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In the inner and outer hair cells (OHCs) of the inner ear, an unconventional myosin 15a localizes 
at the tips of mechanosensory stereocilia and plays an important role in forming and maintaining 
their normal structure. A missense mutation makes the motor domain of myosin 15a 
dysfunctional and is responsible for the congenital deafness DFNB3 in humans and deafness and 
vestibular defects in Shaker-2 (Sh2) mouse model.   All hair cells of homozygous Shaker-2 mice 
(Myo15sh2/sh2) have abnormally short stereocilia, but, only stereocilia of Myo15sh2/sh2 OHCs start 
to degenerate after the first few days of postnatal development and lose filamentous tip links 
between stereocilia that are crucial for mechanotransduction. The exact mechanisms of this 
degeneration are unknown even though they may underlie DFNB3 deafness in humans. We 
hypothesize that structural abnormalities in Myo15sh2/sh2 OHCs may alter the mechanical forces 
applied to the mechano-electrical transduction (MET) channels resulting in abnormal ionic 
homeostasis, which may lead to eventual degeneration of Myo15sh2/sh2 OHCs. Therefore, we 
investigated the ionic conductances and integrity of mechanotransduction apparatus in 
Myo15sh2/sh2 OHCs. Surprisingly, we found that myosin 15a-deficiency is associated not only 
with structural abnormalities of OHC stereocilia but also with alterations of voltage-gated ion 
conductances. 
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Chapter 1 Work Overview 

 

In the inner ear, hair cells are organized in one row of inner and three rows of outer hair cells 

(OHCs). Myo15 encodes unconventional myosin 15a, a motor protein that localizes at the tips of 

mechanosensory stereocilia in the hair cells and plays an important role in forming and 

maintaining their normal structure. The molecular identity of channels responsible for mechano-

electrical transduction (MET) in the mammalian hair cells is yet unknown, but number of 

evidence indicate that these channels are co-localized with myosin 15a at the tips of stereocilia. A 

missense mutation makes the motor domain of myosin 15a dysfunctional and is responsible for 

the congenital deafness, DFNB3 in humans and deafness and vestibular defects in the mouse 

model, Shaker-2 (Sh2) mice.   Both inner and outer hair cells of homozygous Shaker-2 mice 

(Myo15sh2/sh2) have abnormally short stereocilia, but after the first few days of postnatal 

development, only Myo15sh2/sh2 OHCs start to degenerate and lose interconnecting filamentous 

links that are crucial for mechanotransduction. The exact mechanisms of this degeneration are 

unknown even though they may underlie DFNB3 deafness in humans. Transfection of these cells 

with wild type Myo15a rescues abnormal hair bundle morphology. We hypothesize that structural 

abnormalities in Myo15sh2/sh2 hair cells may result in altering mechanical forces applied to the 

MET channels. Abnormal ionic homeostasis may lead to eventual degeneration of Myo15sh2/sh2 

hair cells. Therefore, we investigated the ionic conductance and the integrity of 

mechanotransduction in young postnatal Myo15sh2/sh2 OHCs. Examination of the scanning 

electron microscopy (SEM) images of Myo15sh2/sh22 OHCs revealed dramatic degeneration of 

stereocilia links after postnatal day 3 (P3). Despite this degeneration, we observed fast 

intracellular accumulation of FM1-43FX, a small cationic dye that is known to permeate through 

the MET channels, indicating that the MET channels are still open at rest in Myo15sh2/sh2 OHCs. 

A standing current that continuously flows into the cell through MET channels may result in a 

continuous influx of calcium leading to cell degeneration. Indeed, whole cell patch-clamp 

recordings revealed significant MET channel-dependent component of the ionic current in 

Myo15sh2/sh2 OHCs that was blocked by either dihydrostreptomycin (DHS) or Amiloride, known 

blockers of the MET channels. Surprisingly, patch-clamp experiments also revealed an increased 

voltage-gated outward conductance and a more negative intracellular potential in Myo15sh2/sh2 

OHCs as compared to control normal-functioning OHCs of Myo15+/sh2 littermates. This 

conductance was further increased upon blocking of the MET channels. We speculated that 
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Myo15sh2/sh2 OHCs with abnormally short stereocilia have to compensate for a decreased Ca2+ 

extrusion via stereociliar PMCA pumps. This compensation may include: 1) expression of 

additional voltage-gated K+ channels to maintain intracellular potential; and 2) development of 

Ca2+-dependent modulation of K+-conductance. To the best of our knowledge, it is the first time 

that myosin 15a-deficiency has been associated with alterations of voltage-gated ion conductance. 
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Chapter 2 Introduction  

 

Deafness is a common disability in people of all ages. It is estimated that around 17% of 

American adults report some degree of hearing loss and about two to three out of every 

1,000 children are born deaf or hard-of-hearing. Also, nine out of every ten children who 

are born deaf are born to hearing parents (1). Unfortunately, in vast majority of the cases, 

the hearing loss cannot be restored and can only be partially alleviated by cochlear 

implants and hearing aids.  

 

Hearing loss can be classified into different nomenclature depending on the cause 

(genetic, acquired due to loud noise, etc.) or region (middle ear, sensorial damage, 

neuronal damage). One classification is that deafness can be syndromic (i.e. occurs as a 

clinical symptom for certain genetic diseases) or non-syndromic where it is not associated 

with any syndrome but is the result of either a dominant, recessive, X-linked or 

mitochondrial mutations that cause changes in middle or inner ear or the auditory nerve.  

For example, one of many autosomal recessive non-syndromic congenital types of 

deafness, DFNB3, is investigated in this thesis and is caused by a recessive mutation. It 

was first identified in families from Bengkala, Bali in Indonesia (2). DFNB3 is associated 

with mutation in Myo15 gene that encodes an unconventional Myosin15 (2).  

 

In the cochlea, mechanosensory cells in the Organ of Corti form one row of inner hair 

cells (IHCs) and three rows of outer hair cells (OHCs). The apex of the hair cells contains 

specialized mechanosensory microvilli-like protrusions known as stereocilia. In wild type 

mammalian hair cells, the stereocilia are arranged into three rows forming characteristic 

staircase architecture of the hair bundle that may have an important role in its 

mechanosensitivity. Deflection of stereocilia stretches the tip link filaments that connect 

the tips of the shorter stereocilia to the adjacent taller stereocilia and are thought to 

mechanically gate mechanotransduction (MET) channel (Figure ‎3.4-1: MET channel is 

gated directly or indirectly by a tensioned tip link and is co-localized at the tips of stereocilia 

with Myosin15a.). Flow of current into the hair cell through the channel depolarizes the 
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cells, which results in synaptic transmission to the auditor nerve that convey sound 

information to the auditory centers in the brain.  

 

Stereocilia are supported by a core of parallel F-actin filaments that interact with 

numerous actin-binding proteins like; myosin Ic, myosin VIIa, myosin IIIa, and the 

unconventional myosin-15a (encoded by Myo15a). Myosin 15a is present at tips of 

stereocilia in wild type OHCs and IHCs (3) and is important for maintaining the normal 

structure of stereocilia. Myosin 15a interacts with a scaffold protein, whirlin, and carries 

it to the tips of stereocilia, in addition to actin-bundling protein Eps8. DFNB3 is caused 

by a missense mutation that renders Myosin15a protein dysfunctional and so it is missing 

from the stereocilia of mutant cells. (3) 

 

Shaker-2 (Myo15sh2/sh2) is a mouse model for DFNB3 (2) (4) . The phenotype of 

Myo15sh2/sh2 hair cells is well defined. Young postnatal Myo15sh2/sh2 mice have hair cells 

with abnormally short stereocilia that still have their tip links and so are mechano-

sensitive (5). OHCs, but not IHCs, maintain stair-case morphology of the hair bundle. 

