University of Kentucky UKnowledge

Markey Cancer Center Faculty Patents

Markey Cancer Center

5-25-2010

Organic Cation Transporter Preferentially Expressed in Hematopoietic Cells and Leukemias and Uses Thereof

Jeffrey A. Moscow University of Kentucky, jmoscow@uky.edu

Xin Lu University of Kentucky, xin.lu@uky.edu

Craig Jordan University of Kentucky, jordan.craig@uky.edu

Follow this and additional works at: https://uknowledge.uky.edu/markey_patents

Part of the Oncology Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation

Moscow, Jeffrey A.; Lu, Xin; and Jordan, Craig, "Organic Cation Transporter Preferentially Expressed in Hematopoietic Cells and Leukemias and Uses Thereof" (2010). *Markey Cancer Center Faculty Patents*. 1. https://uknowledge.uky.edu/markey_patents/1

This Patent is brought to you for free and open access by the Markey Cancer Center at UKnowledge. It has been accepted for inclusion in Markey Cancer Center Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

US007723019B2

(12) United States Patent

Moscow et al.

(54) ORGANIC CATION TRANSPORTER PREFERENTIALLY EXPRESSED IN HEMATOPOIETIC CELLS AND LEUKEMIAS AND USES THEREOF

- (75) Inventors: Jeffrey Moscow, Lexington, KY (US); Xin Lu, Shanghai (CN); Craig Jordan, Rochester, NY (US)
- (73) Assignee: University of Kentucky Research Foundation, Lexington, KY (US)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 451 days.
- (21) Appl. No.: 11/521,487
- (22) Filed: Sep. 15, 2006

(65) **Prior Publication Data**

US 2007/0269846 A1 Nov. 22, 2007

Related U.S. Application Data

- (62) Division of application No. 10/849,551, filed on May 20, 2004, now abandoned.
- (60) Provisional application No. 60/471,709, filed on May 20, 2003.
- (51) Int. Cl.

C12Q 1/00	(2006.01)
G01N 33/53	(2006.01)
C07K 14/435	(2006.01)

- (52) U.S. Cl. 435/4; 530/350
- (58) **Field of Classification Search** None See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

7,045,316	B2 *	5/2006	Nezu et al	435/69.1
2003/0009024	A1*	1/2003	Curtis	536/23.5

FOREIGN PATENT DOCUMENTS

WO WO-0246415 A2 * 6/2002

OTHER PUBLICATIONS

Gong et al. Identification of OCT6 as a novel organic cation transporter preferentially expressed in hematopoietic cells and leukemias. Exp Hematol 30: 1162-1169, 2002.*

Strober, W. Trypan Blue Exclusion Test for Cell Viability. Curr Prot Immunol Supplement 21: A.3B.1-A.3B.2, Mar. 1997.*

(10) Patent No.: US 7,723,019 B2 (45) Date of Patent: May 25, 2010

Okabe et al. Genbank Accession No. AAK58593, Jun. 2, 2001; 2 pages.*

Fischer G., Biochem. Pharmacol. "Short Communications" vol. 11: pp. 1233-1234, Pergamon Press Ltd., 1962.

Moscow, et al., "Isolation of a Gene Encoding a Human Reduced Folate Carrier (RFC1) and Analysis of Its Expression in Transportdeficient, Methotrexate-resistant Human Breast Cancer Cells" Cancer Res. 55: pp. 3790-3794, 1995.

Moscow et al., "Reduced Folate Carrier Gene (RFC1) Expression and Anti-Folate Resistance in Transfected and Non-Selected Cell Lines" Int J Cancer. 72: pp. 184-190, 1997.

Koepsell et al., "Organic Cation Transporters in Intestine, Kidney, Liver, and Brain" Ann. Rev. Physiol. 60: pp. 243-266, 1998.

Burckhardt, et al., "Structure of renal organic anion and cation transporters" Am J Physiol Renal Physiol. 278: pp. F853-F866., 2000.

Wu, et al., "Identity of the Organic Cation Transporter OCT3 as the Extraneuronal Monoamine Transporter (uptake₂) and Evidence for the Expression of the Transporter in the Brain" J Biol Chem. 273: pp. 32776-32786, 1998.

Dhillon et al. Clin Pharmacol Ther. 65: p. 205, 1996.

Koyama et al., "CD63, a Member of Tetraspan Transmembrane Protein Family, Induces Cellular Spreading by Reaction with Monoclonal Antibody on Substrata" Biochem Biophys Res Commun. 246: pp. 841-846, 1998.

Moscow, J. A., Schneider, E. S., Ivy, S. P., and Cowan, K. H. "Multidrug resistance" In: H. M. Pinedo, D. L. Longo, and B. A. Chabner (eds.), Cancer chemotherapy and biological response modi-

fiers. Annual 17. New York: Elsevier, pp. 139-177, 1997.

Okabe et al., GenBank AF268892, Jun. 2, 2001.

Waterston et al., GenBank AC002464, Feb 4, 2000.

NCI-CGAP et al., GenBank AI040384, Aug 28, 1998. Hillier et al., GenBank AA033971, May 9, 1997.

Hillier et al., GenBank H70190, Oct 24, 1995.

Tannock and Hill, The Basic Science of Oncology, 1998, New York: McGraw-Hill, pp. 53-70 and 396-410.

Hirose et al. Multidrug resistance in hematological malignancy, J. Med. Invest. 50: 126-135, 2003.

Vogelstein et al. The multistep nature of cancer, Trends Genet 9(4):138-141, 1993.

Voliotis et al. Challenge in treating hematologic malignancies, Semin Oncol 29(3 Suppl 8): 30-39, 2002.

* cited by examiner

Primary Examiner—Bridget E Bunner

(74) Attorney, Agent, or Firm—McDermott Will & Emery LLP

(57) ABSTRACT

A novel organic cation transporter (OCT) gene, OCT 6, and use thereof is described. The OCT6 gene is preferentially expressed in human hematopoietic tissues, including CD34+ cells and leukemia cells. Its narrow tissue distribution, substrate specificity, and close homology to other cell membrane transporters make OCT6 an attractive target for the treatment of myeloid diseases.

7 Claims, 10 Drawing Sheets

FIG. 1A

12 $0CT6$ MG S R HF EGTY DH VGH FGR FORVL YFTCAF Q NT S C G I H YL A S VFMG VTPH 14 $0CTN1$ MR DYDEV TAFL GBWGPF Q RL I FFL S A S I I P N G F N GM S V F L A G T P H 15 $0CT3$ MA Q F V Q V TA FL G B WG P F Q R L I FFL S A S I I P N G F N G M S V F L A G T P F 16 $0CT2$ M R DYDE VT A FL G B WG P F Q R L I FFL S A S I I P N G F N G M S V F L A G T P F 17 $0CT2$ M R TY D D V L E HGG E F H F F Q K O M F FL L A L L S A S I I P N G F T G I S S V F L I A T F B 18 $0CT1$ M R DYDE VT A FL G B WG P F Q R L I F FL L S A S I I P N G F T G I S S V F L I A T F B 19 $0CT2$ M P T TY D D V L E HGG E F H F F Q K O M F FL L A L L S A F A P I Y V G I V F L G F T P B 10 $0CT2$ M P T Y D D V L E HGG E F H F F Q K O M F FL L A L L S A F A P I Y V G I V F L G F T P B 10 $0AT3$ M A F E L L I S Q V G G L G R F Q M L H V F L L E L L S A F A P I C V G I V F L G F T P B 10 $0AT3$ M A F S K L L E Q A G C G L G R F Q M L H V F L L F S L M L L T P H I L L E N F A A A T P O 10 $0AT3$ M A F N D L L Q Q V G G L G R F Q P I Q V L V V L P L L M A N H N L L Q T F T A A T P O 11 $0AT3$ M A F N D L L Q Q V G G N F Q P I Q V L V V L P L L M A S H N T L Q N F T A A T P O 10 $0AT3$ M A F N D L L Q Q V G G N G R F Q O I Q V T L V V L P L L M A S H N T L Q N F T A A T P O 11 $0AT3$ M A F N D L L Q Q V G G N G R F Q O I Q V T L V V L P L L M A S H N T L Q N F T A A T P O 12 $0AT1$ M A F N D L L Q Q V G R F Q O I Q V T L V V L P L L M A S H N T L Q N F T A A T P O 12 $0AT1$ M A F N D L L Q Q V G R F Q O I Q V T L V V L P L L M A S H N T L Q N F T A A T P O 12 $0AT1$ M A F N D L L Q Q V G C N G R F Q O I Q V T L V V L P L L N A S H N T L Q N F T A A T P O 17 $0AT1$ M A F N D L L Q Q V G C N F F Q N A C T C V V V P P A T P O O O O O O O O O O O O O O O O O O	<pre>50 60 FINE FIG N VS GV VF HNHS N WS L E DTG A LL S SGQ K DY VT VQ LQ NG E I WE L SR H R C R V PD</pre>	FIG. 2A

SEQ ID NO. SEQ ID NO. SEQ ID NO. SEQ ID NO SEQ ID NO

² OCT6 CSRN KRENTSSLGYEYTGSKKE-FPCVDGYLYD QNTWK ⁴ OCTV1 CSRYRLAT-IANFSALGLEPGRDVDLGQLEQESCLDGWEFSQDVYL ⁵ OCT3 CLMFRPPTSSLGYEYTGSKKE-FPCVDGYLYD ⁶ CCTV2 CRRYRLAT-IANFSALGLEPGRDVDLGQLEQESCLDGWEFSQDVYL ⁷ OCT7 CRRYEQWNQSTFDCVDPLASLDTNRSRLPLGPCGDGWVYETPG ⁸ OCT1 CRRYEQWNQSTFDCVDPLASLDTNRSRLPLGPCGDGWVYETPG ⁹ OAT5 CRFFRQPQWQLLHLNG-IHSTSEADTEPCVDGWVYETPG ¹⁰ OAT4 CLRFVHPQWQLLHLNG-IHSTSEADTEPCVDGWVYDGSVFP ¹¹ OAT5 CLRFVHPQWQLLDPNATATSSEADTEPCVDGWVYD SSVFP ¹² OAT5 CLRFVHPQWQLLDPNATATSSEADTEPCVDGWVYD SSVFP ¹² OAT7 CLRFVHPQWQLLDPNATATSFEADTEPCVDGWVYD SSVFP ¹² OAT7 CLRFVHPQWQLLDPNATATSFEADTEPCVDGWVYD SSVFP ¹² OAT7 CLRFVHPPP	150160170170180190200S TAVT T W NL V C DR K WL A MLI QPL F MFGVLL G S F V SG Q L S D R F G R K N V L F A T MAV190200S TVV T E W NL V C DR K HUK D T T Q S V F MG G L L V G T L MFG P L C D R T G R K N V L F A T MAVS T V V T E W N V C F R N V L F A T MAVS T V T E W NL V C DR K HUK D T T Q S V F MG G L L V G T L MFG P L C D R T G R K N V L F Y T MG N F T V T N G R T T V L F A T MAVS S S N V T E F N L V C B R W N L D L F Q S S V N V G F T I G Y L G R C L I G S K N V L F Y T MG N S S I V T E F N L V C A N S WML D L F Q S S V N V G F T I G Y L G O L S D R F G R K N V L F Y T MG N S S I V T E F N L V C A N S WML D L F Q S S V N V G F T I G Y L G O L S D R F G R K L C L L T T V L T S S I V T E W D L V C D Y Q S L K P L S Q S L G V G G L I H H G V S D R F G R R L C L L U T V L T Y L T Y L T Y L T Y L T Y L T Y L T Y L T Y L T Y L T Y L T Y L T Y L T Y L Y M D L Y C S S Q G L K P L S Q S L F M S G I L Y G S L G Y G Y S D R F G R R P L S W C L L Q S T I Y T E W D L Y C N S N K L R A Q S I F M S G I L Y G S M Y F G Y L A D R F G R R P L I N Y L Q S T I Y T E W D L Y C S N R L R Q L A Q S L Y M Y G Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L I N Y L Q Y L A D R F G R R P L Y L Y L Y L Y L Y L Y L Y L Y L Y L	FIG. 2B
SEQ ID NO. 2 SEQ ID NO. 4 SEQ ID NO. 5 SEQ ID NO. 6 SEQ ID NO. 8 SEQ ID NO. 10 SEQ ID NO. 10 SEQ ID NO. 11 SEQ ID		

U.S. Patent

FIG. 2C

	1
<pre>210 210 210 210 250 250 250 250 250 250 250 250 250 25</pre>	260 270 270 270 270 270 270 270 270 270 27
MFLFGIAAAVDY QTGFSFLQIFSISW FTLIGLATAFVPSF QTGFSFLQIFSISW AAGVLMAISFTY NAVSGVLMAFSPNY NAVSGVLMAFSPNY LAITDTCAAFSPNY LAVSGSGAAFSPTF A.GGSGAAFSPTF A.GGTCAAFAPNF	A S V H - L H S F F A V G F S T L G V C T F F A V G A V V L - V Q V A Y T V G V A I M - Y Q V A Y T V G V V I L - S S G A L S I G W S T A - L G Y V Y S L G M S T A - L G Y V Y S L G V G T L - I G Y V Y S L G O V S T L - I G Y V Y S L G
0CT6 0CTN 0CTN 0CTN 0CTN 0CT1 0AT1 0AT1 0AT1	<u>↓</u>
SEQ ID NO. 2 SEQ ID NO. 4 SEQ ID NO. 5 SEQ ID NO. 6 SEQ ID NO. 7 SEQ ID NO. 9 SEQ ID NO. 10 SEQ ID NO. 11 SEQ ID NO. 12 SEQ ID NO. 12 SEQ ID NO. 12	

]	
\sim $ \pi$ π π π π π π π π π		
N J H X X H H H X X	OHOHO×00000	
S Z S H D H L L L C		
A H Q D H H Q L H H Q L H H Q L H H Q L H H Q L H H Q L H H Q L H H Q L H H Q L H H Q L H H H A H H H H H H H H H H H H H H H	· TALLANA S	
OPZJJJJJJJJ	ZQOQHHZQOQ	
<u> </u>		
NONDAXZHNN	000000000000	
THTH QRTTTT		
87.1808784 17.1217.284	AANTHOGOG	
GGKEAAS - AS		
<u></u>	DECH-SOZIE	
24 · · · · · · · · · · · · · · · · · · ·	EJ>FFF4044	
EHENPIC - < 20	N N N N N N N N N N N N N N N N N N N	
ZZZZZZZZZZ		\sim
X X X X X X X X X X X X X X X X X X X		5
A A A A A A A A A A A A A A A A A A A		
	<u> XXXXXXXXX</u>	Ē
<pre>> DQQKXDKKKQ </pre>		Ш
	NZOZONNYZH	
	Y aaaaaaaaaaaaaaa	
YHXHXXHANH		
o c c c c c c c c c c c c c	Soltification S	
<u>«Покоскана»</u>	APACTRACK	
N N N N N N N N N N N N N N N N N N N	HADHUTAYA	
	· · · · · · HAMO	
<u>a</u> aaaaaa <u>ja</u> a		
FRXXXXXXXX X	A [Q]	
A A A A A A A A A A A A A A A A A A A	NAGONADAR ZINA NAK	
пппппппп п		
1 8 4 5 1 2 N 3 V		
)		
000000000		
00000000000000000000000000000000000000		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $		
S S S S S S S S S S S S		

FIG. 2D

FIG. 3A

FIG. 4

OCT6 RNA levels (relative to MOLT4)

60

ORGANIC CATION TRANSPORTER PREFERENTIALLY EXPRESSED IN HEMATOPOIETIC CELLS AND LEUKEMIAS AND USES THEREOF

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of and claims the benefit of application Ser. No. 10/849,551, filed May 20, 10 2004 now abandoned, which claims the benefit of U.S. Provisional Application No. 60/471,709, filed May 20, 2003.

FIELD OF THE INVENTION

The invention relates to a gene encoding an organic cation transporter, OCT6, and its use as a target for the treatment of hematological malignancies, and in particular, leukemia. The invention further relates to screening methods for identifying agonists and antagonists/binding partners of OCT6 transport 20 activity.

BACKGROUND OF THE INVENTION

The lipid bilayer of the cellular membrane insulates the 25 intracellular milieu from exposure to hydrophilic compounds. Unlike lipophilic compounds that can diffuse through cellular membranes, water-soluble compounds usually require specific transport mechanisms to gain access to the intracellular space. The regulation of the traffic of polar 30 compounds in both directions across the cellular membrane is a complex process involving several large families of transport proteins.

Most often in cancer research, drug transport is thought of as a mechanism of cellular drug resistance, as drug efflux 35 pumps such as the products of the MDR1 and MRP genes have been shown to be mechanisms of resistance to lipidsoluble anticancer drugs. However, drug transport is a twoway street, and mechanisms also exist for pumping drugs into cells. For polar, water-soluble anticancer agents, drug uptake, 40 and not drug efflux, is the critical determinant of cellular drug accumulation.

Most cancer chemotherapy employs drugs that are lipidsoluble that can easily penetrate the cell membrane of cancer cells. One advantage of using lipid-soluble drugs is that they 45 easily gain intracellular access to different types of cancer cells, so many cancer cells appear to be initially sensitive to these drugs. The disadvantage is that cancer cells learn to increase the activity of drug efflux pumps in the cell membrane to pump lipid-soluble drugs out of the cell, resulting in 50 drug resistance.

In contrast, potential water-soluble anticancer drugs may not survive the preclinical screening process since there is a great deal of variability in the expression of drug transport genes in different types of cancer cells. Variability in transport 55 gene expression may result in variability in accumulation of polar, water-soluble drugs. One approach to more effectively utilize water-soluble anticancer drugs is to identify which of the dozens of transport genes are actually expressed in tumors.

The importance of carrier-mediated anticancer drug uptake is exemplified in reduced folate carrier (RFC) mediated uptake of methotrexate (MTX). Methotrexate (MTX), a reduced folate analogue, is scavenged and retained in cells by mechanisms designed to secure folates from the environment. 65 The major mechanism of MTX uptake at pharmacologic concentrations is the reduced folate carrier (RFC), an OAT trans-

porter with a Km for MTX between approximately 0.8-26 µM. Decreased RFC activity has been observed in several in vitro models of transport-mediated MTX resistance (Biochem. Pharmacol. 11: 1233-1234, 1960). Once rodent and human genes encoding proteins with RFC activity were isolated, the molecular explanations for decreased RFC activity emerged. RFC1 transfection into the transport-deficient $MTX^{\overline{R}}$ ZR75 cell line resulted in a 20-fold increase in 6-hour MTX uptake and a concomitant 250-fold increase in sensitivity to MTX relative to control cell clones, showing that the RFC1 gene reconstitutes RFC activity and has a significant impact on MTX cytotoxicity (Moscow, et al., Cancer Res. 55: 3790-3794, 1995).

In different cell lines, MTX transport deficiency has been 15 ascribed either to mutations in the RFC gene or in decreased expression of the RFC gene product. Several studies have demonstrated that RFC1 gene expression is an important determinant of sensitivity to MTX. In in vitro studies, we have found that RFC1 RNA levels correlate with MTX sensitivity in a panel of non-selected cell lines, including breast cancer cell lines (Moscow et al., Int J Cancer. 72: 184-190, 1997).

A plethora of genes with the ability to transport MTX out of the cell have been reported, including MRP1, MRP2, MRP3, MRP4, the organic anion transporters hOAT2 and hOAT3, and the mitoxantrone-resistance protein (BCRP/MXR). However, despite the multitude of MTX export genes, clinical studies have shown a relationship between the expression of RFC1, the mechanism of MTX uptake, and prognosis in Acute Lymphoid Leukemia (ALL) and osteosarcoma. As a result, RFC1 expression and MTX uptake are now implicated as determinants of clinical sensitivity in several types of tumors. Thus, the role of RFC1 in mediating sensitivity of its cytotoxic drug substrates has become a prototype that illustrates the potential role of transporters, like OAT and OCT genes, in determination of anticancer drug selectivity and toxicity.

However, there is a need to identify additional channels, or transporters, that are found in specific cancers, to enable the targeting of different cancers with anticancer agents that are substrates for those transporters.

SUMMARY OF THE INVENTION

The present invention is directed towards a membrane protein that functions to transport hydrophilic substances across cellular membranes. The protein, OCT6, is a new member of the organic cation transporter (OCT) family (SLC22 gene family). Tissue distribution of this protein is distinct from other OCT protein family members; being detected in leukemia, leukemia blast cells and CD34+ cells.

In one aspect, the present invention provides a novel target for hematological malignancies such as leukemia, an OCT6 transporter.

In another aspect of the present invention there is a method for screening potential substrates that selectively bind the OCT6 transporter. The method involves contacting a cell which overexpresses an OCT6 transporter gene with a test compound and determining whether the test compound is a substrate for the OCT6 transporter.

In another aspect, there is a method for screening potential anti-cancer agents in a cell overexpressing an OCT6 transporter gene. The method comprises determining viability of a cell which expresses OCT6 transporter gene incubated in the presence and absence of a test compound and identifying the test compound as a potential anti-cancer agent if there is cellular influx of the test compound and cell death.

In another aspect of the invention, a test kit is provided for screening candidate drugs for hematologic malignancies comprising a mammalian cell line or cells which overexpress OCT6, a control substrate and a detectable substance.

In still another aspect of the invention, there are immuno-5 genic compositions for treating hematological malignancies. In a preferred embodiment, immunogenic compositions for treating leukemia comprise a substrate that binds selectively to a leukemia cell expressing the OCT6 transporter gene. In another preferred embodiment of the invention, the substrate 10 comprises an antibody that selectively binds to the OCT6 transporter protein. Preferably, the OCT6 transporter protein allows cellular uptake of the substrate which then causes cell death. In one embodiment the substrate is cyutoxic and in another preferred embodiment the substrate is coupled with a 15 cytotoxic agent.

In still another aspect, the present invention provides a method for impairing a leukemia cell comprising contacting the cell with a cytotoxic OCT6 transporter protein. In one embodiment the substrate is a cytotoxin and in another 20 embodiment the substrate is coupled to a cytotoxic agent.

In yet another aspect, the present invention provides a method for treating hematological malignancies comprising administering to a subject in need thereof an immunogenic composition comprising a substrate that binds selectively to a 25 cell expressing the OCT6 transporter gene. In a preferred embodiment the OCT6 transporter protein allows cellular uptake of the substrate which then causes cell death. In another preferred embodiment the substrate is cytotoxic. In another preferred embodiment, the substrate is coupled with 30 a cytotoxic agent.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1. A. shows the predicted hydropathy profile of $_{35}$ OCT6.

FIG. 1. B. is a dendrogram showing phylogenic relationship between OCT6 (SEQ ID NO:2) and other OCT and OAT proteins, including, OCTN1 (SEQ ID NO:4), OCT3 (SEQ ID NO:5), OCTN2 (SEQ ID NO:6), OCT2 (SEQ ID NO:7), 40 OCT1 (SEQ ID NO:8), OAT5 (SEQ ID NO:9), OAT4 (SEQ ID NO:10), OAT3 (SEQ ID NO:11), and OAT1 (SEQ ID NO:12).

FIG. **2**A-F. is the CLUSTLAW alignment of OCT6 and other OCT and OAT proteins. The bottom row represents ₄₅ areas of consensus.

FIG. **3**. shows the normal tissue distribution of OCT6 RNA determined by RT-PCR using a cDNA panel. Only 1000x (highest) cDNA concentration is shown. Panel A. 1, salivary gland; 2, thyroid; 3, adrenal; 4, pancreas; 5, ovary; 6, uterus; 507, prostate; 8, skins; 9, peripheral blood leukocytes; 10, bone marrow; 11, fetal brain; 12, fetal liver. Panel B. 1, brain; 2, heart; 3, kidney; 4, spleen; 5, liver; 6, colon; 7, lung; 8, small intestine; 9, muscle; 10, stomach, 11, testis; 12, placenta.

FIG. **4**. shows quantitative RT-PCR for the transporter gene 55 OCT6 performed with RNA extracted from peripheral blood leukocytes, CD34+ cells and additional hematopoietic cell lines. Fresh discarded buffy coats that were twice sorted by FACS using CD14 (monocytes), CD15 (granulocytes), CD3 (T-cells) and CD20 (B-cells). Purities of 99% or better were 60 obtained. For peripheral WBC and sorted subsets, the average±SD represent pooled results from samples from 2 individuals performed in triplicate or quadruplicate. For CD34-selected mobilized peripheral blood (MPB), the results from each of 3 individuals are shown. For CD34selected bone marrow (CD34+-BM), the results are from one individual. OCT6 levels were normalized to the expression of

actin RNA, as a control for equivalence of mRNA template. The units, in log scale, are arbitrary and based on a standard curve of OCT6 RT-PCR in serially diluted HL60 RNA. Unity is defined as the level of OCT6 RNA found in MOLT4 cells.

FIG. **5**. shows quantitative RT-PCR for the gene OCT6 using RNA extracted from leukemic blasts obtained from patients at the time of initial diagnosis. OCT6 levels were normalized to the expression of actin RNA, as a control for equivalence of mRNA template. The OCT6 RNA levels in placenta, liver, kidney and MOLT-4 cell line were determined concurrently and shown for comparison. The units, in log scale, are arbitrary and based on a standard curve of OCT6 RT-PCR in serially diluted HL60 RNA. Unity is defined as the level of OCT6 RNA found in MOLT4 cells.

DETAILED DESCRIPTION OF THE INVENTION

The present invention is based on the discovery and isolation of a new member of the SLC22 gene family (the OCT family of proteins) that is unusual for its distinct pattern of tissue distribution. Rather than the typical high levels of expression in liver, kidney or placenta, high levels of RNA for this transporter were found in some leukemia cell lines, in CD34+ cells, and in circulating leukemia blast cells.

All patents, patent applications and literature cited in this description are incorporated herein by reference in their entirety. In the case of inconsistencies, the present disclosure, including definitions, will prevail.

OCT Family

Two families of proteins involved in maintaining homeostasis of charged organic compounds are the organic anion transporters (OATs) which carry the SLC21 designation and the organic cation transporters (OCTs), which carry the SLC22 designation (See Table 1). OATs and OCTs each have characteristic patterns of tissue expression, with predominant expression in a tissue involved in the transport of xeriobiotics, i.e., liver, kidney or placenta.

TABLE 1

		Organic anion and cation transported genes					
	Gene Family	Gene Name	Locus Link	Alternative Names			
	SLC21	SLC21A1	6577				
5		SLC21A2	6578	PGT			
		SLC21A3	6579	OATP, OATP1, OATP1b,			
				OATP-A			
		SLC21A4	28237	OAT-K1, OAT-K2			
		SLC21A5	28236	OATP2, OATP-2			
		SLC21A6	10599	LST-1, OATP-C			
)		SLC21A7	28235	OATP3, OATP-3			
		SLC21A8	28234	LST2, OATP8, SLC21A8,			
				OATP-8			
		SLC21A9	11309	OATP-B			
		SLC21A10	28233	OATP4			
		SLC21A11	28232	OATP-D			
5		SLC21A12	28231	LOC51737, OATP-E, POAT			
		SLC21A13	28230	OATP5, OATP-5			
		SLC21A14	53919	OATP-F			
	SLC22	SLC22A1	6580	OCT1			
		SLC22A2	6582	OCT2			
		SLC22A3	6581	OCT3			
		SLC22A4	6583	OCTN1			
,		SLC22A5	6584	OCTN2, CDSP, SCD			
		SLC22A6	9356	NKT, OAT1, OAT-1			
		SLC22A7	10864	NLT, OAT2, OAT-2			
		SLC22A8	9376	OAT3, OAT-3			
		SLC22A9		OAT4, OAT-4			

The OAT and OCT carriers result in increased cellular accumulation of their respective substrates, despite the fact

that they are carriers that mediate facilitative diffusion. For carriers, the degree of intracellular accumulation may not exceed the extracellular concentration. However, the presence of the carrier allows uptake in comparison to no uptake in the absence of the carrier, and drugs that bind an intracellular target or which are chemically modified in the cells, e.g., by phosphorylation or polyglutamylation, may be eliminated from the substrate pool and not available for transport back across the cellular membrane.

The first five members of the SLC22 family of transporters, OCT1, OCT2, OCT3, OCTN1, and OCTN2, have been characterized as organic cation transporters. The uptake of many cations, such as tetraethylammonium (TEA), N-1-methylnicotineamide (NMN), choline, procainamide, amantadine and 15 morphine are mediated by these polyspecific transporters. In general, these transporters are potential-dependent, but independent of sodium and proton gradients. These genes are all characterized by the presence of 11 or 12 transmembrane domains, as predicted by hydrophobicity analysis, and all ²⁰ have a large hydrophilic loop between transmembrane domain (TMD) 1 and TMD2.

OCT substrates are shown below in Table 2. Tetraethyl ammonium (TEA) is the classic substrate for OCT transport-25 ers. In addition, OCT1, OCT2 and OCT3 transport 1-methyl-4-phenylpyridinium (MPP). Compared to OCT2, OCT1 has a higher affinity for some cations (for example mepiperphenidol and procainamide), a similar affinity for others (for example, decynium 22 and quinidine), and a lower affinity for corticosterone (See Koepsell et al., Ann. Rev. Physiol. 60: 243-266, 1998.). OCT3 is an electrogenic transporter for TEA and guanidine. Other physiologic substrates for OCT transporters include dopamine, histamine, epinephrine and norepinephrine, acetylcholine and 5-hydroxytryptamine (Burckhardt, et al., Am J Physiol Renal Physiol. 278: F853-66., 2000.), suggesting an important role for these transporters in the central nervous system, in addition to their role in hepatic and renal clearance. Interestingly, despite its cationic nature, recent studies have identified cimetidine as a selective inhibitor, but not a substrate for several organic cation transporters, including rOCT1, rOCT2, rOCT3, hOCTN1, and hOCTN2.

TABLE 2

	OCT Substrates					
Common Name	Gene Name	Cell Type	Substrate	KT (uM)		
OCT1	SLC22A1	HeLa	TEA	229	5	
OCT1	SLC22A1	Xenopus	MPP	14.6		
OCT2	SLC22A2	Xenopus	Norepinephrine	1900		
OCT2	SLC22A2	Xenopus	Histamine	1300		
OCT2	SLC22A2	Xenopus	Dopamine	390		
OCT2	SLC22A2	Xenopus	Serotonin	80		
OCT2	SLC22A2	HEK293	MPP	16	5	
OCT2	SLC22A2	HEK293	Dopamine	330		
OCT2	SLC22A2	Xenopus	Amantadine	27		
OCT2	SLC22A2	Xenopus	Memantine	34		
OCT3	SLC22A3	HeLa	TEA	2500		
OCT3	SLC22A3	HRPE	MPP	47		
OCTN1	SLC22A4	Fibroblasts	L-Carnitine	6.6	6	
OCTN2	SLC22A5	HEK293	L-Carnitine	4.34	C	
OCTN2	SLC22A5	HEK293	L-Carnitine	4.3		
OCTN2	SLC22A5	HEK293	D-Carnitine	10.9		
OCTN2	SLC22A5	HEK293	Acetyl-L-carnitine	8.5		
OCTN2	SLC22A5	Xenopus	L-Carnitine	4.8		
OCTN2	SLC22A5	Xenopus	D-Carnitine	98		
OCTN2	SLC22A5	JAR	L-Carnitine	3.5	6	

OCT1 and OCT2 are predominantly expressed in the kidney and liver. These transporters are located on the basolateral surface of renal tubules and, therefore, play a role in the removal of organic cations from the blood. OCT3 is most abundantly expressed in placenta. In addition, other tissuespecific roles have been implicated for these transporters. As noted above, OCTs may play a role in transport of endogenous neuroleptic substrates, and OCT3 has been implicated in the disposition of cationic neurotoxins and neurotransmitters in the brain (Wu, et al., J Biol Chem. 273: 32776-86, 1998). Dhillon et al. (Clin Pharmacol Ther. 65: 205, 19996) used RT-PCR followed by functional transport studies (TEA) to identify OCT1 expression in a human mammary epithelial cell line (MCF12A). Further, the OCT1 gene has been shown to be up regulated in lactating mammary epithelial cells.

The OCTN1 gene, cloned from a cDNA, shows sequence similarity to organic cation transporter genes, which is highly expressed in kidney as well as trachea, bone marrow and fetal liver. Recombinant OCTN1 expressed in mammalian cells exhibited saturable uptake of TEA that was pH sensitive. Several others suggest that OCTN1 is a renal proton/organic cation antiporter functioning at the epithelial apical membrane. The uptake of pyrilamine, quinidine, verapamil and L-carnitine were increased by expression of OCTN1 in *Xenopus* oocytes.

Another OCT protein family member, OCTN2, cloned from a human placental trophoblast cell line, is expressed widely in human tissues including kidney, placenta and heart. OCTN2 is more closely related to OCTN1 than to OCT1, OCT2 and OCT3 (Biochem Biophys Res Commun. 246: 589-95, 1998). Transfection of OCTN2 has demonstrated its role in the transport of TEA and carnitine. OCTN2-mediated transport of TEA is sodium independent, whereas transport of carnitine is sodium-dependent. The role of sodium in OCTN2-mediated carnitine transport not only involves the electrogenic gradient, but the presence of sodium also alters the affinity of OCTN2 for carnitine. Germline mutations of OCTN2 result in primary carnitine deficiency, a syndrome of progressive cardiomyopathy and skeletal myopathy. The symptoms associated with this syndrome are thought to result not only from generalized carnitine deficiency from decreased renal carnitine reabsorbtion, but also from inability of cardiac and skeletal myocytes, which ordinarily express OCTN2, to accumulate carnitine. This syndrome demonstrates that tissue-specific OCT-mediated transport is essential for accumulation of required cations in specific tissues.

The present invention identifies a new transport protein in the OCT family, OCT6, preferentially expressed in leukemia cell lines, leukemia blast cells and CD34+ cells. The cell surface localization and the transporter function of the OCT6 gene product suggest its usefulness as a target in the diagnosis and treatment of hematologic malignancies.

As used herein, the term "antibody" refers to an immunoglobulin molecule with a specific amino acid sequence 55 evoked in by an antigen, and characterized by reacting specifically with the antigen in some demonstrable way.

As used herein, the term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the compositions of the present invention are administered.

As used herein, "compound" refers to any agent, chemical, substance, or substrate, whether organic or inorganic, or any protein including antibodies, peptides, polypeptides, peptoids, and the like.

As used herein, the term cytotoxin" or cytoxic agent includes any specific substance, which may or may not be antibody, that inhibits or prevents the functions of cells, causes destruction of cells, or both.

As used herein, the term "derivative" refers to something produced by modification of something pre-existing; for example, a substance or chemical compound that may be produced from another substance or compound of similar structure in one or more steps.

As used herein, the term "fragment" refers to a part of a larger entity, said larger entity comprising by non-limiting example, an antibody, compound or substance.

As used herein, the term "leukemia blast" or "leukemic blast" refers to lymphoblasts, the abnormal immature white 10 blood cells associated with leukemia.

As used herein, the term "monoclonal antibody" is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, 15 prokaryotic, or phage clone, and not the method by which it is produced.

As used herein, the term "pharmaceutically acceptable carrier" refers to a carrier that may be administered to a subject, together with one or more liver protecting agents and one or 20 more mushroom powder or extract of the present invention, and which does not destroy the pharmacological activity thereof and is nontoxic when administered in doses sufficient to deliver a therapeutic amount of the compound.

As used herein, the term "substrate" refers to a substance, 25 compound, agent, antibody or derivatives and/or fragment thereof, acted upon by the OCT6 transporter protein (e.g., a substance that is taken across the cellular membrane by action of the OCT6 transporter protein).

OCT6 (SEQ ID NO:1) was first identified as a potential OCT gene by assembling and sequencing ESTs as described in Example 1 (amino acid sequence of OCT6 is SEQ ID NO:2). The gene sequence proved to be identical to the recently submitted cDNA OKB1 (GenBank AF268892) submitted by M. Okabe and T. Abe, incorporated herein in its entirety. It is also contained within the submitted BAC clone CTA-331P3 (SEQ ID NO: 3) (GenBank AC002464) located at chromosome 6q21, incorporated herein in its entirety. The gene has a predicted protein structure typical of transport proteins with two groups of six transmembrane domains separated by a hydrophilic region (FIG. 1A). CLUSTALW alignment produced a dendrogram showing the phylogenic relationship between OCT6 and other OAT and OCT proteins (FIG. 1B). This dendrogram suggests that the distinction between OAT and OCT genes, based on functional studies, obscures the common origin of both families of transporters. The actual CLUSTALW alignment of these genes is shown in FIG. 2 and demonstrates multiple regions of conservation among all of these genes.

Next, according to the methods described in Example 3, quantitative RT PCR analysis of the expression of OCT6 was performed, along with the expression of other OCT genes, in 50 cell lines. The results are shown in Table 3. The two highest expressing cell lines for OCT6 in this panel were two leukemia cell lines, HL60, a human promyelocytic leukemia cell line, and MOLT4, a human acute lymphoblastic leukemia (T-cell) cell line. There was only a low level of expression detected in most of the other cell lines.

TABLE 3

	OCT expression in 50 cell lines of the NCI Drug Screen							
No.	Cell Line	source	OCT1	OCT2	OCT3	OCTN 2	OCT6	
1	CCRF-CEM	Leukemia	0.7	0.7	0.2	0.1	5.7	
2	HL-60	Leukemia	0.5	1.3	0.0	0.4	716	
3	K-562	Leukemia	1.4	1.2	0.2	1.4	5.2	
4	MOLT-4	Leukemia	0.1	1.1	0.5	0.6	46.8	
5	RPMI-8226	Leukemia	2.8	2.0	0.1	3.7	6.02	
6	SR	Leukemia	1.9	1.1	0.0	0.3	2.6	
7	A549/ATCC	Lung cancer	1.7	1.2	161	4.3	1.2	
8	HOP-62	Lung cancer	0.8	4.8	0.6	2.4	4.1	
9	NCI-H226	Lung cancer	4.8	0.5	0.1	21.1	4.8	
10	NCI-H23	Lung cancer	0.5	0.7	0.0	0.3	5.2	
11	NCI-H460	Lung cancer	0.7	1.0	0.0	1.7	1.8	
12	COLO205	Colon Ca.	4.9	5.3	30.9	2.2	3.6	
13	HCC-2998	Colon Ca.	1.5	1.0	0.0	2.6	5.4	
14	HCT-116	Colon Ca.	1.7	2.1	0.1	2.8	9.7	
15	HCT-15	Colon Ca.	0.9	1.7	0.1	3.5	4.2	
16	HT-29	Colon Ca.	1.9	1.2	18.1	1.5	1.5	
17	KM-12	Colon Ca.	0.6	1.0	12.2	0.7	2.1	
18	SW-620	Colon Ca.	1.0	2.6	40.4	1.9	3.7	
19	SF-268	CNS Tumor	0.4	0.8	0.0	0.9	2	
20	SF-295	CNS Tumor	0.5	1.2	0.2	1.1	2.5	
21	SF-539	CNS Tumor	0.5	0.6	2.3	0.2	5.3	
22	SNB-75	CNS Tumor	0.8	1.8	0.0	0.6	2.3	
23	U251	CNS Tumor	0.8	0.9	0.0	0.6	7.4	
24	LOCIMVI	Melanoma	2.9	2.1	0.1	0.4	3.6	
25	MALME-3M	Melanoma	1.5	1.5	0.0	2.3	3	
26	M14	Melanoma	1.9	1.4	0.0	1.9	4.7	
27	SK-MEL-2	Melanoma	2.1	1.9	0.0	2.2	3.9	
28	SK-MEL-5	Melanoma	2.6	1.5	0.0	1.9	2.7	
29	UACC-257	Melanoma	3.2	3.6	0.0	1.1	5.4	
30	IGROV1	Ovarian Ca.	4.9	5015	17.9	1.8	2.5	
31	OVCAR-3	Ovarian Ca.	1.4	0.1	0.0	2.2	14	
32	OVCAR-4	Ovarian Ca.	2.6	1.4	0.0	8.9	3.4	
33	OVCAR-5	Ovarian Ca.	3.5	2.7	105	10.0	4.8	
34	OVCAR-8	Ovarian Ca.	1.1	1.0	0.0	0.8	1.6	
35	SK-OV-3	Ovarian Ca.	3.9	1995	9.2	8.5	9.8	
36	A498	Renal Ca.	2.2	13.4	180	4.7	1.3	
37	ACHN	Renal Ca.	1.1	1.1	0.7	1.2	1.1	
38	CAKI_1	Renal Ca.	3.5	2.5	4.8	1.8	2.8	

	TABLE 3-continued							
	OCT	expression in 5	0 cell lines	of the NC	I Drug Sc	reen		
No.	Cell Line	source	OCT1	OCT2	OCT3	OCTN 2	OCT6	
39	RXF-393	Renal Ca.	1.7	1.2	3.0	0.6	1.2	
40	TK-10	Renal Ca.	3.6	5.0	16.8	2.5	8	
41	UO-31	Renal Ca.	4.4	1.6	31.2	1.2	2.3	
42	PC-3	Prostate Ca.	2.1	0.8	9.6	3.3	4.7	
43	DU-145	Prostate Ca.	1.1	1.1	3.4	1.6	3	
44	MCF-7	Breast Ca.	0.8	1.8	0.0	10.4	3.5	
45	NCI/ADR-RES	Breast Ca.	1.4	1.3	1.1	2.0	2.1	
46	MDA-MB-231	Breast Ca.	1.2	0.4	3.9	4.8	1.8	
47	HS578T	Breast Ca.	1.0	1.5	0.0	1.2	8.3	
48	MDA-MB-435	Breast Ca.	1.9	0.6	0.1	0.7	2.7	
49	BT-549	Breast Ca.	1.2	0.8	0.1	0.3	2.6	
50	T-47D	Breast Ca.	0.7	1.1	0.1	4.2	8.7	

OCT6 is unique among the known members of OCT and OAT genes because of its pattern of tissue distribution. The pattern of expression of the OCT6 gene in the 50 cell lines suggested that its expression might be restricted to hematopoietic tissues. The restricted pattern of expression observed 25 for OCT6 also suggests that therapies using OCT6-specific substrates are unlikely to have widespread toxicity to normal tissues. Therefore, we examined OCT6 expression in a cDNA panel representing a wide cross-section of normal tissues according to the methods of Example 4 (FIG. 3). This study 30 revealed that OCT6 RNA levels are highest in testis and fetal liver, with lower but detectable levels in peripheral blood leukocytes and bone marrow. Since fetal hematopoiesis occurs in the liver, it is possible that the fetal liver sample may have included both hepatocytes and hematopoietic cells. OCT6 RNA levels were also barely detectable in pancreatic and adrenal tissue. Unlike other OCT genes, expression was not detectable in liver, kidney or placenta.

To determine whether OCT6 RNA expression in hematopoietic cells was lineage-specific, leukocytes were sorted from discarded buffy coat specimens by flow cytometry, and purified subpopulations were examined for OCT6 RNA expression according to the methods described in Example 5. OCT6 expression was also examined in a population of 45 CD34+ cells. As can be seen in FIG. 4, the expression of OCT6 was highly enriched in CD34+ cells in comparison to the other cell populations. Also, significant levels of OCT6 expression (relative to MOLT4) were found in other hematopoietic cell lines: U937, a human histiocytic lymphoma cell ⁵⁰ line; THP-1, a human acute monocytic leukemia cell line; KG-1, a human erythroleukemia cell line; and MV-4-11, a human biphenotypic (B-cell and myelomonocytic) leukemia cell line.

The high levels of OCT6 RNA in some leukemia cell lines and CD34+ cells also raised the question as to whether this gene was highly expressed in actual leukemias. To address this issue, the RNA levels of OCT6 in 25 samples of peripheral leukemic cells were measured according to the methods set out in Example 6. The FAB classification of these samples are shown in Table 4. These results are shown in FIG. **5**, and demonstrate that the majority of specimens contained RNA levels for OCT6 that exceeded the level found in MOLT4 cell line, the second highest expressing cell line among those 65 examined, and exceed by orders of magnitude the levels found in placenta, kidney and liver.

TABLE 4

Phenotypes of leukemia specimens			
Sample Number	Description		
1	CML, blast crisis		
2	CML, blast crisis		
3	CML, stable phase		
4	CML, probably stable phase		
5	CML, accelerated phase		
6	ALL		
7	ALL		
8	AML		
9	ALL		
10	ALL		
11	ALL		
12	AML		
13	AML		
14	AML		
15	AML		
16	ALL, biphenotypic		
17	ALL, biphenotypic		
18	AML		
19	AML, M2		
20	AML, M2		
21	AML, M4		
22	AML, M4		
23	AML, M1		
24	AML		
25	AML, M4		

Due to the OCT6 protein's location on the cellular membrane and its function as an intracellular transporter, the OCT6 transporter protein has been identified as a therapeutic target. Basic principles of cellular pharmacology suggest that increase in intracellular accumulation will lead to increased intracellular effect. For anticancer drugs, this principle has been studied extensively in the context of lipophilic drugs, which require no specific mechanism for cellular uptake, and export pumps such as the product of the multidrug resistance gene, MDR1, whose overexpression of MDR1 leads to increased cellular resistance by decreasing intracellular concentrations of drug (Moscow, J. A., Schneider, E. S., Ivy, S. P., and Cowan, K. H. Multidrug resistance. In: H. M. Pinedo, D. L. Longo, and B. A. Chabner (eds.), Cancer chemotherapy and biological response modifiers. Annual 17. New York: Elsevier, 1997). The same principle applies to charged, hydrophilic drugs of the present invention, except that the determinants of sensitivity depend on uptake as opposed to efflux. As such, cells overexpressing an OCT6 transporter are likely to be highly sensitive to cytotoxic OCT6 substrates.

