnetic field. A solar storm’s impact on 
transmission facilities depends on many factors, including solar storm intensity, whether the mass of 
particles ejected from a solar storm strikes Earth, proximity of affected system/equipment to Earth’s 
poles and local geology, length and orientation of transmission lines, winding connection of connected 
transformers, and design of connected transformers and their connected load. 

Most solar storms and CMEs occur during a 4 ~ 6 years interval, within the sunspot cycle that peaks 
predominantly every 11 years.  GMD events typically appear on Earth 1 ~ 4 days after an earth-directed 
flare or eruption on the Sun takes place. CMEs interact with the Earth’s magnetosphere and cause 
slow-varying electrojet currents about 100 km above earth. Fluctuations of electrojet currents result in 
changes on Earth’s surface magnetic field (geomagnetic field). Geomagnetic field changes at Earth’s 
surface layer induce GIC in transmission lines and associated equipment directly connected to the line 
(e.g., power line carrier) and other high voltage equipment terminated through bus coupling at 
Substation. 

B. Harmonics produced by GIC-induced saturation 

GIC may cause transformer core to saturate. Single-phase transformers, transformers with five leg 
cores, and shell type transformers are more susceptible to applied DC current [6]. These types of 
transformers can present the highest risk to system reliability should core saturation occur. Three-leg 
core form designs are less susceptible to saturation from GIC, but they too may saturate at high GIC 
levels.   

Flow of GIC through transformers may cause asymmetric part-cycle saturation of transformers’ cores. 
Transformers under half-cycle saturation absorb increased amounts of reactive power (var). In addition 
to causing reactive power losses that may threaten system voltage stability, large amounts of harmonic 
current can be injected into the power system if numerous transformers are simultaneously saturated 
during a severe GMD event. These harmonic currents can have a magnitude greater than that of the 
fundamental reactive current. Harmonic currents can directly affect power system equipment such as 
capacitors, harmonic filters, SVCs, and generators, and may interfere with proper operation of 
protection systems. 

The magnetizing current of a saturated transformer, due to GIC, consists primarily of unipolar pulses 
with magnitude and pulse-width that are functions of the GIC magnitude. Fourier analysis of 
magnetizing current reveals a DC component that is equal to the GIC, a fundamental frequency reactive 
current component, and harmonic components. 

Harmonic components of magnetizing current for single-phase transformers can be calculated based 
on per-unit fundamental voltage, slope of magnetization curve in fully saturated region (often called “air 
core reactance”), harmonic order, and saturation delay angle.  Harmonics produced by GIC saturation 
of single-phase transformers fall into classic sequence component pattern: multiples of third harmonics 
are zero sequence, 3rd, 6th, etc.; 2nd, 5th, 8th, etc. are negative sequence; and 4th, 7th, 10th, etc. are 
positive sequence [6].  GIC saturation behavior of three-phase transformers is quite complex because 
of interaction of magnetic circuits of the phases. Appropriate time-domain magnetic circuit modeling 
technique such as duality-based modeling is required to determine harmonic currents [7]. 

C. GMD impacts on power systems 

1) Historical GIC observations 

After the Hydro Quebec blackout and other utilities’ experiences during earlier geomagnetic 
disturbances, several utilities installed GIC monitoring systems on the neutrals of some vulnerable EHV 
transformers to assess transformer vulnerability to GIC during Solar Cycles.  BC Hydro, for example, 
has observed GIC caused excitations in its 138 kV line, which has been mitigated by placing a GIC 
blocking capacitor in the neutral of the transformer at the receiving terminal of the line. This reduced 
harmonic excitation mitigated overvoltages due to harmonic resonance. In some cases, half cycle 
saturation of some 500 kV transformers caused increased reactive power absorption that reduced the 
voltage at the 500kV terminal. However, the voltage reduction was not severe and was mitigated by 
normal operating procedures.  Refer to [4] for other examples. 

