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ABSTRACT OF THESIS 

 

 

ADAPTATION OF LAMBS TO AN ENDOPHYTE INFECTED TALL FESCUE SEED DIET 

 

Ten wether lambs were used to determine the effects of ergovaline consumption from endophyte 
infected tall fescue, on nutrient utilization and metabolism.  Lambs were fed a diet of 23% 
endophyte free tall fescue seed (E-) and 77% concentrate from d -14 to -1 (adaptation phase).  On 
d 0, five lambs were switched to an endophyte infected seed diet (E+) where they remained 
through d 14.  Nutrient digestibilities tended to increase from adaptation through the acute (d 1 to 
4) to subacute (d 10 to 14) phases when E- was fed.  E+ digestibilities were highest (P < 0.05) in 
the acute phase.  Lambs fed E+ had higher rectal temperatures in the acute (P < 0.01) and 
subacute phases (P < 0.05).  Fecal recovery of ergovaline increased as day of collection increased 
in the acute and subacute phases.  Lysergic acid fecal recovery increased with day of collection in 
the acute phase, but no effect was found in the subacute phase.  Serum enzyme analyses did not 
indicate tissue damage from alkaloid consumption.  These results demonstrate lambs try to adapt 
to endophyte infected fescue seed consumption through increased nutrient digestibilities and 
increased ergovaline and lysergic acid excretion. 

KEYWORDS: Lambs, endophyte, fescue, ergovaline, lysergic acid  
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Chapter 1.   Introduction 

 Tall fescue is the primary grass species used for forage of grazing livestock in the 

transition zone of the southern United States.  However, the presence of an endophytic fungus in 

tall fescue causes a syndrome known as “fescue toxicosis” with symptoms such as increased 

respiration rates, higher body temperatures, lowered feed intakes, and reduced weight gains.  

There has been considerable debate as to the cause of this toxicosis.  Currently, the alkaloids 

ergovaline and lysergic acid are the primary suspects.  Several researchers have attempted to 

delineate routes of excretion of these alkaloids so, in turn, any successful alleviation of toxicosis 

could be indicated by increased excretion.  Most of the researchers believe the primary excretion 

route of ergovaline is the feces.    Other research has studied blood serum enzyme concentrations, 

including alkaline phosphatase, creatine kinase, aspartate aminotransferase, and gamma 

glutamyltransferase, as indicators of toxicity.  Therefore, increased recovery of ergovaline and 

lysergic acid in the feces and lower levels of serum enzymes may indicate some degree of toxicity 

alleviation.   

The primary objective of this study was to determine the extent of ergovaline and lysergic 

acid excretion by lambs fed endophyte infected tall fescue seed.  A secondary objective was to 

evaluate the potential of lambs to adapt to the consumption of endophyte infected tall fescue seed 

over a 14 d period.   
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Chapter 2.   Literature Review 

Tall fescue (Lolium arundinaceum [Schreb.] Darbysh., formerly Festuca arundinacea 

Schreb.) is a perennial, cool-season grass commonly used for forage and turf purposes.  

Approximately 33 million acres of tall fescue are grown in the United States, with close to 50% 

of that existing east of the Mississippi river.  States such as Kentucky, Tennessee, West Virginia, 

and North Carolina use tall fescue as their primary grass species for forage and turf production 

(Sleper and Buckner, 1995).  Approximately 5.5 million acres are grown in Kentucky alone.  

However, much of the fescue in the U.S. is infected with an endophytic fungus Neotyphodium 

coenophialum found between cells of the plant (Bacon et al., 1977).  Unfortunately, grazing 

animals consuming common (wild-type) endophyte-infected tall fescue suffer from several 

disorders collectively known as tall fescue toxicosis as a result of alkaloids produced by the 

fungus. 

Tall fescue is a native of Europe and was most likely introduced to North America as a 

contaminant in meadow fescue seed imported from England (Hoveland, 2009).  It was widely 

planted in the 1940s and 1950s across the southern United States where ready establishment of a 

cool season perennial grass had been unsuccessful in the past.  Tall fescue was recognized for its 

dependability and adaptability to a wide range of soils and was planted for forage, roadside cover, 

and turf (Hoveland, 2009).  In 1973, researchers found plant samples, taken from a pasture where 

grazing cattle were exhibiting signs of toxicosis, were infected with the fungal endophyte 

Epichloe typhina [renamed Acremonium coenophialum Morgan-Jones and Gams and later 

Neotyphodium coenophialum (Morgan-Jones and Gams) Glenn, Bacon, and Hanlin] (Hoveland, 

2009).  These findings were supported with grazing studies conducted in Alabama over multiple 

years.  Steers grazing paddocks with 18% infestation had 51% higher average daily gains than 

steers grazing paddocks with 80% infestation (Hoveland et al., 1980).  Another study by 

Hoveland et al. (1983) found steers grazing 5% endophyte infected fescue had 66% greater 
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average daily gains and 28% greater gain per acre than those grazing paddocks with 94% 

infestation.  Steers grazing the paddocks with higher infestation also exhibited typical toxicosis 

signs such as elevated body temperatures, rough haircoats, excess salivation, and nervousness.  

Tall fescue and the endophytic fungus have a symbiotic relationship where the plant 

provides a means of nourishment and growth for the fungus and the fungus protects the plant 

from environmental stresses (Joost, 1995).  Hill et al. (1990) determined that plants infected with 

the endophyte were larger and generally more competitive in mixtures than non-infected plants.  

Endophyte infection has also been shown to increase germination rates (Pinkerton et al., 1990) 

and improve tiller density and whole plant survival during drought stress (West et al., 1991).  

Furthermore, endophyte infected plants are more resistant to root feeding nematodes and many 

plant diseases (Pedersen et al., 1988; Welty et al, 1991).   

Effects of Fescue Toxicosis 

Cattle grazing tall fescue have traditionally been afflicted with three disorders: fescue 

foot, fat necrosis, and/or summer syndrome (Waller, 2009).  Fescue foot traditionally occurs in 

cattle grazing endophyte infected pastures during the winter and is evidenced by lameness, 

swelling/tenderness around the fetlock and hoof region, dry gangrene of tips of ears and tails, and 

loss of tail switch.  Severe cases may result in the sloughing of hooves.  These symptoms are a 

result of the effect of the ergot alkaloids on the blood vessels causing vasoconstriction and loss of 

blood flow (Strickland et al., 1993).  Fat necrosis occurs when hard fat accumulates along the 

intestinal tract of cattle, constricting internal organs, and causes difficulty with digestion and 

reproduction.  Signs of summer syndrome include elevated respiration rate and body temperature, 

rough haircoat, intolerance to heat, lowered feed intake, poor weight gain, reduced serum 

prolactin, reduced milk production, and low conception rate and is most severe during warmer 

weather, hence the name (Waller, 2009; Strickland et al., 1993).  Summer syndrome is very costly 

and the effects of this syndrome are those typically referred to as tall fescue toxicosis.   
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Intake, Growth, and Nutrition 

Hoveland (1993) estimated that slow weight gains and reproductive inefficiency of cattle 

grazing fescue costs the US beef industry over $600 million every year in 1993.  Strickland et al. 

(2011) estimate current losses greater than $1 billion annually when accounting for the impact on 

equine and small ruminant industries.  The presence of the endophyte in tall fescue generally has 

a negative effect on intake of grazing animals.  Cattle grazing endophyte infected tall fescue had 

dry matter intakes 24 to 44% lower than those grazing endophyte free fescue (Stuedemann et al., 

1989).  The decrease in grazing times is attributed to the lowered heat tolerance of affected 

animals.  Animals grazing endophyte infected fescue experience higher internal body 

temperatures that contribute to vasoconstriction and subsequently reduced blood flow to 

peripheral tissues.  As a consequence, animals spend more time in the shade during the heat of the 

day, with a subsequent reduction in grazing time, than animals grazing endophyte free fescue 

(Seman et al., 1990).  Stuedemann et al. (1985) found steers consuming endophyte infected tall 

fescue spent only 4 to 6% of their time grazing from 1200 to 1800 hours compared with 60% of 

that time for steers grazing endophyte-free fescue.   Consumption of endophyte infected tall 

fescue hay and seed decreases feed intakes, increases rectal temperatures and respiration rates, 

and increases weight losses of steers (Schmidt et al., 1982; Jackson et al., 1984).  In a review by 

Paterson et al. (1995) summarizing 11 trials conducted across 10 states, gains were 30 to 100% 

lower for bovines consuming endophyte infected fescue versus endophyte free tall fescue.  Aiken 

et al. (1993) reported that yearling geldings grazing endophyte infected fescue had lower average 

daily gains than those grazing forage with low endophyte levels.   Parish et al. (2003) and Emile 

et al. (2000) reported lambs grazing endophyte infected tall fescue had lower average daily gains 

and reduced prolactin levels compared with lambs on endophyte free tall fescue or fescue with a 

novel (non-alkaloid producing) endophyte.  
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Many of the growth effects of tall fescue toxicosis may be related to the reduced feed 

intake and/or digestibility that occurs when endophyte infected tall fescue is consumed.  These 

factors would affect the nutrients available for growth and maintenance (Strickland et al., 2009).  

A study conducted by Panaccione et al. (2006) evaluated feed preferences of rabbits using 

genetically modified endophytes (Neotyphodium spp. related to wild-type in tall fescue) in 

perennial ryegrass.  Rabbits preferred novel endophytes (endophytes that do not produce toxic 

alkaloids) over endophyte free perennial ryegrass, both of which are negative for ergot alkaloids.  

Also, the rabbits’ preference for endophyte perennial ryegrass was equivalent to the endophyte 

free perennial ryegrass with clavine alkaloids (precursors to ergovaline).  However, endophyte 

infected ryegrass with ergovaline had a negative effect on intake levels.  These results suggest 

that ergopeptines, such as ergovaline, may be linked to depressed feed intakes of animals grazing 

endophyte infected tall fescue.   