Drug Screening

Accordingly, the present invention provides methods for screening potential substrates of, and potential therapeutic agents against hematological malignancies like leukemia that overexpress, the OCT6 transporter. In particular, potential 5 therapeutic agents are screened for the ability to be a substrate recognized by an OCT6 transporter protein. Preferably, potential substrates are screened for the ability to confer cytotoxic effects on a cell overexpressing OCT6 transporter protein. More preferably, agents are screened for the ability to 10 preferentially cause cellular uptake into, and cell death of, cells overexpressing the OCT6 transporter. Most preferably, the agents are screened for the ability to cause cell death of cancer cells such as leukemia overexpressing the OCT6 transporter as compared to normal cells.

11

A method for screening potential substrates of the OCT6 transporter protein comprises providing a cell or cell line which expresses OCT6 and a test compound, incubating the test compound and cell line and analyzing the cell or cell line to determine if there was a cellular influx of the test com- 20 pound. Analysis of the cell line to determine whether cellular uptake of the test compound occurred can be accomplished by any means known in the art. For example, a test compound can be tagged with a detectable label prior to contact with a cell and then observed under microscopy or by other means 25 microscopy. for its location. Non-limiting examples of labels include green fluorescent protein, alkaline phosphatase, horseradish peroxidase, rease, f3-galactosidase, CAT, luciferase, an immunogenic tag peptide sequence, an extrinsically activatable enzyme, an extrinsically activatable toxin, an extrinsi- 30 cally activatable fluor, an extrinsically activatable quenching agent, a radioactive element or an antibody.

A method for screening candidate anti-cancer agents comprises determining the viability of a mammalian cell which expresses OCT6 incubated in the presence and absence of a 35 test compound and identifying the test compound as a potential anti-leukemia agent if there is a cellular uptake of the test compound and cell death. Analysis of cell viability can be accomplished by any means known in the art.

It is well known in the art that viability of a cell can be 40 determined by contacting the cell with a dye and viewing it under a microscope. Viable cells can be observed to have an intact membrane and do not stain, whereas dying or dead cells having "leaky" membranes do stain. Incorporation of the dye by the cell indicates the death of the cell. The most common 45 dye used in the art for determining viability is trypan blue. Viability of cells can also be determined by detecting DNA synthesis. Cells can be cultured in cell medium with labeled nucleotides (e.g., ³H thymidine). The uptake or incorporation of the labeled nucleotides indicates DNA synthesis and cell 50 viability. In addition, colonies formed by cells cultured in medium indicate cell growth and is another means to test viability of the cells.

Identification and/or observation of cells undergoing apoptosis can be another method of determining cell viability. 55 Apoptosis is a specific mode of cell death recognized by a characteristic pattern of morphological, biochemical, and molecular changes. Cells going through apoptosis appear shrunken, and rounded; they also can be observed to become detached from culture dish. Thermophological changes 60 involve a characteristic pattern of condensation of chromatin and cytoplasm which can be readily identified by microscopy. When stained with a DNA-binding dye, such as H33258, apoptotic cells display classic condensed and punctate nuclei instead of homogeneous and round nuclei. 65

The hallmark of apoptosis is the endonucleolysis, a molecular change in which nuclear DNA is initially degraded 12

at the linker sections of nucleosomes to give rise to fragments equivalent to single and multiple nucleosomes. When these DNA fragments are subjected to gel electrophoresis, they reveal a series of DNA bands which are positioned approximately equally distant from each other on the gel. The size difference between the two bands next to each other is about the length of one nucleosome (i.e., 20 base pairs). This characteristic display of the DNA bands is called a DNA ladder and it indicates apoptosis of the cell. Apoptotic cells can be identified by flow cytometric methods based on measurement of cellular DNA content, increased sensitivity of DNA to denaturation, or altered light scattering properties. These methods are well known in the art and are within the contemplation of the invention.

Abnormal DNA breaks are also characteristic of apoptosis and can be detected by any means known in the art. In one embodiment, DNA breaks are labeled with biotinylated dUTP (b-dUTP). Cells are fixed and incubated in the presence of biotinylated dUTP with either exogenous terminal transferase (terminal DNA transferase assay; TdT assay) or DNA polymerase (nick translation assay; NT assay). The biotinylated dUTP is incorporated into the chromosome at the places where abnormal DNA breaks are repaired, and are detected with fluorescein conjugated to avidin under fluorescence

Kits

The present invention provides kits that can be used in the above screening methods. In one embodiment, a kit comprises a substantially isolated polypeptide comprising an OCT6 epitope which is specifically immunoreactive with only test compound(s) that are substrates of the OCT6 transporter protein. Binding of a test compound to the OCT6 epitope is indicative that the test compound is a OCT6 substrate. In another embodiment, a kit comprises a cell line that overexpresses an OCT6 transporter protein. Binding and/or cellular uptake of a test compound via the OCT6 protein is indicative that the test compound is a OCT6 substrate. Preferably, the kits of the present invention further comprise a control compound or antibody which does not react with the OCT6 transporter protein. In another specific embodiment, the kits of the present invention contain a means for detecting the binding of a test compound to an OCT6 epitope and/or cellular uptake of a test compound. For example, the test compound may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate.

The detectable substance may be coupled or conjugated either directly to the test compound (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Pat. No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention. Further non-limiting examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, nonradioactive paramagnetic metal ions, immunogenic tag peptide sequences, extrinsically activatable toxins, extrinsically activatable quenching agents, or antibodies. Non-limiting examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/bi-

otin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials ⁵ include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ¹¹¹In or ⁹⁹Tc.

Immunogenic Compositions

The present invention also provides immunogenic compositions for the treatment of hematological malignancies. Nonlimiting exemplary hematological malignancies include, but are not limited to, Hodgkin's disease, leukemia such as, acute lymphoid (lymphocytic or lymphoblastic) leukemia (ALL), acute myeloid (myelogenous or myeloblastic) leukemia 15 (AML), acute lymphoid leukemia, biphenotypic (ALL, biphentoypic), acute undifferentiated leukemia (AUL), chronic myeloid (myelogenous or granulocytic) leukemia (CML), erythroleukemia, granuloxytic leukemia, lymphoma, monocytic leukemia, myleoma, myelomonocytic leukemia, 20 myelodysplastic syndromes, non-Hodgkin lymphoma, progranulocytic leukemia.

According to the invention immunogenic compositions for the treatment of hematological malignancies comprise a substrate recognized by an OCT6 transporter protein. Preferably, ²⁵ the substrate is a compound that binds selectively or specifically to a OCT6 transporter protein. In a preferred embodiment, the compound binds selectively to the OCT6 transporter protein encoded by a nucleotide sequence of SEQ ID NO:1. The compound may be a cytotoxin or coupled or conjugated with a cytoxic agent. Preferably the cytoxin or cytotoxic agent is a chemotherapeutic agent.

The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier.

Cell surface proteins like the OCT6 transporter can be utilized in antibody-based targeting strategies. In still another aspect of the invention, antibodies can be developed by known methods in the art against the external epitope of OCT6 transporter protein. In a preferred embodiment, antibodies are substrates of the OCT6 protein. The antibodies may be polyclonal antibodies or monoclonal antibodies.

Polyclonal antibodies to an antigen-of-interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen. Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and *corynebacterium parvum*. Such adjuvants are also well known in the art.

Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Harlow et al., 65 Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in:

Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties).

The present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate, such as, for example, a linker known in the art, using techniques known in the art. (See, for example, U.S. Pat. No. 4,741,900 for metal ions which can be conjugated to antibodies for use as diagnostics according to the present invention.) Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ¹¹¹In or ⁹⁹Tc.

Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, ²¹³Bi. Non-limiting examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozoto-(DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).

The conjugates of the invention can be used for modifying a given biological response such as inducing cell death for the treatment and prevention of hematological malignancies like leukemia. The therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity for inducing cell death. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, a-interferon, .beta.interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g.,

35

60

65

TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, International Publication No. WO 97/34911), Fas Ligand (Takahashi et al., Int. Immunol., 6:1567-1574 (1994)), VEGI (See, International Publication No. WO 99/23105), a thrombotic agent or an anti-angio-5 genic agent, e.g., angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL-2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G- 10 CSF"), or other growth factors.

Therapeutic Treatment

The present invention is further directed to methods for preventing and treating hematological malignancies such as leukemia. According to the invention, hematological malignancies comprise without limitation, Hodgkin's disease, leukemia such as, acute lymphoid (lymphocytic or lymphoblastic) leukemia (ALL), acute myeloid (myelogenous or myeloblastic) leukemia (AML), acute lymphoid leukemia, biphenotypic (ALL, biphentoypic), acute undifferentiated 20 leukemia (AUL), chronic myeloid (myelogenous or granulocytic) leukemia (CML), erythroleukemia, granuloxytic leukemia, lymphoma, monocytic leukemia, myleoma, myelomonocytic leukemia, myelodysplastic syndromes, non-Hodgkin lymphoma, progranulocytic leukemia.

Methods of treatment of the present invention comprise administering to a subject in need thereof an immunogenic composition of the present invention. The compositions may be administered with a pharmaceutically acceptable carrier.

Such pharmaceutical carriers can be sterile liquids, such as 30 water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The com-40 position, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated 45 as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate. etc. Examples of suitable pharmaceutical 50 carriers are described in "Remington's Pharmaceutical Sciences" by E. W. Martin. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration.

In a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent.

Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration.

The compounds of the invention can be formulated as neutral or salt forms. Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc.

The amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of hematological malignancies can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose-response curves derived from in vitro or animal model test systems.

Various other delivery systems are known and can be used to administer a composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptormediated endocytosis (See, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.

In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.

In another embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome (See Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.)

In yet another embodiment, the compound or composition can be delivered in a controlled release system. In one

65

embodiment, a pump may be used (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321: 574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Fla. (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., Science 228: 190 (1985); During et al., Ann. Neurol. 25:351 (1989); Howard et al., J. Neurosurg. 71:105 (1989)). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, i.e., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).

In a specific embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate ²⁰ nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Pat. No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or ²⁵ transfecting agents, or by administering it in linkage to a homeobox-like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA ³⁰ for expression, by homologous recombination.

EXAMPLES

The following examples are presented for the illustrative ³⁵ purposes and it is to be understood that the present invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope and spirit of the invention as defined by the appended claims.

Example 1

OCT6 Nucleotide Sequence Identification and Analysis

OCT6 was first identified as a potential OCT gene by assembling and sequencing ESTs. BLAST searches of human ESTs in GenBank data base identified AI040384 (654 bp), AA033971 (714 bp) and H70190 (474 bp) sequences 50 from three fetal liver IMAGE clones, 1656502, 429904 and 212935 respectively. IMAGE clone 1656502 (3', insert 1337 bp) ended the predicted 3' stop codon, whereas IMAGE clone 429904 (5', insert 996 bp) and IMAGE clone 212935 (5', insert 966 bp) aligned with the 5'-coding region. All clones were obtained from the IMAGE Consortium through the American Type Culture Collection (Manassas, Va.). Each clone was sequenced in both directions. The sequences were determined using ABI Prism[™] 377 DNA sequencer (Perkin-Elmer). Our assemblage proved to be identical to the recently submitted cDNA OKB1 (AF268892) submitted by M. Okabe 60 and T. Abe. We have dubbed this gene OCT6 as OCTN1 and OCTN2 may be considered as OCT4 and OCT5 respectively.

The OCT6 gene (SEQ ID NO:1) is also contained within BAC clone CTA-331P3 (SEQ ID NO:3) (GenBank AC002464) located at chromosome 6q21. It is divided into 6 exons that span 42 kb on the human genome, from nucleotide 79,570 to nucleotide 120490 on CTA-331P3.

The gene has a predicted protein structure typical of transport proteins with 2 groups of 6 transmembrane domains separated by a hydrophilic region (FIG. 1A). The large hydrophilic region between TMD1 and TMD2 is typical of OCT and OAT genes and is presumed to be located on the outside surface of the cell membrane. The OCT6 protein contains potential sites for N-glycosylation and phosphorylation, which will be described below in Methods. Of interest, the protein sequence also contains a 22 amino acid leucine zipper motif, starting at amino acid 146, suggesting that there may be a physical interaction between OCT6 and ion channels or other membrane-associated proteins.

CLUSTALW alignment produced a dendrogram showing the phylogenic relationship between OCT6 and other OAT and OCT proteins (FIG. 1B). This dendrogram suggests that the distinction between OAT and OCT genes, based on functional studies, obscures the common origin of both families of transporters. The actual CLUSTALW alignment of these genes is shown in FIG. 2 and demonstrates multiple regions of conservation among all of these genes.

The hydropathy profile analysis, multiple sequence alignments of amino acid sequences using CLUSTALW and the phylogenetic tree were all produced with MacVector software.

Example 2

Molecular Cloning of OCT6

BLAST searches of human ESTs in GenBank data base
³⁰ identified AI040384 (654 bp), AA033971 (714 bp) and H70190 (474 bp) sequences from three fetal liver IMAGE clones, 1656502, 429904 and 212935 respectively. IMAGE clone 1656502 (3', insert 1337 bp) ended the predicted 3' stop codon, whereas IMAGE clone 429904 (5', insert 996 bp) and
³⁵ IMAGE clone 212935 (5', insert 966 bp) aligned with the 5'-coding region. All clones were obtained from the IMAGE Consortium through the American Type Culture Collection (Manassas, Va.). Each clone was sequenced in both directions. The sequences were determined using ABI Prism[™]
⁴⁰ 377 DNA sequencer (Perkin-Elmer).

Example 3

Quantitative RT-PCR of OCT6 RNA Levels in Cancer Cell Lines

Total RNA isolated from 50 cell lines used in the NCI drug screen program was provided by the Developmental Therapeutics Program, NCI. Quantitative RT-PCR for detecting OAT-X transporter gene expression was performed by using a Roche LightCycler, which uses real time fluorescence detection for quantitative measurement of PCR products. A genespecific primer pair was designed with Oligo 4.0 software and purchased from Integrated DNA Technologies, Inc. (Coralville, Iowa) (F: 5'-GGCACATTTATTCACCAAGACCAG-3') (SEQ ID NO: 13) and (F: 5'-TGTGGACCTCAGCAG-CATTTGGAT-3') (SEQ ID NO:14). The specificity of the PCR reaction was confirmed by directly determining the DNA sequence of the PCR product. First, cDNA was synthesized from total RNA using SuperScript First-Strand Synthesis System (GIBCO/BRL) in a 20 µl volume following the instructions supplied by the manufacturer. The cDNA treated with RNAse H for 20 minutes at 37° C. and stored at -20° C. Then, 2 ul of cDNA reaction was amplified in a standard PCR reaction condition, using 0.3 µM primer concentration, with the addition of SYBR Green I Dye. After 30 seconds denature at 95° C., the amplification reaction proceeded through 45-50 cycles of 95° C. denature for 0 second, 62-65° C. annealing

25

35

for 10 seconds and a 72° C. extension for 40 seconds, with slopes of 20° C./s, 20° C./s and 2° C./s, respectively.

Fluorescence was acquired during each cycle after heating to a temperature just below the product melting temperature. Quantification was performed using the LightCycler analysis 5 software. The log-linear portion of the standard amplification curve was identified, and the 'crossing point', a threshold of relative fluorescence, was determined as the best fit through the log-linear region above the background fluorescence (noise) band. The quantification of PCR product then was derived by plotting fluorescence data in the log linear region of each sample to determine a calculated number of cycles needed to reach the fluorescence crossing point. The calculated number of cycles required to reach the crossing point is proportional to the amount of target RNA in the sample. The relative amount of product was described in arbitrary units by interpolation of the data using a standard curve of a series of dilutions of a standard cell line RNA. The quantitative measurement of each gene in each cell line was normalized to the relative amount of actin RNA in each cell line, as a control for equivalent cDNA loading in each sample. The results repre-20 sent the average of 3 independent determinations performed in duplicate.

A melting curve analysis was performed with positive control RNA prior analysis of the cell lines to enhance sensitivity and the specificity of the data. Amplified products usually melt quickly at a temperature characteristic for the products. The fluorescence signal was acquired at a temperature just below the Tm of the specific PCR product and above the Tm of the primer dimers. All specific PCR products displayed a single, sharply melting curve with a narrow peak. In addition, PCR products were confirmed for specificity and correct size by visualization of the LightCycler products on a 1% agarose gel.

Example 4

Tissue Distribution

First strand cDNAs derived from 24 adult and fetal tissues (RAPID-SCAN gene expression panel, OriGene Technologies, Rockville, Md.). The PCR primers used in this study 20

were the same as used in the quantitative RT-PCR studies. The PCR reaction samples were denatured at 94° C. for 30 seconds, annealed and extended at 64° C. for 30 sec for 35 cycles. The PCR products were then visualized on 1% agarose gels.

Example 5

Cell Sorting

All human specimens were obtained in accordance with institutional IRB guidelines. Leukocytes from fresh discarded buffy coats were isolated after RBC lysis with ammonium chloride and labeled with lineage specific antibodies (CD14, monocytes; CD15, granulocytes; CD3, T-cells; and CD20, B-cells), and isolated using a FACSVantage flow cytometer. Each population was sorted twice to ensure purities of at least 99%. CD34 cells were obtained from discarded aliquots of G-CSF-mobilized peripheral blood stem cell collections from cancer patients. For each sample, the PCR results represent the pooled average of cells from 2 individuals performed in triplicate or quadruplicate.

Example 6

OCT6 RNA Levels in Leukemic Blasts

Total RNA was extracted from leukemia specimens using QIAGEN RNeasy midi kit. 150 ng of total RNA were used as a template for the first strand cDNA synthesis with the Oligo (dT) primer using the super script system (GIBCO BRL) according to the manufacturer's protocol. Quantitative realtime RT-PCR was performed using an iCycler thermal cycler with methods similar to those described above for the Roche LightCycler. The results represent the average of 3 independent determination performed in duplicate.

Although illustrative embodiments of the present invention have been described in detail, it is to be understood that the present invention is not limited to those precise embodiments, and that various changes and modifications can be effected therein by one skilled in the art without departing from the scope and spirit of the invention as defined by the appended claims.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 14

```
<210> SEQ ID NO 1
<211> LENGTH: 1734
<212> TYPE: DNA
```

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 1

atggggtccc	gccacttcga	ggggatttat	gaccacgtgg	ggcacttcgg	cagattccag	60
agagtcctct	atttcatatg	tgccttccag	aacatctctt	gtggtattca	ctacttggct	120
tctgtgttca	tgggagtcac	ccctcatcat	gtctgcaggc	ccccaggcaa	tgtgagtcag	180
gttgttttcc	ataatcactc	taattggagt	ttggaggaca	ccggggccct	gttgtcttca	240
ggccagaaag	attatgttac	ggtgcagttg	cagaatggtg	agatctggga	gctctcaagg	300
tgtagcagga	ataagaggga	gaacacatcg	agtttgggct	atgaatacac	tggcagtaag	360
aaagagtttc	cttgtgtgga	tggctacata	tatgaccaga	acacatggaa	aagcactgcg	420
gtgacccagt	ggaacctggt	ctgtgaccga	aaatggcttg	caatgctgat	ccagccccta	480

tttatgtttg gagtcctact gggatcggtg acttttggct acttttctga caggctagga 54	0								
cgccgggtgg tcttgtgggc cacaagcagt agcatgtttt tgtttggaat agcagcggcg 60	0								
tttgcagttg attattacac cttcatggct gctcgctttt ttcttgccat ggttgcaagt 66	0								
ggctatcttg tggtggggtt tgtctatgtg atggaattca ttggcatgaa gtctcggaca 72	0								
tgggcgtctg tccatttgca ttccttttt gcagttggaa ccctgctggt ggctttgaca 78	0								
ggatacttgg tcaggacctg gtggctttac cagatgatcc tctccacagt gactgtcccc 84	0								
tttateetgt getgttgggt geteecagag acacettttt ggettetete agagggaega 90	0								
tatgaagaag cacaaaaaat agttgacatc atggccaagt ggaacagggc aagctcctgt 96	0								
aaactgtcag aacttttatc actggaccta caaggtcctg ttagtaatag ccccactgaa 102	0								
gttcagaagc acaacctatc atatctgttt tataactgga gcattacgaa aaggacactt 108	0								
accgtttggc taatctggtt cactggaagt ttgggattct actcgttttc cttgaattct 114	0								
gttaacttag gaggcaatga atacttaaac ctcttcctcc tgggtgtagt ggaaattccc 120	0								
gcctacacct tcgtgtgcat cgccacggac aaggtcggga ggagaacagt cctggcctac 126	0								
tetetttet geagtgeact ggeetgtggt gtegttatgg tgateeceea gaaacattat 132	0								
attttgggtg tggtgacagc tatggttgga aaatttgcca tcggggcagc atttggcctc 138	0								
atttatettt atacagetga getgtateea aceattgtaa gategetgge tgtgggaage 144	0								
ggcagcatgg tgtgtcgcct ggccagcatc ctggcgccgt tctctgtgga cctcagcagc 150	0								
atttggatet teataceaea gttgtttgtt gggaetatgg eceteetgag tggagtgtta 156	0								
acactaaagc ttccagaaac ccttgggaaa cggctagcaa ctacttggga ggaggctgca 162	0								
aaactggagt cagagaatga aagcaagtca agcaaattac ttctcacaac taataatagt 168	0								
gggctggaaa aaacggaagc gattaccccc agggattctg gtcttggtga ataa 173-	4								
<pre><210> SEQ ID NO 2 <211> LENGTH: 578 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (264)(264) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (268)(269) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (268)(269) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (274)(275) <223> OTHER INFORMATION: Xaa can be any naturally occurring amino acid <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: (410)(410)</pre>									
<400> SEQUENCE: 2									
Met Gly Ser Arg His Phe Glu Gly Ile Tyr Asp His Val Gly His Phe 1 5 10 15									
Gly Arg Phe Gln Arg Val Leu Tyr Phe Ile Cys Ala Phe Gln Asn Ile 20 25 30									
Ser Cys Gly Ile His Tyr Leu Ala Ser Val Phe Met Gly Val Thr Pro 35 40 45									
His His Val Cys Arg Pro Pro Gly Asn Val Ser Gln Val Val Phe His 50 55 60									

65					70					75					80
Gly	Gln	Lys	Asp	Tyr 85	Val	Thr	Val	Gln	Leu 90	Gln	Asn	Gly	Glu	Ile 95	Trp
Glu	Leu	Ser	Arg 100	Суа	Ser	Arg	Asn	Lys 105	Arg	Glu	Asn	Thr	Ser 110	Ser	Leu
Gly	Tyr	Glu 115	Tyr	Thr	Gly	Ser	Lys 120	Lys	Glu	Phe	Pro	Cys 125	Val	Asp	Gly
Tyr	Ile 130	Tyr	Asp	Gln	Asn	Thr 135	Trp	Lys	Ser	Thr	Ala 140	Val	Thr	Gln	Trp
Asn 145	Leu	Val	Суз	Asp	Arg 150	Гла	Trp	Leu	Ala	Met 155	Leu	Ile	Gln	Pro	Leu 160
Phe	Met	Phe	Gly	Val 165	Leu	Leu	Gly	Ser	Val 170	Thr	Phe	Gly	Tyr	Phe 175	Ser
Asp	Arg	Leu	Gly 180	Arg	Arg	Val	Val	Leu 185	Trp	Ala	Thr	Ser	Ser 190	Ser	Met
Phe	Leu	Phe 195	Gly	Ile	Ala	Ala	Ala 200	Phe	Ala	Val	Asp	Tyr 205	Tyr	Thr	Phe
Met	Ala 210	Ala	Arg	Phe	Phe	Leu 215	Ala	Met	Val	Ala	Ser 220	Gly	Tyr	Leu	Val
Val 225	Gly	Phe	Val	Tyr	Val 230	Met	Glu	Phe	Ile	Gly 235	Met	Lys	Ser	Arg	Thr 240
Trp	Ala	Ser	Val	His 245	Leu	His	Ser	Phe	Phe 250	Ala	Val	Gly	Thr	Leu 255	Leu
Val	Ala	Leu	Thr 260	Gly	Tyr	Leu	Хаа	Arg 265	Thr	Trp	Xaa	Xaa	Tyr 270	Gln	Met
Ile	Хаа	Xaa 275	Ser	Thr	Val	Thr	Val 280	Pro	Phe	Ile	Leu	Cys 285	Суз	Trp	Val
Leu	Pro 290	Glu	Thr	Pro	Phe	Trp 295	Leu	Leu	Ser	Glu	Gly 300	Arg	Tyr	Glu	Glu
Ala 305	Gln	Lys	Ile	Val	Asp 310	Ile	Met	Ala	Lys	Trp 315	Asn	Arg	Ala	Ser	Ser 320
Сув	Lys	Leu	Ser	Glu 325	Leu	Leu	Ser	Leu	Asp 330	Leu	Gln	Gly	Pro	Val 335	Ser
Asn	Ser	Pro	Thr 340	Glu	Val	Gln	Lys	His 345	Asn	Leu	Ser	Tyr	Leu 350	Phe	Tyr
Asn	Trp	Ser 355	Ile	Thr	Lys	Arg	Thr 360	Leu	Thr	Val	Trp	Leu 365	Ile	Trp	Phe
Thr	Gly 370	Ser	Leu	Gly	Phe	Tyr 375	Ser	Phe	Ser	Leu	Asn 380	Ser	Val	Asn	Leu
Gly 385	Gly	Asn	Glu	Tyr	Leu 390	Asn	Leu	Phe	Leu	Leu 395	Gly	Val	Val	Glu	Ile 400
Pro	Ala	Tyr	Thr	Phe 405	Val	Сүз	Ile	Ala	Xaa 410	Asp	Lys	Val	Gly	Arg 415	Arg
Thr	Val	Leu	Ala 420	Tyr	Ser	Leu	Phe	Cys 425	Ser	Ala	Leu	Ala	Cys 430	Gly	Val
Val	Met	Val 435	Ile	Pro	Gln	ГЛЗ	His 440	Tyr	Ile	Leu	Gly	Val 445	Val	Thr	Ala
Met	Val 450	Gly	Lys	Phe	Ala	Ile 455	Gly	Ala	Ala	Phe	Gly 460	Leu	Ile	Tyr	Leu
Tyr 465	Thr	Ala	Glu	Leu	Tyr 470	Pro	Thr	Ile	Val	Arg 475	Ser	Leu	Ala	Val	Gly 480
Ser	Gly	Ser	Met	Val 485	Суз	Arg	Leu	Ala	Ser 490	Ile	Leu	Ala	Pro	Phe 495	Ser

-continued

Val Asp Leu Ser Ser : 500	le Trp Ile	Phe Ile Pro 505	Gln Leu Phe 510	Val Gly	
Thr Met Ala Leu Leu S 515	Ser Gly Val 520	Leu Thr Leu	Lys Leu Pro 525	Glu Thr	
Leu Gly Lys Arg Leu 530	Ala Thr Thr 535	Trp Glu Glu	Ala Ala Lys 540	Leu Glu	
Ser Glu Asn Glu Ser I 545	Jys Ser Ser 550	Lys Leu Leu 555	Leu Thr Thr	Asn Asn 560	
Ser Gly Leu Glu Lys 5 565	Thr Glu Ala	Ile Thr Pro 570	Arg Asp Ser	Gly Leu 575	
Gly Glu					
<210> SEQ ID NO 3 <211> LENGTH: 123805 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens				
<400> SEQUENCE: 3					
aagettgtee aacceatgge	ccacgggcca	catgtggcct	aagatggctt	tgaatgcagc	60
ccaacacaaa tttgtaaaci	: ttcttaaagc	attgagatat	ttttgcaatt	ttcttttta	120
gctcatcagc tatcgttag	: gttagtgtat	tttatatgtg	gtgcaagaca	attcgtcttc	180
ttccaatgtg gcccagggaa	a gccaaaagat	tggacacccc	gtgagatett	ctaggcgact	240
ggcccccagt gaaattgtga	a tcacggagga	tagtagagtc	ccggtagtac	acataggaga	300
tgttccacaa actccatate	g atcagcaccg	l ttttcgggag	gccccacact	gtgccgaaca	360
tcatgaatca gtgagggtti	aggaagcaca	tcaacctccc	agtgtttggg	agctgctgtt	420
ttaagaaggt cccgtttac	e attetaetge	ccacatgaag	agtgaagact	aatccgtgga	480
caggatgeet etceagteta	a gctgtgcccc	getecetett	tctcatctaa	atcgaaccct	540
tttcctgtgg attgagatga	a aaagtccttg	aacgcaccac	cttgtgctgc	taggtcagtc	600
tagacaatat taagtcaca	ccattaagtt	ttccttaaag	aaaatgtttg	aaatatttct	660
tccttcagtt cgatactaa	g tgtatttgo	cacaagacac	ttcctgatga	cccaatttca	720
ggtccccatt cttttatcta	a tgtgagaatt	ctccactttc	agactctgct	taatttaact	780
ctctctgaaa atgtgcaagi	tcataaaaga	aggtgaaata	attactacgg	tacatacaaa	840
gaggtgaaca tttcttttt	: atgtacaaat	tgtgtgttac	cccaagtgga	ctttcctggg	900
cccgcctcct ccttctgtc	c caggatcctg	gcccagctct	gtcccccaat	gaactgcaga	960
ggtagagggg taaagaagag	g cagttgagtg	gctcagattg	ctgcctgaac	tctggaccga	1020
ggagcaatca cgagtaacco	c caaaaactgo	ccattggttt	gcgcactcat	agcatgaaaa	1080
caagttccgt tcttttgtgd	tgtcctggaa	catcagccag	ctcttaagtc	acgttgcccg	1140
gattcatgtg ctcctgcaa	gaaaggccct	attgtcaaca	aggctggtca	acaaggcaaa	1200
gcaaagtttg acccgtgca	caaaacctgg	aacatcctga	cttgttacgt	gctgagaaat	1260
gtgtgcttag tattgtatta	a aagtaaatgg	ggaggggcag	tgtctttaaa	aatacccaaa	1320
gcaaagaaaa atagatacta	a tctgctcaat	gtcccagagt	agaagttttt	aaaatgacct	1380
gagaaatagg tttattgct1	tcattgcttc	cttccttctt	cttcctcctt	ctctgacatt	1440
tggccctcct ctctaaaaa	ttcccctcat	agtgacccca	ggeteetgtt	gggaagtete	1500
acccactgtg tgggtgaaca	a agcaaagcaa	ctgttaaaaq	- tgttcagata	acatggacaa	1560
aaaacacatg gaaaagctga	a tatcgagtto	cattgggttt	ggagtggttc	ttgcgggcaa	1620

26

aggatgcagt	gagetgaaca	tacattaaaa	atacaaaccc	ttaagaggtg	actoortaad	1680
acttaaccc	agtatette	agagatgagt	atatagatag	atcacccaca	tattagata	1740
cctgagtgta	ccagtgaacc	tacccagatt	ttagtttcct	tttctataaa	atgatagett	1800
	otattaoaaa	tagattaga	antanttana	aattaaaata	acgucagooo	1000
ggllelgalg	atetteagge		ggleetigag	gerreagere	aaaccetage	1860
tetgetatet	acctcttctt	ggtgctgaga	ttccatgata	tccttcaatt	attgtgggac	1920
tgacttagta	gaaggcatca	gagggaatgg	aagcetetae	attatcaatg	cagaaattga	1980
ggcaagaggc	caacattatt	gcacaaaaca	tggcagatgt	tggaatgaag	aagacagtga	2040
gacacaggca	gcaacagagc	ctccttaatc	tctgacccaa	aagagtcttg	acttgaagtt	2100
ccccaagctc	cttctttct	cccaggcact	cactgctttc	aaagcgactt	caatctcaag	2160
ttgggagatg	tggcccagtt	cagggtctgc	cgcagactca	ggcaccatcc	cttctcctat	2220
ctcagtttct	tcactggcaa	atggaaggta	tacaattaga	tgatttttaa	agccaagctc	2280
agagctaaca	tccacaattc	caggaattcc	aggaaatgca	cactaaaact	aaggttctga	2340
aacaagtaaa	aaaacagacc	aaatgttcga	accaacgatt	ttcagacatt	ggagcacagg	2400
tggcacagga	aacaagtgag	gtgagtcctg	tgattgcccc	agcttgctgc	ctggagagac	2460
tttccaggcc	atggaacagg	gacatggaat	acaggtggag	cacagccata	tccctgtgta	2520
gaaggatggg	gctggggtcc	cagggacact	tgtgcaccta	gaactcacag	gagagaatac	2580
tggagagaag	aaagctgcac	acggagagaa	ctctgggctc	tgcagagtgt	catctttggg	2640
tcttcagcaa	agtattgatc	agcacatgca	tgtgaggaaa	agaaatgagg	ccagaaaaag	2700
aatcacccaa	aaagattaga	gggaaccatt	cctagagctc	ccaccagcca	gagaatagcc	2760
cctgtggcca	ccaaccacag	ttgaaaacct	tctaattcat	cgggcactga	gtagaacact	2820
ctgagtattg	tctcagtaat	gcagcccaat	tcagcttact	ctaaagtctc	ctgtggtccc	2880
tcctgacaag	gcttaaaagc	aagtettgge	tggcacggtg	gtgcgtgcct	gcagtcccag	2940
ctatccagga	gggtgagggc	tgaggcagca	tgacgactgt	tcaagccagg	agttcaagac	3000
cagcctgggc	aacatagtga	gattctgtat	cttttttt	tttttttt	tttaaaaaaa	3060
aaggccgggc	acggtgtgtc	aaccctgtaa	tcccagcact	ttgggaggcc	gaggtgggta	3120
gatcatctga	ggtcgggagt	ttgagacaag	cctgaccaac	atggagaaac	cctgtctcta	3180
ctaaaaacac	aaaattagtc	gggcgtggtg	gcacaggcca	gtaatcccag	ctactcgcga	3240
ggctgcggca	ggagaatcgc	ttgaacctag	gaggcagagg	ttgcagtgaa	tggagatcgc	3300
gcatcgctgt	ccagcctggg	caacaagagg	gaaactccat	ctaaaaaaca	aaacaaacaa	3360
acaaacaaaa	aacaagtcat	gaaaggatcg	aactgttttc	aagtaaatta	actgtgttct	3420
agaacaacac	tcaaaagttt	ttttgtgtgt	ttgtttgttt	tttaaagaat	atccaggcca	3480
ggcatggtgg	ctcacaccta	taatcccagc	actttgggag	accgaggaag	gtggatcact	3540
tgaggttagg	attttgagac	cagactggcc	tcaaacatgg	tgaaactctg	tgtcttctaa	3600
aaatacaaaa	attagccagg	tgtggtgggg	gaggtgctgt	agtcccagtt	actcaggagg	3660
ctgaggcagg	agaatcgttt	gaacctggga	ggaagaggtt	atactgagct	gagattacgc	3720
cactgaactc	cagcctggga	gacaaagtga	gactccgtct	caaaaaaata	aaaagaaaaa	3780
gaatatccaq	cactcaqcaa	gataaaattc	aagcaaqaqa	aacatqaaqq	aaattataac	3840
aaqacacatc	ataatcaaat	tqctcaatac	caqtqataaa	qaqaaaatct	taaaattaac	3900
aacaqqaaaa	aaattatqtt	aqaaacaqqa	qaacaaaqat	aaqaatqqca	qcaqaqttca	3960

tgtcagaagc	aagcaagtga	gaagacagag	gaacaataat	ctttaaagta	atcagagaaa	4020
aatattgtca	acctagaatt	ctaggttttt	gggtgtttt	tttttttgt	ctttcacatg	4080
aaatggccac	taattctata	cccagcaaaa	atgtctttca	aaaacaaatg	caaaatactt	4140
tttcaaacat	acaaaagctt	aaaaaatgat	cctctgagga	cctatactat	aagaaatgtt	4200
aagggatgtc	cttcaagcag	aaggacaatg	ataccagata	aaattctggc	tctacaaaaa	4260
gaatgaagag	ttctggaagt	ggaacttcaa	ctactctaaa	catgcaacaa	gctatgaatg	4320
gggagtettt	ctgtggaggc	ttccaggacc	caaaagtgag	gacagagaag	tactctttgc	4380
ctgagctgac	acccaccaga	gctgagaacc	aaggattcct	aagaggtgac	atatgtggct	4440
gtgttaccgc	caactccacc	ttctacccag	taagactggg	aaggagggag	agagagaaat	4500
aagtctaagg	gtcactggag	cacaggacgt	gtgaggagag	gggacttcct	gcccttcctg	4560
tggttatggg	aaatggggtg	gctgtgcttt	cctccctagt	aaggttctaa	taaaatgatt	4620
ccacaaatat	tggaatgtaa	agtagctccc	ctgttggaca	tttgattagg	aaaaggattt	4680
gctggcttat	tcatacatca	ttagggatag	aggagggtct	tggagaaaga	agaaagggca	4740
caaagaagag	ctgcaggggc	agtctgaact	cacccagttg	gtcagggcca	gaaaacgcat	4800
ttcctgcagt	tcaagtggat	gctacttaga	aggcagctgg	atttgttcca	tccctacccc	4860
aacagggttc	tctctcctat	ttaccggggga	gctcaaagag	tccgtagagt	acatatccag	4920
tcatgggagt	tgaggggcat	ggaggtggtt	gagcctggat	ttaccatatc	cgtgccctgc	4980
aagtctctct	aaaagaaccc	agatgtgtct	tccagagaag	gctagcacgt	cgatgcctgc	5040
ctcacagcca	gtcccagtgg	gacaccgcta	gagagaaggc	taccactaga	gagaaggcta	5100
ccactagaga	gaaggctacc	gctgccctgt	tagtttacga	ccctctgccc	tttctctgtc	5160
ctacctctca	gcccagcgca	ctagaggaac	tatttcccaa	agcggaaagc	gagagtggag	5220
gagtgtccca	gaaatagacc	tccctcattc	agggtccagg	tccaagcttg	cactggaccg	5280
ggagagggca	gtggcgctgg	gagatgaggt	gagagtagaa	tcgtttggaa	ttaatgtttt	5340
aaagtggact	gagggttaat	acctgaaaac	agtggtaaaa	ttttggaccc	gcccaagatg	5400
taattaacag	atctgctacc	ctctggataa	ggttgagcac	atttgaaagg	gcttcagaaa	5460
atgaaaaagc	cttttctgtc	tttaagaaaa	caaacaaaca	aaaaaaaca	aaacaaaaga	5520
acaaaaaacc	tgtcttcccc	caacaggcac	aattacattt	gtaaagatgg	ttcccagcag	5580
atggtgaggt	gctaatgagt	cccaggaggg	gctcaggaga	aaactcacct	tcaccacctt	5640
gctcctggtg	actcccagca	cacctggtcc	agcctttcct	ctgcagctgt	tttttagtgc	5700
atggcctgtc	ctcctggaag	gaaaactgga	gagcgtgacc	tgatccaggg	agcaaaggct	5760
tcatgtgccc	tgtggccttt	ttcagcatgg	ttagcggggt	gggactctgg	gcccactctc	5820
aggtttgggg	ccatcactag	gtcctggcag	ctgcagtcca	ggetggeeee	acaggaggcc	5880
acaggcggtg	gctccacctg	aggagaaggt	ggcatgtggg	taccccacct	ggeteteeeg	5940
ggaagggccc	ttggcaacat	ccgcagcagc	ttggctccac	cccagttgca	gtcttgacat	6000
ttggttattt	tctattcttt	ttactctgca	aataatacat	gttcgttata	caatcaggta	6060
gaatgtacaa	ataagcaaat	aaataaacaa	atacttctca	taatctcact	accaaacagc	6120
cactgttaat	aacatttttg	tgtatttcct	ctaagatcga	gtatgaaata	tttatatata	6180
tacatatata	tatgtatata	caaacaaaat	ggattaatat	tccatacgca	tatgtgggac	6240
atttatattg	tttacaactt	tctgttatct	taaataaggt	gtgatgaaca	cctttactca	6300
taattttttg	tgcataattt	ataattcctt	cgaataactt	cccaaaagga	agctatacca	6360

gggaagttgc	aagtttttaa	actctagtag	ctgaatttct	agctagtagt	ggtggaggag	6420
gaggaccttg	agaaggaggt	ggaggcatgg	gaggagctgg	gcctcagggg	aggctcggga	6480
ggetgeteet	ctcctttgcc	tccttcggtt	tccctgttta	atccttccct	ccgttctcag	6540
gctcctcttc	ccctggtctt	ctctttcatc	ctttaattcc	ttcacccttt	gccccttctg	6600
ctatttcaac	tctggatttt	tcctccagtg	ctcaaacctc	attctgttcc	attgaatgtc	6660
cctcattgaa	tgtcgctcac	tgcttggcct	gccttcctac	ctgtgtcccc	accaggetee	6720
ctgtggtgac	cccgtggtgg	cagcgtggac	ttcctgccct	ctcaggtttg	tgtcctgcag	6780
ggaagagtga	aggtcttttc	tagtggctcc	cacaatgccc	tagggactct	ctgattggct	6840
tggtgtaggt	cacatgccca	tctctgaacc	aatgactatg	cccgatcttc	actgtggcct	6900
catctgggcc	acctggtgga	tccctggagt	tgggatgaag	cctcacccag	cccacaggaa	6960
gtaaaagtgg	gggcagagga	gggcccttgg	atgaaggtcg	agctctgttc	tgggaatagt	7020
gggaatatcc	ttgaggcatt	catctcccat	agacagtgaa	actctccttg	cctatggaag	7080
gatatgacaa	acgtgaagat	tttgctttta	aatgtaagaa	ttgtcagtgt	catacctaag	7140
aaatgacgga	aaataatatt	aaaaatttaa	gagtgttaaa	atagatcaac	tgcaaacgtg	7200
tgttcccagg	acacaaatct	gaagggtata	cattaactaa	tagacgggtt	atttttcttt	7260
aaagaaaaat	cccttatatc	ttatatatac	acaagggatt	cttaaggaag	gacaacctag	7320
tcttcctttt	cacccaaaat	ttacagtgtt	aaaaataatt	ttatggccgg	gtgtggtggc	7380
tcacatctgt	aatcccagca	ctttgggatg	ccgaggtgga	aggatcactt	gaggtcagga	7440
gtttgagacc	agcctggcca	acatgctgaa	accccatttc	tactaaaaat	acaaaaatta	7500
actgggcttg	gtggagcact	tctgtaatcc	cagctattca	ggaggctgag	gcaagagaat	7560
catttgaaac	tgggaagcag	aggttgcagt	gagccaagat	tctgccactg	cactccagee	7620
tggcgacaga	gtgagtggga	ctccatctca	aaaaaataaa	ataaatagat	gaataaataa	7680
ataaataaat	aaataaataa	ataaataaat	aaacaatttt	actattaact	gagaaccttt	7740
tcagtgccag	atcctgagct	aggctcttga	tgtgttgtta	tttttaatcc	ttacaacaac	7800
tctacaaagc	aatcttagta	ctcttcattt	ccaaaggagg	aaaaagaggc	tgagagagat	7860
tgtataacct	tccaacagtg	acagcactag	tagtgcccac	caagtggtca	agcccaggtt	7920
gtatgtaccg	gagtgccctt	cttggctaag	aaaacctaaa	attccctaac	ttgtgtttgg	7980
ctgaatttct	gagggctttg	agtgcccaga	gtgctcctgc	tgcttcaaaa	gctgcagctt	8040
cagctgcttt	tgaacatctc	agcgactgca	gggacagaaa	tagcactaag	tggaaaaagg	8100
atccaaaaga	agaatctaaa	acttcagcta	ttatatagac	acaaagatat	actacttagg	8160
tctttccaaa	tggatgaaag	gatgccacac	ctaggttttc	caaagaattc	attccttttg	8220
gtgtggctga	actggtgaga	tgtaggggct	tcttaaaagc	attctgatgt	catctcctgg	8280
taaagcctag	ggcttgggaa	ctgaaatgta	caagaaataa	acatgcagtg	aaacacctga	8340
gagtctatcc	tctttgtgtc	tcccatcatt	tctgcaggct	gaagtttcca	tttaattttt	8400
gcatcacatc	tttagcacta	ttggacatcc	tagaaacctc	attcacaaga	tttcaagttt	8460
gaagtgatag	tgtttgctac	cagagcccct	tttctgtcaa	agaaattaga	agcaggaagg	8520
ttgatgcatt	cccccacagg	tgagtcacca	agaaaatgtt	tgagtcttca	aaaggcgatg	8580
gttccactct	tagctggtga	attccatgag	catacaaagc	tctgtttgta	accctgtcac	8640
agaagaagaa	tctgggatgt	gttttttatt	tggtacagga	aataagaggt	ggatgattcc	8700

agtttgtgga	atttgacagt	cttctgttca	gtcagtatct	cttattttgt	tatgcttatt	8760
ttaacagaaa	gaaaagaggt	cttttagaat	aatgtgaaac	tcacactctg	catggggaca	8820
ggtaaggagg	gaagcctggg	atgtgtgcag	agaaaaggca	gcatggctgt	ttgactggag	8880
caaaggaaat	gtggcatggg	ggtggaggga	cagggccacc	tcagggagca	ttgaaggttc	8940
agccatggag	ttcaggcttt	attctcaaag	tagtgggagt	taatgaaggt	ttttgactag	9000
atgtatcaga	attgtgtttt	ctgtttgttt	gtctgtctgt	ttgtttgttt	gtttgtttga	9060
gacagagtct	ctctcagttg	cccaggctgg	agtgcggtgg	tacgatctca	gcttactgcg	9120
atctctgcct	cctgggctta	agccatccat	cttcccaccc	cagcctcccg	agtagctggg	9180
gtcacaggtg	catgccacca	agtctggctt	atttttgtac	tttttttt	tttttttgt	9240
agaaaagggg	gtttcgccat	gttgtccagg	ctggtcttga	gctcctgggc	tcaagtgatc	9300
cacccacctc	agcctcccaa	agtgctggga	ttataggtgt	gagccactgt	gcctggccag	9360
aactgtttta	gggagaacaa	tttattaaca	atataggaaa	tagaacagaa	acagagggtg	9420
gacataggca	agcctgtgag	atgtctacta	tagagtccca	ggctgacact	ggaaggcagg	9480
cgttagcatc	aagagtcaga	atggaaaaga	cgtcaggagg	gagaagctac	tatagagatg	9540
gaagttatgg	gtcagagtgg	ataacgaagg	acaagatggt	gctgcactgg	gtgactgcat	9600
gggtggtggt	gctgtgtaca	gattggggcg	aacgtggagg	aagcacaagt	gttgaaagaa	9660
gggatcatgg	gtccactttt	gaacatactg	agtttgaggt	ttcaatagga	catctttgta	9720
gggatgcgta	gaagacagtt	ggaaatacaa	atgtggattc	agagacaagt	ccagcettea	9780
gtggaactca	gacaagtcca	ggaagatgag	gaggaagggg	gctagagaaa	tagtagagga	9840
aggggggctag	agaaatagta	gagaaaggaa	aggacagaga	tctgcgaagc	tgagggagga	9900
gttttaagaa	aagggtgggc	caggtgtggt	ggctgtaatc	tcaacacttt	gggaggccaa	9960
ggcacagggg	gatcacttga	ggccaggagt	ccaagaccag	cctgagcaag	atactgagac	10020
cacatttcta	caaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	agttatctgg	ggcagtggtg	10080
ggcacctgta	gtcccagcta	ctcaggagac	tgaggcaaga	ggcttgcttg	agcccaggag	10140
gtcgaggctg	cagtgagcca	tcataccact	gcactccagc	ttgggtgaca	taatgagacc	10200
ttgtctcagg	aaaaaaaaaa	aaagagtggt	gtggttagca	gtatctgatt	tagtaaaggg	10260
ctgagaaggt	tgaggatgga	cactggcaga	ctttggcttt	taccctcatc	cctgtccagt	10320
aagagttctc	tcaattccaa	acatttaaaa	gtgagtggga	atcattaatg	gaaccataca	10380
tttcaaaatg	attaaaatgg	aaaattctat	gttatatttc	tctataaatg	agtaaatgag	10440
agaaaaacat	taacatttaa	aaaaatcata	ttgttctcta	catgtttctg	tatgcttaaa	10500
acataataaa	ttgctttgaa	aagtaagtgg	taggtcaaaa	acagaagtat	tgatacaaac	10560
cacactttgg	agaaatgtga	tagctaagtg	aaggagggaa	agcatgagtg	actcagctta	10620
acgggtaaca	ggaaagaaag	aacttgtttt	ttcgtttgtt	tcgatgaggc	aacttgttta	10680
tctttctggg	ggccatcgct	tacccaccag	ctgcccccta	cctttgttcc	cgccttcatt	10740
gtggagtete	acactcaact	caacctggaa	acaactcaac	ctagaaacaa	cacggtgaag	10800
gtgagactga	agatgggggg	caggtggtgg	gtaagtgatg	gcccccaaaa	aggtacgtcc	10860
acgtcctagc	tcctggaact	gtggatgtga	ccttatttag	aaagaggatc	tttgcagagg	10920
taattcataa	ggatcttgag	atgagatcat	ctggattatc	caggtgggtc	ctgaatccaa	10980
tgacaagtgt	ccttataaag	ggcagaagag	gagaagacag	agagaatagg	aggagcccat	11040
gtgaagataa	aggcaaagtt	ggcagcgatg	cagccacaag	ccaaggaaag	ctgggtatca	11100