2) Capacitor bank tripping 

Capacitor banks are low impedance paths for harmonics. During the March 1989 solar storm, thirteen 
capacitor banks within the Dominion Energy Virginia Power (DVE) service territory tripped within two 
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minutes due to a protection scheme susceptible to harmonic distortion. A neutral unbalance scheme 
that measured current at the neutral ground point to determine the failure of capacitor units would 
operate. Though the scheme was equipped with a parallel capacitor to provide immunity to third 
harmonics, the electromechanical relay was unable to distinguish excessive harmonics of other orders 
from fundamental frequency component during GIC, therefore, the relay misoperated. This event 
pointed out a vulnerability of the system that could increase when the system is under higher stress. 

3) GIC impacts on transformers 

Transformer Core saturation due to GIC is highly undesirable as the transformer will become incapable 
of delivering the required rated power to the load. In addition, localized heating and general overheating 
will occur due to stray magnetic flux that induces eddy currents in conductors and metal components 
within the transformer tank. A prolonged saturation condition can potentially lead to failure of the power 
transformer. Reducing the transformer load is one method to minimize thermal stress to the transformer 
structural parts, such as tie plates, yoke clamps, tank walls, tank cover, tank bottom, etc. Damage may 
not be immediate following only a single GIC instance.  Failure may result as a cumulative or residual 
effect from a combination of multiple GIC occurrences, which may involve both over-excitation and GIC. 

4) GIC impacts on generators 

Generator harmonics  

Generators are usually interconnected to transmission grid by grounded-wye delta step-up 
transformers, which do not allow any GIC flow into the generator itself. However, harmonic currents 
caused by transformer saturation can flow into a generator and pose a considerable risk to the machine 
if excessive. A detailed, and potentially extensive, system model may be needed to calculate generator 
harmonic currents during a GMD. Only positive and negative sequence harmonic current can flow into 
the generator, by virtue of the wye-delta Generation Step-up Unit (GSU) connection. Both positive and 
negative sequence harmonics create impacts similar to negative-sequence fundamental currents.  

Rotor heating 

Positive sequence harmonic currents flowing into the stator of a generator cause an air-gap magnetic 
field that rotates, in forward direction, at a rotational speed that is n times the synchronous speed. From 
the reference frame of the rotor, the apparent rotation is at n-1 times synchronous speed. Negative 
sequence harmonic current into the stator causes a magnetic field that rotates in reverse direction at n 
times the synchronous speed. In the rotor reference frame, the apparent speed is n+1 times 
synchronous speed [4].  

Both positive and negative sequence harmonics result in a magnetic field that is rotating with respect 
to the rotor, and thus eddy currents will be induced in the rotor. IEEE Std C50.12-2005 and C50.13-
2014 specify negative sequence current withstand capabilities for salient-pole and cylindrical-rotor 50 
Hz and 60 Hz synchronous generators, respectively. 

Mechanical resonance excitation 

The interaction between rotating magnetic fields induced by synchronous generator stator harmonic 
currents and the DC magnetic field produced by the rotor causes mechanical torque pulsations. The 
frequency of this mechanical stimulus is the same as the frequency of the harmonics as seen in the rotor 
reference frame; stator harmonic order plus one for negative-sequence harmonics and stator harmonic 
order minus one for positive-sequence harmonics. 

III. GMD IMPACTS ON PROTECTION SYSTEMS  

A. CT Saturation due to GIC 

Some impacts to protection have been described earlier, i.e. flux, excitation, excessive negative or 
ground current flows and harmonics. GIC levels have some effect on conventional instrument current 
transformer (CT) performance. Depending on the type and application purpose for a CT, and the CT 
tap selected, when it has multi-tap CT, the magnetic core may measure a small added magnetism 
during a GMD event compared with performance ratings in typical protection applications. Most often, 
the CTs are selected for short circuit currents with an expected voltage saturation for particular 
application over a life cycle, for example, transmission line and transformer protection. The GMD 
caused magnetic flux may not lead to a CT damage. The quasi-DC drives the flux linkage closer to the 
knee-point of the CT excitation curve.  CT saturation due to GICs is of transient nature, and the 
saturation observed based on historical events is generally short-lived. The error is increased, 
compared with no DC present, but the differences observed in simulations show negligible impact. It 
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may be worthwhile to check CT conditions of equipment, after a known GMD with measurable impact 
on nearby stations.  

