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Besides, further analysis of the crystal structures of phage
connectors among SPP1, P22, and Phi29 [46,54,88,89]
revealed four potential-relaying electropositive lysine
residues lying on the predominantly negatively charged
connector channel surface. Although these four posi-
tively charged layers are nonessential for motor DNA
packaging activity [89], they are reported to influence
DNA translocation [89,90]. Investigations into the de-
tailed interaction of lysine residues with the bacterio-
phage genome during translocation revealed that the
force generation mechanism of the relaying layers inside
the channel wall altered the speed of DNA translocation
resulting in four pauses [9,54]. The interaction between
these positively charge lysine rings and the negatively
charged phosphate backbone of the DNA suggests that
SPP1, P22 and Phi29 viral dsDNA packaging motors in-
volve an electrostatic force in DNA translocation.

Furthermore, it has been reported that the dsDNA spool-
ing in the filled capsid is a common phenomenon in all
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the T7, Phi29, €15, P22, and A phages [91-94]. The revolu-
tion mechanism explains this spooling phenomenon. Dur-
ing packaging of DNA [50,54], dsDNA will spool within
the procapsid naturally as a result of the revolution process.
Since rotation is not involved, no coiling is generated and
no free DNA terminus is required during spooling. Ini-
tially, extra room results in a random arrangement of the
entering DNA, however, towards completion of packaging
it spools tighter and tighter due to revolution, which re-
sults in a more ordered orientation of the dsDNA [91-94].
In addition, the reported revolution mechanism of phage
DNA packaging motors is also consistent with recent
cryo-EM imaging studies showing that the T7 dsDNA
core tilts from its central axis [83].

DNA twists rather than rotates due to motor channel
conformational changes during DNA translocation

Many connector channels of dsDNA bacteriophages
(Figure 4) adopt a left-handed channel wall to facilitate

channel wall.

Figure 6 lllustration of the mechanism of dsDNA twisting during DNA packaging due to conformational changes of the Phi29
connector channel. (A) Discrete three step-wise conformational changes of Phi29 connector channel were detected by single channel
conductance assay with the connector embedded in lipid bilayer. The external view of the crystal structure of the connector channel is shown
on the right. (B) The C-terminal of the connector inside the procapsid is more static than the external N-terminal. As a result, the N-terminal of
the connector may shift leftwards during the DNA packaging, leading to the clockwise twist of the DNA that aligns within the connector
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Figure 7 Demonstration of no DNA rotation by real-time direct observation of single motor DNA packaging. Procapsid was immobilized
in glass and the distal end of dsDNA was tethered to a bead. DNA is packaged vertically (A) or horizontally (B) towards the slide surface (graphic
is not drawn to scale). (C) The motion of the bead is tracked during DNA packaging without (a and b) and with (c and d) the addition of ATP to
the sample. The motion of the bead ceased at later times only when ATP was added (c) and (d) due to the physical restriction of DNA being
completely packaged. (a) and (c) show the trajectories of the bead. Different colors represent different time ranges during the translocation. (b)

and (d) show the changes in beads travel distance versus time.

one-way traffic during dsDNA packaging into pre-
assembled protein shells [52,54]. The conformational
changes of the channel have been reported associated
with this packaging process [95,96]. Such conformational
changes allow conversion of the left-handed connector
after completion of DNA packaging towards the opposite
configuration, thus facilitating DNA one-way ejection into
host cells for infection. Indeed, three steps of conform-
ational changes of the Phi29 connector were detected
(Figure 6A) [96], and discovered in the DNA packaging
motor of SPP1 (Wang and Guo, unpublished data). Notice-
able conformational differences between isolated Phi29 con-
nectors and connectors in virions confirm such a structural