Several studies have controlled intake to eliminate the effects of reduced feed intakes on 

digestibility in animals consuming endophyte infected tall fescue.  Hannah et al. (1990) compared 

0, 1.5, and 3.0 ppm of ergovaline fed to lambs by substituting 0, 25, or 50% ergovaline infected 

tall fescue seed for noninfected tall fescue seed.  Ruminal and total tract organic matter (OM), 

neutral detergent fiber (NDF), and cellulose digestibilities were decreased with increased 

ergovaline in the diet.  Fiorito et al. (1991) used rumen cannulated lambs to balance intake 

between treatment groups.  They found lambs consuming highly endophyte infected tall fescue 

hay (>95% infected) had lower total tract digestibilities of dry matter (DM), neutral detergent 

fiber (NDF), and acid detergent fiber (ADF) than lambs consuming low endophyte infected (<1% 

infected) hay when nutrient intake was equivalent for both treatment groups.  Lambs on the low 

infected hay also had lower fecal N excretion and thus greater N retention and higher serum 

prolactin levels.  Similarly, Westendorf et al. (1993) reported lambs fed a diet containing 
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endophyte infected tall fescue had depressed total tract DM digestibility, ruminal and total tract 

ADF and crude protein (CP) digestibilities, and ruminal NDF digestibility.   

Thermal Response 

Fescue toxicosis is most often observed during the summer months when higher 

environmental temperatures exacerbate the symptoms of the toxicosis (Hemken et al., 1984; 

Bacon et al., 1986).  Peters et al. (1992) reported similar organic matter intakes (2.6% body 

weight) for cows grazing endophyte infected tall fescue and those cows grazing endophyte free 

tall fescue or orchardgrass during June.  However, during August, when environmental 

temperatures were higher, the cows on endophyte infected pastures consumed less (1.6% body 

weight) than those consuming either endophyte free or orchardgrass pastures (2.0% body weight).  

Even when intakes were similar in June, cows grazing endophyte infected tall fescue lost weight 

while those grazing endophyte free tall fescue gained weight.  Hemken et al. (1981) reported 

calves fed a more toxic strain of tall fescue had consistently lower DM intakes, higher respiration 

rates, higher rectal temperatures, and lower weight gains when the ambient temperature was 

above 31°C.  Hannah et al. (1990) reported lambs fed 1.5 ppm ergovaline had higher rectal 

temperatures (vs 0 ppm) at both 27 and 34°C.  Aldrich et al. (1993a) fed ruminally cannulated 

wethers an endophyte free diet or an endophyte infected diet containing 1.17 ppm ergovaline 

when the environment was held at 32°C and 60% humidity.  Voluntary DM intake, DM 

digestibility, and intake of digestible DM was less for the endophyte infected diet. 

Several studies have examined the effect of specific ergot alkaloids in relation to changes 

in thermal status.  When Holsteins were injected with ergotamine tartrate at an air temperature of 

18.5°C, tail skin temperature dropped 8° indicating reduced blood flow (Carr and Jacobson, 

1969).  Reduced skin temperature and increased rectal temperatures were also noted when an 

80% ethanol extract of endophyte infected fescue was administered either orally or 

intraperitoneally.  These data suggest reduced skin blood flow can decrease heat loss and lead to 
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hyperthermia, a common sign of fescue toxicosis, during heat stress.  Likewise, during cold 

weather, the reduced blood flow to appendages can result in less nutrient flow and, thus, tissue 

necrosis.  Al-Haidary et al. (1995) found cattle maintained in a 31°C environment and injected 

with ergovaline for 3 days had increased core body temperatures and respiration rates and 

lowered skin temperatures in the back and hip.  McCollough et al. (1994) intravenously injected 

calves with ergotamine, ergine, and ergovaline.  Those receiving ergovaline had the greatest rate 

and magnitude of reduction in tail skin temperature.  In a study with adult rats (Spiers et al., 

1995), those maintained at 31 to 33°C and injected with ergovaline experienced hyperthermia, 

preceded by a reduction in tail skin temperature with no shift in heat production.  However, rats 

held in a cold environment of 7 to 9°C experienced hypothermia, a result of reduced heat 

production. 

Animals fed endophyte infected tall fescue under controlled conditions have also 

demonstrated shifts in thermal status.  Rhodes et al. (1991) reported steers fed a diet containing 

endophyte infected fescue (0.52 ppm ergovaline) had reduced vascular flow rates to the skin over 

the ribs (measured using radio labeled microspheres).  Gadberry et al. (2003) fed lambs a diet of 

10% endophyte infected tall fescue seed (0.640 ppm ergovaline) for 14 days in a heat stressed 

environment and showed evidence for reduced peripheral heat loss, reduced feed intake, and 

lower average daily gains.  Steers fed endophyte infected tall fescue (0.285 ppm ergovaline) for 

20 days at 32°C experienced hyperthermia thought to be the result of a reduction in skin 

vaporization (Aldrich et al., 1993).  Hyperthermia, due to a reduction in heat loss, is considered to 

be a result of increased peripheral vasoconstriction from alkaloids in tall fescue. 

Reproduction 

In studies of cow-calf operations, cows grazing endophyte infected tall fescue had lower 

calf birth weights and both cows and calves on endophyte infected pastures had reduced serum 

prolactin levels (Watson et al., 2004).  Waller et al. (2001) had previously reported first-calf 
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heifers on endophyte infected pastures had lower calf birth weights than heifers grazing 

endophyte free pastures.  The lower calf weights were attributed to reduced dry matter intake 

commonly associated with fescue toxicosis or reduced uterine blood flow in animals consuming 

ergot alkaloids present in endophyte infected tall fescue (Porter and Thompson, 1992).  Lactating 

dairy cows fed endophyte infected tall fescue soilage had lower milk yields (Strahan et al., 1987) 

and Peters et al. (1992) reported a 25% decrease in milk production for cows grazing endophyte 

infected tall fescue as compared with those grazing endophyte free tall fescue.  Decreased calf 

weaning weights have also been implicated as a result of decreased rates of milk production in 

cows grazing endophyte infected tall fescue (Ashley et al., 1987; Keltner et al., 1989).  

Additionally, cows grazing endophyte infected tall fescue typically have lower conception rates 

than those grazing endophyte free fescue, perhaps indirectly due to increased loss of body weight 

and condition.  Schmidt et al. (1986) reported pregnancy rates of 55% for cows grazing 

endophyte infected fescue compared with 96% for those on endophyte free tall fescue.   

Alkaloids in Tall Fescue 

A general summary of definitions for alkaloids defines all alkaloids as naturally 

occurring, organic, N-containing bases, most often produced by plants (Bush and Fannin, 2009).  

Numerous alkaloids have been identified in tall fescue, including perloline, peramine, ergot, and 

loline alkaloids.  Perloline is part of a group of alkaloids that were first identified in tall fescue.  

Perloline is part of the diazaphenanthrene alkaloids produced by the plant.  Early studies focused 

on in vitro effects of perloline and how it pertained to fescue toxicosis.  However, no 

physiological links were established in accordance with the signs of fescue toxicosis (Bush and 

Fannin, 2009).  Peramine, ergot, and loline alkaloids are all associated with the symbiotic 

relationship between the plant and the endophyte (Bush and Fannin, 2009).   
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Peramine 

Peramine is an insect feeding deterrent and is the only known pyrrolopyrazine alkaloid in 

endophyte infected tall fescue (Bush and Fannin, 2009).  However, a significant role of peramine 

in tall fescue has not been demonstrated due to the insignificant concentrations typically present 

plus its inactivity in mammalian bioassays (Bush and Fannin, 2009).  

Pyrrolizidine Alkaloids 

 The pyrrolizidine (loline) alkaloids, also known as lolines, associated with the tall 

fescue-endophyte relationship are saturated in the pyrrolizidine rings (Bush and Fannin, 2009).  

Many pyrrolizidine alkaloids of plant origin are significant toxins, being hepatotoxic and 

carcinogenic, and are unsaturated between carbons 1 and 2.  In contrast, the pyrrolizidine 

alkaloids found in endophyte infected tall fescue are saturated 1-amino alkaloids and contain an 

oxygen bridge between carbons 2 and 7 of the A and B rings (Cheeke, 1998; Bush et al., 1993; 

Bush and Fannin, 2009).  These loline alkaloids occur in much greater quantities than others 

found in endophyte infected tall fescue with levels exceeding 10 g/kg (Bush and Fannin, 2009).  

N-acetylloline (NAL) and N-formylloline (NFL) are the primary lolines produced by the common 

endophyte strain found in Kentucky (KY) 31 tall fescue. Also found are loline, N-

formylnorloline, norloline, N-acetylnorloline, and N-methylloline (Blankenship et al., 2005).  

Lolines are broad-spectrum insect toxins, but with much less biological activity in vertebrates 

(Siegel and Bush, 1996).  Concentrations of loline alkaloids in the flowering plant are found from 

greatest to least in the spikelet, rachis, stem, leaf sheath, and leaf blade with mature seed 

containing greater amounts of NAL and NFL (Burhan, 1984; Bush et al., 1982).  Loline 

accumulation is greatest in the late summer, typically July and August, for both the northern and 

southern portions of the tall fescue belt.  Loline accumulation is correlated with the heat and 

drought stress generally occurring in the late summer, which is also when ergot alkaloid 

accumulation is lowest (Bush and Fannin, 2009).   
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Ergot Alkaloids 

 The ergot alkaloids produced by N. coenophialum are strongly suspected as the 

underlying cause of fescue toxicosis due to the similarity of symptoms to classic ergotism in 

humans.  The ergot alkaloids in tall fescue are related by an ergoline ring system or a biosynthetic 

precursor thereof and include clavines, lysergic acid and derivatives, and the ergopeptide and 

ergopeptine alkaloids (Bush and Fannin, 2009) (Figures 2.1 and 2.2).  Five ergopeptine alkaloids 

– ergovaline, ergosine, ergonine, ergoptine, and ergocornine – were found in pasture samples of 

E+ fescue with ergovaline accounting for 84 to 97% of the total (Lyons et al., 1986).  Ergovaline 

has been the focus of much research related to fescue toxicosis due to its vasoconstrictive 

properties.  Ergotamine has also been found in endophyte infected tall fescue, but in smaller 

amounts (Yates et al., 1985; Porter, 1995).  However, ergotamine presence may be a result of 

contamination from Claviceps purpurea, the cause of ergotism from cereal grain (L. P. Bush, 

2011, personal communication).  Rottinghaus et al. (1991) reported the concentration from 

greatest to least for ergovaline is generally seed, crown, stems, leaves, and roots with levels 

almost 5.0 ppm ergovaline in seedheads compared to less than 0.5 ppm in the stems and leaves.  