These mice have vestibular defects displayed as head tossing, running in a circular 

manner, and are profoundly deaf, as indicated by the lack of auditory brain stem 

responses (4; 5). Older Myo15sh2/sh2 mice lose their tip links and their OHC, but not IHC, 

stereocilia degenerates (5). The Shaker-2 missense mutation also affects the actin 

cytoskeleton of the cell. Scanning laser confocal microscopy observations show that the 

actin filaments grow and continue to extend to the base of the cell and beyond the basal 

membrane up to 50 µm (6).   

 

In young Myo15sh2/sh2, the MET channel is still present and it is functional. With age, as 

the stereocilia degenerate, it is not clear what happens to the channel. The MET channel 

is a voltage-independent (7; 8), non-selective cation channel that is highly permeable to 

Ca2+. (9; 10; 8; 11; 12). The exact molecular identity of the MET channel is not known. 

Pharmacological testing of the pore size was done to characterize the MET channel’s 
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molecular identity but it didn’t result in any definitive result. The MET channel is 

thought to be co-localized with Myosin 15a at the tips of stereocilia (13).  

 

In OHCs of Myo15sh2/sh2, the degenerating stereocilia withstand structural abnormalities 

due to the dysfunctional Myosin15a. We hypothesize that it may cause redistribution of 

mechanical forces to the MET channels and keep them open, resulting in a standing 

current that continuously flows into the hair cell. The continuous influx of Ca2+ may 

result in disassembly and degeneration of stereocilia and other cytoskeletal elements of 

the hair cell. 

 

The original goal of this study was to investigate the existence of a potential “standing 

current” in Myo15sh2/sh2 OHCs with different methods. First, investigation of fast uptake 

of FM1-43FX dye into the Myo15sh2/sh2 OHCs was planned to reveal the MET channels 

that are partially open at rest. Next, whole cell patch-clamp recording were planned to 

determine the resting ionic conductance in Myo15sh2/sh2 and Myo15+/sh2 OHCs that are 

sensitive to either Dihydrostreptomycin (DHS) or Amiloride (Amil), the known blockers 

of MET channels. Finally, we also planned to count stereocilia links in degenerating 

Myo15sh2/sh2 OHCs using scanning electron microscopy (SEM) images. 

 

The following chapters will provide background to relevant concepts and motivation to 

the work on this thesis. Chapter one contains an extended abstract that overviews the 

work done in the thesis. Chapter two provides a brief introduction. In chapter three, the 

prevalence of deafness in the USA, inner ear’s anatomy, physiology, hair cell biology and 

genetics of deafness will be briefly reviewed. Chapter four will describe the methods and 

techniques used to get the results by providing a thorough summary about stereocilia link 

count, FM1-43FX loading and whole cell patch-clamp. Chapter five will discuss the 

results obtained by the described methods. Summary of the thesis is in chapter six and 

chapter seven will contain conclusion and hypothesized model to explain the obtained 

results. 
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Chapter 3 Background 

3.1 Deafness prevalence and management in the USA 

 

Hearing is one of the five basic senses that have evolved over time and has very 

important role in communication and alertness to surrounding environment which, in 

turn, are important for survival. Not all species can hear at the same range of 

frequency. In fact, the amplitude and frequency audible for species who mainly 

communicate using sounds depends on the range of pitches used by the species’ 

individuals. In humans, for example, the audible frequencies range between 20 Hz 

and 20 kHz.  

 

The National Institute on Deafness and other Communication Disorders (NIDCD) 

estimated that 2-3 per 1000 children are born with some type of deafness and of those 

children, nine out of ten are born to hearing parents (14). The consequences of being 

profoundly deaf affect not only the child’s social and academic life but also the 

parents and the family who will find it difficult to speak, teach and communicate with 

the child which can further alienate the deaf child. Therefore, it is essential that 

deafness is diagnosed early so that it can be addressed by parents to help the affected 

child.  

 

Deafness is often caused either by damaged hair cells which detect or amplify sound 

waves or damaged auditory nerve that relays electrical signals from the hair cells to 

the brain. There are only few available methods that may, to certain extent, alleviate 

the deafness. One of which is the technology of Hearing aids which has advanced 

greatly and many types are manufactured and can be adjusted depending on the user’s 

needs. On the other hand, in the case of profound deafness, the hair cells are 

completely damaged and cochlear implants are used to bypass the hair cells and 

stimulate the auditory nerve directly. Recent experiments, however, attempt to 

regenerate damaged hair cells and the auditory nerve, which normally are terminally 

differentiated and do not regenerate. Using Human embryonic stem cells (hESCs), 
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hair-cell-like cells and auditory neurons were obtained in vitro and when transplanted 

into a model of auditory neuropathy, the auditory threshold of the model improved 

significantly (15). However, these experimental approaches are yet very far from 

clinical practice. 

 

3.2 Anatomy and Cell Biology of the Mammalian Inner Ear 

 

 

 
Figure  3.2-1: Gross anatomy of the outer, middle and inner ear. 

Image credit: Wikimedia Commons (16) 

 

The ear is an organ with two functions; detecting sound waves of specific frequency 

range and also detection of head position and movement. For the purpose of this thesis, 

only the hearing function will be explained.  

 

In order to hear a sound wave that is in the audible frequency range, it must be conducted 

and sensed by those sensory cells, amplified and transmitted to the auditory region in the 

brain. 
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Figure  3.2-1 shows the gross anatomy of the auditory system which, in general, has three 

components; the outer, middle and inner ear. A brief anatomical and physiological 

description about each part will be presented next, focusing mainly on the inner ear. 

 

Outer ear: It includes the pinna, ear canal and the ear drum. The pinna functions as a 

filter by providing a directional guide for sound localization as well as a funnel that 

collects surrounding sound waves and directs them into the ear canal where eventually 

they vibrate the eardrum. This part of the ear amplifies sound waves that are between 1.5 

kHz and 7 kHz by 10-15dB (17). 

 

Middle ear: Consists of the ossicles, which are the smallest bones in the body; malleus, 

incus and stapes. Sound waves are transmitted from the ear drum through the ossicles to 

the oval window which separates the inner ear from the middle ear.  The middle ear 

functions as a mediator that overcomes the acoustic impedance1 that results if sound-

waves crossed directly from the air-filled outer ear into fluid-filled inner ear. 

 

Inner ear: Inner ear has developed from the otic placode. It is located in the temporal 

bone and is identified by the bony labyrinth that consists of two systems: the cochlea, 

which is the sound receptor system and the main focus of this thesis, and the vestibule 

and semi-circular canals that make the balance system.  

 

  

                                                 
1 Acoustic impedance: Pressure generated by sound waves at a given frequency in a particular medium. 
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3.2.1 The Cochlea 

 

The cochlea is located in the bony labyrinth of the inner ear. From the outside, the 

cochlea is a bony, snail-shaped shell that coils in 2.5 turns from the base to apex. On the 

inside, however, it is divided via the cochlear duct and the basilar membrane forming 

three partitions or scaleae; scala vesitbuli, scala media and scala tympani that are filled 

with either perilymph or endolymph fluid (Figure  3.2-2: Cross section in the cochlea 

showing the three portions of the cochlea, scaleae and the spiral ganglion of the auditory 

nerve.). Each of these partitions and fluids has an important function in facilitating the 

sense of hearing either in a mechanical or chemical manner. The organ of Corti (to be 

explained in more details in the following section) is located between the scala media and 

scala tympani.  