B. GMD Impacts on Protection & Control Schemes 

Based on the transient nature of the GIC, impact of GIC-induced CT saturation on protective relays is 
often masked by the protective device settings, or the time delay applied for coordination. Protective 
relays may experience slightly degraded dependability (under-reaching, slower operation) due to GIC. 
This is similar to the performance degradation experienced during CT saturation caused by a number 
of other well-known factors.  Also, in light of decades of enhanced protection system performance 
monitoring and analysis of captured recordings, several enhancements are built in many 
microprocessor-based protective devices and schemes, to address CT saturation. These well-
recognized factors ensure security for CT errors due to GICs as well.  Below is a short overview of some 
protection elements and their performance during a GIC-induced event. 

Line distance and overcurrent elements may slightly underreach due to CT errors. For instantaneous 
elements, the relays are typically applied with a margin to cover more severe faults, hence, the low 
magnitude quasi-DCs may not have significant impact. Time-coordinated distance or overcurrent 
elements apply overreaching margins with time delay to operate, so they retain dependability, despite 
the GIC-induced CT magnetism. Line differential elements typically incorporate a means to address CT 
saturation, and they operate on principal of currents flowing towards a protected area, as opposed to 
current flow in opposing directions away from the protected area. 

Transformer differential elements include percentage restraint to cope with CT errors, and they too 
remain secure for external faults even under GICs. 

Distance and overcurrent relays would tend to underreach due to substantial CT saturation in the first 
half cycle of the fault current. As a result, protection might be slightly delayed for in-zone faults due to 
transient CT saturation caused by the GIC. 

Fast line differential microprocessor relays may be affected by transient CT saturation, but these relays 
already guard against CT saturation, and when designed properly, do not face any problems. Slower 
line differential relays are secure because errors during transient CT saturation from GIC are short-
lived. 

Non-restraint elements of transformer differential protection function are similar to those in line 
differential relays. A similar analysis can be presented in terms of their performance during a 
GIC-induced electromagnetic impact. 

1) Capacitor Bank Protection and GIC Impact 

Capacitor banks are low impedance paths for harmonics. Transmission capacitor banks are composed 
of many individual capacitor units that are connected in series and parallel based on equipment 
specification. Capacitor banks are often wye, double wye or delta connected and grounded or 
ungrounded. Four types of capacitor units and their respective connections are widely used:  

 Externally fused, with individual fuses for each capacitor unit 
 Internally fused, with each element fused inside the capacitor unit 
 Fuseless, with capacitor units connected in a variety of series and parallel arrangements 
 Fuseless, with capacitor units connected in series strings between line and neutral (or between 

line terminals) 

Capacitor bank protection schemes are described in IEEE Std C37.99-2012. Varieties of sensitive 
protection schemes are available to measure unbalanced currents or voltages between various parts 
of the bank and identify possible failures of individual capacitor units that could cause unacceptable 
overvoltage across good capacitor units in other parts of the bank. When applying sensitive unbalance 
protection schemes to capacitor banks, it is important to be aware of the possibility of high proportions 
of harmonic currents flowing into these banks under various power system conditions (including GICs). 

In terms of protective schemes performance, in general, digital relays are designed to measure 
fundamental frequency currents, and filter out other frequencies for protection purposes while having 
the feature to identify and record presence of a significant proportion of harmonics. 

Electromechanical and solid-state protective relays, on the other hand, may be susceptible to undefined 
performance in the presence of harmonics. Some severe geomagnetic storm events have led to tripping 
of multiple shunt capacitor banks deployed throughout one utility service territory [11] in a relatively 
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short period due to a protection scheme susceptible to harmonic distortion.  