In northern portions of the tall fescue belt, including Kentucky, ergovaline concentrations are low 

during the winter, then start to increase during the spring growing season until peak levels are 

reached in mid-May near the time of seed fill (Bush and Fannin, 2009).  Ergovaline 

concentrations then drop off during the summer followed by a second peak in the fall.  In the 

southern portions of the fescue belt, due to the high summer temperatures, fescue mainly grows 

from March to June with peak concentrations in May (Bush and Fannin, 2009).  Ergovaline 

content in the plant tissue may be affected by several factors including fertilization, water stress, 

and growth temperature.  Lyons et al. (1986) found nitrogen fertilization increased ergovaline in 

the leaf sheath and blade of greenhouse grown plants by more than 500% compared with 

unfertilized plants.  Rottinghaus et al. (1991) reported increased ergovaline concentrations of 88, 

103, and 66% in leaf blades, stems, and seedheads, respectively, when nitrogen fertilization was 
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increased from 0 to 135 kg/ha.  Other environmental factors may be confounded with each other.  

For example, the combined effects of drought stress and high summer temperatures on pastures 

with low levels of nitrogen resulting in lowered ergovaline concentrations during the hottest 

summer months, which follows the seasonal distribution pattern of ergovaline (Bush and Fannin, 

2009).  
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Figure 2.1 A generalized scheme for ergot alkaloid biosynthesis in tall fescue/Neotyphodium 
coenophialum symbiotum1 

F  

1Bush and Fannin (2009) 

DMAPP: dimethylallyl-diphosphate, Try: tryptophan, DMATrp: dimethylallyl-tryptophan, draW: 
gene encoding for DMATrp synthase, LPS1 and LPS2: two subunits of ᴅ-lysergyl peptide 
synthetase, IspA and IspB: encode for the LPS enzymes 
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Figure 2.2  Structures and amino acids in the common ergopeptine alkaloids of the tall 
fescue/Neotyphodium coenophialum symbiotum.  Proline is always the amino acid in position 31 

 

1Bush and Fannin (2009) 
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Analysis of Alkaloids 

Methods for determining ergot alkaloid concentrations are continuing to evolve in order 

to more accurately identify individual alkaloids and their metabolites.  Current methods for the 

analysis of ergot alkaloids include HPLC (Craig et al., 1994; Jaussaud et al., 1998), competitive 

ELISA (Hill and Agee, 1994), and HPLC coupled to mass spectrometry (Yates et al., 1985).  The 

ELISA method is an excellent choice for rapid analysis and has been used to measure total ergot 

alkaloid concentrations in plant and fungal tissues, digesta, urinary and biliary excretions, and 

animal fat (Strickland et al., 2011).  However, its use is limited since it cannot distinguish specific 

alkaloids and can only determine total ergot alkaloid levels.  Research by Hill and Agee (1994) 

also suggests ELISA is biased towards simpler ergot alkaloids, such as lysergic acid, versus more 

complex alkaloids, like ergovaline, because the antibody used is specific for the lysergic acid 

moiety. 

Traditional high performance liquid chromatography using fluorescence detection is 

slower than ELISA, but is excellent for identification and quantification of individual alkaloids.  

HPLC is good for determining profiles of known alkaloids, but is dependent on pure standards to 

determine retention time of known alkaloids.  Thus, it is not useful for research and discovery of 

unknown alkaloid metabolites (Strickland et al., 2011).  Alternatively, HPLC coupled with mass 

spectrometry (HPLC-MS) provides the benefits of specific alkaloid determination with a third 

angle by providing retention times, molecular mass, and empirical formulas from isotopic 

distribution information (Strickland et al., 2011).  Tandem MS-MS allows for identification of 

product ions present in classes of compounds and is therefore a valuable tool for discovery of 

unknown ergot alkaloids and metabolites.  Furthermore, the USDA-ARS, Forage-Animal 

Production Research Unit in Lexington, KY has pursued development of an ultra-performance 

liquid chromatography-MS/MS method, in collaboration with Waters Inc., for detecting, 

identifying, and quantifying the ergot alkaloids in animal tissues and fluids (Strickland et al., 
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2011).  This new method allows limits of detection ≤0.005 pmol on column and chromatographic 

runs of 10 min compared with previous best limit of detection of .05 pmol and a 43-min run 

(Smith et al., 2009). 

Toxicokinetics 

Naturally occurring ergot alkaloids have been detected in serum (Savary et al., 1990; 

Bony et al., 2001), urine and bile (Stuedemann et al., 1998; Schultz et al., 2006), ruminal and 

abomasal fluids (Westendorf et al., 1993; Craig et al., 1994), milk (Durix et al., 1999) and feces 

(Westendorf et al., 1993; Schultz et al., 2006) of sheep, cattle, and/or horses.   

Knowledge of kinetic rates of clearing of ergot alkaloids is limited due to lack of 

sufficient and/or affordably priced quantities of pure ergot alkaloids for use in large animal 

studies.  Jaussaud et al. (1998) reported a plasma clearance rate of 0.02 L/min/kg body weight in 

sheep when injected with ergovaline via intravenous injection at 17 ug/kg BW.  Bony et al. 

(2001) recorded a plasma clearance rate of 0.02 L/min/kg BW results when geldings were 

injected with 15 ug ergovaline/kg BW.  Because only ergovaline plasma concentrations were 

evaluated in these studies, it is unclear if ergovaline was sequestered in tissues, metabolized (e.g. 

to lysergic acid), or actually eliminated from the body. 

Westendorf et al. (1993) fed increased amounts of endophyte infected seed in the diet to 

abomasally cannulated sheep for 6 days.  They reported 50 to 60% of the ergot alkaloids 

administered in the diet were recovered in the abomasal contents, but only 6 to 7% in the feces, 

indicating extensive absorption from the gastrointestinal tract.  Stuedemann et al. (1998) found 

96% of consumed ergot alkaloids were excreted in the urine of steers grazing endophyte infected 

tall fescue with very little alkaloids found in the bile.  On the contrary, Schultz et al. (2006) fed 

geldings a diet containing endophyte infected tall fescue seed for 21 days and reported 35 to 40% 

of ergovaline was excreted in the feces.  Ergovaline was not detected in the urine.  This would 



16 
 

indicate that 60 to 65% of the ergovaline is retained or metabolized to another form.  De Lorme et 

al. (2007) also could not detect any ergovaline in the urine of lambs fed endophyte infected tall 

fescue straw, but approximately 35% of the consumed ergovaline was excreted in the feces. 

Work by Hill et al. (2003) suggests lysergic acid may play a larger role in fescue 

toxicosis than originally thought.  These researchers evaluated the transport of ergot alkaloids 

across ruminal and omasal tissues using parabiotic chambers.  Lysergic acid was the only ergot 

alkaloid reported to be transported across these tissues as measured by ELISA (Hill and Agee, 

1994), which led them to conclude that lysergic acid was the primary toxin causing fescue 

toxicosis.  However, an earlier experiment by Hill et al. (2001) showed other ergot alkaloids 

(ergonovine, ergotamine, ergocryptine) were also transported across ruminal and omasal tissues, 

although not to the same degree as lysergic acid and lysergol.  Schultz et al. (2006) found fecal 

lysergic acid concentrations averaged 133% of total lysergic acid intake and lysergic acid 

recovered in the urine was more than 200% of that consumed.  Similarly, De Lorme et al. (2007) 

reported 248% of dietary lysergic acid was recovered in the feces and urine.  A significant note is 

that Schultz et al. (2006) and De Lorme et al. (2007) used HPLC to quantify the individual 

alkaloids, which allows identification of the specific alkaloids rather than total ergot alkaloids.  

The site of transport of ergot alkaloids in hind-gut fermenters has yet to be determined, thus, 

Schultz et al. (2006) speculated the excess levels of lysergic acid excreted may be due to 

metabolism of ergovaline (or other ergot alkaloids) to lysergic acid in the stomach, small 

intestine, hindgut, or the hepatic tissues.  De Lorme et al. (2007) also theorized the higher levels 

of excreted lysergic acid may be due to degradation of the ergopeptines by ruminal microbial 

degradation or by degradation in the lower gastrointestinal tract.  Differences in metabolism 

and/or elimination of ergot alkaloids among ungulates may be due to a number of potential 

physiological differences including diet selection and intake, rate of digesta flow, hindgut versus 
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foregut fermentation, affinity and capacity of absorption, excretory mechanisms, and hepatic and 

gastrointestinal tract epithelial metabolism (Strickland et al., 2009).   

Vascular Effects 

Effects of fescue toxicosis on the cardiovascular system include vasoconstriction, 

thickened medial layer of blood vessels, endothelial cell damage, vascular stasis and thrombosis, 

ischemia, and gangrene (Strickland et al., 2009).  Strickland et al. (1996) used isolated vascular 

smooth muscle cells in vitro to demonstrate a link between the thickened medial layer of blood 

vessels and hyperplasia of the smooth muscle layer.  Several other studies have produced 

evidence that the ergot alkaloids present in endophyte infected tall fescue are associated with 

hyperthermia of tall fescue toxicosis using in vitro vascular bioassays (Oliver et al., 1992, 1993, 

and 1998; Klotz et al., 2006, 2007).  The alkaloids may be able to decrease blood flow to the 

peripheral tissues through vasoconstriction, vascular smooth muscle cell hyperplasia, and 

endothelial cell damage, thus decreasing the efficiency of heat transfer from core body tissue to 

the surface for dissipation (Strickland et al., 2009).  Evidence supporting these effects includes 

studies by Rhodes et al. (1991) and Oliver et al. (1998) that have shown peripheral 

vasoconstriction is a measurable response in animals consuming endophyte infected tall fescue.  

Also, Aiken et al. (2007) used Doppler ultrasonography to show heifers consuming endophyte 

infected tall fescue seed had reduced caudal artery area and blood flow rates when compared to 

baseline measures of the same animals and to heifers consuming endophyte free seed. 