-continued

ccaaaagctg gaaaggacag gaaggattet eccetagage etttggagga ageatggeae 11160 agetgaegee ttgattteag acctetgeee teteagaaee gtgggagagt gtatttetgt 11220 gqtctqcaqc caccatattt qttqtqqtqa tttqttaaaq caqccctaqq aatctaacaq 11280 gggtggggag cttggccaca gtctgaggtc ctgagcagtg gggctgtgtc tcaggcttct 11340 cattttccac accccacccg gggccaacac aatcatttat tatgagttta ttcacttggg 11400 gettaaatte acaggacagt atteeteta tagtgataac tttgtettea tttttteet 11460 gtctcgttcc cagtgggttt tagaaaatcc acagatattt tatttctttt taaatttttt 11520 teteacaett ttaeeceaga agatagaaag teaacaaata ttttegtaet gatatettte 11580 tettttaett teattttta agetgggaca ttggegeeag eggggeeeag ggettgeaag 11640 gggageteet eeetggagte ceacteetge eetggeacae agaecaggtg acggggggee 11700 tgtgaccgag cagggcagca tgtggcaaag ggcagggtgc cagggagacc tccctctgat 11760 aactgctgtg catttgagct gctgatgggg attgtcccaa cccttctaag ggtcatgagg 11820 tgtcagctct cagcaaccag ggagactgga ctgcacaggg gacctcaggg ccaggcacct 11880 gaggaatggc gatccctgtc ttccccctga ctctgcctgg gtggagatag gtgttgctct 11940 ggctgagatc ctcctccaag ccagacctga ggttctattt ttgaggacca aaggaggtga 12000 gggatettgg tetagggaga getgacatag etgeceteee teetgtgeet gggaaacatt 12060 tttccttggg gactttcaag gtgtaagaac ctccaggagc cgctccagtc ctcttgtgtg 12120 ctgttgtctg gcagccctag gggagactgc tgggcagggt ggccctggga gagactgcag 12180 caqqqttctg cgctgccaac actgtcactt cccagccacc cagacccagc ctcactqqtc 12240 ctggtgcctg cctttctctt ccatcttccc cgggccagcg aggcactgag tcctttgctt 12300 ctttctcact tcatgcacct ctgcccttct ttctcgagct ggcttgccca agagtcctta 12360 tetggaacet etggtetttg taceteetgg eetgeeetea getgeteegt tgeetgggte 12420 ccagtgettg cccaccatat tcaggggaca tcctggactc cttggccacc acccagaccc 12480 ttctgtattc tgctccccct aatacctcct ggtctctgca tgaacctccc actctgacca 12540 cactgcactg ttgtttcctg gacacacggc acccactcct gcctccatgc tcctgcttcc 12600 tccacctgga atgecetete tgetgaeeta ceacacaete etttaagaae gaaettteet 12660 tetteececa tagageeact teeactiget eeaggeeaca gagttetete teeegtgaca 12720 gtttccttcc tgtgcaatag tatcgcctct ggaacttcct cacctgccac ctggtgctgc 12780 tacatgteea egtatgtatg taegetttea tteattettt etttetaaca tttgttetga 12840 aaaaaataca tcatgtgcca ttatgcacca ggctctagaa tataaagatg agtaaaacct 12900 agtccctgag ttctagacgt ctccaggtgt ggtgtgtatg ctgcgtgcct cccactggct 12960 cttccagatc cagectetge tetgeteatg eeetgggeaa aatggeeeaa ageeaaaaca 13020 agcaaactgg ttcccctata accaaaccag acagcttggg gcctggcagt gccagggggag 13080 agetggeatg ageagggeag aggetgaete gtatggegee ateeaeagge eccattgeee 13140 totggottot ggtgggotgt ggotagggag coccocccag gagagcagag gttgaagotg 13200 cagggggtgg atteceetge acetegetgt ggggteacee tgteggetgt gteacgatte 13260 ctgttagttc ccactctgct gtctctggat ctagtgcctg ttcccttcac cctcaggcca 13320 ggggtggagc cctcccccca gcccccaacc ccataccctg ctcacacctt tgcaaatagc 13380 gtotttacta aactotocca agtgtotata tgtgccattt cotttoogoo cagcaccotg 13440

agtgaaagtg	ttttgaaacc	agggagaagc	tggaggacag	aggcacataa	ggtgccgagg	13500
acaggagaga	ctgcacactc	tttgtagctt	tcacacaacc	agagtccagt	gcacagagtg	13560
cgtactcatg	tctacaaaag	acacttcact	cttcttaatt	caacccatat	cccactctag	13620
tgcccatgtg	gatctttta	tcattgcagg	atgaccaaag	tcattaaaac	ttcgtaaaaa	13680
gcctgcttta	gtgaagagct	tctggcgacg	gcctttgaat	ctgtgcccct	gagggctcca	13740
gggcaggact	ccaactggtg	gtgtaagact	tgctgtcctg	atgtgggtgg	cagttgctag	13800
aagagggact	gtttcatttc	attagcagtg	aagtgtgctg	tcagccggca	gtgatagcca	13860
tgggacaaga	tgcaacccaa	tctgactctg	aaacatcctg	tcctagccac	cgctgagctc	13920
ttccccctta	gggggtcgcc	agaagagtat	tgattggaca	aggagagaga	gccctcttga	13980
agaggaatgg	tgctaaagtc	aacctgaagc	cttctgaaaa	ttcagcggcc	ctagaactgc	14040
cccaaatgct	atttactgca	aagcagaatt	ctgtatccag	aggggttgtc	ctggactcca	14100
ctcaagaggt	ttagctttta	aagagcctaa	aggattcctg	gcttatctgt	tgggtgagtg	14160
tgagagtcag	atcccaaagg	attatatgat	atgatggatg	atttagcacg	ctgcttcaca	14220
ggaatttaac	agaaatataa	gattgctcag	ctggagcaga	attgtctaag	agacaaacct	14280
ttttaaaacc	ccactaatgt	ataacctcaa	gccacaactg	gattcaatta	ctgcgtggaa	14340
agaaaggcat	tttcttataa	agccactctg	tttccgtgcc	tggctgtgag	ctgggtcagc	14400
catgacaaag	ataagettgt	gtgttgttt	tggttgttt	tcctttcaag	ctcttcccct	14460
ggcactgcca	ggccccaggc	tgtttggatc	ggttgtgtgg	aggccagttt	acttgttttg	14520
gctttcagcc	tttctgttca	gcattgatga	tagaagagtg	ggcctgtgtc	ctgcgtggcc	14580
agtgatgggc	tatcagcatg	gcttggtggt	ggcaccatgc	ccaggtgccc	cttaggaggc	14640
acacaatgtt	tagaagccac	acagtttgtg	aggaaggtga	acattctaag	gaaggagact	14700
ggcagagatt	gtaggggact	cgagaggggt	ctgggcacag	aagggtctgc	gtattgacat	14760
tctcaaatat	taatacaaat	acctaacatg	tggagtgctt	actctctcta	ggccctgtcc	14820
taacagcttt	acatatatta	cttcatttaa	acctcccaac	aatcctgtga	agtaaatgtt	14880
attattatat	ccactttaca	gacgaggaaa	ttgaggaaca	gaagggtaca	tagtttgccc	14940
aaggtcacac	agtaagtagc	tgagggccca	cgtgcttgat	cactccattg	tcaaagagta	15000
tgggacagaa	actttaaaac	catgacatgt	gcatttatgc	agacactaaa	tatttttaca	15060
gtgttcttta	ttcattattt	tccttaacat	agtatattaa	tacctgaaag	gcatatttgt	15120
actgttatat	agcatgtttg	aaatcacaag	aatggaaaga	cccatttggt	tcagtctgcc	15180
ttggggaaga	taagaatata	tatatagaaa	gacctagcca	gtgcaataag	gcaagagaaa	15240
gaaataaaag	tcatccaaat	aggaaagcaa	gtcaaactac	ctctcttcac	tgactgtatg	15300
attctatact	tagaaaaccc	tgaagactct	gccaagaggc	tactagaact	gatcaatgat	15360
tctagtatga	tttcaggata	caaaattaat	gtacaaaaat	cagtagtatt	tctatacact	15420
aaaaatatct	agactgagag	tcaaataaaa	aacacagtcc	tatttacaat	agccatgaac	15480
aaaatgaaat	acctaggaat	acagctaacc	aaggaggtaa	agatetetae	aaggagaact	15540
acaaaacact	gctgaaagaa	ctcagagatg	acaccaataa	atggaaaaac	attccatgca	15600
aatgggttgg	aagaatcagt	atcattaaaa	tacccctact	gcccaaagca	atttacagat	15660
tcaaagctat	tcctatcgta	ttaccatgtt	attetteaca	gaattagaaa	aaactattct	15720
aaaattcata	tggaaccaaa	tagccaaagc	aatcctaagt	aaaaagaaca	aagccagagg	15780
catcactcta	cctgagttca	aactatacta	taaggctaca	gtaaccaaaa	cagcatgata	15840

-continued

ccagcacaaa aacagacaca tagaccaatg gaacagaata gaaagctcag aaacaaagct 15900 gtgtgcctac aaccatctga tcaacaaqqc tgaccaaaaa aaaaaaaaaa ggactttcta 15960 ttcaataaat qatqctqqqa taqctqqcta qccatatqca qaaqaataaa actaqaccct 16020 tacctttcac cgtatacaaa agttttctca agatggatta aagatttaaa tataagacct 16080 caagttataa aaatcctaga agaaaaaccta ggaaataccc ttctcaacat tgaccttgac 16140 aaataatttt tqqctaaqcc cttaaaaqca attqcaacaa aaaacaaaaa ttqqcaaqtq 16200 ggacctaatg aaatgaaaga gcttctgcac agcaaaagaa accatcaaca gagtaaaaca 16260 gacageetae agaatgggtt geaaaatatt eteaaaetat geatgtgaea aaggtetaat 16320 atccagaatc tataaagaac ttaaatcaac aagcaaaaac caaataactc cattaaaaat 16380 gggcaaagga catgaacaga tactteteaa aagaagacat acaageagee aacaaatata 16440 tgaaaaaagt tcatcatcac tgatcatcag agaaatgcaa atcaaaaacca cagtgaaata 16500 ccatctcaca ccagtcagaa tggcttctat gaaacagtaa aaaacaacag atgctggtga 16560 ggctgtggag aaaagagagt gcttatacag tgttgatgag aatgtaaact agttcagcca 16620 ctgtggaaag cagtttggag atttctcaaa gaacttaaaa cagagctacc atttgaccca 16680 gcgatcccat tattgggtat ctacccaaag gaaaacagat cattatacca aaaagacaca 16740 tgcacctgta tgttcatcac agcactcttc acagtagcaa agacatggaa acaatgtagg 16800 tgcccatcag cagtggactg gataaagaaa gtgtggtgca tatacaccgt ggaatactat 16860 actgccataa aaaagaatga aacatgtcct ttgcagcaat gtggatggag ctggaggcca 16920 taatcctaaa tgaattaatg ctggaacaga aaaacaaata cccgtgtcct cacttataag 16980 tqqqaqctaa acattqaqca cacatqqtca taaacatqcq qacaacaqac actqtqqact 17040 actagaggga ggagggaaga agcaggatgt gggttgaaaa actacctatt aggcactatg 17100 ctcacaaact aggtgcaatg tgcccatgta acaaactggc atgtgtaccc cctgtatcta 17160 aaataacaqt tqatattttt aaaaaaqaat atatataaac atatatatta tatqtaaaqt 17220 atatatttt taqqqcctqq cacatqatac taatqactca tatqqaaaqc caqcqaqctt 17280 tcataagata ttgcacacaa ggaaagttaa gaaccagctt gctgggctgt ctgatcacta 17340 getcaggett tetgeatgag ettggettte tgataggaaa atecaggget etgageetgg 17400 aatgaacata tgtatggccc aagctccacc agcagcttaa ttcactgtga caattatcaa 17460 ttggttgcct ctcagetcca aattcaceet teattacteg etettegaga atgatgaggg 17520 ttaggetttg teageaggaa gteetggagg gacattgtga gagaaaatgg etgetettee 17580 tagttccagg gggcttgctt tctcaggctc ttgcagcctg gacagctttc tctgcagccc 17640 caggtggcca gcagcctgag atgccttcct gcagacagct tccctgggca cctccctgtg 17700 aatgacetet gecagateee eeteaggaag etttgeagta gggtgeacaa aatggggtae 17760 cgccccttgg atggcttccc tggcacccgc ttgggcagct ttgcagtggg tgccttccta 17820 agcactccag agacaggttt ctggacagcc tcagcagtga ggcccctcat gaacttttcc 17880 cccatcctga aagccctggc cagaccctct tccatgaggc ctggatctca gctcttcctt 17940 gaatgeteta teteagteet aggggagata getgetgtet gtateageta tteetatatt 18000 ctttagaget etettaeeg gttaetagee agtettteat caetteaate ecetgttaet 18060 aatttgttat agttaatttt cttgtagaaa ttactgattt gtctcctgtt cagagtttag 18120 tacattcacc atattttttc ageccaccat ttaaaataaa aatgtaactc cctttacatg 18180

aaaaacactg	caagaaacat	ggaagcaaca	aaaacaatat	gaaaacactt	tcactattaa	18240
tttactaagt	tagaagattc	tatattctct	ttcagttctt	ggctatctgt	ctgatttttc	18300
cgtatttgta	acctgcgtgc	ataattgagt	ctgcactcta	agtttatgag	ttgactttag	18360
cttacgtaag	cagtttgata	gccctatagt	ccccaagtag	ccactggtca	catagtcctt	18420
gcatttgtca	tcaggcaagg	caatataata	ttccattttc	ttcacgtgct	caaatttgct	18480
aagctagttc	ctgattgtgg	gatacatggg	ttggttcatg	cttttccata	ttacaaaaag	18540
cacagatcaa	aatatttttg	ttcaagttgc	atcaacccca	cctaattttt	tctcttgttt	18600
cttcctttct	cgattctcta	acagttgggc	tcacatattt	tcccaccgat	agacaagaga	18660
ttaccagaaa	aggggtgagg	aatccagaga	gaatgtctgc	ataagaagga	gggtggagat	18720
ttcttactga	actaaaggct	tcaagaattg	gcaaatacct	gctcagtaag	tatctcctgc	18780
caggaaaaga	accagtctca	gaggtggagg	cagaggggaa	tcattggttg	gagaggagga	18840
atttagactt	gggaagcaag	gtcgttctag	agatcaagac	tgtcttttct	tcagtctctc	18900
atagtgtaac	ctgtgactaa	tgcattagtc	atactgagca	cgtggaaact	acacaatata	18960
cactagaaaa	acattttagt	tctcaagaat	agcctcaaaa	tcagacaatg	cctgaagtaa	19020
ttgagagtgg	gaagcacatt	gtgcaagtga	ttactgctct	ctgacatttt	aaaccaccaa	19080
taactcaatt	gtttcctgaa	ttcccagaga	gtcagagaac	atgaaaaaac	cttctttgtc	19140
actcagtgga	gtaaatgtta	atctcatact	taaatctttt	tctttttcac	ataaaagtgt	19200
tcctggtata	aagcccagaa	agaagcttaa	gcatagcacc	ccctgtattg	ttcattttct	19260
tgttcataca	taatgtttac	ctggaaattc	tttatttcac	acttattctt	aaaagtaatt	19320
ttgctgagtc	tccaaacaac	tgttttcaaa	attttcttcc	atttttctga	cttggaatca	19380
ctagaaatta	aaactgtgct	tttcttaaag	ctctataaac	tgaagctagc	aacttaaact	19440
tcgggagaaa	caatagcaac	atatgtaatt	aatatatata	tatatacaac	ttttgtgcct	19500
gcctgatgat	gtatggactt	ctcagaaagt	tcacttgaac	acccgattcg	agccacaatc	19560
cagaaaaatc	tgtcaggttg	ctactgcaac	ctgaagatgc	ttgagagact	ctagaaaaac	19620
tagtctatca	actgctccag	gacattcacc	tttgctttcc	ttctgtttct	gtagaaatgc	19680
ctcctattaa	agatctgttt	gcctgcatca	tatatagtgg	cccaccctgt	ctgcaatgcc	19740
acctcctaga	atgagacaca	gctgtttaac	tgatctattc	tcaggactaa	gagactgact	19800
aaagaagata	cgaggatgat	atatttaaat	ttgctctttt	ctgttccttc	caatttgtct	19860
ttccatttct	ttgtctatct	ctaacaagct	ctaaaacaaa	tttctccaaa	gctatctgct	19920
tgtcttttaa	tatgtgaatt	tttttaagtt	tcaaagtgat	gactgaaata	tttcacccca	19980
aaatatggct	ccctggtata	gtgagtatgt	tgaattcaac	accettagag	atcaacaagc	20040
actagaagag	gcttttccca	cctacataaa	gataggaatg	atccaccgag	gagaacaatt	20100
gctcttgttc	tcctccgtta	tctcattatc	cattacagga	aagaagacca	agaatgtaac	20160
cacacctgaa	cggaaccttt	ttgagataat	gactgtctct	aaggatcatt	tacattccaa	20220
gaactactta	caagttaatt	tctgctccct	gatccaacca	ttttccctgg	tgatcattta	20280
ttgcccctca	atacaattat	tctcctcccc	attcccataa	cccattctat	ccggattcaa	20340
gcccccattc	tttctgtaac	ctcaagatag	caggtaagct	gctgtaccac	attgagaagt	20400
tgggtcttca	ttctgaaggt	tcccatgtgt	acacactaaa	taagtttgta	taccttttcc	20460
cctatttatt	attattattt	ttgagacgga	gactccctct	gtagcctagg	ctggagtgca	20520
atggcgtgat	cttggctcag	tgcaacctcc	acctcccagg	ttcaagcgat	tctcctgcct	20580

-continued

cagecteetg agtagetggg attacaggtg eccaecaecae etggtgaatt tgtatatttt 20640 taqtaqaqat qqtqtttcac caaqttqqcc aqqctqqtat cqaactcctt acctcaaatq 20700 atccacctqc ctcaqactcc cataqtqctq qqattacaqq cqaqcaccac cqtqcctqqc 20760 catctattcc cctatttttt ttttaaagta gttttgctgc acatgcaatt ctcatttatt 20820 ttcgcttatc actttgaaga tattgttcca caattgtcta gtttctgttg ctgtataaag 20880 gtatgttgct aataattttt gtagatgatc tgtcattttt ctgctttaag atctttctga 20940 gtttagcatt ctgcaatttt attactatct tttgcagact gggtgtggat tttaaaaagct 21000 ttatcttgca tggtatatgg tgtgcatctg taactgccca gtaagttett ettgeetget 21060 gcccagatag agccaattta tcaagacagg agaactgcaa tggagaaaga gtttaattcg 21120 tgcagagttg gctgaatgga agagtttaat acacatagag caggctaaat ggaagactga 21180 agetttatta ttaetcacat tageeteet gaaacacagt ettgeaggea gggggetagg 21240 gaatggggag tgctgattgg ttgggttgag gatgaaatca cagggagtcc aggctgtcct 21300 cttgctctga gtcagctcct ggatggtggc cacaagacca gaggagccag tttactggtc 21360 tgggtggcgc cactggatcc atcagagtgc agagtctgaa aaatattcca aacaccaatc 21420 ttagatgtta ttcacaaaag caattagaag gttaggaatc tggtgccctc tggctgtata 21480 actectaage cataatttet aatettgtgg ttaatetgtt agttttacag aggeagtttg 21540 gtccccacac aaggaggagg tttgtttcag ggaggggctg ttatcgtctt tgtttcaaac 21600 tataaactaa atteeteeca aagttagtte ageetatgee caggaaggaa gaggggeagg 21660 ttggaggtta aacgcaggat ggagtcagtt aggtcagatc tctttcactg tcataacttt 21720 ctcactgttg taatttttgc aagggtagtt taactttcta tatctgggaa ctcatctctt 21780 atcaqttctq qaaattctct tttattatct tttttaatat tqqtttttca tctattttct 21840 ctagtetttt etgecaetee tattatatta aatettatte tateetetat gtettgaece 21900 ctctttgatg ttctatcttc ctgtctcttt gtgttatatt ccaggtaatt tcttcagata 21960 tattagttaa ataattetet ttteagttgt ttettatata etgtttaatt tggteattga 22020 gtttttaatg tcaacaacta tatttttcat ttataaatgt tttacttggc tctttttcaa 22080 atctgcctgg tcatatttca tagtatctgg gttacttcca tacatttatg atctcatctt 22140 ggatttettt aaatatttee tatacaacae ttggtatgea tgattttgea tttaaaatge 22200 actattttgc atttaataat tctaatacca aagtcttggg agtgtaaatt tattgtttat 22260 tatttttget ttetttteea tatgetgget tattetettg etgtttggtg gtggtetttg 22320 atcctgaaca cattgtgctt gatcactggg agtcttgggg tcctaagttg aagttatgta 22380 ctccagaaga ggttgtcact tgcttcttcc atggcccaga ggactggttg agcctccttc 22440 aggggtcatg gtttacagtg ggagacctga agttgacttt tgcaccttgt aatgggcttg 22500 gggettagtg teagattttg teceacaett acettttage tettteetgg attteagete 22560 actgccattg tttctttgct tggagagttt gtttgccatt gctgcaagcc cagctgcgca 22620 ttaaaaaaca tgttgtatcc agaatgtagt agaattatag caggaggcct tcaaaggatc 22680 agttttgtca gaatagtgag aatggatggt gtgtgttcgt aatgttcaag gcatatgaac 22740 acaactgcaa gaattagaca ggcacaagta ggtgtagccc acacttcaaa attttagaaa 22800 caataagaca tagacatagg aaagaactag agcacatttc aaagctctat ctctctttct 22860 ctgtctgcat ctgtctatct atgtctatat ctacagctgt atcatctaaa tgtcctcaca 22920

tgtaatacaa	aggtagagat	gggtgaagaa	ctgataccca	gagtaagtgt	aggatttcct	22980
ttaagggcct	gaagctggta	ctcagggtgg	aggaaacagc	atgaacagag	gcactaggag	23040
ggaataagta	tgggatcatc	tctgtgtctc	tgtttataac	aagggccttg	cctcactgtt	23100
atccttctgg	cttcataatt	gcagaattta	gctagtaatt	ttgtatacaa	atatcccttt	23160
tgagagtccc	ctataatttc	cttatttaca	atatggatgc	ccattaaagt	cctcatagtc	23220
ttatcaggtg	gcttttacat	gtggacaatg	taaggactgt	attatttact	cctttgatga	23280
tcatggtagc	tagggtgctg	aaatcaatca	agcaacagca	tctcagagag	atgcaccttg	23340
tttcctactt	ttgcatgcaa	agttgctgtt	ttttcctttc	attgtccact	tattgaggtg	23400
gggtttgaga	gttctggttt	ctgtctttta	acactaaaat	caccgctgac	ttgtccatca	23460
agtcagcaaa	gtctttcctt	ggtacagcaa	agtctgtctg	gctcaacctc	catctgggcc	23520
tgtggcattc	tactgaactt	tgtagttttc	tctattcttc	aaaacaaaac	tatctgaaac	23580
agggtctact	tctgggttgt	aaattagttg	tagaaaatct	gggctctgaa	caaaaaccac	23640
atttgaaagc	acatgtcttc	tcttttattg	gcttttgctc	taaaaagcaa	aggctgaaaa	23700
acagctgtta	gctgtttata	gagtatttt	tatttaagtg	ttagacaata	gctgttttct	23760
tctccactta	caatggcaca	ttttttctca	ggccagttaa	gtcctctctc	ggtgtggccc	23820
tgggtatttg	tatgcacctc	ctccctttcc	ctaggtttct	caggagacta	agggttgttg	23880
ttttttttt	cctttcttca	gtttctggtt	tttggttttg	aattcagact	ttggtctctc	23940
agaatagatg	gctgaattta	gtcccaggcc	agaatccttc	tgggccaact	ctacacaggt	24000
attcacagaa	gacactctag	aggaagcttc	tataggtgca	aagtgttgat	ggtttgtggc	24060
tagatggcat	gggcagaatt	agatatagac	gtagttattg	ctctctattc	tcgagccctg	24120
aacatcgttg	gtttgctttc	ctctattagg	aattcagaag	atagtgcttt	ccaatcccct	24180
catcctggaa	cgtgctctga	ggacactgcc	attgctcatt	atcctcatgg	tcccaagcaa	24240
gcaagatcag	cagggctcag	ggacatattg	cacatgagtg	aaaacactcc	ctagcctgca	24300
aaaggaacca	gccaaaatgt	ttttcagcac	tcttgtgctg	tgtgctgcca	tagcaattcc	24360
tactatataa	gacaatggta	acaccatcaa	gttacatgtt	ataccaggtt	ttcctgggat	24420
tttatttgcc	tgcagtctgc	ctccttttaa	tcaatttctg	ttctttcaga	tcatcaactt	24480
gtattgattt	acatatgggg	gaatagtcta	acctgtgatt	tctggaaaag	acagettett	24540
atacctcact	aagaagacac	agggggctggt	tatatctccc	tgagatctta	gacattcaaa	24600
tcctgcctaa	cgaacatgag	ccccttcatt	tacccatcca	tcacaccatg	ggctgggcca	24660
cctctaaacc	agtttctagg	acttgggaat	ttttttgtt	tttttagaca	aggactcact	24720
ctgccatcca	ggctgaagtg	cagtgtcaca	atcacagctc	acageteact	gcagcctcta	24780
gctccccagg	ctcaggtgac	cctcccacat	cagetteeca	agtagctcag	gtgacaggaa	24840
tgcaccacca	cacccaggta	atttttgtat	ttttagtaga	gatggggttt	cgccatgttg	24900
cccaagcttg	tctcaaactc	ctgggttcaa	gcgatcctcc	cacctcagcc	tccaaaagtg	24960
ctgggattac	aggcgtgagc	caccacacct	gatgaacttg	ggaattetta	caaggtgaca	25020
ccagggaagc	actgcaagct	tgttagaaac	tgcctttgca	aaacttataa	tggtgagaaa	25080
attatgacag	tgaaagagat	ctgacctgac	caacttcgtc	ttgcctttaa	cctccaaact	25140
gccctggtca	ttcctgggca	tgggccaagc	taactttggg	agaattttag	tttatagttt	25200
aaatgataat	aactcttccc	aaaatgaaac	tgcctttata	aaactaataa	aagttcacaa	25260
gtttaggatt	atgagaggga	tttgaattct	gctaagatgt	aggcataaag	gattatcagc	25320

-continued

catcatteca gaggtcacca gatttgtaac tteeccaatt actectataa ataaceteac 25380 tattqtaqcc cttttqaqat qtttttccaq acttttqtat ttctqatqac tqqatqactc 25440 cacctqqacc cqaqactcat qactcaccca qtcctqtqqc cccacccaqa aqtqqactca 25500 gagcaagagg accattttcc acaccccaat gagtgcatcc ccaaccaatc agcagcacct 25560 gttccctagc cccctgacca ccaaactete ettgagaaac egtageetee aaattteetg 25620 qqaqqctqat ttqaqtaata ataaaacttt qqtctcctat qtaqctqqct ctatqtqtat 25680 taaactette etetattgea atteeetge ettggtaagt eggetttate tgggeagtgg 25740 gcaagaagaa ttcactgggt gttacatgtt gaaataaata tatacctgga taacagacaa 25800 getttgtace etteacagag actetaggaa tttgcaaate tatagtgaca atgccaeete 25860 caateeecca acaaceetee ecaaagtaet eeteegtett attetgeate acaeataaet 25920 aaacacattt tgctcttatt taataaggga aaaacacatt gtgattgttg cttttagaat 25980 agttggtcca aattagataa ttagaaaaat agttcccata gatgtaactc aaaacagtag 26040 gtttgtatga cactatttca aaaacaagtt ttgtggttaa aataatacct ccctttggga 26100 gataagagtt ttggcatatt aaaggeteea agaagteetg tgacaaagae attttgtgga 26160 actctgtttt cacaggacat ctattaacct ctctcagtac agtcatgagg aaaacatgtc 26220 ctgaaatctg tcttgaagtt caaattttca gcatcctcag gcatattcac ccaccgggaa 26280 teetggttte agetgeeeea teetgetget geeetetete caetgateet caeegaetee 26340 ctttgtttat gggacagggc tcaataatgg ggaagatcag ggtcccacac actttctcag 26400 agettaaact aagaggggag gggagetgae ggtggaggga aaagetgeet etteteeatg 26460 attqtcctca cccaccctct tqcctacaqq qqqctqcttc tcttqtqtqq cacatttqct 26520 ttcactatta ataactgtat agttattttg ccatcctatt ctagttgtgg accagttgga 26580 gcggggcata gacataatgc gtgaagaagg atgctgaccc acagctattc ttccagaaaa 26640 aggcaggcac ccccaaagta caaggggaag ggcacttccc cttagccagg tggaggctgg 26700 catqqaacat aaaqtcttaq ttqaaatqqa tatqqcaacc acaaqqaaac atqtqacttt 26760 gcaaagagag acagatggac agtgactcag acaactgtac cataccagaa gcacaccagc 26820 ttcctqaqca caqaaacatc catctccaqc ccaqcqataq aaatqtttqt aaaacaqtqt 26880 aacaagattc tgcccagttt cccactaggt gtccgggggaa atgggtggct ggaggataaa 26940 gaggaggagg aggaggaaac aggcgcgttc tggccagtaa ttctctcaaa cgggatgagt 27000 attgttgcca gcaggacttc tcaaaggaag gtatcttagt tcaggctgtc ataacaaaat 27060 gccatagact agggggctta caaacaacag aaatttattt ctcacagttc tggaggctgg 27120 tacccccaag atcaaggtgc cagctggttc ggtgtgtgtgt tagggccttg atcctcatag 27180 atggccaaat teteactgta aceteacaag geggaagggg tgagggggtet ettgggggeet 27240 gttttatggg gacactaatc ccattcatga gggcttttta cgacctaaca acctcccaac 27300 ggctctgcct cttaataccg tcattttgag ggttaggatt tcaatatacg aatttgaggg 27360 ggacacaaat attcaggtca tagcagagag tgacttccat ttgtcaatga aaccagactg 27420 tgtacgtatc actcttgcca tccataccat ggtttgcatg tgatgttggg caacaggttt 27480 atttggctac attcatgccc acatccacta gacatgcaca ctcttccccaa ggagagggaa 27540 aaaaaagcta gaaactggtt atgtaacaat cattagtttt atagctgagt aagttatgaa 27600 taatagtget ttcagegatt teattaceaa tetgeeceea ggageaagat gaagetgata 27660
aaatatttat	gggctagtaa	attttttcta	ctaatttgca	aggctataat	aaaatccatg	27720
aacttgatgg	cctgcaggaa	acataacaag	aactaggaat	gtagagtaat	ttggagctag	27780
aaagcetett	aaggccctac	aggaaatgac	tcccagaaag	cagatgaatc	acagtatttt	27840
aaacagaaaa	taatgatgtt	atgtttgtac	ttaaccagtt	atagcctgag	aacaattttc	27900
cacaaggaaa	ttgtggaaat	ttcctgctct	ccattattt	tgccttaaga	aataaaatta	27960
attcaagtat	ataaaaaaca	atattcaaat	aaaaacaatt	actggaacac	agtgtatcct	28020
gtaatgaata	tgaactttta	ggattgtaat	tgttaagaaa	ctacagtata	cacagtcaca	28080
ttgtgccctc	ttgtggcaga	aatattgttg	tgctccgagg	acacgccctg	gtgtattta	28140
ttcagtaatt	aatcaggttt	gtttggggga	agtcagttca	agtgaaaaga	tggtttgcag	28200
aaggtagttg	gcaaagagtt	gtttctgggg	cactctagag	ggtgcacacc	tggaaggggc	28260
cgttcttagc	caggggagca	gctgtcaaaa	ggtttcctga	tgttttaaca	catgctaaga	28320
aatacccatc	acagaatgct	gcttcaattg	tctgtctaat	gttacacttg	ctcatttaaa	28380
atattttatt	actagttatc	ctcatctata	aataacagta	attgctatta	tttagtgaaa	28440
caggcagttg	atgcacagta	tctcatttaa	tctcaaaact	ataaggtaat	ataaggaaac	28500
tgaagatcgc	agatattaac	taatgctgta	gtttacctaa	ctagtaaatg	gaagagctgg	28560
gatttgattt	aacttcccat	gtttccataa	gcctatgcac	tttccattct	gccaagctga	28620
ctctctagac	aaatatttcc	tgaatactga	atacatgtga	gactctgttg	ctgggtcccc	28680
tggaattgac	aaggtgtaag	taatatactc	ctatccttca	ggaacttatg	gcgtaaatag	28740
ggaaataaaa	acatacacgc	aaaagaaact	gccatacgag	gcagcataca	aggaatatcc	28800
atgtagaact	tttttttt	tttttttt	gagacggagt	ctcgctctgt	tgcccaggct	28860
ggagtgcagt	ggagcgatct	tggctcactg	caaggtccgc	ctcccggatt	cacgccattc	28920
tcctgcctca	gcctaccgag	tagctgggac	tacagggggcc	cgccaccacg	cccagctagt	28980
tttttgtatt	tttaagtaga	gatggggttt	caccatgtta	gccaggatgg	tctcgatctc	29040
ctgacctcgt	gatccacccg	tctcggcctc	ccaaagtgct	gggattacag	gcatgagcca	29100
ccgcgcccgg	ccatgtagaa	ctattttta	aacaaataca	caaaagatct	gtatagtcat	29160
gtacacttct	ccccttcaga	gcagtagagc	tatatacttt	ctgcagttac	tctcctattg	29220
cttttggatt	tgagtgtgag	caggacttgt	ggcttgcttc	taagccatag	aatacggcaa	29280
agctgttggg	atgtgtgtga	ttatgtgtga	atacatgatt	atgttacata	agatattagt	29340
acccatcttg	ctggggtctc	tttctctctg	gctttgagga	agcaagtgat	tacgttgggg	29400
aacacgtggc	aaagaactgt	gtgggtggtg	tctaggagct	gagggcagta	tattgaagtc	29460
cttagtccca	aaactatgag	aaactgaatt	ctgccaataa	gtgcctctag	ttgagcagta	29520
acattgttac	tcaacaatag	ataactagta	catttatctt	ttaaagtttt	ataattttaa	29580
atcttgcatt	taggtetttg	atctatttca	agttgctttt	tgctttttt	tttttttt	29640
gagacagagt	gttgctctgt	cactcaggct	ggagtgcagt	ggcaggatct	cageteactg	29700
caacttgcaa	ctctggggtt	gaagtgattg	ttgtgccttg	gcctcctgag	tagctgggat	29760
tacaggcatg	caccacccat	gtccagctaa	gttttgtatt	tttaatagag	atgtggtttc	29820
accatgttgg	ccaggctggt	ctccaactcc	tggactcaag	caatctgccc	accttgggct	29880
tccaaaattc	tgggattaca	ggcatgagcc	accatgcctg	gcctcatttc	aagttaattt	29940
ttatagatgg	tgcaagtttc	ccactgtcag	gtacaggctg	acattctctt	tttttttt	30000
tttttttg	acttttttct	ctttttggca	tatgggtatc	caattgttcc	aataaccaat	30060

-continued

gttgcaaata tatcttttgt ccactgaatt gccttggcat ctgtattagt ctgttttcac 30120 gctgctaata aagacatacc cgagactggg aagaaaaata ggtttagtgg actcacagtt 30180 ccatgtggct ggggaggcct cacagtcatg gtggaagttg aaaggcactt cttacatggt 30240 ggtggaaaga gagaacgaga gaagcgaaag cggaagcccc ttataaaaacc atgagatctc 30300 atgagactta ttcactacca cggaaacatt acgggggtaa ctacccgcat gattcaattc 30360 teteccaceg ggtetetece acaacatgtg ggaatttatg ggagtataat teaagatgag 30420 atttgggtgg ggacacagag acaaaccata tcaaagtctt tgtcaaaaga caattggcca 30480 tatatatgtc tatttcactg caacctgcac ctccggggtt gaagtgattc ttgtgcctca 30540 gcctcctgag tagctgggat tacaggcacg caccaccatg tccagctaat ttttgtattt 30600 ttagtagaga tgtggtttca ccatgttggc cagcctggtc tccaactcct ggacccaage 30660 agtccaccca ccttgggctt ccaaagtgct gggattacag gcatgagcca ctgtgtctgg 30720 cctcatgttt ctaggctctc tgctcagctg atctatgtat ctgcctttat gccagtgcac 30780 actgttttac ttattgtagc tttttaataa ttcccgaaat cagatagaat aagtcttcca 30840 acttcatctg ttcttttttc accaaagata tttggctatt ctagatgctt aacattttca 30900 taaaatatta gaatgcaagt tcattgccac gccagagcat ccccttttct gccctgttgt 30960 cccaggccaa gagccatagc ctctttgctt tagtttcctc aaccctggat aacctgtccc 31020 gtggctcaca atttcagggg acatgtgtca agctctctga gaggtttcct tgaagctcct 31080 cttcagactt atggtgagaa agtgtcatca cccctcacag ggtagcagca gctctcacca 31140 ggaactette ecgtaageee acteecagtg gagtteeaag gggagageea egagaetgtt 31200 ttgtgccttc tatgtggcct gtattcttgg ccacttgcat tgaatgtctt catcttggtc 31260 tgtctcaaaa tttgctttgt gtccaatatt tatcacgtct tggtgtttca ctcaacactt 31320 ccaattcaat gttttgttac tcatctaaat ttaaatgtta cacgtttaga taatttcatc 31380 ccagaaacgg aagtttgcaa ttatttgctt acccattatt gctgctattt tcttcctgtt 31500 accattatag ttatcgatca atcatatgga atgtacaaat tgtttctctg tagtgcaatc 31560 ttgtcacaga acacagaact atcctttttg gggaggcaga agaaatagag taatactttg 31620 ccttttgaat atattgggaa gaagaaaagt gctcagatct cagtaaaatc tgaacatttc 31680 taggteettt teaataetta gatgtagete ttgtgagtae taagtaetaa aeeteeeage 31740 tggggaatgt tacatagcag catttaaatg ggagatgaac aatcttaacc acatgctggt 31800 tccgaggcac tttcctgcag aatgactata taaatccagg tgagtgcttg taaaacacac 31860 aattacaccc ccacagagtg gactgaaagc acgtagtcag gcaatgagca cagttaataa 31920 tatggctata aaagaaatac aggateteet teaettttt ttttaaagga aaaggeeaat 31980 atttatgett gaatgtettt atagtttgag acacattttt tattaaaata aattaataca 32040 taattgatga tgtgtatata catatgtacc tttgtttggg gtcgatattt tttataacct 32100 tgtagtttaa acccagggga aaatttttta aactggtaat ttacttgagt tttaaaaacc 32160 tgatgatgag ggtaataatt aaaatagtag caatagcaat gtagtatatg ataaaggcag 32220 catttgaatc aatggagaaa aaatgggtta gtgtcactcc acagtcttgg gacaattggc 32280 aattatttgg aagaatgtaa tetatgtate ettacetttt tetteette tttettttt 32340 tagtcggate teactetgtt acceaggetg gggtgaagtg geacaateat agtteactge 32400

agcettgace	tcctgggctc	aagtgatcct	cccgcctcag	tctcccaaag	tgctggaatt	32460
acaggtgtga	gccactgctc	cttgtgatct	tactctttct	accaataaaa	attccagatt	32520
gtattagtct	gttctcacac	tgctataaag	aactacttga	gattgggtaa	cttataaaga	32580
aaataggttt	aattgactca	tagttctgca	ggctcaacag	gaagtatgac	tagaaggcct	32640
caggaaactt	acaatcatgg	cagaaggtca	agggaagtat	gcacacattt	acaatggcag	32700
agcaggagac	agagagcaaa	gggggagatg	ccacacactt	ttgaacaacc	ggatctcatg	32760
agageteact	cactagcatg	agaacagtaa	gggggaagtc	tgccccatga	tttaatcacc	32820
tcccactggg	cccctcctct	gacacgtggg	gataacaatt	caagatgagt	tttgggcagg	32880
gacacagaac	caaaccatat	cacagatgaa	gttttatatg	taaaacacaa	agaaacacaa	32940
acctaaaagc	aacagaataa	acccatatat	atgtatgtgt	acatatgtgc	atgtgcacac	33000
atacatatat	tcatgtactc	atgtaaaaat	tttgtagcac	ccaagggtgt	aaagtaaaaa	33060
ataaatgtcc	ccttcttcac	ccaaccttca	tgttctattc	ccagggagaa	aacaagttat	33120
cagattettg	catgtccttc	cagagatatt	ctgtatatat	ttaagcatat	atgtgtatac	33180
ttttattaaa	agacattcta	ttggatagac	aagattattc	tattcacttt	tttggcaaaa	33240
tattaatata	ttgaacatct	ttccacttag	tacatattgt	tctatcaact	cattgttaat	33300
gattgcctag	tatctcactg	tatagaggca	tcatatttat	ttaaacactt	tcctaaattg	33360
cgtttctcat	atggcaatgt	ttcatggtct	tcccatatag	cccatatgga	tctcattatg	33420
ggagatacct	ctaccttatt	ttgtcctatt	gcatactatt	ccactctagg	aatataccac	33480
aacgtattag	tccattgaca	ggttgtttcc	aacttttctc	tattacaaac	aatagtttct	33540
agtacatgtc	ctcttatgaa	aatttcccta	agacagcagt	tctcatacag	tcaaaggatc	33600
accttggcta	tggtgttgag	aatagccatg	gcatcgggga	tcaagaacaa	aatcagtgac	33660
agtggcaggc	cattgcaaat	agtccagata	agtgactaag	tggcttgtac	tagacagtgg	33720
tggcaaggat	ggtggtgaca	agtggttgga	atggggcaca	ttttggaggt	aaggtaacat	33780
gatttcttga	cccttaggtg	tagagtgtga	gcagaaaaga	gacatcaatg	aagattccaa	33840
agtttggggc	ctaaacaacc	aagaaaataa	agttaccaat	taccaagata	cgggacactg	33900
ggagacgagc	agctttgggg	acaggatcca	tgtcacaaaa	tctgttttgg	acatattaag	33960
gttgccaatc	agacttccca	gtgagatgtc	aagaaactaa	gaaagaagga	aaagatccag	34020
gaacaggcac	tgagaaaaag	cagccagtga	gacaggagga	aaccaaggaa	gcatagagtc	34080
ctggtttcca	gggaaaggaa	gtgatctaat	ttcttaaatg	ctgctgacag	gtaaaataag	34140
agaagatgta	caaagcacta	caggaatcgg	caaagtggag	ttcaccgatg	tggacaaaag	34200
cctgactggt	gtaggttcaa	gggaacatgg	gagaagaaga	attagagaca	gtcattagaa	34260
ttacaactct	ttggagagtt	ttgctttaaa	agggaacagg	aggccgggcg	cgatgactca	34320
cgcctgtaat	cccagcactt	tgggaggccg	aggcgggcgg	atcacgaagt	caggagttcg	34380
agaccagcct	gaccaatatg	gtgaaacccc	ttctctacta	aaaatacaaa	aattagccat	34440
gcgtggtggc	gcgtgcctgt	agtcccagct	acttgggagg	ctgaggcagg	agaatcactt	34500
gaacctggaa	ggcggaggtt	gcagtgagct	gagatagtgc	cactgcactc	cagcctgggc	34560
aacagaacga	gattctgtct	caaaaaaaaa	aaaaagggg	gaacaggaaa	aaagggacag	34620
tggcttgaag	ggatgtatgt	ggaatcaagt	gaggatgcta	agatcacacc	attcttgtag	34680
gatgttggga	gattccaagt	cgagaggagg	aaaatgcagg	gaagaaaggc	actaaggatt	34740
caactqaqqa	ttqatqtcct	tqaqtatqtq	aqaqaaqcta	qqqatccaqc	qcacaqqttq	34800