Most microprocessor-based relays have filters that will protect the capacitor bank and associated 
components from damage due to excessive harmonic current flow. Therefore, in some cases, protection 
or monitoring systems that measure total rms currents may be advantageous to measuring total phase 
currents into a capacitor bank exposed to harmonic absorption. 

2) Transformer Protection and GIC Impact 

Transformer protection consists of electrical and some mechanical detection functions. For the electrical 
protection, basic functions include differential and overcurrent protection. Mechanical protection often 
includes a sudden pressure and low oil detections. The impact of GIC on the electrical protection 
elements is a combination of CT saturation and harmonics. The GIC impact on the primary side of the 
CT and the protection performance are minimal for reasons explained earlier. Furthermore, the primary 
side of the CT acts as a high pass filter, basically filtering out low frequency component (including quasi-
DC) and allow for nominal frequency component to be correctly utilized without much loss of signal 
integrity. 

Fig. 1 shows current distribution in transformer windings for a two-winding transformer with magnetizing 
current appearing as a differential or operating current (IOP). Magnetizing or excitation current (IET) 
distribution on primary and secondary windings are presented feeding towards the magnetic core while 
load flow (ILOAD) is from primary towards secondary windings of the transformer. 

The magnetizing current (IET) magnitude is dependent on the GIC strength as is the magnitude of the 
harmonics generated by the magnetizing branch of the transformer. In general, the quasi-DC is not 
large enough to generate sufficient operating current in the differential measuring element to jeopardize 
security of the element, i.e., this IOP current is below pickup current to operate differential element.  As 
shown in Figure 1, the GIC current is only part of the transformer excitation, and does not flow in the 
CT circuit used for overcurrent element protection.  However, GIC current will result in transformer 
drawing a larger magnetizing current than under normal operating conditions. 

 

 
Fig. 1 Electrical equivalent diagram for a two-winding transformer  

The vector sum of transformer nominal load current and magnetizing current, even under GIC 
conditions, is unlikely to drive the operating current above threshold of the overcurrent element set 
point. This is true for operating quantities for the overcurrent element that are rms or fundamental 
frequency current. However, if a transformer is overloaded during a GIC event, the higher magnetizing 
current may reduce the security margin of the overcurrent element.  Under external fault conditions, 
there may be a concern that a GIC condition could jeopardize security of transformer protection 
elements. Investigation of behavior of these elements under an external fault condition in the presence 
of GIC may help resolve this concern. 

The increased GIC may lead the power transformer to draw above average magnetizing current, which 
can result in elevated differential current (IOP). When a fault occurs on the power system, the voltage 
across power system will decrease resulting in a drop in the voltage across the magnetizing branch. 
This voltage drop reduces magnetizing current of the power transformer.  This will result in the 
differential element becoming more secure since the percentage of differential current versus restraint 
current decreases. However, due to GIC current, the primary CT tap windings are more susceptible to 
saturation.  (GIC current behaves similarly to a residual current). By taking GIC into account when 
selecting a primary CT tap, it could minimize the GIC impact on the protection for external faults. In 
addition, many modern differential relays employ logic to secure the differential element during external 
faults. 

Operation of overcurrent element during an external fault depends on the performance of CT.   
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3) Generator Protection 

Harmonics may cause heating of generator rotors due to circulation of eddy currents. However, the 
capability of generators to withstand specific levels of harmonics is not an industry standard.  This 
means that it is not yet possible to define an acceptable level of harmonics that will not damage a 
particular generator. Given the unknown harmonic-withstand capability of generators, protection relays 
available today are not designed to protect the generators from the harmonic impacts present during a 
GMD. Many modern digital relays are designed to operate exclusively on fundamental frequency 
currents, and filter out harmonic currents. Legacy electromechanical and static generator protection 
negative sequence overcurrent relays use phase shifting circuits intended to calculate negative 
sequence component of fundamental current. These phase shifting circuits do not provide proper phase 
shift to identify negative sequence currents at harmonic frequencies. Therefore, these legacy relays 
may over or under protect a generator. Reference [4] describes one case of undesirable tripping of a 
generator during a GMD event, and several cases of alarms. The alarms may or may not have been 
desirable, because of the unknown harmonic withstand capability of the generators. Note that negative 
sequence overcurrent protection is not intended to protect a generator from harmonic currents.  The 
impacts from harmonic currents are not limited to negative sequence current. Thermal protection may 
protect generators against damages during GMD events. 