Ergovaline is presumed to be the primary toxicant of tall fescue toxicosis because it is the 

most abundant of the ergopeptine alkaloids produced in endophyte infected tall fescue (Yates et 

al., 1985; Lyons et al., 1986).  However, much of the research has been conducted with 

ergotamine, which is chemically similar to ergovaline, but more readily available due to its use in 

migraine treatment.  Ergotamine has been demonstrated to elicit a contractile response in the 

bovine dorsal pedal vein (Solomons et al., 1989), cranial branch of the bovine lateral saphenous 
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vein (Klotz et al., 2007), equine lateral saphenous vein and dorsal metatarsal artery (Abney et al., 

1993), and rat tail artery (Schoning et al., 2001).  On the other hand, ergovaline is also a potent 

vasoconstrictor of bovine uterine and umbilical arteries (Dyer, 1993), rat tail and guinea pig iliac 

arteries (Schoning et al., 2001), and the cranial branch of the bovine lateral saphenous vein (Klotz 

et al., 2006, 2007).  Additionally, Klotz et al. (2006, 2007) found the ergopeptines, ergovaline and 

ergotamine, are more potent and efficacious vasoconstrictors than lysergic acid, with lysergic acid 

being at least 1000-fold less potent than ergovaline.  In comparison to the norepinephrine 

reference dose (10-4 M), the maximum contractile response of lysergic acid was 15 to 20%, 

whereas ergovaline was 70 to 105%.  These studies suggest lysergic acid is a weak vascular 

toxicant at best.  Other alkaloids, such as α-ergocryptine, ergocristine, ergocornine, and 

ergonovine, were intermediate in contractile response to ergovaline and lysergic acid (Klotz et al., 

2010). 

Klotz et al. (2007, 2008, 2009) found prior exposure to ergot alkaloids (e.g., tissue from 

abattoir animals) does attenuate the effect of the alkaloids on vasoconstriction in vitro when 

compared with tissue from animals with no prior exposure.  Specifically, Klotz et al. (2009) 

found ergovaline, but not lysergic acid, bioaccumulates with repetitive exposure in vitro.  

Similarly, Oliver et al. (1998) found prior exposure to endophyte infected tall fescue resulted in a 

shift in α-2 adrenergic receptor activity.  Also, Klotz et al. (2008) found there were no synergistic, 

subtractive, or additive effects of ergovaline, lysergic acid, and N-acetylloline in mixtures of 

these alkaloids on vasoactive potential in vitro and N-acetylloline alone showed no contractile 

effect.  These results suggest the saturated pyrrolizidine alkaloids, such as N-acetylloline, may 

play little or no role in fescue toxicosis. 

The exact mechanism of alkaloid-induced vascular toxicity is not known, but research 

implicates the adrenergic and serotonergic receptor systems (Oliver, 1997; 2005).  The use of α-

adrenergic receptor antagonists have been most successful in treating severe vaso-spastic disease, 



19 
 

thus the α-adrenergic receptors may be good targets for alkaloid interaction at the blood vessel 

level (Strickland et al., 2009).  Oliver et al. (1998) demonstrated segments of the cranial branch of 

the lateral saphenous vein taken from cattle grazing endophyte infected tall fescue had a greater 

contractile response to BHT-920, a selective α-2 adrenergic receptor agonist, than those from 

animals grazing endophyte free tall fescue.  Also, Oliver et al. (1993) found serotonin 5-HT2 and 

α-1 adrenergic receptors were sites of interaction for the ergot alkaloid lysergic acid. 

Other biogenic amine receptors are known to be affected by the ergot alkaloids found in 

endophyte infected tall fescue.  Stimulation of α-2 adrenergic receptors by the alkaloids resulted 

in enhancement of blood platelet aggregation (Oliver et al., 1998), which is likely involved in the 

coagulopathies and tissue necrosis commonly associated with fescue toxicosis (Oliver, 1997, 

2005).  Larson et al. (1994, 1995) found stimulation of the dopamine-2 receptor by the ergot 

alkaloids causes a decrease in prolactin secretion, which is associated with lowered milk 

production and agalactia found in animals grazing endophyte infected tall fescue (Strickland et 

al., 1993).  Other studies have shown the ergot alkaloids appear to interact with serotonin-2 

receptors and activity of these receptors is linked to serotonin-induced contraction of vascular 

smooth muscle (Dyer, 1993; 2000; Oliver et al., 1993).  Serotonin is known to affect the 

hypothalamic satiety center and increasing levels of serotonin result in suppression of appetite, 

which may be how the ergot alkaloids decrease feed intake (Strickland et al., 2009).  This theory 

is supported by data from Porter (1995) that showed cattle grazing endophyte infected tall fescue 

had increased serotonin metabolites in central nervous system tissues.  Additionally, Oliver et al. 

(2000b) found increased levels of tryptophan in sera of cattle grazing endophyte infected tall 

fescue, which is also associated with decreased feed intake.  

Blood Parameters 

Many blood cellular parameters are unaffected in animals consuming endophyte infected 

tall fescue.  However, data collected over several years by Oliver et al. (2000a) did find 
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consumption of endophyte infected tall fescue increased red blood cells and decreased mean 

corpuscular volume and hemoglobin. Also, serum globulin levels were consistently lowered.  

Additionally, several studies have found consistently lower serum cholesterol (Oliver et al., 

2000a; Nihsen et al., 2004; Brown et al., 2009) and consistently higher serum creatinine in steers 

grazing endophyte infected tall fescue (Oliver et al., 2000a; Nihsen et al., 2004).  Most minerals 

are unaffected by endophyte infected tall fescue intake.  However, serum Cu levels are decreased 

in cattle grazing endophyte infected tall fescue (Saker et al., 1998; Oliver et al., 2000a), possibly 

due to lower Cu levels found in endophyte infected tall fescue (Dennis et al., 1998).  Cu 

deficiency has been linked to lowered immune function in steers (Saker et al., 1998).  Decreased 

prolactin levels have been well established as a clinical sign of fescue toxicosis in cattle and 

sheep (Oliver et al., 2000a; Schultze et al., 1999; Fiorito et al., 1991).  Furthermore, enzymatic 

activity is generally lowered by intake of endophyte infected tall fescue, which may be due to 

decreased feed intake resulting in reduced growth and tissue metabolism and mass.  Oliver et al. 

(2000a) found alanine aminotransferase was consistently lowered in cattle grazing endophyte 

infected tall fescue over a 3-year grazing period, which correlates with data from Brown et al. 

(2009).  Lower levels of lactate dehydrogenase (Nihsen et al., 2004; Brown et al., 2009) and 

lower levels of aspartate aminotransferase and creatine kinase (Brown et al., 2009) have also been 

reported in steers grazing endophyte infected tall fescue.  Moreover, several other studies have 

found that alkaline phosphatase activity is suppressed in cattle affected by tall fescue toxicosis 

(Brown et al., 2009; Nihsen et al., 2004; Oliver, 1997; Schultze et al., 1999).   

 

 

 

 



21 
 

Chapter 3.   Materials and Methods 

All research protocols were approved by the University of Kentucky Animal Care and 

Use Committee.  Ten wether lambs weighing approximately 45 kg and 6 months of age were 

randomly assigned to one of two treatments: 1) control diet with endophyte free tall fescue seed 

(E-) or 2) a diet containing endophyte infected tall fescue seed (E+).  Lambs were fescue naïve, 

indicating they were not previously exposed to tall fescue prior to the start of this experiment.  All 

lambs were adapted to a diet of 23% endophyte-free tall fescue seed and 77% concentrate during 

the adaptation period.  Lambs assigned to the E+ diet were switched to endophyte infected tall 

fescue seed on day 0 of the experiment and remained on their respective diets for 2 weeks.  

Lambs were housed in individual pens during diet adaptation and in metabolism crates during all 

collection phases in temperature controlled rooms at 21°C.  Tall fescue seed was ground (0.5 to 1 

mm) and mixed with a concentrate feed consisting primarily of ground shelled corn, soybean 

meal, distillers dried grains with solubles, and cottonseed hulls (Table 3.1; Table 3.2).  Lambs had 

ad libitum access to fresh water at all times.  Diets were fed at 1.8% of individual lamb BW and 

offered in two equal feedings at 0800 and 2000 h. 

The experiment was divided into three phases to evaluate the effects of exposure time to alkaloid 

containing tall fescue seed.  Concentration of ergovaline in the endophyte infected tall fescue 

seed was 3.6 ppm and concentration of lysergic acid was 4.6 ppm.  The first phase (Adaptation 

Phase; d -14 to d 0) served as a dietary adaptation period in which all lambs (n=10) were adjusted 

to a diet consisting of 23% endophyte free tall fescue seed and 77% concentrate.  During this time 

basal concentrations of ergovaline and lysergic acid in feces, as well as baseline levels of serum 

profiles and rectal temperatures were determined.  The second phase (Acute Phase; d 1 to 4) 

included initial exposure to endophyte infected seed (n=5) when the endophyte free seed was 

replaced with endophyte infected seed followed by the third and final phase (Subacute Phase; d 5 

to 14). 
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Table 3.1  Ingredient and nutrient composition of concentrate mix 

Ingredient  % 
Ground shelled corn  66.83 
Soybean meal  15.00 
Cottonseed hulls  10.00 
Distillers dried grains with solubles  5.00 
Trace mineral salt  1.00 
Ground limestone  1.00 
Ammonium chloride  0.50 
Vit ADE  0.07 
Corn oil  0.60 

Nutrient Composition  % of DM 
NDF  15.3 
ADF  6.5 
Crude protein  19.7 

 

 

Table 3.2  Nutritional composition of non-endophyte infected (E-) and endophyte infected (E+) 
tall fescue seed 

Non‐endophyte infected (E‐)  % of DM 
NDF  39.9 
ADF  16.3 
Crude protein  14.2 

Endophyte infected (E+)  % of DM 
NDF  40.1 
ADF  16.4 
Crude protein  15.9 
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Blood, via jugular venipuncture, was collected twice daily during each phase (Adaptation 

Phase: d -4 to 0; Acute Phase: d 1 to 4; and Subacute Phase: d 10 to 14).  Blood samples were 

centrifuged at 1500 x g for 20 min.  Serum samples from individual lambs were decanted and 

stored at -20°C for later analysis of alkaline phosphatase (AP), creatine kinase (CK), aspartate 

aminotransferase (AST), and gamma glutamyltransferase (GGT).  Rectal temperatures were taken 

every 2 h within a 24-h period for each phase (Adaptation Phase: d -4; Acute Phase: d 4; and 

Subacute Phase: d 10).  Total fecal collections were taken using metabolism crates fitted to each 

lamb.  Total feces were collected and weighed once daily at 0800 h during each phase 

(Adaptation Phase: d -4 to 0; Acute Phase: d 1 to 4; and Subacute Phase: d 10 to 14).  A 20% 

aliquot (by weight) was taken from each day’s collection.  Samples were stored at -20°C until 

later freeze-dried and analyzed for alkaloid content and nutrient digestibility. 