-continued

tagggctggc cttaggtagg agcacaagag tttgtccttc atagcaatgg gaaaacaaaa 34860 tacatgagca taaacgcagg agaggggtta aatgtagagc tgggaacgtg tagaagttct 34920 gtactgtttc tattttcatg gcgcaatagg aagttaggat cagctgagac cgactggcta 34980 ggtgatgaaa ggcggtcacg taaggggtga atgttaagtt ttgcctatga cgaaggacag 35040 atggtcacgg ttgtgccata gaagaacctg aattggcaag tgaagaccgt catgtcccct 35100 ggcaaggcaa gctggtaagc tgtcctagca aaccaaaaac caatgaagca taaggccagc 35160 tgggcggtgc ggtgccgggg agggcccctt tactgaacaa ctcccttaaa caccggctga 35220 gageeggeae taggetagga tggtgaggtg tgattgeggg tgagaeagge caccettet 35280 tcgactgggt aatctatgga gatatatttt tctgtaagaa taaatctgat ttttataatc 35340 gaaataactg gggggaaaaa gatgatatcc tcaggtatct ggtgagagca ggtagaagag 35400 agaagggagg ttgggagaac tgaagaatga atttgcagga aaatgggagg cacaattttt 35460 acagettggg acaeaatge geteteeteg ttaggateaa eteteettt taettgagtt 35520 atgcagaget agetgeeaca caetgtgeta ceaggtgeet gggtggaett tgaeaagtee 35580 ctttatgtgc aaagcacgtc ctggaagagg tgctttctga ggccccagcc cacagcccag 35640 tgattctgcc acgggaccta tttttcctga gcaataatgg gagaagttgg tttttaaaat 35700 agacataaag aaaatccatc ccaaatatta accgttttta taaacctctt aagtcattct 35760 gtccctttcc tcttttatgt ttccaagtaa atccaagaag gtcatcatta aataagcccc 35820 aattataaaa gacatgetaa gacttagtgt gettggeege etetgetett tageeggeag 35880 taataaaaca atgaacccca gcaggactcc gttccaaatc atattctgca gttattgttc 35940 tqactccttt ctttcattat tqcaaacaqa atcccactqa qctcacacac tttcaaaacq 36000 actgtttccc cacactgcag aaagtggggc ggcattttct aagagccgct attgttttcc 36060 catggcacat ttatatetca aaggtacatt acctaatget tactgcacgt tatgatttte 36120 atttqcttct tataaatqcc cttccttaat qaatttttaq aaaqtacaqt tttttqtcaa 36180 acgtttttct atctttttt ttttttggat atttgattat ttctttattc cactggacac 36240 aaagcagtac ttggcaatca ttaattctag gcaaccacat caaagaagct gtattagcac 36300 tttctattaa ggtctcatta ctaaatagtt ggtaaaggca ataataatgt tttgttttct 36360 tgttctggcc ttacaaatat tcttattttc ccatgtattc ttgtatagtt caatgatatt 36420 taatcacaca gtgctaaaaa ttaagtgatt ctaagttttt tctgctgttg gaagaaattg 36480 gtatgtgatt gagcaaatca ttctgtattt tgtaagctgg gataaatctt gaagtgcttt 36540 tetteatgat tgtaggteta tetateetta aagettagta tgaattette gtatatetgt 36600 gcatgaataa ataactcaaa gtagttcaaa taacaaagaa acatattggt ttctataaca 36660 gaaaattcac aggtagttga actcagataa ggtctgatcc agaaaacaat gttatgtagg 36720 ataaaaatgt tataatgtta tatagaggac caggacattc attaatacaa atattaggct 36780 agtttttgag attgtgtgat ttttaaatac tatttgtcag catttgtttt tttttttgc 36840 tgcaggtggg cgtgtgtcca catgtgtgca tctgaattgg tttgcaggtt ctgtgtgcct 36900 ctaccttcat gttgtgttct tttttaaaat tttaacatta tgtatatttt ttaaattaat 36960 taattttttt totgagacag ggtotoacto tgttgooccag gotggaatgo agtggoacca 37020 tcaaagetca etggggeett aateteeetg ggeteaggea ateeteeeae eteageetee 37080 tgagtagetg ggaccacaag egeatgecaa tatgeccage teatatttgt atgtategta 37140

gacatggggt	tttgccatgt	tggccaggct	ggtctcaaac	tcctgggctc	aagagatttg	37200
cccacctcgg	cttcccaaag	tgctgggatt	acaggcatta	gtgatgctcc	tggccctatt	37260
aattttttaa	attgacaaat	gataactgca	tgtatttatt	gtgtacatgt	agttttgaaa	37320
tatgtaccta	tggctgggcg	tggtggctca	cgtctgtaat	cccagcactt	tgggaggctg	37380
aggcaggcag	attgcgtaag	cgcaggagtt	cgagaccgca	ctggacagca	tggtgaaacc	37440
ccgtctctac	taaaatacaa	aaaattagct	gggtgtggtg	gcacaggcct	gtagtcccag	37500
ctacttggga	ggctaaggca	agagaatcgt	ttgagtcctg	gaggcggagt	ttgcagtgag	37560
ccgagatcgc	accactgcac	tccagcctgg	gctacagagt	gagactccgt	ctaaaaaaaa	37620
aaaagaaaaa	gaaaaaaaga	aatacgcgca	tattgtggaa	tggctgaatt	gagctaatta	37680
acatatgcat	tacttcacat	atgtatttgt	cagcttttta	aaatgtgcaa	aatattgtga	37740
tttcttttct	tattctaaat	aactttgtat	ttataatttt	taattttcta	aaatggttcc	37800
cccaagttgt	ataaacttta	agtctcacaa	aacctggatc	tgtctctgct	gagcaaaggg	37860
tgaggttgct	cccagaggaa	agattttgtg	cacacgcagg	agaaaggaca	cctaatggca	37920
aaaacagggc	atgaccagta	aagttttaaa	ccttttctga	actttctttg	ctttgaattc	37980
tgcctctatg	aggctgataa	atttttaat	tggcaatgaa	gctattttaa	ggcagggatt	38040
atgtgttaaa	cctctctggt	tgtgcaccca	gtaatcagcg	aactaacttg	tatggaagaa	38100
catattgata	tattaacact	tctttccagt	acagtgattc	aaagtgatta	tacagtcgtc	38160
ccttggtata	cacaagggat	tggttccagg	acctctccgc	ctcacccacc	ccctcaccta	38220
tataccaaat	ccatgcatgc	tcaaggcaag	tcccacagtc	agccatgtcg	aacctgcaca	38280
taggagaact	cagetgtetg	tacaggtggg	tttcatatcc	ctcaagtact	gtattttcaa	38340
tccacgtttg	gttgaaaaaa	atccacgtat	aggtggatct	gtgctgttca	gacctgtgtt	38400
gttcaagggt	cgactgtact	ttttttact	tgaacacata	aaattttcat	ggaggagtcc	38460
aaattccata	aaggagttac	atcataaact	caaaaggctg	tatagagaaa	gattattaca	38520
acaatagcaa	aacatgtttg	cagaacaaaa	caatgactca	agtettggae	gtggacccac	38580
taatttcaaa	taattatcta	ttggctgcgt	ctctagtatt	tgttgaacag	aactgcagct	38640
acagtaagaa	atcttgcctg	atgaaagatt	atgattaatt	taagaattgc	taaatgtaac	38700
tcagtgtttt	ctaacatcct	tgaggagcat	atatttgttt	taaaggttaa	tctggaaaat	38760
gagttttagg	aaacgttaat	gtgcatttac	ttgggaggta	aatagttaaa	ttagactctt	38820
ccccttggcc	tttccaggag	gtttgggttt	catgttaggt	tttgctgtaa	attgaaattc	38880
atttgcagtg	agaaagcgtg	ttgagaatgg	attttgggat	tttgtcaggt	ttgtccagag	38940
actgttgtca	ttggtctgga	gagggaagga	tettaeteee	gtagaatctt	tgtcttcttc	39000
cagaatgtcc	tcatttggca	gtactgggtg	acacattggt	acattattaa	gtaactgtag	39060
tttgacctct	tggagtttgt	tgggaacaaa	tccaaataaa	ctggcatcta	ccttctgttt	39120
gccttgttcg	tgetttgetg	tttgtcaaat	cacctctctc	agcagagtgt	cctcttttt	39180
tttttttt	tagcagtgtc	ccctggtaaa	aaccaggggg	ttgtttcaga	atgaatctga	39240
ggtccagtta	actgcaacat	tctcttattc	taggattctg	ttttcaggaa	cacagatact	39300
ttcagacaaa	tgttaaaagg	cttggttaac	atgggaaata	gttcctcaaa	acttagaggt	39360
taaagtactg	tactgttaaa	gaagttaaag	tactgatttt	aaacttttct	agaaatttct	39420
gggaacaagt	agtgtttttc	aagatttctt	agagggaaga	gacctttctt	ccctaccagc	39480
agtetgteea	tcctttcaga	caatcatttt	ggattaagga	tatttaagta	agtggttagt	39540

-continued

gtgcttcaga atacctgggg tttattaaac acaggtgtat gcattgtcat atattgtgaa 39600 catctttcca tqttaataaa tatqcaacta qqccaccatt tttactttaa ttttaaaatt 39660 atatattatt ggccaagege agtggeteae acceateatg teageatttt gggaggeega 39720 ggctggtgga tcacttgagg ccaagagttc acggccagcc tggccaacat ggtgaaactc 39780 tgtctctact aaaaatacaa aaattagcca gctgtggtgg tgcacgcctg tagttccagc 39840 tactcaggag gctgaggcgt gagaattgct tgaacctggg aggcagaggc ttcagtgagc 39900 aaagaaaaaa tatacattat ttattacaga agtaataaca tcctagtata aaaacctcag 40020 acgattcagg gctgtatatt cccctatgcc aaaatatact tttcaatagc tgcatagtac 40080 tttcttatat agaaaacacc ataatttact taaccagtcc cctgtgaaca tttggccctt 40140 aagttgette etttttgett ttettataaa taataetata etgaaaatge tgeacataga 40200 caattgcaca tttctctgat tatttcctca ttttaatacc cttgtgatta taggggtaat 40260 atactgtata cagtatttat tatagaaaat acaaaaataa taaaaatact tttatctgag 40320 gcaattagga ccagtagata gtcgattaac tgaaaaagtt ggtaaagcaa agaatcataa 40380 aaaaagaaat tttatgaaag acccagatga cttcaaagct atttgaattg tttcagagca 40440 taaaaagaga aaatacccaa gttattttat aggaagccaa cgtaacattg aaaacagtgt 40500 gcaacaatgt ttgcacagga aaattctaga caatctcatt tattaatatc agtacaacaa 40560 tctaacataa aatattagca accagacttc aacagcacgt caaaggataa taaaattaac 40620 aattagagtt tattacagga atgcaatgac cattetttt ttttttttt ttttgagata 40680 gagteteact ettgttgeet aggetggtgt gegatggeac aatetegget caetgeacee 40740 tetgeeteet gggtteaage gatteteetg eeteageete etgagtaget gaggttaeag 40800 gcacccacta ccacgcctgg ctaatttttt gtatttttag tagagatggg ggtttcacta 40860 tqttqqctaq qctqqtctca aactcctqac ctcatqatcc qcccqcctca acctcccaaa 40920 gtgctgggat tacagatgtg agccactgtg tctagccaat gaccattett tattttgaac 40980 tettttatta egacatgaga aaattaatat tatettttea geaggtaeta agaaggeatt 41040 tgatacaatc cagtattcat tcctqqtgaa aacttcqtaa accaqcaqta qqtqqatact 41100 ttcggcatga gtaaatatat ctatcttagt ctaaaaccta gcattgagca taatggagaa 41160 tggaggaaca ccatatgttt ccattaaagt cagaaacaag gcaaaggtgt ccaggcacac 41220 tgcaattatt taacattatt ctgcagatac tagctaattc aattagataa aagaaactag 41280 gcatcaatta aaaaaagagg aagtggccag gcgtggtgat tcatgcctgt aatcttagca 41340 ctagttgagg tggatggatc acttgagccc aggagttcaa gaccagcttg agcaacatgg 41400 caaaacccat ctctactaaa cataagaaaa ccgagatggg aagatcacct gagcccgggg 41460 agattgaggc tacagtgagc catgatgctg ccaccgcact ccagagagac accatctcaa 41520 aaaaaaaaag tcacataacc atcatttgca gatgatatca tgatatatct ggaaaactta 41580 aaaagagtca tctgaaaaat tatgtcaaac aatatgggaa gtaatttggc ttggtaaaaa 41640 taaataaata cagagaaata gtottttact ttttgacaga gtotcactot gtoaccoagg 41700 ctggagtgca gtggtgtgat cttggctcac tgcaacctct gcctcccagg ttcaagcgat 41760 tettatgeet caaetteeca agtagetggg attacagaea tgtgeeacea caeetggeta 41820 atttttgtac ttttagtaga gattaggttt caccatgttg gccaggctgg tctcaaactc 41880

ccggcctcaa	gtgatttgcc	cgccttggcc	tcacaaaatg	ctgggattac	aggtgtgaac	41940
caccacacct	ggcccagaaa	tagcctttta	aatacaaaaa	caataatcag	tgagtagatg	42000
gaatagagga	tcctacttac	attgtagctg	aaaaagtaga	ttaagcttaa	gagaaatata	42060
gaagttccag	ttcaaaaaca	tttaaaccct	actgagaaat	acaggagaga	atgtgaacaa	42120
ttggaaggtt	ctgcttttga	gtagaaagac	tcatcataat	catgtcaact	gtctttattt	42180
taatgcaatc	tcagtaaaaa	ctctgtaagg	agttttttt	tttttttga	gaccaattaa	42240
ggtgcctctc	aagtattaaa	gcatattatt	atataaaacc	agaataattt	atgtagcaca	42300
gtgctgacat	attataggca	gcttgacaga	acagggtata	aaatcctgaa	atgcatatca	42360
gacatcgttt	atgatatata	ctgttgttt	gcaatatgat	aacggtgcat	ttcaaataca	42420
gaaggaaaaa	gtggattact	tagttaatgg	aagtgagaaa	aaccagatac	tctctggaaa	42480
taagttgaat	tcatattta	catcttatac	caaaatacat	ttcagatggg	tccaatattt	42540
aaatacagga	agtaaagaga	agtagaagaa	aatatggaat	gttttcatca	tgaaatgggg	42600
aagaaatttc	tgagcataat	atgaaaccca	gaagaaaaga	aaagaaaaat	ttgatcaatt	42660
ggactatata	ataataaaat	aattcaatat	gacaaaaaca	accataagga	aagtgaaaat	42720
tcaaacaaca	gactgggggg	aagtatacaa	tttccatcat	atataaaggt	tttatattcc	42780
ttatataaaa	aactcctaca	aacagtgaac	aataccaaca	accaacagaa	aaatgaaaaa	42840
aaaaaaaag	agatgtgaac	tgtagaagaa	aagcacaata	gggtcttaag	catatgtaaa	42900
gatgctcaat	tacatacata	agaaagtatg	agaaaataca	aactataaag	tagtaacatt	42960
ttacatgcca	atttggcaaa	tctcaaaagt	ttgctaacat	gctgtgtagg	tgaaagtgag	43020
agaaaaataa	acagtattac	aacatactga	atggagtgta	aattggcaca	atgattatga	43080
agagtaattt	tgcaatatcc	atcaagatta	tagatataaa	tatactttca	cccagcaatt	43140
cacttctggg	aatttagcca	acaatagctc	tcacatgtgc	aaatagcaca	tattattatg	43200
gcaaaattat	tcatggtagc	tttatttgta	attgtgaaag	actggaaaca	atccaaatgt	43260
tcaacaatag	aagtttggtt	acaatgtttt	tggttactgt	ttctttttt	aaataatgga	43320
aaaatattgt	gcaactattc	agaaagagaa	atatagtggt	ttgaactgtc	ctctaagaga	43380
gtagagtgag	ttgcagaacc	atttgtgtaa	aacaaagaag	gaaataaata	tattgatttt	43440
tttgcttatt	tatgcataaa	atatttctga	aaggatatcc	aaatacttta	gttagctggg	43500
gctgccataa	caaaatacca	tagtctaagt	ggtgtaaaca	acaaaaattt	atcttctcac	43560
agttctggtg	gctggaagtc	caaaatcagg	gtgccagcat	ggttgggttc	tgttgagggg	43620
gagagagtat	gaaagctctt	cagtgtcttt	tcttcttctt	tcttcttgtt	cttgttcttc	43680
ttgttcttgt	tcttcttgtt	cttgttcttc	ttgttcttgt	tcttgttctt	cttcttcttc	43740
ttettettet	tettettett	cttcttcttc	ttettettet	tcttcttctt	cttctccttc	43800
teetteteet	teteettete	cttctcctcc	teeteeteet	cttattcttc	ttcttttctg	43860
agatggagtc	ttgctctgtc	actcaggctg	gagtgcagtg	gcgcaatctt	ggctcactgc	43920
aacctccgtc	tcccgggttc	aagcaattct	cgttcctcag	cctcctgagt	aagctgggat	43980
tacaggcgtg	tgccaccaca	cccggctatt	cttttggtat	ttttattaga	gaccaagttt	44040
caccatgttg	gcccggctag	tctggaactc	ctgacttcag	gtgatctgcc	tgcctccgcc	44100
tcctaaagtg	ctaggattac	aggcgtgagc	cactgcactc	ggcccagtat	cccttcttcc	44160
aaaggtacta	atcccatcat	gagggtctca	ccctcatcag	ctcatccaaa	cctaattacc	44220
acccaaagcc	ttcatctcca	aacaccatca	cactgtgaat	tagggcttca	acatattaat	44280

-continued

ttgaggagga cacaattcag tccacagtac caagttattt gatcatagta gttgctgctg 44340 ggcccaggga agaaagcaag atgtaggaga atagaattgg aaaggtgatt tttcattgtt 44400 caattetgae ceaetgtgte aetgaecaea tgttettgga eteteeatag aaagtaaeat 44520 gaggetgaaa gagtttttee agataagaet teattggage ttatgeeeag acaggaagge 44580 atgcaggtca gcattatctg cttaggatgg ttatcttgtg taatggacca cctggtggtc 44700 tggccagcag caacaaggct gtaatccatt gttcagcatt ccttcccagg tgggacactc 44760 cacaaccttg gtttgatgtg tagatttcct aagggcaatt cctagaattc tttaagtaaa 44820 aggcatagtt aaacattatg taggaggagc cacatcccat tcctattcta cctcatatat 44880 acttagggtt actgtcagat tccataagtt aaagagctca gccccacaaa accgcctcaa 44940 cttcagatgc tggtcttaag tcatgggcca ctcatacttt tttttttga gatggagtct 45000 ctctctgtcg cccaggctgg agtgcagtgg cacgatctca gctcactgca acctccgcct 45060 cccgggttca agcgatttgt ctgcctcaga ctctcgagta gctgggatta caagcatgca 45120 ccaccatgcc cagctaattt ttgcattttt agtagagaca gggtttcacc atattagcca 45180 ggctggtctt gaacteetga eeteatgate egeceatete ageeteecaa agtgetggea 45240 tgagccactg cgcctggccc catacttctg actagctata gattggtgat tcccatgaat 45300 ccctcctcat tttgagtatt ttgctagaat gtccccccaga actcaagaaa tcattttact 45360 tatgtttacc agttttttat aaaggacaca agtgaacagc cagaggaaga ggtacagagg 45420 gtaggaccca gcagggtccc aagagcagag gcttctgtcc tgtggagttg gagccagcca 45480 ccctcccagc gtgggttgga tgtgttcacc agcccaggag ctctccaaac cctgttgtta 45540 aggggttttt atggagtttc ttacataggc atgattgatt aaatcactgg ccaatggtga 45600 tecqatteaa tttecaqeee ettteeett tetaqaqqtt qqaqaqtqaa qqttecaate 45660 atctaatcaa qacttqqtct ttcaqqaqaa qqqcccctat cctcaaqcta tccaqaqqtc 45720 ctccaggagt cactttatta gcataaactc aggtacagtt gaaaggggct tgttatgaac 45780 aqtaaaaqat qctccaattt tccctatcac aqaqqaaaac tccaaqtqtt ttaqqaqctc 45840 tgtgtcatga accagggaca aagactcagt atatattttc tattatattt taccacagtg 45900 ttaaggaaaa ggggtcctga tctacaccca aagggagggt tcttgaatct catgaaagaa 45960 agaattcaag gtgaatccat acagtgaagt aaaagtaagt ttattaagaa agtaaaggaa 46020 taaaagaatg gctactccat aggcagaaca acccttgggg ctgctggttg cccattttta 46080 tggttatttc ttgattatat gataaacaag gaatgaatta ttcatgagtt ttccggggaa 46140 aggagtggca atteetggaa etgagggtte tteeceattt tggaceatat agggeaaett 46200 cctcatgttg ctatggcatt tataaactgt tatggcacta gtgggagtgt cttttagctt 46260 gctaatacat tataattagt gtataatgag cagtgaggac aactagaggt cactttcatc 46320 accatcttgg ttttggtggg atgtagttgg ctttaccaca ttattttttc agcaaggtct 46380 ttatgacctg taccttgtgc agaccttcta tctcatcctg tgactaagaa tgactaacct 46440 cctgggaatg cagcccagta ggtctcagcc ttattttaac cagcctttat ttgagatgga 46500 gttgctctgg tttgaatgcc tctgacaaca gtaccttttg aattttgacc tatgtataca 46560 aacacacaca cacacacaca caaacacaga agtattaata ctgagtaata ctgagagttg 46620

gggggatgct	cagaaagact	gagttaccca	agttcacata	atttgccatg	gtcagagatg	46680
gacctcaggt	ttccttactt	ctgtttgaag	gtttttcca	atatgctgtg	attactttct	46740
catctctttg	aagatgttta	ctgctttcat	gacttcagaa	tgtctgagta	ttctagtttt	46800
caatatctaa	aggggaatcc	tttagattta	ggggcatggg	ggccacttgt	gggaggtcaa	46860
tgatatttcc	tcacacatta	atgcaatttt	tctccaatat	tcaatgcaag	atatggtata	46920
tagagaggca	accatgtata	tcatgcaaat	tgagaaagac	ttggaaactg	tcccatccaa	46980
aagtactcat	ctattaatct	gctcaaagaa	atatgaaaga	aaacttagaa	gaaatcccac	47040
tactgtgtag	tatctcttaa	gtaaattgca	aatatttcta	ggagaagtgc	tcttgaaatg	47100
ggagagttcc	ctgaccaccc	ttaaaggaca	tgcaacaggg	gtatggctca	tgtgtttggt	47160
caccacacac	tcaaacccct	aacaggagtg	ggagcacaca	gcagggcagg	cacaggagct	47220
ggggcgagtg	ctttgaggct	ccagccccat	agcagcatct	ggagtgggtg	cctgtgactc	47280
ccaaaaccca	agtgggcatg	gcatgtgtta	cagtgcactc	ttttagcttt	gatgtccaca	47340
gatggtgtaa	gtgttaacca	gctcagtgga	tcctctgcct	ttttgcaagg	gcagagggcc	47400
agtgtgacag	cttactgtat	cccaagctcc	tgtctaacat	cccagaagaa	tcaggtcaca	47460
catggacttg	aagggtagtg	aatgtggggg	ttttatcggg	tggtagaggt	ggatctcagt	47520
gggatggatg	gggagctaga	agggagatgg	tgtgggaaga	tgatcttccc	ttggagttta	47580
gatgetettt	ctcttctctg	ccacatcatt	ctgctgttct	tctgctcttc	tgttcatctt	47640
ctcatctcct	tgtctgctca	tctgcttctg	gaacctgagg	tctgtggttt	atatgggtac	47700
aggatagggg	ggtcaaaaga	caacttttgg	ggcatgaaaa	caggaatgcc	tgttcccatt	47760
tagggccatg	agtatccagg	cttgaggatg	gggcctttgc	tggggaacca	ccctcttcta	47820
cccagtattt	ctctgtctcc	tgtccatatc	actcttacac	tgtcaacaac	tattattaac	47880
tcctgaaaaa	atgaatttat	cagattccta	cttgcaggtc	agattctaac	agcaggctcc	47940
tacagaaatg	ggacaagtgg	ttgatgaaga	gtcaaattct	gtaaaatatt	ttaagagatt	48000
tattttgagc	caactttgag	tgaccatagc	ctatgaagga	gccctcagga	ggtcctgaga	48060
acatgtgcct	gagatgatta	ggctgcagct	tggttttata	tattttaagg	agacatgaga	48120
cttcaatcaa	attcatttaa	gaaatacatt	ggaggccagg	tgctgtggtt	catgcctgta	48180
atcccagaac	tttgggaggc	tgaggtgggt	ggattacctg	aggtcaggag	ttcgaggcca	48240
gcctggccaa	atggtgaaac	cctctctact	aaaaatacaa	aaattagctg	ggtgtggtgg	48300
tgtgtgcctg	taatcctggc	tcctcaggct	gaagcacaac	aatcgcttga	acccaggagg	48360
tggaggttgc	agtgagccga	gattgcgcca	ctgcacactc	cagcctgggc	aacaacgtga	48420
gactctgtct	caaaaaaaaa	aaaaaaaaaa	aaaaagaaat	acattggttt	ggtcctgaaa	48480
ggtaggacaa	cttgaagcag	gggtttccag	cttataagta	gattttaaaa	ttttctggtt	48540
ggcagttggt	tgagtttatc	taaagacctg	ggatcaatag	aaaataatgt	ttggattaag	48600
ataacaggtt	gtggaggcca	aatttettat	tggcagagga	agcctgcagg	tagtcggctt	48660
cagagagaat	aggttgtaaa	atgtttctta	tgtgacttaa	agtctgtgtt	gatgttaatg	48720
ctggagaggt	ataatgagcc	atgtccaacc	actacttccc	atcatggcct	gaaacaatct	48780
ctcagggtaa	attttaaaag	agccctggct	gagtaggaag	tccattcaag	tggctggggg	48840
gtcttggaat	tttttttt	ttttggttta	caaagggata	ataaattttg	atttaaaaaa	48900
caaagcacct	gaggggtggg	ctcagtggct	gatgcctata	atttcagcat	tttgggaggc	48960
caaggtggga	ggatcacttg	aggtcggcag	tttgagacca	gtctgtgcaa	catagggaga	49020

-continued

cettqtetet acacacacac acacacacac acacacacac acacacacac atqatetqaq 49080 gatetttgtt tttttettea aagacagggt ettaetatgt taeceaggtt ggatttgaac 49140 ttctqqactc aaqqqatctt cccatttcaq ccttccaaqt aqataaqact ataqqcatqt 49200 gccaccaccac gcattetete ggttttgtca tetgtaaaac gagtgagetg gaccagtgtg 49260 tcctcagatt tccttccttc agagetetgt tctggctaaa tgatttttca aatcccttat 49320 ctcacttgca tcccatggaa aacctgggaa gggcaggaag gacaggggag actatttttc 49380 ttacttgtca gataaggaag ccaagattca agagttccat gatcaccagc tatcttaatc 49440 catttgaget gttatgacaa aatgecacag actgggtaac ttataaaaaa tcagaattta 49500 tttctcactg ttcttgaggc taggaattca aagatcaagg tggcagctga tgaggtctca 49560 gttcctctgc ttccaagaag gcaccttggg gcagtatcct acagagggga tgaatgctgt 49620 cccctcacat agtggaagag agaagaacaa aaaaggactg agtgctacat ggagcctcag 49680 ggctttaatc ccattcacaa aaaataatca cgtcttaaat gccacacctc tcaatactat 49740 cacaagaacc attacgtttc aacacatgaa ttttggagga gatcactcaa accatagcac 49800 caggcaagga gcctgtttag catgggcact taactccaag tttagtggcc tttccactgt 49860 ctcatacaca ttcattcgtc ttttgagtac aaggtattat gctgcgtgct ggggatgcaa 49920 aaccaaaaag ataagcetee tgeeeteeag gggetgacag tggetggaga aaatgaatge 49980 ttacagagcc tcatggtcag ctccctgctg gaaacagaga tggaggaagg aggacaaaca 50040 gtategggga cagagcaagt tteetggaaa aggeeeatea etgaagetga aegaggaagg 50100 atgaataggt atttggtata aagaaaggga aggcctgtgc tctcaggaga caatatttca 50160 teettaaqtq qqataettaq qqtqeeatqt caqttqtetq tqqtaqaetq qqaqacaqaa 50220 acttttgggt agagggatct ttcaaccctt tttggttaag attgtttgtc actgctgaga 50280 ccaqctcagt cagggagacc ctaacccagt ggcgctagaa gaattaaaga cacacacaca 50340 gaaatacaga ggtgtgaagt gggaaatcag gggtctcaca gccttcagag ctgaaagccc 50400 aqaacaqaqa tttacccaca tatttattaa caqcaaacca qtcattaqca ttqtttctat 50460 agatattaaa ttaactaaaa gtatccctta tgggaaacaa agggatgggc caaattaaaa 50520 taataggttg gactagttaa ctgcagcagg agcatgtcct taaggcacag atcgctcatg 50580 ctgttgtttg aggcttaaga atacctttaa gtggtccgcc ctgggtgggc caggtgttcc 50640 ttgccgtcat tcccacaaac ccacaacctt ccagggtggg tgttagggcc attatgaaca 50700 tgttacagtg ctgcagatat tttgtttatg gccagttttg gggccagttt atggccagat 50760 tttgaggggc ctgctactaa catgtccccc ttctctgatg tgcaaatcaa taaactcaaa 50820 50880 ggcagetttg teacagtgag etacttettg caggagteag gatecaeate tgeagaetat acaaagacaa acaacacaga ttaaaagcac aatcatcatt gaaatcacag agcttccaag 50940 tgtttttatc aattttcagc tccttgaagc acaccagttc ctggcattaa ggtcaggtgt 51000 gcctgggatg ctttaaatat ttgttctttt aattttaaat ccttacgcta agctcctaga 51060 gtgggccata tcttttgagg ttgaggtgcc actatactgc catggttcca gataatagga 51120 actettgeta taettattat tatatetaee atetgaeegt tttgtteaga eeagetgaae 51180 atagtgtggc catggcacac agactgagag gtgcaatttg agctaaacat ccccttaggg 51240 gaccaactac taatgattcc ataggaatcg ttgtgcaaca cctctgcctg ttctgcaatg 51300 caatetteet aaacaagtat gtteattttt tetaaetggg teeaateetg tttaeaaata 51360

ggtttttgag	ggcagtatgc	ctcaattata	ggagcagatt	gattatggta	aatactgaga	51420
tcagaaagca	tgtgtaactg	tgtcataaag	tgattgcatc	caggcattat	tgccagccaa	51480
gattgataaa	tagacccagt	aagtataatt	gttctctgtg	tcacccctta	ttgaaggaat	51540
actcatgaca	gtggtgataa	ccactatcat	agctaccatt	aaattattca	ttgtgactgg	51600
ttgtcccgct	ttcctcaagt	tttcttccgc	catctgtgac	agcttcttga	tctgtcccca	51660
ggtgggtgac	tgtgttcaac	gggagttact	cattgacagt	tggggtcctc	ctcagcgtca	51720
gccttgacat	ggctgcaact	ggggggtcct	tgggatcctc	ccgaaatctc	ttcctcagca	51780
tctggctcat	gataaggttt	tgagtgtctt	gatggtatcc	aaatttgctg	ttgattttgg	51840
cctgtacccc	aagttattat	tttacctatt	tcccaacttt	ttgttatcag	atctctccac	51900
caaatcagtt	gttctgcttc	tgtctttgca	gctggtttct	gtagatgctg	ttcagttgct	51960
gatgacatct	ggcctttggg	caggctcaaa	aaatttaaaa	ttaataatgc	taggttcagt	52020
tgcatctgtg	ggggttccat	attgtctgtc	ttcccctttc	tgcttttgca	acttctgttt	52080
tagggagaga	ttcattcttt	ccactatggc	ttgtccttga	gaattgtatg	ggataccagt	52140
aatgtgttta	atattccaca	tagagaaaaa	tgtagctaga	gcttggctag	tatggcctgg	52200
ggtattatct	gttttagtag	aagctggaat	gcccatcacc	gcaaaacact	gcaaaagatg	52260
acatttaaca	caggcagaag	actctcctgg	ctggcatgta	gctcagacaa	agtgagaaaa	52320
ggtgtccaca	catacatgta	cataagctag	tctcccaaac	aagggaatat	gtgtgacatc	52380
catttgccaa	agtgaattag	gttccagtcc	tcgaggatta	actcctcctc	taaaagatga	52440
ggaatgtacc	atttggcaag	ttgggcatcg	ctggataata	tttttagctt	ctttccaggt	52500
aatgctgtat	ctgtgtttga	gaccagaggc	attaacatgg	gttaaattgt	gaaagtgtct	52560
agcattagat	attgcattag	caactaggtg	atcagccatt	tgattccctt	cagtcaaagg	52620
tcctggaaga	ggtgtatgag	ccctaatgtg	agtgatataa	aaaaggtgca	ttctactcct	52680
aactgctgtt	tgcaattggg	taaataaagt	catcagttgt	tcatctgtat	gaaatcataa	52740
ctgagcattt	tcaattaatt	gtgtggagtg	aactacgtat	gaagaatcag	aaatcacatt	52800
aataggcata	tcaaaagcag	tcaatacctc	aattactgct	acaagctctg	ctttttgagc	52860
tgaaatatag	ggcatctgga	acactttact	ttttgatcca	gaataagaag	ttttgctatt	52920
agtagaccca	tctgtaaaaa	cattttcagc	accttcaatt	ggtttaaatt	tagttattt	52980
agggagaatc	caattagtta	atttcaaaaa	ctgaaacagc	ttettttag	gaaagtgatt	53040
atcaacaata	cccacaaagt	cagctaaatg	ggtttgccaa	gtaagactaa	ttataaaagc	53100
ttgctgtatt	tgtgccttca	tgagagggat	aataatttt	ccaggattat	atccatgtaa	53160
tttaacaata	caatttctcc	caatccctat	catagtagcg	atttgatcta	aataaggagt	53220
tagagtccat	gaattagtat	gtggaagaaa	aagtcacttt	actaagtcct	gttcttggac	53280
gaaaacacta	gtaggtgaat	actgagttga	aaaaaatagc	aagtctagag	tcttctctga	53340
atctattcta	tttatttgag	ctttatggac	ttgcttctca	atcagttgta	actctgcctc	53400
agcctccttt	gttaattgcc	gagggctagt	gagactagga	tttcctctaa	ggatagaaaa	53460
cagattactc	atggcatagg	taggaatgcc	tagagcaggt	cgtatccaat	taatatcccc	53520
tagtaatttt	tgaaagtcat	ttaatgtttt	cagttgatcc	ctacgtatgg	ttactttctg	53580
tggcacaatg	gtagtgtcat	ttactaaggt	ccccaagtag	gagtaaggag	tagtagtctg	53640
aattttgcca	ggagctataa	ttaaaccagc	atgagaaatc	gaattttgca	agtgatcata	53700
acattggagt	aatatttcct	gagtgggggc	agcacaaagt	atatatcatc	catatagtga	53760

-continued

ataatttaac actgtgaaaa ttttttatga gtaggttcaa ttgcttgccc cacataggcc 53820 tqqcaaattq tqqqactqtt taacatqccc tqtqacaaca ctttccaata aaaacqctta 53880 gcaggetgca ggttgtttac tgcaggaatt gtaaatgcaa accattcaca gtcttgctca 53940 gctaagggga tagtaaagaa acagtetttt aaatetatga etattaaagg ecaatttttt 54000 ggaattatag cagaagaagg caatcctggc tgtaatgctc ccataggttg tataactgaa 54060 ttqataqctc ttaaqtcaqt taacattctc catttacctq atttttctt aattacaaaa 54120 actagagaat tocaagggga aaatgttgga gotgtgtgcc cattttotaa ttgttcagta 54180 actaatttet etaaageete eagtttetet ttaettagea geeattgtte tateeaaatt 54240 ggcttatctg ttaaccattt taaaggtata gattctggag gcttaacaat ggcaaccatc 54300 aaaacttatt tcctaatctt tggcaggaac tttgattttc cgcttgaagt ggttctttca 54360 aaccttgcaa atttttttct agtcccatac aagggacata ccccatttca tccattgtat 54420 gttgacttca agggctatat aattgttctg gaattataac ttgtgttccc cattgttgta 54480 ataaatctct tccccataaa tttataggta cagaagttat aattggttga atagtcccag 54540 gttgtccatc gggcccttca caatgcaaaa tataaccact tggatatact tcaggggctt 54600 taccaactct acctatgtta aattgagtgg gttgaattcg ccacgtggac agccagtgct 54660 gcagagaaat gatcgaaatg tccactcctg tatctaccaa acctttaaat ttctttccct 54720 gaatggttgt ttcacaggta ggatgtttat cagtaatttg atttacccaa taagctgctt 54780 tgccttgttt atttgtgctt ccaaatcctc ctgttcgttt aatttcactt tttcccattc 54840 ccacatatgg cacgatcagg agetgtgcta tgcgctctcc cggctctgct ttccaggaaa 54900 cagaagtaga tataacaatt tgaatttccc cattgtaatt tgaatcaatg actcctgtat 54960 gtatttgtat cccttttaaa cctaaactag accttcctaa aagtaatcct attgtccctg 55020 ctggcaaggg tccacagact cctgttggga ccttttgcag gggttccccca ggtagaaggc 55080 tcacaqcttt tqtqcaqcat aaatctactq tqqcactact qqctqtqqaq aqqqacaqac 55140 attgtacagg ggtgagggaa tggcctgagc tggaaatgcc ccagtttaga atggggccca 55200 ggatgggccc ctcatggcgt ttcccgaaat tgggttccct tctttatcaa acttagagtg 55260 acactgatta gcccaatgtt ttcacttttt acattttgga catatttcag gatcagcagt 55320 tttcttttct cccctgtctg acggcctgac tcgctgattt tttctacatt cttttttagt 55380 atgaccatgc ttcccacagt taaaacaagc tccaggaaat ggagtatttc ctttatccac 55440 tetcagteet gecattgeat gtgetageag agtagettta tgeagattae etctgatgee 55500 atcacaggee ttgatataat caactaaatg tgettteeet etgataggte geagageage 55560 ctggcaattg ggattagcat tgtcgaaagc taataactgc agcactatat cctgagcagc 55620 caaatctgcg atcatctttc gaagagactc ctgaaaccga gctataaaat taatgtatgg 55680 ttctcttggt ccctgtttta tagcactaaa ggaaaggtat tgttctccac ctgaagtgat 55740 tttttcccaa gctctaatgc atactcctct aagctgctct atggcatcat cctgcatgac 55800 cacttgtgca tgtaaaccag cccagccacc aacccctaaa agttggtctg cagttatatt 55860 aatttgaggt tgggcctggg cattgtgagc agcctgaatg gtagcttcac ctgtccacca 55920 agttttaaat tgtaagaact gagcaagagt tagacaagct caagtaagag cgtctcagtc 55980 agtaggaatc atctgactgg aaacagcaac attctttaac agttccatta aaaaaggaga 56040 acgtggtcca tactgattta tagcttgttt aaattctttg agtaatttaa aaggaaaagg 56100

ctcaaatgta	gctataatat	ttccctgttg	atctgggggc	tgtattctaa	cagggaactg	56160
ccaagcctct	aaatcaccct	ctcgtctagc	ttactggatt	cctgcctgaa	tagaactaag	56220
agtggttgct	caaggcgctg	ctcgaacagt	cactgggggca	actaatttt	gcccagtgtc	56280
ctctggaaaa	gaaagatctg	gagggtcatt	ttcttcaaaa	taataaggag	ggggtgcaga	56340
agggtaggga	tgaacctctc	cctcctttgc	cactttagct	ttagctggta	aataaacatg	56400
ctctgtaacc	tcttctgtta	cttcgctata	ctctatactc	ttgttcctcc	tcatcatcag	56460
tgtgaaaaag	ttccaaggtg	aaaccaacca	gaccccacat	ctgtcccatt	gttaccctga	56520
cgcttctgag	ctccccttct	tactcaccac	ggtgattgct	ttaagagtac	tcgggtatcc	56580
tccagctagt	tttccattcc	aactgtcgct	ctggtgaccc	tttgacctag	atttgagccc	56640
ccacgatgga	tgccacttgc	tgagaccagc	tcggtcgagg	agaccctaac	ccagtggcaa	56700
tagaggaatt	aaagacaaac	acagaaatat	agaggtgtga	agtgggaaat	caggggtctc	56760
acagcettea	gagctgagag	cccagaacag	agatttaccc	acatatttat	taacagcaaa	56820
ccagtcatta	gcattgtttc	tatagatatt	aaattaacta	aaagtatccc	ttatgggaaa	56880
cgaagggatg	ggttgaatta	aaggagtagg	ttgggctagt	taactgcagc	aggagcctgt	56940
ccttaaggca	cagatcgctc	atgctattgt	ttgtggctta	agaatgactt	taagcggttt	57000
teegeeetgg	gtgggccagg	tgttccttgc	cctcattccc	gtaaacctac	aaccttccag	57060
tgtgggcatt	agggccatta	tgaacatgtt	acagtgctgc	agatattttg	tttatggcca	57120
gttttggggc	cagtttatgg	ccagattttg	gggggcctgc	tcccaactgt	cactacccta	57180
ttaatgtctt	tatcagattt	tcagagtcat	aggcaccttc	taacttgctg	ttctgccatc	57240
ccctatgtgg	tctttatgca	agaggctatg	ttgtgaaaga	ttgaagctgg	cagacaaata	57300
ataggccatg	ccataactac	ttetttgggt	ggtttatagt	cggttttact	tcccagatta	57360
tgaagagggg	gattagcatt	cctcttgaga	ttgtcaaaag	actcagtaac	acacccaagt	57420
ttcaaaggcg	aaacacaaga	gcaaattttc	atcactgctt	taaaaaaatg	tattgtggcc	57480
tctgcctggg	ctgagggctc	cgtggagcag	ggacaggttg	cttccaggta	gcttcagtgc	57540
atcacattcc	gcaaccgtct	gcttcacacc	ccagcccctt	aagaaataca	ctttggaagc	57600
agagctcgaa	aaatttctct	gttgccttcc	tcagacctgc	tccttatttt	tttgataact	57660
ttggtcagtg	tcactgtggg	aagcagctag	ctatctcgaa	ggtgttagtt	gttattcttc	57720
agctcactca	cagacctgta	aacacacaca	cacacacaca	cacacagatg	cacacacacc	57780
tttcacctct	ctactgatgc	tggcagaacc	catcttctgc	tacattcttt	gcatttctaa	57840
catcaacatg	ttataacact	caaggttcct	aggccaaaat	tttatccatt	tcatgttctt	57900
tgaaagagac	tgatagtagg	tattccaggt	cttttgcaca	ttctacagat	cccctgtttg	57960
tttcttttt	ttatgctaag	agggaaaaca	tttcattcac	tggaaccttt	cttaattcac	58020
tgcatttgtt	taggaaccaa	tcctttcaaa	actgctccag	gtagagccct	cagcaggtgt	58080
gcacgtgaaa	tacatcagag	aaagactgtg	ctgtccagga	taagagggaa	acatgcatca	58140
ttttgaaaga	gagtggggag	ggagggaaag	gcggaaaaga	gggaggagga	aagagagaag	58200
ctggaaaggt	cagaccacca	tcctgtcaga	tactcaggct	tgtaacctcc	tetecetee	58260
tcacgtttat	ttgctgaccc	cagggagtag	gttcccatag	cctgtcattc	ttctccatca	58320
ttgagtgaag	ccctttattc	tgtatctact	atcatctctt	taacctggat	ggtgaatact	58380
aggeteceag	agaatctttc	tgccatcagc	ttetecacee	tcctccactc	tctgctacac	58440
cccattatca	gaccaatctt	ctgacagcac	cactctggac	aaaaacttca	gtaagctccc	58500