4) Transmission Line Protection 

Series compensated lines are generally not vulnerable to impact of GMD events as the compensation 
blocks the GIC current flow. When a line is designed to support compensation, the compensation can 
be switched on when a GMD event is expected. 

For uncompensated lines, or lines without series capacitors, the protection systems, particularly legacy 
protection systems, may misoperate due to their unknown response to harmonic currents flowing in the 
lines during a GMD. Latest generation of microprocessor-based relays and phasor-based transmission 
line protective devices are not particularly susceptible to harmonics, as these protective devices 
respond primarily to fundamental frequency components. Some utilities have reported line relay 
operation [12] by sensitive unbalance (negative and zero sequence) overcurrent protection during a 
GMD. Another relay misoperation is attributed to the ground time overcurrent relay undesirably 
responding to harmonic distortion. It was replaced with a numerical ground overcurrent relay that had 
high harmonic rejection. 

C. GMD Impacts on Communications 

1) Loss of GPS Signals 

The availability of an accurate time reference, such as GPS signal, allows Intelligent Electronic Devices 
(IEDs), such as protective digital relays, to synchronize the system data for precise event report 
alignment. This facilitates sequence of events, off-line event analysis and troubleshooting of a possible 
misoperation following a GMD occurrence.  

Many Substations today have GPS clocks that allow utilities to date and time stamp fault records to the 
microsecond. Loss of these clocks during a large GMD event would hamper troubleshooting suspected 
misoperations. Although the internal clocks in the relays may drift a little bit over time, they would remain 
accurate enough for at least some time without a GPS signal, so the temporary loss of the GPS signal 
(lasting from a few minutes to possibly a few hours) will not severely impact reliable operation of the 
power system [5]. 

A minor solar storm in October-November 2003 disabled the USA Federal Aviation Administration’s 
new GPS system for nearly 30 hours and damaged electrical systems from Scandinavia to South Africa, 
covering primary and secondary affects [8]. These storms interfered with satellite communications and 
produced a brief power outage in Sweden. 

As utilities expand the use of IEC 61850 and synchrophasor-based wide-area control schemes, there 
will be more exposure to system operational issues associated with loss of a GPS clock. Utilities should 
plan for loss of a GPS clock when implementing any feasible wide-area control schemes. 

2) Power line carrier 

Power line carrier (PLC) is a protective relaying communications system that couples high frequency 
radio signals (typically in the 50 kHz to 300 kHz range) onto the power line itself for terminal relay to 
relay communications. PLC components include line traps, coupling capacitors, drain coils, line tuners, 
coaxial cable and transceivers. By and large, protective relays key the signal on or off for blocking 
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purposes, or use frequency shift keying to transfer trip remote breakers. 

The GIC is most likely to emerge into power system where grounded power transformers exist at the 
terminals of transmission lines. It is difficult to conclude that an induced GIC would couple into a carrier 
communications system due to its low frequency characteristics, but the relatively higher frequency 
harmonics generated at the half-cycle saturated transformers may introduce some noise that can 
interfere with carrier signal. Figure 2 shows GIC flow path within the PLC system. The interference 
signal into PLC is likely the greatest exposure of a PLC system to GIC, as the capacitance of the 
coupling capacitors provides a low impedance path for the high frequency harmonics, which will enter 
into the transceivers along with the carrier signal. This can result in a lower signal to noise (SNR) ratio. 
Impact of a lower SNR could be a failure to trip or an overtrip, depending on the protective scheme 
used. 