All diet and fecal samples were ground in a Wiley mill to pass through a 1-mm screen 

and stored in sealed plastic bags at room temperature until chemically analyzed.  Dry matter and 

ash contents were determined by AOAC (1999) procedures.  Neutral detergent fiber (NDF) 

(Robertson and Van Soest, 1981) and acid detergent fiber (ADF) (Goering and Van Soest, 1970) 

analyses followed the procedures modified for use in an Ankom 200 Fiber Analyzer (Ankom Co., 

Fairport, N.Y.).  Heat-stable alpha-amylase was added for the neutral detergent fiber analyses of 

all feed and fecal samples to degrade starch, which could inhibit filtration.  Feed and fecal 

samples were analyzed for N using the automated Kjeldahl method described in AOAC (1999).  

Serum AP, CK, AST, and GGT were determined using kits obtained from Pointe Scientific, Inc. 

(Lincoln Park, MI).  Samples were processed through the kits using a Konelab 20Xti Clinical 

Chemistry Analyzer (Thermo Electron Corp., Vantaa, Finland).   

Feed and fecal samples were analyzed for ergovaline as described by Craig et al. (1994).  

A 0.5-g sample size was mixed with 10 ml of 80% methanol.  Tubes were sealed and incubated 

on a shaker at low to medium speed for 2 h.  The 2 h incubation is critical because a shorter 
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incubation will not result in full extraction of ergovaline.  After the 2 h shaking, samples were 

vortexed to loosen particulate.  Liquid from each sample was decanted into a cotton plugged, 9” 

borosilicate glass Pasteur pipet sitting in a 13 x 100 mm disposable glass tube to filter out any 

residual particulate.  Ergovaline was extracted and purified using PrepSep columns (SPE, C18 

disposable columns, Fisher Sci. #13-678-20A).  The columns were pre-conditioned with 2 ml of 

80% methanol and covered with foil to keep from drying out.  Two ml of supernatant from each 

sample was pipetted into a labeled PrepSep column and each ml pushed through separately with a 

syringe and discarded.  A third ml was run through each column and collected in a labeled HPLC 

vial, capped, and run for analysis. 

For lysergic acid extraction and analysis, feed and fecal samples were prepared using a 1-

g sample size mixed with 10 ml water:acetonitrile (1:1).  Tubes were sealed and rotated on a 

hematology/chemistry mixer (Fisher, Pittsburgh, PA) for 16 h under darkness at room 

temperature.  The sample-water:acetonitrile mixture was separated by centrifugation for 10 min at 

2000 rpm.  A 5-ml aliquot of the supernatant was transferred to a disposable glass tube and 

adjusted to pH of 5.0 to 5.5 with 10% acetic acid.  Lysergic acid was extracted and purified from 

the resulting supernatant using strong cation exchange solid phase extraction (SPE) cartridges 

(Discovery DSC-SCX SPE, Supelco catalog number 52686-U Bellfonte, PA) on a  vacuum 

manifold (Alltech, Deerfield, IL).  The SPE cartridge was preconditioned with 3 ml methanol 

followed by 3 ml of 0.1 M HCl and two, 3-ml portions of pure water.  The preconditioning 

eluents were discarded.  The acidified supernatant was applied to the SPE cartridge followed by 

two, 3-ml portions of pure water.  Lysergic acid was eluted from the SPE cartridge with a 3-ml 

portion of methanol:ammonium hydroxide (95:5).  This fraction was collected in a 12 x 75 mm 

glass test tube and concentrated to dryness using a Savant ISS-100 centrifugal evaporator.  The 

residue was reconstituted in 200 µL of methanol:0.05 M phosphate buffer at pH 8.5 (50:50).  

Reconstituted samples were placed in an ultrasonic bath then transferred to 1.7-ml 
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microcentrifuge tubes.  Samples were centrifuged at 10,000 rpm and supernatant transferred to 

HPLC vials. 

Analyses of ergovaline and lysergic acid with HPLC were carried out using a guard 

column hand packed with Pellicular C18 material (Alltech Inc., Lexington, KY) and a Luna C18 

analytical column (150 x 3.0 mm id, 5 µm particle size, Phenomenex, Torrance, CA) eluted at 1 

ml/min under isocratic conditions with a 94:6 ratio of 0.05 M phosphate buffer (pH 

8.5):acetonitrile.  

Statistical Analysis 

Nutrient digestibilities were analyzed as repeated measures using PROC MIXED of SAS 

(Windows version 5.1/2600, SAS Inst., Inc., Cary, NC).  Treatment, phase, and treatment x phase 

were included in the model.  Lamb was assumed to be a random effect and phase was the 

repeated effect.  A compound symmetry (CS) variance-covariance structure was assumed based 

on AIC values.  Enzymes were analyzed, by phase, as repeated measures using PROC MIXED of 

SAS (Windows version 5.1/2600, SAS Inst., Inc., Cary, NC).  Treatment, day, and treatment x 

day were included in the model.  Lamb was assumed to be a random effect and day was the 

repeated effect.  A compound symmetry (CS) variance-covariance structure was assumed based 

on AIC values.  Temperatures were analyzed, by phase, as repeated measures using PROC 

MIXED of SAS (Windows version 5.1/2600, SAS Inst., Inc., Cary, NC).  Treatment, hour, and 

treatment x hour were included in the model for each phase.  Lamb was assumed to be a random 

effect and hour was the repeated effect.  A compound symmetry (CS) variance-covariance 

structure was assumed based on AIC values.  Ergovaline and lysergic acid recovery data were 

analyzed within the E+ treatment, by phase, using PROC MIXED of SAS (Windows version 

5.1/2600, SAS Inst., Inc., Cary, NC).  The model included only the repeated effect of day.  Lamb 

was assumed to be a random effect.    



26 
 

Chapter 4.   Results and Discussion 

Nutrient Digestibility 

 Least squares means for DM digestibility are shown in Table 4.1.  Although there was no 

effect of treatment (E- vs E+), differences among phases were apparent.  Digestibility tended to 

be higher (P < 0.10) during the subacute phase within the E- treatment.  In contrast, DM 

digestibility within the E+ treatment was higher (P < 0.05) during the acute phase than in either 

the adaptation or subacute phases.  Reasons for these differences are unclear.  

 Differences in N digestibility (Table 4.2) between E- and E+ were not significant, but 

phase differences were significant (P < 0.01).  Digestibility within E- increased from the 

adaptation (87.8%) through the acute (88.6%) to the subacute (89.1%) phase, whereas the highest 

value was found during the acute phase of the E+ treatment (89.3%).  Based on the highest DM 

digestibility (Table 4.1), finding the highest N digestibility in the acute phase of E+ might be 

expected because N is a component of the diet DM.  However, finding the high digestibilities for 

both DM and N during the acute phase, when lambs were consuming the endophyte infected 

seed, is somewhat surprising.  Perhaps the digestive tract is stimulated to compensate for the 

metabolic stress imposed through consumption of endophyte infected fescue seed by providing 

more essential entities at the cellular level of the affected animal. 

 Neutral and acid detergent fiber followed suit with DM and N in that digestibilities within 

the E+ treatment were highest in the acute phase.  However, this occurrence was followed by the 

lowest (P < 0.05) digestibility of both nutrients in the subacute phase of E+.  The only treatment 

differences for NDF (P < 0.094) and ADF (P < 0.055) were found in the acute phase.  

Digestibility determinations were made for only 4 days of the acute phase and 5 days of the 

subacute phase.  If determinations had been made continuously from adaptation to acute 
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Table 4.1  Least squares means of DM digestibility (%) in lambs consuming non-
endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) by 
phase 

 

   Treatmenta    
Phase  E‐  E+  P‐valuef 
  Adaptation  85.3b  85.8d  0.785 
  Acute  85.2b  87.5e  0.169 

  Subacute  86.3c  85.5d  0.605 
aSEM: E‐ = 1.06 (n = 5) and E+ = 1.18 (n = 4). 
b,c Values in a column followed by different superscripts are different              
(P < 0.10). 
d,e Values in a column followed by different superscripts are different              
(P < 0.05). 
fE‐ vs E+. 

 

 

Table 4.2  Least squares means of N digestibility (%) in lambs consuming non-
endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) by 
phase 

 

   Treatmenta    
Phase  E‐  E+  P‐valued 
  Adaptation  87.8b  87.7b  0.936 
  Acute  88.6b,c  89.3c  0.662 

  Subacute  89.1c  88.3b,c  0.579 
aSEM: E‐ = 1.01 (n = 5) and E+ = 1.12 (n = 4). 
b,c Values in a column followed by different superscripts are different              
(P < 0.01). 
dE‐ vs E+. 
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Table 4.3  Least squares means of NDF digestibility (%) in lambs consuming non-
endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) by 
phase 

 

   Treatmenta    
Phase  E‐  E+  P‐valued 
  Adaptation  66.4  70.5b,c  0.308 
  Acute  66.8  73.8c  0.094 

  Subacute  69.5  68.1b  0.720 
aSEM: E‐ = 2.59 (n = 5) and E+ = 2.89 (n = 4). 
b,c Values in a column followed by different superscripts are different              
(P < 0.05). 
dE‐ vs E+. 

 

 

Table 4.4 Least squares means of ADF digestibility (%) in lambs consuming non-
endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) by 
phase 

 

   Treatmenta    
Phase  E‐  E+  P‐valued 
  Adaptation  59.2  62.5b,c  0.405 
  Acute  58.5  66.6c  0.055 

  Subacute  61.3  59.8b  0.704 
aSEM: E‐ = 2.58 (n = 5) and E+ = 2.88 (n = 4). 
b,c Values in a column followed by different superscripts are different              
(P < 0.05). 
dE‐ vs E+. 
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through subacute phases, the effect of E+ seed consumption on nutrient digestibility may have 

been clearer.  Then, a more definitive conclusion could have been made.     