-continued

cactgtccat taactaaagc tcagtagtet tggcctagaa ttcaaggete eceteete 58560 tqtqqcccca actttattqa cttatcacaa qccaqqtact ctqttaaaaq catctaaatq 58620 ttaatttgtc catctaaaat ccctttccag gaatgtgctt tctcccccac ttcctctccc 58680 agtetetgaa gtgttgeget getattgatg agagatgage atatgatgea ggeeageeag 58740 tcagagcatt tcacggcctg gctacaggcc agccaatcag aaccettcac agectggcca 58800 tgggccagcc aatgagagct tttcacagcc tggccacagg ccagccaatc cgagcattct 58860 actetetgee geeceaeege caeteteage tttetttett ttttttttt tttttttt 58920 gagatggagt cttgctctat cgcccaggct ggagtgcagt ggtactatct tggctcactg 58980 aaacctctgc ttcctgggtt caagctggtc tcctgtccca gcctccagag tagctgagat 59040 tacaggcaag tgccaccacg cctggttaat ttttgtattt ttagtggaga cagggtttcg 59100 ccatgttggt caggetggee tegaacteet aaceteaggt gatettettg eeteagegte 59160 tcaaagtgct gggataacag gcttgagcca ccgcgcccgg ccccatcctt agctttctga 59220 aatgtgatgt gtaggtgtgg tggagagggg gcttctctct tctgggtttg aaatctacac 59280 agagaagcag agaggagaag tgatggagaa tgagagagaa agggagacct gatgacactg 59340 tetetetgga teccatggca egtggggett gttecacete tggaetttte ceagagtgag 59400 tcaaaaacgt cccttgtttt cttcggcctg tttgagttgg gtttgctgtt acttgcagct 59460 gaagccatga agaaagtgtc ggaggcgagc gacgactatc tggacaggtg gcggggagat 59520 aaaagaattt accaagacag gccgggtgcg gtggcttacg cctgtaatcc cagcagtttg 59580 ggaggdtgag gcgggdcggat cacccgaggt caggagttgg cgaccagcct gaccaacgtg 59640 gagaaaccct gettetttaa aaatteaaaa ttagecagge atggtggege atgeetgtaa 59700 tcacagctac tcgggaggct gaggcagtag aatcgcttca agccgggagg cggaggttgc 59760 tetgagetga ggttgegeea ttgeaeteea geetggaeaa caagagtgaa aeteegtete 59820 aaaaaaaaaa aaaaaaaaat ttaccaaggc agttgtaggt agaaaaaggc agattcatta 59880 gagaaagtat gaaaatacct ttccaggaag caacgggcag gctcagcaga agaggcgctg 59940 actgcaaaga aacaaaggct tgctggaggt tttataggtt ggttctgagg ctgcagagtg 60000 tctcattcag tactgattaa cgccaaggtt gcagggagct aacttgcatt ttttcgtatc 60060 agctgaaggt ctggtgatag ctcggtgtag gaagattgtg agttatttgt gtaggagggc 60120 tgtgtgtcct ggagcatata gaaaggcaga cttgtagctt atctgcttct tctttttgct 60180 ttcccttgct cccaccagcc tgactccctt tccctaatta ggacgccaga gagagcactt 60240 aagagggcct atgtcatttg atcctcatga ccaccatgag gcaagactgt tagttcacca 60300 ttttgatggg gaagtgacac ctgagagata agccagtgcc caaggcctca cagtttttaa 60360 gtggtagaga cagaatttac agccaggcct ctgactccga ggctgctctc ttaacgatga 60420 gttccaaggc cttccaggaa aatgtacccg gtacttccta tgtgccgggc actaggctaa 60480 gegeeacaea ettgteetet eeteatetge tgetgtttee agegtgttee acaegeeeet 60540 caaacaggtc ctgggttttc ccacatctgc atctttacct ggaacatgct ctttgcccca 60600 cctctgcctg gcaatgttta cttatctttc caatcttgga tcaaatgttg agtctttctg 60660 gaagtetaee ataeteagaa geaagtaett eeteeetgga gtettaagge ttttgatttg 60720 acccccaggc cagtcggctg cctttgagcg ctgatggcac aggaacttgt aggcatttct 60780 tagggagagt ggggaactga cagtttgaag ttaccagatt taggttctag ttattttgat 60840

ggcatctcgg	caaaacacca	cacttttcga	taacaagaaa	tgccactgtc	atggaatggg	60900
cagtggcttt	ggggtaagac	agggctgggt	ttgaatctgt	ctctgcaact	ctagagcttg	60960
ggtgacatta	aaaagactac	ccattctctc	tgagtctcat	ttttcttatc	tgaatatgag	61020
gatgacagca	gtgttgatct	tagagatctg	agagaagtaa	atgggataat	gaatgctaag	61080
ggcttagcac	agtgtctggt	gccatgtatg	tatgtttta	cataaaggat	tacatcttaa	61140
actcatttt	gcccctgcac	gcagagaaga	tgcaggtaac	acacgtactt	attaaatgaa	61200
ggaccaaatc	ttatgaatat	ccctccttta	aaccttctcc	tagtctttga	tagcaactgg	61260
ccacttgtag	ttgcttaaag	aagctaaaga	gaattggaag	cagcaggatg	gaagagaggt	61320
ggagggaaat	gggagtcaga	aaataaacgt	ccttttaaga	aaggccatca	taagagcagt	61380
gcaggtgttc	cagcgaggca	agaaccaggg	ttagctttgt	tccttagatg	acccacgctt	61440
cattccttac	tttgtctttt	cttagaggac	acagggtgag	atgaccaatg	acataggctg	61500
cattgttcct	tttggaattg	tgcagtgttc	ccagttcaat	cttcctcata	agcgggagtg	61560
aggcagtggt	gcagtggtgg	tgctgccatg	gcggtaacag	cagctgccca	gcagetteet	61620
gatetetggg	ttgaaactct	ggtggtgtga	ccttgaaacc	agtactcatg	ttatgacccc	61680
tgacttctcc	tccagctctt	ccaacaatgt	tgaaagcata	taattatctt	acttatatcc	61740
ctctctgctt	gaaatactta	gaggggtttc	tgtttccact	acttagctct	gatgaataca	61800
catagcatat	aaaaacaagc	atattaaata	ctagttttaa	attgggcatg	gtcacactgc	61860
tatagtccca	gctactcagg	aggctgacgt	gggaggattg	cttgaggcca	ggagtttgag	61920
gctgcagcaa	gctatgattg	cactgttacc	ggtggaagat	atcagagtta	ctggtgaatc	61980
tgtatgggtc	tgcagcaacc	tcagttcttc	ctttctcaga	agaaagaatt	caaccgagga	62040
gcataaggca	gaaaaagaaa	ctgaggcaag	tttcagagca	gtttatttaa	aaaggcttat	62100
ttaaaaaaaa	aaggctttag	aacaggaaag	aaaggaaaat	tcacttgcac	ccaaacaggc	62160
acctgaaggt	caagtgcagt	gttgaacttt	gatcctagga	ctttataggc	tggccccttt	62220
cccatgattc	ttctctcaga	gtgggctgcc	cgcatgcaca	gtgccctcct	tatccttggg	62280
agatgagcat	tcacagtgct	taggaagttg	tacacatgcc	catctgaggc	tttcttccct	62340
tttctggtgg	agtgccctca	gaaggtcatc	ctttgccatt	ttgtctccct	tttttttt	62400
ttttttgagt	tggagtttca	ctcttgttgc	ccaggctgga	gtacggtggt	gcgctcttgg	62460
ctcaccataa	cctccgcctc	ccgggtacaa	gtggttetee	tgcctcgacc	tcccgagtag	62520
ctgtgattac	aggettgeae	caccacgccc	ggctaatttt	gtatttttt	ttttttta	62580
gtagagatgg	ggtttctcca	tgttggtcag	gctggtcttg	aactcccaac	ctcaggtgat	62640
ccgcccgcct	tggcctccca	aagtgctagg	attacaggca	tgagtcaccg	tgcctggcct	62700
ccattttatc	tcttaatgca	catgcccagg	aagttgtgtc	tccctggtgc	ctgcgctcaa	62760
ttaacacttc	agtgcaacag	gtgcaggcca	tcaggacatg	gcttctccct	ggtgcaggct	62820
gccaatgtat	cccttttaga	gaggcaatgt	gatcattgcc	aaaacatcac	ctgacattcc	62880
tagcgggtgg	gggaagagcc	ctctccagcc	ccactcatgc	ttgtctaact	acctgtaaca	62940
gcgctacttg	cactccagca	gcctgagtga	tagagcaaga	ctccatctct	ttttaaaaaa	63000
ggaattttac	aatgtgagtc	aatttattta	gaaaattata	gcgatatgac	agatatgaag	63060
gtggtcatca	gtggtgggat	gctgaagtgt	gggaaacact	ggtcttattt	aataatcata	63120
accaggtagg	cactattgtt	accttcaaga	gaaagagagg	ctaaatgaat	ccctcaggat	63180
tacatagctg	ttaggtagtg	tttctgactc	cacagctcac	tttctgaagc	tggagaaagg	63240

-continued

agttggaaat tatttggttg tcatcagaga ccaaacatca agtggcactg taactgcatc 63300 ctgaagaatg aataggattt atccagtgag gtagggaggg atttccaggc tgacaggctg 63360 acatggacaa aggtgtggtg gtgtgagtgg gcaccatgca tcatgggaac tgacggagcc 63420 ctgcagttct agagcagagg agttgtatgg gaacgtgact ggaggtgata cctgagaggg 63480 gagcaggaat ctagtcctgg gagtccttca aagctatgat gaggagatga cgcaattctg 63540 aaagccaagg agccatggga ggatattaga cagggtgacc tattcgcatg ggaatcttag 63600 agagttactt catteggtgg agagetgggg ettaggatet aageegatga ggaagaggtg 63660 ggctgaggag cctgtaggtg tgtgatgaga actgaaacaa tttccctcca cacagctggc 63720 tttctacatt gacatcattt tactattgcg ctgtcttcat taacatgact ttactattcc 63780 aggaaactct ttccccagaaa gatatatgtt acaaatacct tgtggttcat ttcaggaatt 63840 tcccaaactc atttaaatga atatcaaatg gttaaacttt tcagtagaaa gtgtgaaaca 63900 acagtttgct ccccagaatc ttttgaaccc cttgcctcaa aatccccacc tcactgtgtc 63960 ctccaateet aaacteatat caagateatt atcaaaceee aateeageee eteegttgaa 64020 atacctgcct ggaaccagac tccaaaacct catctccttt cgtcctctgc tttctgaaca 64080 ctattaagac tetggeaagt aagtagttte eettaetget gtgaggettg getttateaa 64140 gtagtagtga aactgeettt geaaaaatta tgaeagtgag agaaatetga tatagetgge 64200 gtcatctggc ttctagcctc acaagctaat cccctttgtt aactgtaaaa caaagagaat 64260 aacageetet tetaataaca geeaaaacta atatteteet tgeeeaggaa etgaaacagt 64320 ctttgtaaga ctcctgaaag tcccccaagat taggattatg ggaggggcct gaattctgct 64380 aaaatgtagg cgtagttaaa tgattaacag ctattgttcc ctagcttgct tttctgtaaa 64440 tccttacagc tcaagagtaa cgtagctggt agctgaaggg cacaagatct gtaacttccc 64500 caatcccaat tgctcctaca gataacatca ttattgtcaa aacctaaaat tgatctttga 64560 qatatttttc aqacttttqt attctqqcaa ccaactqact ccacctqqac ccqtqactca 64620 taccaaqqaa catqacaccc acacaqaaac tcccatccaq aaacaaactc aqcatqcqaa 64680 gacacttegg acactaacat attteattee caatcaatea geageaceea tttettagee 64740 ccctgcctgc caaattgtac ctaaaaaccc tagcctcaga gcttttgggg aggtgaattt 64800 gagaaatgtt tcctgtactt ctgctcggtt ggtgataatt aacatttttt ttctaatttt 64860 tttaaaaaaa tcacttggat cacttgaggt caggattttg agaccagctt ggccaacctg 64920 gtgaaacccc atctctatta aaaatacaaa attagtcggg tgtggtggtg tgcgcctgta 64980 atcccagtta ctcaggagac tgaggcagga gaatcacttg aacctgggag gcagaggttg 65040 cagtgccaag atcacaccat tgcattccaa cctgggcaac agagcaagac tctgtctcaa 65100 gaaaacaaaa caaaacaaaa caaaaacaaa aacaaaaaca aaaaaccacg gttgacaaag 65160 aaatttgtta cctctgtagc acacaataat ttaacgtaac agttattact gataatgtat 65220 actaagteet accagaatta taggagttte acataaettt tgaacacata ecagtaagat 65280 acttctacaa atacagccca aagaaagtca aacattattt catatttgac aatgcttcct 65340 gtataatttt tatgccaaat aagccaaatt atgttatttt tggactttag gaaacctaat 65400 atcttaaaag attaattaag tcagaaaaag acataattta taatttttgt taaagagcag 65460 atcagtgctc taagaaaaac cggttgtgct tttattccaa tattcaattt attgaaaaac 65520 tgaagattaa ttcctttaac tttagccaat atgttcacac acataatttc ttttgtaaga 65580

ccaatttttc	agaaaccttc	caaaaagtca	aagaagcagt	tcattacctt	aaagcattta	65640
gcaaacctaa	tatatgacct	gcataattta	gaccaaatgt	ctacattttt	gaagatattt	65700
ttattttacc	agtaatcttt	aaaaccattt	ttatttctca	aagattactc	aagtcatgtg	65760
aactaaaatg	catcacactt	tttatttttc	tgacaaaata	tttgcctacc	tagttattat	65820
acaccaaagc	tctctcataa	tgggaagtaa	tttttaatac	ccccaaaagt	aaaaatgtc	65880
agttaatgca	atgcaaaaca	gtacaaagcc	ttagattttg	agaggaatct	atccactttt	65940
taatccctgg	ggttccatga	ggaaaacaga	ggtttttccc	aaaatgggat	ctgtggctcc	66000
tcctatgttt	tccccaagga	tttccaggct	gttagagctt	gaataagctg	acttaaccac	66060
agtgctcttt	taaaaagtcc	ttttaaatct	cgtattacca	gactttagcc	aggccaaacg	66120
gccaagattc	ctggcttttg	aactttacca	aaagcaacct	cacaggtgaa	accaacaagt	66180
cttaactaaa	gttatggctt	aatcacgagt	gtatgaggta	ttttcaaaaa	ggtggtaagc	66240
agtttttaca	agatctagaa	tctccagtgg	tagctaaaag	aaaggaagat	tcaagaaggg	66300
aaccagaaat	tgtacatgga	ggggaagaga	atcaacaaat	gttaaaggtc	atgcagaaat	66360
caaaccagaa	aggggtcatc	tcctaagctg	gaattgaacc	caggccatca	ttgtaaaatg	66420
gcagagacca	agagacagta	ctgccacatg	gttacaaggt	caagctccca	aggacatgaa	66480
acaagatgag	agggaaactt	tatccagttt	ttttggtttc	agagacctgc	agcaaaattt	66540
gtaactgacc	agtttgctgg	accatcttga	acagtgggtt	tacaggggtc	ctaggcttgc	66600
attctatcct	acggtaccca	tctttatgac	agaacaatac	agaaagacac	acaaagcaca	66660
ccagatttgc	tacagcataa	gattaccctc	acaaatcctt	tttctcatta	attaaaactt	66720
tacagaagat	aaacagagat	ttttaccatt	cattcaatca	gtttgcacag	caagagagag	66780
aggccagaag	tctgactggt	aagaaattct	tacccttttg	ccagcatgcc	aggettetgg	66840
gttccctttg	cctgagtggc	cctagtgacc	tggcttgctg	caccatagcg	ctgggggcca	66900
accctcaaca	caaaggaaaa	ttatcttttt	ccattctggc	tggagcaaaa	tatgtgtgac	66960
aaaacacaga	catcagccac	tctgcttagc	acccaatatc	aaactggcaa	agctcaaact	67020
tgcccccggt	tggccccata	attgttaatc	cagtctccaa	ccaggagttt	caatttgtgg	67080
tctctgggca	agatggtagc	cctgggtaat	agaaaagata	agaaagagaa	aggagagaaa	67140
aggagtgaag	cgtagtctgc	agtagggtgg	ggaaggtgaa	gagctcagag	aggccagaga	67200
aaaacccacc	catcccagcg	atgctgaatc	aaaagttcag	gtggcttctt	gtcagtcacg	67260
aagggatctt	ttccagcagt	ttcaccagct	ctcaagtttc	ctcctttagg	gaggaaaaag	67320
ctccccatgt	cccatgatcc	tgtacatgac	taattctgtc	acccacagcc	accagcaaag	67380
agtgcaaggc	agacttatcc	aaagaaatag	cagttaacat	cctgtaatgc	caaacctgtt	67440
cttagctgag	agggacttta	ccaagacagg	cctccaaccc	cctaaatttt	aggaaggact	67500
ctaatcttcc	taagttgggc	cgtgaaccaa	ggtttggtca	agcatccttg	ccttttctta	67560
agaggggtct	ttaaccctct	ctgtcttagg	agagactcta	actcccctaa	gttgggcccc	67620
taacccaatc	ccatccttga	cccgggtact	ccaccatgta	cccaaaatca	gtcagtcagt	67680
gctagtctat	ttcctttgag	tcgagggtct	cctcagtgta	gtcttttcat	ggctctccag	67740
aaagttgtta	ctggaaaggg	gtcctgatcc	agaccccaag	agggggttat	tggatcttgt	67800
gcaagaaaga	attcagggtg	agtctataaa	gggaaaataa	gtacataaag	aaagtaaagg	67860
aataaaagaa	tggctactcc	attggcagag	cagccccaag	ggctgctggt	tacccttttt	67920
aatggttatt	tctaaaatat	acaccaaaca	aggggtggat	tattcctgcc	tccccttttt	67980

-continued

agaccacata gggtaacttc ctgacatagt catagcattt gtaaactgtc atggcgctgg 68040 tqqqaqtqta qcaqtqaqqa caaccaqaqq tcacqctcat qqccatcttq qtttcaqtqq 68100 gttttagctc gcttctttat tgcaatctgt tttatcagca aggtctttat gacctgtatc 68160 ttgtgccaac ctcctatctc atcctgtaaa ttagaatgcc taaccagctg ggaatgcagc 68220 tcaqcaqqtc tcaqccttat tttqcccaqc tcctattcaa aatqqaqttq ttctqqttca 68280 aacacctctg acaattttgt ttatttttg tagagatgag gtctcattat gctgcccagg 68340 ctggtctcaa actcccaggc tcaagtgatc ctcctgcctt ggtctcctga agtgctgaga 68400 ttacaagtgt gagccactat gcccagctaa ttaaactgtt tatttgctgc aacacctgat 68460 gttcttagtg cattagcttt tctggacagt gggcaagacg aacccattag gttgttacag 68520 tttgggtggt attttctggg atctggacct ggagaatctg ctcaatcaga agagggagcc 68580 agccatggtg gcacgagcac ctgtagtccc agctacttag aagactgagg caggaggatc 68640 acttgagccc acgagtttga gtccagcctg ggcaacatag tgagaccctg tctctaattt 68700 tacgaaaaga gagagagagg aaatagggga agaagagcca gggataagaa atgcagagga 68760 cggccgggtg tggtgggtca cgcctgtaat cccagcactt tggaaggctg aggtgggcag 68820 atcacgaggt caggagtttg ggaccagcct ggccagcgtg attaaatccc gtccctacta 68880 aagatacaaa aaaaattagc tgggtgtggt ggtatgtgcc tgtaatccca gctacttggg 68940 aggetgagge aggagaattg ettgaaceea ggaggeagag gttgeagtga geeaagattg 69000 69060 aaaaaaaaaaa aaaqaaaaaaa aaaaaaqaaa tgctqqqqac atcaacattc aaaqqcaqtq 69120 qqqqaqccaa qqtaattttt cqacaqaqaa tccaqtatta qcctaaattc catctaqatt 69180 cacaggccct ggaaagcagg actttgagaa atggagagga ggtaatttgg aaccaggagc 69240 cttcagatgg gtagaacaca gtgagtgcta ggtacaggtg agggtggcaa ttagaaacca 69300 gccccagcct gatgcatggt gggacacagg tgatggggtg tctggaattg gagagaagtg 69360 tgggaagtga agtgagaggg tgctgagaca aacttgactc tggaatttcc ccaggcaggc 69420 tctgactggg ctctcctgag gaaggacttc ggcttggtag ctggagcagg ttccctgggc 69480 caaggggagg acagggtggg gcagacceta tgagaatgge tgeaagaete ttaetgeaat 69540 aactcagtga gctgccatcc tccccctccc ccaccacaca aactcccctt cccactttgt 69600 tgatgatttc ttagctctgg atgcttccgg tccatttata gctaacctta taatcggatg 69660 catacttgtc attttataag tagagetett ggteactett tgeecateaa ttaacteaat 69720 tgtggtgttt gttgtctgtc ctctttctac tttctggata ccttgtatgg acctagatgt 69780 ggttccaggg acactttgaa tagaaaggcc aggctgagat gagggttggg cctggaggcc 69840 ccttggacca ctggacatca gaacatttac tcacgtgcca gggactctaa gtcacccaac 69900 tgaacaacta caccttctag atttagaaga atgcacatac atagtttcct ctcaggcccc 69960 tgetttetee cetecettte tteceacete cettecaett actggeagaa atatateeae 70020 cctgtattgt gttaagatga ctttattgca tttctaaagg gcaagtgtgt tgttggtagg 70080 ctccctttta ggaagctgaa aggcttgcct gagtgctggg tggggttaga gccaggaccc 70140 cagtettett ceatteatgt gtggagaaae tgettttagg aaattgetta eagtttgttt 70200 tattatteec tetgettgga etatgteeat teatteattt atteaaeata tattattga 70260 gcacctatta tatgtcaaaa tgcttgctct cgtggagctc gtatttgaga gtaatgatat 70320

cagaatgcac	atattatata	tgtattacat	atatatata	ttaggttgaa	gaaaaacaaa	70380
acaaggtagc	atggtaaggg	gctagaaaat	gatgaggact	gatattttag	gaggagcaga	70440
gaacaatgac	ctgactgaag	tgaggaaatg	agccacgtgg	ctctccagga	ccagaagttt	70500
caggcagagg	aatagcacgc	gaaaaatcca	gagactaggg	aggtgggtgt	ttactgtgtt	70560
tgctgtcttt	gaggatgagc	aaggatgcca	gtgtggctgg	agtggagcag	gagttgagaa	70620
agagtggtag	ggaggtgggt	caaagaagca	gccagagctg	tggccggact	ttgcattttt	70680
ttctgagcat	gataggaagc	agctgagcaa	gggagggact	tgatctggat	tctatttcct	70740
gctatgtggg	gtgagggagg	aagcaaggag	agcagctggg	agagacagag	tataacagaa	70800
tcggggtcta	ttataaagga	agagcaacca	gaattttcta	atggaaaagg	atatggagtg	70860
tgaaagcaaa	agaggagtag	taaaagacac	caagggtttt	ggcctgagca	actcaaggac	70920
agggatgtca	tttaccgaga	tgggaagtgc	tggagaggaa	caggagtgag	ggtggccacg	70980
gtgaaatgtg	gctttgggat	gtgtggtgga	gatgtggaga	aggtggaggt	gttaacaagt	71040
ctagagtgct	gggatgaggt	catgttggac	atgtaactct	ggggattatc	aatgtatgtt	71100
ttgaaagcca	ttaagattgt	ctgtaaagaa	caagatggta	agtgttttag	gattgtccca	71160
accactcaac	tctgccatta	taatatgaaa	gcagccatag	acaatatgtg	aatgaatgat	71220
catgaccatg	ttccaataaa	actttattt	agaaagcaga	tagtgggtca	gattttggcc	71280
cataggatat	agtttgccaa	atcttagacg	aggtggtatt	acctaggtag	actgtaaaaa	71340
gaaaagagaa	gaactcagag	ccttggggca	cccaacactt	agaaattggg	aagaggagag	71400
ggatctaaga	gaatgagata	taacaagcag	caagggaaca	ggcaaattaa	gagattgggg	71460
tggcatggga	gatggaagat	gtttcaagaa	ggacaaacca	atattatggt	gccaataaac	71520
gttgtgaaat	acactgaaat	ggacaaaaaa	attgagtgtt	ctgtctagta	tacccttcag	71580
ggttatattt	atttttcatt	gcttttgagc	tattttacaa	ctttttaagt	tgtagaaaac	71640
tgacaataat	gcaaatgatt	cttgtctatg	aaaacaaatt	atgtccagta	caatgcaatt	71700
aattgcactg	gtggaattgg	tagaatgcaa	ttgccctgtg	aataaaccag	ttttgcatct	71760
ataatcatgt	gatgcttaac	cacaaggata	tgttctaaga	aatgcggtat	tgttaggcaa	71820
ttttgtcatt	gtgcaaacat	catacagtgt	gcttacacaa	acctagatgg	tatagcccac	71880
tacacaccag	gctgtagggt	agagcctatt	gcttcgaggc	tacaaacctg	aacagcatgt	71940
tactgaactg	aatgctgtag	gcaattggaa	cacagtggtg	aatatttctg	catctaaaca	72000
tatctaaata	tttaaaaggc	acagtagaaa	tacagtaaaa	aagatttgaa	atgctacatg	72060
tatgtagtgc	acttactatg	aatggagctt	acaggactgg	aagctgccct	gggggagcca	72120
gtgagtgaga	gatagtaaat	gtgaaggctt	aggacattat	tgtacctgat	ggtagatttt	72180
ataaacactg	tacacctagg	ctacattaaa	tatatttaac	gtttttttct	ttcttcaata	72240
ataaattaac	cttagattac	cgtaacattt	ttatcctatg	aacttttaaa	ttttaacaat	72300
cttgttgact	gttttctaat	aatatttggc	ttaatacaca	aacacattgt	acagctgtat	72360
aaaaatattt	gttctttata	tcctcattct	ataaactttt	ttaatttaaa	tttttttt	72420
tttacttttt	aaactttttt	gttaaaaatg	aagacagaaa	cacatacatt	agcctaggcc	72480
acacagggta	aggattatca	atatcactgc	cttccacctc	tactccttgt	cccactggaa	72540
tgtcttcaag	ggcaataata	teettgggge	tgtcgtctcc	tatgacaaca	atgccatctt	72600
ctggagcacc	tcctgaagga	cttatcttag	gctgttttac	agctaacttt	ttttttttt	72660
ttgagacaga	gtttcacttt	tgttgcccag	gctggagtgc	aatgcgtgat	cttggctcac	72720

-continued

cgcaacctct gcctcccggg ttcaagcgat tctcctgcct cagcctcccg agtagctggg 72780 attacaqqca cccqccacca cqcctqqcta attttqtatt ttttqcaqaq acqqqqtttc 72840 tccatqttqq acaqqctqqt ctcaaactct caacctcaqq tqatctqcct qccttqqcct 72900 cccaaagtgt tgggattaca ggcatgagcc accaagcccg gcctacagct aactttttt 72960 ataagtacga tgagtacact ctaaaataat gatgaatgta cagtatagta aatacgtaaa 73020 ctaqtaatac aqttqcttat qatcattatc aaqtcctatq cactqtacat aqttqtatqt 73080 gctatgcgtt tatacaactg gtagtacggt gaattggttt acaccagcat caccacaaat 73140 acattgcgta atgcattgtg ctatgatgtt aggacagcta tgatgttaca aggcaacagg 73200 aatttttcag ctccattata ccctatggga ataccaacat atatggggtc cattgttgac 73260 caaaaatgttg ttttgcaatg tgcaactgta tttgtaaatt tagaatagca ttccttattg 73320 cttttgtatg tgagtttcat taacttcttt aaactggttg taacatctta ccggttccct 73380 cattagtgag taaaataaaa tcatttacat gtattcattt tatatttgta tgtgagccat 73440 gatttcactt tttgaaataa ttattatttg acaatggaga ttaagttaaa taaatattaa 73500 gaattaacaa aattggcaac atacagatca tggtgacttt gataagaacg attttggagt 73560 aggaagggtg aaagactgat tggagcaaat tgtgtaaagc tataataaat aataaagaca 73620 catgggcaca ggggtaaata aatagaccaa tggaacagag ttagagatcc cagaataaac 73680 ccacacataa atagaaactt tgtagatggc agagatggta atgcaggaaa aggatggagt 73740 agtcaataaa tggggctggt acaatttgtc atctatatga gaaaaaaaac aaaactggat 73800 ctctacctca aacaaatcag tctgttccag tggatttaag atgatatggt ttggatctgt 73860 gtccttgccc aaatctcacg tcgaattgta atccccaatg ttggaggtga gggctggtgg 73920 gagatgactg atcatggagg gggatttctc atgaatagtt tagcaccaac atcttggtgc 73980 tgttctccat gatagtgagt gagttaatgt gagatctggg catgcaaaag tgtgtagcag 74040 ctctttacct ctcttqcttc actctqqcca tqtqacqtqc ctqctcqccc tttqctctct 74100 gctatgatta taagtttcct gaggtctccc cagaagctga gcagatgcca gcaccatgct 74160 tcctgtacag cctacagaac agtgagccaa ttaaaattct tttctttgta aattacgcca 74220 tctcaggtgt ttctttatag caacgtgaaa agggactaat acagactttt agaagaaaat 74280 agaagggaat atttttgtgg cctcatggta atgaaaaaaa tttaaaataa gacacaaaat 74340 cacaaacctt aaaggaaaac atttatgaat ttgacaccat taaaatttta aaaacttttg 74400 attatcaaaa gacacattaa agagattgaa aacacaatta ctcataacac ttaactgaca 74460 aaagataggt atccagattc tgcaaagaac acttacaaat caatataaat aaaaataact 74520 taatagaaaa atgtgcaaaa aatatgaata aacaattatc agaagagaaa actcaaatga 74580 tcaatgaaca tatgaaaaga tgtaaaacct cactactaat tagagaaatg caaattaaaa 74640 ccccaatata atactatttt acatctcttt aatggactaa tctttaagag tgtgatgatc 74700 caagtattgg caaagatgtg gggacattag aacttttata ctctcttgag tggaaggtaa 74760 attgttataa tcactttaga aagcaatttg gcaatattta atattttaag tttttctaag 74820 cagttttcca ggggttgttg tgttataggg tatacatata acacagcaac tcctggagat 74880 ataccttaga aaaactcaca aatatgtaca gagggacagt ttatagcaat ggtgctgtag 74940 taagattttg gctataacct gcctgtccat caataagaaa atgattaagt aaattgtggt 75000 ttattgagac aatggaatac tatgtagcaa tgaaaaagaa tggattagag ctgcatgtat 75060

caatatggat	gaatttcaca	aacagatgtt	caagggaaag	agcaagttgc	acaatacatg	75120
ttcataccta	gttttcagtt	tacagatett	gcacattttt	gtcagattta	tccctaagta	75180
tattttaagt	gttattgaaa	atggtatttt	aggetgggee	tggtggctca	tgcctgtaat	75240
cccagcatgg	ctttgggagg	ctgagatagg	aggattgctt	gagcctagga	gttcaagatc	75300
agcctaggca	acatagtgag	acctccactt	tacaaaagaa	ataaaaatag	ccaagcatag	75360
tggatcatgc	ctgtaatcct	atcatttagg	gaagcaaagg	tggggtatag	cttaagccca	75420
ggagtttgag	acctgcctgg	gcaatatagc	gagaccgtgt	tctctacaaa	agaggggaaa	75480
aaagaaaaaa	taaataaaaa	tttacaaaat	tagctgggca	tggtggtgca	tgcctgaagt	75540
cacaaatact	caggaggctg	aggtgggagg	atcacttgag	cccaggaggt	tgaggctgca	75600
gtggactatg	atcattccac	tgcagtccgg	cctggacaac	acagtaagac	cctatatcaa	75660
aaaaaaaaaa	aaaaaaaga	agaaaacagt	atttaaaaaa	ttccaatttc	taattgttcc	75720
ttactagtat	atagaaatac	agtagactgt	tgtatattaa	tcttatatcc	tgtaactttg	75780
ctaaaatcac	ttattctagt	agctattaaa	aatagattcc	atcagatttt	ctctatattt	75840
gaccatgtca	tctgtgaata	aacacagttt	tatttcttcc	ttttcaatct	gaatgccttt	75900
ttttccacct	aatgctctgg	ttagaacccc	ccatacaaag	ctgaatagaa	gcagtgagaa	75960
cagacatctt	tgtctagttc	ccaatcttag	ggagaaaaca	tacagtcttt	cacatgaagt	76020
atactgttag	ctatgggttg	tttttggag	atgcccttta	tgagatggat	gtaattccct	76080
tctattctta	gtttgttcag	tgtttttatt	atgaaaaggt	gttggcttct	cccaaatgtg	76140
ttttttgcat	tgactgggat	aatcatgttt	tttcatatgg	tctgttagta	tggtaaatta	76200
tattgcttga	ttttcagatg	ttaaatcact	cttgcattct	tgtgataaat	ctcatgtgct	76260
catgatgtac	ttgtcctttt	aaatataaag	agacatccaa	tttgctaaag	ttttgttgag	76320
aattattgca	tctatgttca	tataggtata	ttggtgtata	gttttcttgc	cttgtaaggt	76380
ctttacctgg	ttttgatgtc	agagtaatgc	tggaccattc	agtgatttgg	gacgtattca	76440
ctcatcttca	acttccttga	acagtttgtg	cagaatcaat	attatttcta	ccttaaatgt	76500
ctgactctgg	ggetttettt	cttttcttt	tetttttet	ttttttgag	gcagggtctc	76560
actgtgtcac	ccaggctgga	gtgcagtggc	ccagtcacgg	ctcactgcag	cttcgacctt	76620
ccaggctcaa	gtaatcctcc	cacctcagcc	tcccaagtag	ctaggataac	aggcgtgcac	76680
catgatgcct	ggccaaatgt	tttgcatttt	ttatagagat	gaggtttcac	catgttgccc	76740
aggetggtet	caaactcctt	gactcaggcg	atcctcctgc	ctcagcctcc	taaagtgtta	76800
ggactacagg	tgtgagccac	tgcacgtggc	caaccctggg	gttttctttg	tggaaacatg	76860
tgttagtcta	tttgcattgc	tataaaggaa	tacctgagac	tggataattt	ataaagaaag	76920
gagatttatt	tggctcatgg	ttctgtaggc	tgtacatgaa	gcatagtgcc	agcatctgct	76980
tctgttgagg	gcctcaggaa	gcttccagtc	atggcagaag	atgaagcggt	ccctgaatca	77040
catggtgaga	gaaggaacaa	gagagaagga	ggaggaagtt	ccagactctt	tcaaacaacc	77100
agatattgtg	tgaactcata	actgagaatt	cactcattac	tggggaggat	ggcaccaaga	77160
cattcatgaa	ggatccatga	tccaaacccc	tcccaccagg	ccccacctcc	aacattaggg	77220
actacatttc	aacacgagat	ttggagagga	caaacatcca	aactatatca	gaaggttttt	77280
aattgcatat	tcaatttctt	taatagatgt	aggcctattt	tggttatcta	tttcttcttg	77340
agtgttgtta	gattgtattt	ttcagtaatt	tgtccatttt	atccatattg	tgacatttct	77400
atctggtgta	ataagaatag	tgttcatatc	aaagttcaat	ttctccatat	cttttccagg	77460

-continued

taacteteee tttggtgett tgaageaata tggegtettg actggetgee atggeeecea 77520 cettleetee taggeteage eettgacata actacteete actaceetet catetteece 77580 ccaccttqta teectctage attecteace tqaaqaaett aggetttett aagtetettt 77640 agttagcagg aaactatcta atttaaaaac cctctccaag ttgtttatta cttaagggat 77700 tagtccttcc aagagtattt atgtttcaga agagaatgtc tagataggat tgtgcataac 77760 aaaaataagt caatttttaa tggtgttatt gtaggctctg tgacaagtag gggagggaag 77820 cactttggga aatggactct cctctctttc aaatattatt caagtacaag tttgcgcctg 77880 ttactcttct gctttaagac tgtctacagg gagtteteet tgtcetttgg tcaaagtaaa 77940 atgttcaaca cageettgea agateetgee gettetegga gecateagae ceaetettga 78000 tgetetgete tggtagaget etgecetgge eetcaaaetg ttggaettet etgagaaage 78060 gataggtgtg ctcagatttt aaggatgagg tggagaagtt cagagagagg gcatttgcta 78120 tggaactgag gctaccaaag tgacgaagag aatgcatccc tgttctctag gaactcaagg 78180 tttagtggcc ttatagagtg gaatagcacg ccaacagtgg ggccagtgac tgccaggctg 78240 actagagaag gcaactetea etgtggatat agteggaaae tggettttet getteagege 78300 tgtggaccag caattgacct ttcttcccta aagttcattc acttgatacc ttccagaagg 78360 aaggtcaccc cctgcctggg ttggctatgg gccaaacccc tgcccactcc aaagtgtggc 78420 ttggaatgcc atggtctgct tattaaaaat cagatttcgg gaggccaagg cggtcggatc 78480 acgacgtcag gaaatcgaaa tcatcctggc taacacggtg aaaccccgtc tctactaaaa 78540 atacaaaata ttaqccqqac qtqqtqqcqq qcacctcccc qctacttqqq aqqctqaqqc 78600 aqqaqaatqq tttqaacccq qqaqqtqqaq cttqcaqtqa qccqaqattq caccactqca 78660 78720 aaaaaaaaaaa aaaaatcaga ttcctgttcc ccaggcatcc tgaatcatca gggatggagt 78780 ctcaaaataa atqtacattt atttatttt tatttttqta taqacqaqqt qtcqctatac 78840 gttgcccagg ctggtctcaa actccttggc tccagcaatc ctcctgcctc ggcctcccaa 78900 agcactggga ttataggcct gagccaccac gccggcctaa ttgtactttt attttttga 78960 gacggagttt cactettgtt eetcaggetg gagtgeaatg geaegatett ggeteaeege 79020 aacctccgtc tccagggttc aagcgattct tctgcctcag cctcccgagt agctgggatt 79080 acaggeatgt gecaecaege eeggetaatt ttgtattttt agtggagaeg gggtttetee 79140 atgttggtca ggctagtctt gaacteeega eeteaggtga teegeeegee teggeeteee 79200 aaagtgetgg gattacagge gtgageaagt gegeeeggee ttaaatgtae ettttaaace 79260 aagttetgea gtagattett aggeattaaa gtttgagage catgtttetg aggggegtea 79320 tgctgaagge tatatattet tgeggeeeee ggacegagee tageeettge atteceacee 79380 tgggetetet etcagegaca aetttteeca ggegtegggg etteeetega gegtggegae 79440 cccgcagaca tggtgccaag agccagggtg ggcggcgggg cgggtgggag agcggcggcg 79500 ctgggggggg gggcaccatg cgaccgcggg cgccgggacc acagcgcgcc gggaaggagg 79560 ccgaggcggc aggaaaaaag ccgaagatac ttgggggggac cgaggggcca agcgacggag 79620 ggaggaacag aatacagcet egegetggte eegageactg ggacgegegg ggagageagg 79680 aggeegggeg gggaggtteg gggeggggeg egetaceege agteeeegga geteggetaa 79740 ctcggcgccc agtgcacggc cgcaccatgg ggtcccgcca cttcgagggg atttatgacc 79800

acgtggggca	cttcggcagg	tatgggggag	gggccccgcg	gcgccacgcg	ggaggcggcg	79860
ccgaggggtc	tgtttctttc	cgttgcggcg	gggttctcgc	gcggcgctcg	cgatccgaaa	79920
acatctccac	ttcctcctca	ccccgcgcag	tcgggacacg	ggcgtccaga	cgccggcccc	79980
tagetggget	tctcctctag	gcctctggca	gcgggacctg	gcatggtgag	cagaggeget	80040
gggetegete	ggagtgcgcc	tgttgccggg	caggagggac	ctggtgcgtg	ctctccgcgg	80100
cagcagatgc	tggaggcatc	tggctggaga	tctggctcga	ggggccagat	ctcactcgta	80160
gggggtgcct	gtgcctggcc	gcccgtttct	ctaatccgcc	gccacttccc	tagacggctg	80220
ctgcccagtt	ctgccctgcg	cctccgtagg	gcctccctct	gtgcctggca	ggtgttcccc	80280
agggacaacc	gttagtcaga	gttggttgcc	gtttattaaa	acctaatacg	tgccaggtac	80340
actgtacctg	gcgcttacac	atagttette	atttgatgtt	caccgggacc	ctgcaaagga	80400
ggtgttcaaa	tccttatttt	agtgattggg	aaacaagctg	gcggggtcaa	ggactcatag	80460
ccaacgcatg	gtggaaccac	gtttaacctc	cgtacaccct	cttttcattt	gtcaaattga	80520
tttaaaaaat	ttaaattatt	cattcgttcg	ttcactcatg	gacagagctc	ctctatctga	80580
ctcagagtgt	tttgagaggg	gaggtagccg	ggtgaggggc	catgcagcgt	tatggccgga	80640
gatttggagc	tgcgtctcga	tcctggcctg	ctacttacct	ctgatatgat	tctggagata	80700
ctttgtgtgt	cagtttccta	tccagaaaac	gggaatcagg	cttagcaaag	agatgatgtg	80760
gtgctgttct	tcaaggtgga	aggttgcatg	cgttttggtt	ttgattccca	gtgtctgcaa	80820
aaaggagctg	ttaggacaga	ggaaacgggc	aggaagcccc	agctgttccc	ttcttcctct	80880
gcttgcatca	ttgaacgctg	ccttgtgcct	ggctcggtca	taagccgttg	gtacatgtta	80940
cttcctttaa	tcttcactac	agccttataa	ggttggtagt	atcaccctct	tttcacagat	81000
gagaaaacca	aggtttctgc	ctaagcacaa	atctaatact	agcagggcag	aattggatgc	81060
cattggatgc	ccatcacctc	cacagcccac	actctcaacc	atgatgcact	cctgagcacg	81120
gttaggtgac	ggctcctcag	ctgggccaag	ctctttatgt	atgatctcat	ttcatccttc	81180
tggaagcaga	atagcacaga	ggttaaaaga	tcagttttaa	ggctggatgt	ctaagttccc	81240
actctggcgc	taccacacat	taactatacg	gtcttgagca	ttttatttac	cactttctta	81300
tctgtaaaat	ggggctaata	atagtacaaa	tgttttcaaa	taggagtagt	gaaaatgtgt	81360
atatgaggac	tctgcatgca	gtttctcatc	cttacagtaa	ctcaatgagg	taggtggtac	81420
ttacatctta	gttcccctgt	gtttttagg	gattagctga	ggtaattata	ttagttggtg	81480
tttgactaaa	gtgcccaatc	aaacagattc	ctcaaatgga	agtttatgcc	tctccagtaa	81540
ctgcccacag	caggatctgt	gccacgagac	cattcaagga	ccctggcagg	tgggacagct	81600
ctgtcatcca	ctgcatgggg	ctccctgtct	gtgcctggag	cagctgcgca	cccatggtga	81660
cageteacta	cggtgaagag	ggggcaaatg	ggtttgagga	gacagetett	agctggccac	81720
cataatgtat	gcaaaagtct	tattattcag	taagttetea	ataagtcatg	gctattatca	81780
ttacctgagt	tcccatattg	gtggtcaggg	ttgactcgtg	aaagcagctt	acaggaggga	81840
aaagggtaac	aaaccactgc	ttatatagca	gaagatgaag	actgtgtgac	tgcaacacag	81900
taccacattt	ttctcaggta	tttgttctaa	ttggtatcta	ttctttataa	acagaaagga	81960
aagttattgt	gatgattatt	tagtcctctc	tttaagggat	cctagtgaaa	gtgttaagta	82020
gagcagtggt	ccccaacctt	tttagcacca	gggactggtt	ttgtggaaga	cattttttcc	82080
acagacctgg	tccctaacct	ttttagcacc	agggactggt	ttcgtggaag	atatttttc	82140
cacagacctg	tggtggggtc	gggaggatgg	tttcaggatg	gaactgtttc	acctcagatc	82200