 

 
Figure  3.2-2: Cross section in the cochlea showing the three portions of the cochlea, 

scaleae and the spiral ganglion of the auditory nerve. 

Image credit: Wikimedia Commons (18) 

 

There are two types of cochlear fluids:  

 
 Perilymph: fills both scala vestibule and scala tympani and bathes the body of 

hair cells. Perilymph has an ionic composition similar to extracellular fluid; ~ 

Scala media 
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140mM Na+, ~ 5mM K+ and 1.2mM Ca2+ (19). 

 

 Endolymph: fills scala media and immerses the apical part of the hair cell and its 

stereocilia. It has a distinctive ionic composition that is not found anywhere else 

in the body; ~150mM K+, ~1mM Na+ and very low Ca2+ (~ 20uM), and a positive 

potential (+80mV) (19). 

 

The distinctive composition of the cochlear fluid saves the cochlea from spending energy 

in regulating the flow of K+ into and out of the hair cell. The high concentration of K+ in 

the endolymph results in flow of K+ ions into the hair cell when its non-selective 

mechanotransduction channels are open. K+ ions also flow out of the cell body into 

perilymph because of the difference in its concentration between the cell body and the 

perilymph. 
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3.2.2 The Organ of Corti 

 

 

 
Figure ‎3.2-3: The Organ of Corti. 

A) SEM image showing the top view of the Organ of Corti.  
B) Cartoon showing the hair cells, tectorial membrane and basilar membrane. 

 

 

 

OHC 

IHC 

A 

B 
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Figure ‎3.2-3 illustrates the top view of a scanning electron microscopy image (A) and a 

cross section view of the Organ of Corti (B). It comprises a row of inner hair cells (IHCs) 

and three rows of outer hair cells (OHCs) (Figure ‎3.2-3: The Organ of Corti., A). Both 

these types of hair cells are mechanosensory but they differ in structure and function. 

Stimulation of inner hair cells results in transducing mechanical energy of sound waves 

into electrical signals that are transmitted to the brain via vestibulocochlear nerve. In 

Figure ‎3.2-3: The Organ of Corti., B at the basal region of the hair cells, there are 

different types of supporting cells and basilar membrane. Right above the apical region of 

the hair cells, the tectorial membrane is located. Each of those parts of the Organ of Corti 

will be briefly described below. 

 

Basilar membrane is located basally relative to the supporting cells. It has several 

properties, like width, thickness, stiffness and damping factor, that vary along the length 

of the organ of Corti. For example, the basal membrane increases in thickness, but 

decreases in stiffness from base to apex. This gives the organ of Corti tonotopic 

characteristics, i.e. certain regions in it can be stimulated by a tone of specific frequency, 

and so it has been found that high frequencies cause movement of the basal membrane at 

the base of organ of Corti while lower frequencies cause movement at the apex. 

 

IHCs and OHCs differ in function. IHCs are the sound-detecting cells. In rodents, hearing 

ensues when IHC, which function as the cellular receptors of sound, mature around 

Postnatal day 10-14 (P10-P14) (20).  They form a single row of cells and are innervated 

by afferent neurons of the spiral ganglion from their basal region. Both, IHCs and OHCs 

have on their apical region, two important structures: a microvilli-like projections known 

as stereocilia which function as mechanical transducers and a cuticular plate made of a 

dense network of actin where the stereocilia are inserted. 

 

OHCs form three rows of cells and are known for their electromotility function that 

enhances the cochlea’s sensitivity and frequency selectivity and so they are considered as 

“cochlear amplifiers”. A specific protein, Prestin, is found in OHCs but not IHCs and 

surrounds the cell body laterally and is thought to cause the contraction and 
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electromotility of OHC in a voltage-dependent manner (21). OHCs reach functional 

maturity around P8 (20).   

 

Both types of hair cells do not regenerate once damaged, either due to chemicals such as 

certain antibiotics, trauma from loud noise or just old age. The cell bodies of both types 

are surrounded by perilymph while their stereocilia is bathed in endolymph. The hair 

cells are surrounded by many types of supporting cells: Pillar, Deiters’, Caludius and 

Hensen’s cells to name a few. Supporting cells have an important role in structural 

support of the hair cells. Table ‎3.2-1: Summary of compares the differences between 

OHCs and IHCs. 

 

Table  3.2-1: Summary of differences between OHCs and IHCs. 

 IHC OHC 

Shape 

 

 

Enervation Afferent Efferent 

Cell rows One Three 

Function 

Transduces the intensity 

and frequency of sound 

waves into electrical signal. 

Amplification of sound 

wave stimuli. 

Transduction Yes Yes 

Electro-motility No Yes 

Length 
Does not vary along the 

cochlea. 

Varies along the cochlea 

(cells increase in length and 

decrease in thickness from 

base to apex). 

Regeneration if damaged No No 
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In wild type hair cells, stereocilia form a specific staircase architecture. This architecture 

may be essential for detection of mechanical deflections to the nanometer scale (13) and 

transduction of the mechanical energy of sound waves into electrical signals via the 

mechano-electrical transduction (MET) channels that are located at the tips of stereocilia. 

The structure of stereocilia and mechanism of transduction and their role in amplification 

and hearing will be described with more details in a later section.  

 

Located right above the stereocilia is the tectorial membrane. It is a gel-like membrane 

composed of a mix of collagen, glycoproteins and proteoglycans, but most of its weight is 

water. It functions as a means of stimulation for the hair cells by deflecting their 

stereocilia during sound-induced vibration.  

 

3.3 Myosin proteins 

There are at least 18 known classes of Myosins in their super-family (22). Each class has 

specific function in the cell ranging from cytokinesis to trafficking and signal 

transduction. In general, they have a general structure with highly preserved functional 

domains:  

 Motor (head): mostly conserved in all classes, binds to actin and ATP. (23) 

 Neck: contains IQ motif that binds calmodulin. (23) 

 Tail: at the C-terminal, anchors the motor domain, varies between classes. 

Contains motifs that bind to other proteins, like SH3 andMyTh4-FERM (23). 

 

Myosin can be classified into two large groups; conventional and unconventional. 

Conventional myosin, best example is Myosin 2, is found in muscle cells (skeletal, 

cardiac and smooth) and are involved in contraction. Unconventional myosin (Myosin 6, 

7, 15) have variable structures and functions in the cell, for example they are involved in 

vesicles transport in the cell (24) and, in the inner ear hair cells, Myosin 15a interacts 

with the actin core of stereocilia through its motor domain and also through actin-binding 

proteins like Eps8. Myosin 15a is thought to have an important function in developing 
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graded length of stereocilia rows in the hair cell bundle and in maintaining stereocilia 

length by interacting with scaffolding proteins like Whirlin. 