transition after DNA packaging [95]. In the Phi29 crystal
structure, the connector subunit displays a left-handed 30°
tilt (Figure 4). However, when treated as a rigid body, the
crystal structure clearly does not fit into the cryo-EM
density maps, indicated by a correlation coefficient as low
as 0.55. After manual adjustments, the correlation coeffi-
cient was improved to 0.70, resulting in a 10° twist of the
connector towards the connector axis [95]. On the other
hand, the N-terminal external region is difficult to adjust
to fit as a rigid body into other parts of the connector
density. It was found that the N-terminal external region
underwent significant conformational shift in the DNA-
filled capsid [95]. It was concluded that angular twisting
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and restructuring of the connector core subunit are pro-
moted by the interactions among Phi29 DNA and its
structural proteins [95]. Due to the dsDNA alignment
with the channel wall [9,10,50,53,54] and the relatively
static C-terminal internal region, a significant conform-
ational shift in the N-terminal external region then results
in a clockwise twist of the dsDNA when viewed from the
C-terminus (Figure 6).

Recently, it has been reported that a small angular
twist of 1.5 degree per nucleotide was observed during
dsDNA packaging in Phi29 [97]. Observation of such a
small angular deviation per nucleotide can be explained
by these conformational changes of the connector
(Figure 6). As evidenced above [95], if the N-terminal ex-
ternal region is shifted more significantly than the internal
C-terminal region, a leftward twist of the DNA will occur
during revolution along the connector channel (Figure 6B).
This is in agreement with the observed clockwise twist of
1.5 degree per nucleotide relative to the C-terminus of the
connector [97]. The reported twist of 1.5 degree per nu-
cleotide or 15.75° per helical pitch of 10.5 bp [97] during
dsDNA packaging cannot be taken as rotation mechanism
in which 360° per pitch or ~34° per base pair are required.
Furthermore, the reported increase in the frequency
of DNA twisting per nucleotide with increase in capsid
filling, is in agreement with the observation that the
conformational change of the channel accelerates to-
wards the end of the packaging process [96] (Figure 6A).
This is logical since the dsDNA is aligned with the wall
of the connector channel, and when DNA packaging
is close to completion, a final conformation will be
adopted and a more obvious twisting will be observed
to prepare the channel for DNA ejection toward host
infection.
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Single-molecule real-time imaging and force spectroscopy
revealed that no rotation occurs during DNA
translocation

In order to validate the model of revolution without the
need for rotation, several single-molecule imaging experi-
ments were carried out (Figures 7 and 8). A micrometer-
sized fluorescence bead was attached to the distal end of
the Phi29 genomic dsDNA. DNA translocation was dir-
ectly observed in real-time by single-molecule imaging
microscopy to detect fluorescence images revealing the
displacement of the bead [49,51]. No rotation was found
in these traces (Figure 7). To exclude the possibility that
the lack of rotation is a result of bond freedom between
the beads and DNA or due to the difficulty in optical dis-
crimination due to the spherical nature of the beads, a
cluster of magnetic beads was attached to the end of the
Phi29 DNA to generate a label with an asymmetric shape
(Figure 7B) [49]. Experiments using different setups for
DNA packaging in a vertical (Figure 7A) and horizontal
orientation (Figure 7B) [49] have been repeated many
times and no rotation of DNA was observed. Polarization
studies have been used to study biomotors such as T4
helicase [72]. The polarization analysis of Phi29 DNA
packaging motor did not find a rotation phenomenon ei-
ther (Figure 8).

The mechanism where no DNA rotation is required
during packaging is further supported by the observation
that in bacteriophage T4, both DNA ends are tethered
to the portal throughout DNA packaging once the pack-
aged DNA persistence length of about 500 bp is reached,
suggesting that no rotation is needed and DNA does not
get tangled up [87,98]. All these observations support a
revolution mechanism for phage DNA packaging without
the need for rotation.
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Figure 8 Single molecule polarization detection to investigate motor rotation. (A) Experiment design of single molecule polarization
detection on motor pRNA rotation during DNA packaging. The motor was stalled by y-S-ATP and the rotation of pRNA ring can be excluded
since no anti-correlated signals of a single Cy3 fluorophore in horizontal (H) or vertical (V) channels were observed. (B and C) Typical time
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Conclusion