 

Fig. 2 GIC Flow Path with the Carrier Communication System 

The following methods may be employed on longer lines most susceptible to GIC. This would include 
the lines with grounded transformers at the terminals.  
 Use of single or double frequency resonant traps may have better harmonic blocking 

characteristics than the wide band type, to limit introduction of harmonics onto the conductor used 
for the carrier signal. Blocking impedances of resonant type traps are typically higher also.  

 Carrier sets employed today can be specified with higher power output ratings. Typically supplied 
with carrier signal power rating of 10 watts, 100-watt units are also available.  

 Fiber-based communication/protection system are effectively immune to the effects of GIC. 

3) Microwave and Satellite 

Microwave is the general term used to describe radio frequency waves that start from ultra-high 
frequency to extremely high frequency, e.g. 300 MHz to 300 GHz. Microwave signals have been used 
for both satellite and ground-based communications. Impacts of GMD on satellite-based 
communications have been reported in several references.  Sudden increase of x-ray radiation from 
solar flare resulting in substantial ionization in the lower region of the ionosphere, sudden enhancement 
of signals and short wave fade, and presence of a wide spectrum of radio noises are presented in a 
2012 report by Applied Science Research [9].  

Potential effects of solar phenomena (including the March 1989 solar storm) on communication systems 
used by the electric utility industry are detailed in a report by the IEEE Power System Communications 
Committee [10]. Notable impacts on satellite operations include:  

 A previously stable low-altitude satellite began episodes of uncontrolled tumbling that interfered 
with its operational functions;  

 The GOES 7 satellite had a communications circuit anomaly, lost imagery, and had a 
communications outage; 

 A Japanese geostationary communications satellite had a severe problem that involved failure and 
permanent loss of half of the dual redundant command circuitry onboard, and  

 Geosynchronous communications satellites had problems maintaining operational attitude 
orientation . 

A 2018 paper [8] explains how satellite communications’ use of the higher microwave frequencies are 
less affected by solar storms than terrestrial radio communications. However, because satellites are 
unprotected from the sun, they are exposed to additional phenomena that affect their operation. Several 
satellites were powered down during the March 13, 1989 storm to avoid possible damage. Solar storm 
on February 16, 2011 caused temporary radio blackouts and risk to satellites. 
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Gusts of solar wind can also affect a satellite’s ability to navigate, possibly causing a satellite to go out 
of control, especially for a satellite that uses momentum wheels for orientation. If solar wind gusts are 
successfully predicted, satellite operators can switch to back-up momentum control systems, thereby 
minimizing risk to the satellite. 

Utilities that are considering use of satellite communications for monitoring and controlling power 
system should be aware of these potential effects. 

 

IV. MITIGATING GMD IMPACTS ON PROTECTION SYSTEMS 

Modern microprocessor relays are less susceptible to GMD/GIC than electromechanical or solid-state 
relays as most microprocessor relays are designed to filter out frequencies above the fundamental 
frequency within threshold. To help prevent relay misoperations, setpoints on electromechanical and 
solid-state relays may be checked to ensure that they do not misoperate during a GMD/GIC event. 
Likewise, any protective element that operates based on harmonics, neutral point measurements, or 
sequence components may be checked as well. In order to adequately perform the coordination checks 
listed above, a method to quantify the effects of a GMD/GIC event in a power system may be created. 
To harden an entire protective system, existing relays that are unable to filter out harmonics from relay 
inputs need to be upgraded. In addition, protection schemes that are known to be an issue for 
GICs/harmonics may be upgraded or replaced.  