3.3.1 Myosin 15a 

Myosin 15a is an unconventional motor protein found at the tips of stereocilia in both 

inner and outer hair cells of the inner ear and also in some neuroendocrine and endocrine 

tumor cells. Myosin 15a is encoded by chromosome 17 in human. Its analog in mouse is 

on chromosome 11 and has 66 exons (4). It is predicted that there are at least 30 

Myosin15a proteins are transcribed from alternatively spliced mRNA. In general, there 

are two sub-classes of Myosin15a transcripts; class1 and class 2 which differ in size 

(10,5kb and 6.9kb, respectively). Class 1 is transcribed starting with exon 2 through exon 

66 and skipping exon1, while class2 is transcribed starting with exon 1 through 66 and 

skipping exon 2(3).  Figure  3.3-1:  shows the structure of Myosin15a. It has a motor 

domain, IQ motif, two MyTh4, two FERM and two SH3 motifs and a PBD motif at its C-

terminal. It can also have a long N-terminal. Mutation in the motor of Myosin 15a causes 

the congenital DFNB3 type of deafness in humans and same mutation causes deafness 

and vestibular defects in Myo15sh2/sh2 mice (25) which will be discussed in a later 

section. 

 

It has been shown that Myosin 15a has an important role in maintaining the staircase 

structure of stereocilia of both the inner and outer hair cells (25). It has the highly 

conserved motor domain that binds to actin and other functional domains that bind to 

cargo protein, whirlin, and transports it to the tips of stereocilia using energy produced 

from ATP hydrolysis (Figure  3.3-2: Myosin15a is located at the tips of hair cell 

 
Figure  3.3-1:  Structure of Myosin15a. It has a motor domain, IQ motif, two MyTh4, 

two FERM an SH3 motif and a PBD motif at its C-terminal. 
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stereocilia and interacts with actin, whirlin, and the actin-binding protein Eps8.). 

 

 

Figure ‎3.3-2: Myosin15a is located at the tips of hair cell stereocilia and interacts with 

actin, whirlin, and the actin-binding protein Eps8. Myosin 15a maintains the normal 

staircase structure of stereocilia bundle. 

 

3.3.2 Myosin 15a interaction with Whirlin and other proteins 

 

Whirlin is a cargo and scaffolding protein known to interact with Myosin15a and other 

transmembrane proteins and is also found at the tips of stereocilia in wild type mice. It 

consists of class 2 PDZ ligand, three PDZ domains and a proline-rich domain. Whrnwi/wi 

mice lack whirlin protein, are deaf and have short stereocilia. (26) 
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Figure  3.3-3: The interaction between domains of Myosin15a, Whirlin and Eps8. 

 
Whirlin is transported to the tips of stereocilia by Myosin 15a, as shown in Figure  3.3-3: 

The interaction between domains of Myosin15a, Whirlin and Eps8. Belyantseva et al 

show that Whrnwi/wi mice have Myosin 15a at their tips but not whirlin, while Myo15sh/sh 

lack either proteins at their tips and whirler is found in the cell body. PDZ class 1 domain 

of Whirlin is thought to interact with PDZ class 1 ligand of Myosin 15a. It has been 

shown that Myosin 15a with a deleted PDZ ligand is found at the tips of the stereocilia 

but whirlin protein remains in the cell body. (26)  

 

Manor et al, (27) showed that Myosin 15a interacts with the actin-binding proteins, Eps8. 

In order to investigate how they interact, Manor et al., created an Eps8 that lacks SH3, the 

actin binding and capping domains. They found that the lack of SH3 disrupted Eps8 

interaction with many proteins and resulted in short stereocilia. Using 
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immunofluorescence labeling, Manor et al, showed that in Myo15sh2/sh2 mice, Eps8 was 

absent from the tips of stereocilia and was reduced in Whrnwi/wi mice. They concluded 

that Myosin15a interacts with Eps8 through at least one motif, MyTh-4-FERM, with the 

C-terminal of and is required for its transportation to the tips of stereocilia, while Whirler 

stabilizes Myosin15a:Eps8 complex. 

 

3.4 Mechanotransduction 

 
MET channels in both OHCs and IHCs transduce the mechanical energy of the sound-

induced waves into an electrical signal. The MET channel is gated mechanically by 

tensioned tip links. When the stereocilia are deflected towards the tallest raw, the 

channels open and the cell depolarizes, while deflecting them in the opposite direction 

closes the channel and the cell hyperpolarizes. The loss of tip link disrupts 

mechanotransduction, while their restoration reinstates the activity of the MET channel 

(28). 

  

The exact molecular structure of the MET channel in the inner ear is unknown, yet many 

of its characteristics have been measured. It has been shown that it has rapid activation 

kinetics (in microseconds). It also shows adaptation upon activation. Its conductance 

varies tonotopically along the cochlea from 100 to 300pS (8; 29; 30). The MET channel 

is a voltage-independent (10), non-specific cation channel with higher permeability for 

Ca2+ (12). Using pharmacological blockers of MET channel can help in comparing its 

characteristics with those of known channels. Open MET channel can be blocked using 

drugs like aminoglycosides, amiloride and their derivatives. MET channels co-localize at 

the tips of stereocilia with Myosin15a (Figure  3.4-1: ), but Myosin 15a is not required for 

meachnotransduction. Stepanyan et al., (5) showed that IHC and OHC of young Myo15 
sh2/sh2 mice have intact meachnotransduction current even though they are missing 

Myosin15a. 
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Figure  3.4-1: MET channel is gated directly or indirectly by a tensioned tip link and is 
co-localized at the tips of stereocilia with Myosin15a. 

 
Image used with permission of Zubair M et al., Physiological genomics (2013) (31). 
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3.5 Mechanoelectrotransduction channel blockers 

3.5.1 Amiloride  

 

Amiloride was first used in treating hypertension and managing congestive heart failure. 

It is a Potassium-sparing diuretic that spare the potassium from being excreted in the 

urine. Its molecular structure is consisted of a guanidinium group containing pyrazine 

derivative. Its mechanism of action is based on blocking the voltage-independent 

epithelial sodium channel (ENaC) with high affinity (Kd<1μM) (32). 

 

Anti-bodies against Amiloride-sensitive ENaC showed immune-staining at the tips of 

stereocilia where the MET channel is thought to be found. In addition, Amiloride was 

used to reversely-block the transducer channels in chick hair cells. These two 

observations serve to suggest that amiloride might also block MET channel (33).  The 

work of Kros et al, (33) looked into the structure-activity relationship in the MET channel 

and its gating mechanism. They showed that amiloride and its derivatives could block the 

MET channels in a neonatal mouse cochlea but this blockage does not involve specific 

binding. The drug enters from the extracellular solution into the pore of the channel and 

blocks it in a voltage-dependent (bottle-cork) manner. 

 

3.5.2 Dihydrostreptomycin 

 

The antibiotic Dihydrostreptomycin (DHS) belongs to the Aminoglycosides group that 

includes streptomycin, gentamycin, kanamycin and others. Historically, the group was 

first used to cure tuberculosis in the late 1940 (34). It was later discovered that patients 

who took these antibiotics presented chronic nephrotoxic and ototoxic symptoms. The 

exact part of the molecular structure that causes ototoxicity is unknown (34). The drug 

causes death of OHC on the basal part of the Organ of Corti then progresses to the apical 

part. It is also noticed that OHCs are more susceptible to the drug than IHCs. Kroese et al 

(1989) (35) used DHS to reversibly block the transduction channel in the bullfrog 

http://en.wikipedia.org/wiki/Guanidine
http://en.wikipedia.org/wiki/Pyrazine
http://en.wikipedia.org/wiki/Derivative_%28chemistry%29
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sacculus. They showed that the half-blocking concentration of aminoglycosides is in the 

range of 2-95uM. 

 

The mechanism of blocking for both compounds is “bottle cork”; they block the MET 

channel from the extracellular region (Figure  3.5-1:  MET channel blocked by blockers in 

a “bottle cork” mechanism.-1). 