The revolution mechanism is a common feature shared
by many DNA translocation motors. Inspections of struc-
tural data from eukaryotic and prokaryotic dsDNA trans-
locases suggest that revolution and rotation motors can be
distinguished by measuring the size and chirality of the
DNA translocation channel. The channel of revolution
motors are larger than 3 nm, while the channels of rota-
tion motors are smaller than 2 nm in diameter. Revolution
motors use a left-handed channel to drive the right-
handed dsDNA in an anti-chiral arrangement, while
some rotation motors use parallel threads with a right-
handed channel. Revolution motors hold both strands
of the dsDNA within the channel, while some rotation
motor hold only one strand of the DNA inside the chan-
nel [5,64,67,69-71]. Such revolution motors are void of
dsDNA coiling [9,50,54,55]. A small-angle left-handed
twist of dsDNA, which is aligned with the channel, takes
place due to the conformational shifts of the motor
channel from a left-handed configuration for DNA entry
to a right-handed configuration for DNA ejection for
host cell infection, however, no dsDNA rotation is re-
quired for DNA packaging.

Materials and methods

Incorporation of the connector channel into a planar
bilayer lipid membrane

The method of inserting the connector with reconsti-
tuted liposomes into a lipid bilayer has been reported
previously [99]. Briefly, a Teflon film partition (aperture
200 pum in diameter) was used to separate a bilayer lipid
membrane chamber (BLM) into cis- and trans- compart-
ments. The aperture was painted two times with 0.5 uL
of 3% (w/v) DPhPC n-decane solution, and the two com-
partments were filled with conducting buffer (1 M NaCl
or 1 M KCl, 5 mM HEPES, pH 7.4). After formation of
the lipid bilayer on the aperture, the lipid/connector
complexes were added to the chamber and allowed to
fuse with the planar lipid bilayer.

Construction of tetra-stranded DNA

Five strands were custom ordered from IDT, with the
following sequences: Strand-1: 5'-CGC AGA CAT CCT
GCC GTA GCC TGA GGC ACA CG-3’; Strand-2: 5'-
CGT GTG CCT CAC CGA CCA ATG C-3’; Strand-3:
5'-GCA TTG GTC GGA CTG AAC AGG ACT ACG
CTG GC-3’; Strand-4: 5'-GCC AGC GTA GTG GAT
GTC TGC G-3'; Strand-5: 5'-TC AGT GGC TAC GGC
ACC GT-3'. The five strands were annealed in stoichio-
metric ratio in TMS (Tris-magnesium saline) buffer
(50 mM Tris—HCI, pH8.0, 100 mM NaCl and 10 mM
MgCl,) and purified in 12% (w/v) native PAGE, following
reported procedures [100].
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Single channel conduction assays for each membrane
inserted connector channels

A pair of Ag/AgCl electrodes was connected directly into
the cis- and trans- compartments to measure the current
traces across the lipid bilayer membrane. The current
trace was recorded using an Axopatch 200B patch clamp
amplifier coupled with the Axon DigiData 1322A analog-
digital converter (Axon Instruments) or the BLM worksta-
tion (Warner Instruments). All voltages reported were
those of the trans- compartment. Data was low band-pass
filtered at a frequency of 1 kHz, and acquired at a sam-
pling frequency of 10-100 kHz. The Patch clamp 9.1
software (Axon Instruments) was used to collect the data,
and the software Origin Pro 8.0 was used to analyze all
the data.

Direct observation of DNA translocation

The stalled packaging intermediates containing biotinyl-
ated DNA were prepared by using non-hydrolyzable y-
S-ATP [101]. The intermediates were then immobilized
to perfusion chambers built from glass slides and cover-
slips (Figure 7). The 0.53 mm fluorescent streptavidin
microspheres (Bangs Laboratories Inc.) were bound to
the protruding, biotinylated DNA end of the intermedi-
ates. After restarting the packaging reaction by adding
gpl6 and ATP [101], an individual DNA-packaging
event was observed. Epi-illumination was used. Sequen-
tial images with 8-bit digital resolution were recorded at
1 frame per second for 600 s. The pixel resolution of the
images was 0.26 mm/pixel.
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