 Overall, there was a tendency for nutrient digestibility to increase throughout the trial 

within the E- treatment group.  This could possibly be due to adaptation of the lambs to the 

experimental diet of fescue seed and concentrate diet.  However, nutrient digestibility tended to 

be highest during the acute phase for lambs within the E+ treatment.  Differences in nutrient 

digestibilities, both within and across treatments, may be attributed to variation associated with 

sampling and analysis.  In this study the main effect of treatment was not statistically significant 

for any of the nutrients analyzed.  These results are comparable to those of De Lorme et al. (2007) 

who found no difference in DM, ADF, or CP digestibilities between lambs consuming E- and E+ 

tall fescue hay and seed.  Matthews et al. (2005) also did not find a difference in NDF 

digestibility in steers consuming endophyte free or endophyte infected tall fescue hay.  In 

contrast, Hannah et al. (1990) found ruminal and total tract NDF and cellulose digestibilities 

decreased with increasing ergovaline in the diet of wether lambs and Fiorito et al. (1991) reported 

lower total tract digestion of DM, NDF, and ADF in lambs consuming endophyte infected tall 

fescue hay.  Other studies have reported lower DM (Westendorf et al., 1993; Aldrich et al., 

1993b; Matthews et al., 2005), CP (Westendorf et al., 1993; Matthews et al., 2005), and ADF 

digestibility (Westendorf et al., 1993; Matthews et al., 2005) in ruminants fed E+ diets compared 

with those consuming E- diets.  To the contrary, Goetsch et al. (1987) reported increased NDF 

digestibilities when steers were fed endophyte infected tall fescue hay, vs. non-infected hay.  

Similarly, Neal and Schmidt (1985) found increased DM, crude fiber, and nitrogen-free extract 

digestibilities when endophyte infected seed was fed to weanling rats.  However, in the studies by 

Goetsch et al. (1987) and Neal and Schmidt (1985), feed intakes were depressed even though 

animals were given ad libitum access to the ration, which would be expected to increase 

digestibility.  In the present study, as well as those by Westendorf et al. (1993), Fiorito et al. 
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(1991), and Hannah et al. (1990), intake was equalized across treatments to avoid this 

confounding influence.   

Rectal Temperatures 

 Rectal temperatures taken every 2 h during day -4 of the adaptation phase are illustrated 

in Figure 4.1 and least squares means are shown in Appendix Table A.1.  Mean values for the E- 

and E+ treatment groups were 38.75 and 38.71°C, respectively.  The main effect of treatment was 

not statistically significant, which was expected because all lambs consumed E- fescue seed 

during this phase.  Also, there was no significant interaction between treatment and hour.  

However, there was a statistically significant effect (P < 0.01) of time.  The peak temperature was 

recorded at 2000 h for both treatment groups.  This peak coincided with the evening feeding.  

Following this peak, temperatures for both treatment groups dropped over the next two collection 

times, then experienced another smaller peak at 0200 h.  Temperatures leveled out for the 

remaining collection times. 

 Rectal temperatures taken at 2-h intervals for 24 h on day 4 of the acute phase are 

depicted in Figure 4.2.  Least squares means used to construct this figure can be found in 

Appendix Table A.2.  There was a significant treatment effect (P < 0.01).  Temperature tended to 

increase in E+ fed lambs, but remained constant or decreased in lambs fed E- fescue.  Overall 

differences among hours tended to be significant (P < 0.10) resulting in a trend towards a 

treatment x hour interaction (P < 0.10).  The mean 24-h temperatures for E- and E+ were 38.69 

and 39.20°C, respectively.  Significant treatment differences were found at every collection hour 

except 1400 and 1800 h (Appendix Table A.2).   

Subacute phase rectal temperatures are illustrated in Figure 4.3 and least squares means 

are presented in Appendix Table A.3.  The effect of treatment was statistically significant (P < 

0.05).  However, the effect of hour was not significant.  Therefore, there was no significant 
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interaction between treatment and hour.  Mean temperatures for the subacute phase were 38.67 

and 38.98°C for the E- and E+ treatments, respectively.  Similar to the acute phase, temperatures 

for lambs within the E+ treatment remained consistently higher throughout the collection period 

than for lambs in the E- treatment.  However, the mean temperature of the E+ treatment group 

was numerically lower compared with the acute phase (39.20 vs. 38.98°C).  There was a 

statistically significant difference (P < 0.10) between treatments at collection times 1000, 1200, 

2000, 2200, 2400, 0200, and 0600 h.  Although the overall trend was similar to the acute phase, 

the magnitude of the differences between treatment groups tended to be less during the subacute 

phase.  This may indicate some adaptation of the lambs to the endophyte infected diet. 

 The lambs in this study were held in a 21°C environment for the duration of the 

experiment.   In similar studies conducted in a non-heat stressed environment, Fiorito et al. (1991) 

and De Lorme et al. (2007) did not find an effect of feeding an endophyte infected diet on rectal 

temperature in lambs for 7 and 28 days, respectively.  Matthews et al. (2005) also did not find a 

difference in rectal temperature when steers consuming endophyte infected or endophyte free tall 

fescue hay were maintained in a 22 to 27°C controlled environment.  Hannah et al. (1990) and 

Aldrich et al. (1993a) conducted studies with sheep housed in a heat stressed environment (32 to 

34°C) and found animals consuming endophyte infected tall fescue did have higher rectal 

temperatures compared with those consuming endophyte free tall fescue.  Nihsen et al. (2004) 

also reported steers grazing endophyte infected KY 31 and exhibiting signs of heat stress had 

higher rectal temperatures compared with steers grazing endophyte free tall fescue. 
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Figure 4.1  Rectal temperatures in lambs consuming non-endophyte infected tall fescue seed (E-) 
or endophyte infected tall fescue seed (E+) on d -4 of adaptation phase 
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Figure 4.2  Rectal temperatures in lambs consuming non-endophyte infected tall fescue seed (E-) 
or endophyte infected tall fescue seed (E+) on d 4 of acute phase 
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Figure 4.3  Rectal temperatures in lambs consuming non-endophyte infected tall fescue seed (E-) 
or endophyte infected tall fescue seed (E+) on d 10 of subacute phase 
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Ergovaline and Lysergic acid 

 Recovery of dietary ergovaline in the feces of lambs in the E+ treatment is presented in 

Table 4.5 for the acute phase and in Table 4.6 for the subacute phase.  There was a significant (P 

< 0.01) effect of day of the acute phase with recovery increasing from 2.0% on d 1 up to 9.6% on 

d 4.  Although recoveries were numerically higher in the subacute phase (16.6 to 23.3%), the only 

difference (P < 0.10) that could be attributed to day of collection was between d 10 and d 14.  

Westendorf et al. (1993) reported 6 to 7% of the ergot alkaloids consumed from an 

endophyte infected seed diet for 6 days were excreted in the feces of lambs.  These results are 

similar to the average ergovaline recovery found during the acute phase of this study (5.6%), 

which consisted of 4 days of collection.  In comparison, Schultz et al. (2006) found 34.3% of 

consumed ergovaline was excreted in the feces during an initial phase (d 0 to 3) and another 

41.7% during the subacute phase (d 4 to 21) when geldings were fed an endophyte infected seed 

diet for 21 days.  De Lorme et al. (2007) also reported approximately 35% of consumed 

ergovaline was excreted in the feces of lambs fed endophyte infected tall fescue straw for 28 

days.  Differences in ergovaline recovery between the acute phase of this study and the initial 

phase of Schultz et al. (2006) may be due to the slower passage rate of ruminants (foregut 

fermenters) compared with horses (hindgut fermenters).  However, Schultz et al. (2006) did 

observe increased ergovaline recovery from the initial to the subacute phase which coincides with 

the numerically higher recovery in the subacute phase of this study compared with the acute.  The 

mean ergovaline recovery of this study was lower during the subacute phase (20.0%) than values 

reported by Schultz et al. (2006) and De Lorme et al. (2007), but the current study was only 14 

days long.  If carried out longer, higher recoveries may have been found. 
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Table 4.5  Least squares means of fecal ergovaline recovery (% of intake) in lambs 
consuming endophyte infected tall fescue seed (E+) during the acute phasea 

 
        
Day  Intake (mg/d)  Fecal (mg/d)  % Recovery 
1  0.61  0.01  2.0b 
2  0.76  0.02  3.2b 
3  0.76  0.06  7.8c 
4  0.74  0.07  9.6c 

Mean  0.72  0.04  5.6 
aSEM for all days = 1.44. 
b,c Values in a column followed by different superscripts are different  
(P < 0.01). 

 

 

Table 4.6  Least squares means of fecal ergovaline recovery (% of intake) in lambs 
consuming endophyte infected tall fescue seed (E+) during the subacute phasea 

 

        
Day  Intake (mg/d)  Fecal (mg/d)  % Recovery 
10  0.77  0.13  16.6b 
11  0.77  0.15  19.7b,c 
12  0.77  0.17  21.7b,c 
13  0.77  0.15  18.8b,c 
14  0.77  0.18  23.3c 

Mean  0.77  0.15  20.0 
aSEM for all days = 3.46. 
b,c Values in a column followed by different superscripts are different  
(P < 0.10). 
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Acute and subacute phase recoveries of dietary lysergic acid in the feces of lambs fed E+ 

seed are shown in Tables 4.7 and 4.8, respectively.   There was a significant effect of day during 

the acute phase (P < 0.05).  Days 1 and 2 recoveries were not different, but both were lower than 

3 and 4 (P < 0.10).  Days 2 and 3 did not differ, but both were lower (P < 0.10) than day 4.  There 

was no significant effect of day during the subacute phase when lysergic acid recovery ranged 

from 35.4% to 39.9% over the collection period. 

Similar to ergovaline, lysergic acid recovery increased daily during the acute phase with a 

mean recovery of 15.0%.  Mean recovery of lysergic acid was numerically higher during the 

subacute (37.3%) phase.  Schultz et al. (2006) reported fecal lysergic acid recovery averaged 

134% in geldings consuming E+ tall fescue throughout the 21-d study.  Unlike this study, Schultz 

et al. (2006) did not observe an effect of day on lysergic acid recovery, which may again be 

attributed to differences in passage rates of horses compared with ruminants.  De Lorme et al. 