 

 
Figure  3.5-1:  MET channel blocked by blockers in a “bottle cork” mechanism. 

  

Extracellular 

region 

MET channel 
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3.6 Genetics of deafness 

 

It is estimated that about 1% of human genes are necessary for hearing (36). In many 

cases, children with normal hearing that are born to deaf parents suggest that there are 

different genes whose mutation could cause deafness.  This indicates how diverse the 

proteins involved in this sense. Deafness can be either syndromic (is one of the symptoms 

of a disease) or non syndromic (not associated with any disease).  

Most documented mutations that cause nonsyndromic hearing loss is caused by mutations 

in a single gene (36).  Those can be autosomal dominant, autosomal recessive, or sex-

linked. For the purpose of this thesis, an autosomal recessive mutation will be the main 

point of discussion. 

 

3.6.1 Non-syndromic congenital sensorineural deafness  

 

The conventional nomenclature for autosomal dominant mutation that results in 

nosyndromic deafness is DFNA, while DFNB refers to the autosomal recessive mutation 

and accounts for 85% of prelingual deafness (37). The number following a type of non- 

syndromic deafness indicates which locus is affected. For example, DFNB3 is the main 

focus of this work, refers to the locus DFNB3 on chromosome 17 that encodes for 

unconventional Myosin15a (4).  
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3.6.2 DFNB3 deafness 

 

A gene first identified in a village in Bengkala, Bali (2) where 2 % of the villagers have 

congenital, nonsyndromic neurosensory profound deafness. Later on, it was also found in 

other communities like India (36) (4), Pakistan (36) where consanguineous marriages are 

common. Thomas Friedman et al, (2) hypothesized that deafness is caused by an 

autosomal recessive mutation in this particular gene and it is a result of a founder effect. 

Because of the high incidence level in Bengkala, seven affected generations, the villagers 

have adapted a unique and complex sign language known as Kata Kolok (translation: 

deaf talk) (38) that is known by both the hearing and the deaf and is different from the 

Indonesian sign language.  

 

DNA analysis of deaf individuals shows that they have an autosomal recessive mutation 

at the DFNB3 locus. The technique used to locate this locus on human chromosome was 

an integration of association mapping strategy, analysis of historical recombinants and a 

derivation of Genome-wide homozygosity mapping known as allele-frequency-dependent 

homozygosity mapping (AHM) (2). The result was that DFNB3 was mapped on 

chromosome 17 and was later refined to 17p11.2 and suggested that DFNB3 has multiple 

alleles that could have two independent mutations (4). Work done by Wang et al, 

associated DFNB3 deafness with mutations in Myo15a (39) (4). 
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3.7 Shaker2 mouse model 

 

Shaker-2 (Sh2) mutation was suggested to be homologue to DFNB3 based on conserved 

synteny (2) (4). Sh2 is comprised of 66 exons spanning 59 kilobases (kb) of DNA on 

chromosome 11qB2 and has been shown to encode Myosin 15a (40). The human 

ortholog has the same exon composition distributed across 71 kb on chromosome 

17p11.2 (41). Using positional cloning, investigators showed that a missense mutation 

that changes the amino acid Cysteine (C) to Tyrosine (Y) in the conserved region of the 

motor domain was present in Myo15 sh2/sh2mice but not in wild-type mice (37). 

 

These mice have the phenotype of profound deafness and lack Preyer (startle) reflex. 

Their OHC stereocilia degenerates with age (Figure  3.7-1: Degeneration of stereocilia 

with age in Myo15 sh2/sh) and, unlike humans, have vestibular defects, tossing of the head 

and circular motion (6). However, the mutation has been corrected using a Helios® gene 

gun mediated transfection with better results than using other methods of transfection. In 

this particular method, gold particles coated with cDNA of wild type Myosin 15a and 

GFP were accelerated using pressurized helium and by so were transfected into the 

mutated explants. The result was that the stereocilia of OHCs elongated to normal length, 

staircase phenotype was restored and immunostaining imaging detected Myosin 15a at 

the tips (42). 

 

 

 
Figure  3.7-1: Degeneration of stereocilia with age in Myo15 sh2/sh2 
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3.8 Thesis Objective  

 

The original goal of this study was to investigate the existence of a potential “standing 

current” in Myo15sh2/sh2 OHCs with different methods. First, investigation of fast uptake 

of FM1-43FX dye into the Myo15sh2/sh2 OHCs was planned to reveal the MET channels 

that are partially open at rest. Next, whole cell patch-clamp recording were planned to 

determine the resting ionic conductance in Myo15sh2/sh2 and Myo15+/sh2 OHCs that are 

sensitive to either Dihydrostreptomycin (DHS) or Amiloride (Amil), the known blockers 

of MET channels. Finally, we also planned to count stereocilia links in degenerating 

Myo15sh2/sh2 OHCs using scanning electron microscopy (SEM) images. Indeed, the 

experiments revealed “standing current” in Myo15sh2/sh2 OHCs but, in addition, an 

unexpected increase in voltage-gated outward conductance that has been also 

investigated. 
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Chapter 4 Material and Methods 

4.1 Cochlea dissection 

 

Myo15sh2/sh2 and Myo15+/sh2 mouse pups were euthanized at postnatal days 3-5 (P3-P5) 

by putting them on ice in a cold chamber to induce hypothermia for 4 minutes then 

decapitated. The skull bone is removed and placed in a dish with (L-15) solution 

containing the following inorganic salts (in mM): NaCl (137), KCl (5.4), CaCl2 (1.26), 

MgCl2 (1.0), Na2HPO4 (1.0), KH2PO4 (0.44), MgSO4 (0.81), pH=7.36, osmolarity = 313 

mOsm. The skull is cut across the sagittal suture, from occipital region to give the left 

and right halves of the skull to access the interior side of temporal bone. The brain tissue 

was removed to reveal the middle cranial fossa, the excess bones (parietal and occipital) 

are removed, the porus acusticus internus is opened to reveal the bony labyrinth.  Because 

of the young ages of mice, the bones are not yet ossified and it is easy to open the cochlea 

without damaging the Organ of Corti. With a swirling upwards motion, the Organ of 

Corti is removed from the lamina spiralis ossea and is cultured in glass-bottomed dishes 

with 2ml DMEM media with 7% Fetal Bovine Serum and (10mg/L) Ampicillin.  For 

patch-clamp purpose, the cultured tissue (from now on designated as explants) was held 

down onto the dish by using two glass pipettes as a “clip” so that culture remains attached 

to the bottom of the dish. The middle region of the Organ of Corti is placed between the 

two pipettes so that it can be accessed easily by the patch pipette (Figure  4.1-1). The 

explants were incubated at 37C and 5% CO2 for 3-5 days making the equivalent age of 

explants between P6-P10. After this period, the explant would be attached to the bottom 

of the dish. All animal procedures were approved by the University of Kentucky Animal 

Care and Use Committee.  
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Figure  4.1-1: Culturing the Organ of Corti explant. 

Explant 

Explant 
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4.2 Mouse genotyping 

 

Based on the known phenotype of  Myo15+/sh2 mentioned previously, we can determine 

the genotype of the specimen even before sending tail snips for PCR (polymerase chain 

reaction) analysis. Starting from P5, it is possible to distinguish between the control and 

the mutant IHCs by imaging them with high-resolution optical microscope (Nikon 

E600FN) equipped with DIC (differential interference contrast).  Stereocilia bundles of 

Myo15a+/sh2 IHCs have clear staircase architecture that can be identified by changing the 

focal plane. In contrast, stereocilia of Myo15sh2/sh2 IHCs are much shorter and have the 

same length. In addition, Myo15sh2/sh2 IHC bundle have extra numerous stereocilia that 

are failed to retract in postnatal development (Figure  4.2-1).   