1) Neutral Blocking Device 

The strategies to mitigate the effects of GMD have been investigated in the past.  One solution is use 
of passive devices to block flow of GIC.  Another is use of active devices that are capable of injecting 
counterposing currents into a designated transformer to cancel out the effect of the GIC in that 
transformer. The ideal solution would be a device that blocks GIC flow from passing into the power 
system through the neutral of grounded wye connected transformers without compromising the 
operation of the power systems. Practically, the addition of a capacitance or resistance between the 
neutral of the wye connected winding and ground, essentially increases the impedance at the very low, 
near DC, frequency associated with GICs, hence, provides the GIC blocking function [13]. While the 
application of capacitors is a good option for blocking GIC flow, capacitors in the neutral connection of 
a transformer without the application of protective devices would risk safe operation of the AC system 
during faults [11]. Other GIC blocking device designs use specially rated MOVs to act as open circuits 
during normal transformer operation and GMD events and as a short circuit when system ground fault 
occurs and the neutral voltage increases above the MOV rating. 

To mitigate the impact of addition of resistance or capacitance to the neutral of a transformer to mitigate 
for GIC, blocking capacitance can be sized with a sufficiently small impedance to retain effective system 
grounding for ground faults not caused by GIC, to allow the zero-sequence current contribution of the 
transformer. Characteristics of GIC generated ground current are different from ground faults. In 
addition, many GIC blocking designs utilize circuit breakers or power electronics to automatically switch 
these elements into service when GICs are detected through monitoring equipment within the blocking 
device, or when GICs are expected from solar flare activity. 

GIC blocking device designs may vary greatly from application to application and manufacturer to 
manufacturer making it important for protection engineers to work with the system planning and 
procurement engineers and equipment manufacturers during specification, to identify and understand 
the impact of blocking devices on the transformer fault contribution and protection systems. These 
impacts should be analyzed for each possible operating mode (GIC blocking element in service vs. 
bypassed) and for GIC present scenarios. 

Fig. 3 shows a neutral DC current-blocking device, which is installed in Wisconsin American 
Transmission Company (ATC) power grid.  Refer [4] for design and development approaches and 
application of neutral DC current-blocking devices (NBD) in North America. Several DC current-blocking 
devices have been installed by Hydro Québec, ATC and others. 
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Fig. 3 Neutral Blocking Device Example at ATC [14] 

V.  GEOMAGNETIC CURRENT AND FIELD MONITORING METHODS 

A. GIC Monitoring 

Quasi-DC in the neutral can be detected with a non-invasive DC sensor, such as a Hall Effect sensor, 
to measure the DC flow in the conductor. 

There are monitoring devices available to reliably detect core saturation of a power transformer due to 
GIC. This type of monitoring allows the operators and owners to make better decisions on how to 
operate their systems and enact contingency plans to handle the load and at the same time save a 
valuable and expensive power transformer. 

A comprehensive GIC monitoring instrument simultaneously measures quasi-DC in the neutral by using 
a Hall Effect transducer and the harmonics from the phase connected CTs. Fig. 4 illustrates the 
application of a GIC monitoring device. 

 

 Fig. 4 GIC Monitoring System 

All information can be telemetered to the System Control Center for developing an effective operator 
tool. The following steps can be used to supplement existing System Operation GIC Response 
Procedures.  For each of the monitored transformers: 

• Minor GIC Alarm – Measured Neutral GIC current exceeds a threshold after a preset time delay.  
 Operator action – Notify Substation operator and monitor GIC current and temperatures at all 

monitored transformer locations  
• Major GIC Alarm – Minor GIC Alarm plus sufficient magnitude of harmonics - this indicates core 

saturation. 
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 Operator action – Reduce load on the transformer and monitor temperatures. 
• Critical GIC Alarm – Major GIC Alarm plus transformer temperature exceeding guideline.  
 Operator action – Remove the transformer from service 

B. Using Hall-Effect CT Measurements 

A Hall-Effect sensor is an electronic current transducer (ECT) that measures the electromagnetic field 
around a cable. With proper shielding, the sensor can be used to accurately represent the current 
flowing through the cable. 

The sensor is sensitive to DC and AC flows including both magnitude and phase. Depending on the 
intended use, the sensor can produce either a voltage or current output. If the recording equipment is 
close by, then a voltage output is sufficient. Otherwise, a current output is preferable (because of voltage 
drop over long runs). 