(2007) also found an average lysergic acid recovery of 113% in the feces of lambs consuming 

endophyte infected tall fescue straw and seed.  De Lorme et al. (2007) theorized ergopeptines in 

the feed were degraded to lysergic acid by ruminal microbial degradation or by degradation in the 

lower gastrointestinal tract.  Schultz et al. (2006) came to a similar conclusion that ergovaline, or 

other ergot alkaloids, were metabolized to lysergic acid in the stomach, small intestine, hindgut, 

or hepatic tissues.  The diet in this study was more digestible due to a primarily concentrate based 

ration compared with the forage based diets of those fed by Schultz et al. (2006) and De Lorme et 

al. (2007).  The higher digestibility of the diet in this study would result in a smaller indigestible 

fraction excreted compared with a larger indigestible fraction found in a forage based diet.  

Possibly, the smaller lysergic acid recovery in this study may be the result of less lysergic acid 

excreted with the indigestible fraction in the feces. 

  



38 
 

Table 4.7  Least squares means of fecal lysergic acid recovery (% of intake) in lambs 
consuming endophyte infected tall fescue seed (E+) during the acute phasea 

 
        
Day  Intake (mg/d)  Fecal (mg/d)  % Recovery 
1  0.91  0.07  7.9b 
2  0.96  0.12  12.2b 
3  0.96  0.19  19.3c 
4  0.95  0.20  20.8c 

Mean  0.95  0.14  15.0 
aSEM for all days = 3.90. 
b,c Values in a column followed by different superscripts are different  
(P < 0.10). 

 

Table 4.8  Least squares means of fecal lysergic acid recovery (% of intake) in lambs 
consuming endophyte infected tall fescue seed (E+) during the subacute phasea 

 

        
Day  Intake (mg/d)  Fecal (mg/d)  % Recovery 
10  0.97  0.34  35.4 
11  0.97  0.37  37.8 
13  0.97  0.35  35.9 
14  0.97  0.39  39.9 

Mean  0.97  0.36  37.3 
aSEM for all days = 4.56. 
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Enzymes 

Serum alkaline phosphatase (AP), creatine kinase (CK), aspartate aminotransferase (AST), and 

gamma glutamyltransferase (GGT) concentrations were monitored during the adaptation, acute, 

and subacute phases.  The AP least squares means are presented in Tables 4.9, 4.10, and 4.11 and 

graphically illustrated in Figures 4.4, 4.5, and 4.6.  Neither treatment nor day affected the AP 

concentrations of any phase.  This was expected in the adaptation phase (Table 4.9) because all 

lambs consumed E- tall fescue seed during this phase.  Differences due to treatment and day were 

also nonsignificant in the acute (Table 4.10) and subacute (Table 4.11) phases.  Additionally, 

there was no interaction between treatment and day during the adaptation and acute phases.  

However, the interaction of treatment and day in the subacute phase was significant (P < 0.10) as 

shown in Figure 4.6.  On d 11 of the subacute phase the E+ treatment was significantly lower at 

45.2 U/L (P < 0.021) compared to the E- treatment at 80.0 U/L.  Mean values of AP for lambs on 

the E+ treatment tended to decrease after d 11.  The difference in mean values between the E- and 

E+ treatments was 4.8 in the adaptation phase, but increased to 9.8 and 17.3 in the acute and 

subacute phases, respectively.  AP is an indicator of bone or liver damage and all the values 

reported in this study fell within the normal range of 27 to 156 U/L as reported by Boyd (1984)  .  

The numerically lower AP found in this study for lambs consuming E+ tall fescue seed agrees 

with results by Oliver et al. (2000a), who found steers grazing endophyte infected tall fescue had 

numerically lower AP levels, but the differences were not statistically significant.  Also, Fiorito 

(1991) reported lambs consuming endophyte infected tall fescue hay had numerically lower AP 

levels.  Other studies (Nihsen et al., 2004; Brown et al., 2009) reported significantly lower AP 

levels in steers grazing endophyte infected than in those grazing endophyte free tall fescue.  

Boling et al. (1989) also found AP levels were lower in calves fed endophyte infected tall fescue 

hay.  Greater differences may have been found in the current study if the collection period had 
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Table 4.9  Least squares means of serum alkaline phosphatase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the adaptation phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
‐4  74.4  73.6  0.917 
‐3  74.1  73.2  0.898 
‐2  70.8  64.8  0.426 
‐1  73.0  69.2  0.610 
0  82.7  70.4  0.106 

Mean  75.0  70.2  0.232 
aSEM: E‐ = 4.93 (n = 5) and E+ = 5.52 (n = 4). 
bE‐ vs E+. 

 

Figure 4.4  Blood serum alkaline phosphatase (U/L) in lambs consuming non-endophyte infected 
tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the adaptation phase 
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Table 4.10  Least squares means of serum alkaline phosphatase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the acute phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
1  79.3  70.3  0.514 
2  81.3  66.5  0.284 
3  78.5  61.9  0.230 
4  65.9  67.1  0.935 

Mean  76.2  66.4  0.402 
aSEM: E‐ = 8.95 (n = 5) and E+ = 10.00 (n = 4). 
bE‐ vs E+. 

 

Figure 4.5  Blood serum alkaline phosphatase (U/L) in lambs consuming non-endophyte infected 
tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the acute phase 
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Table 4.11  Least squares means of serum alkaline phosphatase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the subacute phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
10  65.4  58.2  0.620 
11  80.0  45.2  0.021 
12  71.9  48.4  0.109 
13  71.0  60.3  0.459 
14  59.9  49.9  0.487 

Mean  69.7  52.4  0.178 
aSEM: E‐ = 9.51 (n = 5) and E+ = 10.63 (n = 4). 
bE‐ vs E+. 

 

Figure 4.6  Blood serum alkaline phosphatase (U/L) in lambs consuming non-endophyte infected 
tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the subacute phase 
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been extended, but more likely the wide range of normal values would still make it difficult to 

detect significant differences.    

The least squares means for CK were not affected by treatment or day within the 

adaptation and acute phases (Tables 4.12 and 4.13; Figures 4.7 and 4.8).  Least squares means for 

CK in the subacute phase are presented in Table 4.14 and illustrated in Figure 4.9.  Again, 

differences during the adaptation were not anticipated because all lambs consumed E- fescue 

seed.  Differences due to treatment and/or day, or uncovering an interaction, might be expected 

during the acute phase if striated or skeletal muscle damage occurred as a result of E+ seed 

consumption.  However, this did not appear to be the case.  In contrast to AP, CK concentrations 

increased from adaptation through the acute to highest in the subacute phase in lambs consuming 

E+ fescue seed.  Brown et al. (2009) found lower CK levels in steers grazing endophyte infected 

tall fescue for 89 d than for those grazing endophyte free fescue.  This contrasts with the results 

of this study where no significant effect of treatment was found during the first two phases and 

CK levels tended to be higher in lambs in the E+ treatment.  The normal range of CK in sheep is 

7.7 to 101 U/L (Boyd, 1984).  Values from this study fell within this range, but had a large range 

of variability. 

Aspartate aminotransferase (AST), an indicator of hepatic and striated muscle damage, 

can exhibit a concentration range from 49 to 123 U/L in sheep blood serum (Boyd, 1984).  

Concentrations in the three phases of the present study mostly fell within this range, with a few 

slightly lower values (Tables 4.15, 4.16, and 4.17; Figures 4.10, 4.11, and 4.12).  Although E+ 

lambs had a higher level (P < 0.066) than E- on d -3 (61.4 vs 39.4) of the adaptation phase, 

differences on other days were not significant.  Overall, however, E+ lamb concentrations 

averaged 58.4 U/L compared to an average of 48.5 U/L for E- lambs in the adaptation phase.  

There was no effect of treatment in the acute phase (means = 47.3 U/L for E- and 49.2 U/L for  



44 
 

Table 4.12  Least squares means of serum creatine kinase (U/L) in lambs consuming 
non-endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed 
(E+) during the adaptation phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
‐4  51.4  54.7  0.869 
‐3  71.0  66.3  0.813 
‐2  75.0  49.2  0.207 
‐1  67.6  64.3  0.870 
0  47.8  56.6  0.661 

Mean  62.6  58.2  0.674 
aSEM: E‐ = 13.31 (n = 5) and E+ = 14.88 (n = 4). 
bE‐ vs E+. 

 

Figure 4.7  Blood serum creatine kinase (U/L) in lambs consuming non-endophyte infected tall 
fescue seed (E-) or endophyte infected tall fescue seed (E+) during the adaptation phase 
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Table 4.13 Least squares means of serum creatine kinase (U/L) in lambs consuming 
non-endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed 
(E+) during the acute phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
1  54.1  80.8  0.137 
2  68.2  49.7  0.298 
3  45.6  63.8  0.305 
4  70.6  64.1  0.713 

Mean  59.6  64.6  0.570 
aSEM: E‐ = 11.54 (n = 5) and E+ = 12.90 (n = 4). 
bE‐ vs E+. 

 

Figure 4.8  Blood serum creatine kinase (U/L) in lambs consuming non-endophyte infected tall 
fescue seed (E-) or endophyte infected tall fescue seed (E+) during the acute phase 
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Table 4.14  Least squares means of serum creatine kinase (U/L) in lambs consuming 
non-endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed 
(E+) during the subacute phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
10  59.6  71.3  0.353 
11  59.5  72.7  0.290 
12  44.0  69.9  0.045 
13  51.1  71.5  0.108 
14  55.9  51.9  0.745 

Mean  54.0  67.5  0.100 
aSEM: E‐ = 8.20 (n = 5) and E+ = 9.17 (n = 4). 
bE‐ vs E+. 

  

Figure 4.9  Blood serum creatine kinase (U/L) in lambs consuming non-endophyte infected tall 
fescue seed (E-) or endophyte infected tall fescue seed (E+) during the subacute phase 
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E+), but day was significant (P < 0.05).  Variation among collection days prevented establishment 

of any trends during the acute phase other than mirrored concentrations between E- and E+.  