 

Alternatively, we dissected vestibular organs of the same animals, opened the ampullae 

and examined stereocilia bundles of the vestibular hair cells with high-resolution upright 

microscope (Nikon E600FN). Because vestibular hair cells in the ampullus have very 

long stereocilia (tens of micrometers), the unusually short stereocilia in Myo15sh2/sh2 
mice are easily noticeable.  

 
Examination of stereocilia length allowed us to determine the genotype in a live 

specimen, before patch-clamp experiments. The genotype was then confirmed by PCR 

analysis of tail snips. 
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Figure  4.2-1: The difference between Myo15sh2/sh2 (top) and Myo15+/sh2 
(bottom) IHCs can be observed by optical microscopy at P4+4 days in vitro (div). 

Hair bundles of Myo15sh2/sh2 IHCs have equally short stereocilia and extra rows 

of stereocilia. Images were obtained with high-resolution optical microscope 

(Nikon E600FN) equipped with DIC.  

 

  

6 μ m 

6 μ m 
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4.3 Counting stereocilia links 

 

 

Figure  4.3-1: Counting links (red dots) 
and stereocilia (blue dots) in a 

Myo15sh2/sh2 OHC. 
 
 

To quantify degeneration of stereocilia links in Myo15sh2/sh2 OHCs, the number of links 

per stereocilium was determined in Myo15sh2/sh2 OHCs at different age. Figure  4.3-1 

shows scanning electron microscopy (SEM) image of an OHC at P9. Using a MATLAB 

script, SEM images were loaded into MATLAB and then links (red dots) and stereocilia 

(blue dots) were manually selected and counted.  

 

4.4 Fluorescent imaging with FM1-43FX 

 

To test whether Myo15sh2/sh2 OHCs in older mice (P26) have functional MET channels 

that partially open at rest despite loss of their tip links, the Organ of Corti was briefly 

exposed to FM1-43FX (Invitrogen), a fixable analog of non-toxic and water-soluble 

lipophilic styryl dye FM1-43. Then, the specimen was fixed before dissecting; otherwise 

the hair cells would be damaged. The excitation and emission wavelengths of FM1-43FX 

are the same as the ones for FM1-43 (excited at 510nm and emits a green fluorescence at 

626nm).  

 

 

0.9 μ m 
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A small hole at the apical region of the cochlea was made. Immersing the dissected 

cochlea in cold L-15 solution (3-4 ºC) for 45seconds ensures that endocytosis is slowed 

down or even stopped (Figure  4.4-1: Labeling hair cells with FM1-43FX. (A) 

Arrangement of the perfusion pipette relative to the hole at the apex of the cochlea. (B) 

Perfusion flow replaces intracochlear fluids.). A working solution of 3uM FM1-43FX is 

prepared and is used to perfuse the cochlea for 40 seconds. Perfusion can be seen by 

movement of the bathing solution at the base of the cochlea (Figure  4.4-1, B). Then, the 

cochlea is perfused with cold L-15 solution for washout and fixed with 4% 

Paraformaldehyde solution for one hour. The organ of Corti was carefully dissected, post-

stained with Rhodamin Phalloidin to label stereocilia actin, mounted on slides, and 

viewed with CARV confocal attachment and Hamamatsu ORCA-IIER digital camera.  

 

 

 
 

(A) 
 

(B) 

Figure  4.4-1: Labeling hair cells with FM1-43FX. (A) Arrangement of the perfusion 

pipette relative to the hole at the apex of the cochlea. (B) Perfusion flow replaces 

intracochlear fluids.  

Cochlea image in (A) credits: Wikimedia Commons (43) 
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4.5 Whole-cell patch clamp 

 

All experiments were performed in in Leibovitz (L-15) extracellular medium. The Organ 

of Corti was observed under (Nikon E600FN) using 60X objective lens. Healthy OHCs 

were identified by existence of stereocilia at apex of the cell, lack of Brownian motion of 

mitochondria, normal size (not inflated). (Figure  4.5-1, A) shows the setup for whole cell 

patch-clamp recordings. The explant was attached to a glass-bottomed dish so that the 

middle turn of the Organ of Corti can be in direct contact with the patch pipette and is 

held down onto the dish by two glass pipettes. In order to access and patch the basolateral 

region of the outermost row of OHCs (Figure  4.5-1, B) the supporting cells (Hensen and 

Deiters cells) were removed by gentle suction through a glass pipette. The outgrowth of 

tectorial membrane material was also removed in the same way. Patch pipettes were 

filled with intracellular solution that contains (KCl (12.6 mM), KGlu (131.4 mM), MgCl2 

(2 mM), EGTA (0.5 mM), K2HPO4 (8 mM), KH2PO4 (2 mM), Mg2-ATP (2 mM), Na4-

GTP (0.2 mM). The osmolarity of this solution was adjusted to 330 mOsm and pH to 

7.36 similar to intracellular solution.  Patch pipette resistance was typically 4.4-7.4 MΩ 

when measured in the bath. Patch-clamp recordings were performed with a computer-

controlled amplifier (MultiClamp 700B, Molecular Devices). For consistency, only the 

OHCs in the middle of the cochlea were selected for the experiments.   
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Figure  4.5-1: Illustration showing set up and procedure for whole cell 

patch-clamp recordings. A) Glass-bottom Petri dish with the organ of 

Corti explant, patch and puff pipettes. B) In order to access and patch the 

basolateral region of the outermost row of OHCs, the supporting cells 

(Hensen and Deiters cells) were removed. The MET blocker is applied 

through a puff pipette that is at 90º with the hair bundles and is 10-15µm 

away to make sure that the bundles are not deflected (Image courtesy: A. 

Catalina Velez-Ortega). 

 

 

Explant 

A 

B 
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Blocking of mechanotransduction channels 
 

The drugs blocking MET channels (100uM Amiloride or DHS) are applied using 

pneumatic injector (DAGAN PMI-200) through a puff pipette that is at 90º with the hair 

bundles and is 10-15 µm away to make sure that the bundles are not deflected. 

 

Experimental protocol 

While holding the cell’s membrane potential at -60mV, the whole cell current is 

recorded. A voltage-step protocol ranging from -100 to 68 mV is applied and the current 

response is recorded for the control, blocker application and 15 min after blocker 

application stopped (washed out). 
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Chapter 5 Results and Discussion 

5.1 Stereocilia links rapidly deteriorate in Myo15 sh2/sh2 mice 

Tip links are the tethers that interconnect the tips of the shorter row of stereocilia to the 

adjacent taller stereocilia. They consist of cadherin-23 and procadherin-15 adhesion 

proteins. The tip links are thought to gate the MET channel either directly (attached to the 

channels) or indirectly (by pulling the cell membrane). Hair cells of young postnatal 