C. Geomagnetic Field Monitoring 

GIC flow through a transformer could create harmonics, which are injected into a power system, hence 
affecting the performance of protection systems. It is beneficial to measure the GIC flow with GIC 
monitors or to calculate the GIC flow from geoelectric fields, which, in turn, can be simulated from 
measured geomagnetic fields using a so-called Earth’s electrical ground conductivity model (or GIC 
system ground model). 

In addition to validating a GIC system ground model, monitoring geomagnetic fields allows building a 
ground model for a system using GIC and magnetic field measurements. 

A typical geomagnetic field measurement system includes three major components: a fluxgate 
magnetometer sensor assembly, a Power Supply Unit (PSU), and a data acquisition system including 
an analog low pass filter. Appendix I of the TR-72 report shows an example of GMD monitoring system. 

During GMD events, two major physical quantities are measured to illustrate the severity of GMD/GIC. 
The first one is the DC through the neutral of power transformers and reactor banks. This current directly 
represents the magnitude of GIC. Hall-effect CTs are required to measure this DC component. The 
second quantity is the phase currents and extraction of the phase current harmonics. Due to the 
saturation of power transformers during severe GMD events, the distorted magnetizing currents 
produce harmonics. An illustration is shown in Fig. 5. In addition, the error introduced by the 
instrumentation channel needs to be considered during the harmonic analysis [15].  Due to harmonics 
and saturation during a GMD, measurements at the burden resistor of the instrumentation channel may 
not be linearly proportional to the actual primary current/voltage. This error needs to be reduced to 
support accurate harmonic analysis. State estimation instrumentation channel error correction, for 
example, can assist with recovery of the actual primary quantities. 

  

 

Fig. 5 Illustration of Harmonics Extraction from Phase Measurements during GMD [15] 

The harmonic signature shown in Fig. 5  is characteristic of GIC. Note that harmonic signature includes 
all harmonics and their respective magnitude decay almost linearly. This characteristic together with 
the DC measurement at the neutral provide a reliable measure of GIC that can be used for alerting 
operators of actual onset of GIC. If a utility has measures against geomagnetic disturbances, these 
indicators can be used to trigger the measures. 

VI.  CONCUSIONS 

Protective relays come in many styles and vintages with different operating principles. Some are 
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designed to measure the peak current and voltage or include the harmonics detection for protective 
functions. Examples of this type are electromechanical relays or overcurrent or overvoltage relays 
based on solid-state technology, generally operating on peak value detection for shunt capacitor banks 
or harmonic filter banks of Flexible AC Transmission System (FACTS) devices.  

The risk of false tripping of capacitor banks or harmonic filter banks due to GICs can be reduced by 
careful relay coordination studies and implementation of relay settings that should have sufficient 
margins to handle GIC effects. Modern IED relays are less susceptible to GMD-caused harmonics, and 
GMD susceptibility may help justify replacing legacy electro-mechanical or solid-state relays in the bulk 
transmission system, especially for protecting those capacitor banks and SVC’s that are critical to 
maintaining voltage stability during GMD events where the reactive power demand is high. If those 
legacy relays cannot be replaced, it may be necessary to desensitize the element by providing 
additional security margin to ride through the increased harmonics. 

Conventional transformer protection using digital relays will normally operate reliably in the presence of 
GMD. However, these relays are not designed to protect transformers from damage due to excessive 
heating caused by GMD events. Specialized monitoring systems may provide operators with additional 
information to reduce the risk of transformer damage due to severe GMD if such damage is deemed 
possible. 

There is still some uncertainty on the impact of severe GMD on generators. Presently there is no 
generally accepted practice to protect generators against damage due to excessive harmonics caused 
by severe GMD events. 

Finally, the non-operation of protection and control (P&C) devices during a GMD event does not 
necessarily mean that the GMD impact was insignificant. It is desirable that most electrical equipment 
including P&C devices are inspected to detect potential failures or misoperation during GMD events. 
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