-continued

atcaggcatt agatteteat aaggageact cageetagat ceetegeatg tgeagtteae 82260 aatggggtte acgtteetat gagaatetaa tgeegeeget gatetgaeag gaggtggage 82320 ttaggaagta atgetegetg geegetgete aceteetget gtgtggteea gtttetaaca 82380 ggccatggac cagtctggtc tatggcctgg ggctttggga cccctacagt agagaaccct 82440 gattacctct catttctcat tggtcatttc tagaataagg aagcactatt ctagtcacct 82500 ttaaaagggg aaaacaggcc aggtgcggtg gttcatgcct gtaatcccag cactttggga 82560 ggctgaggca ggcagatcac gaggtcggga gctcgagacc atcctggcta atgtagtgaa 82620 accaagtete cactaaaaat acaaaaaat gageetggea tggtggeggg ggeetgtggt 82680 cccagctact tgggaggctg aggcaggaga atggcgtgaa cccaggaggc agagcttgca 82740 gtgageegag attgegeeae tgeacteeag eeegggegae agaaegagat teegteteaa 82800 82860 atacctgaga agaactaaaa taccattcca ggatttctcc tgaaaccata tcgtttccat 82920 aaacttcaca gcttaagctc catatgaaaa gaaattgaga agactgaaat ttaggcacct 82980 gtgttgggag gatctgaacc tggatccctg agttagttgt cctgggttaa gaggagagac 83040 ggtttaaaag tttagagttg gaatgtggag cctgtggcag accttcatca atggatagag 83100 gtagggtttt gttttgtttt atttcagtat atagagtttt tctggctctt ttttgacttc 83160 agtgtgtgaa catcataaca tctatcattt atatacagct acggtgtgtc atagagtgct 83220 ttccatqtqt taactcattt cattcccaca aaqcccataq tttaqatqaq qaaactqaqq 83280 cacaqaaaqq ctaaqqatct tqctcatqqt ccctqqtqqt aaqtaacaqq qccaaqatca 83340 aaccttqqca qtctqqctcc aqaqtccatq ctcttaqcca tqatqqactc caccaqttat 83400 gcttttatat ggaatggtat aatctaggac tgaaagcagt tttcttcatc cgtcactcag 83460 attgcatggg tccattccct ggggcttctg gccgcccttg cttttcctcg cctctgggtt 83520 ttctgccgat tgtgtttgtg tgattatttt tccattagag tgtcatatct ataagcctgt 83580 tgtcctggtg gacccctagg ttgggtacat gcatgacacc tctgagggcc aagaatcttt 83640 gtaaaagaga gagtgatgtg ttagaatgct agacgcctaa ggaaatgggg cttggttttt 83700 tttcaagagg ttattcttgc aaaagggaaa gggaaatttg aattgaagga gtgcttagga 83760 cctttctagc acatggaaag tgtgtttatg tgaactagca tggcttgatt gggggccact 83820 tagtggttta ttattttggg ggtataaaat atgagagtga gagaggcagg aggtaagctt 83880 acagtcatct ccatgagtgt ttttgcaaag tttgggtatc agaagtttgg gttttgcagt 83940 gcagagggtg gattggaggg gcagcgagtg gggcaagggg gccagtgaag acctagataa 84000 gagcccaggt gagagagaaa gagggtctgg agagtggggag tgtggggcagg gagaaccaga 84060 cagttttagc aggtggagtt gatgggagct cttggcccta aggcatgaag gagaagtgaa 84120 tgggaccaca tgcccctcct agcccacccc atgtcccatg ccctggattt ctagtttgtg 84180 tgggtgatgg tagcctaaac tcagaaagtt accetecagg eggggeagge etagatateg 84240 ageteagttt gagattggtt taeettgagt teettgtggg aatteeaggt ggagaeatea 84300 agtgggaagt tgggtagata atctgttgct cagggaaaat gcccccttgt caatatggat 84360 caggtggcca cccagggctg cagtccagct ggaccagtgc cttgtggaca gattaggcat 84420 gcctggcacc tgttccagct gtgcctcagc aggggtgttg ctgaatagtt ttccctctcc 84480 ctgggcgctg tagatagaaa acttttaaat tgatatatta catatatgca gaaaagtgtc 84540

caccataatc	tacagcctga	tgagttgtca	tacagtgaac	acacctgtgt	tacccccacc	84600
caaatcatct	cctcttatgc	cttctcccaa	gccctactcc	gtccctgtcc	cccaagctca	84660
ctactgtcct	tacatcaacg	atactaaatg	ttacataagt	ggggtaaaag	gcacttgccc	84720
tttggcttct	tttgttccac	actgtgtttg	tgagatccac	ccatattgtg	tgtcacagag	84780
gttagtcgat	tttcacagct	acatagtatt	taatggcaca	aatatttcac	ggttcattca	84840
tttactgtca	acagacgttt	agactgtgtc	caggttgggc	ttatatgagt	tgcctttctt	84900
gcatttgtct	tttagggtag	ggttatattt	tgcttaacga	cagagatact	tctgagaagt	84960
tcatcgttag	gtgattttgt	tgttctgcaa	acatcacaga	ttttatttac	acaagcctag	85020
atggtacagc	ctgctacaca	tttaggctct	atggtatagc	ccactgctcc	tagactacaa	85080
acctgcacag	catgttattg	tactgaatac	tgtaggcaat	tgtaacacaa	tgggaagtat	85140
ttgtgtacct	aaacatggaa	agggtgtggt	aaaaatatga	tattaatatt	ataatcttat	85200
gggaccactg	ttgtatatgt	ggttcatcat	tgaccgaaac	gtcgttttgt	ggcatgtggc	85260
tctacctgtg	tatgcatttc	gctgggtaga	tacctaggag	atgctgtcac	aggcggtgca	85320
tgtggtcccc	tgccagagag	ttttgcaaaa	tggttataac	aaatgtcacc	ctcacaagct	85380
gtttattggt	ttttcagttg	ctccacaaca	attgtccagt	attttgaatg	tcaaaccttg	85440
taccagtaca	tagtttaacc	agaaaactag	atatcctggg	gcaatgtttt	catccgtatc	85500
agcatctcct	aagaagcttc	ttaagcttgt	aggggccttg	accccacctt	agacctcctg	85560
aatcacgatt	gctaagaggg	ggacagaaaa	gacaaatcct	agcttcagag	gcctgccagg	85620
gtgggtgctg	tgttggtgta	tgtgtgtgtg	tgcacaagag	aaaaagacac	aaagagagaa	85680
ggagagggga	agagagagag	agaatagttc	tggtgatgtg	gtgatgactg	tgggggtcac	85740
tggctgagga	agaaaaaaac	tgaggccagg	aaggtagaaa	ctaactgaag	aagctggtag	85800
gatctgaaga	ctggacgcct	gaatggtgct	ggaaatgggg	tcagtgggaa	ggatggggga	85860
agtaagaggg	tgggaggtca	tgctcagaac	ctgagctttt	cagtggtgga	gctgttccag	85920
gtagagacta	gttagggaac	aaacccaaat	gcctcaggta	aactttaggc	aagttaaaca	85980
tgcctgctgt	ttgcaggggc	tgtgttgtcg	tttgctgagt	tgaaatttca	gggatgggag	86040
tcaaataatt	ataaatatgt	gcaccatacg	tacatgattt	atgttctatt	tccagtcata	86100
ttcatatggg	attgttatta	tagggtgctc	cttaggctct	caacaaaatt	tagtttcaag	86160
aggacctgat	tttcatgcct	cttattgcca	tggtgtctag	cgggtagatg	ctggcccacc	86220
acaagccaca	ctgtaatgat	ctggatgggg	tgattctcag	actaggaata	ctcctttagt	86280
taaaaactac	atgctaccct	ttccctctag	gatctcctag	gagtatctac	acttttatca	86340
tactttcacc	ataatttctt	taaccagtct	cctgtcaatg	gacatttcag	ttttctatgt	86400
tttgcagttg	cagacactgc	tgaaaataaa	atttataaat	taactttggg	agagttgata	86460
tctttgtgat	gttgactact	ggttactttt	agggaagtca	agttttatta	ttaacaagag	86520
cagacaataa	cacccattag	tgtaatgtct	tttagcaaag	cagagacaac	taggtgcttg	86580
attttacaaa	aaattagtac	atatgaactg	tttccttaag	caagattaat	ttcccacttt	86640
atttacatca	gcgattcact	aagcaaagat	ttttttagt	ttgtcagctg	gctcacaaac	86700
tctgatgtat	gttgggatga	ttaaatgaga	taatgagtgt	gaacatgctt	taaagtatga	86760
tccaatataa	ggtgttagta	tttatttatt	tttgagacag	ggtetetete	tgttgcccag	86820
gctagagtgc	agtggcacga	tcttggctca	ctgcaacgta	tgcttccagg	ttccagctat	86880
tctcatgcct	cagcctcctg	agtagctggg	actacagtca	cccgcaactg	cctggctaat	86940

100

-continued

ttttgtattt atagtagaga tggagtttca ccatttatag tagagatggg gtttcaccag 87000 qaqttcaaqq ctqqtcttqa actcctqacc tcaaqtqatc cqcctcaqca tcccaaaqtq 87060 ctgggattat aggcatgage cactgegeee ggeetaagat gttagtatta tgeacagtga 87120 87180 aaagagggga gaattgactt ctgctgtgta agatgaagcc catctacaat ctgtgcaata 87240 gaagcagact ggatggcact gtagggtcaa ggagtctctt aagagagcca ttcttattgc 87300 ctggaagatg cctcttgaga aaatgacagg gaaggaagaa acaccttctg aatggacaag 87360 cctgcttccc aagggcaggt gacccaccag ccatgctagg tgctcacccc catgaggcca 87420 caggcaatat agcaacccca aggctctgtg gtgacacggc agccagtgca ggggctgggg 87480 acgagggatt ctgacctgca ggtgtgaggg tcagcaccac tcatcttcaa gccaagatgt 87540 tagectgtgg ggtettttga geaagageaa eaeeggeetg tetteteage etaetgttee 87600 tgcccaaccc ctctgtctag gatggactga ggctgatttc tttttttctt tttcttcttc 87660 ttettettet tetecatttt gtttttttt tttttgagae agageetege tegettaece 87720 aggetagagt geagtggtgt gatettgget gaetgaaace teegeeteee agatteaage 87780 aatteteetg teteageete ettagtaget gagaetaeag geaegtgeea etatgeetgg 87840 ctagtttttg gcatttttag tagaaacagg gtttcaccat gttggccagg cttgtcttga 87900 actoccaaco toaggtaato cacotgoott ggootoccaa agtgttggga ttacaggoat 87960 gagecaccat geetggeetg attetgate attetactae togeagggae atattaatgt 88020 ttttqqaaaa aacaqaqcta qctcccatta qcccatcaaq cactqqqqct ccaaqctctt 88080 ctqttqqctq cccatcccaa aqaqacccta aqaataqqaa ttaqtqtqtt ctttctcatc 88140 ctggagctag aagaacacta cttacttccc gcctgcattt tgctttgtag ttttctttcg 88200 tggactagct agctacaagg gccaatgcca tagatagaat tcagttttga aactgtggcc 88260 aacatgacca geetgtggtg teetgatage cacaagaett caaatteatt ceatttaace 88320 tattatttat ctacatgagg ttctatgaga agtgaggaat ggtggctaca tgccagcctg 88380 gcagttatct gtgaggactt ggagaggtca ctaggttgtg atagtctcca aagtggggtg 88440 tgttcaccag tgggcggtag agatgatccc ttggactgcc accagaaaac acccattta 88500 tatatgaatg tgtgcataga agtcaatatg tacaaataga agtttatatt tcaatataca 88560 taataagtta atttagcatt atatgaatat gtgtgtgtat acatgttcac tttatatgtc 88620 tacatgcaca tctgtgcaca catacacttt ttaaaattta actgatgggg gacccaggct 88680 aaatttttgg atacactggc ctattgaaca tctctcttta gcagagtact gagtatgagt 88740 caatttcage actgttcatt ttcageceaa ggtattetee ageattetat agecaetgea 88800 ctacacactg tgctgggtgc tacaggagat actaaagtga ctgaaccaca gtttctgctc 88860 88920 aaaacattca cctggtgttc tttaaaaaaa tcaacataaa taacagaatg gtacttcagc 88980 tgcatattgt gttcatagaa gagaaggaag agaaggaaaa gtggggacta gaaaatgcat 89040 aaatgagtga gaatgggaaa ggcggaagca agtaaaaaga caggactgag agaagctggc 89100 agtgaaggat aaagagactg aaaatcggca tttaggttgg agggaaaaaa aacgcagaga 89160 gagaggagta tgagaggaac aggctagacc agcaggtctc aaaatgtgag aattcttgta 89220 ggtetttgaa gtetgeaagg gtaaaaettt tttetageaa taetaagata ttagetgtet 89280

ttttaaaaac	tctcattctc	tcatgaaagt	acagtagagt	tttccagagg	ctagatgatg	89340
tgtaataact	catcagattg	aatgcagatt	atctatctat	ctatctatct	atctatctat	89400
ctatctatct	atctatctat	ctatctatca	cattttcttt	atccagttaa	ccactgatgg	89460
actcttaggt	tgattctttg	gctttgcaat	cgtgaatagt	gctgtgataa	acagacaaat	89520
gcaggtgtct	ttttgatata	atgatttctt	ttcctttggg	taaataccca	gtagtgggat	89580
tgctggatca	aatggtagtc	ctatttttag	ttctttgaga	aatcttgata	atgttttcca	89640
taggggttgt	actaattcat	attcctgcta	acagtgtata	aatgttccct	tttctccaca	89700
gtctcactaa	tatctgttat	ttttgacttt	ttaataatag	ctattctgaa	tggtatgaga	89760
tggtatctca	ttgtggtttt	aatttgcatt	tctctgatga	ttagtgatat	tgagcatttt	89820
ttcctgtttg	ttggctgctt	gtatgtcttc	ttttggaaaa	tgtctgttta	tgtcctttgc	89880
ctacttttta	atggttttt	tttgtattaa	tttgagttct	ttatggattc	tggatattag	89940
ctctttgttg	gatgcatagt	tcggtttgca	aatatttttc	ccattctgta	ggttatgtac	90000
tctatcgatt	gtttctttg	ctgtgcagaa	gctttttagt	tgaattaatt	cccatttgtc	90060
tatttttggt	tttgttgcat	ttgcctttga	ggacttggtc	ataaattctt	tgcctaggct	90120
aatgtccaga	agagtttttc	ctaagttttc	ttctaggact	ttttgagtgt	caggtcttac	90180
atttaggcct	ttaattcatc	cttagttaat	ttttgtatat	ggtgagagat	agggatccag	90240
tttcattctt	ctgcatatag	caagccagtt	tttcccagca	ccatttattg	aatagagagt	90300
ccttttccca	ttgtttattt	ttgttgattt	tgttgacgat	cagttggttg	tcagtgtgtg	90360
gctctatttc	tggattetet	attttgttcc	attggcttgt	gtgtcgattt	gtgtaccagt	90420
tccatgctgg	tttggttact	atagcettgt	agtatagttt	gaagtcaggt	aatgtgatgc	90480
ctctggcctt	gctctttttg	cttaggattg	ctttggctat	ttgggctctt	ttgtggttcc	90540
atgtgaattt	tagaatagtt	ttttctaatt	ctgtgaaaaa	taatgctgat	tctataggaa	90600
ttgcattgaa	tttgtagatt	gccttgggca	gtatggtcac	ttaaatggta	ttgattcttc	90660
taatccatga	gcatgagatg	tttttccatt	ttttgtgtca	cttctgattt	ctttcattag	90720
tgttttgtag	ttctccttgt	agaggtettt	tacttctttg	gttaagtgta	ttcctaggta	90780
ttttgtgtgt	ttgtgtggct	ataataaatg	ggattgactt	tttgatttag	tttgcagctt	90840
gagtgttgta	tagaaatgca	actgatttt	gtacattaat	tttgtttctt	gaaactttac	90900
tgaagttgtt	tatcaagtct	aggagtcttt	tggaggaatc	tttaggattt	ttctaggtat	90960
aagatcatgt	tatcagggaa	cagagataat	ttcactcttt	ttttcagttt	ggataccttt	91020
tgtttctttc	ttttacctaa	ttgctatgtt	taggacttct	agtactgtgc	tatttaggag	91080
ctgtaagagt	gaaatccttg	tcttgttcta	gttctgaaga	ggaatgcatt	ttacttttcc	91140
ccattcagta	tgatgttggc	tacgggtttg	ttatatatgg	ctcttattat	tttgaggtat	91200
gttactttga	tgcctagttt	gttgagtttt	tttttttt	atcatgaagg	gatgttggat	91260
tttatcaaat	gctttttcag	catctattga	gttgacctta	tgtcttttgt	ttttaatttt	91320
gtttacgtgg	tgaatgacat	taattgactt	gcatatgttg	aaccatcttg	gcatccctaa	91380
aataaaactc	atctgattgt	gatggattat	ctttttgatg	tgctgttgga	ttcagtttgc	91440
tagtattttg	ttgaggattt	ttgtatctat	gttcatcaga	gatattggcc	tgtagttttc	91500
tttttgatg	tgttcttatc	agattttggt	atcattatga	tactggtttc	atagaattat	91560
ttatggagga	atteetette	cttaattttc	tggaatgatt	tcagtaagat	tggttctagc	91620
tctttgtaca	tctgataaaa	ttcaactgtg	aatccgtctg	gtcctgggtt	cttttttgt	91680

-continued

tgtagttgtt acattttttt gttactgatt caatttcatt actcgttatt ggtctgttca 91740 qaatttetat ttetettqaq qqqttqtatq ettecaqaaa tttatteatq tactetqqqt 91800 tttctagtgt gtgcacttag agatgttcat agtagtctct gatgatcctt tgtgtttctg 91860 tgttatcagt tgtaatgtta cttttatcat ttctgattgt gcttatctga atcttctctt 91920 tttctttgtt agtctagcta gccgtctaac aattttgttt accttttcag agaaccaact 91980 ttgtgttttg ttgatccttt gtatgatttt tttggtttca atttaattga gatcaaatct 92040 tetetgatet tigttattat tetttette tgetagettt gigttiggtt tgitettgat 92100 tttctagttc cttgaggtgt ggcattaatg gttgttaatt tgagatctgt ctttttgatt 92160 tgagcaatta atgctataag ctttcctctt agcactgctt ttgctgtatc ccagaggttt 92220 tggtatgttg tgtctgtttt cattcatttc aaaacatttt tttgatttct gccttgattt 92280 tatggtttac ccaaaagtca ttcaggagca agttgtttag tttccatgta cttctgtggt 92340 tttgagagtt tctcttggta ttgatttcta attttattcc tctgtggtct gggaagatcc 92400 taatatgatt ttgacttttt tttttttgca tttattgaga cttgctttat gggcaagcat 92460 atggtgaatt ttagagaatg ttttatgcac agatgagaaa aatgtatatt ctgtggttgt 92520 tgggtggaat gttctgtagg tgtctcttag tccatttggt caagtttata taatcaaatc 92580 gacagatcaa gctcaatgat ctgtcatcat tgacagctta ttgctgtcag tatggtattg 92640 aaagtccctc actcttttat atgactgtct atctcttttt gtaagtctaa tagtatttgt 92700 tttataaatc tgggtgctct gatgctgggt gcatatgtat ttaggatagt taaatctttt 92760 tgttgaatta gaccgtgtat cattggataa tgctattctt tgtctttttt ttttttttt 92820 ttttttactg ttgttacttt agagactgtt ttatctgata taagaagaac aactcctgct 92880 cetttttgtt ttecatttge atgacatate tttttacece cetttacttt aggetatggg 92940 tatctttaca tattaagtgg tctcttgtag gtagcagatg gttgggtctt tttaaaaaaaa 93000 aatccatttt getcatetat atcetetaag tggageattg aggetgttta catttagggt 93060 taataatgat atgtgaggtt ttgttcctgt cagagttttg ttagctagtt gctttgtagt 93120 gtcaattgtg taattgcttt atgggatctg tgaactttct acttatgtgt gattttactg 93180 tggcaagtat tgtcctttca tttccatggt tataacttct ttaagcagtt cttatagaac 93240 tggtcaagtg gtgattaatt cccttagtgt ttgcttgtct gggaaagact ttatttctcc 93300 ttcttttatg aggcttattt ggcaggatat aaaattcttg ggaggctttt ttttttcctt 93360 taagaagget ataaatagge ecceaatetg ttetggettg taagatttet actgagaegt 93420 ctcattagtc tgacaggatt tctttttata ggcgatctga cacttctctc cagatgcctt 93480 taagattttt ttctttagca ttaaacttgg atagtatgat gactatatgc cttggtgaca 93540 ttcatctttt atagtatctc ccagatattc tctgaatttc ttgcatctga atgtctacct 93600 ctatagcaag atcagggaaa ttttccctgaa ttattctctt aaatataatt gcttactttt 93660 tettettete teteaggatt acatataagt catacatttg gteeettac ataattgeat 93720 atttctcaaa gactttattc attaaaaaat tcttttttct ttattttgt ttgacttgtt 93780 aaaatagaaa gattggtctt caagctctga aattatcttt tctgcttggt ctagtctttc 93840 actatagtta aagtttaata tatctatttt gtctttcatg tcctaagttt ttgggggttg 93900 attttcaget ttettttgea tetcagtgag etttettaea atceatattt tgaattettt 93960 atctgtcatt tcagaatttt cattttagtt aggatccatt gctagagagc tagtaatgtt 94020

tggaggtgtc	aaaacacttt	gtctttttgt	atagctggag	cttttatgct	gatteettet	94080
catctgaagg	agcttgatat	agtttggttc	tgtgtcccac	ccaaatctca	tcttttaact	94140
cccataattc	ccacgtgttg	tgggagggat	gtggtgagag	atgattgaaa	catggaggca	94200
ggtatttccc	gtgctgttct	tgtgacagta	aaagggtctc	acaagatctg	atggttttaa	94260
aaatgggagt	ttctctgcac	aagetetete	tttgcctgtt	gccatccatg	taagatgtga	94320
cttgctcctc	cttgccttct	gccatgattg	tgaggcctcc	ccagccttgt	ggaactgtaa	94380
gtccaataaa	cctctttctt	ttgtaaattg	cccagtcttg	gtatgtcttt	atcagcagca	94440
tgaaattgga	caaatacaga	gctgttgcct	cctatttttg	aatttgccaa	catttgaatg	94500
aaacttttaa	agtttgtatt	ctttttcac	ttgagggtgt	ggctgtagta	tatattgcgt	94560
atgattgttt	ggctttgttt	ctgggtgctt	tcaggggggcc	aagggtctct	atgggttcct	94620
tggttatgga	tatcatttgt	gtggtggctt	tcccagatgc	tgcttgttgc	agtgatatgt	94680
agggtgtatg	agctgacaca	ctatcttctg	tagggctagg	agtgtggagg	tctcaggaag	94740
cttatctcat	acactagcac	tgtgctcttc	tgacagcagg	tttttgttt	gatgatgcag	94800
ttcagtctct	agtccagtaa	gtgacgcttg	agggtaagaa	gagctagctc	accctcaggt	94860
catccaaaga	tgagtggaag	ccccttcctt	gatgggggtt	ctgaggtctc	aggggtaggg	94920
gccagcaggg	ggctgcacca	gctcctcatc	ctgggcagac	aagaacatga	tccactacct	94980
atcatgcccc	tttcacagca	ctcataaccc	tcagttcttt	taaacactgt	cctttggctc	95040
ctggccactc	ctgaggtctg	tgagaaggct	tcgattgtgg	ctaccaccaa	aatggcctcg	95100
ggtcagagcc	tctttctcca	gtccagaaca	gtcagctctg	tggcttgtct	gtcctctgtt	95160
gcagggacat	tgctactttg	tgtagggagc	ggtagatggg	ccctgccttt	tctgaaagcc	95220
caggcagtac	cacctcactt	tcagtgggga	tgcagccact	gtgaaaagtg	ctagaaagcc	95280
tttcttcaat	tgcacgaatg	ccagcttcca	gcagggaaag	cctctgctgc	atctgcaaca	95340
gtgaatgggt	ggagtaggaa	atagtcccct	ctccatgtcc	cttcccagct	actactaccg	95400
cccctttcag	agattggtcc	tgtgcctgca	tttcctttgt	cccaaggagc	actttggtgg	95460
gctgtgctcc	ccctagaaga	aacctgcact	gagggctaga	tttctggggt	tcccgcagct	95520
ccccagggtc	ctgctggtcc	cccatggttg	ccaaagtcag	agtggttgtg	gggtatgttt	95580
ctggggggatc	tggtgataca	atatcacaaa	ggctgaggtt	gcttgggcag	ggcagtggct	95640
cagaacaggt	gcacaaccag	tatggtgtcc	accatctcag	ttcaggcctg	aggggagtgc	95700
cagcacacct	gcatgagttg	gtcacctggc	actctattct	caggaagttc	ccaaatcacc	95760
actgacagca	ttgcccaggg	tcacgaaggc	agagggggttc	tcccacaatt	tggtagtcag	95820
cagtttgtta	caggggtgag	gtgagaaggg	atgcacccct	atccaccctt	tctgtaagac	95880
tccaggctcc	ccagggggcca	gtctctgcca	gattettget	gttttccttt	tctctgcccc	95940
agettettee	tgtgggctcc	ctggcagacc	ttggctctct	tteeteetet	ctttctccat	96000
tttaatttct	aatatataaa	aggtgataaa	tatgatccac	ataaagaaag	tccttttgga	96060
atcctcaaaa	tttgtaaaaa	tatagaggct	cttgagacca	aaaagtgtga	gaactgctga	96120
gctgagggat	ggtcagaagc	atcttccagt	gagagggagc	atcaggatgc	agcgggggtgg	96180
gcaggtctgc	aaaggaagaa	gggcgatgga	gatcacatgt	gtcaatggtg	caatttgacc	96240
tcagtttgat	cggacaggac	ctatttccta	cctcccattt	taatggtttt	ataggaatgt	96300
tggtgattgc	cttaactgat	tctgttttca	atctaaataa	ttaagtcacc	tgttcaaagg	96360
tctgctatgc	ctcttaattt	caggggttgg	aattttgtgg	ggtaatccaa	attttatctg	96420

108

-continued

ttctatcctg ttgtcctgtg ggcataattg tccttatgcg gtgatttttt acttcagaaa 96480 atatqtcact qttqqtttqa qtctataaat ttqqaqactc tattttttta aatttttaaa 96540 taaacttttt attttttgat aattttagat ttatggaaaa gttacacaga tagtacagag 96600 tccccatatg accctcaccc agtttcccct attgttaaca tcttacatta ccatattgt 96660 cagaactaac aaactgatat taatatgtta ctattaacta actatatact tcatttgaat 96720 ttcaccagtt tttccaagtg tcctcttcct gttccgggat ccagtcccag agcaccacac 96780 tgcatttaat tgtctgtagc agtctctcag tctttcttta ttttttgtga ccttggcagt 96840 ctttaggtat attggccagg taacctgtag atgaccccca atctggggtc tttttttaaa 96900 ttattaaact aaggttatgg tttttggaaa gacaacaaca gagatgaagt gcccttctca 96960 tcagatcata ggagggatac agcatatcca catgacgtca ctgggggatgt taaccttcat 97020 cacttggtga ctttagtgtt tgcaagtttc taggtttccc cactgtaaag atactatttt 97080 tcctcttttc ctgctttgtt ctttagaagc aagttactaa gcctagccca ccctttagga 97140 gtaaattgcg ggaattaaac tctacttcct ggagagaggg aatgtctaca gatagtaatt 97200 gaattetaat gtaagaaaga ttggtetett eteeettt tatttttea tteattatt 97260 tatatgagta tggtgtattg tatttgtcag gcttctccag agaaagagaa caaataggat 97320 acacacacac acacacatac acacacacac atatatgaga cttattatag gagttggctt 97380 acatggttat aaaggetgag aagteteatg acetaetate tgeaagetgg agaaetagga 97440 aagctagtgg tgtaattcag teccagactg aaggeetggt gtaagtette atetaattee 97500 aaaaaacccaa gaaccaqqaq ctctgatatt tqaqaaccaq aqaatatqqa tqtcccaqct 97560 catgcagaga ataaatttgc tcttccttca cctttttgtt ttattcaagc cctcaagtga 97620 ttggatgatg cccacctcaa ctggtgaggg tgatctctac ttagtctact gattcatacg 97680 ctaatctctt ccagagacac tctcacagac acacccagaa ataatgtttt gccagctatc 97740 tqqqcttccc ttaacccaqt caaqttaaca cataaaatta accacacaqt atqaattcat 97800 gtatatttat tttatgcttt gggatatact atgccattta ttttgttgct caaattgttt 97860 cagettecaa etggetgtag gggeeageet taeagggtet gtgggttttt eteceeatgt 97920 gtggagacga gagatcgtag aaataaagac acaagacaaa gagacaaaag aaaagacagc 97980 tgggcctggg ggacccctac caccatgaca cagagactgg tagtggtcct gaatgtcagg 98040 ctgcactgtt atttattgga tacaagacat gggggcaggg taaagagtgt gagccatctc 98100 caatgatagg taaggtcacg tgggtcacgt gtccagtgga caggggggccc ttccctgttt 98160 ggcaaccgag gcggggagag agagagaga agaggagaca gcttatgcca ttatttctgc 98220 atatcagaga cttttaatat tttcactaat tctgctactg ctatctagaa ggcagagcca 98280 ggtgtatagg atggaacatg aaagcagacc aggagcgtga ccactgaagc acagcatcac 98340 agggagatgg ttaggcctcc agataactgc aggcaggcct gactgatgtc aggccctcca 98400 caagaggtgg tggagtagag tettetetaa acteeetgg ggaaagggag acteeette 98460 ctggtctgct aagtagcggg tacttttctt tggcactgac gctactgcta gaccatggtc 98520 cgcttggtaa cgggcatctt tccagacact ggcattacct ctagatcaag gagccctctg 98580 gtggccctac ccgggcataa cagaaggttc acactcttgt cttctggtca cttctcacca 98640 tgtcccttca gctcctgtct ctgtatggcc tggtttttct taggttatgg ttgtagagct 98700 aggattatta tagtattgaa ataaagagta attactacaa actaatgatt ggtgatactt 98760

atatataatc	atgtctatga	tctatatata	tctagcataa	ctcttgttat	tttatatatt	98820
ttattatatg	gaacagctcg	tgctcggtct	cttgcctcgg	cacctgggtg	gcttgccacc	98880
cacagetgge	cactgggaac	tttttcaggt	tgctacttgg	gcccctttca	tatgccctta	98940
tccttttgtt	ttttgagtat	ttccttactt	tatggtattg	taagatattc	caggcttatt	99000
ttgtattctt	cttttcctgg	ctttagaatc	agccactttt	tctggctcct	ctcattggag	99060
aatggtattt	agaaactaag	atctgggcaa	tgggtgtgct	tgctgctctt	gggatgtcat	99120
tgcttctagg	ccttctcagt	agatggagct	aagtaatata	tgtatatata	ctaacccaca	99180
gatataaata	tgtctataat	tatttctata	tttatccatt	cgtgtatatg	ttaagataaa	99240
catgatggag	acccttcaaa	tttgcttatg	ttctttttca	gcctatagac	cagatataat	99300
aattagcttt	tcttctcttg	cagattccag	agagtcctct	atttcatatg	tgccttccag	99360
aacatctctt	gtggtattca	ctacttggct	tctgtgttca	tgggagtcac	ccctcatcat	99420
gtctgcaggc	ccccaggcaa	tgtgagtcag	gttgttttcc	ataatcactc	taattggagt	99480
ttggaggaca	ccggggccct	gttgtcttca	ggccagaaag	attatgttac	ggtgcagttg	99540
cagaatggtg	agatctggga	gctctcaagg	tgtagcagga	ataagaggga	gaacacatcg	99600
agtttgggct	atgaatacac	tggcagtaag	aaagagtttc	cttgtgtgga	tggctacata	99660
tatgaccaga	acacatggaa	aagcactgcg	gtgacccagt	ggaacctggt	ctgtgaccga	99720
aaatggcttg	caatgctgat	ccagccccta	tttatgtttg	gagtcctact	gggatcggtg	99780
acttttggct	acttttctga	caggtaaaat	caaatattta	ggattgttgt	atcagtgtag	99840
ggtttattt	cctatctggt	tttcttggga	cacaaggaat	tatgtttaaa	acttgtcatt	99900
tttatacttc	ctatctaaat	acctacctct	ttgctgatcc	attatttagg	gatgtataat	99960
gataaggata	ggctctgaag	acagtatacc	tagatccaaa	tcctggttct	accacttatt	100020
aactgtggac	cccaggcaaa	ttgcctaact	tacctgtgtt	tcagaatctt	tgtctatagg	100080
ctggtgataa	aaaataatat	cacttacttc	aaaggattat	tgcaaaatta	atacagaaaa	100140
aaagtaccct	ggacatataa	tcactcaata	gatacggttt	attactttga	atattttctt	100200
ctctttaaat	agacttgctt	tttaatagga	gtagcctgat	cctaagcagt	atatctgtaa	100260
aattatgggc	ttgatataac	agcccctttt	agtctttttg	tgctgctgta	acaaaatacc	100320
acagactggg	taattcacaa	acaatagaaa	tttatttccc	atagttctgg	cggctgggaa	100380
gcccaagata	aggtgccaac	aggattgctg	actgggaagg	ctgttgtttg	ctttcaagat	100440
ggtgccttat	tgctgcatcc	tttggatggg	ataaatgcag	tgtcctcaca	tggaagaagg	100500
gatggaaggg	caggagagtg	ctcccttcaa	ccttgagcac	ttttctaagg	gtgctaaggg	100560
ctctactgtc	atgactttat	cacctcccaa	ggccatccct	cttaatagtg	ttgcactgga	100620
gattaagttt	caacatgaat	tttggaggga	atactatcat	tcaaagcata	acctggccat	100680
atatttttaa	aaatttacat	taaaatgaat	atgtaattct	taaaataaag	caaagtttat	100740
ctctgtatga	acatggacca	taccaaagca	cagagatgaa	cttatttggt	ctccatagtt	100800
gtggatttta	cagtcatatg	gtgggcactg	aggacctaaa	gacaatagct	tagatcagaa	100860
atccctgccc	ttgaggtata	ccagtctaat	ggggctgata	aacatgtcaa	aagaaaaatt	100920
aaagggcttt	gttatgggca	gggccatacc	tctcatagta	tgtcaaaggt	gctaggtatt	100980
agtgttttca	ttcagcaagc	tgttatacaa	attatcactt	ggggcttttc	tgttgaaatg	101040
tgttcactgc	ttgactcttg	aaactcaaaa	tatttgcaac	tacttgtatg	aaatgtacta	101100
aaatacattt	gctgtatgac	aaaaacggga	tataaataat	gcttataaca	cagtcagagt	101160

-continued

acaaaatatg ttaactgaaa ataaatttag ttcctttgtc tgaacttggt atagttatat 101220 agacatatat tgaacactta cagtcacttt gatagatgca gagatgtgtg tgtatatata 101280 tatataatat ataaataaaa aatatattag tgaaattata tatatatttc actaattata 101340 tgtacatata atataaatat attatatgta catgtaatat ataatatata tttatatatt 101400 atatatatta taatatatat attatatata atataacata tattatatat attataatat 101460 aacatatata atatatatat tatatattt tatatattta tatatatta tatatataaa 101580 taaatattat atataatata tatattagtg aaagcaagtt tattaagaaa gtaaaggaat 101820 aaagaagggt cactccatag gcagagcagc catgatatat attttttaaa gtccttgaga 101880 agttgcatac cattaactgg tattcatttg gatgggtagc ttgaattaaa attacttggg 101940 agetecagaa aaacettaag etaaaaaatt ggtttgacat ggteeetgae teecagtgte 102000 tgtattetet eggeggaatt tgttgaaaga gacageetee ttgeacetet tgtagtette 102060 tatacttett getggatgtg ecaagatgge aagteeetga eeaettttt atgtgggeea 102120 tttctccagag ttgtctatgc agccagtacc ttaaaagatg agtgctatgg cttagatatg 102180 attagtetgt teteaceaag geteatgttg aaatttgate eecagtgtgg eggtgttggg 102240 aggtgaggcc tagtgggagg tgtttgggcc atgggggcaa atccctcatg aatgaattgg 102300 tgctgttctc atggcagtga gtgaatgagt tctggctgtc acaagactgg attaattctc 102360 gcaggaattg attagttcct gcaagagtgg attgttttaa agtgaggaca cccctcaggt 102420 ttctctctct ttacatgtgt ctgcttcacc tttgaccttc tctgccatgt tgtaatgtag 102480 catgaaagcc cttgcaagaa gccagtaccc ttgatcttcc cagcctgcag aactatgagc 102540 taaataaacc tottttottt ataaattato cagtottagg tgttotttta tagcaacata 102600 aaattaacta atatgatgag ataatgtccc ctctctgcca caaagagtag gcttcctaac 102660 tgcttggtac aaaaccagtg gattccccac atccagtgct cctcctctt aattcaaccc 102720 actatetgtg aagtgteate tggaeteatt gtgggaettg gggattagag gaeetgagae 102780 aaagatgctg ctgccctact gcttgctaac gaagtaagta atgaagttct ttgtctctga 102840 cccaaacatc ttgtgttttt gccagcatcc cttaaacagt acagattaac atattaactt 102900 agagtaaaat aaaattgaat attetttgta taeeeteate ttgggeetga gaggattete 102960 ataaattatt tttcaaggtg aataagtagc tcagtgaaaa ccaaaagaca taattaaaag 103020 ggaccatgag tgagaatcaa cagaaacaac tggcagcaga agcagacttc tgcacaaaga 103080 gaaatagaag acaagcttaa aaatattgat aaaaactgga cattgcatta aaactgacat 103200 aaaattgaag aatacccagg acatctagaa atacaaagtg aaataagtga ataacaaatc 103260 acctgcaaag ttttaacaac ctgtcacaca cagctacaaa aaattcatga aatggatgat 103320 aactcagaaa aagtcatcaa tattaaagct cagagagaca gagaggtggg aaatatgaga 103380 gattaaaatt tatggaggct gaaaagagaa aagttctgaa atctacttaa tattagaaac 103440 taatcaatgg tatttaccac attaacgtat tagaggacaa aattcataca atcaactcaa 103500

-continued

tacatataqq aaaaqcattt qatqaatttc aaaatccatt catcataaaa actaaaaata 103560 gaagaatgcc tttaacctga taaaaggttt ctacaataag gtttaccatg aatatcttac 103620 ttgtgaagtt taaaatatta atttctttt tctttctttc tttttatgtt tagagacagg 103680 gttttgctat gttgcccagg ctgttctcaa actcctgggc tcaagcaatt ctcctgcctc 103740 agccctccca agtaggtggg attacaggca tgcaccactg cacccagctc ttaactgtga 103800 aatgttaaaa gcttttcctt tgagattagg aacagacgag gatgtatgaa acatgtcttc 103860 tacttagcat tgtactggat agtctagcca gtgctgtaag gaaaaagaga gagaaagagg 103920 tagaaggaaa ggaagcaagg aaagaataat gattggaaag gagaaataaa aagtcattat 103980 ttgtagttat tacaattttg tatgaaaaaa gtcctacata tgaattatta gaattaatga 104040 gcatttaaaa ttatatttct atataccagt aacaaatata taaattttaa aaatgtcatt 104100 gcagaaacct aaaaatatga aatataaatg gttaaatata acaaaaagtg aagaaggccc 104160 tctgtggaga caattataaa cttgaagaat caaatcatta aagtaaatag atatatcact 104220 agacaaacag attgaggctc ccttagaggt tcctggaata gacttgtgca ttcataaaca 104280 taagtataga cacataggca ttttatatta gcaggaaaag gatcaatcat taagtggtgc 104340 tgggacagat gtctagctat atagaaggaa atacaactgg attcattttc taacatttta 104400 cagtacaaca gcagttccag aaggactaaa cgtgcatatg tgaaaagcaa aactatacga 104460 ttttaggaag ataatttagg agaatatttt caggacctaa tggaagaaag ggtgattttt 104520 ctaaaacaca aaaaacattg atcatgaaag aaaaaatgga taaatttgac ttcattacag 104580 gaatttatgt ccaccaaaag acaccattaa aagaggaaag acatgaatgt gtgcacacaa 104640 gagagagaaa atatttgctt tacatataac taaattatta gtgtccagaa tagtcaaagg 104700 atttttactt acatcaatgg gaaaaagaca atccaataga aaaatgggaa aaagatttga 104760 agtcacttca tagaaaagaa aatccaaatg gctaatgaaa agttgaattg acagtgacat 104820 ataatcacac catttacttt tgaccagttg tcaaaagtca gaagtcttgt aatactaagt 104880 gttggtgagg atatggagta ataggatctc tcatcctgct ggtgtgaatg caaactgaga 104940 atccaaattg ggttaacctt gaagactgat ttggtatcat atagagttgg tgatgtgcac 105000 agccacatgc tctggggcat ataccctgag catgctcttg cacaggtcca cagaggtaca 105060 tgcataaaag tgccctcaca gcattgttcc taacagccct gcactctaaa caacccagat 105120 gtccttcaat tatctcatgg acacatgtat taaaatatat tcttacagta ggatatgtgg 105180 acatgaaaat gaatgagaca cagctacatg aaacaacata gatgaatctc ctatacataa 105240 tgtttgataa aggaagcaag tcataaaata atacatgtgg tattgtcctg ttatagaaaa 105300 tttaaaatca taatagcaaa acttacctat actgtttata agcagtaacc tgtattgttt 105360 agcattgctt ataaaagtag taaaatgaaa caaaaaacaa gagattatca ccaaaattag 105420 aaaaatgttt cctcctagaa agggcaaggg atttgtagtc acaaagagag gtgcaagaag 105480 ctatcaggag gctggcaatc atctctttct tgccttgggt tgtgatttct aggcatttga 105540 ttttttatta ttcttgaaac tgtacatatt ttatgcatgg ttatatatgt ataaaatatt 105600 ataataaaaa aagcaaagaa ataagatctg atcccaccct taaggagcta acagtggaga 105660 atatagactt ttgaactgac aatttcaatg aaatgtagta aatgcttttt tttttttt 105720 tttttttttg agaagatgtc tagctctgtt gcccaggctg aagtgcagtg gtgcgatctt 105780 ggatcactgc aacttctgcc tcccaggttc aagtgattct cctgcctcag cctcccgagt 105840 agetgggaet acaggeatgt geogecatge etggetaatt tttgtatttt cageagagta 105900