Myo15sh2/sh2 mice have tip links that contribute to their mechano-sensitivity. Stereocilia 

bundles in Myo15sh2/sh2 hair cells develop normally till about P3. Then, the further 

growth of stereocilia seems to be “arrested” and OHCs begin to degenerate. Degeneration 

of stereocilia in Myo15sh2/sh2 OHCs has a different rate depending on the tonotopic 

location along the cochlea. Hair cells at the base of the cochlea degenerate at a faster rate 

than those at the apex of the cochlea. (Figure  5.1-1). Quantification of the number of 

links per stereocilium in Myo15sh2/sh2 OHCs shows the prominent decrease of all the 

links after P3, including the tip links. The number of links per stereocilium in 

Myo15sh2/sh2 OHCs becomes rapidly less than the number of tip links in wild type OHCs, 

which is around 84% (Figure  5.1-2). 
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 Base Mid Apex 
P9 

   
P16 

   
p-27 

   
 Figure  5.1-1: Degeneration of stereocilia in Myo15sh2/sh2 with age has a different rate 

depending on the tonotopic location along the cochlea. 
Hair cells at the base of the cochlea degenerate at a faster rate than those at the apex of the 

cochlea. 
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Figure  5.1-2: Progressive loss of stereocilia links in postnatal Myo15sh2/sh2 outer hair cells 

with age. Number of links per stereocilium was calculated by dividing the number of all 

visible links (red dots in the representative SEM image in the inset) to the number of all 

visible stereocilia (blue dots).  The dashed line indicates typical number of tip links per 

stereocilium in the wild type outer hair cells (44). 
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5.2 FM1-43FX uptake in Myo15sh2/sh2 OHCs indicate the presence of 

constitutively open non-selective cation channels 

 

FM1-43 is mainly used to label plasma membrane, study endocytosis, visualize vesicle 

trafficking and release of neurotransmitters. When used in the inner ear, the dye labels the 

plasma membrane of the hair and supporting cells but it is also found in the soma of the 

hair cells. There are two routes for the dye to get into the hair cell, either by endocytosis 

or through the MET channels (Figure  5.2-1, A). Gale et al., (45) showed that brief 

exposure to FM1-43 does not label the hair cells at low temperature (4ºC) after tip link 

disruption but produces strong staining in the hair cells with intact MET apparatus. Thus, 

brief exposure to FM1-43 at low temperature does not evoke significant endocytosis and 

can be used to test the presence of functional MET channels that are partially open at rest.   

 

 

Figure  5.2-1:  FM1-43FX uptake in Myo15sh2/sh2 OHCs indicates the presence of constitutively 

open non-selective cation channels. (A) SEM image of P25 OHC stereocilia of Myo15sh2/sh2 
mouse. Note the absence of any links between the stereocilia. (B) Confocal image of the organ of 

Corti of Myo15sh2/sh2 mouse of the same age showing the uptake of the dye (green) into the 

OHCs. Rhodamin-phalloidin stains the actin filaments (red). 
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To test whether the disappearance of stereocilia links in the OHCs of the older 

Myo15sh2/sh2 mice (P25) resulted in the permanent closure of the MET channels, we have 

perfused the organ of Corti explant with cold (4ºC) FM1-43FX fluorescent dye. At that 

age, all tip links between stereocilia have been lost, as it is seen in the SEM image 

(Figure  5.2-1:  FM1-43FX uptake in Myo15sh2/sh2 OHCs indicates the presence of 

constitutively open non-selective cation channels. (A) SEM image of P25 OHC 

stereocilia of Myo15sh2/sh2 mouse. Note the absence of any links between the stereocilia. 

(B) Confocal image of the organ of Corti of Myo15sh2/sh2 mouse of the same age showing 

the uptake of the dye (green) into the OHCs. Rhodamin-phalloidin stains the actin 

filaments (red)., B). Because endocytosis is very unlikely to occur at 4°C and because the 

incubation time was rather short (45 seconds), the FM1-43FX is likely to enter OHCs and 

IHCs through constitutively or partially open non-selective cation channels, e.g. MET 

channels (Figure  5.2-1, C). We concluded that the MET channels are still open at rest, at 

least partially, in the Myo15sh2/sh2 OHCs even after degeneration of their stereocilia links. 

 

5.3 Myo15sh2/sh2 mutation results in an increased outward current in OHCs 

and a more negative intracellular potential 

 

Figure  5.3-1:   shows the whole cell current responses to the consecutive voltage steps 

ranging from -100 to +68 mV in Myo15+/sh2 (A) and Myo15sh2/sh2 (B) OHCs. The 

current-voltage (I-V) relation measured at the “steady state” (100–122 ms of voltage step) 

and the intracellular voltage are seen in (C). The I-V curve indicates that, on the negative 

part of the curve, the two current are not significantly different while on the positive part 

of the curve, the mutant OHCs (red) possess larger outward control current than the 

OHCs in littermate heterozygous mice (blue). The increase in the outward current in 

mutant OHCs correlates well with the statistically significant changes of the reversal 

(intracellular) potential (Vrev).  Vrev in mutant OHCs (red) was more negative than the 

control (blue). We concluded that myosin 15a-deficency results not only in abnormally 

short stereocilia but also in the increase of voltage-gated outward conductance. This 
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conductance is consistent with the outward K+ current, because it increases the negative 

intracellular potential toward the K+ equilibrium. 
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1  

  

 
Figure  5.3-1:  Ionic currents in Myo15+/sh2 (A) and Myo15sh2/sh2 (B) OHCs (upper 
traces) evoked by the graded voltage steps (lower traces). (C) The current-voltage 

relationship (an I-V curve) of the steady-state current in Myo15+/sh2 (blue) and 
Myo15sh2/sh2 (red) OHCs. Data are shown as Mean±SE. The difference at positive 

potentials is highly significant (p<0.0566, t-test).  Number of cells: n=14 
(Myo15+/sh2), n=18 (Myo15sh2/sh2). Age of the cells: P3-5 + 1-5 div.  The inset 

shows the reversal (intracellular) potential in these groups of cells. The difference 
in reversal potential is also significant (p<0.0206, t-test). 
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5.4 Blocking‎ of‎ MET‎ current‎ revealed‎ the‎ “standing‎ current”‎ in‎ Myo15sh2/sh2 

OHCs and potential Ca2+-dependent modulation of the voltage-gated 

outward current 

 

To test the contribution of the MET current to the total current in the cell, we used known 

drugs that block MET channels: DHS and Amiloride. Figure  5.4-1 shows the effect of 

applying the blocker DHS and Amiloride in Myo15+/sh2 (blue) and Myo15sh2/sh2 (red) 

OHCs. The effect of the drug can be recognized by observing a reduction (upward 

change) in the holding current and the termination of blocker application is recognized by 

returning of the current to base level (downward change) in panels A and C. 