There were no effects of treatment or day in the subacute phase.  Interaction analyses revealed no 

differences in AST concentrations between day and treatment in the phase.  Similar to their AP 

results, Oliver et al. (2000a) found steers grazing endophyte infected tall fescue had numerically 

lower AST levels then those grazing endophyte free fescue, but the difference was not 

statistically significant.  Nihsen et al. (2004) also found steers grazing KY 31 (E+) tall fescue had 

lower levels of AST then E- steers, but the difference was not significant.  The results of this 

study agree with these researchers in terms of not finding a significant effect of treatment on AST 

levels in ruminants consuming E+ tall fescue.  However, in this study animals in the E+ treatment 

tended to have higher AST levels than those in the E- treatment.  In contrast, Brown et al. (2009) 

reported significantly lower (P < 0.03) AST levels in steers grazing endophyte infected tall fescue 

for 89 d.  However, the previous research did not divide their experimental periods into phases as 

was done in the present study.  Differences in experimental protocol make it difficult to 

extrapolate long term grazing data to short term intensive phases.  Nevertheless, it appears that 

serum AST concentrations are not consistently altered in animals consuming endophyte infected 

forage or seed. 

A fourth serum enzyme that has been evaluated as an indicator of tissue damage from 

endophyte infected fescue consumption is gamma glutamyltransferase (GGT).  The normal range 

of concentration in sheep is 20 to 44 U/L (Boyd, 1984).  Levels measured in this experiment are 

shown in Tables 4.18, 4.19, and 4.20 and graphically illustrated in Figures 4.13, 4.14, and 4.15.  

The effect of day was significant (P < 0.05) in all three phases, but treatment differences were 

nonsignificant.  Concentrations in E- followed the same general pattern as those of the E+ 

treatment in acute and subacute phases, leading to the conclusion that GGT was not a significant 

indicator of tissue damage in lambs consuming endophyte infected tall fescue seed in this  
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Table 4.15  Least squares means of serum aspartate aminotransferase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the adaptation phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
‐4  49.4  60.0  0.366 
‐3  39.3  61.4  0.066 
‐2  43.7  52.7  0.442 
‐1  65.6  66.4  0.939 
0  44.4  51.5  0.544 

Mean  48.5  58.4  0.242 
aSEM: E‐ = 7.68 (n = 5) and E+ = 8.59 (n = 4). 
bE‐ vs E+. 

 

Figure 4.10  Blood serum aspartate aminotransferase (U/L) in lambs consuming non-endophyte 
infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the adaptation 
phase 
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Table 4.16  Least squares means of serum aspartate aminotransferase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the acute phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
1  53.2  55.0  0.885 
2  57.9  59.1  0.926 
3  38.4  38.0  0.974 
4  39.8  44.5  0.713 

Mean  47.3  49.2  0.850 
aSEM: E‐ = 8.37 (n = 5) and E+ = 9.36 (n = 4). 
bE‐ vs E+. 

 

Figure 4.11  Blood serum aspartate aminotransferase (U/L) in lambs consuming non-endophyte 
infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the acute phase 
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Table 4.17  Least squares means of serum aspartate aminotransferase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the subacute phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
10  46.3  53.9  0.546 
11  54.8  60.2  0.662 
12  40.1  45.4  0.669 
13  45.1  64.0  0.137 
14  39.9  44.9  0.687 

Mean  45.2  53.7  0.360 
aSEM: E‐ = 8.22 (n = 5) and E+ = 9.19 (n = 4). 
bE‐ vs E+. 

 

Figure 4.12  Blood serum aspartate aminotransferase (U/L) in lambs consuming non-endophyte 
infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the subacute 
phase 
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experiment.  These results agree with those of Oliver et al. (2000a) and Brown et al. (2009) who 

found levels of GGT were not different between steers grazing endophyte infected tall fescue 

compared with steers on endophyte free tall fescue. 

Overall, there was little effect of treatment on enzyme levels across all phases, indicating 

consumption of E+ tall fescue seed has little or no effect on the blood serum AP, CK, AST, or 

GGT or the level consumed in this study was not high enough to elicit a significant response.  

Although day within a phase was significant in several places, a lack of consistency prevented 

making any definite conclusions. 
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Table 4.18  Least squares means of serum gamma glutamyltransferase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the adaptation phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
‐4  57.0  58.9  0.821 
‐3  41.6  58.8  0.050 
‐2  57.9  64.6  0.426 
‐1  79.9  80.3  0.963 
0  54.9  46.3  0.309 

Mean  58.3  61.8  0.379 
aSEM: E‐ = 5.59 (n = 5) and E+ = 6.25 (n = 4). 
bE‐ vs E+. 

 

Figure 4.13  Blood serum gamma glutamyltransferase (U/L) in lambs consuming non-endophyte 
infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the adaptation 
phase 
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Table 4.19  Least squares means of serum gamma glutamyltransferase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the acute phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
1  64.7  64.3  0.964 
2  61.5  69.1  0.474 
3  43.8  47.6  0.715 
4  44.7  49.5  0.652 

Mean  53.7  57.6  0.466 
aSEM: E‐ = 6.91 (n = 5) and E+ = 7.73 (n = 4). 
bE‐ vs E+. 

 

Figure 4.14  Blood serum gamma glutamyltransferase (U/L) in lambs consuming non-endophyte 
infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the acute phase 

 

 

 

40

45

50

55

60

65

70

75

1 2 3 4

(U
/L

)

Day

E-
E+



54 
 

Table 4.20  Least squares means of serum gamma glutamyltransferase (U/L) in lambs 
consuming non-endophyte infected tall fescue seed (E-) or endophyte infected tall 
fescue seed (E+) during the subacute phase 

   Treatmenta    
Day  E‐  E+  P‐valueb 
10  53.6  56.7  0.755 
11  64.4  60.7  0.715 
12  49.0  42.8  0.538 
13  51.2  56.9  0.577 
14  48.4  39.9  0.408 

Mean  53.3  51.4  0.743 
aSEM: E‐ = 6.71 (n = 5) and E+ = 7.50 (n = 4). 
bE‐ vs E+. 

 

Figure 4.15  Blood serum gamma glutamyltransferase (U/L) in lambs consuming non-endophyte 
infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) during the subacute 
phase 
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Chapter 5.   Summary 

 Ten wether lambs were used to determine the effects of consuming endophyte infected 

tall fescue seed on rectal temperature, nutrient digestibility, ergovaline and lysergic acid recovery, 

and select serum enzyme profiles.  Lambs were adapted to a diet of 23% endophyte free tall 

fescue seed (E-) and 77% concentrate fed at 1.8% BW in equal feedings (12-h intervals).  Lambs 

remained on this diet during the first phase of the experiment from d -14 to d 0.  Jugular blood 

serum and total feces were collected daily from d -4 to 0 (adaptation phase) and rectal 

temperatures were recorded every 2 h on d -4.  On d 0, the E- seed was replaced in the diet of five 

lambs with endophyte infected seed (E+).  Lambs remained on their respective diets (E- or E+) 

through d 14.  Blood serum and total feces were collected from d 1 to 4 (acute phase) and from d 

10 to 14 (subacute).  Rectal temperatures were recorded on d 4 and 10.  Digestibilities of DM, N, 

NDF, and ADF were calculated and recovery of dietary ergovaline and lysergic acid was 

determined from fecal analyses.  Serum AP, CK, AST, and GGT were measured as indicators of 

liver and/or muscle tissue damage.  The overall effect of treatment was nonsignificant for all 

nutrient digestibilities.  However, there was a trend for lambs within the E+ treatment to have 

higher digestibilities during the acute phase.  Lambs fed the E+ diet had higher rectal 

temperatures during both the acute and subacute phases.  Fecal recovery of dietary EV was 5.6 

and 20.0% and recovery of dietary LA was 15.0 and 37.3% during the acute and subacute phases 

for E+ lambs.  Serum concentrations of AP, AST, and GGT were not affected by treatment and 

CK tended to be higher (P < 0.10) during the subacute phase.  Increasing recovery of EV and LA 

in the feces indicates some adaptation of metabolic processes for EV and LA elimination.
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Appendix 

 
Table A.1  Least squares means of rectal temperatures (°C) in lambs consuming non-
endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) on 
day -4 of the adaptation phase 

 

   Treatmenta    
Hour  E‐  E+  P‐valueb 
1000  38.70  38.61  0.598 
1200  38.80  38.68  0.478 
1400  38.78  38.72  0.741 
1600  38.82  38.68  0.401 
1800  38.78  38.81  0.869 
2000  39.01  39.10  0.609 
2200  38.78  38.67  0.509 
2400  38.60  38.53  0.668 
0200  38.80  38.77  0.830 
0400  38.74  38.69  0.766 
0600  38.70  38.64  0.717 
0800  38.66  38.74  0.632 
1000  38.60  38.60  0.987 

Mean  38.75  38.71  0.773 
aSEM: E‐ = 0.08 (n = 5) and E+ = 0.09 (n = 4). 
bE‐ vs E+. 
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Table A.2  Least squares means of rectal temperatures (°C)in lambs consuming non-
endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) on 
day 4 of the acute phase 

 

   Treatmenta    
Hour  E‐  E+  P‐valueb 
1000  38.61  39.04  0.049 
1200  38.68  39.06  0.083 
1400  38.87  39.13  0.234 
1600  38.71  39.22  0.020 
1800  38.93  39.28  0.113 
2000  38.68  39.10  0.055 
2200  38.77  39.24  0.032 
2400  38.71  39.13  0.058 
0200  38.60  39.29  0.002 
0400  38.57  39.24  0.003 
0600  38.69  39.29  0.006 
0800  38.61  39.21  0.007 
1000  38.63  39.41  0.001 

Mean  38.69  39.20  0.008 
aSEM: E‐ = 0.10 (n = 5) and E+ = 0.11 (n = 4). 
bE‐ vs E+. 
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Table A.3  Least squares means of rectal temperatures (°C) in lambs consuming non-
endophyte infected tall fescue seed (E-) or endophyte infected tall fescue seed (E+) on 
day 10 of the subacute phase 

 

   Treatmenta    
Hour  E‐  E+  P‐valueb 
1000  38.54  38.96  0.052 
1200  38.66  39.04  0.069 
1400  38.63  38.92  0.180 
1600  38.79  39.04  0.231 
1800  38.62  38.81  0.384 
2000  38.56  38.97  0.050 
2200  38.59  38.94  0.094 
2400  38.74  39.18  0.041 
0200  38.60  38.98  0.069 
0400  38.78  38.92  0.510 
0600  38.62  39.03  0.056 
0800  38.83  39.11  0.189 
1000  38.68  38.89  0.317 

Mean  38.67  38.98  0.046 
aSEM: E‐ = 0.10 (n = 5) and E+ = 0.11 (n = 4). 
bE‐ vs E+. 
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