116

-continued

ggggtttcac catgttggcc aggctggtct tgaactcctg acctccagtg atctgcctgc 105960 cttggcctcc caaagtgctg ggattacagg catgagecge catgcccage eggtaaatge 106020 ttttaaaaata ataaaaactc qcatttatqq acaatttatt atacactaqq tactattcta 106080 aatgtettat atateatete atttaattat ttaaagaggt etgtgagata gacaetattg 106140 tgcccccccc tcctttttt ttaaccagta gggaaaagga agcatagaaa gttcacatgg 106200 aaaataaggg atggagctgg gatttgagcc caggccagca tccccaacta ctgcatcaca 106260 ctgtttctga atttttgcta tgagacccca aggaatgatc aatggaagtt gtcagatgga 106320 gaaggccccc aagggaaagg aatagctttg tgtcatgaaa caacctggca tgttcagaga 106380 attgtgggaa agtcagtgtg gcagaagtag agaagggcag attgtgaaag gaaatgacaa 106440 gagacaaaac cacaatgggg attattttat ttctaggaag tgtggaaggt gtactgacat 106500 gaggttagga agaccagctg ggaagctagt gggatgaatg atgtaagaaa tggtgaagac 106560 ttgagtgaaa gcgggaaaag cagggaggaa aagatgaaga catatttggg aggcatttct 106620 aaactcacat aatctgatga cgaatatgca ggagggagcg gaggaatgta ttaaggttta 106680 gaagcctaat ggaaggagat tttgctaacc aattcaggaa ataccaggga gagagcagtt 106740 ttagaagaga agggaacacg tttggatata ttccagtgag cttgtcctat ccctattaag 106800 aaaaacaaag tootatooot atattaagaa aaacaaagtg aagatgtgtt caaagttaat 106860 accaattaca acagcaacaa gagattgcag ctctgcagga cattaaagca gagaagagca 106920 actgggggcca gatggtgggt ggggagttaa tagcccatac ttaggaatca gagccaggga 106980 agtggatgaa atcacaaggg cagagtgtgc agcagagggac tttagggagt ccagctttga 107040 ggcaggcggg tcatcaggga ggtacaagca gaaccaggtg agagggatgt tttacaagcc 107100 aaaggacagc aggggtctaa cgagtaggca tggtcagtgg cattagagag gacaggcaga 107160 aaggaccagg agaggcaatg tgcaggtccc tggtgactgc aaaatgagct cagaaaagtt 107220 ggttgcacct ggtcatcatt ggctgaggaa acatgtagga gttgaggaag gaaatactcc 107280 cttctgatat atctgtcaag ggaggaaatg caacgtggct aaaggagcaa tggggtcaag 107340 agaaggttct tgtctttggt tggaggagac taaactgaaa ggaagaagtc aaaggagagg 107400 gaaaaacaaa ggaaaaagaa gtgaagggtt tcagaggaag tgggaagagg cacaagccga 107460 tacaaagatt gcaaaatgat atttggagag aaaggggcat gtgtcttcag agaggcagga 107520 agagaagget gaatgeagat geaggteatg ttggtaagtg gaeagageag gaagttgtgg 107580 gtcttcctct ttgatggtct ctgttctctg caggagatgg ctgttcatct acagagagag 107640 aagttgtttg aggtgggaga gagggtcaag cagtgatagg taaaaatagt tttaggtggc 107700 attcagggat aaaattagat tggggaacat tcatatatag ggccaacaat ctctactaat 107760 gtgcaaagga gcaaagaagg ctgaagtgtg aagatgatgg tttcttattt atttgcatat 107820 cctctgctgc accaagcaaa tctgttggtt ggactctcca gacaatattc ttttgcctta 107880 aactatttgt cagagacaac ccataggaag aaaatatttg cttattatat atctgataag 107940 ggtctagtat ccagaatata taaagagctc ttacaactca atattaaaaa agcaatagac 108000 taattcaaaa atgggcaaag aatttggata aacatttctc taaagaatat atgcaaatag 108060 ccaatacgcg cttgaaaaga tgctcaacat cattaatcat tagggaattg taaataaaaa 108120 ccacaatcag atactacttc acagccattg ggctggctat aataaaaaag gcagacagta 108180 acaagtagtg gggagaatgt ggagaatcaa aacceteata eattgetggt gggaatggaa 108240

-continued

aaatggggcg gccatcttgg aaaccagttt ggcagttcct caaaatgtta cacatagagt 108300 taccatatga cccaggaatt tcactctagg tatataccca agagaattca aaacctaagt 108360 tcacacaaaa tcttgttcat gaatgttcag agcagcatta ttcataatag ccaagaagag 108420 gaaaatgagc catcaactga tgaatagata aaatgtggtt tatccgtata atggtgctac 108480 tcagagagaa aaaaggaatg aagtgctaat acatgctaca acgcagaaga agctggaaaa 108540 tctaatgcta gggaaaagaa gtcagacaca aaaggccaca tattgtttga ctccatttat 108600 gggaaatgtc cagaacaggc aaatctatgg agacagaagg tagatgagtg gttgtcagag 108660 actggaggga gcagggaaga gggggtggca gcttctgggc acagagtttc ttttgggagt 108720 gattaacgta teetggaatt aaagaatgat gatggttgea caacettgea aatatactaa 108780 aaaccaccaa attgtctact ttaaaaggtt gaattttatg gcatttgaat tatatcacaa 108840 ttttaaaatc tgtcagatat tatttgtttt ttaaacaaag agatgcctct ttcaattatg 108900 aaaagatagg gcaagtaagc acattattct agaagaagaa ggtagcaaga cctctgtttt 108960 tagagggggtt tggcaagagg tgtcatagcc ttagtggaca gagccagcct ggcagggaag 109020 atgateceae agagageeaa agteetgaaa gggagaggae aaattetete etetetteee 109080 ccaatcccag gttaaagggt cctgcgggga tgactcagag tgatcaggta tgtatattag 109140 caactcaggt aaaggeetet ceaetgaaca getggtettt taaagaagee atggaaetta 109200 tggtttgctc aaaataaata aaagaaaaac aatcaataca taagctattc aaggtatata 109260 ggtaatgeet atetttatg aattggagtg gatgtttaaa etgttacaae tetaeettte 109320 ctcttccact gtgtgactct tatttttcag gctaggacgc cgggtggtct tgtgggccac 109380 aagcagtagc atgtttttgt ttggaatagc agcggcgttt gcagttgatt attacacctt 109440 catggctgct cgcttttttc ttgccatggt gagttgtgtt ttttacttct ttaattctgc 109500 tgcagttttt cataggaaac cttaactctc atcattttgc tcatttaaga tctagtgagc 109560 gagatcaagg actcatcttt gtccactcca ctgcagaagt ctgcctacag aataccaatg 109620 ccttatgttt agaatggaac tcattaaagt gaaaaattgt tgctggctag gcagaagtgt 109680 gtttgcctct gtgtcgggca tgtggtccac atgtcacaat tactgaggca ttattttctt 109740 totgagtaat catattggtc tagtcagggc ctgttcacat gagcaaacag acagttgagg 109800 tgtgtggtta aagtcacttg tataatgtac aggaagaatg aaaacaggag ggcattaggt 109860 ccttatgtta ccaggaacgg cagtttagtg gaaagggcac gagtttgaat accagcattg 109920 tcatatattg gcttgttagt tgtatgatca gtatcctctt tgaacctttg gttgcagtct 109980 gtaaactgta gaaaagaatc tgtgtttatt attattattc tcaggattca gtgagattaa 110040 gtataaacaa ccgcagtaca gcacctgatt acaatggtaa cttactagaa atggactagc 110100 gagcaaggag gctgtttcca tgctcagtga ggcttccaga tagatttcca actatcaagc 110160 aacatcaaga ataatagagg gaagtttcca tctggaggag gagcttgtga tcttgctaaa 110220 tgcagagcag caggttggat ggtctgaggg tctggagaga agcaaagggc ttcaatctct 110280 ctgcaccccc tcagagaaca agatggggtg tcagttttgg agtctttttt gatggataga 110340 aagggtttct agcaaaccat acagttggcc aaggataagg aagatgcata aaaataaatc 110400 taggagactg gaaggtgttg tacctcatta aaaagtaaat atatattt aggaatgtaa 110460 agagttttaa atacaagata gcaaccagta gttctgtttc cactgaggac ataactctgt 110520 gactgtagag tgagatttca cgagagaaac cttctggtgg gactgaaggc tccacaaagg 110580 cacaggtact aagaaagtat aaacatcatc ttttggaaga cttaagagga tatttctgaa 110640

-continued

aatatctgtt tcagtcttgc aaaataccac gcgttggctt ctatacccaa ggaaacaagg 110700 ccacacccat aqaatacatc cqtqaaatqt qqccttaatt ttctqtqact qtttccqttq 110760 atgttcatgg ggaatggatt tgtgggggaa ttctgtggat gggagatgca ggcagattca 110820 tttactcaac acatttattg atctgtctac agagtgtaat gctaagtaaa ccagacccag 110880 ctgtctcagt aagtctagta ggaaaggcaa gacgttgatc agccatcttc aaaaataaat 110940 aaaatgttga cagtgagggc ataacatcag tgggtctgga gcgttcacca gggtctggag 111000 ggtcaagggt tttctcactg tgagggatgg gtgagagaag aatattccag caaagataga 111060 agtggatgaa agggccctga gatgagaaag aaaagccgga atgtctggag aatagagagg 111120 aggagagacg cattgatgag gctgaaggga tcaaggcggt taggtggggc tttgtaggat 111180 tgtcaggatt ttgctctatc tcctaaaggc aatggcaatc cacaaaaggg attccaggaa 111240 ttctggctgc tatgaggggg tggattccga gaagatgtga gtattattat cagtggaagg 111300 gatgggtgtg agtggattca cagagtgttt tggagttagt tgtatatgga ttttctgaat 111360 ccaataacag aggaagttgt agctgactca tgagaaataa ttagcattga aaaacctgac 111420 agggacaaat attacagctt aatttaactg ggaaatttat agtatttgaa agttatcaca 111480 atctttgtta atgtaacagc agcgcttacc aaaagcgact tctggattgt tagatgtagg 111540 gtcccgatga tctgagtctt gccattacaa agttgcacag ggaaataaaa gctgttgtca 111600 caaaaatatt aaactgatta tgaatacagt agteeteate aageaeetee etgeeteetg 111660 ctagtgtcaa ccctttctga cagcaggaat atccttgtag gccggcctct ttgtgactgt 111720 ccaatgcaag gagaaattgc agttattaca agggacacat gtttacaaaa agtctttaaa 111780 agcagtgagg gaacagggga acactgcctg aatcctgccc acaacctttg gccagtgggg 111840 atctggcaga gagacctgtt aacttttgaa gaaattaaca tctgcaagga taatcacata 111900 atgagcettt gaaagagtat gatteaaata tetaatgatt aagagaagee tttggggagt 111960 ggtgctctcg aataatttta caaaagttaa ttgtatgatt tgtgttgtag aagtcaaata 112020 tgaaaaaatt ttgtagaaaa aattetteee eteeteetee caaaaaaaeee atcaatggae 112080 aatttttatt aaagatagtc atatttccaa aataaagttt ttccccagtt ttccttcttg 112200 tggtaaagta catataacac aaaatttacc atcctaacca tttttaagtg tacagttgag 112260 tgatattaag tgcattcata ctgtggtgca attatcacca ctgtgcatct tcagaactcg 112320 ttttcatctt gcaaaactga aactctgtcc attgaataat aactctctgt tccctgtctc 112380 cctageceet gacaaceaec attetacate etgtetetat gagtttggee actetaggta 112440 cctcatgaaa gcggaatcat atgatagttg tctttttgtg actggcttat ttcccttagc 112500 ataatattca ttgtatgcat agactacatt tttcttatct attcatctat ggacggaccc 112560 ttggggggtt gcttccatgc tttagctgtt gtgaataatg ctatgagcag gcatgtgcaa 112620 acatetette cagaceecae ttteaattee tttgggtata taeteaaagg tggaattget 112680 ggatcatgct gtaattgttt tttgaggaat cgtcatactg tttttcctag aggctgtgcc 112740 attatacatt teteteacat attacacatg ggtteeagtt tetetacatt ecegeeaaaa 112800 cttgttattt tttttttaa ttagccacac taatgtgtat gagggggtat ctctttgtag 112860 cattgaattg catttetcaa tgattggtaa aaatttgtat ttettetgtt tgaaatgtet 112920 gttcaaagee tttgeccatt tttgaattgg attgtetgtg tttttgetgt tgttggattt 112980
-continued

taggagttct ccataaaatc ccttatcaga tatttgattt gcaaatattt tatccagttc 113040 tgcaggttgc cttttccctc cattgatagt gttctttgat gcacagtttt aattttcatg 113100 aagtctaatt tgtcttcttt gcctgtcaaa atagaatttt aattaaatca gtttttctta 113160 ccactagtta gcgtaaattt ttttgtctcc atttagcagt taggatttaa caataaggac 113220 ctcctggata cagataactt gatgtatgca tttacaagga atggagaaat acatccacag 113280 tataatgaaa tatttagatg acacaaaaga caatgtctaa catttatatc ataaataatc 113340 totcaagttt tgocatttgg ggtggggagg atgagggaag atgaaaggac ctataagaaa 113400 aaaagataga teggattgaa tgtcatttta tacatetgat aggggtttca gaaagcaagt 113460 ctttgtcatt ttctttttg cctatatgtg atttgcaatg gggtcagact cctcaatagt 113520 tataaatgtg accttgaata taaatcccta ttatttgttt ttcaggttgc aagtggctat 113580 cttgtggtgg ggtttgtcta tgtgatggaa ttcattggca tgaagtctcg gacatgggcg 113640 tctgtccatt tgcattcctt ttttgcagtt ggaaccctgc tggtggcttt gacaggatac 113700 ttggtcagga cctggtggct ttaccagatg atcctctcca cagtgactgt cccctttatc 113760 ctgtgctgtt gggtgctccc agagacacct ttttggcttc tctcagaggg acgatatgaa 113820 gaagcacaaa aaatagttga catcatggcc aagtggaaca gggcaagctc ctgtaaactg 113880 tcagaacttt tatcactgga cctacaaggt cctgttagta atagccccac tgaagttcag 113940 aagcacaacc tatcatatct gttttataac tggagcatta cgaaaaggac acttaccgtt 114000 tggctaatct ggttcactgg aagtttggga ttctactcgt tttccttgaa ttctgttaac 114060 ttaggaggca atgaatactt aaacctcttc ctcctgggta agtagttaca gtatatttaa 114120 atttggcagt gaagtgagat ttctaccatt tgtgtgtgtg tgtctgtttc tgtgtgaatt 114180 tgagaaaaag aatgttttta ataggccctt taaaaccagg aacaatactg ccaaccatat 114240 tattatgata tetettagtg ttatgttgta acacatgtae atatgagggg actteaacea 114300 gttcatggaa aaatggcatt aaaagacaaa aatttaaaac ataaactttc tcaacatgat 114360 tgccatcaag gtcaagacac ttttgtacga catcagccat ttattccatc cttaaaaaaac 114420 tqaqqqtcct qaqaatqtac ccatqtcaat qcaqtcttat ttacactatt aactqaaqaa 114480 aaatgggtgc cgcgtacaga ctttttaaga ttaggaaaca gaaagaagtc agaatgagcc 114540 accatgagaa ctgttaaggt ggctgcctag tgatttccca tcaaaactct tgcaaaattg 114600 cccttgtttg atgagaggaa tgagcatgcc cattgtcatg gaggagaagg actctctggt 114660gatgtttccc aggcattttt ctacaaaagc tttggttaac tctctccaaaa cactctcctc $114\,720$ ataagcagat attttcattc tttggccctc cagaaagcta acaagcaaaa tgccttgagc 114780 atccccaaca aacgttgcca tgacctttgc tttcgactgg tccacttttg ctttgacagg 114840 accatggccc cccttggtaa ccattgcttt ggttgggctt tgtcttcagg atcagactcg 114900 taaaaccgtg tttcatctcc tgttacaatt ctccaaagaa atccttcagg atcttgatcc 114960 cacttgttta aaatttecat gggaagttet geeettetet geagetgate tgggeacaae 115020 tgttttggca cccattgagt ggaaagtttg ctcaacttta atttttcagt cagaattctg 115080 taagccagac taattgagat atctatggta ttggctattg cttctgctgt taatctcagt 115140 ctttgtcaat tagggcataa acaagatgta tttttttcct caatgtggat gctctgccac 115200 tgtggtcttc atcttcaata tcgtcttgtc ctttcttaaa ataagttatc catttgtaaa 115260 ctgctgattt atttggggct ttgtgcccgt aaacttttca taaagcatca atgatttcac 115320 cattetteca cecaagette accataaatt tgatgtttgt tettgettea attteageag 115380

-continued

aattcatgtt gctctagtgg gagctctttt caaactgata tcttattctt cttagtgcct 115440 caaactagct cetettcaga cacgttetaa gaagttagta caaatttett ttagtgcaga 115500 aaaaatctqa aaacacatqc ataqtttttt cataatatqc actttccatt aactttttt 115560 tttggaaaag gagtettget etgttgeeca ggttggagtg cagtggtgtg ateteagete 115620 actgcaatat ccgcctcctg ggttcaagcg attctcctgt ttcagcctcc tgaataaatg 115680 atattacggg cacatgccac catgcccagc taatttttat attttagtag agacagggtt $115740\,$ tcaccatgtt ggccaggctg gtctcgaact cctgacctca ggtgatccac ccgccttggc 115800 ctcccagagt gctgggatta caggcatgag ccacagcacc ccgccgtcca tgaccttttt 115860 gaaaaactcct tgtattttcc atttgaaaaa aatgcatcag aagaatttag tctctccctt 115920 totgeettet eteettgete acettettea cacceateee cageecagag eteeteecag 115980 gggtaactte tataatgttt gggttgtgee ettteagate tatteetatg catttgtgee 116040 agacattgtg gcatgtgcct gtagtcccag ctactcggga ggctgaggag ggaggattac 116100 ttgagcccag gagttctggg ctgcagtact ctatgctgat caggtgtcca cactaagttc 116160 agtatcagta tggtgacctc ctgagagcag ggaaccacca ggttgcctaa ggaggggtga 116220 accggccctg gtcgaaaatg gagcaggtca aaattcctgt gctgatcaga tctgtttcta 116280 cgcattttca tatatttgtg catattaatg ttttatattt taacataaat gagatcactc 116340 actatatatt gttctttgta agttgcttcc cttttaaaat ttaatatgcc ttggctatct 116400 ggcacctctc aaccttcaag tgtccttaat ttataaattt tagttagtaa aataactttt 116460 aaatacatge aactataatt tatgttgttg tacttettte attttaatgg caggttaaat 116520 cactttaqat aqcttqaqat qtqactccta qtqtaaacca aatttaaact aaaacqtqaq 116580 agaaatatta gaaacctctt tttatccatc tagtcttaac tcctgcttat tgctgtgtag 116640 gctgcctgta ttttatatta tcctcaaaac atcttgcttc taaattttta tacgtagaca 116700 tcgtgccatc tcattaaagt gctctgacgg cacatctggt tattttttct gatttcctca 116760 gcagacacat ccgtttttgt tcattatagc tcagcaggaa ttatgagaga agtcgtttta 116820 agaaaaaaag atttactctt ttttttgaag caaactaaca agtttataga aagagcctgt 116880 cttgacttca aactcattct ctatgacaat ttgagatggt gcagtatccc tagaacagag 116940 tggccaatgg taggtggggt ggagtgtgga tgcagaagct taggaaggct agaagtttag 117000 atcttcatga catagttttt tacttttgcc aaagacataa attgtcaaaa aactgggcaa 117060 teteataaat acaaaaatgt tteeaaagae aaacacacat ggttttatat tatetaeegt 117120 tttggatttt tcacttgtac tcttgcagat gggtgcttct gttcaataat tctcggctgt 117180 gaaatttttg aacaagtttt tatctcctga gacagtttgg ggctggtggg aatttggggt 117240 ctggctttgt gccatttgca ggtgccaggc ggattatgag cattagagca tttcacagga 117300 aacgctcatc tttactgtag tgagtttaaa agtggcgggg ctggctgcct cgcagcaatt 117360 cttagagagt ttctaaaggc cccagaagtg aggagagggc tgctcatgcc ttttgggtag 117420 tgggttagaa gacgggggtc cccttttgca gtcgggtacc tagacttata gagggctgct 117480 tgetcaatga caggtgtagt ggaaatteee geetacaeet tegtgtgeat egeeatggae 117540 aaggtcggga ggagaacagt cctggcctac tctcttttct gcagtgcact ggcctgtggt 117600 gtcgttatgg tgatccccca ggtgagttat cttctgtttt ttataagaca gttatactgt 117660 gacagtttga tgggaagaat ttagcttatt acagttaagt atgaaggtca attcagagta 117720

-continued

tgatttgggc agagtatata atatttaaaa atctgttttc tttaaaacat tctttttctg 117780 aaaagcctaa cctgggtgca atgactcaca cttataatcc cagcaactca agaggctgag 117900 ggtaggagga tggettgagt teaggagtte gaggetgeag tgagetetga teaetgeeae 117960 tgtactccag cctagatgac agagtgagaa ctcatctcaa aaaataaaaa ataaaaaata 118020 aaaagttcat aatcctaatt cccagagatg accagtgttg tattttgtaa acgcaataat 118080 cttgtgtgag gaaagtcgat cacaccttcc agcatcatca tactgaacat tcactcattt 118140 attcattcag caaacattta tccaccatct tttatgtgcc aggtgctgag aacacacagt 118200 gcatcaagtt teegtaaatg taacgagagg gegtetggea eeegtgtgta etettttgte 118260 tagggtggtc gaggatggtg cacctctcgg aggaggcgac atgtaatcag aaacctgaat 118320 gagggaggca gccatggaga catctgaagg atatgagtca gatattcaag actggtagag 118380 tttcagtaca ctgtttttca ttgcaggaga ttagtagttt ccaatgtctg gtacgcataa 118440 acaccccaag gagettgttt ttaaaaacag tttettagtg agaaacacta eccagaaatt 118500 cctgaaatga ctttcacatt cccatatttt ggcaaactgc gtccctcaaa atacctcttg 118560 catccagaag tgcttcccct cttcccaaaa aagatgtttt cagatctgta ttttaattct 118620 tgatttgcaa aatgtcacta taacagtact taaaatattt tatttaatgt tctcctgtga 118680 ttatataatc attaagcaat agtatatcaa catttagagc aaagcatttt aagttttgca 118740 tatcgtttga aatttaattt aagctaacaa gtgtcttcct tttatagtag cactttactt 118800 aatgettagg ateggtgage caaatatttt atgtaatgaa attteeaggt gattgataca 118860 caactaattg aatgcaataa aactactcgg gacaaggagg tetetgccaa tttgagagaa 118920 cttcatccac acctttaaaa aagtagtttg tagtgatggt agttgagtag atggcagctg 118980 cctttaagtt ggtgaagagt tggggaacac cagaaccttt gagttctaca ctaataggga 119040 agatgagaaa gaggctgatg gagatttcta gaaatagagc attaaccccac aacgacaaat 119100 ctctcccctc caataaattt ttccccaqqt qataatqtca acacaataca aatactaatt 119160 taattaacaa ttqttaatta atttaattta caattqtaat taaqqtqaca ttaqctcttt 119220 aatagaggca tcccagaatc tcagtgactt aacataaagg atgtttgtta cctgctcata 119280 gaaagttcca tgtatttgta cctagctggc caaagtggga gtggtgagtg ggtgtttgtg 119340 tccatggagt cattcaggga tgtaggctga cagaggcact gctgtcctta acacatcagc 119400 cgcaaggcca ccctgggtct cagcatccag ttggcagatg ggggaggagg gagatttcgg 119460 aatatagggt gtctttgtta gttacctttg gaagtggaac acattaggga gaataaaaac 119520 cgaggtggag gtaaaggttt tgccattgag gaatgtatca gctgcaaaca aacaaacaaa 119580 tgaacaaaac agtctgtact aatagttacc actttcaaat attttctgaa gataatttat 119640 aagccaggga ttactgccac aaagggcaca atttgttttg tttgttttt ttaagaaaag 119700 taaatagatt aaatagagac aagatctcac tctgtcaccc aagctgaagt gcagtggtgt 119760 gattatagee etcegtaate ttgaacteet gggettaaat gateeteetg eettagette 119820 tccagtagct gggaccacag gcatgtacca tcacacacag ctaatttttt tgtttttctg 119880 tagaaatggg gtcttgctat gttgccctgg ctggtctaaa actcttggcc tcaagtgatt 119940 ctcctgcctc agcctcctaa agtgctggga ttacaggtgt gagccattag gcccggctca 120000 caatttgttt gtatggctcc ttgattcatt ctgctggatc agtcccagaa ggagtgggga 120060 aattettggt gecaecagea etateaggge gtgteteett eeaaaacagt etteecaaet 120120

-continued

ggctttcgtc acagttcaaa ccctccaaag tggatgggga gaagagacac actgaaactt 120180 tcctccacat ttcqtaaaqa tqqaaaqctt tctcaqactq tqaqtaqaqt ttaatacatt 120240 caaacaqaaa aataaqqqtc ttcattqttc tqaaaaaata ctqaaqqaat taqaatqttt 120300 taagtaatga ttttaaagat tttctatttt cctttaaaaa taccacttgt gatgatctat 120360 tctgctaaat ttttttcaga aacattatat tttgggtgtg gtgacagcta tggttggaaa 120420 atttgccatc ggggcagcat ttggcctcat ttatctttat acagctgagc tgtatccaac 120480 cattgtaagg taaggatgaa ttgttttctg gttgttttcc tattatcttt cacttgtgtg 120540 tcatttcatt gtatttggcc tttacatgta aatgcttctt ttttatagaa gttacctgga 120600 tetetgagat gggaaaatga catgetgata etcattttga gtetgagget ttgtaceeta 120660 ttagtgagga tattagacga attattttga aataacactc tattattcca aaaacatttt 120720 aagtttcaag taccatagac ttccactgag tctctgtatt gactcaaagg taatttctca 120780 ggatgtgtct ctcgatgttc tgatgccaat tgtgttagtc tgagtgggct gctgtaacaa 120840 aataccacag gctgggtggc ttaaacaata gaaatttatt ttctcacagt actggaggct 120900 ggaagtccaa gaacaaggtg tcggcaggtt tggattctcc tgaggcctcg ctctgtggtc 120960 ttcaggtggt gccctcttgc tatgtcctca aggggtctta cctctgtgtg caccgctgat 121020 gtccctccct cttcatataa gacaccagcc atattggatt acggcctcac cctaacagcc 121080 tcattttaac ttaatcacct ctttaaagac cttatctaca aataccatta catcataaag 121140 tactagggat tcagacttca acacttgaac tttgggaggg acaacttagc ccataacatc 121200 agtaatcatt ggctccctga gattacctta tctggaggtt ctcaaagctg gcagctcgtc 121260 agagtcattg aggtatttca taaaaaatat cagtcttggg tccttacacc agacctgctg 121320 gatcaatcca agaatgacac tggggatttt tttttctttt ttcgagatgg agtctcattc 121380 tgttgcccag gctggagtgc agtggtgtga tcttggttca ctgcaagctc cgcctcctgg 121440 gttcaagcaa ttctcttgcc tcagcctcca gagtagctgg gattacacgt gcatgccact 121500 acacccggct aatttttgta tttttagtag agacggggtt tcaccatgtt ggtcaggctg 121560 gtctcgaact cctgacctcg tgatccgcca gccttggcct cccaaagtgt tgggattaca 121620 ggcatgagcc accacgccta gccgagactc gggattttta acaagtctgc aggtgactct 121680 gagttgccac cctgcccgcc ccacccgccc ccccgacacc ctttgggaat gtctgatgtg 121740 attcccactg atctgggaac ctcagggact tccaagcttt tacaaagctt ttccaaacac 121800 attttacttg gaaactcttt atgtggtgaa gaggacggag gtcctttgtg gaagctctgt 121860 tgagtacetg gaateeecee agtgeteetg cettettget eeagggggget geageagaae 121920 ttccaggeet taacagtaca teetttgtaa accaeatte ttgttgcage eetcatgtee 121980 agataagaca gctgagacca gggagatcaa gtacctggtg caagacacac agctgggacc 122040 ccagctataa agggaaggga tettteetet gatteteet tggattttat tttattttt 122100 ttgagacaga gtctcactct gttgcccagg ctggagtgaa atggtgtgat cttggctcac 122160 tgcaacctta cctcccaggt tcaggtgatt ctcctgcctc agcctcctga gtagctggga 122220 ttgcaggtgt gcaccaccat gcccggctaa tttttgtatt ttagtagaga cagggtttca 122280 ccatgttggc caggctggtc tcaaactcct gacctcaagt gatccaccct ccttggcctc 122340 ccaaageget aggattacag gtgtgageca etgegteegg eeegteagae tttttgaete 122400 ttttttttgc aaaatgatcc tgtattttaa agtgtaaata gtgattaggg tcacactgct 122460

-continued

gccaagagac acttgtccca cagatetece tetgtgaaat teegtaatag ttteetatet 122520 gcagtcctcc cttaaatcct ccaagtggca ttttcctaac acctgcttta tcaatggaag 122580 ttttcatttt ctaagggaaa aaatttgtta gcttggataa tttcttagcc tattaaagac 122640 ccaatcttaa tggcaacaaa taaacaaaca agatattaag gtttttcaca ggaaacttat 122700 taaaaaaatct aactgcttag ctagtgggtt catcccattt aggagtatgt tatttgtcat 122760 gtgttacaag tgtgaaaggc aagtgacttt ctatagagat aagtccatat aacaccagcc 122820 cagagatgee teeteettgt etceacaage aggagggatg taggaeetag aaaateeatt 122880 agtcaagaga tagcataaat cetteeetag gaatttteea tgeeeacaca eetgeetget 122940 gaaatgetag ggcaggcage cetgtggace aggatgggta agtacatttg tgttgactgt 123000 agatagatta atggatatct agatggatgg atggatggat ggagggatgg aagaatggat 123060 agatagagta ggtacacata tatatctaag aaaaaagttt atcagactaa tatgtgacca 123120 ggggtataga atagcagagg aataactccc tatgtaattg tctattagcc cagttgtctg 123180 agagtagagt ttttcttctt cctccatact tcccctctag gtcacccaga gtgctattat 123240 tagaccactc tcgcagtcta ataataaata catcttctgt ccattttaca ggttgtggaa 123300 ctggaattca cacaagatta gggtcgtggc caaaggcatc tggctagtca gtgacccatc 123360 agaactcaaa tccacatett ttggeeetat etgteaceea gtgaaataea tgagaatttt 123420 tatgggagac agtgcttaac attagcgggg gataagttgc tagcagtaga gctttagtag 123480 caqaqqqqaa qaaqqtattt tqqqqtaaqq qctttqtqqa ctcttctcaq atcatattqt 123540 gaaagtggca gccctgcaca gatgtacagt agcagacagg cagaataaca gattacattc 123600 tagcacttac aggctgacaa tggtggagac tagttgaatg caatagagag tgaagttgca 123660 taattgccaa cttgcgttgt ggctttggct ccgttgtggc tgacccaggg aagaagctgc 123720 tctaaatcaq qqaqaatatc tttqtcatqt cctqtqqqac ccttctqqcc tctcaqqtqq 123780 atttctqctc aqccaqqaaa aqctt 123805 <210> SEO ID NO 4 <211> LENGTH: 551 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEOUENCE: 4 Met Arg Asp Tyr Asp Glu Val Ile Ala Phe Leu Gly Glu Trp Gly Pro 1 5 10 15 Phe Gln Arg Leu Ile Phe Phe Leu Leu Ser Ala Ser Ile Ile Pro Asn 25 20 30 Gly Phe Asn Gly Met Ser Val Val Phe Leu Ala Gly Thr Pro Glu His 35 40 45 Arg Cys Arg Val Pro Asp Ala Ala Asn Leu Ser Ser Ala Trp Arg Asn 50 55 60 Asn Ser Val Pro Leu Arg Leu Arg Asp Gly Arg Glu Val Pro His Ser 65 70 75 80 Cys Ser Arg Tyr Arg Leu Ala Thr Ile Ala Asn Phe Ser Ala Leu Gly 90 Leu Glu Pro Gly Arg Asp Val Asp Leu Gly Gln Leu Glu Gln Glu Ser 105 Cys Leu Asp Gly Trp Glu Phe Ser Gln Asp Val Tyr Leu Ser Thr Val 125 115 120 Val Thr Glu Trp Asn Leu Val Cys Glu Asp Asn Trp Lys Val Pro Leu

	130					135					140				
Thr 145	Thr	Ser	Leu	Phe	Phe 150	Val	Gly	Val	Leu	Leu 155	Gly	Ser	Phe	Val	Ser 160
Gly	Gln	Leu	Ser	Asp 165	Arg	Phe	Gly	Arg	Lys 170	Asn	Val	Leu	Phe	Ala 175	Thr
Met	Ala	Val	Gln 180	Thr	Gly	Phe	Ser	Phe 185	Leu	Gln	Ile	Phe	Ser 190	Ile	Ser
Trp	Glu	Met 195	Phe	Thr	Val	Leu	Phe 200	Val	Ile	Val	Gly	Met 205	Gly	Gln	Ile
Ser	Asn 210	Tyr	Val	Val	Ala	Phe 215	Ile	Leu	Gly	Thr	Glu 220	Ile	Leu	Gly	Гла
Ser 225	Val	Arg	Ile	Ile	Phe 230	Ser	Thr	Leu	Gly	Val 235	Суз	Thr	Phe	Phe	Ala 240
Val	Gly	Tyr	Met	Leu 245	Leu	Pro	Leu	Phe	Ala 250	Tyr	Phe	Ile	Arg	Asp 255	Trp
Arg	Met	Leu	Leu 260	Leu	Ala	Leu	Thr	Val 265	Pro	Gly	Val	Leu	Cys 270	Val	Pro
Leu	Trp	Trp 275	Phe	Ile	Pro	Glu	Ser 280	Pro	Arg	Trp	Leu	Ile 285	Ser	Gln	Arg
Arg	Phe 290	Arg	Glu	Ala	Glu	Asp 295	Ile	Ile	Gln	Lys	Ala 300	Ala	Lys	Met	Asn
Asn 305	Ile	Ala	Val	Pro	Ala 310	Val	Ile	Phe	Aab	Ser 315	Val	Glu	Glu	Leu	Asn 320
Pro	Leu	Lys	Gln	Gln 325	Lys	Ala	Phe	Ile	Leu 330	Asp	Leu	Phe	Arg	Thr 335	Arg
Asn	Ile	Ala	Ile 340	Met	Thr	Ile	Met	Ser 345	Leu	Leu	Leu	Trp	Met 350	Leu	Thr
Ser	Val	Gly 355	Tyr	Phe	Ala	Leu	Ser 360	Leu	Asp	Ala	Pro	Asn 365	Leu	His	Gly
Asp	Ala 370	Tyr	Leu	Asn	Суз	Phe 375	Leu	Ser	Ala	Leu	Ile 380	Glu	Ile	Pro	Ala
Tyr 385	Ile	Thr	Ala	Trp	Leu 390	Leu	Leu	Arg	Thr	Leu 395	Pro	Arg	Arg	Tyr	Ile 400
Ile	Ala	Ala	Val	Leu 405	Phe	Trp	Gly	Gly	Gly 410	Val	Leu	Leu	Phe	Ile 415	Gln
Leu	Val	Pro	Val 420	Asb	Tyr	Tyr	Phe	Leu 425	Ser	Ile	Gly	Leu	Val 430	Met	Leu
Gly	Lys	Phe 435	Gly	Ile	Thr	Ser	Ala 440	Phe	Ser	Met	Leu	Tyr 445	Val	Phe	Thr
Ala	Glu 450	Leu	Tyr	Pro	Thr	Leu 455	Val	Arg	Asn	Met	Ala 460	Val	Gly	Val	Thr
Ser 465	Thr	Ala	Ser	Arg	Val 470	Gly	Ser	Ile	Ile	Ala 475	Pro	Tyr	Phe	Val	Tyr 480
Leu	Gly	Ala	Tyr	Asn 485	Arg	Met	Leu	Pro	Tyr 490	Ile	Val	Met	Gly	Ser 495	Leu
Thr	Val	Leu	Ile 500	Gly	Ile	Leu	Thr	Leu 505	Phe	Phe	Pro	Glu	Ser 510	Leu	Gly
Met	Thr	Leu 515	Pro	Glu	Thr	Leu	Glu 520	Gln	Met	Gln	Lys	Val 525	Гла	Trp	Phe
Arg	Ser 530	Gly	Гла	ГЛа	Thr	Arg 535	Asp	Ser	Met	Glu	Thr 540	Glu	Glu	Asn	Pro
Lys 545	Val	Leu	Ile	Thr	Ala 550	Phe									

<210	<pre><210> SEQ ID NO 5 <211> LENGTH: 551 <212> TYPE: PRT </pre>														
<211	L> ЦЕ >> ТЪ	INGTH	1: 55 PRT	Σ											
<213	8> OF	RGAN1	SM:	Homo	sar	iens	3								
<400)> SE	EQUEN	ICE :	5											
Met 1	Ala	Gln	Phe	Val 5	Gln	Val	Leu	Ala	Glu 10	Ile	Gly	Asp	Phe	Gly 15	Arg
Phe	Gln	Ile	Gln 20	Leu	Leu	Ile	Leu	Leu 25	СЛа	Val	Leu	Asn	Phe 30	Leu	Ser
Pro	Phe	Tyr 35	Phe	Phe	Ala	His	Val 40	Phe	Met	Val	Leu	Asp 45	Glu	Pro	His
His	Сув 50	Ala	Val	Ala	Trp	Val 55	Lys	Asn	His	Thr	Phe 60	Asn	Leu	Ser	Ala
Ala 65	Glu	Gln	Leu	Val	Leu 70	Ser	Val	Pro	Leu	Asp 75	Thr	Ala	Gly	His	Pro 80
Glu	Pro	Суз	Leu	Met 85	Phe	Arg	Pro	Pro	Pro 90	Ala	Asn	Ala	Ser	Leu 95	Gln
Asp	Ile	Leu	Ser 100	His	Arg	Phe	Asn	Glu 105	Thr	Gln	Pro	Cys	Asp 110	Met	Gly
Trp	Glu	Tyr 115	Pro	Glu	Asn	Arg	Leu 120	Pro	Ser	Leu	Lys	Asn 125	Glu	Phe	Asn
Leu	Val 130	Суа	Aap	Arg	Lys	His 135	Leu	Lya	Aap	Thr	Thr 140	Gln	Ser	Val	Phe
Met 145	Gly	Gly	Leu	Leu	Val 150	Gly	Thr	Leu	Met	Phe 155	Gly	Pro	Leu	Суз	Asp 160
Arg	Ile	Gly	Arg	Lys 165	Ala	Thr	Ile	Leu	Ala 170	Gln	Leu	Leu	Leu	Phe 175	Thr
Leu	Ile	Gly	Leu 180	Ala	Thr	Ala	Phe	Val 185	Pro	Ser	Phe	Glu	Leu 190	Tyr	Met
Ala	Leu	Arg 195	Phe	Ala	Val	Ala	Thr 200	Ala	Val	Ala	Gly	Leu 205	Ser	Phe	Ser
Asn	Val 210	Thr	Leu	Leu	Thr	Glu 215	Trp	Val	Gly	Pro	Ser 220	Trp	Arg	Thr	Gln
Ala 225	Val	Val	Leu	Ala	Gln 230	Сүз	Asn	Phe	Ser	Leu 235	Gly	Gln	Met	Val	Leu 240
Ala	Gly	Leu	Ala	Tyr 245	Gly	Phe	Arg	Asn	Trp 250	Arg	Leu	Leu	Gln	Ile 255	Thr
Gly	Thr	Ala	Pro 260	Gly	Leu	Leu	Leu	Phe 265	Phe	Tyr	Phe	Trp	Ala 270	Leu	Pro
Glu	Ser	Ala 275	Arg	Trp	Leu	Leu	Thr 280	Arg	Gly	Arg	Met	Asp 285	Glu	Ala	Ile
Gln	Leu 290	Ile	Gln	Lys	Ala	Ala 295	Ser	Val	Asn	Arg	Arg 300	Lys	Leu	Ser	Pro
Glu 305	Leu	Met	Asn	Gln	Leu 310	Val	Pro	Glu	Lys	Thr 315	Gly	Pro	Ser	Gly	Asn 320
Ala	Leu	Asp	Leu	Phe 325	Arg	His	Pro	Gln	Leu 330	Arg	Lys	Val	Thr	Leu 335	Ile
Ile	Phe	Суз	Val 340	Trp	Phe	Val	Asp	Ser 345	Leu	Gly	Tyr	Tyr	Gly 350	Leu	Ser
Leu	Gln	Val 355	Gly	Asp	Phe	Gly	Leu 360	Asp	Val	Tyr	Leu	Thr 365	Gln	Leu	Ile
Phe	Gly	Ala	Val	Glu	Val	Pro	Ala	Arg	CAa	Ser	Ser	Ile	Phe	Met	Met