Corresponding current responses to the previously used voltage-step protocol are shown 

in (B) and (D), respectively. Values of cell parameters (membrane capacitance, Access 

resistance, membrane resistance and membrane’s time constant) before applying the 

blocker, during its application and washout are shown in Appendix A.  
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Figure  5.4-1: Effect of drugs blocking MET current on OHC ionic conductance. DHS 

(A) and Amiloride (C) reduce the inward current at holding potential of -60 mV in 

both Myo15+/sh2 (blue) and Myo15sh2/sh2 (red) OHCs. Voltage-step protocols also 

revealed similar effects of DHS (B) and Amiloride (D) on voltage-gated ionic 

conductance in Myo15+/sh2 and Myo15sh2/sh2 OHCs. (E) Combined I-V curves showing 

the effect of MET channel blocking on ionic currents. (F) Subtraction of the whole 

cell current after MET channel blocking from the control current shows that there is a 

MET-dependent inward current at negative potentials in both Myo15+/sh2 and 

Myo15sh2/sh2 OHCs, while larger MET-dependent outward current in Myo15sh2/sh2 

OHCs .  Number of cells: n=6 (Myo15+/sh2), n=11 (Myo15sh2/sh2). Age of the cells: P3-

5 + 1-5 div. 
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Because both drugs produced similar effects, its combined effect on the whole cell 

current is summarized in the I-V curves on panel E. The curves show that at its the 

negative potentials, the drugs block the constitutively open component of the MET 

current in both Myo15+/sh2 (blue) and Myo15sh2/sh2 (red) OHCs, as seen by reduction in 

the whole cell current. At the positive potentials, however, an increase of an outward 

current is observed in Myo15sh2/sh2 OHCs, while similar increase in Myo15+/sh2 OHCs 

was not yet statistically significant.  Subtraction of the whole cell currents with blocked 

MET channels from the control currents revealed an identical MET-dependent 

contribution in Myo15+/sh2 and Myo15sh2/sh2 OHCs at negative potentials and a larger 

effect of MET blocking at positive potentials in Myo15sh2/sh2 OHCs (Figure  5.4-1, E).  

These changes in outward (presumably K+) conductance are also consistent with the 

changes of the reversal potential after blocking of the MET channels (Figure  5.4-2).  

 

 
Figure  5.4-2: Reversal potential (Vrev) in Myo15+/sh2 (blue) and Myo15sh2/sh2 (red) 

OHCs without (solid square) or with (open circles) blocking of the MET channels. 

Vrev is more negative in mutant cells under both conditions. The effect of MET 

blocking is more prominent in mutant OHCs. 
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Chapter 6 Summary 

 

Deafness is a disability with high prevalence in the USA and around the world because of 

the many genes that are involved in the sense of hearing. As discussed in the first section 

of chapter three, genetic hearing loss can be caused because of damage to the hair cells or 

to the auditory nerve. Management of deafness is possible either by hearing aids or 

cochlear implant. Current research is focused on using Human embryonic stem-cells to 

regenerate the terminally differentiated hair cells and auditory nerve.  

 

In the following section of the same chapter, the anatomy and function of the mammalian 

ear, cochlea and organ of Corti was covered. The organ of Corti has tonotopic property 

due to changes in the dimensions of the basilar membrane and in length of outer hair cells 

along the cochlea and so high frequency wavelength can be sensed at the base of cochlea 

while low frequencies are sensed at the apex. Comparisons between the inner and outer 

hair cells show that each cell’s structure and enervation are compatible with its unique 

function despite their similarity in many aspects, like stereocilia linked with tensioned tip 

links which gate a Mechanotransduction (MET) channels at the tips of the stereocilia. 

The structure and function of stereocilia was described and their role in transduction 

current was elucidated.  

 

Myosin15a was discussed in section 3.3. It is part of a large family of proteins and has 

many of the conserved functional domains. It is located at the tips of stereocilia and its 

function is to maintain the normal, staircase structure of stereocilia by interacting with the 

stereocilia’s actin core and with other proteins in both inner and outer hair cells. Absence 

of Myosin15a due to a missense mutation in its motor domain results in abnormally short 

stereocilia in both hair cells and in degeneration and loss of tip links of the outer hair 

cells only. This mutation is linked to the genetic deafness DFNB3 and the Shaker-2 

(Myo15a sh/sh ) mouse model. 

 

The original goal of this study was to investigate the existence of a potential “standing 
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current” in Myo15sh2/sh2 OHCs as a result of altered mechanical forces applied by the 

degenerating stereocilia on the MET channel. The used methods were described in 

chapter four. The process of cochlear dissection, on-the-spot genotyping, counting 

stereocilia and tip links, labeling hair cells by brief application of the dye FM1-43FX and 

Whole-cell patch clamp were explained. 

 

Results were discussed in chapter five. Quantitative measurment of tip link per 

stereocilium shows stereocilia links rapidly deteriorate with age in Myo15sh2/sh2. The 

decrease is very dramatic and is well below the normal number in wildtype cells. FM1-

43FX dye uptake in old Myo15sh2/sh2OHC who lost their tip links indicates the presence 

of constitutively open non-selective cation channels. Whole-cell patch clamp recordings 

were used in young explants OHCs to investigate the ionic conductances at resting, 

steady-state conditions in both Myo15+/sh2 and Myo15sh2/sh2. Results show that there is a 

significant increase in outward current in Myo15sh2/sh2 OHCs (p<0.0566) and a more 

negative intracellular potential (p<0.0206). Blocking of the MET channels with 

Dihydrostreptomycin (DHS) and Amiloride, known blockers of the channel, reveals the 

existance of a standing inward current in both genotypes, an increase in the outward 

conductance of presumably K+ current in  Myo15sh2/sh2 and potential Ca2+ modulation of 

voltage-gated outward current.  
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Chapter 7 Conclusion 

 

Examination of the scanning electron microscopy (SEM) images of Myo15sh2/sh2 OHCs 

revealed dramatic degeneration of stereocilia links after postnatal day 3 (P3). Despite this 

degeneration, we observed fast intracellular accumulation of FM1-43FX, a small cationic 

dye that is known to permeate through the MET channels, indicating that the MET 

channels are still open at rest in Myo15sh2/sh2 OHCs. A standing current that continuously 

flows into the cell through MET channels may result in a continuous influx of calcium 

leading to cell degeneration. Indeed, whole cell patch-clamp recordings revealed 

significant MET channel-dependent component of the ionic current in Myo15sh2/sh2 OHCs 

that was blocked by either dihydrostreptomycin (DHS) or Amiloride, known blockers of 

the MET channels. Thus, Myo15sh2/sh2 OHCs are likely to face an increased Ca2+ influx 

to the cell body due a decreased Ca2+ extrusion via stereociliar PMCA pumps 

(Figure  7-1), which may cause compensatory expression of additional voltage-gated K+ 

channels to maintain intracellular potential and development of Ca2+-dependent 

modulation of K+-conductance. This compensatory K+ conductance(s) may explain a 

surprising increase of voltage-gated outward conductance in Myo15sh2/sh2OHCs, which is 

further increased upon blocking of the MET channels. To the best of our knowledge, it is 

the first time that myosin 15a-deficiency has been associated with alterations of voltage-

gated ion conductances. 
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Figure  7-1: “Standing current” through partially open MET channels at rest are likely to 

produce different functional outcome in Myo15+/sh2 (left) and Myo15sh2/sh2 (right) OHCs. 

The Ca2+ entering through the MET channels in the normal Myo15+/sh2 OHCs is likely to 

be extruded by the very efficient stereocilia PMCA pumps, effectively shielding the soma 

of the cell from Ca2+. However, abnormally short stereocilia of Myo15sh2/sh2 OHCs have 

significantly smaller membrane area and hence less efficient Ca2+ extrusion. This may 

result in compensatory overexpression of voltage-gated K+ channel to maintain 

intracellular potential and development of Ca2+-dependent mechanisms of K+ channel 

modulation. 

B 
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Appendix A 

 

 

 

 
Figure A: Cell parameters in Myo15+/sh2 (blue) and Myo15sh2/sh2 (red) OHCs without (square) or with 

(circles) blocking of the MET channels and after blocker washout (diamond). Capacitance is indicative of 

cell’s volume.  The time constant of the membrane (Tau) represents the membrane’s response to a step 

voltage. Access resistance (Ra) and membrane resistance (Rm) are indicative of seal quality. There is no 

significant change in parameters between the two genotypes in the presence or absence of blockers. 
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