-cont	inued

	370					375					380				
Gln 385	Arg	Phe	Gly	Arg	Lys 390	Trp	Ser	Gln	Leu	Gly 395	Thr	Leu	Val	Leu	Gly 400
Gly	Leu	Met	Сүз	Ile 405	Ile	Ile	Ile	Phe	Ile 410	Pro	Ala	Asp	Leu	Pro 415	Val
Val	Val	Thr	Met 420	Leu	Ala	Val	Val	Gly 425	Lys	Met	Ala	Thr	Ala 430	Ala	Ala
Phe	Thr	Ile 435	Ser	Tyr	Val	Tyr	Ser 440	Ala	Glu	Leu	Phe	Pro 445	Thr	Ile	Leu
Arg	Gln 450	Thr	Gly	Met	Gly	Leu 455	Val	Gly	Ile	Phe	Ser 460	Arg	Ile	Gly	Gly
Ile 465	Leu	Thr	Pro	Leu	Val 470	Ile	Leu	Leu	Gly	Glu 475	Tyr	His	Ala	Ala	Leu 480
Pro	Met	Leu	Ile	Tyr 485	Gly	Ser	Leu	Pro	Ile 490	Val	Ala	Gly	Leu	Leu 495	Сүз
Thr	Leu	Leu	Pro 500	Glu	Thr	His	Gly	Gln 505	Gly	Leu	Lys	Asp	Thr 510	Leu	Gln
Asp	Leu	Glu 515	Leu	Gly	Pro	His	Pro 520	Arg	Ser	Pro	Lys	Ser 525	Val	Pro	Ser
Glu	Lys 530	Glu	Thr	Glu	Ala	Lys 535	Gly	Arg	Thr	Ser	Ser 540	Pro	Gly	Val	Ala
Phe 545	Val	Ser	Ser	Thr	Tyr 550	Phe									
<210)> SE L> LE	EQ II ENGTH) NO 1: 55	6 57											
<212	2> TY	PE :	PRT	Home	. car	iens									
<212 <213	2> TY 3> OF 0> SF	PE : RGANI	PRT SM:	Homo	sap	iens	3								
<212 <213 <400 Met 1	2> TY 3> OF)> SE Arg	PE : GANJ EQUEN Asp	PRT SM: ICE: Tyr	Homo 6 Asp 5	sap Glu	val	, Thr	Ala	Phe 10	Leu	Gly	Glu	Trp	Gly 15	Pro
<212 <213 <400 Met 1 Phe	2> TY 3> OF)> SE Arg Gln	PE: GANI EQUEN Asp Arg	PRT SM: ICE: Tyr Leu 20	Homo 6 Asp 5 Ile	Glu Phe	Val Phe	Thr Leu	Ala Leu 25	Phe 10 Ser	Leu Ala	Gly Ser	Glu Ile	Trp Ile 30	Gly 15 Pro	Pro Asn
<212 <213 <400 Met 1 Phe Gly	2> TY 3> OF 0> SE Arg Gln Phe	PE: GANJ EQUEN Asp Arg Thr 35	PRT SM: ICE: Tyr Leu 20 Gly	Homo 6 Asp 5 Ile Leu	Glu Phe Ser	Val Phe Ser	Thr Leu Val 40	Ala Leu 25 Phe	Phe 10 Ser Leu	Leu Ala Ile	Gly Ser Ala	Glu Ile Thr 45	Trp Ile 30 Pro	Gly 15 Pro Glu	Pro Asn His
<212 <213 <400 Met 1 Phe Gly Arg	2> TY 3> OF Arg Gln Phe Cys 50	PE: CGANI EQUEN Asp Arg Thr 35 Arg	PRT SM: ICE: Tyr Leu 20 Gly Val	Homc 6 Asp 5 Ile Leu Pro	Glu Phe Ser Asp	Val Phe Ser Ala 55	Thr Leu Val 40 Ala	Ala Leu 25 Phe Asn	Phe 10 Ser Leu Leu	Leu Ala Ile Ser	Gly Ser Ala Ser 60	Glu Ile Thr 45 Ala	Trp Ile 30 Pro Trp	Gly 15 Pro Glu Arg	Pro Asn His Asn
<212 <213 <400 Met 1 Phe Gly Arg His 65	<pre>2> TY 3> OF Arg Gln Phe Cys 50 Thr</pre>	PPE: CQUEN Asp Arg Thr 35 Arg Val	PRT SM: JCE: Tyr Leu 20 Gly Val Pro	Homc 6 Asp 5 Ile Leu Pro Leu	Glu Glu Phe Ser Asp Arg 70	Val Phe Ser Ala 55 Leu	Thr Leu Val 40 Ala Arg	Ala Leu 25 Phe Asn Asp	Phe 10 Ser Leu Leu	Leu Ala Ile Ser Arg 75	Gly Ser Ala Ser 60 Glu	Glu Ile Thr 45 Ala Val	Trp Ile 30 Pro Trp Pro	Gly 15 Pro Glu Arg His	Pro Asn His Asn Ser 80
<212 <213 <400 Met 1 Phe Gly Arg His 65 Cys	<pre>2> TY 3> OF Arg Gln Phe Cys 50 Thr Arg</pre>	PPE: CQUEN Asp Arg Thr 35 Arg Val Arg	PRT SM: Tyr Leu 20 Gly Val Pro Tyr	Homc 6 Asp 5 Ile Leu Pro Leu Arg 85	Glu Glu Phe Ser Asp Arg 70 Leu	Val Phe Ser Ala 55 Leu Ala	Thr Leu Val 40 Ala Arg Thr	Ala Leu 25 Phe Asn Asp Ile	Phe 10 Ser Leu Leu Gly Ala 90	Leu Ala Ile Ser Arg 75 Asn	Gly Ser Ala Ser 60 Glu Phe	Glu Ile Thr 45 Ala Val Ser	Trp Ile 30 Pro Trp Pro Ala	Gly 15 Pro Glu Arg His Leu 95	Pro Asn His Asn Ser 80 Gly
<212 <213 <400 Met 1 Phe Gly Arg His 65 Cys Leu	<pre>2> TY 3> OF Arg Gln Phe Cys 50 Thr Arg Glu</pre>	YPE: CQUEN Asp Arg Thr 35 Arg Val Arg Pro	PRT SM: Tyr Leu 20 Gly Val Pro Tyr Gly 100	Homc 6 Asp 5 Ile Leu Leu Leu Arg 85 Arg	Glu Glu Phe Ser Asp Arg 70 Leu Asp	Val Phe Ser Ala 55 Leu Ala Val	Thr Leu Val Ala Arg Thr Asp	Ala Leu 25 Phe Asn Asp Ile Leu	Phe 10 Ser Leu Gly Ala 90 Gly	Leu Ala Ile Ser Arg 75 Asn Gln	Gly Ser Ala Ser 60 Glu Phe Leu	Glu Ile Thr 45 Ala Val Ser Glu	Trp Jle Jo Pro Trp Pro Ala Gln 110	Gly 15 Pro Glu Arg His Leu 95 Glu	Pro Asn His Asn Ser 80 Gly Ser
<212 <213 <400 Met 1 Phe Gly Arg His 65 Cys Leu Cys	<pre>>> TY >> OF >> SE Arg Gln Phe Cys 50 Thr Arg Glu Leu</pre>	PPE: CQUEN Asp Arg Thr 35 Arg Val Arg Pro Asp 115	PRT SM: JCE: Tyr Leu 20 Gly Val Pro Tyr Gly 100 Gly	Homo 6 Asp 5 Ile Leu Pro Leu Arg 85 Arg Trp	Glu Glu Phe Ser Asp Arg 70 Leu Asp Glu	Val Phe Ser Ala 55 Leu Ala Val Phe	Thr Leu Val Ala Arg Thr Asp Ser 120	Ala Leu 25 Phe Asn Asp Ile Leu 105 Gln	Phe 10 Ser Leu Leu Gly Ala 90 Gly Asp	Leu Ala Ile Ser Arg 75 Asn Gln Val	Gly Ser Ala Ser 60 Glu Phe Leu Tyr	Glu Ile Thr 45 Ala Val Ser Glu Leu 125	Trp Jle 30 Pro Trp Pro Ala Gln 110 Ser	Gly 15 Pro Glu Arg His Leu 95 Glu Thr	Pro Asn His Asn Ser 80 Gly Ser Ile
<212 <213 <400 Met 1 Phe Gly Arg His 65 Cys Leu Cys Val	<pre>> TY >> OF OF Arg Gln Phe Cys 50 Thr Arg Glu Leu Thr 130</pre>	YPE: CQUEN Asp Arg Thr 35 Arg Val Arg Val Arg Pro Asp 115 Glu	PRT SM: ICE: Tyr Leu 20 Gly Val Pro Tyr Gly 100 Gly Trp	Homo 6 Asp 5 Ile Leu Pro Leu Arg 85 Arg Trp Asn	Glu Glu Phe Ser Asp Arg 70 Leu Asp Glu Leu	Val Phe Ser Ala 55 Leu Ala Val Phe Val 135	Thr Leu Val Ala Arg Thr Asp Ser 120 Cys	Ala Leu 25 Phe Asn Asp Ile Leu 105 Gln Glu	Phe 10 Ser Leu Gly Ala 90 Gly Asp Asp	Leu Ala Ile Ser Arg 75 Asn Gln Val Asp	Gly Ser Ala Ser 60 Glu Phe Leu Tyr Tyr Trp 140	Glu Ile Thr 45 Ala Val Ser Glu Leu Lys	Trp 30 Pro Trp Pro Ala Gln 110 Ser Ala	Gly 15 Pro Glu Arg His Leu 95 Glu Thr Pro	Pro Asn His Asn Ser So Gly Ser Ile Leu
<212 <213 <400 Met 1 Phe Gly Arg His 65 Cys Leu Cys Leu Cys Val	<pre>>> TY >> OF O> SE Arg Gln Phe Cys 50 Thr Arg Glu Leu Thr 130 Ile</pre>	YPE: CQUEN Asp Arg Arg Val Arg Val Arg Pro Asp 115 Glu Ser	PRT SM: UCE: Tyr Leu 20 Gly Val Pro Tyr Gly 100 Gly Trp Leu	Homo 6 Asp 5 Ile Leu Pro Leu Arg 85 Arg Trp Asn Phe	Glu Glu Phe Ser Asp Leu Asp Glu Leu Phe 150	Val Phe Ser Ala 55 Leu Ala Val Phe Val 135 Val	Thr Leu Val Ala Arg Thr Asp Ser 120 Cys Gly	Ala Leu 25 Phe Asn Asp Ile Leu 105 Gln Glu Val	Phe 10 Ser Leu Gly Ala 90 Gly Asp Asp Leu	Leu Ala Ile Ser Arg 75 Asn Gln Val Asp Leu 155	Gly Ser Ala Ser 60 Glu Phe Leu Tyr Tyr 140 Gly	Glu Ile Thr 45 Ala Val Ser Glu Leu 125 Lys Ser	Trp 30 Pro Trp Pro Ala Gln 110 Ser Ala Phe	Gly 15 Pro Glu Arg His Leu 95 Glu Thr Pro Ile	Pro Asn His Asn Ser Gly Ser Ile Leu Ser 160
<212 <213 <400 Met 1 Phe Gly Arg Gly Leu Cys Leu Cys Val Thr 145 Gly	<pre>>> TY >> OF >> SE Arg Gln Phe Cys 50 Thr Arg Glu Leu Thr 130 Ile Gln</pre>	PE: CQUEN Asp Arg Thr 35 Arg Val Arg Val Arg Pro Asp 115 Glu Ser Leu	PRT SM: UCE: Tyr Leu 20 Gly Val Pro Tyr Gly 100 Gly Trp Leu Ser	Homo 6 Asp 5 Ile Leu Pro Leu Arg 85 Arg Trp Asn Phe Asp 165	Glu Phe Ser Asp Arg 70 Leu Asp Glu Leu Phe 150 Arg	Val Phe Ser Ala 55 Leu Ala Val Phe Val 135 Val Phe	Thr Leu Val Ala Arg Thr Asp Ser 120 Cys Gly Gly	Ala Leu 25 Phe Asn Asp Ile Leu 105 Gln Glu Val Arg	Phe 10 Ser Leu Gly Ala 90 Gly Asp Leu Lys 170	Leu Ala Ile Ser Asn Gln Val Asp Leu 155 Asn	Gly Ser Ala Ser Glu Phe Leu Tyr Trp 140 Gly Val	Glu Ile Thr 45 Ala Val Ser Glu Leu Lys Ser Leu	Trp 30 Pro Trp Pro Ala Gln 110 Ser Ala Phe Phe	Gly 15 Pro Glu Arg His Leu 95 Glu Thr Pro Ile Val 175	Pro Asn His Asn Ser 80 Gly Ser Ile Leu Ser 160 Thr

Phe	Glu	Met 195	Phe	Val	Val	Leu	Phe 200	Val	Leu	Val	Gly	Met 205	Gly	Gln	Ile
Ser	Asn 210	Tyr	Val	Ala	Ala	Phe 215	Val	Leu	Gly	Thr	Glu 220	Ile	Leu	Gly	Lys
Ser 225	Val	Arg	Ile	Ile	Phe 230	Ser	Thr	Leu	Gly	Val 235	Cya	Ile	Phe	Tyr	Ala 240
Phe	Gly	Tyr	Met	Val 245	Leu	Pro	Leu	Phe	Ala 250	Tyr	Phe	Ile	Arg	Asp 255	Trp
Arg	Met	Leu	Leu 260	Val	Ala	Leu	Thr	Met 265	Pro	Gly	Val	Leu	Cys 270	Val	Ala
Leu	Trp	Trp 275	Phe	Ile	Pro	Glu	Ser 280	Pro	Arg	Trp	Leu	Ile 285	Ser	Gln	Gly
Arg	Phe 290	Glu	Glu	Ala	Glu	Val 295	Ile	Ile	Arg	Lya	Ala 300	Ala	Lys	Ala	Asn
Gly 305	Ile	Val	Val	Pro	Ser 310	Thr	Ile	Phe	Asp	Pro 315	Ser	Glu	Leu	Gln	Asp 320
Leu	Ser	Ser	Lys	Lys 325	Gln	Gln	Ser	His	Asn 330	Ile	Leu	Asp	Leu	Leu 335	Arg
Thr	Trp	Asn	Ile 340	Arg	Met	Val	Thr	Ile 345	Met	Ser	Ile	Met	Leu 350	Trp	Met
Thr	Ile	Ser 355	Val	Gly	Tyr	Phe	Gly 360	Leu	Ser	Leu	Asp	Thr 365	Pro	Asn	Leu
His	Gly 370	Asp	Ile	Phe	Val	Asn 375	Cys	Phe	Leu	Ser	Ala 380	Met	Val	Glu	Val
Pro 385	Ala	Tyr	Val	Leu	Ala 390	Trp	Leu	Leu	Leu	Gln 395	Tyr	Leu	Pro	Arg	Arg 400
Tyr	Ser	Met	Ala	Thr 405	Ala	Leu	Phe	Leu	Gly 410	Gly	Ser	Val	Leu	Leu 415	Phe
Met	Gln	Leu	Val 420	Pro	Pro	Asp	Leu	Tyr 425	Tyr	Leu	Ala	Thr	Val 430	Leu	Val
Met	Val	Gly 435	Lys	Phe	Gly	Val	Thr 440	Ala	Ala	Phe	Ser	Met 445	Val	Tyr	Val
Tyr	Thr 450	Ala	Glu	Leu	Tyr	Pro 455	Thr	Val	Val	Arg	Asn 460	Met	Gly	Val	Gly
Val 465	Ser	Ser	Thr	Ala	Ser 470	Arg	Leu	Gly	Ser	Ile 475	Leu	Ser	Pro	Tyr	Phe 480
Val	Tyr	Leu	Gly	Ala 485	Tyr	Asp	Arg	Phe	Leu 490	Pro	Tyr	Ile	Leu	Met 495	Gly
Ser	Leu	Thr	Ile 500	Leu	Thr	Ala	Ile	Leu 505	Thr	Leu	Phe	Leu	Pro 510	Glu	Ser
Phe	Gly	Thr 515	Pro	Leu	Pro	Asp	Thr 520	Ile	Asp	Gln	Met	Leu 525	Arg	Val	Lys
Gly	Met 530	Lys	His	Arg	Lys	Thr 535	Pro	Ser	His	Thr	Arg 540	Met	Leu	Lys	Asp
Gly 545	Gln	Glu	Arg	Pro	Thr 550	Ile	Leu	Lys	Ser	Thr 555	Ala	Phe			
<210)> SE	Q II	NO	7											
<211 <212 <213	2> 19 2> TY 3> OF	PE : GANI	PRT SM:	Home	sap	iens	1								
<400)> SE	QUEN	ICE :	7	-										
Met 1	Pro	Thr	Thr	Val 5	Asp	Asp	Val	Leu	Glu 10	His	Gly	Gly	Glu	Phe 15	His

-continued

Phe Phe Gln Lys Gln Met Phe Phe Leu Leu Ala Leu Leu Ser Ala Thr Phe Ala Pro Ile Tyr Val Gly Ile Val Phe Leu Gly Phe Thr Pro Asp His Arg Cys Arg Ser Pro Gly Val Ala Glu Leu Ser Leu Arg Cys Gly Trp Ser Pro Ala Glu Glu Leu Asn Tyr Thr Val Pro Gly Pro Gly Pro Ala Gly Glu Ala Ser Pro Arg Gln Cys Arg Arg Tyr Glu Val Asp Trp Asn Gln Ser Thr Phe Asp Cys Val Asp Pro Leu Ala Ser Leu Asp Thr Asn Arg Ser Arg Leu Pro Leu Gly Pro Cys Arg Asp Gly Trp Val Tyr 115 120 125 Glu Thr Pro Gly Ser Ser Ile Val Thr Glu Phe Asn Leu Val Cys Ala Asn Ser Trp Met Leu Asp Leu Phe Gln Ser Ser Val Asn Val Gly Phe Phe Ile Gly Ser Met Ser Ile Gly Tyr Ile Ala Asp Arg Phe Gly Arg Lys Leu Cys Leu Leu Thr Thr Val Leu Ile Asn Ala Ala Ala Gly Val Leu Met Ala Ile Ser Pro Thr Tyr Thr Trp Met Leu Ile Phe Arg Leu Ile Gln Gly Leu Val Ser Lys Ala Gly Trp Leu Ile Gly Tyr Ile Leu Ile Thr Glu Phe Val Gly Arg Arg Tyr Arg Arg Thr Val Gly Ile Phe Tyr Gln Val Ala Tyr Thr Val Gly Leu Leu Val Leu Ala Gly Val Ala Tyr Ala Leu Pro His Trp Arg Trp Leu Gln Phe Thr Val Ala Leu Pro Asn Phe Phe Leu Leu Tyr Tyr Trp Cys Ile Pro Glu Ser Pro Arg Trp Leu Ile Ser Gln Asn Lys Asn Ala Glu Ala Met Arg Ile Ile Lys His Ile Ala Lys Lys Asn Gly Lys Ser Leu Pro Ala Ser Leu Gln Arg Leu Arg Leu Glu Glu Glu Thr Gly Lys Lys Leu Asn Pro Ser Phe Leu Asp Leu Val Arg Thr Pro Gln Ile Arg Lys His Thr Met Ile Leu Met Tyr Asn Trp Phe Thr Ser Ser Val Leu Tyr Gln Gly Leu Ile Met His Met Gly Leu Ala Gly Asp Asn Ile Tyr Leu Asp Phe Phe Tyr Ser Ala Leu Val Glu Phe Pro Ala Ala Phe Met Ile Ile Leu Thr Ile Asp Arg Ile Gly Arg Arg Tyr Pro Trp Ala Ala Ser Asn Met Val Ala Gly Ala Ala Cys Leu Ala Ser Val Phe Ile Pro Gly Asp Leu Gln Trp Leu Lys

Ile	Ile	Ile 435	Ser	Сүз	Leu	Gly	Arg 440	Met	Gly	Ile	Thr	Met 445	Ala	Tyr	Glu
Ile	Val 450	Cys	Leu	Val	Asn	Ala 455	Glu	Leu	Tyr	Pro	Thr 460	Phe	Ile	Arg	Asn
Leu 465	Gly	Val	His	Ile	Cys 470	Ser	Ser	Met	Cys	Asp 475	Ile	Gly	Gly	Ile	Ile 480
Thr	Pro	Phe	Leu	Val 485	Tyr	Arg	Leu	Thr	Asn 490	Ile	Trp	Leu	Glu	Leu 495	Pro
Leu	Met	Val	Phe 500	Gly	Val	Leu	Gly	Leu 505	Val	Ala	Gly	Gly	Leu 510	Val	Leu
Leu	Leu	Pro 515	Glu	Thr	Lys	Gly	Lys 520	Ala	Leu	Pro	Glu	Thr 525	Ile	Glu	Glu
Ala	Glu 530	Asn	Met	Gln	Arg	Pro 535	Arg	Lys	Asn	Lys	Glu 540	Lys	Met	Ile	Tyr
Leu 545	Gln	Val	Gln	Lys	Leu 550	Asp	Ile	Pro	Leu	Asn 555					
<210)> SE	EQ II	о мо	8											
<211 <212	L> LE 2> TY 3> OF	ENGTH (PE : 2GAN1	1: 55 PRT ISM·	Home) sat	niens	3								
<400)> SE	EQUE1	ICE :	8	, par	, <u>, , , , , , , , , , , , , , , , , , </u>	,								
Met 1	Pro	Thr	Val	Asp 5	Asp	Ile	Leu	Glu	Gln 10	Val	Gly	Glu	Ser	Gly 15	Trp
Phe	Gln	Lys	Gln 20	Ala	Phe	Leu	Ile	Leu 25	Cya	Leu	Leu	Ser	Ala 30	Ala	Phe
Ala	Pro	Ile 35	Суз	Val	Gly	Ile	Val 40	Phe	Leu	Gly	Phe	Thr 45	Pro	Asp	His
His	Суя 50	Gln	Ser	Pro	Gly	Val 55	Ala	Glu	Leu	Ser	Gln 60	Arg	Суз	Gly	Trp
Ser 65	Pro	Ala	Glu	Glu	Leu 70	Asn	Tyr	Thr	Val	Pro 75	Gly	Leu	Gly	Pro	Ala 80
Gly	Glu	Ala	Phe	Leu 85	Gly	Gln	Суз	Arg	Arg 90	Tyr	Glu	Val	Aap	Trp 95	Asn
Gln	Ser	Ala	Leu 100	Ser	Суз	Val	Asp	Pro 105	Leu	Ala	Ser	Leu	Ala 110	Thr	Asn
Arg	Ser	His 115	Leu	Pro	Leu	Gly	Pro 120	Cys	Gln	Asp	Gly	Trp 125	Val	Tyr	Asp
Thr	Pro 130	Gly	Ser	Ser	Ile	Val 135	Thr	Glu	Phe	Asn	Leu 140	Val	Суз	Ala	Asp
Ser 145	Trp	Lys	Leu	Asp	Leu 150	Phe	Gln	Ser	Суз	Leu 155	Asn	Ala	Gly	Phe	Leu 160
Phe	Gly	Ser	Leu	Gly 165	Val	Gly	Tyr	Phe	Ala 170	Asp	Arg	Phe	Gly	Arg 175	Lys
Leu	Сүз	Leu	Leu 180	Gly	Thr	Val	Leu	Val 185	Asn	Ala	Val	Ser	Gly 190	Val	Leu
Met	Ala	Phe 195	Ser	Pro	Asn	Tyr	Met 200	Ser	Met	Leu	Leu	Phe 205	Arg	Leu	Leu
Gln	Gly 210	Leu	Val	Ser	Lys	Gly 215	Asn	Trp	Met	Ala	Gly 220	Tyr	Thr	Leu	Ile
Thr 225	Glu	Phe	Val	Gly	Ser 230	Gly	Ser	Arg	Arg	Thr 235	Val	Ala	Ile	Met	Tyr 240
Gln	Met	Ala	Phe	Thr 245	Val	Gly	Leu	Val	Ala 250	Leu	Thr	Gly	Leu	Ala 255	Tyr

Ala	Leu	Pro	His 260	Trp	Arg	Trp	Leu	G1n 265	Leu	Ala	Val	Ser	Leu 270	Pro	Thr
Phe	Leu	Phe 275	Leu	Leu	Tyr	Tyr	Trp 280	Cys	Val	Pro	Glu	Ser 285	Pro	Arg	Trp
Leu	Leu 290	Ser	Gln	ГЛа	Arg	Asn 295	Thr	Glu	Ala	Ile	Lуа 300	Ile	Met	Asp	His
Ile 305	Ala	Gln	Lys	Asn	Gly 310	Lys	Leu	Pro	Pro	Ala 315	Asp	Leu	Lys	Met	Leu 320
Ser	Leu	Glu	Glu	Asp 325	Val	Thr	Glu	Lys	Leu 330	Ser	Pro	Ser	Phe	Ala 335	Asp
Leu	Phe	Arg	Thr 340	Pro	Arg	Leu	Arg	Lys 345	Arg	Thr	Phe	Ile	Leu 350	Met	Tyr
Leu	Trp	Phe 355	Thr	Asp	Ser	Val	Leu 360	Tyr	Gln	Gly	Leu	Ile 365	Leu	His	Met
Gly	Ala 370	Thr	Ser	Gly	Asn	Leu 375	Tyr	Leu	Aap	Phe	Leu 380	Tyr	Ser	Ala	Leu
Val 385	Glu	Ile	Pro	Gly	Ala 390	Phe	Ile	Ala	Leu	Ile 395	Thr	Ile	Asp	Arg	Val 400
Gly	Arg	Ile	Tyr	Pro 405	Met	Ala	Met	Ser	Asn 410	Leu	Leu	Ala	Gly	Ala 415	Ala
Суз	Leu	Val	Met 420	Ile	Phe	Ile	Ser	Pro 425	Asp	Leu	His	Trp	Leu 430	Asn	Ile
Ile	Ile	Met 435	Суз	Val	Gly	Arg	Met 440	Gly	Ile	Thr	Ile	Ala 445	Ile	Gln	Met
Ile	Cys 450	Leu	Val	Asn	Ala	Glu 455	Leu	Tyr	Pro	Thr	Phe 460	Val	Arg	Asn	Leu
Gly 465	Val	Met	Val	Сүз	Ser 470	Ser	Leu	Суз	Asp	Ile 475	Gly	Gly	Ile	Ile	Thr 480
Pro	Phe	Ile	Val	Phe 485	Arg	Leu	Arg	Glu	Val 490	Trp	Gln	Ala	Leu	Pro 495	Leu
Ile	Leu	Phe	Ala 500	Val	Leu	Gly	Leu	Leu 505	Ala	Ala	Gly	Val	Thr 510	Leu	Leu
Leu	Pro	Glu 515	Thr	Lys	Gly	Val	Ala 520	Leu	Pro	Glu	Thr	Met 525	Lys	Asp	Ala
Glu	Asn 530	Leu	Gly	Arg	Lys	Ala 535	Lys	Pro	Lys	Glu	Asn 540	Thr	Ile	Tyr	Leu
Lys 545	Val	Gln	Thr	Ser	Glu 550	Pro	Ser	Gly	Thr						
<210)> SE	EQ II) NO	9											
<211 <212 <213	2> TY 3> OF	PE : RGANI	PRT SM:	Homo	s sag	piens	3								
<400)> SE	EQUEI	ICE :	9											
Met 1	Ala	Phe	Glu	Glu 5	Leu	Leu	Ser	Gln	Val 10	Gly	Gly	Leu	Gly	Arg 15	Phe
Gln	Met	Leu	His 20	Leu	Val	Phe	Ile	Leu 25	Pro	Ser	Leu	Met	Leu 30	Leu	Ile
Pro	His	Ile 35	Leu	Leu	Glu	Asn	Phe 40	Ala	Ala	Ala	Ile	Pro 45	Gly	His	Arg
Суз	Trp 50	Val	His	Met	Leu	Asp 55	Asn	Asn	Thr	Gly	Ser 60	Gly	Asn	Glu	Thr
Gly	Ile	Leu	Ser	Glu	Asp	Ala	Leu	Leu	Arg	Ile	Ser	Ile	Pro	Leu	Asp

-cont	inued

65					70					75					80
Ser	Asn	Leu	Arg	Pro 85	Glu	Гла	Сув	Arg	Phe 90	Phe	Val	His	Pro	Gln 95	Trp
Gln	Leu	Leu	His 100	Leu	Asn	Gly	Ile	His 105	Ser	Thr	Ser	Glu	Ala 110	Asp	Thr
Glu	Pro	Cys 115	Val	Asp	Gly	Trp	Val 120	Tyr	Asp	Gln	Ser	Tyr 125	Phe	Pro	Ser
Thr	Ile 130	Val	Thr	Гла	Trp	Asp 135	Leu	Val	Сув	Asp	Tyr 140	Gln	Ser	Leu	Lys
Ser 145	Val	Val	Gln	Phe	Leu 150	Leu	Leu	Thr	Gly	Met 155	Leu	Val	Gly	Gly	Ile 160
Ile	His	His	Gly	Val 165	Ser	Asp	Arg	Phe	Gly 170	Arg	Arg	Phe	Ile	Leu 175	Arg
Trp	Суз	Leu	Leu 180	Gln	Leu	Ala	Ile	Thr 185	Asp	Thr	Сүз	Ala	Ala 190	Phe	Ala
Pro	Thr	Phe 195	Pro	Val	Tyr	Суз	Val 200	Leu	Arg	Phe	Leu	Ala 205	Gly	Phe	Ser
Ser	Met 210	Ile	Ile	Ile	Ser	Asn 215	Asn	Ser	Leu	Pro	Ile 220	Thr	Glu	Trp	Ile
Arg 225	Pro	Asn	Ser	Lys	Ala 230	Leu	Val	Val	Ile	Leu 235	Ser	Ser	Gly	Ala	Leu 240
Ser	Ile	Gly	Gln	Ile 245	Ile	Leu	Gly	Gly	Leu 250	Ala	Tyr	Val	Phe	Arg 255	Asp
Trp	Gln	Thr	Leu 260	His	Val	Val	Ala	Ser 265	Val	Pro	Phe	Leu	Gly 270	Leu	Leu
Leu	Leu	Gln 275	Arg	Trp	Leu	Val	Glu 280	Ser	Ala	Arg	Trp	Leu 285	Ile	Ile	Thr
Asn	Lys 290	Leu	Asp	Glu	Gly	Leu 295	Lys	Ala	Leu	Arg	Lys 300	Val	Ala	Arg	Thr
Asn 305	Gly	Ile	Lys	Asn	Ala 310	Glu	Glu	Thr	Leu	Asn 315	Ile	Glu	Val	Val	Arg 320
Ser	Thr	Met	Gln	Glu 325	Glu	Leu	Asp	Ala	Ala 330	Gln	Thr	Lys	Thr	Thr 335	Val
Суз	Asp	Leu	Phe 340	Arg	Asn	Pro	Ser	Met 345	Arg	ГЛа	Arg	Ile	Сув 350	Ile	Leu
Val	Phe	Leu 355	Arg	Phe	Ala	Asn	Thr 360	Ile	Pro	Phe	Tyr	Gly 365	Thr	Met	Val
Asn	Leu 370	Gln	His	Val	Gly	Ser 375	Asn	Ile	Phe	Leu	Leu 380	Gln	Val	Leu	Tyr
Gly 385	Ala	Val	Ala	Leu	Ile 390	Val	Arg	Суз	Leu	Ala 395	Leu	Leu	Thr	Leu	Asn 400
His	Met	Gly	Arg	Arg 405	Ile	Ser	Gln	Ile	Leu 410	Phe	Met	Phe	Leu	Val 415	Gly
Leu	Ser	Ile	Leu 420	Ala	Asn	Thr	Phe	Val 425	Pro	Lys	Glu	Met	Gln 430	Thr	Leu
Arg	Val	Ala 435	Leu	Ala	Суз	Leu	Gly 440	Ile	Gly	Суз	Ser	Ala 445	Ala	Thr	Phe
Ser	Ser 450	Val	Ala	Val	His	Phe 455	Ile	Glu	Leu	Ile	Pro 460	Thr	Val	Leu	Arg
Ala 465	Arg	Ala	Ser	Gly	Ile 470	Asp	Leu	Thr	Ala	Ser 475	Arg	Ile	Gly	Ala	Ala 480
Leu	Pro	Leu	Leu	Met 485	Thr	Leu	Thr	Val	Phe 490	Phe	Thr	Thr	Leu	Pro 495	Trp

-continued

Ile Ile Tyr Gly Ile Phe Pro Ile Ile Gly Gly Leu Ile Val Phe Leu Leu Pro Glu Thr Lys Asn Leu Pro Leu Pro Asp Thr Ile Lys Asp Val Glu Asn Gln Lys Lys Asn Leu Lys Glu Lys Ala <210> SEQ ID NO 10 <211> LENGTH: 550 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 10 Met Ala Phe Ser Lys Leu Leu Glu Gln Ala Gly Gly Val Gly Leu Phe Gln Thr Leu Gln Val Leu Thr Phe Ile Leu Pro Cys Leu Met Ile Pro Ser Gln Met Leu Leu Glu Asn Phe Ser Ala Ala Ile Pro Gly His Arg Cys Trp Thr His Met Leu Asp Asn Gly Ser Ala Val Ser Thr Asn Met Thr Pro Lys Ala Leu Leu Thr Ile Ser Ile Pro Pro Gly Pro Asn Gln Gly Pro His Gln Cys Arg Arg Phe Arg Gln Pro Gln Trp Gln Leu Leu Asp Pro Asn Ala Thr Ala Thr Ser Trp Ser Glu Ala Asp Thr Glu Pro Cys Val Asp Gly Trp Val Tyr Asp Arg Ser Val Phe Thr Ser Thr Ile 115 120 125 Val Ala Lys Trp Asp Leu Val Cys Ser Ser Gln Gly Leu Lys Pro Leu Ser Gln Ser Ile Phe Met Ser Gly Ile Leu Val Gly Ser Phe Ile Trp Gly Leu Leu Ser Tyr Arg Phe Gly Arg Lys Pro Met Leu Ser Trp Cys Cys Leu Gln Leu Ala Val Ala Gly Thr Ser Thr Ile Phe Ala Pro Thr Phe Val Ile Tyr Cys Gly Leu Arg Phe Val Ala Ala Phe Gly Met Ala Gly Ile Phe Leu Ser Ser Leu Thr Leu Met Val Glu Trp Thr Thr Thr Ser Arg Arg Ala Val Thr Met Thr Val Val Gly Cys Ala Phe Ser Ala Gly Gln Ala Ala Leu Gly Gly Leu Ala Phe Ala Leu Arg Asp Trp Arg Thr Leu Gln Leu Ala Ala Ser Val Pro Phe Phe Ala Ile Ser Leu Ile Ser Trp Trp Leu Pro Glu Ser Ala Arg Trp Leu Ile Ile Lys Gly Lys Pro Asp Gln Ala Leu Gln Glu Leu Arg Lys Val Ala Arg Ile Asn Gly His Lys Glu Ala Lys Asn Leu Thr Ile Glu Val Leu Met Ser Ser Val Lys Glu Glu Val Ala Ser Ala Lys Glu Pro Arg Ser Val Leu Asp Leu

-continued

				325					330					335	
Phe	Cys	Val	Pro 340	Val	Leu	Arg	Trp	Arg 345	Ser	Суз	Ala	Met	Leu 350	Val	Val
Asn	Phe	Ser 355	Leu	Leu	Ile	Ser	Tyr 360	Tyr	Gly	Leu	Val	Phe 365	Asp	Leu	Gln
Ser	Leu 370	Gly	Arg	Asp	Ile	Phe 375	Leu	Leu	Gln	Ala	Leu 380	Phe	Gly	Ala	Val
Asp 385	Phe	Leu	Gly	Arg	Ala 390	Thr	Thr	Ala	Leu	Leu 395	Leu	Ser	Phe	Leu	Gly 400
Arg	Arg	Thr	Ile	Gln 405	Ala	Gly	Ser	Gln	Ala 410	Met	Ala	Gly	Leu	Ala 415	Ile
Leu	Ala	Asn	Met 420	Leu	Val	Pro	Gln	Asp 425	Leu	Gln	Thr	Leu	Arg 430	Val	Val
Phe	Ala	Val 435	Leu	Gly	Lys	Gly	Cys 440	Phe	Gly	Ile	Ser	Leu 445	Thr	Сув	Leu
Thr	Ile 450	Tyr	Lys	Ala	Glu	Leu 455	Phe	Pro	Thr	Pro	Val 460	Arg	Met	Thr	Ala
Asp 465	Gly	Ile	Leu	His	Thr 470	Val	Gly	Arg	Leu	Gly 475	Ala	Met	Met	Gly	Pro 480
Leu	Ile	Leu	Met	Ser 485	Arg	Gln	Ala	Leu	Pro 490	Leu	Leu	Pro	Pro	Leu 495	Leu
Tyr	Gly	Val	Ile 500	Ser	Ile	Ala	Ser	Ser 505	Leu	Val	Val	Leu	Phe 510	Phe	Leu
Pro	Glu	Thr 515	Gln	Gly	Leu	Pro	Leu 520	Pro	Asp	Thr	Ile	Gln 525	Asp	Leu	Glu
Ser	Gln 530	Lys	Ser	Thr	Ala	Ala 535	Gln	Gly	Asn	Arg	Gln 540	Glu	Ala	Val	Thr
Val 545	Glu	Ser	Thr	Ser	Leu 550										
<210 <211 <212 <213	0> SH L> LH 2> TY 3> OH	EQ II ENGTH ZPE : RGANI	D NO H: 54 PRT [SM:	11 42 Homo	o saj	piens	8								
<400	D> SH	EQUEI	ICE :	11											
Met 1	Thr	Phe	Ser	Glu 5	Ile	Leu	Asp	Arg	Val 10	Gly	Ser	Met	Gly	His 15	Phe
Gln	Phe	Leu	His 20	Val	Ala	Ile	Leu	Gly 25	Leu	Pro	Ile	Leu	Asn 30	Met	Ala
Asn	His	Asn 35	Leu	Leu	Gln	Ile	Phe 40	Thr	Ala	Ala	Thr	Pro 45	Val	His	His
Суз	Arg 50	Pro	Pro	His	Asn	Ala 55	Ser	Thr	Gly	Pro	Trp 60	Val	Leu	Pro	Met
Gly 65	Pro	Asn	Gly	Lys	Pro 70	Glu	Arg	Суз	Leu	Arg 75	Phe	Val	His	Pro	Pro 80
Asn	Ala	Ser	Leu	Pro 85	Asn	Asp	Thr	Gln	Arg 90	Ala	Met	Glu	Pro	Сув 95	Leu
Asp	Gly	Trp	Val 100	Tyr	Asn	Ser	Thr	Lys 105	Asp	Ser	Ile	Val	Thr 110	Glu	Trp
Asp	Leu	Val 115	Суз	Asn	Ser	Asn	Lys 120	Leu	Lys	Glu	Met	Ala 125	Gln	Ser	Ile
Phe	Met 130	Ala	Gly	Ile	Leu	Ile 135	Gly	Gly	Leu	Val	Leu 140	Gly	Asp	Leu	Ser

150

-continued

Asp 145	Arg	Phe	Gly	Arg	Arg 150	Pro	Ile	Leu	Thr	Cys 155	Ser	Tyr	Leu	Leu	Leu 160
Ala	Ala	Ser	Gly	Ser 165	Gly	Ala	Ala	Phe	Ser 170	Pro	Thr	Phe	Pro	Ile 175	Tyr
Met	Val	Phe	Arg 180	Phe	Leu	Сүв	Gly	Phe 185	Gly	Ile	Ser	Gly	Ile 190	Thr	Leu
Ser	Thr	Val 195	Ile	Leu	Asn	Val	Glu 200	Trp	Val	Pro	Thr	Arg 205	Met	Arg	Ala
Ile	Met 210	Ser	Thr	Ala	Leu	Gly 215	Tyr	Сув	Tyr	Thr	Phe 220	Gly	Gln	Phe	Ile
Leu 225	Pro	Gly	Leu	Ala	Tyr 230	Ala	Ile	Pro	Gln	Trp 235	Arg	Trp	Leu	Gln	Leu 240
Thr	Val	Ser	Ile	Pro 245	Phe	Phe	Val	Phe	Phe 250	Leu	Ser	Ser	Trp	Trp 255	Thr
Pro	Glu	Ser	Ile 260	Arg	Trp	Leu	Val	Leu 265	Ser	Gly	Lys	Ser	Ser 270	Glu	Ala
Leu	Lys	Ile 275	Leu	Arg	Arg	Val	Ala 280	Val	Phe	Asn	Gly	Lys 285	Lys	Glu	Glu
Gly	Glu 290	Arg	Leu	Ser	Leu	Glu 295	Glu	Leu	Lys	Leu	Asn 300	Leu	Gln	Lys	Glu
Ile 305	Ser	Leu	Ala	Lys	Ala 310	Lys	Tyr	Thr	Ala	Ser 315	Asp	Leu	Phe	Arg	Ile 320
Pro	Met	Leu	Arg	Arg 325	Met	Thr	Phe	Сүз	Leu 330	Ser	Leu	Ala	Trp	Phe 335	Ala
Thr	Gly	Phe	Ala 340	Tyr	Tyr	Ser	Leu	Ala 345	Met	Gly	Val	Glu	Glu 350	Phe	Gly
Val	Asn	Leu 355	Tyr	Ile	Leu	Gln	Ile 360	Ile	Phe	Gly	Gly	Val 365	Asp	Val	Pro
Ala	Lys 370	Phe	Ile	Thr	Ile	Leu 375	Ser	Leu	Ser	Tyr	Leu 380	Gly	Arg	His	Thr
Thr 385	Gln	Ala	Ala	Ala	Leu 390	Leu	Leu	Ala	Gly	Gly 395	Ala	Ile	Leu	Ala	Leu 400
Thr	Phe	Val	Pro	Leu 405	Asp	Leu	Gln	Thr	Val 410	Arg	Thr	Val	Leu	Ala 415	Val
Phe	Gly	Lys	Gly 420	Сүз	Leu	Ser	Ser	Ser 425	Phe	Ser	Сүз	Leu	Phe 430	Leu	Tyr
Thr	Ser	Glu 435	Leu	Tyr	Pro	Thr	Val 440	Ile	Arg	Gln	Thr	Gly 445	Met	Gly	Val
Ser	Asn 450	Leu	Trp	Thr	Arg	Val 455	Gly	Ser	Met	Val	Ser 460	Pro	Leu	Val	Lys
Ile 465	Thr	Gly	Glu	Val	Gln 470	Pro	Phe	Ile	Pro	Asn 475	Ile	Ile	Tyr	Gly	Ile 480
Thr	Ala	Leu	Leu	Gly 485	Gly	Ser	Ala	Ala	Leu 490	Phe	Leu	Pro	Glu	Thr 495	Leu
Asn	Gln	Pro	Leu 500	Pro	Glu	Thr	Ile	Glu 505	Asp	Leu	Glu	Asn	Trp 510	Ser	Leu
Arg	Ala	Lys 515	Lys	Pro	Lys	Gln	Glu 520	Pro	Glu	Val	Glu	Lys 525	Ala	Ser	Gln
Arg	Ile 530	Pro	Leu	Gln	Pro	His 535	Gly	Pro	Gly	Leu	Gly 540	Ser	Ser		

<210> SEQ ID NO 12 <211> LENGTH: 550 <212> TYPE: PRT

<213> ORGANISM: Homo sapiens <400> SEQUENCE: 12 Met Ala Phe Asn Asp Leu Leu Gln Gln Val Gly Gly Val Gly Arg Phe Gln Gln Ile Gln Val Thr Leu Val Val Leu Pro Leu Leu Met Ala Ser His Asn Thr Leu Gln Asn Phe Thr Ala Ala Ile Pro Thr His His Cys Arg Pro Pro Ala Asp Ala Asn Leu Ser Lys Asn Gly Gly Leu Glu Val Trp Leu Pro Arg Asp Arg Gln Gly Gln Pro Glu Ser Cys Leu Arg Phe Thr Ser Pro Gln Trp Gly Leu Pro Phe Leu Asn Gly Thr Glu Ala Asn Gly Thr Gly Ala Thr Glu Pro Cys Thr Asp Gly Trp Ile Tyr Asp Asn Ser Thr Phe Pro Ser Thr Ile Val Thr Glu Trp Asp Leu Val Cys Ser His Arg Ala Leu Arg Gln Leu Ala Gln Ser Leu Tyr Met Val Gly Val Leu Leu Gly Ala Met Val Phe Gly Tyr Leu Ala Asp Arg Leu Gly Arg Arg Lys Val Leu Ile Leu Asn Tyr Leu Gln Thr Ala Val Ser Gly Thr Cys Ala Ala Phe Ala Pro Asn Phe Pro Ile Tyr Cys Ala Phe Arg Leu Leu Ser Gly Met Ala Leu Ala Gly Ile Ser Leu Asn Cys Met Thr Leu Asn Val Glu Trp Met Pro Ile His Thr Arg Ala Cys Val Gly Thr Leu Ile Gly Tyr Val Tyr Ser Leu Gly Gln Phe Leu Leu Ala Gly Val Ala Tyr Ala Val Pro His Trp Arg His Leu Gln Leu Leu Val Ser Ala Pro Phe Phe Ala Phe Phe Ile Tyr Ser Trp Phe Phe Ile Glu Ser Ala Arg Trp His Ser Ser Ser Gly Arg Leu Asp Leu Thr Leu Arg Ala Leu Gln Arg Val Ala Arg Ile Asn Gly Lys Arg Glu Glu Gly Ala Lys Leu Ser Met Glu Val Leu Arg Ala Ser Leu Gln Lys Glu Leu Thr Met Gly Lys Gly Gln Ala Ser Ala Met Glu Leu Leu Arg Cys Pro Thr Leu Arg His Leu Phe Leu Cys Leu Ser Met Leu Trp Phe Ala Thr Ser Phe Ala Tyr Tyr Gly Leu Val Met Asp Leu Gln Gly Phe Gly Val Ser Ile Tyr

Leu Ile Gln Val Ile Phe Gly Ala Val Asp Leu Pro Ala Lys Leu Val Gly Phe Leu Val Ile Asn Ser Leu Gly Arg Arg Pro Ala Gln Met Ala

-continued

Ala	Leu	Leu	Leu	Ala 405	Gly	Ile	Суз	Ile	Leu 410	Leu	Asn	Gly	Val	Ile 415	Pro	
Gln	Aab	Gln	Ser 420	Ile	Val	Arg	Thr	Ser 425	Leu	Ala	Val	Leu	Gly 430	Lys	Gly	
CÀa	Leu	Ala 435	Ala	Ser	Phe	Asn	Cys 440	Ile	Phe	Leu	Tyr	Thr 445	Gly	Glu	Leu	
Tyr	Pro 450	Thr	Met	Ile	Arg	Gln 455	Thr	Gly	Met	Gly	Met 460	Gly	Ser	Thr	Met	
Ala 465	Arg	Val	Gly	Ser	Ile 470	Val	Ser	Pro	Leu	Val 475	Ser	Met	Thr	Ala	Glu 480	
Leu	Tyr	Pro	Ser	Met 485	Pro	Leu	Phe	Ile	Tyr 490	Gly	Ala	Val	Pro	Val 495	Ala	
Ala	Ser	Ala	Val 500	Thr	Val	Leu	Leu	Pro 505	Glu	Thr	Leu	Gly	Gln 510	Pro	Leu	
Pro	Asp	Thr 515	Val	Gln	Asp	Leu	Glu 520	Ser	Arg	Lys	Gly	Lys 525	Gln	Thr	Arg	
Gln	Gln 530	Gln	Glu	His	Gln	Lys 535	Tyr	Met	Val	Pro	Leu 540	Gln	Ala	Ser	Ala	
Gln 545	Glu	Lys	Asn	Gly	Leu 550											
<210 <211 <212 <213 <220)> SH L> LH 2> TY 3> OH)> FH	EQ II ENGTH (PE: RGAN] EATUH) NO H: 24 DNA ISM: RE:	13 1 Art:	ifici	ial S	Seque	ence								
<223	8> 01	HER	INFO	ORMA:	FION	: Che	emica	ally	synt	hesi	lzed					
<400 ggca)> SH acatt	CQUEN	ICE: tcac	13 ccaaç	ga co	cag										24
<210 <211 <212 <213 <220 <223)> SI L> LI 2> TY 3> OF 3> OF 3> OT	EQ II ENGTH PE: RGANI EATUH THER) NO H: 24 DNA [SM: RE: INFC	14 Art: DRMAT	ific: FION :	ial S : Che	Seque emica	ence	synt	hesi	lzed					
<400)> SH	EQUEI	ICE :	14												
tgtg	ggaco	tc a	agcag	gcatt	t go	yat										24

What is claimed is:

1. A method of screening candidate substrates of the $_{50}$ organic cation transporter 6 (OCT6) comprising:

- a. providing a test agent;
- b. providing mammalian cells or a mammalian cell line which express OCT6;
- OCT6,
- wherein the mammalian cells or mammalian cell line provided in step b, are leukemia cells or a leukemia cell line, respectively.
- **2**. The method of claim **1** wherein the test agent is coupled 60 to a detectable substance.

3. The method of claim 2 wherein the detectable substance is selected from the group consisting of extrinsically activatable enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, nonradioactive paramagnetic metal ions, immunogenic tag peptide sequences, extrinsically activatable toxins, extrinsically activatable quenching agents, and antibodies.

4. The method of claim 1 wherein the step of determining d. determining whether the test agent is a substrate for 55 whether the test agent is a substrate for OCT6 comprises analyzing whether the test agent is located intracellularly.

5. The method of claim 1, wherein step (d) comprises determining the viability of the cells or cell line.

6. The method of claim 5, wherein the viability of the cells or cell line is determined by applying a dye to the cells or cell line, wherein incorporation of the dye by the cells is indicative of death of the cells or cell line.

7. The method of claim 6, wherein the dye is trypan blue.

* *